06/118662 A 2 IR0 0 000 ORI O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 November 2006 (09.11.2006)

7 3
PO |0 00000 000 A O

(10) International Publication Number

WO 2006/118662 A2

(51) International Patent Classification:
GOGF 17/30 (2006.01) GOGF 7/00 (2006.01)

(21) International Application Number:
PCT/US2006/008416

(22) International Filing Date: 9 March 2006 (09.03.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/122,299 4 May 2005 (04.05.2005) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: LI, Ziquan; One Microsoft Way, Redmond,
Washington 98052-6399 (US). DUTTA, Tanmoy; One

Microsoft Way, Redmond 98052-6399 (IN).

Agents: ALLEN, Michael, B. et al.; c/o Sharon Rydberg,
21/2029, Microsoft Corporation, One Microsoft Way, Red-
mond, Washington 98052-6399 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: REGION-BASED SECURITY

RELATIONAL DATABASE

110 x— 100

Y

REGION
COMPONENT

120

& (57) Abstract: The subject invention relates to systems and methods that provide region- based security to database objects having
hierarchical relationships. In one aspect, a system is provided that facilitates database security and management. The system includes
a database component that stores a plurality of objects having a hierarchical relationship between the objects. A region component
defines security zones for a subset of the objects and maps security data to the subset, wherein the security zones are independent,
decoupled, or disassociated from the hierarchical relationships between the objects.

WO 2006/118662 PCT/US2006/008416

10

15

20

25

30

35

Title: REGION-BASED SECURITY

TECHNICAL FIELD

[0001] The subject invention relates generally to computer systems, and more
particularly, relates to systems and methods that provide security to a subset of objects
based on a region descriptor for the subset in order to mitigate data propagation and
storage requirements of classical object inheritance hierarchies.

BACKGROUND OF THE INVENTION
[0002] Modemn commercial database design includes a host of complex data
considerations involving how to store, manage, and manipulate large amounts of data.
Such data often includes intricate relationships to other data such as in an object tree
providing inheritance properties between various objects. These types of
relationships often complicate the efficient design of databases and components to
manage such data. For example, one aspect to the database design process lies in
understanding the way a relational database management system stores data. To
efficiently and accurately provide users with information, a database program needs to
access facts (data) about different subjects stored in separate tables. For example, one
table may only store facts about employees, and another table may only store facts
regarding sales, and then other tables for some other corporate matter. When using
data, these facts are then automatically combined and presented in many different
ways. For example, users may print reports that combine facts about employees and
facts about sales.
[0003] Generally, to design a database, information is broken down in some
order such as separate subjects in a library and then a database program determines
how the subjects are related. These programs often include a relational database
query using a common database language such as Structured Query Language (SQL).
Before such languages can be applied to data, several decisions are usually made as to
which types of data are important and how such data should be organized. For
instance, these decisions may include determining the scope of a database to decide
which data to store therein. Then determining the tables needed to divide information
into separate subjects, such as "Employees" or "Orders." Each subject will then be a
table in the database. Other aspects include determining respective fields that are
needed in order to decide what information to store in each table. Each category of

information in a table is called a field and is displayed as a column in the table. For

WO 2006/118662 PCT/US2006/008416

5

10

15

20

25

30

35

example, one field in an Employees table could be Last Name; another could be Hire
Date. Another consideration is to determine relationships such as deciding how data
in one table is related to the data in other tables. Designers often add fields to tables or
create new tables to clarify the relationships, as necessary.
[0004] There are several common pitfalls that may be encountered when
designing a database. These problems can cause data to be harder to use and
maintain. These may include having one table with a large number of fields that don't
all relate to the same subject. For example, one table might contain fields pertaining
to customers as well as fields that contain sales information. Also, it is often more
efficient if each table contains data regarding only one subject. In other cases,
overhead is created when fields are intentionally left blank in many records because
they are not applicable to those records. This usually implies that the fields belong in
another table. Redundancy is another problem when a large number of tables, many
of which having the same fields. For example, when separating tables for January
sales and February sales, or for local customers and remote customers, in which there
is a redundant store of the same type of information. Thus, one technique is
consolidating all the information pertaining to a single subject in one table.
[0005] In addition to the complexities of how to setup and design the tables
and fields of the database, other considerations must be taken. These include how
should data security be provided for the respective tables and fields (e.g., security
such as who or what can access a file). This includes how to provide security to
complex structures stored in databases such as hierarchical objects. Classically,
security considerations have been propagated in an inheritance hierarchy for such
objects, wherein each item in the hierarchy would need to be updated if one of the
items were changed. However, there is a common problem faced by any
implementation that utilizes relational database’s table rows to store hierarchical
objects, which is how to set security information or data on each object and populate
the security data to its child objects based on the inheritance model.

