发明名称

一种电解质溶液及其在染料敏化太阳能电池中的应用

摘要

本发明提供一种电解质溶液及其在染料敏化太阳能电池中的应用，该电解质溶液包含的氧化还原电对的通式为：nA + \([A - A]^{2+}B_2\) + mM + x(C^-D^-) + yIS + zG；其中，A、\([A - A]^{2+}B_2\)分别表示氧化还原电对中的还原型和氧化型物种；M 表示有机溶剂，C^-D^-表示离子液体，IS 表示无机盐，G表示电解质中的添加剂；n 为氧化还原电对中 A 与 \([A - A]^{2+}B_2\) 的摩尔比，m、x、y 和 z 分别表示有机溶剂、离子液体、无机盐和添加剂与 \([A - A]^{2+}B_2\) 的摩尔比。本发明还提供了上述含氧化还原电对的电解质溶液在制备染料敏化太阳能电池的应用。本发明还提供了包括上述含氧化还原电对的电解质溶液的染料敏化太阳能电池。本发明的氧化还原电对性能优良、无腐蚀性，且在碳电极上还表现出很好的电子转移特性。
1. 一种用于染料敏化太阳能电池的电解质溶液，该电解质溶液含有氧化还原电对，该氧化还原电对组成的通式为:

$$nA + \left[ A-A \right]^{2+} B_2$$

其中，A 为氧化还原电对中的还原型组份，其结构如下:

![结构1](image1)

\[ A-A \right]^{2+} B_2 为氧化还原电对中的氧化型组份，其结构如下:

![结构2](image2)

平衡离子 B 选自卤素离子、高氯酸根离子、四氟化硼离子、六氟化磷
离子、氟化氢化物、硝酸根离子、硝酸根离子、亚胺离子、双（氯磺酰）亚胺离子、双（三氟甲基磺酰）亚胺离子、(氯磺酰)(三氟甲基磺酰)亚胺离子和六氟化钢离子，所述卤素离子优选为氯离子和/或溴离子；

n 为 A 与 [A-A]^{2+} B_2 的摩尔比，\(0.01 \leq n \leq 500\)。

2. 根据权利要求 1 所述的电解质溶液，其特征在于，所述电解质溶液还含有有机溶剂 M，该有机溶剂 M 选自腈类，例如乙腈、丙腈、3-甲氧基丙腈、3-羟基丙腈；醇类，例如甲醇、乙醇、丙醇、异丙醇、丁醇、辛醇、乙二醇、丙三醇、1,2-丙二醇、1,3-丙二醇；酯类，例如碳酸二甲酯、

![结构3](image3) 碳酸二乙酯、碳酸丙烯酯、甲酸甲酯、甲酸乙酯、甲酸丙酯、乙酸乙酯、苯甲酸甲酯、苯甲酸乙酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯；四氢呋喃及其混合物，m 为所述有机溶剂 M 与 [A-A]^{2+} B_2 的摩尔比，且 \(10 \leq m \leq 2000\)。

3. 根据权利要求 1 或 2 所述的电解质溶液，其特征在于，所述电解质溶液还含有离子液体 \(C^+ D^-\)，其中 \(C^+\) 选自咪唑类阳离子、吡啶类阳离子、

![结构4](image4) 吡啶类阳离子、哌啶类阳离子、吡咯类阳离子、吲哚类阳离子、咔唑类阳离子、季铵盐类阳离子、三烷基锍类阳离子及其混合物；D^- 选自卤素离子、
四氯化碲离子、六氟化磷离子、氯化锑离子、高氯酸根、硝酸根离子、双 (氯磺酰) 亚胺离子、双 (三氟甲基磺酰) 亚胺离子、(氯磺酰)(三氟甲基磺酰) 亚胺离子、六氟化铌离子及其混合物，所述卤素离子优选为氯离子和/或溴离子；

x 为所述离子液体与 [A-A]^{2+} B_2 的摩尔比，且 0 ≤ x ≤ 2000。

4. 根据权利要求 1 至 3 中任一项所述的电解质溶液，其特征在于，所述电解质溶液还含有无机盐 IS，该无机盐 IS 选自锂盐、钠盐、钾盐、季铵盐及其混合物，该无机盐 IS 中的阴离子选自高氯酸根、卤素离子、四氯化碲离子、六氟化磷离子、氯化锑离子、硝酸根离子、双 (氯磺酰) 亚胺离子、双 (三氟甲基磺酰) 亚胺离子、(氯磺酰)(三氟甲基磺酰) 亚胺离子、六氟化铌离子及其混合物，所述卤素离子优选为氯离子和/或溴离子；

y 为所述无机盐 IS 与 [A-A]^{2+} B_2 的摩尔比，且 0 ≤ y ≤ 500。

5. 根据权利要求 1 至 4 中任一项所述的电解质溶液，其特征在于，所述电解质溶液还含有添加剂 G，该添加剂 G 选自吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶、2-乙基吡啶、3-乙基吡啶、4-乙基吡啶、2-叔丁基吡啶、3-叔丁基吡啶、4-叔丁基吡啶、2-丙基吡啶、3-丙基吡啶、4-丙基吡啶、2-正丁基吡啶、3-正丁基吡啶、4-正丁基吡啶、2-戊基吡啶、3-戊基吡啶、4-戊基吡啶、2,4,6-三甲基吡啶、2,3,5-三甲基吡啶、2,4-二甲基吡啶、2,5-二甲基吡啶、3,5-二甲基吡啶、喹啉、异喹啉及其混合物；

z 为所述添加剂与 [A-A]^{2+} B_2 的摩尔比，且 0 ≤ z ≤ 500。

6. 权利要求 1 至 5 中任一项所述的电解质溶液在制备染料敏化太阳能电池中的应用。

7. 一种包括权利要求 1 至 5 中任一项所述的电解质溶液的染料敏化太阳能电池。

8. 根据权利要求 7 所述的染料敏化太阳能电池，其特征在于，所述染料敏化太阳能电池还包括碳对电极。

9. 根据权利要求 8 所述的染料敏化太阳能电池，其特征在于，所述碳对电极包括基底和碳薄膜，所述基底为无机非金属材料，优选为导电玻璃；所述碳薄膜为碳球或碳球与碳材料形成的复合物，所述碳材料选自导电碳黑、碳纳米管、石墨及其混合物。

10. 根据权利要求 7 至 9 中任一项所述的染料敏化太阳能电池，其特征在于，所述电池还包括 TiO_2 光阳极。
一种电解质溶液及其在染料敏化太阳能电池中的应用

技术领域
本发明涉及染料敏化太阳能电池制造领域，具体地，本发明涉及含有氧化还原电对（1, 1, 3, 3-四甲基硫脲及其二硫化物）的电解质溶液，及其在染料敏化太阳能电池中的应用。

背景技术
自1991年瑞士联邦工学院Grätzel教授提出染料敏化太阳能电池（DSCs）后，此类电池在国际上受到了广泛关注。DSCs电池具有原材料价格便宜、制作工艺简单和电池效率相对较高的优势，是一类有发展前景的低成本、环境污染小、性能优异的新型太阳能电池（O’Regan, B.; Grätzel, M. Nature 1991, 353, 737-740）。DSCs电池由纳晶TiO₂光阳极、电解质和对电极三部分构成，其中电解质的主要作用是将空穴传输给对电极和还原氧化态染料分子。目前，高效率的DSCs电池都是基于含有I₃⁻/I⁻氧化还原电对的液体电解质实现的，这主要是由于I₃⁻/I⁻电对在电池中具有较理想的动力学优势，即在对电极上，I₃⁻→I⁻的还原反应速度足够快，而I₃⁻离子与TiO₂多孔膜导带中电子的复合反应（暗反应）的反应速度非常慢。但事实上，I₃⁻/I⁻电对并不是最理想的电荷传输介质，它主要存在以下几个问题：（1）碘单质对绝大多数金属都有腐蚀作用，尤其是电池中最常用到的银和白金。若长时间使用含有I₃⁻/I⁻氧化还原电对的电解质容易导致电池稳定性的降低和电池寿命缩短；同时对电池的制备技术也提出了更苛刻的要求，增加了电池的成本。（2）碘具有一定的蒸汽压，同样对电池的密封技术提出了更高的要求，不利于电池的实际应用。（3）I₃⁻/I⁻电对能吸收一定量的可见光。（4）I₃⁻/I⁻氧化还原电位限制了电池的最大开路电压，不利于进一步提高电池效率。


