wo 2016/094911 A2 |1 I N0F V0 00O OO A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/094911 A2

(51

eay)

(22)

(25)
(26)
(30)

(72)
1

31

16 June 2016 (16.06.2016) WIPOIPCT
International Patent Classification: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
HO4L 29/08 (2006.01) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
. L MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
International Application Number: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC
PCT/US2015/065647 SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
International Filing Date: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
14 December 2015 (14.12.2015) g4 Designated States (unless otherwise indicated, for every
Filing Language: English kind of regional protection available): ARIPO (BW, GH,
L) GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
Publication Language: English TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Priority Data: TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
62/091,405 12 December 2014 (12.12.2014) US DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Inventor; and SM, TR), OAPI (BF, BI, CF, CG, CIL, CM, GA, GN, GQ,
Applicant : THOMAS, David [US/US]; 426 Vivian GW, KM, ML, MR, NE, SN, TD, TG).
Street, Longmont, CO 80501 (US).
Published:

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: SYSTEMS AND METHODS FOR DETERMINING TEXTING LOCATIONS AND NETWORK COVERAGE

(57) Abstract: A system utilizing an Adventure Rescue Locator app and a Buddy app allows an adventurer to communicate his or
her location throughout an adventure. The ARL app can provide quick and simple check-in messages that transmit location and other
information and build a database of known "good" locations from which an adventurer is able to communicate via text, as well as
known "not good" locations. The apps can share such information with a wide user-base, thus making the location information avail -
able to others. The app can serve to display the adventurer's check-in locations on a map; alert that the adventurer has an adventure
in progress; keep track of the time the adventurer is planning on returning home and alert if the Adventurer fails to arrive; auto-con -
firm check-in texts with the ARL app; etc.

WO 2016/094911 PCT/US2015/065647

SYSTEMS AND METHODS FOR DETERMINING TEXTING

LOCATIONS AND NETWORK COVERAGE

Cross-Reference to Related Applications

[001] This application claims the benefit of U.S. Provisional Application
No. 62/091,405 entitled SYSTEMS AND METHODS FOR DETERMINING
TEXTING LOCATIONS AND NETWORK COVERAGE and filed on December

12, 2014, which 1s specifically incorporated by reference herein for all that it

discloses and teaches.

Technical Field

[002] The present invention relates generally to the field of cellular phone
networks; more particularly, to the field of determining texting locations; and,
more particularly still, to systems, methods, and software that can be utilized to
gather data on physical texting locations and associated network coverage such

that said data can be employed to help locate someone who i1s lost or in distress,

among other uses.

WO 2016/094911 PCT/US2015/065647

Background

[003] Widespread acceptance and mainstream use of mobile/cellular phones
has occurred in most areas of the world between five and twenty years ago. Two
decades past, very few networks could be found that had broad coverage across
significant geographic areas. However, within fifteen years, many well-populated
areas were subsequently blanketed by multiple cellular networks. This 1s
especially true for the more developed countries. For example, in the United
States, cellular networks blanket huge swaths of territory with only 1solated
pockets having poor or no cellular service/signal.

[004] Nevertheless, it 1s just these areas that still lack cellular service that
pose a potential hazard; for in such places, if a person becomes lost, injured or 1s
otherwise in distress, his or her cell phone ceases to be a reliable link to outside
help. Importantly, such areas can be rugged, wild, and otherwise somewhat
dangerous — often the vary traits that draw people to them. Typical adventure
seekers who travel through such areas include hikers, mountain bikers, back-
country skiers, off-road motorcyclists, four-wheel-drive enthusiasts, etc. As
people travel, they will cross in and out of cellular service, often without realizing
where they can make or receive calls or text messages (SMS). As long as the
adventure continues without incident, such events go unnoticed. But if there is an
emergency and an adventurer suddenly finds himself or herself needing outside

assistance, whether the location they are in has cell service or not can become a

WO 2016/094911 PCT/US2015/065647

life-or-death question. If the person is still at least somewhat mobile and finds that
there 1s no cell service, locating the nearest cell service and getting there as
quickly as possible can be critical.

[005] What is needed are systems and methods for determining texting
locations and network coverage so that adventurers can quickly and easily relocate
to such areas in an emergency to make contact and secure assistance.
Additionally, even if no emergency exists, it can be extremely useful for a cellular
user to know where nearby service locations can be found so that he or she can
send text messages and/or make phone calls when desired. Having a database of
such information at hand can allow for better trip/adventure planning so that
check-ins with family/friends can be made and one can efficiently relocate to a
location where texts or voice calls can be sent when needed. Furthermore, 1f an
adventurer occasionally checks in with another person or even via an automated
system, and subsequently becomes lost or otherwise fails to report in, emergency
responders will have a good 1dea of that person’s last known location and can
dramatically narrow the search area, when such assistance 1s required.

[006] One way to address these needs 1s through a smartphone application
(or “app”) that can provide a simple, quick, low-cost means for people to
communicate their location (and other information). Since advanced, high-
bandwidth “4G” network coverage 1s much less ubiquitous than earlier generation
systems capable of only voice calls and SMS messaging, it 1s preferred that such

an app rely on the SMS systems. An additional benefit of using the SMS system

WO 2016/094911 PCT/US2015/065647

1s that communications can often get through even with extremely low quality cell
coverage.

[007] There are many other features and benefits of such an app and
associated systems and methods that will become apparent as the invention 1s

explained in more detail below.

Brief Summary of the Invention

[008] A system utilizing an Adventure Rescue Locator (ARL) smartphone
app and a Buddy app can provide a means for an adventurer to communicate his or
her location with a contact “buddy” throughout his or her trip or adventure. The
ARL app can provide quick and simple check-in messages via SMS that transmit
location and other information and build up a database of known “good” locations
from which an adventurer is able to send (and/or receive) text messages (and/or
make/receive phone calls). The apps can share such information with a wide user-
base, thus making a map of such good locations available to others. As cell
coverage can vary by phone model, network provider, etc., the apps can build up
very detailed databases containing such fine-grained information. On the Buddy
app side, the app can serve to display the Adventurer’s check-in locations on a
map; alert the contact person that the Adventurer has an adventure in progress;
keep track of the time the Adventurer is planning on returning home and alert the
contact person (or search and rescue, etc.) if the Adventurer fails to arrive; auto-

confirm check-in texts with the ARL app; etc.

WO 2016/094911 PCT/US2015/065647

Brief Description of the Drawings

[009] FIG. 1 illustrates exemplary systems that can be utilized to determine
texting locations and coverage; and
[0010] FIG. 2 illustrates exemplary methods that can be utilized to determine

texting locations and network coverage.

Detailed Description

[0011] In the following discussion, numerous specific details are set forth to
provide a thorough understanding of the present disclosure. However, those
skilled 1n the art will appreciate that embodiments may be practiced without such
specific details. Furthermore, lists and/or examples are often provided and should
be interpreted as exemplary only and in no way limiting embodiments to only
those examples. Similarly, in this disclosure, language such as “could, should,
may, might, must, have to, can, would, need to, 1s, 1s not”, etc. and all such similar
language shall be considered interchangeable whenever possible such that the
scope of the mvention 1s not unduly limited. For example, a comment such as:
“item X 1s used” can be interpreted to read “item X can be used”.

[0012] Exemplary embodiments are described below in the accompanying
Figures. The following detailed description provides a comprehensive review of
the drawing Figures in order to provide a thorough understanding of, and an

enabling description for, these embodiments. One having ordinary skill in the art

WO 2016/094911 PCT/US2015/065647

will understand that in some cases well-known structures and functions have not
been shown or described in detail to avoid unnecessarily obscuring the description
of the embodiments.

[0013] Referring now to the drawings, FIG. 1 illustrates exemplary systems
that can be utilized to determine texting locations and coverage 100. The systems
include four groups of components: those labeled in the 100-199 range include
the large-scale, often “public” communications systems; those in the 200-299
range include the mobile end-user devices; those in the 300-399 range include the
fixed-location and mobile buddy user devices; and those in the 400-499 range
include the Internet/Network and server/database assets.

[0014] The large-scale, often “public” communications systems can include
such items as cellular telephone towers 105 and 115, the public communications
network 150 (and/or additional private systems), and the connection links and
transmissions between and among such systems and the users thereof. The
connections illustrated in FIG. 1 include: mobile connection links 170 between
the mobile traveler cellular telephone tower 105 and the end-user mobile devices
202; system transmission links 120 between the mobile traveler cellular tower 105
and the communications network 150; additional system transmission links 130
between the communications network 150 and the buddy cellular tower 115;
mobile transmission links 180 between the buddy cellular tower 115 and the
buddy user devices 302; wired transmission links 190 between the

communications network 150 and the buddy user devices 302; and connection

WO 2016/094911 PCT/US2015/065647

transmission links 160 between the communications network 150 and the
Internet/Network 410.

[0015] The Internet/Network 410 can include any of the devices/networks
that make up the Internet as well as private communications networks and devices
that are utilized to allow the source equipment 440 to communicate with the
communications network 150. The source equipment 440 can include a plurality
of servers 444, a plurality of databases 448, and the source communication links
446 mterconnecting them. The source equipment 440 hosts the apps and systems
information and makes them available for download to the end-users and buddies
as well as storing, organizing, and developing the information databases that are
built from data gathered/submitted by the end-users and buddies (and other
sources) regarding texting locations and network coverage.

[0016] The end-user mobile devices 202 can include any mobile electronic
device that can communicate with the systems. Examples of such devices include
cellular telephones 204, portable computing devices 206, and tablet computers
208. Additional possible devices can include GPS/location devices, mobile radio
communications devices, dedicated tracking/location devices installed in
cars/bicycles/etc., satellite communications devices, etc. A preferred embodiment
of the invention includes a mobile end-user utilizing a smart phone 204 upon
which the user has installed an Adventure Rescue Locator (ARL) smartphone app.
See later Figures and Descriptions for more information about exemplary

embodiments of the ARL app.

WO 2016/094911 PCT/US2015/065647

[0017] The buddy user devices 302 can include mobile devices as well as
fixed-location devices. For example, buddy users can employ buddy cellular
phones 304 or buddy portable computing devices 306 and so be connected via
mobile devices. Additionally, buddy users can employ less-mobile devices,
sometimes referred to as “fixed-location” devices such as desktop computing
devices 308 that may be connected via wired transmission links 190 to the
communications network 150. Such devices can also (or alternatively) be
connected via mobile transmission links 180; and although they are often more
difficult to move around, they can be relocated and used in somewhat “mobile”
ways (such as in a car, recreational vehicle, camper, etc.).

[0018] The exemplary systems illustrated in FIG. 1 allow the mobile end-user
to communicate with the buddy end-user, and both can communicate with the
source equipment, such that the methods of the present invention can be carried
out over the described systems.