SUMMARY OF THE INVENTION
[0006] The following presents a simplified summary of the invention in order
to provide a basic understanding of some aspects of the invention. This summary is
not an extensive overview of the invention. It is not intended to identify key/critical

elements of the invention or to delineate the scope of the invention. Its sole purpose

WO 2006/118662 PCT/US2006/008416

10

15

20

25

30

35

is to present some concepts of the invention in a simplified form as a prelude to the
more detailed description that is presented later.

[0007] The subject invention relates to systems and methods that provide
region- based security to a plurality of database objects having hierarchical
relationships between the objects. A region component is provided that maps
security information to a subset of objects existing in a hierarchy in order to create
one or more security zones that are independent of the hierarchy. This allows objects
existing in a region or zone to share security attributes which mitigates database
processing requirements (e.g., fewer nodes in which to update security data). In
general, classical database architectures often utilize a relational database’s table rows
to store hierarchical objects, which is also causes a related security descriptor to be set
on each object and also to populate the security descriptor to respective child objects
based on the inheritance model. This causes ever increasing amounts of processing
time for each object update and is mitigated by introducing region-based

considerations.

[0008] A region can be a collection of objects (does not have to be in a
contiguous tree) that share the same or similar security descriptor. When a security
descriptor on an object is updated, the region to which the object belongs may split or
collapse. For instance, a region can split if a different security descriptor on any child
object is resulted from the change; whereas a region may collapse into another region
if the change results into the same security descriptor as that of the other region.
Instead of each object directly owning its own security descriptor, a region owns the
security descriptor; thus dramatically reducing the number of object updates when a
security descriptor on an object is changed that may affect the security descriptors on

other objects.

[0009] In general, a region is classically defined as a sub tree of objects ina
hierarchical object model. In the case of the subject invention, a region is defined as
a set of objects sharing the same security descriptor, whereby those objects sharing
the same security descriptor do not have to be under the same sub tree. This
indirection allows for efficient processes to manipulate the objects’ security
descriptors. Thus, region-based security essentially transforms an object domain to a

security descriptor domain and performs security descriptor operations on the security

WO 2006/118662 PCT/US2006/008416

10

15

20

25

30

35

descriptor domain directly and independently from the hierarchy which mitigates

overall database processing.

[0010] To the accomplishment of the foregoing and related ends, certain
illustrative aspects of the invention are described herein in connection with the
following description and the annexed drawings. These aspects are indicative of
various ways in which the invention may be practiced, all of which are intended to be
covered by the subject invention. Other advantages and novel features of the
invention may become apparent from the following detailed description of the

invention when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Fig. 1 is a schematic block diagram illustrating an object security
system in accordance with an aspect of the subject invention.
[0012] Fig. 2 is a diagram illustrating an example security domain transform
in accordance with an aspect of the subject invention.
[0013] Fig. 3 illustrates an alternative security domain transform in
accordance with an aspect of the subject invention.
[0014] Fig. 4 illustrates example security interfaces in accordance with an
aspect of the subject invention.
[0015] Fig. 5 illustrates region component processing in accordance with an
aspect of the subject invention.
[0016] Fig. 6 illustrates example region processing algorithms in accordance
with an aspect of the subject invention.
[0017] Fig. 7 illustrates a security region process in accordance with an aspect
of the subject invention.
[0018] Fig. 8 is a schematic block diagram illustrating a suitable operating
environment in accordance with an aspect of the subject invention.
[0019] Fig. 9 is a schematic block diagram of a sample-computing
environment with which the subject invention can interact.

DETAILED DESCRIPTION OF THE INVENTION
[0020] The subject invention relates to systems and methods that provide
region- based security to database objects having hierarchical relationships. Rather

than updating a separate security descriptor for each object, the subject invention

WO 2006/118662 PCT/US2006/008416

10

15

20

25

30

35

introduces the concept of a region, whereby security for a given object is derived from
its association to the region as opposed to the hierarchy. This is in contrast to
classical architectures that require individual object descriptions and have security
imposed by the inheritance hierarchy. In this manner, database processing and
storage can be conserved since many objects may share similar security attributes
which can be defined on a more global scale for the respective region. In one aspect,
a system is provided that facilitates database security and management. The system
includes a database component that stores a plurality of objects having a hierarchical
relationship between the objects. A region component defines security zones for a
subset of the objects and maps security data to the subset, wherein the security zones
are independent, decoupled, or disassociated from the hierarchical relationships
between the objects.

9 ¢

[0021] As used in this application, the terms “component,” “system,”
“object,” “zone,” and the like are intended to refer to a computer-related entity, either
hardware, a combination of hardware and software, software, or software in
execution. For example, a component may be, but is not limited to being, a process
running on a processor, a processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an application running on a
server and the server can be a component. One or more components may reside within
a process and/or thread of execution and a component may be localized on one
computer and/or distributed between two or more computers. Also, these components
can execute from various computer readable media having various data structures
stored thereon. The components may communicate via local and/or remote processes
such as in accordance with a signal having one or more data packets (e.g., data from
one component interacting with another component in a local system, distributed
system, and/or across a network such as the Internet with other systems via the
signal).