因此，研究低成本、高效率、稳定性好的非碘氧化还原电对是染料敏化太阳能电池的发展趋势之一。

发明内容

本发明中所使用的术语，除非另外指出，是根据其普通含义来理解。

本发明所使用的术语 “非碘氧化还原电对” 指的是 I3−/I−电对的替代物。本发明中的非碘氧化还原电对指的是 1,1,3,3-四甲基硫酰胺（A）及其含有不同平衡阴离子的二硫化物 ([A-A]2−B2)。本发明仅以 A 与 [A-A]2−(TFSI)2 的应用实例来进行解释说明，其中，TFSI 为双（三氟甲基磺酰）亚胺离子。

本文所使用的术语 “基于碳对电极的染料敏化太阳能电池”，指的是以碳电极用作对电极的染料敏化太阳能电池。

本发明的一个目的在于提供一种性能优良、无腐蚀性氧化还原电对的电解质溶液，该氧化还原电对在碳电极上表现出优异的电子转移特性。

本发明的另一个目的在提供上述性能优良、无腐蚀性氧化还原电对的电解质溶液在制备染料敏化太阳能电池中的应用。

本发明的又一个目的在于提供包括上述性能优良、无腐蚀性氧化还原电对的电解质溶液的染料敏化太阳能电池。
一方面，本发明提供了一种用于染料敏化太阳能电池的电解质溶液，该电解质溶液含有氧化还原电对，该氧化还原电对组成的通式为：

\[ nA^+ + ([A-A]^{2+}\text{B}_2) \]

其中，A 为氧化还原电对中的还原型组份，其结构如下：

\[ \begin{align*}
\text{CH}_3 & \quad \text{N} \\
\text{C} & \quad \text{S} \\
\text{H}_3\text{C} & \quad \text{N} \\
\text{CH}_3 & 
\end{align*} \]

\[ [A-A]^{2+}\text{B}_2 \] 为氧化还原电对中的氧化型组份，其阳离子的形成及结构由下式所示：

\[ A + A \xrightarrow{2e} \frac{2e}{2e} \quad [A-A]^{2+} \]

\[ [A-A]^{2+} \] 结构如下：

\[ \begin{align*}
\text{CH}_3 & \quad \text{N} \\
\text{C} & \quad \text{S} \\
\text{H}_3\text{C} & \quad \text{N} \\
\text{CH}_3 & 
\end{align*} \]

B 为平衡阴离子，B 选自卤素离子、高氯酸根离子、四氟化硼离子、六氟化磷离子、氟化铈离子、硝酸根离子、双（氯磺酰）亚胺离子、双（三氟甲基磺酰）亚胺离子、(氯磺酰)(三氟甲基磺酰)亚胺离子和六氟化铌离子；所述卤素离子优选为氯离子和/或溴离子；n 为 A 与 \[ [A-A]^{2+}\text{B}_2 \] 的摩尔比，且 0.01 ≤ n ≤ 500。

所述电解质溶液还含有有机溶剂 M，该有机溶剂 M 选自腈类，例如乙腈、丙腈、3-甲基丙腈、3-羟基丙腈；醇类，例如甲醇、乙醇、丙醇、异丙醇、丁醇、辛醇、乙二醇、丙三醇、1，2-丙二醇、1，3-丙二醇；酯类，例如碳酸二甲酯、碳酸二乙酯、碳酸丙烯酯、甲酸甲酯、甲酸乙酯、甲酸丁酯、乙酸乙酯、苯甲酸甲酯、苯甲酸乙酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯；四氢呋喃及其混合
物；m为所述有机溶剂M与[A-A]^{2+}B_{2}的摩尔比，且 10 \leq m \leq 2000。

所述电解质溶液还含有离子液体C^{+}D^{-}，其中C^{+}选自咪唑类阳离子、吡啶类阳离子、嘧啶类阳离子、吲哚类阳离子、咔唑类阳离子、季铵盐类阳离子、三烷基锍类阳离子及其混合物；D^{-}选自卤素离子（Cl^{-}、Br^{-}）、四氟化硼离子、六氟化磷离子、氟化镱离子、高氯酸根、硝酸根离子、双（氟磺酰）亚胺离子、双（三氟甲基磺酰）亚胺离子、（氟磺酰）（三氟甲基磺酰）亚胺离子、六氟化锇离子及其混合物；所述卤素离子优选为氯离子和/或溴离子；x为所述离子液体C^{+}D^{-}与[A-A]^{2+}B_{2}的摩尔比，且 0 \leq x \leq 2000。

所述电解质溶液还含有无机盐IS，该无机盐IS选自锂盐、钠盐、钾盐、铵盐及其混合物，所述无机盐IS中的阴离子选自高氯酸根、卤素离子、四氟化硼离子、六氟化磷离子、氟化镱离子、硝酸根离子、双（氟磺酰）亚胺离子、双（三氟甲基磺酰）亚胺离子、（氟磺酰）（三氟甲基磺酰）亚胺离子、六氟化锇离子及其混合物；所述卤素离子优选为氯离子和/或溴离子；y为所述无机盐IS与[A-A]^{2+}B_{2}的摩尔比，且 0 \leq y \leq 500。

优选地，所述电解质溶液还可以含有添加剂G，该添加剂G选自吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶、2-乙基吡啶、3-乙基吡啶、4-乙基吡啶、2-叔丁基吡啶、3-叔丁基吡啶、4-叔丁基吡啶、2-丙基吡啶、3-丙基吡啶、4-丙基吡啶、2-正丁基吡啶、3-正丁基吡啶、4-正丁基吡啶、2-戊基吡啶、3-戊基吡啶、4-戊基吡啶、2,4,6-三甲基吡啶、2,3,5-三甲基吡啶、2,4-二甲基吡啶、2,5-二甲基吡啶、3,5-二甲基吡啶、喹啉、异喹啉及其混合物；z为所述添加剂G与[A-A]^{2+}B_{2}的摩尔比，且 0 \leq z \leq 500。

本发明的含氧化还原电对A和[A-A]^{2+}B_{2}的电解质溶液的制备方法为本领域技术人员所熟知的常规方法，即将各组分混合，在常温或加热下搅拌均匀，得到依据本发明的电解质溶液。

另一方面，本发明提供了上述电解质溶液在制备染料敏化太阳能电池中的应用。

又一方面，本发明提供了包括上述电解质溶液的染料敏化太阳能电池。

优选地，所述染料敏化太阳能电池还包括碳对电极，即基于碳对电极的染料敏化太阳能电池。
优选地，所述碳对电极包括基底和碳薄膜，所述基底为无机非金属材料，优选为导电玻璃；所述碳薄膜为碳球或碳球与碳材料形成的复合物，所述碳材料具有优异的导电性能，其选自导电碳黑、碳纳米管、石墨，及其混合物。

所述碳对电极是按照申请号为 200610114581.7 的“一种用于染料敏化太阳能电池对电极的碳浆料及其制备”公开的方法来制备的。

所述电池还包括 TiO₂光阳极。

按照本领域技术人员所熟知的常规方法将 TiO₂光阳极、含氧化还原电对 A 和[A-A]²⁺ B₂ 的电解质溶液和碳对电极组装成染料敏化太阳能电池。

在本发明的一个具体实施方案中，本发明提供的含非碘氧化还原电对的电解质溶液，其通式为:

\[ nA + ([A-A]²⁺ B₂) + mM + x(C^+ D^-) + yIS + zG \]

其中，A 与 [A-A]²⁺ B₂ 分别表示非碘氧化还原电对中的还原型和氧化型组份，M 表示有机溶剂，C^+ D^- 表示离子液体，IS 表示无机盐，G 表示电解质中的添加剂；n 为 A 与 [A-A]²⁺ B₂ 的摩尔比，m、x、y 和 z 分别表示有机溶剂、离子液体、无机盐和添加剂与 [A-A]²⁺ B₂ 的摩尔比。

所述的非碘氧化还原电对包括还原型组份 A 和氧化型组份 [A-A]²⁺ B₂，A 与 [A-A]²⁺ 的结构如下:

\[
\begin{align*}
A + A & \xrightarrow{2e^-} [A-A]^{2+} \\
\text{A} & = \begin{array}{c}
\text{CH}_3 \\
\text{N} \\
\text{C=S} \\
\text{H}_3\text{C} \\
\text{N} \\
\text{CH}_3 \\
\end{array} \\
[A-A]^{2+} & = \begin{array}{c}
\text{CH}_3 \\
\text{N} \\
\text{C=S} \\
\text{S} \\
\text{C} \\
\text{H}_3\text{C} \\
\text{N} \\
\text{CH}_3 \\
\end{array}
\end{align*}
\]