[0019] FIG. 2 illustrates an exemplary method that can be utilized to
determine texting locations and network coverage 10. The illustrated exemplary
steps include: 1nstalling ARL app 20, configuring ARL app 30, beginning
adventure 40, attempting communications 50, determining successes 60, ending
adventure 70 and communicating with source equipment 80. Additional steps are
contemplated. Although the arrows between the different steps may imply
sequential operations which often follow one to another, nothing in this

application should be construed to limit the methods to sequential operations only,

WO 2016/094911 PCT/US2015/065647

as the steps can occur out of order whenever desired. For example, during the
Adventure, a user may employ step 30, configuring ARL app, if he or she
determines that reconfiguring is desired.

[0020] The installing ARL app step 20 can involve the mobile end-user (the
“adventurer”) navigating to the source equipment on their smart phone’s internet
browser (or using an application store and download app) to download the ARL
app to their smart phone. Additionally, if the adventurer is going to be utilizing an
end-user mobile device 202 that 1s not a smart phone, the adventurer will
undertake whatever proprietary steps are required to install the ARL app on the
desired mobile device 202.

[0021] The configuring ARL app step 30 can involve launching the ARL app
and configuring it for the device upon which it 1s installed. Additionally, the
adventurer can configure the ARL app to customize it for his or her own
adventuring needs. Once set, the configuration(s) are not necessarily designed to
be static, but can instead be updated whenever desired. For example, depending
on the type of adventure, a given adventurer may want to change some of the
configuration settings: whether to send check in tasks automatically or manually,
various settings for power conservation, whether discovery mode 1s on or off.

[0022] The beginning adventure step 40 encompasses launching the ARL app
at the beginning of the adventure. A particular buddy (or multiple) may be
chosen, the type of adventure may be selected to help with preparing the app to

display the most used options for that adventure type, an appropriate background

WO 2016/094911 PCT/US2015/065647
10

image for the app may be selected to set the “tone” for the adventure (note that the
choice of options, adventure type, image, etc. can be used to target display ads on
the Buddy app and/or the ARL app), etc. Additionally, the app can begin
communications with the on-board Global Positioning System or other “location
determination” app/software/device in order to track and map the location of the
adventurer throughout the adventure.

[0023] At the start of an adventure (e.g., a hike, mountain bike ride,
motorcycle ride, horse ride, canoe trip, hang-glide, etc.) the adventurer notifies the
contact person (Buddy) that they are starting an adventure either through the app
or external thereto. If the app is used, the system can supply information to the
Buddy including such items as the starting location, expected destination, route,
conveyance info, time they will be returning home, etc. The app can provide a
“start adventure” screen for this purpose, which would store this info, allowing the
adventurer to quickly assemble it into a “starting adventure” text, to be sent to the
contact person.

[0024] The attempting communications step 50 can involve a number of
different communications. For example, in an exemplary embodiment, the mobile
end-user can initiate a “Check In” by pressing a “Check In” button on the app’s
user interface. This action can cause the app to initiate a check in text message
(SMS or otherwise) that the mobile device attempts to send to the designated
buddy(ies). Another type of communication might be an attempted phone call to

determine 1if cellular phone voice service is available. Yet another type of

WO 2016/094911 PCT/US2015/065647
11

communication could be an attempt to connect to the Internet over a 3G/4G type
connection or a Wi-F1 connection. Additionally, the app could attempt to send an
email. In another embodiment, the check in operation could be initiated
automatically based on elapsed time or distance since previous check in.

[0025] Whatever the type of communication that 1s attempted, it can include
one or more of such basic items as location data, date, time, phone version,
provider, etc. or it can also include custom information (some of this data may be
incorporated only at the beginning or end of the adventure). As an example,
location data can comprise a link to “Google Maps” that displays the adventurer’s
location on a map on the Google Maps website when clicked.

[0026] Custom information can be pre-created “canned” messages such as
“I’'m fine”, “Adventure Going Great”, “Right on Track”, “Running Late”, “Need
You to Call for Help”, “Emergency, Send Help Now!”, etc. In another
embodiment, the custom mformation can be created by the user on the fly and/or
can be previously prepared and made ready for selection as desired.

[0027] Yet another communication that is attempted can be one that is sent to
the source equipment 440. This can be a text, voice message, Internet
communication, etc. and it can provide information like that sent to the Buddy (in
fact, an automated Buddy can be set up by the user on the source equipment 440,
for example, when another person who normally acts as a Buddy is not available).
When an auto-buddy 1s configured, a particular communication could trigger

switch-over to a real person Buddy instead (say if an emergency situation

WO 2016/094911 PCT/US2015/065647
12

developed during the adventure). In another embodiment, the communications
with the source equipment 440 could have enhanced information in addition to
that normally transmitted to a Buddy. In yet another embodiment, the attempting
communications step 50 could send communications to a custom website for a
given adventurer that 1s then updated and Buddy(ies) can log into the website and
see the adventurer’s communications, locations, etc. Such a website could
automatically send tweets, make blog updates, send emails, etc. In alternate
embodiment, either the ARL app or the Buddy app could send the tweets, blog
posts, emails, etc. directly.

[0028] Whatever the nature of the communication, the app logs the
communication attempt with a location from the location determination
app/software/device and stores that information locally.

[0029] In another embodiment, the attempting communications step 50 can
also mvolve the app polling the operating system automatically to determine
whether or not service 1s available and then tracking that result (including strength
of signal, date, time, and any other information) along with the location of the
device as reported by the “location determination” app/software/device. In one
embodiment, only user-initiated communication attempts are made; in another
embodiment, only automated, app-initiated communication attempts are made; and
n yet another embodiment, either or both are made.

[0030] The determining success step 60 involves the ARL app

communicating with the device (often, communicating with the operating system)

WO 2016/094911 PCT/US2015/065647
13

to determine whether or not the attempted communication from step 50 succeeded
or failed. If a failure occurred, the ARL app wants to know whether the failure
was due to an absence of cell service or not. If not, the app can simply re-attempt
the communication and/or inform the user that some other non-network problem
exists. If the failure was because there was no service, the ARL app can enter a
“check 1n” state called “waiting for service”, update the user interface to let the
user know that a check in 1s in progress and that it 1s waiting for service, and then
wait for notification from the operating system that service has been restored.
Additionally, the app then logs the unsuccessful communication attempt with a
location from the location determination app/software/device so that it knows
where no service was found.

[0031] In addition to the ARL app communicating with the device/operating
system to determine success or failure of the attempted communication, the app
can also look for an acknowledgment communication arriving from the contacted
Buddy app (or source equipment 440). When the Buddy app sends a confirmation
back to the ARL app, it is positive confirmation that the original communication
was successfully sent; whereas the device, operating system, etc. may report a
communication success incorrectly. Note that an acknowledgment can be sent but
may not be received by the device/ARL app. In such cases, it may be useful to
have the ARL app ask for a complete history of check ins when it has reliable
signal (such as after the adventure). Also, acknowledgments could contain

redundancies such that a single message might contain acknowledgment

WO 2016/094911 PCT/US2015/065647
14

information for multiple past communications from the ARL app. In this way, if
any one of a set of acknowledgments were received, the ARL app would know
whether multiple past communications were successful or not.

[0032] If the communication was conducted successfully, the ARL app can
update the “check 1n” state to “not checking in” and let the user know that the
check in communication was successful. Additionally, the app can then log the
successful communication attempt with a location from the location determination
app/software/device.

[0033] The determining success step 60 can point back to the attempting
communications step 50 as needed. For example, when it 1s determined that the
attempted communication failed and service has since been restored, then the app
nitiates another attempting communications step 50 and tries to resend the
message. This, in turn, causes another determining success step 60 to be invoked
in case the communication again fails.

[0034] The ARL app can wait to be notified whenever network coverage 1s
restored and then it can determine the “check in” state to see whether it 1s in a
“checking in” or “not checking in” state. If the former, it can call the attempting
communications step 50. If the latter, no new automated communication 1s
necessary.

[0035] The ending adventure step 70 1s initiated by the adventurer after she
or he has completed the adventure and returned “home” (which can refer to any

designated location, such as the car, camp, house, building, boat, airplane, garage,

WO 2016/094911 PCT/US2015/065647
15

etc.). The ARL app can initiate any designated end-of-adventure actions such as
attempting communications with the buddy(ies) to notify he/she/them that the
adventure is over and the user 1s “home” safe (custom and/or canned messages can
be included); logging the adventure information to an app database on the device;
showing the adventurer a map of the adventure highlighting where check-ins were
attempted, whether or not they were successful, were service was available and not
available, etc.; and suggesting end-of-adventure activities such as going to a
nearby restaurant for a meal.

[0036] The communicating with source equipment step 80 can be undertaken
automatically by the ARL app whenever it has the ability to communicate with the
source equipment 440 (or it can be initiated by the user). The communication can
be accomplished over 3G/4G mobile networks, Wi-F1, or any other suitable link to
the communications network 150. During this step, the app can transfer data
concerning the determined locations at which texting/communicating was
successful, those where 1t was unsuccessful, the results of any polling of cell
service conducted during the adventure, details about the adventure itself
(including GPS/location information), etc.

[0037] This transfer of data allows the source equipment 440 to build up the
database(s) of cell texting/signal/service locations and “dead-zones” where no
service 1s available. This valuable data can then be made available to users” ARL
apps to reduce the need for polling or otherwise attempting to communicate in

dead-zones, and for other uses. Additionally, the data can be sold or otherwise

WO 2016/094911 PCT/US2015/065647
16

used as information about network availability 1s valuable information.
Furthermore, because the ARL app can also report device type, service provider,
etc., this data can include such useful information as service-provider specific
information about network availability and signal strength; telephone-specific
information about network availability and signal strength; etc. With enough such
datasets, one could compare how well certain phones and/or providers allow
communications and future adventurers (and others) could then favor those who
perform the best.

[0038] When a check is initiated, it can be launched automatically or by
direct user action (for example, the adventurer pressing the check in button on the
user interface of the app). In some embodiments, check ins can be initiated
automatically after a certain amount of time/distance has passed since the previous
check in or when the user is in close proximity to a known texting location. When
the check 1n 1s initiated, the app obtains the location from the GPS unit, formats a
text message, and attempts to send it.

[0039] The app then waits for a response from the operating system (e.g.,
using a broadcast receiver) indicating that the text message either was sent
successfully or failed to get through. If the check in text was sent successfully, the
app indicates this on the user interface and the check in is done.

[0040] If the text failed to get through, the action taken by the app depends
on the reason for the failure. If the text did not get through because the adventurer

moved totally out of cell coverage, the app could move into a lower power-

WO 2016/094911 PCT/US2015/065647
17

consumption state until the adventurer moves back into cell coverage. At this
point, the app obtains the current location from the GPS unit, formats a new check
n text, and attempts to send it again. If a text fails to get through for a reason
other than leaving cell coverage, the app simply formats a new text message (using
the current location) and tries again to send it.

[0041] The status of the check in, including whether the app is currently
attempting to send a text, or 1s waiting to reenter cell coverage, 1s all indicated on
the user-interface, to keep the user informed about what 1s going on. In one
embodiment, the app makes an audible sound whenever a check in text goes
through. This is helpful because the phone may be in a pocket or backpack, and
may have been trying for a long time in some cases, to get the check in text to go
through.