[0022] Referring initially to Fig. 1, an object security system 100 is illustrated
in accordance with an aspect of the subject invention. The system 100 includes a
relational database 110 (e.g., SQL or other type database) that is associated with a
region component 120 (or components) that defines one or more object security zones
130. In general, individual nodes of an object hierarchy (e.g., see one object of
hierarchy at reference numeral 140) are not individually updated when object security

changes are made. Rather, security policies are assigned by the region component

-5

WO 2006/118662 PCT/US2006/008416

5

10

15

20

25

30

120 per the respective security zones at 130. By mapping objects to a security zone
130 rather than updating each object individually, the number of read/write operations
at the database 110 can be mitigated. Thus, the region component 120 transforms
security policy mapping from an inheritance hierarchy - where each object is updated,
to a security domain of objects where zones of objects share a similar security policy.
In this manner a smaller subset of security updates can be propagated when an
object’s security policy changes by merely updating the reduced subset of security
zones 130 as opposed to updating each individual object in a classical inheritance
hierarchy. It is noted that inheritance concepts can be employed to propagate policy
in the system 100 however, inheritance is between security zones 130 rather than
conventional inheritance between objects in a tree. Thus, inheritance occurs between
components that are modeled in a security domain rather than an object domain. This
implies that security mappings for a respective object are between the object and its
associated zone 130 rather than explicitly set out per individual object 140.
Therefore, the region component 120 provides security to a region of identified
objects and essentially decouples, disassociates, or is independent of conventional
object hierarchies that propagate security changes to all objects in the hierarchy.
[0023] In general, items in the database 110 can be assigned an (Identifier) ID
for a security descriptor. The database includes a [Table!Item] table having a column
called SDID (Security Descriptor ID). This SDID is a unique ID of a security
descriptor which is stored and maintained in a hidden SQL system table, for example.
A system table can be exposed through a public view (e.g., Sys.Security_Descriptor).
The following table is a simplified illustration on how a security descriptor can be
plugged into or associated with a basic object model:

[Table!Item]: Associates an item with a security descriptor ID.

emID e SDId

[Sys.Security Descriptor]: Maps the ID to the content of the security descriptor.
Sd id Type SecurityDescriptor | ...

[0024] To efficiently assign a security descriptor ID (SD ID) to an object item,

an SD region technology is based in part on the observation that most object items

WO 2006/118662 PCT/US2006/008416

10

15

20

25

30

35

tend to share the same security descriptor. An SD region is a set of items (which do
not have to be contiguous as in conventional systems) that share the same or similar
SD ID. Typically, all items in the [Table!Item] shown above can be grouped into
different SD regions. The relationship of SD regions can be established in such a way
that the SD of one SD region can inherit from the SD of another SD region in the
security domain described above. In essence, a SD region tree is established that is
comparable to the corresponding object item tree, but with fewer nodes as will be
shown with respect to figs. 2 and 3 below. The SD region tree thus can be used to
update the item’s SD efficiently. Typically when an security item tree is created,
three SD regions are created to assign SDs to substantially all the items in the tree.
Thus, one SD region is for the root item (where an explicit SD is defined), another SD
region is for the respective container items and the last SD for non-container items.
[0025] Referring now to Fig. 2 and 3, example security domain transforms
200 and 300 are illustrated in accordance with an aspect of the subject invention. At
200 of Fig. 2, the nodes of an object tree are illustrated, where a black node at 210 is a
root item; grey nodes at 220 are container items, and white nodes at 230 are non-
container items. When an item’s security descriptor (SD) is updated (e.g., by
changing the SD’s owner, group, Access Control List and so forth), the SD region
where the item belongs can be split into three subgroups or subsets as illustrated at
240. Security changes are generally effected through data referred to as an Access
Control Entry (ACE) which can be of an explicit or an implicit form. When explicit
ACEs are added to an item’s SD, new SD regions can be created around this item. In
this case, three SD regions are created, one for the item (where the explicit ACEs are
added) itself, one for its container children and one for its non-container children.
Referring to Fig. 3, a more complex situation is illustrated when a non-propagated
explicit ACE is added to an SD on an item at 310, in which case five new regions are
created around the item as illustrated at 320. In this case, one region is created for the
item itself (where the explicit ACE is added) 330, one region for its direct container
children at, one region for its direct non-container children at 350, one region for its
non-direct container children at 360 and one region for its non-direct non-container
children at 370.