平衡阴离子 B 包括：卤素离子 (Cl⁻, Br⁻)、高氯酸根离子 (ClO₄⁻)、四氟化硼离子 (BF₄⁻)、六氟磷酸离子 (PF₆⁻)、氟化锑离子 (SbF₆⁻)。
硝酸根离子 (NO$_3^-$)、双（氯磺酰）亚胺离子 (FSI$^-$)、双（三氟甲基磺酰）亚胺离子 (TFSI$^-$)、(氯磺酰) (三氟甲基磺酰)亚胺离子 (FTFSI$^-$) 或六氟化镉离子 (NbF$_6^-$)。

所述的非磺氧化还原对 A 与 [A-A]$^{2+}$B$_2$ 的摩尔比为 $0.01 \leq n \leq 500$。

所述的有机溶剂 M 包括腈类 (如，乙腈、丙腈、3-甲氧基丙腈、3-羟基丙腈等)，醇类 (如，甲醇、乙醇、异丙醇、丁醇、辛醇、乙二醇、丙三醇、1,2-丙二醇、1,3-丙二醇等)，酯类 (如，碳酸二甲酯、碳酸二乙酯、碳酸丙烯酯、甲酸甲酯、甲酸乙酯、甲酸丁酯、乙酸乙酯、苯甲酸甲酯、苯甲酸乙酯、苯甲酸二乙酯等)，四氢呋喃及它们以任意比混合溶剂。所述的有机溶剂 M 与 [A-A]$^{2+}$B$_2$ 的摩尔比为 $10 \leq m \leq 2000$。

所述的离子液体 C$^+D^-$，为 C$^+$与 D$^-$的任意组合。C$^+$包括：吡啶类阳离子、吡啶类阳离子、吡啶类阳离子、吡啶类阳离子、吡啶类阳离子、吡啶类阳离子、季铵盐阳离子或三烷基胺阳离子；D$^-$包括：卤素离子 (Cl$^-$、Br$^-$)、四氟化硼离子 (BF$_4^-$)、六氟磷酸离子 (PF$_6^-$)、氯化铝离子 (SbF$_6^-$)、高氯酸根 (ClO$_4^-$)、硝酸根离子 (NO$_3^-$)、双 (氯磺酰) 亚胺离子 (FSI$^-$)、双 (三氟甲基磺酰) 亚胺离子 (TFSI$^-$)、六氟磷酸离子 (PF$_6^-$)、氯化铝离子 (SbF$_6^-$)、高氯酸根 (ClO$_4^-$)、硝酸根离子 (NO$_3^-$)、双 (氯磺酰) 亚胺离子 (FSI$^-$)、双 (三氟甲基磺酰) 亚胺离子 (TFSI$^-$)、六氟磷酸离子 (PF$_6^-$)。所述的离子液体 C$^+D^-$与 [A-A]$^{2+}$B$_2$ 的摩尔比为 $0 \leq x \leq 2000$。

所述的无机盐 IS，包括锂盐、钠盐、钾盐或季铵盐，它们的阴离子包括：高氯酸根 (ClO$_4^-$)、卤素离子 (Cl$^-$、Br$^-$)、四氟化硼离子 (BF$_4^-$)、六氟磷酸离子 (PF$_6^-$)、氯化铝离子 (SbF$_6^-$)、高氯酸根 (ClO$_4^-$)、硝酸根离子 (NO$_3^-$)、双 (氯磺酰) 亚胺离子 (FSI$^-$)、双 (三氟甲基磺酰) 亚胺离子 (TFSI$^-$)、(氯磺酰) (三氟甲基磺酰) 亚胺离子 (FTFSI$^-$)、六氟磷酸离子 (PF$_6^-$)。所述的无机盐 IS 与 [A-A]$^{2+}$B$_2$ 的摩尔比为 $0 \leq y \leq 500$。

所述的改性电解质性能的添加剂 G，包括：吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶、2-乙基吡啶、3-乙基吡啶、4-乙基吡啶、2-叔丁基吡啶、3-叔丁基吡啶、4-叔丁基吡啶、2-丙基吡啶、3-丙基吡啶、4-丙基吡啶、2-正丁基吡啶、3-正丁基吡啶、4-正丁基吡啶、2-戊基吡啶、3-戊基吡啶、4-戊基吡啶、2,4,6-三甲基吡啶、2,3,5-三甲基吡啶、2,4-二甲基吡啶、2,5-二甲基吡啶、3,5-二甲基吡啶、喹啉或异喹啉。所述的添加剂 G 与 [A-A]$^{2+}$B$_2$ 的摩尔比为 $0 \leq z \leq 500$。
本发明制备含非磷氧化还原电对的电解质溶液的方法包括实验室的常规方法，即将各组分混合，在常温或加热下搅拌均匀。

本发明所采用的碳对电极，由以下两部分构成：
（a）基底材料为各类导电玻璃。
（b）碳薄膜材料为硬碳球或硬碳球与有优异导电性能的碳材料的复合物。具有优异导电性能的碳材料包括：导电碳黑，单壁碳纳米管，多壁碳纳米管或石墨。

本发明涉及的含非磷氧化还原电对的电解质溶液在碳基染料敏化太阳能电池上的应用，本发明是在国际上首次提出的，包括：
按照本发明方法制备含非磷氧化还原电对的电解质溶液；
按照专利“一种用于染料敏化太阳能电池对电极的碳浆料及其制法”（申请号 200610114581.7）提供的方法制备碳对电极；
按照适用于本领域的常规方法将光电极-含非磷氧化还原电对的电解质溶液和碳对电极组装成的染料敏化太阳能电池。

与现有技术相比，本发明的优势在于：
本发明所提供的氧化还原电对具有原料价格低、合成方法简单方便、成本低的优势，当用于染料敏化太阳能电池时，其光电转换效率较高，尤其优于二茂铁(Fe)等非磷电解质体系，而相比之下，相同光电转换效率较高的Se/C等电极-多吡啶配合物和有机自由基1,2,6,6-四甲基-1-哌啶基氧等非磷电解质体系，它可以电池稳定性好的优点。最重要的是此非磷电解质体系尤其适用于成本低、适合大规模应用的碳对电极，这是目前其他非磷电解质体系都不具备的最突出的优势。

**具体实施方式**


本发明非磷氧化还原电对电解质溶液中使用的所有离子液体的作用机理基本上是相同的，并且是被本领域中的技术人员所充分理解的。所有离子液体的作用是提供高电导率和挥发特性，任何一个本领域中的技术人员都可以从一种离子液体的应用很容易地推导出其它各种离子液体的应用。因此，本发明的实施例仅以部分乙烯类离子
液体的应用为例来进行解释说明。

本发明非碳氧化还原电对电解质溶液中使用的无机盐的作用机理基本上是相同的，并且是被本领域中的技术人员所充分理解的。所有的无机盐的作用是提供优良的离子传导特性。任何一个本领域的技术人员都可以从一种无机盐的应用容易推导出其它无机盐的应用。因此，本发明的实施例仅以部分无机盐的应用实例来进行解释说明。

本发明非碳氧化还原电对电解质溶液中所使用的改善电解质性能的添加剂，其作用机理基本上是相同的，并且是被本领域中的技术人员所充分理解的。所有添加剂的作用都是用来提高电池的开路电压，进而提高电池的光电转换性能。任何一个本领域的技术人员都可以从一种添加剂的应用推导出其它添加剂的应用。因此，本发明的实例仅以部分添加剂的应用实例来进行解释说明。

染料敏化太阳能电池的制备采用本领域中技术人员公知的方法，例如，并不限于使用文献（Grätzel M. 等， J. Am. Chem. Soc., 1993, 115, 6382-6390）介绍的方法制备所需要染料敏化的纳米 TiO₂ 光阳极。具体方法如下：在导电玻璃上通过刮涂或丝网印刷的方法沉积 TiO₂ 薄膜，450℃退火 30 分钟。依此方法沉积 TiO₂ 薄膜 2～5 次，直至薄膜厚度为 10～20 微米。最后在 450℃退火 30 分钟。当温度降至约 80℃时，将 TiO₂ 薄膜浸泡在染料RuL₂(NCS)₂2 H₂O (其中，L=4,4'-二羰基-2,2'联吡啶)的乙醇溶液中（浓度 0.3 mM）。浸泡 12 小时后，将玻片取出，先用乙醇清洗除去附着在 TiO₂ 表面的染料，最后空气吹干，得到经染料敏化的光阳极。该纳米 TiO₂ 光阳极与碳电极、含非碳氧化还原电对的电解质溶液组装成电池进行测量。上述文献在这里以全文引用作为参考。