[0042] A useful option on the user-interface 1s that the distance to the
previous check in can be displayed. This is to help the adventurer know how far
that she/he has traveled, and therefore, whether it 1s time to check in again. One
subtlety about the operation of this app 1s that when considering the distance to the
previous check in, there are as many as four different distances to pay attention to,
and for different reasons.

[0043] The first important distinction between these four distances arises
because in practice, in areas with little or no cell coverage, the app determines the
user’s location and attempts to send a text, but if the user is moving, and the text

does not go through right away, the location indicated in the text (in the simplest

WO 2016/094911 PCT/US2015/065647
18

case, where the user was when the check in was initiated) may differ from the
user’s location when the text actually goes through. The app therefore keeps track
of two different locations relating to a specific check in: the locationSentInText,
and the actualLocationWhenSent. Under 1deal cell coverage, (i.e. the check in
goes through immediately), these locations/distances will be essentially identical.

[0044] On the user interface, both of these distances can be displayed. Their
relevance to the adventurer 1s that the locationSentInText is where search and
rescue would start looking for him/her, in the event of a problem. The
actualLocationWhenSent, however, is very useful because this is a texting
location. This means that if the adventurer goes to this specific location, he/she
will likely be able to send and receive text messages. These locations could be
displayed on a map on the app, or more simply, the distance to each of these
locations can be displayed on the user interface. In this instance, the Adventure
simply needs to backtrack until the distance to the actualLocationWhenSent is
near zero, and she/he will most likely be able to send text messages.

[0045] That accounts for two of the four distance numbers on the UL. The
aforementioned distances are straight line distances or “as the crow flies”. It 1s
important to understand the implications of distance traveled versus straight-line
distance. As an example, if the adventurer 1s hiking on switchbacks, they may
actually see the distances becoming smaller as they hike, if the trail reverses back
toward the check 1n location(s). People think that as they are progressing up the

trail, the distance(s) to the previous check in should get larger, not smaller. Hence

WO 2016/094911 PCT/US2015/065647
19

the need for two other numbers, which are
“distanceTraveledSinceLocationSentInText,” and
“distanceTraveledSinceActualLocationWhenSent.” Both of these are calculated
by sampling the user’s location frequently (for example, every five seconds), and
adding the distances between the location samples, all the way back to the
locationSentInText and the actualLocationWhenSent. These two numbers should
be fairly close, for example, to the reading on a car odometer used to measure the
same distances. Note that in low power-consumption mode, this location
sampling 1s turned off (to keep the GPS from consuming power), so the distances
traveled are not available.

[0046] The quality of a particular ChecklIn is determined by the quality of the
information provided by the GPS or location determination device/software/etc.
(hereinafter “GPS”). On other GPS-using apps that are not intended to be life-
saving, it 1s not as important that the information displayed be accurate to a high-
degree. But in the case of the ARL app, providing as accurate as possible
information about the adventurer’s location can mean the difference between life
and death. There are two potentially deadly errors in the information provided by
the GPS. These are: the GPS fix 1s inaccurate, and the GPS fix 1s old/out of date.

[0047] The “GPS fix can be inaccurate” when the phone or mobile device
was in the adventurer’s pocket or another location where it did not have a
sufficient view of the sky to create an accurate GPS fix. It could also be because

the GPS was only recently started up and hasn’t yet had time to acquire an

WO 2016/094911 PCT/US2015/065647
20

accurate fix. Note that the term “phone” may be used throughout this application
and includes all other mobile devices that can be utilized in place of a phone

[0048] The “GPS fix 1s old/out of date” can occur when the phone has been
in a location (as above) where the GPS unit was unable to get a GPS fix. In this
case, the operating system will provide the location where the phone was the last
time it was able to obtain an accurate GPS fix. In some cases, considerable time
may have passed since the phone had an accurate GPS fix, and the user’s location
may have changed significantly during this time.

[0049] Fortunately, one exemplary operating system, Android, provides
helpful information along with the GPS coordinates, to help mitigate this problem.
The accuracy of the GPS fix 1s provided in the location object provided to the app
from the Android system when the GPS 1s queried. The time (timestamp) of the
GPS fix is also provided in this location object. The app may thus calculate the
age of the GPS fix by subtracting its timestamp from the current time.

[0050] Both the accuracy and the timestamp of the GPS fix can be provided
in the check in text messages sent from the adventurer to the contact person. This
1s to aid search and rescue in determining the adventurer’s likely location in the
event of an emergency. In one embodiment, the text message includes both the
accuracy and the age of the GPS fix, as well as the timestamp of the GPS fix.
Additionally, the accuracy and age of the GPS fix can be indicated on the user

iterface in order to help the adventurer decide whether to send a check in with the

WO 2016/094911 PCT/US2015/065647
21

current information provided by the GPS, or to wait for the GPS to obtain better
info.

[0051] The practical reality is that even poor quality GPS info being provided
to rescuers 1s vastly superior than providing no information whatsoever. Even if
the location given is off by a few hundred yards, or indicates where the adventurer
was at some point in the past, it provides a starting point for search and rescue
efforts that 1s likely much nearer to the adventurer than whatever information
would be available if he or she weren’t using the ARL app. Nonetheless, by
providing the information about accuracy and GPS fix age to rescuers, they will be
able to more quickly assess the situation and likely be more able to more quickly
find the adventurer(s) in distress.

[0052] Certain embodiments of the app can have the ability to automatically
send a repeat check in, in the event that a previous check in had a quality 1ssue. A
quality 1ssue could be a problem with the location, as described above. It could
also be that there was a significant distance between the locationSentInText and
the current location. This 1s generally a result of the adventurer attempting to
mitiate a check i when there is not sufficient cell coverage to do so. As described
previously, the app may not be able to get a check in text through until the
adventurer has moved a distance to a location where it is possible to do so. The
app can watch for this situation and if the distance between the
actualLocationWhenSent and the locationSentInText 1s significant, it can repeat

the check in operation. In most cases, this repeat check in will go through easily,

WO 2016/094911 PCT/US2015/065647
22

because it happens immediately after the previous check in text was sent, so the
app 1s known to be in a texting location at that point.

[0053] The app can also initiate a repeat check in when the previous check in
had quality 1ssues with its GPS info. In this instance, it can be desirable for the
app to wait until the GPS issues have been resolved before initiating the repeat
check .

[0054] A handy feature of the app is the ability to periodically initiate a check
n operation automatically, without the user needing to press the “check in” button.
The app can be configured to initiate the auto check in after either a certain
amount of time or distance has passed or when the adventurer nears a known
texting location. This 1s a useful feature that allows the adventurer to ignore the
app and the phone and be completely immersed in their adventure.

[0055] In its simplest form, it 1s possible for a person to conserve their cell
phone battery simply by watching for their location on a map (most likely on their
phone), as it relates to indicated proximity of texting locations. When the map (or
the ARL app) indicates that they are near a texting location, they can simply push
the check in button. It is most likely that the check 1n will be successful, since
they are at or near a known texting location. If the adventurer is adventuring in a
familiar place, it 1s likely that they will remember where the texting locations are.
In this case, they could just wait until they have arrived at one, and push the

“Check In” button.

WO 2016/094911 PCT/US2015/065647
23

[0056] There is also the possibility of automating this process. In one
scheme, the app would remain in a dormant/low power consumption state,
periodically waking up to check on its location, until 1t wakes up and finds 1t
somewhat near a known texting location. At that point, it would stay awake until
1t 1s within a few hundred feet of the known texting location, and begin checking
. It 1s expected, but not guaranteed, that the check in would be successful,
because they would be at or near a known texting location. In the event that it
doesn’t check in successfully, they could cancel the check in, or spend some time
moving around at or near the texting location, to see if it goes through on another
attempt.

[0057] Another automation can be for the app to enter a dormant/power
saving state (with its service stopped) as long as its location matches a location
where 1t 1s known to be impossible to send a text. Specifically, this would be an
area explored previously (by the current adventurer or one or more other
adventurers, via data from the source equipment) where there was no cell coverage
at all, or where the app was attempting unsuccessfully to check in. Periodically,
the app would be woken up (using an AlarmManager, for example) and compare
its location with those in the database. If the app leaves this area, where it 1s
known to be impossible to send a text, it resumes checking in. If it wakes up and
discovers that it 1s nearing the edge of the area where it 1s known to be impossible
to send a text, it will re-enter “discovery mode” and resume attempting to check

in. This scheme would require that more information 1s saved in the database

WO 2016/094911 PCT/US2015/065647
24

because an exhaustive list of “known-to-be-impossible” texting locations would
need be stored in the database. It would require a significant amount of battery
power to map this out the first time, but once that was done, the operation of the
app would be smoother because it could enter and leave the low-power mode
automatically, whenever entering or leaving the “known-to-be-impossible”
locations.

[0058] When using multiple phones or information from other adventurers, a
problem that needs to be addressed (or at least understood) can develop. A phone
with a better radio might be able to successfully check in an area that a phone with
a weaker radio had flagged as “known-to-be-impossible.” So by flagging areas as
“known-to-be-impossible,” people might not become aware of texting locations
that they could, in fact, discover and use. This problem could be mitigated by
making the “known to be impossible” list specific to particular models of phones,
and/or by gathering a significant amount of data before putting a location on the
“known to be impossible” list. Once enough attempts have been made by enough
different models of phones, a more reliable “known to be impossible” map could
be constructed. It 1s worthwhile to note that if cell coverage becomes available in
a particular area where i1t was not available previously, the app would need to
recognize this, and let the presence of cell coverage override the “known to be
impossible” indication, and attempt to check in, anyway. The central database
would need to be updated to reflect this new info as the successful CheckIns start

to come in for a previously “Known to be impossible” area. Additionally, it may

WO 2016/094911 PCT/US2015/065647
25

be desirable to have user’s apps periodically attempt to check in areas considered
to be “known to be impossible.” This would cause these areas to be periodically
tested, but would still provide most of the battery saving benefits of using the
“known to be impossible” list.

[0059] Note that much of the following information is applicable to the
implementation and use of an embodiment of the invention on Android
smartphones. The algorithms should apply in a general way to other operating
systems.

[0060] In its simplest form, the ARL app consists of the following items, to
support “checking in” (in “discovery mode™):

[0061] <« One or more activities, to support the user-interface

[0062] < A user-interface including a button to initiate a check in, a means of
selecting a contact who will receive the check-in texts, an indication of the current
state of the app (e.g. “checking in, no cell service”) and an indicator of the current
distance from the most recent successful check in.

[0063] Additionally, screens for the “Beginning Adventure” and “Ending
Adventure” operations could be provided. A screen for displaying ChecklIn info
and the adventurer’s location on a map could be provided, as well as a screen for
showing known texting locations from the database, which could be either on a
map or in a list.

[0064] A service that performs the check-in operation in the background can

be used. There 1s no need for the service to be in a separate thread because it does

WO 2016/094911 PCT/US2015/065647
26

not use a lot of CPU. It simply attempts to send texts and listens for the result. It
1s desirable to have a foreground service, so it is not as likely to be killed by
Android when more memory is needed. Note that status bar notifications as to the
operation of the app are desirable, and required if you have a foreground service.