[0026] To summarize Figs 2 and 3, new regions can be created when an item’s
SD is updated explicitly (not through inheritance). Generally, 3 or 5 new regions

(other amounts possible) are created depending upon the updates being made to the

-7-

WO 2006/118662 PCT/US2006/008416

10

15

20

25

30

35

SD. Five SD regions are created if a non-propagated ACE is added and three SD
regions are generally created in other cases. As an example, assume the item whose
SD contains non-inherited properties (non-inherited ACEs in most cases) as the Root
Item. As noted above, a container-type Root Item can own 3 or 5 SD regions
depending upon the types of explicit ACEs in the SD. A non-container can have its
own SD region if its SD has explicit properties. If all of the explicit properties of a
Root Item’s SD are removed, then the SD regions owned by this Root Item may be
collapsed into its parent item’s SD which then mitigates individual object security
updates. Each SD region can be represented as a row in a Security_Hierachy table
such as the following example:

[Table!Security_Hierachy]: Stores the SD inheritance relationship and
establishes items to share the same security descriptor.

_ SDIdParent | SDId RootltemID | IsContainer | Scope

[0027] The columns of the above table can include an _SDId which is the ID
of the SD region, an _SDIdParent field which is the ID of the SD where the inherited
security properties are coming from, a _RootItemID field which is the ID of the item
where the explicit SD is defined, an _IsContainer field which is 1 if the SD applies to
container, or 0 to a non-container, and a _Scope field that is encoded as follows:

0: the SD applies to the Root Item.1: the SD only applies to the Root Item’s
children.2: the SD applies to the Root Item’s direct children. 3: the SD applies to the
Root Item’s non-direct children.

[0028] It is noted that when a database is bootstrapped, three default security
descriptors can be created if desired; one descriptor for the top Root Item, one
descriptor for all container children and one descriptor for all non-container children.
Consequently, three SD regions on the top Root Item can be created also. Typically,
all the items subsequently created in the volume can have one of the SDs as its default
SD. When explicit ACEs are added to the item, new SD regions can be created as
discussed above.

[0029] Fig. 4 illustrates example security interfaces 400 in accordance with an
aspect of the subject invention. Various security interfaces 400 can be provided for
interacting with the region-based considerations described above. The following will

describe but a few interface examples that can be applied. These can include

WO 2006/118662 PCT/US2006/008416

5

10

15

20

25

30

35

40

interfaces for retrieving security data at 410, interfaces for setting security information
at 420, and interfaces for holding links as will be described in more detail below. The
following code fragment is an example of a public declaration for some of these
interfaces 400. '

Public sealed class ItemSecurity
public ItemSecurity(Guid itemlId)
public string GetSDDLSecurity()
public GenericSecurityDescriptor GetSecurity()
p_u;)lic void SetSDDLSecurity(string sd, SECURITY_INFORMATION
si
public void SetSecurity(GenericSecurityDescriptor gsd ,
SECURITY_INFORMATION si)

public string GetUserEffectiveSecurity()

public void AddHoldingLink(Guid itemId)
public void RemoveHoldingLink(Guid itemId)
[0030] The following provides a brief description for the security interfaces
410 through 430:
public string GetSDDLSecurity() - Retrieves the entire security descriptor on
the item in SDDL string format. It includes inherited and explicit Access Control
lists.
public GenericSecurityDescriptor GetSecurity() — Retrieves the entire security
descriptor on the item in the format of a Managed ACLs class
GenericSecurityDescriptor.
public void SetSDDLSecurity (string sd, SECURITY_INFORMATION si)
Sets the security descriptor on the item. This function ignores the inherited ACEs. It
re-generates the inherited ACEs from its parent and other holding links. It can be
called to set owner, group, control flag or explicit ACEs.
SECURITY INFORMATION specifies which part of the security descriptor is to be
updated.
public void SetSecurity(GenericSecurityDescriptor gsd,
SECURITY INFORMATION si) - Sets the security descriptor on the item. Takes
the Managed ACLs class as the input parameter.

-9-

WO 2006/118662 PCT/US2006/008416

5

10

15

20

25

30

35

public void AddHoldingLink(Guid itemId) - Updates the security descriptor
on the item when adding a new holding link to the item.

public void RemoveHoldingLink(Guid itemId) - Updates the security
descriptor on the item when removing a new holding link from the item. '

public string GetUserEffectiveSecurity() - Retrieve the security descriptor on
the item that contains the ACEs relevant to the current security context.
[0031] Fig. 5 illustrates region component processing 500 in accordance with
an aspect of the subject invention. At 510, region definitions are provided. These
include an security descriptor (SD) region which is a set of items that share the same
SD. The set of items do not have to form a contiguous tree. A security hierarchy (SH)
row is a row in a [Table!Security Hierachy] table listed below. Each SD region
should have an SH row in the table.