下面结合具体实施例，进一步阐述本发明。但这些实施例仅限于说明本发明而主要用于限制本发明的范围。

**实施例 1**

1 电解质溶液的配制：

将 A (0.0001 mol-500 mol) 、 [A-A]²⁺(TFSI)₂ (0.01 mol-1 mol)、溶剂 M (0.01 mol-10000 mol) 及其它组分混合，搅拌溶解，得到标题所述电解质溶液。所述的各个组分列举于表 1 中。
2 电池的组装及其性能测试:
将所制备的电解液与采用硬碳球材料制备的碳对电极、染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表 1。

测量方法:
DSCs 电池的光电性能使用标准 AM1.5 模拟太阳光，采用计算机控制的恒电位／恒电流仪（Princeton Applied Research, Model 263A）测量，光照面积为 0.15cm²。除非另有说明，本发明光电性能测量都是在室温(25°C)下进行的。
### 表 1 电解质溶液的配制及组装电池的转换效率

<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A]^{1+} B_{2} (mol)</th>
<th>n</th>
<th>氧化还原电对</th>
<th>溶剂</th>
<th>离子液体</th>
<th>无机盐</th>
<th>添加剂</th>
<th>电池的转换效率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>M</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
<td>50</td>
<td>乙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>100</td>
<td>乙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>500</td>
<td>乙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>50</td>
<td>3-甲氨基丙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.01</td>
<td>50</td>
<td>碳酸二甲酯</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.01</td>
<td>50</td>
<td>乙醇</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0.01</td>
<td>50</td>
<td>甲醇</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>50</td>
<td>乙腈/3-甲氨基丙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
<td>50</td>
<td>乙腈/3-甲氨基丙腈（1:2）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0.01</td>
<td>50</td>
<td>乙腈/碳酸二甲酯（2:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0.01</td>
<td>50</td>
<td>乙腈/乙醇（1:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0.01</td>
<td>50</td>
<td>碳酸二甲酯/乙醇（2:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃/碳酸二甲酯</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃/3-甲氨基丙腈（1:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃/乙酸乙酯（2:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃/甲醇（1:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0.01</td>
<td>50</td>
<td>甲醇/乙醇（1:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0.01</td>
<td>50</td>
<td>乙醇/乙腈/四氢呋喃（1:1:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0.1</td>
<td>1</td>
<td>乙腈</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0.5</td>
<td>10</td>
<td>乙腈</td>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>4</td>
<td>乙腈</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>1</td>
<td>乙腈</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
实施例 2

1. 电解质溶液的配制：

将 A (0.0001 mol-500 mol)、[A-A]^{2+} (TFSI)_{2} (0.01 mol-1 mol)、
溶剂 M (0.1 mol-2000 mol)、离子液体 \(C^+D^-\) (0-2000 mol) 及其他
组分混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分
列举于表 2 中。

2. 电池的组装及其性能测试：

将所制备的电解液与采用硬碳球材料制备的碳对电极、染料
敏化的光电极一起组装成染料敏化太阳能电池，电池的光电化学
性能测试结果见表 2。测试方法参照实施例 1 中所用的测试方法。
<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A]^{2+}B_2 (mol)</th>
<th>n</th>
<th>M</th>
<th>m</th>
<th>C'D'</th>
<th>x</th>
<th>IS</th>
<th>y</th>
<th>G（种类）</th>
<th>z</th>
<th>电池的转换效率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>10</td>
<td>3-乙基-1-甲基咪唑六氟磷酸</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.8</td>
</tr>
<tr>
<td>26</td>
<td>0.01</td>
<td>50</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟磷酸</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>27</td>
<td>0.1</td>
<td>100</td>
<td>乙腈</td>
<td>750</td>
<td>3-乙基-1-甲基咪唑六氟磷酸</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.2</td>
</tr>
<tr>
<td>28</td>
<td>0.5</td>
<td>500</td>
<td>乙腈</td>
<td>2000</td>
<td>3-乙基-1-甲基咪唑六氟磷酸</td>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.9</td>
</tr>
<tr>
<td>29</td>
<td>0.01</td>
<td>50</td>
<td>3-甲氧基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟磷酸</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.7</td>
</tr>
<tr>
<td>30</td>
<td>0.01</td>
<td>50</td>
<td>碳酸二甲酯</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑四氟硼酸</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>50</td>
<td>乙醇</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑溴盐</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>32</td>
<td>0.01</td>
<td>50</td>
<td>甲醇</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.9</td>
</tr>
<tr>
<td>33</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.8</td>
</tr>
<tr>
<td>34</td>
<td>0.01</td>
<td>50</td>
<td>乙腈/3-甲氧基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
</tr>
</tbody>
</table>
实施例 3

1 电解质溶液的配制：
将 A (0.0001 mol-500 mol)，[A-A]$^{2+}$ (TFSI)$_2$ (0.01 mol-1 mol)，溶剂 M ((0.1 mol-2000 mol)，无机盐 IS (0-500 mol) 及其它组分混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列举于表 3 中。

2 电池的组装及其性能测试：
将所制备的电解液与采用硬碳球材料制备的碳对电极、染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表 3，测试方法参照实施例 1 中所用的测试方法。
<table>
<thead>
<tr>
<th>序号</th>
<th>氧化还原电对</th>
<th>(A-A') (B-B')</th>
<th>M</th>
<th>C'</th>
<th>D'</th>
<th>x</th>
<th>IS</th>
<th>y</th>
<th>G (种类)</th>
<th>z</th>
<th>电池的转换效率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>0.01</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0.1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0.5</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.2</td>
<td></td>
</tr>
</tbody>
</table>
实施例4

1. 电解质溶液的配制：
   将 A (0.0001 mol-500 mol)、[A-A]^{2+} (TFSI)_{2} (0.01 mol-1 mol)、溶剂 M (0.1 mol-2000 mol)、添加剂 G (0-500 mol) 及其它组分混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列举于表4中。

2. 电池的组装及其性能测试：
   将所制备的电解液与采用硬碳球材料制备的碳对电极，经染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表4，测试方法参照实施例1中所用的测试方法。
<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A]<em>{2}^{2-}B</em>{2}^{2-} (mol)</th>
<th>m</th>
<th>C_{2}D_{6}</th>
<th>x</th>
<th>IS</th>
<th>G (种类)</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>0.1</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>0.5</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>51</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>53</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>54</td>
<td>0.01</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
实施例 5

1. 电解质溶液的配制:

将 A (0.0001 mol-500 mol)、[A-A]^{2+} (TFSI)_{2} (0.01 mol-1 mol)、溶剂 M (0.1 mol-2000 mol)、离子液体 C^{+}D^{-} (0-2000 mol)、添加剂 G (0-500 mol) 及无机盐 IS 混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列举于表 5 中。

2. 电池的组装及其性能测试:

将所制备的电解液与采用硬碳球材料制备的碳对电极、经染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表 5; 测试方法参照实施例 1 中所用的测试方法。
<table>
<thead>
<tr>
<th>序号</th>
<th>n</th>
<th>M</th>
<th>CD</th>
<th>C1D</th>
<th>Y</th>
<th>G (比例)</th>
<th>转换效率</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>0.01</td>
<td>50</td>
<td>3-乙基-1-甲基辛烷</td>
<td>1</td>
<td>0</td>
<td>吡啶</td>
<td>2.5</td>
</tr>
<tr>
<td>56</td>
<td>0.01</td>
<td>50</td>
<td>3-乙基-1-甲基辛烷</td>
<td>50</td>
<td>0</td>
<td>吡啶</td>
<td>5.4</td>
</tr>
<tr>
<td>57</td>
<td>0.1</td>
<td>750</td>
<td>3-乙基-1-甲基辛烷</td>
<td>200</td>
<td>0</td>
<td>吡啶</td>
<td>4.1</td>
</tr>
<tr>
<td>58</td>
<td>0.5</td>
<td>500</td>
<td>3-乙基-1-甲基辛烷</td>
<td>2000</td>
<td>0</td>
<td>吡啶</td>
<td>4.2</td>
</tr>
<tr>
<td>59</td>
<td>0.01</td>
<td>50</td>
<td>3-甲基-3-甲基丙基</td>
<td>50</td>
<td>0</td>
<td>吡啶</td>
<td>3.8</td>
</tr>
<tr>
<td>60</td>
<td>0.01</td>
<td>50</td>
<td>3-甲基-3-甲基丙基</td>
<td>50</td>
<td>0</td>
<td>吡啶</td>
<td>3.7</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>50</td>
<td>甲醇</td>
<td>100</td>
<td>0</td>
<td>吡啶</td>
<td>3.4</td>
</tr>
<tr>
<td>62</td>
<td>0.01</td>
<td>50</td>
<td>呋喃</td>
<td>50</td>
<td>0</td>
<td>吡啶</td>
<td>3.3</td>
</tr>
<tr>
<td>63</td>
<td>0.01</td>
<td>50</td>
<td>硝基</td>
<td>50</td>
<td>0</td>
<td>吡啶</td>
<td>3.0</td>
</tr>
<tr>
<td>64</td>
<td>0.01</td>
<td>50</td>
<td>硝基</td>
<td>2000</td>
<td>0</td>
<td>吡啶</td>
<td>4.0</td>
</tr>
</tbody>
</table>
实施例 6