[0065] A PhoneStateListener object can be used. Such an object informs the
app when the phone moves in and out of cell coverage.

[0066] A BroadcastReceiver object can be used. Such an object listens for
broadcasts from the Android system indicating that a text message either failed or
was successfully sent.

[0067] An interface with the phone’s GPS unit can be used. Such an
interface communicates with the GPS unit (or other location device) and gathers
location data so that the location 1s available to the app. Potential uses of the
location data include: inclusion in the check-in texts/communications, for
calculating the distance from the present location to the location of the most recent
check 1n, for calculating proximity to other known texting locations, determining
whether the user 1s in a known-to-be-impossible location, etc.

[0068] The app should have access to the current date and time. This 1s
useful for determining if the app has a current or an old GPS fix, and the date/time
can also be sent in the check-in texts.

[0069] The app can include custom code which formats and sends the
communications (e.g., a text message) and selects the contact person who will

receive the communications.

WO 2016/094911 PCT/US2015/065647
27

[0070] The app should also include a clock 1n the service that “ticks”
periodically (e.g. every second) to check on the status of things and to update the
UL

[0071] Additionally, a means of communicating between the Activity(s) and
the service 1s useful. In one exemplary embodiment, this 1s accomplished using
LocalBroadcastReceiver objects.

[0072] Note that in another embodiment of the invention, there can be Java
objects for the “Adventure”, a ChecklIn, and a CheckInAttempt. Creating a
CheckInAttempt object causes the text message to be sent. When moving i and
out of cell coverage, the app may generate a number of CheckInAttempts before
receiving a confirmation from the cellular provider that a ChecklIn text actually got
through. The Adventure contains all the data associated with the current
adventure, including a list of all the ChecklIns that have occurred in this adventure.
Each CheckIn object contains a list of all the CheckInAttempt objects that have
occurred as a part of that particular CheckIn. This information has several uses,
including generating a kml file, which allows an Adventure to be displayed on
Google Earth (or other mapping software that can read a kml file). This
information 1s also used for storing information about discovered texting locations
in the database, for debugging in the junit tests, and can be uploaded to the central
database on the source equipment.

[0073] There are a number of situations where 1t would be useful to know,

for example, that just over a hill 1s a spot where it 1s possible to send a check in

WO 2016/094911 PCT/US2015/065647
28

text. As mentioned previously, one by-product of simply using the ARL app to
send an occasional check in text 1s that it also finds locations where it 1s possible
to send text, and in some cases, even make a voice call or perform another type of
communication. This can be a useful convenience, or can even be life-saving in
certain situations.

[0074] Given the usefulness of knowing where texting locations may be
found, in remote areas with poor cell coverage, it makes sense to gather and store
these discovered texting locations, and even to share them with others. This 1s the
purpose of the databases of texting locations. In a preferred embodiment of this
mvention, there would be a local database on the adventurer’s phone, and a central
database on the Internet and/or located on the source equipment 440.

[0075] In order to gather data for a database on the user’s phone, the app can
examine and track three possible outcomes when a CheckInAttempt is initiated.
First, the check in text was sent successfully. Second, the check in text was not
sent successfully. And third, a “false negative” occurs wherein the text was sent
and went through, but the app had no way of knowing this because the
acknowledgement that the text was sent did not get from the cell carrier back to
the app. This happens sometimes in areas with very poor cell coverage, on the
edge of usefulness of the app. (False negatives are detected by the interoperation
between the main ARL app and the Buddy app (see below).)

[0076] As the user simply uses the ARL app, it is storing the information it

gathers about where each of the above occurred (as well as other events as

WO 2016/094911 PCT/US2015/065647
29

described elsewhere). This information 1s stored in a local database on the user’s
phone, and enables the user to view historical data about his/her adventures, and
makes it easy for the adventurer to find locations where the app has successfully
sent a check 1n text in the past.

[0077] In addition to a local database of texting locations on the adventurer’s
phone, the present invention can include an online database of texting locations
(e.g., source equipment 440), so that adventurers may share discovered texting
locations. In this way, when an adventurer is planning a trip, he/she may first
download the known texting locations into their phone, for the area in which they
will be adventuring. This way, rather than having the phone use a lot of battery
searching for texting locations, the app (and hence, the adventurer) will know
where they are ahead of time, and only nitiate the check in operation when there
1s a texting location nearby. Also, as mentioned previously, the knowledge of
where the texting locations are will provide a convenience, and possibly expedited
assistance, in an emergency.

[0078] In one embodiment, the information on the user’s phone may be
organized into two tables: an event table that logs notable events on the user’s
phone; and a “can’t text here” table that logs locations where it is not possible to
check 1n (this would be either because the phone has tried and failed, or because

the phone indicates that it does not have any cell coverage at this location.

WO 2016/094911 PCT/US2015/065647
30

[0079] The event table can include the following fields in an exemplary
embodiment (other fields may be included and/or some of these may not be used,

n other embodiments):

- Adventure ID (a simple format would be <year>-<month>-<day>-
<sequence> where sequence would mostly be “17”, but might be

incremented in the event that there was more than one adventure in a single
day);

- Adventurer ID (either “Me” or, if this 1s a downloaded texting location, the
userid of the Adventurer that found 1t, or “Anonymous,” 1f the adventurer

who found the texting location did not want their info published);

2% <C
2

- Adventure Type (e.g., “Mountain Biking”, “Back Country Skiing”, “Dual

Sport Motorcycling”, etc.);

-Event Type (e.g. “Starting Adventure,” “Starting Checkln,” “Starting
CheckInAttempt,” “Finishing CheckInAttempt Failure,” “Finishing
CheckInAttempt False Negative,” “Finishing CheckInAttempt Success”
(these would be the discovered texting locations), “Lost Cell Service,”

“Reentered cell service,” “Unable to Check In At Texting Location,” etc.);

-CheckIn Duration (an indication of how difficult it was to find this texting
location — 1.e. how long the app tried so far to send one or more CheckIn

texts associated with this ChecklIn.)

WO 2016/094911 PCT/US2015/065647
31

-CheckInAttempt Duration (another indication of how difficult it was to
find this texting location — 1.e. how long the app has tried so far, to send

this particular ChecklIn text.)

-Number of CheckInAttempts (so far) in this Checkln (another indication of
how difficult it has been (so far) to find a texting location (which may not

have been found yet).)

-Distance to Start of CheckIn (how far it 1s from the location where the
ChecklIn was mitiated to the location where the text was sent; this 1s
another indication of how difficult it was to find this texting location — 1.e.

how far the user traveled before the check in text was sent.)

-Location, latitude (preferred format: e.g. 38.4392; see discussion below
about precision. Use the “ActuallLocationWhenSent” in the app to

populate this field.)

-Location, longitude (preferred format: e.g. -106.5712; see discussion
below about precision. Use the “ActualLocationWhenSent” in the app to

populate this field.)

-Location, accuracy (Use the “ActualLocationWhenSent” in the app to

populate this field.)

-Location, GPS fix age (Use the “ActualLocationWhenSent” in the app to

populate this field.)

WO 2016/094911 PCT/US2015/065647
32

-Location, Speed (The speed of the adventurer at the time the check in
succeeded can be an indication of the quality of the texting location. If you
are traveling too fast, you will often miss a small, poor quality texting
location, because you won’t have spent enough time there for the CheckIn
to take place. Use the “ActuallocationWhenSent” in the app to populate

this field.)

-Location, timestamp (Use the “ActualLocationWhenSent” in the app to

populate this field.)

-DiscoveryModeStatus (enabled/disabled).

[0080] For fields that relate to a location (e.g., latitude, longitude, accuracy,
GPS fix age, speed, and location timestamp), the following rules may be applied:
If the event type 1s “FinishingCheckInAttemptSuccess,” the
“ActualLocationWhenSent” field of the CheckIn may be used to populate the
Location fields. For all of the remaining event types except
“CheckInAttemptFalseNegative,” the location the user was in when the event
occurred may be used. For “CheckInAttemptFalseNegative,” an exemplary
embodiment of the invention might make a database entry for each location the
user passed through during the “CheckInAttempt” that resulted in the false
negative. This is necessary because, in contrast to successful ChecklIns, where the
app knows the user’s location when the confirmation was received, with a

“CheckInAttemptFalseNegative” there is no confirmation received from the

WO 2016/094911 PCT/US2015/065647
33

cellular network, so the user’s location when the text was sent 1s not known. Note
that there will be some variation in the start and finish of the CheckInAttempts
from one adventure to another. With enough data samples, it might be possible to
get a better 1dea where a “false negative” texting location actually 1s. Even
without knowing this, 1t would be possible and useful to have a section of a road
or trail, for example, marked in a color on a map to indicate that “somewhere
along here, a text might get through.”

[0081] A note on the precision of locations 1s important here. In a preferred
embodiment of the invention, the precision of the latitude and longitude can be 4
decimal places. This has the effect of slicing the world up into chunks that (in a
location such as Colorado) are about 30 feet square. The result is that latitude
38.42916 1s considered the same as 38.42911, for the purposes of the database
query. (In this example, the latitude is truncated, not rounded. It would work
either way, but you would want to choose one, and thereafter, always truncate, or
always round.) Longitude can be handled exactly the same way. This
approximately 30-foot “square” can be considered to be the “size” of a location for
the purpose of organizing the database. This simplifies things such as gathering
stats for a particular texting location. By considering all texting locations to be the
same, as long as they are within the same “30-foot square,” we can easily make
calculations such as the percentage of ChecklIns at that location that are successful,
vs. failed. It may be more difficult to make such calculations without a clear

definition of what constitutes a “location.”

WO 2016/094911 PCT/US2015/065647
34

[0082] A note on statistics 1s important here. Since the latitude and longitude
(accurate to 4 decimal places) form a unique ID for a given texting location, it is
possible to query the database for all records associated with that particular texting
location. Given this, it is possible to create queries to generate statistics for
particular texting locations. For example, the following useful data/statistics can
be gathered (this list is exemplary only, and may be enhanced and/or truncated in
various embodiments):

- Number of successful check ins at this texting location

- Number of “Unable To Check In at Texting Location” events at this
texting location

- Number of false negatives at this texting location

- Average ChecklIn duration for this particular texting location (This is an
indication of how scarce this texting location 1s — 1.e. how long (on
average) the app tried and tried before the check in text was sent. Note
that this and all the statistics about scarcity of a texting location will be
affected by people knowing where the texting location is, and waiting until
they get there to check in (power save mode, described in a previous
section). As such, this info should be filtered so that only events that took
place with the app in discovery mode should be considered.)

- Average number of CheckInAttemps for ChecklIns at this location (This 1s
an indication of how scarce this texting location 1s — 1.e. how many

CheckInAttempts were generated before the user got to this texting

WO 2016/094911 PCT/US2015/065647
35

location. As such, this info should be filtered so that only events that took
place with the app in discovery mode should be considered.)

- Average CheckInAttempt duration for this particular texting location (This
1s an indication of how scarce this texting location 1s —1.e. how long (on
average) the app tried and tried before the check in text was sent. As such,
this info should be filtered so that only events that took place with the app
in discovery mode should be considered.)