ParentSDId | SDId | RootltemId IsContainer | Scope
SDO SD1 ItemId 0 3
[0032] A row in the above table is referred to as an SH row which corresponds

to an SD region. Rows in this table indicate a set of items (can be a single item) share
the same security descriptor (SD1 in the above example). The set of items are defined
by a common root (the ItemlId), a common type (container or non-container) and a
scope. The scope is optional to support different operating system security models.
[0033] At 520, region merge and creation considerations are described. In this
aspect, one new SD region may be created under the following conditions:

1. SD changes made on a non-container item.

Three new SD regions may be created under the following conditions:

1. SD changes made on a container item, and

2. The SD changes doesn’t include non-propagate ACEs.

Five new SD regions may be create under the following conditions:

1. SD changes made on a container item, and

2. The SD changes include non-propagate ACEs.
[0034] SD regions may be merged under the following conditions:

1. Parent SD is enforcing SD inheritance by flushing child SDs. or

2. Explicit ACEs are removed from a SD.

-10 -

WO 2006/118662 PCT/US2006/008416

5

10

15

20

25

30

35

[0035] At 530, various notions are provided that may be employed in the
following algorithms described with respect to Fig. 6. These notations include:

_Item or * - The current item system applying the operations on.

SDId(x) or SDId - The sd_id of the security descriptor on item x.

SDId_NC(x) or SDId NC - The SDId applies to non-container child
objects of item x.

SDId_C(x) or SDId_C - The SDId applies to container child objects of
item X.

SDId_NC2(x) or SDId_NC2 - The SDId applies to direct non-
container child objects of item x.

SDId_C2(x) or SDId_C2 - The SDId applies to direct container child
objects of item x.

SDId_NC3(x) or SDId_NC3 - The SDId applies to non-direct non-
container child objects of item x.

SDId_C3(x) or SDId_C3 - The SDId applies to non-direct container
child objects of item x.

SHRow(X, i, j) - The row in [Table!Security_Hierachy] table where
_Rootltemld = x, _IsContainer =1i, _Scope =]

UpdateltemSD(01dSDId, NewSDId, RootItem, IsContainer, Scope) -
Update the SDId of all items of type (IsContainer) whose current SDId = O1dSDId,
ancestor is RootItem within the Scope to NewSDId.
[0036] UpdateSDBlob(SDId) - Update the content of the security descriptors
of this SDId and its children if the SDId of its children do not form a cycle with this
SDId. For example, when a holding link (with SDO) is added on to a file item (with
SD1) which doesn’t have its own row in [Table!Security_Hierachy] table, three rows
will be created (SDO, SD1, _Item, 0, 0), (SD1, SDO, _Item, 0, 1), (SD1, SDO, _Item,
1, 1). Here
reuse SDO for the child items of this item to significantly reduce the number of
updates in [Table!Item] table.

UpdateSDId (SDId, SDId_New) - Update the rows of the current item
in [Table!Security_Hierachy] where _SDId = SDId to set _SDId = SDId_New.

UpdateParentSDId (SDIdPar, SDIdPar_New) - Update the rows of
[Table!Security Hierachy] where _ParentSDId = SDIdPar to set _ParentSDId =
SDIdPar_New.

-11-

WO 2006/118662 PCT/US2006/008416

10

15

20

25

30

35

CreateNewSD (SDId) - Create a new SD from the current SD plus the
changes being made (add/remove ACEs, add/remove holding links).
[0037] Fig. 6 illustrates example region processing algorithms 600 in
accordance with an aspect of the subject invention. In this aspect, at least three
separate or combined algorithms 600 can be employed to effect region processes.
These include a Set security descriptor at 610; a Add holding link 620; and a Remove
holding link algorithm at 630. With respect to the Set Security Descriptor 610, there
are various ways to change the security descriptor on an object that at least include:

. Add/Remove non-inheritable explicit ACEs.

. Add/Remove inheritable explicit ACEs that apply to this item
and all its children.

. Add/Remove inheritable explicit ACEs that only apply to its
children.

. Add/Remove inheritable explicit ACEs that only apply to this
item and its direct children.

. Add/Remove inheritable explicit ACEs that only apply to child

containers.

. Add/Remove inheritable explicit ACEs that only apply to child
objects.

. Add/Remove inheritable explicit ACEs that only apply to
certain type of objects.

’ Change the owner of security descriptor

. Change the group of security descriptor

. Change security descriptor control flags.

i. Stop inheritance of ACEs

ii. Start inheritance of ACEs

il Change other control flags only applied to this item.
[0038] At 620, when a holding link is added to an item, the security descriptor

on this item may or may not be changed, depending on whether the holding link has
inheritable ACEs and whether the SD on this item has SE_DACLE_PROTECTED
flag on. However, the [Table!Security Hierachy] table should be updated. When a
holding link is added onto an item, three new rows for the item should be added into
the in [Table!Security_Hierachy] table if the item does not have a designated row yet.