1. 电解质溶液的配制:

将 A (0.0001 mol-500 mol)、[A-A]^{2+} (TFSI)_2 (0.01 mol-1 mol)、溶剂 M (0.1 mol-2000 mol)、无机盐 IS (0-500 mol)、添加剂 G (0-500 mol) 及离子液体 C^+D^−混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分别列于表 6 中。

2. 电池的组装及其性能测试:

将所制备的电解液与采用硬碳球材料制备的碳对电极、经染料敏化的光电极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表 6，测试方法参照实施例 1 中所用的测试方法。
<table>
<thead>
<tr>
<th>序号</th>
<th>添加剂</th>
<th>n</th>
<th>m</th>
<th>M</th>
<th>n-AlCl₃ (mol)</th>
<th>电极的转换效率 (%)</th>
<th>G (种类)</th>
<th>Z</th>
<th>Y</th>
<th>IS</th>
<th>x</th>
<th>CD</th>
<th>阴极液</th>
<th>无机盐</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>乙醇</td>
<td>0.01</td>
<td>50</td>
<td>3-乙基-1-甲基咔唑</td>
<td>呋喃氢氯酸</td>
<td>15</td>
<td>4-叔丁基咔唑</td>
<td>1</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>乙醇</td>
<td>0.01</td>
<td>50</td>
<td>3-乙基-1-甲基咔唑</td>
<td>呋喃氢氯酸</td>
<td>200</td>
<td>LITFSI</td>
<td>150</td>
<td>4-叔丁基咔唑</td>
<td>50</td>
<td>4-叔丁基咔唑</td>
<td>500</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>乙醇</td>
<td>0.5</td>
<td>100</td>
<td>3-乙基-1-甲基咔唑</td>
<td>呋喃氢氯酸</td>
<td>2000</td>
<td>LITFSI</td>
<td>500</td>
<td>4-叔丁基咔唑</td>
<td>50</td>
<td>KPF₆</td>
<td>50</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>乙醇</td>
<td>0.1</td>
<td>500</td>
<td>3-乙基-1-甲基咔唑</td>
<td>呋喃氢氯酸</td>
<td>2000</td>
<td>LITFSI</td>
<td>500</td>
<td>4-叔丁基咔唑</td>
<td>50</td>
<td>KPF₆</td>
<td>50</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>乙醇</td>
<td>0.01</td>
<td>50</td>
<td>2-乙基-3-甲基咔唑</td>
<td>呋喃氢氯酸</td>
<td>50</td>
<td>NaClO₄</td>
<td>50</td>
<td>4-甲基咔唑</td>
<td>50</td>
<td>LITFSI</td>
<td>50</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>乙醇</td>
<td>0.05</td>
<td>50</td>
<td>2-乙基-3-甲基咔唑</td>
<td>呋喃氢氯酸</td>
<td>50</td>
<td>NaClO₄</td>
<td>50</td>
<td>4-甲基咔唑</td>
<td>50</td>
<td>LITFSI</td>
<td>50</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>乙醇</td>
<td>0.01</td>
<td>50</td>
<td>2-乙基-3-甲基咔唑</td>
<td>呋喃氢氯酸</td>
<td>50</td>
<td>NaClO₄</td>
<td>50</td>
<td>4-甲基咔唑</td>
<td>50</td>
<td>LITFSI</td>
<td>50</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>乙醇</td>
<td>0.01</td>
<td>50</td>
<td>2-乙基-3-甲基咔唑</td>
<td>呋喃氢氯酸</td>
<td>1000</td>
<td>LITFSI</td>
<td>500</td>
<td>4-叔丁基咔唑</td>
<td>50</td>
<td>LITFSI</td>
<td>500</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>
实施例7

1. 电解质溶液的配制:
将 A (0.0001 mol-500 mol)、[A-A]^{2+} (TFSI)_{2} (0.01 mol-1 mol)、溶剂 M (0.1 mol-2000 mol)、离子液体 C^{+}D^{-} (0-2000 mol)、无机盐 IS (0-500 mol) 及添加剂 G 混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列举于表 7 中。

2. 电池的组装及其性能测试:
将所制备的电解液与采用硬碳球材料制备的碳对电极、经染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表 7，测试方法参照实施例 1 中所用的测试方法。
<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A]^{2+}B_{2}^{-} (mol)</th>
<th>n</th>
<th>M</th>
<th>m</th>
<th>C{D^-}</th>
<th>x</th>
<th>IS</th>
<th>y</th>
<th>G（种类）</th>
<th>z</th>
<th>电池的转换效率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>0</td>
<td>LiClO_{4}</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>76</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>10</td>
<td>LiClO_{4}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
</tr>
<tr>
<td>77</td>
<td>0.1</td>
<td>0.01</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>10</td>
<td>LiClO_{4}</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>78</td>
<td>0.05</td>
<td>50</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>50</td>
<td>LiClO_{4}</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>5.4</td>
</tr>
<tr>
<td>79</td>
<td>0.5</td>
<td>100</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>200</td>
<td>LiTFSI</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>3.8</td>
</tr>
<tr>
<td>80</td>
<td>0.01</td>
<td>500</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>2000</td>
<td>LiTFSI</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>4.1</td>
</tr>
<tr>
<td>81</td>
<td>0.01</td>
<td>50</td>
<td>3-甲氧基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>50</td>
<td>NaClO_{4}</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>4.2</td>
</tr>
<tr>
<td>82</td>
<td>1</td>
<td>50</td>
<td>3-羟基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>50</td>
<td>KTFSI</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>3.8</td>
</tr>
<tr>
<td>83</td>
<td>0.01</td>
<td>50</td>
<td>乙醇</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>50</td>
<td>LiClO_{4}</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>3.7</td>
</tr>
<tr>
<td>84</td>
<td>0.01</td>
<td>50</td>
<td>甲醇</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>50</td>
<td>LiTFSI</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>3.4</td>
</tr>
<tr>
<td>85</td>
<td>0.01</td>
<td>50</td>
<td>四氯呋喃</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>50</td>
<td>LiTFSI</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>86</td>
<td>0.01</td>
<td>50</td>
<td>乙腈/3-甲氧基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑</td>
<td>2000</td>
<td>NaClO_{4}</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
</tbody>
</table>
实施例 8

1. 配制电解质溶液:
   将 A (0.0001 mol-500 mol)，[A-A]²⁺ (TFSI)₂ (0.01 mol-1 mol)，溶剂 M (0.1 mol-2000 mol)，离子液体 C⁺D⁻ (0-2000 mol)，无机盐 IS (0-500 mol)，添加剂 G (0-500 mol) 混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列举于表 8 中。