- Average distance to where the CheckIn was nitiated (This 1s an indication
of how scarce this texting location is — 1.e. how far (on average) the user
traveled before the check in text was sent. As such, this info should be
filtered so that only events that took place with the app in discovery mode
should be considered.)

- Success rate of checking in at this particular texting location (use this
formula: successRate = (numberOfSuccessful ChecklIns +
numberOfFalseNegatives) / (numberOfSuccessful ChecklIns +
numberOfFalseNegatives + numberOfUnableToCheckInEvents)

- False Negative rate at this texting location (a false negative is a CheckIn
text that got through, that the app thought failed, because the confirmation
from the cell carrier did not make it back to the phone. The false negative
rate can be calculated using this formula: falseNegativeRate =
numberOfFalseNegatives / (numberOfSuccessful CheckIns +

numberOfFalseNegatives + numberOfUnableToCheckInEvents).)

WO 2016/094911 PCT/US2015/065647
36

- Statistics about the speed people were traveling when they achieved a
successful check in (For example, if 90% of the people who achieved a
successful ChecklIn at a particular texting location achieved it at speeds
less than 20 MPH, and most of the failures were at higher speeds, that
might be useful to know. At lower speeds, more time 1s spent within a
small, weak texting location, increasing the likelthood of a successful
ChecklIn.)

- Number of times a particular texting location has been used.

[0083] How to query to find nearby texting locations: In a preferred
embodiment, the app 1s periodically querying to find the nearest event of type
“Finishing CheckInAttempt Success” in past adventures (or even earlier in the
current adventure). These are the locations where it 1s possible to send a text.
These could be entries created by the current adventurer, or discovered by other
adventurers and downloaded from the source equipment. One way to do the query
would be to first find all database entries whose latitude and longitude match the
current location to a certain number of decimal places (meaning that they are
within a certain distance of the current location). For example, if you select
locations that match the current location to one decimal place of latitude and
longitude, you will get texting locations within 10 to 14 miles of the current
location (this 1s accurate for locations such as Colorado, adjustments need to be
made for locations at different latitudes). In the event that there were no texting

locations found at one decimal place of precision, the process could be repeated

WO 2016/094911 PCT/US2015/065647
37

with precision that is more and more coarse until texting locations actually are
found.

[0084] Once the table entries that are within the specified latitude and
longitude are found, use the Android “Location.distanceTo()” method to calculate
the distance to each of the table entries. They can then be displayed on a map
along with the user’s current location and/or presented in a ListView, sorted by
their distance to the adventurer’s current location. They can each have the distance
to the adventurer’s current location displayed, along with information about the
quality of the texting location. If one were to travel until that distance is near zero,
then one can most likely send a text. This method could also be used to travel to
any of the texting locations displayed in a list view.

[0085] The organization of the database on the Internet/source equipment
(e.g., source equipment 440) can be similar to the organization on the user’s
phone, but with a few additional and omitted fields. The Adventure ID is omitted,
as that 1s more for the benefit of the particular adventurer, to peruse the history of
his/her previous adventures. Although if unique Adventure IDs were generated
(say, tying a unique variable to each instance of an ARL app, plus each
Adventure), it might be a useful tracking feature. The Event Type field is
simplified, because we are primarily interested in events of type “Finishing
CheckInAttempt Success,” (which are the discovered texting locations) or “Unable
to Check In At Texting Location” (so we can calculate a success rate for this

texting location), or “Finishing CheckInAttempt False Negative” (so we can

WO 2016/094911 PCT/US2015/065647
38

calculate a rate of “false negatives” for this texting location. Events of type “Lost
Cell Service” or “Reentered Cell Service” are gathered because they might have
market value (1.e. selling the data to the cell carriers or others).

[0086] Here are some of the fields that may be included in one embodiment

of the central database which can be located on the source equipment 440:

- Adventurer ID: The userid of the Adventurer that found this texting

location, or “Anonymous,” if the adventurer who found it did not want

their info published.

-Discovery sequence: A sequence number for events of type “Finishing
CheckInAttempt Success” or “Finishing CheckInAttempt False Negative.
These would be sequence numbers for the discovered texting locations
discovered by the adventurer. The first texting location they find gets
sequence number “1.” The second one, “2”. Etc. Adventurer ID plus
Sequence form a unique 1d for discovered texting locations. Left blank for

other types of events logged in the database.
=Cellular carrier (e.g. “Verizon™)
-Device (e.g. “LG G2” or “Samsung Galaxy S37)

-Event Type: “Finishing CheckInAttempt False Negative,” “Finishing
CheckInAttempt Success” (these would be the discovered texting
locations), “Unable To Check In at Texting Location,” “Lost Cell Service,”

“Reentered cell service.”

WO 2016/094911 PCT/US2015/065647
39

-DiscoveryModeStatus (enabled/disabled)

-CheckIn Duration: An indication of how difficult it was to find this texting
location — 1.e. how long the app tried and tried before the check in text was

sent.

-Number of CheckInAttempts (so far) in this Checkln: Another indication
of how difficult it has been (so far) to find a texting location (which may

not have been found yet).

-CheckInAttempt Duration: An indication of how difficult it was to find
this texting location — 1.e. how long the app tried and tried before the check

1n text was sent.

=Distance to Start of CheckIn: How far 1t 1s from the location where the
CheckIn was initiated to the location where the text was sent. An
indication of how difficult it was to find this texting location — 1.e. how far

the user traveled before the check in text was sent.

-Location, latitude (Preferred format: e.g. 38.4392 See discussion above
about precision. Note: since the location data is uploaded from the
database in the user’s phone, its source 1s the “ActualLocationWhenSent”

in the app.)

-Location, longitude (Preferred format: e.g. -106.5712 See discussion above

about precision. Note: since the location data is uploaded from the

WO 2016/094911 PCT/US2015/065647
40

database in the user’s phone, its source 1s the “ActualLocationWhenSent”

in the app.)

-Location, accuracy (Note: since the location data 1s uploaded from the
database in the user’s phone, its source 1s the “ActualLocationWhenSent”

in the app.)

-Location, GPS fix age (Note: since the location data 1s uploaded from the
database in the user’s phone, its source is the “ActualLocationWhenSent”

in the app.)

-Location, speed (The speed of the adventurer at the time the check in
succeeded can be an indication of the quality of the texting location. If you
are traveling too fast, you will often miss a small, poor quality texting
location, because you won’t have spent enough time in the texting location
for the ChecklIn to take place. Note: since the location data 1s uploaded
from the database in the user’s phone, its source is the

“ActualLocationWhenSent” in the app.)

-Location, timestamp (Note: since the location data 1s uploaded from the
database in the user’s phone, its source 1s the “ActualLocationWhenSent”

in the app.)

-Statistics (The statistics gatherable for the database items in the
Adventurer’s phone (described previously) would also be gatherable for

the central Internet database. In addition to those, the following would be

WO 2016/094911 PCT/US2015/065647
41

gatherable for the Internet database: Success and False Negative rates for
different models of phones; Success and False Negative rates at this
texting location for different cell carriers; The number of people who have

used a particular texting location.

-Determining quality of texting locations: It is useful, for a given texting
location, to be able to determine its quality — 1.e. if you are stranded in a
remote area, and you know that a poor quality texting location 1s Y4 mile
away, and a good one 1s % mile away, in the opposite direction, then you
would probably opt to walk a little farther to get to the good one.
Fundamentally, the Success rate (as calculated above) and the False
Negative rate (as calculated above) should give a good indication as to the
quality of a particular texting location. Making these available to the
adventurer should assist them greatly in making a decision as to which
nearby texting locations to go to.

[0087] For fields that relate to a location (e.g., latitude, longitude, accuracy,
GPS fix age, speed, and location timestamp), the following rules may be applied:
If the event type 1s “FinishingCheckInAttemptSuccess,” the
“ActualLocationWhenSent” field of the CheckIn may be used to populate the
Location fields. For all of the remaining event types except
“CheckInAttemptFalseNegative,” the location the user was in when the event
occurred may be used. For “CheckInAttemptFalseNegative,” an exemplary

embodiment of the invention might make a database entry for each location the

WO 2016/094911 PCT/US2015/065647
42

user passed through during the “CheckInAttempt” that resulted in the false
negative. This is necessary because, in contrast to successful ChecklIns, where the
app knows the user’s location when the confirmation was received, with a
“CheckInAttemptFalseNegative” there is no confirmation received from the
cellular network, so the user’s location when the text was sent 1s not known. Note
that there will be some variation in the start and finish of the CheckInAttempts
from one adventure to another. With enough data samples, it might be possible to
get a better 1dea where a “false negative” texting location actually 1s. Even
without knowing this, it would be possible and useful to have a section of a road
or trail, for example, marked in a color to indicate that “somewhere along here, a
text might get through.”

[0088] Note that it may be or may not be desirable to filter out trivial texting
locations so as not to clutter up the database. A texting location could be
considered trivial if the check mn occurred in an area with good cell coverage,
where one would normally expect a text to go through. If it is desired to filter out
the trivial texting locations, this could easily be done by ignoring discovered
texting locations where the location where the check in was initiated 1s very near
to the location where the text actually went through (actualLocationWhenSent).
So this way, for a texting location to be considered nontrivial, the adventurer
would have had to travel a minimum distance (e.g. 100 yards) after the check in
was initiated, before the check in text actually went through. This is only possible

n an area with poor cell coverage. In an area with good cell coverage, the text

WO 2016/094911 PCT/US2015/065647
43

goes through immediately after the check in 1s initiated. The phone would need to
be n discovery mode for this test to work.

[0089] There are two primary aspects to the task of getting the desired data
into the databases: Storing the data in the user’s phone as the adventure
progresses (and also afterward, in the case of False Negative CheckInAttempts);
and Uploading the data to the central database on the Internet / source equipment
440.

[0090] Storing the data in the user’s phone 1s straightforward, in the respect
that when a storable event occurs, the ARL app would simply create a database
entry with the data as described above. Most likely, an SQLite database would be
used, as that 1s commonly used in Android apps. For example, when the app hears
via its broadcast receiver that a ChecklIn text was sent successfully, it would make
an entry into the database of type “Finishing CheckInAttempt Success”.

[0091] The event that is tricky is the “Finishing CheckInAttempt False
Negative” event. It 1s tricky because it 1s not known that a particular
CheckInAttempt 1s a false negative at the time the event occurred. As a reminder,
a “False Negative” CheckInAttempt is one that the app thought failed, but that
actually did go through. This is not known at the time of the event because the
confirmation that the text got through did not make 1t from the cell carrier back to
the adventurer’s phone. (This is an example of the kinds of things that can happen
under conditions of very poor cell coverage.) When there 1s no confirmation

received that the ChecklIn text got through, the app records it in the database as a

WO 2016/094911 PCT/US2015/065647
44

“Finishing CheckInAttempt Failure” event. The only way that the event can be
properly recorded as a “Finishing CheckInAttempt False Negative” event 1s for the
information to be provided at a later time, that a particular CheckInAttempt was
indeed, successful.