To reduce the update in [Table!Item] table, the following formats can be used to

-12-

WO 2006/118662 PCT/US2006/008416

10

15

20

25

30

35

create these rows: (SDO, SD1, *, 0, 0), (SD1, SDO, *, 0, 1), (SD1, SDO, *,1, 1) where
SDO is the old SDId of the target item of the holding link, SD1 is the new SDId of the
target item. By this scheme, should only need to update the source item in
[Table!Item] table.

Based on this scheme, if an explicit non-inheritable ACE is added onto this item later,
do not perform an update in [Table!Item] table. At 630, it can be assumed the SDId
of the security descriptor on the holding link to be removed is SDId_HD. In the case
of removing holding link, SD regions may collapse, and thus rows in

[Table!Security Hierachy] may be merged.

[0039] Fig. 7 illustrates an example security region process 700 for database
object security in accordance with an aspect of the subject invention. While, for
purposes of simplicity of explanation, the methodology is shown and described as a
series or number of acts, it is to be understood and appreciated that the subject
invention is not limited by the order of acts, as some acts may, in accordance with the
subject invention, occur in different orders and/or concurrently with other acts from
that shown and described herein. For example, those skilled in the art will understand
and appreciate that a methodology could alternatively be represented as a series of
interrelated states or events, such as in a state diagram. Moreover, not all illustrated
acts may be required to implement a methodology in accordance with the subject
invention.

[0040] Proceeding to 710 of Fig. 7, security descriptors for respective objects
in a database are decoupled or disassociated from a classical object hierarchy by
removing the requirement for each object to be updated (security wise) in view of any
potential update in the hierarchy. At 720, one or more security descriptors are utilized
to define object regions for objects residing in the database. As noted above, this can
include collapsing or merging object security data from similar or dissimilar object
trees in order to define security regions or object subsets that subscribe to similar
security data of the region. Also, such region data can be defined in a row of the
database including resulting relationships to other objects belonging to the region. At
730, object security policies are set per selected regions in the database. As noted
above, depending on the type of Access Control Entry (Implied/Explicit) and the
location of a security change in an object hierarchy, various security regions may be
created from such settings. At 740, transforms occur between classical object

domains and the security domains of the subject invention in order to propagate

-13-

WO 2006/118662 PCT/US2006/008416

5

10

15

20

25

30

35

security changes within the database. This can include creating region subsets around
a given object at the time a security change is requested for the object (e.g., create
three or five regions depending on security change type).

[0041] With reference to Fig. 8, an exemplary environment 810 for
implementing various aspects of the invention includes a computer 812. The
computer 812 includes a processing unit 814, a system memory 816, and a system bus
818. The system bus 818 couples system components including, but not limited to,
the system memory 816 to the processing unit 814. The processing unit 814 can be
any of various available processors. Dual microprocessors and other multiprocessor
architectures also can be employed as the processing unit 814.

[0042] The system bus 818 can be any of several types of bus structure(s)
including the memory bus or memory controller, a peripheral bus or external bus,
and/or a local bus using any variety of available bus architectures including, but not
limited to, 11-bit bus, Industrial Standard Architecture (ISA), Micro-Channel
Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE),
VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), Universal Serial
Bus (USB), Advanced Graphics Port (AGP), Personal Computer Memory Card
International Association bus (PCMCIA), and Small Computer Systems Interface
(SCSI).

[0043] The system memory 816 includes volatile memory 820 and nonvolatile
memory 822. The basic input/output system (BIOS), containing the basic routines to
transfer information between elements within the computer 812, such as during start-
up, is stored in nonvolatile memory 822. By way of illustration, and not limitation,
nonvolatile memory 822 can include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM), electrically erasable ROM
(EEPROM), or flash memory. Volatile memory 820 includes random access memory
(RAM), which acts as external cache memory. By way of illustration and not
limitation, RAM is available in many forms such as synchronous RAM (SRAM),
dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM
(DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and
direct Rambus RAM (DRRAM).

[0044] Computer 812 also includes removable/non-removable, volatile/non-
volatile computer storage media. Fig. 8 illustrates, for example a disk storage 824.

Disk storage 824 includes, but is not limited to, devices like a magnetic disk drive,

-14-

WO 2006/118662 PCT/US2006/008416

5

10

15

20

25

30

35

floppy disk drive, tape drive, Jaz drive, Zip drive, LS-100 drive, flash memory card,
or memory stick. In addition, disk storage 824 can include storage media separately
or in combination with other storage media including, but not limited to, an optical
disk drive such as a compact disk ROM device (CD-ROM), CD recordable drive
(CD-R Drive), CD rewritable drive (CD-RW Drive) or a digital versatile disk ROM
drive (DVD-ROM). To facilitate connection of the disk storage devices 824 to the
system bus 818, a removable or non-removable interface is typically used such as
interface 826.