2. 电池的组装及其性能测试:
   将所制备的电解液与采用硬碳球材料制备的碳对电极、经染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表 8，测试方法参照实施例 1 中所用的测试方法。
<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A]^{2+}B_{2} (mol)</th>
<th>n</th>
<th>M</th>
<th>m</th>
<th>离子液体</th>
<th>无机盐</th>
<th>添加剂</th>
<th>电池的转换效率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>1</td>
<td>LiClO_{4}</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>0.05</td>
<td>50</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>50</td>
<td>LiClO_{4}</td>
<td>50</td>
</tr>
<tr>
<td>89</td>
<td>0.1</td>
<td>100</td>
<td>乙腈</td>
<td>50</td>
<td>3-丙基-1-甲基咪唑六氟化磷</td>
<td>50</td>
<td>LiTFSI</td>
<td>150</td>
</tr>
<tr>
<td>90</td>
<td>0.01</td>
<td>500</td>
<td>乙腈</td>
<td>2000</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>2000</td>
<td>LiTFSI</td>
<td>500</td>
</tr>
<tr>
<td>91</td>
<td>0.01</td>
<td>50</td>
<td>3-甲氧基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>50</td>
<td>NaClO_{4}</td>
<td>50</td>
</tr>
<tr>
<td>92</td>
<td>0.01</td>
<td>50</td>
<td>碳酸二甲酯</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑四氟硼</td>
<td>50</td>
<td>KTFI</td>
<td>50</td>
</tr>
<tr>
<td>93</td>
<td>0.5</td>
<td>50</td>
<td>乙醇</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑溴盐</td>
<td>50</td>
<td>LiClO_{4}</td>
<td>50</td>
</tr>
<tr>
<td>94</td>
<td>0.01</td>
<td>50</td>
<td>甲醇</td>
<td>100</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>LiTFSI</td>
<td>50</td>
</tr>
<tr>
<td>95</td>
<td>0.01</td>
<td>50</td>
<td>四氯呋喃</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>LiTFSI</td>
<td>50</td>
</tr>
<tr>
<td>96</td>
<td>1</td>
<td>500</td>
<td>乙腈/3-甲氧基丙腈</td>
<td>2000</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>2000</td>
<td>NaClO_{4}</td>
<td>500</td>
</tr>
</tbody>
</table>
实施例 9

1. 电解质溶液的配制:

将 A (0.0001 mol-500 mol)、[A-A]^{2+} (TFSI)_2 (0.01 mol-1 mol)、溶剂 M (0.1 mol-2000 mol) 及其它组分混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列举于表 9 中。

2. 电池的组装及其性能测试:

将所制备的电解液与采用硬碳球与导电碳黑的复合材料制备的碳对电极、染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表 9。测试方法参照实施例 1 中所用的测试方法。
表 9 电解液溶液的配制及组装电池的转换效率

<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A](^{2})B(_2) (mol)</th>
<th>n</th>
<th>M</th>
<th>m</th>
<th>C(^{+})D(^{-})</th>
<th>x</th>
<th>L</th>
<th>S</th>
<th>y</th>
<th>G（种类）</th>
<th>z</th>
<th>电池的转换效率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.4</td>
</tr>
<tr>
<td>98</td>
<td>0.01</td>
<td>50</td>
<td>乙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.6</td>
</tr>
<tr>
<td>99</td>
<td>0.1</td>
<td>100</td>
<td>乙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>500</td>
<td>乙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.64</td>
</tr>
<tr>
<td>101</td>
<td>0.01</td>
<td>50</td>
<td>3-甲氧基丙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.6</td>
</tr>
<tr>
<td>102</td>
<td>0.01</td>
<td>50</td>
<td>碳酸二甲酯</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>103</td>
<td>0.01</td>
<td>50</td>
<td>乙醇</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.2</td>
</tr>
<tr>
<td>104</td>
<td>0.01</td>
<td>50</td>
<td>甲醇</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.1</td>
</tr>
<tr>
<td>105</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.9</td>
</tr>
<tr>
<td>106</td>
<td>0.1</td>
<td>50</td>
<td>乙腈/3-甲氧基丙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>107</td>
<td>0.5</td>
<td>50</td>
<td>乙腈/3-甲氧基丙腈（1:2）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.8</td>
</tr>
<tr>
<td>108</td>
<td>0.01</td>
<td>50</td>
<td>乙腈/碳酸二甲酯（2:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.2</td>
</tr>
<tr>
<td>109</td>
<td>0.01</td>
<td>50</td>
<td>乙腈/乙醇（1:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>110</td>
<td>0.01</td>
<td>50</td>
<td>碳酸二甲酯/乙醇（2:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
</tr>
<tr>
<td>111</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃/碳酸二甲酯</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.98</td>
</tr>
<tr>
<td>112</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃/3-甲氧基丙腈（1:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.52</td>
</tr>
<tr>
<td>113</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃/乙酸乙酯（2:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.41</td>
</tr>
<tr>
<td>114</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃/甲醇（1:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.9</td>
</tr>
<tr>
<td>115</td>
<td>0.01</td>
<td>50</td>
<td>甲醇/乙醇（1:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.64</td>
</tr>
<tr>
<td>116</td>
<td>0.01</td>
<td>50</td>
<td>乙醇/乙腈/四氢呋喃（1:1:1）</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.79</td>
</tr>
<tr>
<td>117</td>
<td>0.1</td>
<td>1</td>
<td>乙腈</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.68</td>
</tr>
<tr>
<td>118</td>
<td>0.5</td>
<td>10</td>
<td>乙腈</td>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.4</td>
</tr>
<tr>
<td>119</td>
<td>1</td>
<td>4</td>
<td>乙腈</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.05</td>
</tr>
<tr>
<td>120</td>
<td>5</td>
<td>1</td>
<td>乙腈</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.87</td>
</tr>
</tbody>
</table>
实施例 10

1. 电解质溶液的配制：

将 A (0.0001 mol-500 mol)、[A-A]^{2+} (TFSI)_{2} (0.01 mol-1 mol)、溶剂 M (0.1 mol-2000 mol)、离子液体 C^{+}D^{-} (0-2000 mol) 及其它组分混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列举于表 10 中。

2. 电池的组装及其性能测试：

将所制备的电解液与采用硬碳球与导电碳黑复合材料制备的碳对电极、染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表 10，测试方法参照实施例 1 中所用的测试方法。
### 表 10 电解质溶液的配制及组装电池的转换效率

<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A]'nB2 (mol)</th>
<th>n</th>
<th>M</th>
<th>m</th>
<th>C'D</th>
<th>x</th>
<th>IS</th>
<th>y</th>
<th>G（种类）</th>
<th>z</th>
<th>电池的转换效率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>10</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>122</td>
<td>0.01</td>
<td>50</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.31</td>
</tr>
<tr>
<td>123</td>
<td>0.1</td>
<td>100</td>
<td>乙腈</td>
<td>750</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.49</td>
</tr>
<tr>
<td>124</td>
<td>0.5</td>
<td>500</td>
<td>乙腈</td>
<td>2000</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.88</td>
</tr>
<tr>
<td>125</td>
<td>0.01</td>
<td>50</td>
<td>3-甲氧基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.91</td>
</tr>
<tr>
<td>126</td>
<td>0.01</td>
<td>50</td>
<td>碳酸二甲酯</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑四氟化锡</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.34</td>
</tr>
<tr>
<td>127</td>
<td>1</td>
<td>50</td>
<td>乙醇</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑溴化盐</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>128</td>
<td>0.01</td>
<td>50</td>
<td>甲醇</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.96</td>
</tr>
<tr>
<td>129</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.71</td>
</tr>
<tr>
<td>130</td>
<td>0.01</td>
<td>50</td>
<td>乙腈/3-甲氧基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.1</td>
</tr>
</tbody>
</table>
实施例 11

1. 电解质溶液的配制:

将 A (0.0001 mol-500 mol)、[A-A]^{2+} (TFSI)_2 (0.01 mol-1 mol)、溶剂 M (0.1 mol-2000 mol)、无机盐 IS (0-500 mol) 及其它组分混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列举于表 11 中。

2. 电池的组装及其性能测试:

将所制备的电解液与采用硬碳球与导电碳黑复合材料制备的碳对电极、染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表 11，测试方法参照实施例 1 中所用的测试方法。
<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A]^{2+}B_2 (mol)</th>
<th>n</th>
<th>M</th>
<th>m</th>
<th>C'D</th>
<th>x</th>
<th>IS</th>
<th>y</th>
<th>G（种类）</th>
<th>z</th>
<th>电池的转换效率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>LiClO_4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2.9</td>
</tr>
<tr>
<td>132</td>
<td>0.01</td>
<td>50</td>
<td>乙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>LiClO_4</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>5.31</td>
</tr>
<tr>
<td>133</td>
<td>0.1</td>
<td>100</td>
<td>乙腈</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>LiTFSI</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>3.74</td>
</tr>
<tr>
<td>134</td>
<td>0.5</td>
<td>500</td>
<td>碳酸二甲酯</td>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>LiTFSI</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>3.45</td>
</tr>
<tr>
<td>135</td>
<td>0.01</td>
<td>50</td>
<td>3-甲氧基丙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>NaClO_4</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>4.13</td>
</tr>
<tr>
<td>136</td>
<td>0.01</td>
<td>50</td>
<td>3-羟基丙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>KTFSI</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>4.4</td>
</tr>
<tr>
<td>137</td>
<td>1</td>
<td>50</td>
<td>乙醇</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>LiClO_4</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>4.8</td>
</tr>
<tr>
<td>138</td>
<td>0.01</td>
<td>50</td>
<td>甲醇</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>LiTFSI</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>5.08</td>
</tr>
<tr>
<td>139</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>LiTFSI</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>4.7</td>
</tr>
<tr>
<td>140</td>
<td>0.01</td>
<td>50</td>
<td>乙腈/3-甲氧基丙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>NaClO_4</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>
实施例12