[0092] A preferred way to provide the “False Negative” information 1s via

the use of a “Buddy App” on the contact person’s phone. The Buddy app can
respond automatically to the CheckIn texts it receives, with a confirmation,
containing the ID of the CheckInAttempt. This would occur at some point when
the adventurer 1s in good cell coverage, including when the adventure 1s complete
and the adventurer 1s safely at home, but could also occur during the adventure 1f
the adventurer enters good enough cell coverage for the confirmation texts (or also
possibly other signaling methods, such as Internet) to get from the Buddy App on
the Contact Person’s phone to the main ARL app on the adventurer’s phone.
Texts are preferred for this communication because the adventurer is more likely
to get the information during the adventure if s/he is in an area with poor cell
coverage. In some cases, it might be useful for the adventurer to know that certain
ChecklIns are confirmed to have been received, and others have not. This
information could be displayed in a ListView or on a map on the ARL app on the
Adventurer’s phone.

[0093] In one embodiment, the app can generate a KML file, which displays

Checklns, and CheckInAttempts on Google Earth (or in the App). They can be

WO 2016/094911 PCT/US2015/065647
45

color-coded to indicate the disposition of the Checkln and CheckInAttempt. False
negatives can be added thereto.

[0094] Uploading the database entries from the adventurer’s phone to the
central database (on the source equipment, 440) would generally happen when the
adventurer 1s in good cell coverage, and typically at the end of the adventure. In a
preferred embodiment of the invention, there would be a “Home Safely” portion
of the app that the adventurer would execute upon their safe return home. This
portion of the app would send a “Home Safely” text to the contact person, and
would also upload the new information in their database to the central database on
the Internet (with their permission). Note that the ARL app would need to wait for
confirmation from the Buddy App that all the feedback about which
CheckInAttempts were successful and which ones failed. Once this information
has been received by the ARL app from the buddy app, the ARL app would mark
the false negatives in its database, and upload it to the central database on the
Internet.

[0095] One goal of the Buddy app can be to make the contact person’s job
more convenient and fun. It also provides some helpful functionality to enhance
the safety of the adventure, as well.

[0096] The Buddy app can receive a “Starting Adventure” text from the
adventurer and then notify the contact person that the adventure 1s starting. In

order to do this, the Buddy app would need a service running that is constantly

WO 2016/094911 PCT/US2015/065647
46

monitoring text messages received, and when the “Starting Adventure” text 1s
received, it would notify the contact person and begin monitoring the adventure.

[0097] In one embodiment, the Buddy app can display the locations indicated
in the ChecklIn texts on a map (either within the Buddy app itself or as links to an
external map).

[0098] The buddy app can automatically send confirmation texts back to the
Adventurer’s phone, indicating which CheckInAttempts were successful. The
ARL app would then be able to indicate this information on its UL, for the
adventurer’s benefit, and would also be able to mark False Negatives in the
database.

[0099] An important feature of the buddy app is that it can monitor the time
the Adventurer 1s supposed to return home. If the Adventurer does not initiate the
“Home Safely” process on their app by the designated time, then the buddy app
can alert the contact person about this (or even automatically notify search and
rescue).

[00100] The Buddy app can have “offline maps” (i.e., maps that are stored on
the Buddy’s device, and available even if there 1s no service.) This would help a
contact person find an adventurer who indicated that there was a problem, even
when the contact person was 1n an area with poor cell coverage. This would make
sense, for example, if there was a mechanical breakdown that stranded the

adventurer, but no life-or-death situation. The offline map would show the

WO 2016/094911 PCT/US2015/065647
47

adventurer’s CheckInAttempt locations, as well as the contact person’s current
location as they are moving, which would facilitate them finding the adventurer.

[00101] The Buddy app could also display targeted ads. Because a lot is
known about the type of adventure the adventurer is involved with, it would be
possible to display highly targeted ads (e.g., gift ideas for when the adventurer
returns “home”, etc.). Additionally, the main ARL app could store a database of
ads locally and then display them throughout the adventure; the app can provide
links that would be activated once network connection restored.

[00102] One non-obvious point is that since the same deliverability issues
affect the confirmation texts being sent to the adventurer as affect the CheckIn
texts coming from the adventurer, some redundancy i1s in order, to ensure that the
confirmation information is received. A strategy for enhancing deliverability of
confirmation texts is to send confirmation texts containing more than one
confirmation, so that for each received Checkln text, there 1s more than one
confirmation sent. A simple way to implement this would be for the confirmation
texts to look something like this: “ARL BUDDY APP CONFIRMING 125(4),
125(5), 125(7), 126(1), 127(2), 127(5), 128(1).” In this example, “125” would
indicate CheckIn number 125, and “125(5)” would indicate CheckInAttempt #5 of
CheckIn number 125. When each new ChecklIn text 1s received, it would be added
to the list and a new confirmation sent. When the length of the confirmation text
1s about to exceed 160 characters, the earlier CheckInAttempts would be dropped

off of the list. It 1s important not to exceed 160 characters to avoid Android

WO 2016/094911 PCT/US2015/065647
48

converting 1t to an MMS message, which might be more difficult to deliver under
conditions of poor cell coverage.

[00103] When the adventure is over, and the Adventurer indicates “Home
Safely” on the ARL app, the Buddy app could resend an SMS or MMS message
containing ALL the received CheckInAttempt IDs, prior to the ARL app
uploading its data to the central Internet database.

[00104] Displaying highly targeted ads: As mentioned above, the Buddy app
and the ARL app have access to information about the type of adventure taking
place and therefore, about the adventurer’s (and to a lesser degree, the contact
person’s) interests. The assumption 1s that a usefully high percentage of the time,
the contact person and the adventurer will have the same or similar interests. For
example, 1f the contact person 1s a friend that could not join in on the adventure
that day, the chances are that they will have similar interests, and the ads served to
the contact person will be well targeted. If the contact person is a spouse or a
relative, the likelihood that they will have the same interests as the adventurer 1s
reduced somewhat, but not eliminated.

[00105] There are a couple of places where information can be gleaned as to
the mterests of the people involved. One 1s the “adventure type” indicated when
the adventurer starts his adventure. Another would be by the choice of
background image the adventurer (and also the contact person) choose for the app.
One feature of the app to make it fun is that it would have user-selectable

background images. A library of background images would be provided with a

WO 2016/094911 PCT/US2015/065647
49

variety of activities shown — hiking, backpacking, mountain biking, motorcycling,
four-wheel drive, ATVing, to name a few. A fairly accurate indication as to their
mnterests could be gleaned from their choice of background image. This
information could be useful in serving up more targeted ads on the Buddy App.

[00106] The Buddy App could share a good deal of code with the ARL app.
In some embodiments of this invention, the ARL app could have a superset of the
Buddy App’s functionality. In other words, the ARL app and the Buddy App
could be very similar, except for the serving of ads and the ability to send texts. In
this way, the ARL app could, in addition to sending ChecklIn texts, perform all the
functionalities of the Buddy App. This flexibility would allow for sending of
Checkln texts between contact persons and adventurers in a variety of situations
and circumstances, and also would allow adventurers to send ChecklIn texts to one
another that would be sent/received as possible, in the field. However, it may be
useful for the Buddy app to be distributed free while the adventurer pays for the
ARL app.

[00107] In one embodiment of the invention, the buddy app consists of one or
more Activities, to support the user interface, and a service that would be launched
whenever the device 1s rebooted (1.e. running all the time). The primary job of the
service would be to watch for incoming text messages from an ARL app. Text
messages from an ARL app could be identified by having the text start (or end)
with a unique string, such as “@~%ARL” that would not likely appear in other

text messages.

WO 2016/094911 PCT/US2015/065647
50

[00108] When such a text message 1s received, the Buddy app would
determine whether this text 1s an “Adventure Starting” message, a “Check In”
message, a “Home Safely” message, a “Need Help” message, etc.. This could also
be indicated by using a specific identifying text string, such as “@~%ARL-S” for
“Adventure Starting” texts, “A~%ARL-C” for “Check In” texts, etc.

[00109] The actions the buddy app can take include:

-Upon receiving “adventure starting” message:

o Put a notification in the status bar to inform the contact person that an
adventure has started. Most likely, this notification would include an
audible alert.

o Have a method, such as a dialogue box, for the contact person to
acknowledge that they are monitoring the Adventure. This
information would be sent back to the Adventurer via text when
(when possible) so that the adventurer would know that they are
being monitored.

o Set a timer for the time that the adventurer 1s expected to be home
safely. If the adventurer has not sent his’her “Home Safely” text by
this time, the contact person is alerted by the Buddy app, and/or
search and rescue may be automatically notified of the missing
person.

o Instantiate a new “Adventure” object, to contain the information

related to the adventure. This Adventure object could be subclassed

WO 2016/094911 PCT/US2015/065647
51

from the Adventure object used in the ARL app with a few changes,
such as that instead of generating a text message and sending it when
a new CheckInAttempt is created, it would instead store the contents
of the text message that was received from the ARL app. This
subclassed Adventure object would have a place for the Adventurer’s
contact info, vehicle info, destination, route, and expected arrival
time back at home. A possible design strategy would be to have a
generic Adventure object, subclassed by both the ARL app and the
Buddy App. The ARL could subclass it, putting in the ARL-specific
items, and calling it class “AdventureSending”, since the ARL app
sends the text messages. The Buddy app could subclass i1t and add
the Buddy-specific methods, and call 1t class “AdventureReceiving.”

o Set the Adventure State for this new AdventureReceiving object to
“In Progress.”

o Save the data for this new Adventure object in the database, in case
the app gets shut down for some reason (so it would remember its

state in detail).

-Upon receiving a check in text
o Add its info to a new Checkln or CheckInAttempt object in the
AdventureReceiving object
o Update the map to display the ChecklIn location. Data such as the

time of the ChecklIn, accuracy of the location, and comments by the

WO 2016/094911 PCT/US2015/065647
52

adventurer could be also be displayed, for example, in a balloon that
would pop up when the ChecklIn icon on the map 1s tapped.

o Send a confirmation text to the ARL app on the Adventurer’s phone

o Store the current AdventureReceiving object in the database
(including the new ChecklIn or CheckInAttempt object), in case the
app gets shut down for some reason (so it would remember its state in

detail).

-Upon receiving a “Home Safely” text:

o Set the Adventure State to “Completed, home safely.”

o Send confirmation text(s) back to the ARL app on the adventurer’s
phone for all CheckIns received for the entire adventure. This 1s so
that the ARL app can properly determine any false negative ChecklIns
before uploading its data the central Internet database.

o Tum off the Expected Return Time alarm.