[0045] It is to be appreciated that Fig 8 describes software that acts as an
intermediary between users and the basic computer resources described in suitable
operating environment 810. Such software includes an operating system 828,
Operating system 828, which can be stored on disk storage 824, acts to control and
allocate resources of the computer system 812. System applications 830 take
advantage of the management of resources by operating system 828 through program
modules 832 and program data 834 stored either in system memory 816 or on disk
storage 824. It is to be appreciated that the subject invention can be implemented
with various operating systems or combinations of operating systems.

10046] A user enters commands or information into the computer 812 through
input device(s) 836. Input devices 836 include, but are not limited to, a pointing
device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick,
game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera,
web camera, and the like. These and other input devices connect to the processing
unit 814 through the system bus 818 via interface port(s) 838. Interface port(s) 838
include, for example, a serial port, a parallel port, a game port, and a universal serial
bus (USB). Output device(s) 840 use some of the same type of ports as input
device(s) 836. Thus, for example, a USB port may be used to provide input to
computer 812, and to output information from computer 812 to an output device 840.
Output adapter 842 is provided to illustrate that there are some output devices 840 like
monitors, speakers, and printers, among other output devices 840, that require special
adapters. The output adapters 842 include, by way of illustration and not limitation,
video and sound cards that provide a means of connection between the output device
840 and the system bus 818. It should be noted that other devices and/or systems of

devices provide both input and output capabilities such as remote computer(s) 844.

-15-

WO 2006/118662 PCT/US2006/008416

10

15

20

25

30

35

[0047] Computer 812 can operate in a networked environment using logical
connections to one or more remote computers, such as remote computer(s) 844. The
remote computer(s) 844 can be a personal computer, a server, a router, a network PC,
a workstation, a microprocessor based appliance, a peer device or other common
network node and the like, and typically includes many or all of the elements
described relative to computer 812. For purposes of brevity, only a memory storage
device 846 is illustrated with remote computer(s) 844. Remote computer(s) 844 is
logically connected to computer 812 through a network interface 848 and then
physically connected via communication connection 850. Network interface 848
encompasses communication networks such as local-area networks (LAN) and wide-
area networks (WAN). LAN technologies include Fiber Distributed Data Interface
(FDDI), Copper Distributed Data Interface (CDDI), Bthernet/IEEE 802.3, Token
Ring/IEEE 802.5 and the like. WAN technologies include, but are not limited to,
point-to-point links, circuit switching networks like Integrated Services Digital
Networks (ISDN) and variations thereon, packet switching networks, and Digital
Subscriber Lines (DSL).

[0048] Communication connection(s) 850 refers to the hardware/software
employed to connect the network interface 848 to the bus 8183. While communication
connection 850 is shown for illustrative clarity inside computer 812, it can also be
external to computer 812. The hardware/software necessary for connection to the
network interface 848 includes, for exemplary purposes only, internal and external
technologies such as, modems including regular telephone grade modems, cable
modems and DSL modems, ISDN adapters, and Ethernet cards.

[0049] Fig. 9 is a schematic block diagram of a sample-computing
environment 900 with which the subject invention can interact. The system 900
includes one or more client(s) 910. The client(s) 910 can be hardware and/or software
(e.g., threads, processes, computing devices). The system 900 also includes one or
more server(s) 930. The server(s) 930 can also be hardware and/or software (e.g.,
threads, processes, computing devices). The servers 930 can house threads to perform
transformations by employing the subject invention, for example. One possible
communication between a client 910 and a server 930 may be in the form of a data
packet adapted to be transmitted between two or more computer processes. The
system 900 includes a communication framework 950 that can be employed to

facilitate communications between the client(s) 910 and the server(s) 930. The

-16 -

WO 2006/118662 PCT/US2006/008416

5 client(s) 910 are operably connected to one or more client data store(s) 960 that can

be employed to store information local to the client(s) 910. Similarly, the server(s)
930 are operably connected to one or more server data store(s) 940 that can be
employed to store information local to the servers 930.
[0050] What has been described above includes examples of the subject

10 invention. It is, of course, not possible to describe every conceivable combination of
components or methodologies for purposes of describing the subject invention, but
one of ordinary skill in the art may recognize that many further combinations and
permutations of the subject invention are possible. Accordingly, the subject invention
is intended to embrace all such alterations, modifications and variations that fall

15 within the spirit and scope of the appended claims. Furthermore, to the extent that the
term “includes” is used in either the detailed description or the claims, such term is
intended to be inclusive in a manner similar to the term “comprising” as “comprising”

is interpreted when employed as a transitional word in a claim.

-17-

WO 2006/118662 PCT/US2006/008416

10

15

20

25

30

35

CLAIMS

What is claimed is:

1. A system that facilitates database security and management, comprising:

a database component that stores a plurality of objects having a hierarchical
relationship between the objects; and

a region component that defines one or more security zones for a subset of the
objects and maps security data to the subset, the security zones are independent of the
hierarchical relationships between the objects.
2. The system of claim 1, the region component provides a transform from an
object domain to a security domain.
3. The system of claim 2, the region component includes at least one security
descriptor that defines at least one of the security zones.
4. The system of claim 2, the region component supports inheritance security
between regions in the security domain.
5. The system of claim 1, the region component supports an expansion of
security zones or a collapse of security zones based upon an analysis of security
changes.
6. The system of claim 5, the region component expands security regions by at

least three regions based upon detected security changes.

7. The system of claim 6, the security changes are detected by an Access Control
Entry (ACE).
8. The system of claim 7, the Access Control Entry represents an explicit or an

implicit security change.

0. The system of claim 1, further comprising a table that associates an object
item with a security descriptor identifier.

10. The system of claim 9, further comprising a table that maps the security
descriptor identifier to contents of a security descriptor.

11. The system of claim 1, further comprising at least one of a root node, a child,
node, a container item, and a non-container item.

12. The system of claim 1, further comprising a component to propagate security
changes between the security zones.

13. The system of claim 1, further comprising at least one interface to interact

with the region component or the database.

-18 -

WO 2006/118662 PCT/US2006/008416

10

15

20

25

14. The system of claim 13, the interface includes a get security function, a get
descriptor functions, a set security function, an add holding link function, a remove
holding link function, and a get effective security function.
15. The system of claim 1, further comprising a security hierarchy row to define
security object relationships in a security domain.
16. A computer readable medium having computer readable instructions stored
thereon for implementing the components of claim 1.
17. A method for object database security, comprising:

defining database objects in an object domain;

defining security components in a security domain;

providing a mapping between the object domain and the security domain; and

employing the mapping to define security regions for the database objects.
18. The method of claim 17, further comprising generating at least three security
regions upon detecting changes in the security domain.
19. The method of claim 17, further comprising providing an inheritance
mechanism for the security components within the security domain.
20. A system to facilitate database object security, comprising;

means for storing database objects;

means for setting security regions for the objects;

means for mapping the security regions to the objects; and

means for accessing the objects based at least in part on the security regions.

-19-

PCT/US2006/008416

WO 2006/118662

1/9

W E

LNINOdINOD
NOIDTY
0z — |
3SVaVv.Lvda TVNOILY 13N

WO 2006/118662 PCT/US2006/008416

2/9

FIG. 2

WO 2006/118662 PCT/US2006/008416

3/9

Adding explicit
ACE

360 j 370 -f 350 J‘ 340 J‘

FIG. 3

WO 2006/118662 PCT/US2006/008416

4/9

/— 400

410
/.

RETRIEVE SECURITY
INTERFACES

420
/_

SECURITY SET SECURITY
INTERFACES ™ INTERFACES

430
/_

HOLDING LINK
INTERFACES

FIG. 4

WO 2006/118662 PCT/US2006/008416

5/9

REGION COMPONENT PROCESSING

REGION DEFINITIONS ALGORITHM NOTATIONS

CREATE/MERGE REGION

FIG. 5

WO 2006/118662

6/9

o 600

PCT/US2006/008416

REGION PROCESSING ALGORITHMS

SET SECURITY ADD HOLDING
DESCRIPTOR LINK

FIG. 6

830

REMOVE
HOLDING LINK

WO 2006/118662 PCT/US2006/008416

719
4700

DECOUPLE
SECURITY
DESCRIPTOR FROM
HIERARCHICAL
STRUCTURE

'

EMPLOY SECURITY

DESCRIPTORS TO | — 720
DEFINE OBJECT

SECURITY REGIONS

— 710

SET SECURITY | —730
POLICIES FOR
EACH REGION

TRANSFORM
BETWEEN OBJECT | ..o
DOMAINAND [~
SECURITY DOMAIN
TO EFFECT
SECURITY
CHANGES

FIG. 7

WO 2006/118662

| Processing ||

Unit

Volatile

Non Volatile

Interface

W
N~
as)

——--»!

N~ 826

Disk
Storage

PCT/US2006/008416
8/9
{ Operating System
! 830 810
....................... ol
E - Applications | /_
I /— 832
: Modules
T o 834
! | Data |
bt L~ 812
"4
814
842
/—
Output e Output
Adapter(s) Device(s)
838 - 840
/_‘
Interface [1¢ > Input
Pori(s) Device(s)
N \- 836
818
r 850
Network
Communication]¢_|_> Interface
Connection(s) -
\ 848
A
Remote
Computer(s)
824 -
Memory
s44 — Storage

06/118662 PCT/US2006/008416
WO 20

9/9

910 930 —7

CLIENT(S)

SERVER(S)

CLIENT SERVER
DATA e
STORE(S) STORE(S)
\E) COMMUNICATION
960 FRAMEWORK 940
950

FIG. 9

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