1. 电解质溶液的配制:

将 A (0.0001 mol-500 mol)、[A-A]^{2+} (0.01 mol-1 mol)、溶剂 M (0.1 mol-2000 mol)、添加剂 G (0-500 mol) 及其它组分混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列举于表12中。

2. 电池的组装及其性能测试:

将所制备的电解液与采用硬碳球与导电碳黑复合材料制备的碳对电极、经染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表12，测试方法参照实施例1中所用的测试方法。
表 12 电解质溶液的制备及装瓶电池的转换效率

<table>
<thead>
<tr>
<th>序号</th>
<th>[A-][B2]_n (mol)</th>
<th>m</th>
<th>TCD</th>
<th>x IS</th>
<th>y</th>
<th>G (转换率)</th>
<th>Y</th>
<th>Z</th>
<th>电位的转换效率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td>0.01</td>
<td>0.5</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.31</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>0.01</td>
<td>5.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>4-叔丁基吡啶</td>
<td>15</td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>0.01</td>
<td>100</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>4-叔丁基吡啶</td>
<td>50</td>
<td>4.45</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>0.1</td>
<td>200</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>4-叔丁基吡啶</td>
<td>50</td>
<td>4.41</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>0.5</td>
<td>500</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>4-叔丁基吡啶</td>
<td>50</td>
<td>4.32</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>0.01</td>
<td>150</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>4-甲基吡啶</td>
<td>50</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>1</td>
<td>50</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>4-甲基吡啶</td>
<td>50</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>0.01</td>
<td>50</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>4-甲基吡啶</td>
<td>50</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>0.01</td>
<td>50</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>4-乙基-3-甲基苯胺</td>
<td>50</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>50</td>
<td>50</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>4-乙基-3-甲基苯胺</td>
<td>50</td>
<td>5.1</td>
<td></td>
</tr>
</tbody>
</table>
实施例 13

1. 电解质溶液的配制:
   将 A (0.0001 mol-500 mol)、[A-A]^{2+} (TFSI)_{2} (0.01 mol-1 mol)、溶剂 M (0.1 mol-2000 mol)、离子液体 C^{+}D^{-} (0-2000 mol)、添加剂 G (0-500 mol) 及无机盐混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列于表 13 中。

2. 电池的组装及其性能测试:
   将所制备的电解液与采用硬碳球与导电碳黑复合材料制备的碳对电极、经染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表 13，测试方法参照实施例 1 中所用的测试方法。
<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A]$^{2+}$B$_2$ (mol)</th>
<th>n</th>
<th>M</th>
<th>m</th>
<th>C$^\prime$D$^\prime$</th>
<th>x</th>
<th>IS</th>
<th>y</th>
<th>G（种类）</th>
<th>z</th>
<th>电池的转换效率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>吡啶</td>
<td>1</td>
<td>2.9</td>
</tr>
<tr>
<td>152</td>
<td>0.01</td>
<td>50</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>4-叔丁基吡啶</td>
<td>15</td>
<td>5.7</td>
</tr>
<tr>
<td>153</td>
<td>0.1</td>
<td>100</td>
<td>乙腈</td>
<td>750</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>4-叔丁基吡啶</td>
<td>50</td>
<td>3.94</td>
</tr>
<tr>
<td>154</td>
<td>0.5</td>
<td>500</td>
<td>乙腈</td>
<td>2000</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>4-叔丁基吡啶</td>
<td>500</td>
<td>4.02</td>
</tr>
<tr>
<td>155</td>
<td>0.01</td>
<td>50</td>
<td>3-甲氧基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>4-叔丁基吡啶</td>
<td>50</td>
<td>4.29</td>
</tr>
<tr>
<td>156</td>
<td>0.01</td>
<td>50</td>
<td>碳酸二甲酯</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑四氟化硼</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>吡啶</td>
<td>50</td>
<td>4.11</td>
</tr>
<tr>
<td>157</td>
<td>1</td>
<td>50</td>
<td>乙醇</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑四氟化硼</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>4-甲基吡啶</td>
<td>50</td>
<td>3.8</td>
</tr>
<tr>
<td>158</td>
<td>0.01</td>
<td>50</td>
<td>甲醇</td>
<td>100</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>喹啉</td>
<td>50</td>
<td>3.34</td>
</tr>
<tr>
<td>159</td>
<td>0.01</td>
<td>50</td>
<td>四氢吡喃</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>异喹啉</td>
<td>50</td>
<td>3.5</td>
</tr>
<tr>
<td>160</td>
<td>0.01</td>
<td>50</td>
<td>乙腈/3-甲氧基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>4-叔丁基吡啶</td>
<td>500</td>
<td>3.1</td>
</tr>
</tbody>
</table>
实施例14

1. 电解质溶液的配制：

将 A（0.0001 mol-500 mol）、[A-A]^{2+}（TFSI）_{2}（0.01 mol-1 mol）、溶剂 M（0.1 mol-2000 mol）、无机盐 IS（0-500 mol）、添加剂 G（0-500 mol）及离子液体 C^{+}D^{-}混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列举于表14中。

2. 电池的组装及其性能测试：

将所制备的电解液与采用硬碳球与导电碳黑复合材料制备的碳对电极、经染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表14，测试方法参照实施例1中所用的测试方法。
<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A]^2B_2 (mol)</th>
<th>n</th>
<th>M</th>
<th>m</th>
<th>C^D^-</th>
<th>x</th>
<th>IS</th>
<th>y</th>
<th>G（种类）</th>
<th>z</th>
<th>电池的转换效率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>LiClO_4</td>
<td>1</td>
<td>吡啶</td>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td>162</td>
<td>0.01</td>
<td>50</td>
<td>乙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>LiClO_4</td>
<td>50</td>
<td>4-叔丁基吡啶</td>
<td>15</td>
<td>5.54</td>
</tr>
<tr>
<td>163</td>
<td>0.5</td>
<td>100</td>
<td>乙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>LiTFSI</td>
<td>150</td>
<td>4-叔丁基吡啶</td>
<td>50</td>
<td>3.98</td>
</tr>
<tr>
<td>164</td>
<td>0.1</td>
<td>500</td>
<td>乙腈</td>
<td>2000</td>
<td>0</td>
<td>0</td>
<td>LiTFSI</td>
<td>500</td>
<td>4-叔丁基吡啶</td>
<td>500</td>
<td>4.3</td>
</tr>
<tr>
<td>165</td>
<td>0.01</td>
<td>50</td>
<td>3-甲氧基丙腈</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>NaClO_4</td>
<td>50</td>
<td>4-叔丁基吡啶</td>
<td>50</td>
<td>4.3</td>
</tr>
<tr>
<td>166</td>
<td>0.05</td>
<td>50</td>
<td>碳酸二甲酯</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>KTFSI</td>
<td>50</td>
<td>吡啶</td>
<td>50</td>
<td>3.78</td>
</tr>
<tr>
<td>167</td>
<td>0.01</td>
<td>50</td>
<td>乙醇</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>LiClO_4</td>
<td>50</td>
<td>4-甲基吡啶</td>
<td>50</td>
<td>3.91</td>
</tr>
<tr>
<td>168</td>
<td>1</td>
<td>50</td>
<td>甲醇</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>LiTFSI</td>
<td>50</td>
<td>咪唑</td>
<td>50</td>
<td>3.6</td>
</tr>
<tr>
<td>169</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>LiTFSI</td>
<td>50</td>
<td>异唑啉</td>
<td>50</td>
<td>3.1</td>
</tr>
<tr>
<td>170</td>
<td>0.01</td>
<td>50</td>
<td>乙腈/3-甲氧基丙腈</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>NaClO_4</td>
<td>500</td>
<td>吡啶</td>
<td>1</td>
<td>2.8</td>
</tr>
</tbody>
</table>
实施例 15
1. 电解质溶液的配制：
将 A (0.0001 mol – 500 mol)、[A-A]^{2+} (TFSI)_{2} (0.01 mol – 1 mol)、溶剂 M (0.1 mol–2000 mol)、离子液体 C^{+} D^{-} (0–2000 mol)、无机盐 IS (0–500 mol) 及添加剂 G 混合，搅拌溶解，得到标题所述电解质溶液。所述各个组分列举于表 15 中。

2. 电池的组装及其性能测试：
将所制备的电解液与采用硬碳球与导电碳黑复合材料制备的碳对电极、染料敏化的光阳极一起组装成染料敏化太阳能电池，电池的光电化学性能测试结果见表 15，测试方法参照实施例 1 中所用的测试方法。
### 表 15 电解质溶液的配制及组装电池的转换效率

<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A]^{17}B_{2} (mol)</th>
<th>n</th>
<th>M</th>
<th>m</th>
<th>C^{17}D^{-}</th>
<th>x</th>
<th>IS</th>
<th>y</th>
<th>G（种类）</th>
<th>z</th>
<th>电池的转换效率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>171</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>0</td>
<td>LiClO_{4}</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2.4</td>
</tr>
<tr>
<td>172</td>
<td>0.01</td>
<td>0.01</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>10</td>
<td>LiClO_{4}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.38</td>
</tr>
<tr>
<td>173</td>
<td>0.1</td>
<td>0.01</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>10</td>
<td>LiClO_{4}</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3.8</td>
</tr>
<tr>
<td>174</td>
<td>0.05</td>
<td>50</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>50</td>
<td>LiClO_{4}</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>5.6</td>
</tr>
<tr>
<td>175</td>
<td>0.5</td>
<td>100</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>200</td>
<td>LiTFSI</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>3.92</td>
</tr>
<tr>
<td>176</td>
<td>0.01</td>
<td>500</td>
<td>乙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>2000</td>
<td>LiTFSI</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>4.01</td>
</tr>
<tr>
<td>177</td>
<td>0.01</td>
<td>50</td>
<td>3-甲氧基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>50</td>
<td>NaClO_{4}</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>4.3</td>
</tr>
<tr>
<td>178</td>
<td>1</td>
<td>50</td>
<td>3-辛基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑四氢化硼</td>
<td>50</td>
<td>KTFSI</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>3.6</td>
</tr>
<tr>
<td>179</td>
<td>0.01</td>
<td>50</td>
<td>乙醇</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟化磷</td>
<td>50</td>
<td>LiClO_{4}</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>3.8</td>
</tr>
<tr>
<td>180</td>
<td>0.01</td>
<td>50</td>
<td>甲醇</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>LiTFSI</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>3.34</td>
</tr>
<tr>
<td>181</td>
<td>0.01</td>
<td>50</td>
<td>四氢呋喃</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>LiTFSI</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>3.1</td>
</tr>
<tr>
<td>182</td>
<td>0.01</td>
<td>50</td>
<td>乙腈/3-甲氧基丙腈</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>2000</td>
<td>NaClO_{4}</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>3.21</td>
</tr>
</tbody>
</table>
实施例 16

1. 电解质溶液的配制：

将 A (0.0001 mol-500 mol), [A-A]\(^{2+}\) (TFSI)\(_{2}\) (0.01 mol-1 mol),
溶剂 M (0.1 mol-2000 mol), 离子液体 C\(^{+}\)D\(^{-}\) (0-2000 mol), 无机盐
IS (0-500 mol), 添加剂 G (0-500 mol) 混合，搅拌溶解，得到标题所述电解质溶液。各个组分列举于表 16 中。

2. 电池的组装及其性能测试：

将所制备的电解液与采用硬碳球与导电碳黑复合材料制备的
碳对电极、经染料敏化的光阳极一起组装成染料敏化太阳能电池，
电池的光电化学性能测试结果见表 16。测试方法参照实施例 1 中
所用的测试方法。
表 16 电解质溶液的配制及组装电池的转换效率

<table>
<thead>
<tr>
<th>序号</th>
<th>[A-A]^{2+}B_{2} (mol)</th>
<th>n</th>
<th>M</th>
<th>m</th>
<th>C'D^-</th>
<th>x</th>
<th>IS</th>
<th>y</th>
<th>G（种类）</th>
<th>z</th>
<th>电池的转换效率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>183</td>
<td>0.01</td>
<td>0.01</td>
<td>乙睛</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟磷酸</td>
<td>1</td>
<td>LiClO4</td>
<td>1</td>
<td>吡啶</td>
<td>1</td>
<td>2.3</td>
</tr>
<tr>
<td>184</td>
<td>0.05</td>
<td>50</td>
<td>乙睛</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟磷酸</td>
<td>50</td>
<td>LiClO4</td>
<td>50</td>
<td>4-叔丁基吡啶</td>
<td>15</td>
<td>3.32</td>
</tr>
<tr>
<td>185</td>
<td>0.1</td>
<td>100</td>
<td>乙睛</td>
<td>50</td>
<td>3-丙基-1-甲基咪唑六氟磷酸</td>
<td>200</td>
<td>LiTFSI</td>
<td>150</td>
<td>4-叔丁基吡啶</td>
<td>50</td>
<td>3.69</td>
</tr>
<tr>
<td>186</td>
<td>0.01</td>
<td>500</td>
<td>乙睛</td>
<td>2000</td>
<td>3-丙基-1-甲基咪唑六氟磷酸</td>
<td>2000</td>
<td>LiTFSI</td>
<td>500</td>
<td>4-叔丁基吡啶</td>
<td>500</td>
<td>5.94</td>
</tr>
<tr>
<td>187</td>
<td>0.01</td>
<td>50</td>
<td>3-甲氧基丙睛</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑六氟磷酸</td>
<td>50</td>
<td>NaClO4</td>
<td>50</td>
<td>4-叔丁基吡啶</td>
<td>50</td>
<td>4.5</td>
</tr>
<tr>
<td>188</td>
<td>0.01</td>
<td>50</td>
<td>碳酸二甲酯</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑四氟磷酸</td>
<td>50</td>
<td>KTFSI</td>
<td>50</td>
<td>吡啶</td>
<td>50</td>
<td>4.32</td>
</tr>
<tr>
<td>189</td>
<td>0.5</td>
<td>50</td>
<td>乙醚</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑溴盐</td>
<td>50</td>
<td>LiClO4</td>
<td>50</td>
<td>4-甲基吡啶</td>
<td>50</td>
<td>4.51</td>
</tr>
<tr>
<td>190</td>
<td>0.01</td>
<td>50</td>
<td>甲醇</td>
<td>100</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>LiTFSI</td>
<td>50</td>
<td>喹啉</td>
<td>50</td>
<td>4.0</td>
</tr>
<tr>
<td>191</td>
<td>0.01</td>
<td>50</td>
<td>四氯呋喃</td>
<td>50</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>50</td>
<td>LiTFSI</td>
<td>50</td>
<td>4-吡啶喹啉</td>
<td>50</td>
<td>3.37</td>
</tr>
<tr>
<td>192</td>
<td>1</td>
<td>500</td>
<td>乙睛/3-甲氧基丙睛</td>
<td>2000</td>
<td>3-乙基-1-甲基咪唑高氯酸盐</td>
<td>2000</td>
<td>NaClO4</td>
<td>500</td>
<td>4-叔丁基吡啶</td>
<td>500</td>
<td>5.12</td>
</tr>
</tbody>
</table>
根据实施例1-实施例16所测得的电池的转换效率可高达5.94%，而现有技术中采用的非氧化还原电解液组装电池的效率通常可达到2.0%。因此，利用含有本发明所述的氧化还原电对的电解质溶液组装的电池转换效率较高，且稳定性好，符合染料敏化太阳能电池的发展趋势，适合大规模应用。

性能测试

稳定性测试:

一方面，将铝片、铜片等活泼金属片浸泡在本发明所述的含非碘氧化还原电对电解质溶液中，两个月后，金属光泽依旧，没有任何腐蚀痕迹，初步说明此类电解液对金属的腐蚀性很低；另一方面，将铝片、铜片等活泼金属浸泡在染料敏化太阳能电池最经常使用的含I₃⁻/I⁻电对的电解液中，则在几秒钟以内发生反应，即表面金属光泽消失，有明显腐蚀斑点。可以得知，本发明的电解质稳定性较高。

已经参照具体实施方式详细地描述了本发明，对本领域技术人员而言，应当理解的是，上述具体实施方式不应该被理解为限定本发明的范围。因此，在不脱离本发明精神和范围的情况下可以对本发明的实施方案作出各种改变和改进。