-Upon receiving a “need help” text:
o Alert the contact person audibly, and with a pop up on their phone
o If the contact person does not engage with the Buddy app after a
certain amount of time has elapsed, it might be appropriate for the
Buddy app to contact search and rescue automatically. In a preferred

embodiment of the adventure, this contact would be by sending a text

WO 2016/094911 PCT/US2015/065647
53

message to an organization called GEOS, which coordinates search
and rescue efforts worldwide.

o If the alarm expires and the ARL app has not yet sent its “Home
Safely” text, the Buddy app would alert the contact person. If the
contact person does not interact with the Buddy app within a certain
period of time, the Buddy app could also possibly contact GEOS and
notify them of the missing adventurer. If the contact person does
interact with the Buddy app, they would be encouraged to call or text
the Adventurer, to make sure they are safe. If they could not be
reached, the contact person would have the option of contacting
GEOS.

[00110] One of the principles of smartphone app development is that it 1s
important to engage your users by making your app fun. Often, products that are
intended to be lifesaving are understandably quite serious in their presentation.
That said, if 1t 1s possible to engage the users in a game that results in more rapid
completion of the worldwide database of texting locations, then we have a unique
opportunity in which “making it fun saves lives.”

[00111] Such a game can work as follows:

-Present the discovery of texting locations as similar to the discovery of
other geographic features, such as mountains, lakes, etc. So when a person

1s using the app, if they are the first person to discover a texting location,

WO 2016/094911 PCT/US2015/065647
54

they have the option of naming it after themselves (or more accurately,

after their userid).

- A possible naming convention for the discovered texting locations would
be <userid>-<sequence number>. For example, if the discoverer’s userid
was “JohnSmith14,” the 22nd texting location he discovered could be

named “JohnSmith14-22”.

-It might be fun for people to compete to see who can find the most texting
locations. And while they are having all this fun, they are also populating
the database of texting locations, which might save a person’s life at some

point in the future.

~-If the discoverer wished to remain anonymous, the texting location could
be named “Anonymous-422” for example, where the sequence number,
“422” would indicate that this was the 422nd texting location discovered

where the discoverer wished to remain anonymous.

-It might be fun, if the discoverer desires, to have their userid and possibly
even their picture indicated on the map of texting locations a person
downloads prior to an adventure. This could be in an informational pop-
up, displayed when an adventurer would touch the texting location

indicated on the map.

-It might be fun to have people who use a discovered texting location for an

emergency to have a way of thanking the person who first discovered it.

WO 2016/094911 PCT/US2015/065647
55

-It might be fun to publish stats about how much a particular texting
location has been used by the ARL app. This could be a “bragging point”

for the person who discovered it.

-One consideration is that you would likely want to filter out trivial texting
locations (in areas with good cell coverage, where you would expect a text
to go through). This 1s described in the previous section on “Filtering out
trivial texting locations”. This way, you won’t have people walking all
through Manhattan, for example, trying to “discover” more texting
locations than a person rigorously exploring areas in the Colorado
wilderness, for example. The app could easily determine if the discoverer
had traveled the minimum required distance (e.g. 100 yards) from the
location where the CheckIn was initiated to where the text actually went
through.

[00112] Obviously, since this is an app that 1s intended to save people’s lives,
1t 1s imperative that it be as bug-free as possible. The following methods were

used to help ensure this:

-Careful code inspection, particularly focused on checking for possible null-

pointer errors and memory leaks.
-As much as possible, having the app consist of simple methods.

-Use of junit tests to test core functionalities.

WO 2016/094911 PCT/US2015/065647
56

-The app, in i1ts development mode, can generate junit test code all the time,
n a special file, as it operates. The junit code can mimic the methods that
are called as the app 1s operating, in a sense “recording” the entire
adventure. In the event of some kind of unexpected behavior in the field,
this junit code allows the developers to “play back™ the situation later, and

step through it in the debugger, etc.

-The generation of a KML file (or something similar) that shows the
operation of the app on a particular “Adventure.” The KML file shows the
route, color coded as to cell coverage state, and also shows both ChecklIns,
and CheckInAttempts on the map. This can uncover unexpected behavior,
such as finding check in attempts that the app thought failed but actually
having gotten through. This invention can generalize as follows: For a
given piece of code that needs to be reliable, find a way to create a
graphical representation of its behavior, particularly as it relates to critical
functionality. Make it so that the key functionalities really stand out, and
any unexpected behaviors are obvious. This amounts to using pattern-
matching capabilities in the human brain to quickly process a lot of
information visually, and detect erroneous behavior.

[00113] References made to “timeout reached occurs™ are specifically defined
to include: the action is canceled by user, the phone is turned off, an actual timer

runs out, a set number of attempts has been reached, etc.

WO 2016/094911 PCT/US2015/065647
57

[00114] References to the “Buddy App” are specifically defined to include: a
very basic version of the buddy app 1s an app/program that receives texts (this
could be operated by a contact person, located at a server, a website, etc.). An
additional embodiment of a Buddy App could leverage existing programs such as
Google Maps to overlay location information on a map.

[00115] After an adventure occurs, the buddy app and the adventure rescue
locator app can communicate to determine all successful and not successful
texting locations that were found during an adventure.

[00116] Location Information 1s defined to include at least one of the
following: geospatial coordinates; location on a map; codes that represent
coordinates; placeholders that reference a time, a text, or some other datum that
can then be linked to particular geospatial coordinates in real time or retroactively.

[00117] FIG. 3 illustrates another embodiment of exemplary methods and
tools 700 that can be utilized to determine texting locations and network coverage.
A determining location information step 810 can utilize a global positioning
system to determine location information for a first user. An incorporating
location information in a text step 820 includes taking the location information and
drafting a text containing that location information. The step of operating a
plurality of adventure rescue locator app modules to send text 830 1s undertaken
utilizing the plurality of computing devices to send the text across a
communications network. Once the text has been sent, the step of monitoring

transmission of the text for success 840 and repeating sending with at least one of

WO 2016/094911 PCT/US2015/065647
58

real-time updated location information and original location information until at
least one of success 1s achieved and timeout 1s reached occurs 1s carried out in
order to track the success or failure of repeatedly sending the text.

[00118] The step of receiving a successfully sent text on a buddy app 850
includes a Buddy App (which can be a mobile phone, device, server, website, etc.
operating a module) receiving the text successfully. Once the text is received, the
step of displaying the location information of the first user via the buddy app 860
can occur. Here, the first user’s location information that was transmitted via the
text 1s displayed. This can be accomplished via a map overlay, by showing
coordinates, or by showing aggregate data derived from their location and
optionally the locations of others (or statistics such as how many people at a
texting location in a specific time period) on a report etc. Tracking the location
information of the first user 870 can include tracking the location information of
the first user for at least one location at which the transmission of the text was at
least one of successful and not successful.

[00119] The step of providing location information to a user 880 can include
providing at least one of successful and not successful texting location information
to one of a first user and a second user in order to allow the user to travel to the
successful texting location in order to send an additional text.

[00120] The step of incorporating texting location information nto a
database 890 can include incorporating at least one of successful and not

successful texting location information into a texting location database.

WO 2016/094911 PCT/US2015/065647
59

[00121] The step of displaying a map via the buddy app with the first user’s
location information 900 can include utilizing the buddy app to display a map
containing the first user’s location information. The step of communicating
adventure beginning 910 includes the adventure rescue locator app communicating
with the buddy app that the first user has begun an adventure.

[00122] The step of communicating estimated time of ending, tracking, and
alert 920 can include the adventure rescue locator app communicating with the
buddy app an estimated time of ending of the adventure and the buddy app tracks
elapsed time so as to alert the second user (which could also be a robot on our
server) if the adventure rescue locator app does not communicate an end of
adventure with the buddy app by the estimated time of ending.

[00123] The step of communicating to determine all successful and not
successful texting locations during an adventure 930 includes the ARL app
communicating with the buddy app to determine texting locations (at least one of
successful and not successful) encountered during an adventure.

[00124] FIG. 4 illustrates an exemplary embodiment of a computing system
580 useful in implementations of the described technology. A general purpose
computer system 580 is capable of executing a computer program product to
execute a computer process. Data and program files may be input to the computer
system 580, which reads the files and executes the programs therein. Some of the
elements of a general purpose computer system 580 are shown in FIG. 4 wherein a

processor 581 1s shown having an mput/output (I/O) section 582, a Central

WO 2016/094911 PCT/US2015/065647
60

Processing Unit (CPU) 583, and a memory section 584. There may be one or
more processors 581, such that the processor 581 of the computer system 580
comprises a single central-processing unit 583, or a plurality of processing units,
commonly referred to as a parallel processing environment. The computer system
580 may be a conventional computer, a distributed computer, or any other type of
computer. The described technology 1s optionally implemented in software
devices loaded in memory 584, stored on a configured DVD/CD-ROM/OPTICAL
DISC 591 or storage unit 587 (which can include SD cards, flash memory, etc.),
and/or communicated via a wired or wireless network link 589 on a carrier signal,
thereby transforming the computer system 580 in FIG. 4 into a special purpose
machine for implementing the described operations. The computing system 580
provides a means for enabling the processor(s) 581 to access a plurality of
modules in memory 584 / storage 587 for the systems and methods for
determining texting locations and network coverage. The computing system 580
further provides a second means for enabling the processor(s) 581 to implement
the plurality of modules.

[00125] The I/O section 582 is connected to one or more user-interface
devices (e.g., a keyboard 586 and a display unit 585 which could include
touchscreen capabilities), a disk storage unit 587, and a disk drive unit 590.
Generally, in contemporary systems, the disk drive unit 590 is a DVD/CD-
ROM/OPTICAL drive unit capable of reading the DVD/CD-ROM/OPTICAL

DISC medium 591, which typically contains programs and data 592. Said drive

WO 2016/094911 PCT/US2015/065647
61

unit 590 may alternatively be a USB thumb drive, memory stick, or any other
memory/storage medium. Computer program products containing mechanisms to
effectuate the systems and methods in accordance with the described technology
may reside in the memory section 584, on a disk storage unit 587, or on the
DVD/CD-ROM/OPTICAL medium 591 of such a system 580. Alternatively, a
disk drive unit 590 may be replaced or supplemented by a floppy drive unit, a tape
drive unit, or other storage medium unit. A Global Positioning System (GPS) 595
can be accessed by the system 580 as well. The network adapter 588 1s capable of
connecting the computer system to a network via the network link 589, through
which the computer system can receive instructions and data embodied 1n a carrier
wave. Examples of such systems include SPARC systems developed by Sun
Microsystems, Inc., personal computers offered by Dell Corporation and by other
manufacturers of personal computers, Apple-based computing systems, ARM-
based computing systems and other systems running a UNIX-based or other
operating system. It should be understood that computing systems may also
embody devices such as Personal Digital Assistants (PDAs), mobile phones,
gaming consoles, set top boxes, etc.

[00126] When used in a LAN-networking environment, the computer system
580 1s connected (by wired connection or wirelessly) to a local network through
the network interface or adapter 588, which 1s one type of communications device.
When used in a WAN-networking environment, the computer system 580

typically includes a modem, a network adapter, or any other type of

WO 2016/094911 PCT/US2015/065647
62

communications device for establishing communications over the wide area
network. In a networked environment, program modules depicted relative to the
computer system 580 or portions thereof, may be stored in a remote memory
storage device. It 1s appreciated that the network connections shown are
exemplary and other means of, and devices for, establishing a communications
link between the computers may be used.

[00127] In accordance with an implementation, software instructions and data
directed toward implementing a document revision manager and other operations
may reside on disk storage unit 587, disk drive unit 590 or other storage medium
units having computer readable logic embodied in said storage medium and
coupled to the system (directly and/or through a network interface 588). Said
software instructions may also be executed by processor CPU 583. The
embodiments of the disclosure described herein can be implemented as logical
steps 1n one or more computer systems. The logical operations of the present
disclosure are implemented (1) as a sequence of processor-implemented steps
executing in one or more computer systems and/or (2) as interconnected machine
or circuit modules within one or more computer systems. The implementation is a
matter of choice, dependent on the performance requirements of the computer
system implementing the embodiment. Accordingly, the logical operations
making up the embodiments described herein may be referred to variously as
processes, services, threads, operations, steps, objects, or modules. Furthermore, it

should be understood that logical operations may be performed in any order,

WO 2016/094911 PCT/US2015/065647
63

unless explicitly claimed otherwise or a specific order is inherently necessitated by
the claim language.

[00128] While particular embodiments have been described and disclosed in
the present application, it is clear that any number of permutations, modifications,
or embodiments may be made without departing from the spirit and the scope of
this disclosure.

[00129] Particular terminology used when describing certain features or
aspects of the embodiments should not be taken to imply that the terminology 1s
being redefined herein to be restricted to any specific characteristics, features, or
aspects with which that terminology 1s associated. In general, the terms used in
the following claims should not be construed to be limited to the specific
embodiments disclosed in the specification, unless the above Detailed Description
section explicitly defines such terms. Accordingly, the actual scope of the claims
encompasses not only the disclosed embodiments, but also all equivalent ways of
practicing or implementing the claimed subject matter.

[00130] The above detailed description of the embodiments is not intended to
be exhaustive or to limit the disclosure to the precise embodiment or form
disclosed herein or to the particular fields of usage mentioned above. While
specific embodiments and examples are described above for illustrative purposes,
various equivalent modifications are possible within the scope of the disclosure, as
those skilled in the relevant art will recognize. Also, the teachings of the

embodiments provided herein can be applied to other systems, not necessarily the

WO 2016/094911 PCT/US2015/065647
64

system described above. The elements and acts of the various embodiments
described above can be combined to provide further embodiments.

[00131] Any patents, applications and other references that may be listed in
accompanying or subsequent filing papers, are incorporated herein by reference.
Aspects of embodiments can be modified, if necessary, to employ the systems,
functions, and concepts of the various references to provide yet further
embodiments.

[00132] In light of the above "Detailed Description," the Inventor may make
changes to the disclosure. While the detailed description outlines possible
embodiments and discloses the best mode contemplated, no matter how detailed
the above appears 1n text, embodiments may be practiced in a myriad of ways.
Thus, implementation details may vary considerably while still being
encompassed by the spirit of the embodiments as disclosed by the inventor. As
discussed herein, specific terminology used when describing certain features or
aspects should not be taken to imply that the terminology 1s being redefined herein
to be restricted to any specific characteristics, features, or aspects of the
embodiments with which that terminology 1s associated.

[00133] While certain aspects are presented below in certain claim forms, the
mventor contemplates the various aspects in any number of claim forms.
Accordingly, the inventor reserves the right to add additional claims after filing

the application to pursue such additional claim forms for other aspects.

WO 2016/094911 PCT/US2015/065647
65

[00134] The above specification, examples and data provide a description of
the structure and use of exemplary implementations of the described systems,
articles of manufacture and methods. It 1s important to note that many
implementations can be made without departing from the spirit and scope of the

disclosure.

WO 2016/094911 PCT/US2015/065647

66
CLAIMS
What 1s claimed 1s:
1. A method in a texting locations determination system utilizing a plurality of

computing devices, comprising:

determining location information using a global positioning system for a first
user;

incorporating location information in a text;

operating a plurality of adventure rescue locator app software modules in the
plurality of computing devices in order to send the text across a communications network;

monitoring transmission of the text for success and repeating sending with at least
one of real-time updated location information and original location information until at
least one of success 1s achieved and timeout 1s reached occurs;

receiving a successfully sent text on a buddy app;

displaying the location information of the first user via the buddy app; and

tracking the location information of the first user for at least one location at which

the transmission of the text was at least one of successful and not successful.

2. The method of claim 1, further comprising:
providing at least one of successful and not successful texting location
information to a second user in order to allow the second user to travel to the successful

texting location in order to send an additional text.

3. The method of claim 1, further comprising:

WO 2016/094911 PCT/US2015/065647
67

providing at least one of successful and not successful texting location
information to the first user in order to allow the first user to travel to the successful

texting location in order to send an additional text.

4, The method of claim 1, further comprising:
incorporating at least one of successful and not successful texting location

information into a texting location database.

S. The method of claim 1, wherein the buddy app displays a map upon which the

first user’s location information is displayed.

6. The method of claim 1, wherein the adventure rescue locator app communicates

with the buddy app that the first user has begun an adventure.

7. The method of claim 6, wherein the adventure rescue locator app communicates
with the buddy app an estimated time of ending of the adventure and the buddy app tracks
elapsed time so as to alert the second user if the adventure rescue locator app does not

communicate an end of adventure with the buddy app by the estimated time of ending.

8. The method of claim 1, further comprising:
the buddy app and the adventure rescue locator app communicating to determine

all successful and not successful texting locations during an adventure..

WO 2016/094911 PCT/US2015/065647
68

9. A texting location determination tool, comprising:

a determining location information module configured such that a global
positioning system is utilized to determine location information of a first user;

a text creation module configured to incorporate location information of the first
user into a text;

an adventure rescue locator app module that sends the text across a
communications network;

a transmission monitoring module configured to monitor the transmission of the
text for success and instructs the adventure rescue locator app module to resend the text
with at least one of real-time updated location information and original location
information until at least one of success is achieved and timeout is reached occurs; and

a tracking module configured to track location information when at least one of

the text 1s sent successfully and the text is not sent successfully occurs.

10. The texting location determination tool of claim 9, further comprising:

a text receiving module configured to receive the text sent by the adventure rescue
locator app module; and

a location display module configured to determine the location of the first user

from the text and display the location.

11. The texting location determination tool of claim 10, wherein the location display
module 1s further configured to display a map to a second user and to plot the location of

the first user on the map utilizing location information from the text.

WO 2016/094911 PCT/US2015/065647
69

12. The texting location determination tool of claim 10, wherein the location display
module 1s further configured to display a map to the first user and to plot the location of

the first user on the map utilizing location information from the text.

13. The texting location determination tool of claim 10, further comprising:
an adventure start notification module which communicates with a buddy app in

order to notify that the first user has begun an adventure.

14. The texting location determination tool of claim 13, wherein the buddy app
receives an estimated time of ending of the adventure and the buddy app tracks elapsed
time so as to alert if the buddy app does not receive a notice of an end of adventure by the

estimated time of ending.

WO 2016/094911 PCT/US2015/065647
70

15. A first computing system machine utilizing a computer program product
comprising a computer usable storage medium having computer readable logic embodied
in said storage medium for enabling a processor to implement a texting location
determination tool, comprising:

first means for enabling the processor to access a plurality of modules in storage
for the texting location determination tool;

second means for enabling the processor to implement the plurality of modules,
the modules including at least:

a determining location information module configured such that a global
positioning system is utilized to determine location information of a first user;

a text creation module configured to incorporate location information of
the first user into a text;

an adventure rescue locator app module that sends the text across a
communications network;

a transmission monitoring module configured to monitor the transmission
of the text for success and instructs the adventure rescue locator app module to
resend the text with at least one of real-time updated location information and
original location information until at least one of success is achieved and timeout
1s reached occurs; and

a tracking module configured to track location information when the text

is sent at least one of successfully and not successfully.

16. The first computing system machine of claim 15 configured to communicate with

a second computing system machine utilizing a second computer program product

WO 2016/094911 PCT/US2015/065647
71

comprising a second computer usable storage medium having computer readable logic
embodied in said second storage medium for enabling a second processor to implement a
texting location communication tool, comprising:

a text receiving module configured to receive the text sent by the adventure rescue

locator app module.

17. The first and second computing system machines of claim 16, further comprising:
a location display module configured to determine the location of the first user

from the location information in the text and display the location.

18. The first and second computing system machines of claim 16, wherein at least one
of the first and second computing system machines is configured to incorporate at least
one of successful and not successful texting location information into a texting location

database.

19. The first and second computing system machines of claim 17, wherein at least one
of the first computing system machine and the second computing system machine is

configured to display a map upon which the first user’s location information is displayed.

20. The first and second computing system machines of claim 15, wherein the first
computing system machine is configured to communicate that the first user has begun an

adventure to the second computing system machine.

WO 2016/094911 PCT/US2015/065647
72

21. The first and second computing system machines of claim 20, wherein the first
computing system machine is configured to communicate with the second computing
system machine an estimated time of ending of the adventure and the second computing
system machine tracks elapsed time so as to alert if the first computing system machine
does not communicate an end of adventure with the second computing system machine

by the estimated time of ending.

22. The first and second computing system machines of claim 15, wherein the first
computing system machine is configured to communicate with the second computing
system machine to determine at least one of all successful and all not successful texting

locations during an adventure.

WO 2016/094911

1/4

202 ﬂ
170

- 1 >
105 L
410

L 1 ‘

120 ,
160
150 \
Internet / Network
Communications
Network F/_ 420
>

130

PCT/US2015/065647

206 —

208 v

8

308 7

WO 2016/094911

10

PCT/US2015/065647

2/4

20

30

~
Installing ARL App
¢ y
N
Configuring ARL App
y

'

40

Begining Adventure

'

50

Attempting Communications

!

60

Determining Successes

—)

'

70

RIS N R 0 R 1

80

N
Ending Adventure
¢ y
~
Communicating with Source Equipment
y

FIG. 2

+

WO 2016/094911 PCT/US2015/065647

3/4

+

810 /\(Determining Location Information)

Y

/\(Incorporating Location Information In a Text)
820 +

Operating a Plurality of Adventure Rescue Locator App
830 Modules to Send Text

v

~~—(_Monitoring Transmission of the Text for Success)
840 +

/\(Receiving a Successfully Sent Text on a Buddy App)
850 Y

Displaying the Location Information of the First User Via
860 the Buddy App

v

/\(Tracking the Location Information of First User)
870 Y

/\(Providing Location Information to a User
880 v

-
e Incorporating Texting Location Info into a database
890 _

(" Displaying a Map Via the Buddy App with the First]

900 f\ User’s Location Information
f(Communicating Adventure Beginning
910 +
Communicating Estimated Time of Ending, Tracking, A
920 and Alert)

v

Communicating to Determine All Successful and Not)
Successful Texting Locations During an Adventure

930 f[)

FIG. 3

PCT/US2015/065647

WO 2016/094911

4/4

581

|

|

> _
Sy _
S 3 _
39 I
= _
|

|

|

GPS |[=

585 K

-

|

M
ala

589
591

0 T

586

\ 580

FIG. 4

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings

