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or replace conventional systems, devices, and methods for parallel neural processing that (a) greatly reduce neural processing time
necessary to process more complex problem sets; (b) implement neuroplasticity necessary for self-learning; and (c) introduce the
concept and application of implicit memory, in addition to explicit memory, necessary to imbue an element of intuition. With these
properties, implementations of the disclosed invention make it possible to emulate human consciousness or awareness.
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ABSTRACT

Systems and/or devices for efficient and intuitive methods for implementing
artificial neural networks specifically designed for parallel Al processing are provided herein.
In various implementations, the disclosed systems, devices, and methods complement or
replace conventional systems, devices, and methods for parallel neural processing that (a)
greatly reduce neural processing time necessary to process more complex problem sets; (b)
implement neuroplasticity necessary for self-learning; and (c) introduce the concept and
application of implicit memory, in addition to explicit memory, necessary to imbue an
element of intuition. With these properties, implementations of the disclosed invention make

it possible to emulate human consciousness or awareness.
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Parallel Neural Processor for Artificial Intelligence

TECHNICAL FIELD

[0002] The disclosed implementations relate generally to Artificial Intelligence and
more specifically to a method, system, and device for implerhenting a parallel neural

processor for Artificial Intelligence.

BACKGROUND

[0003] Artificial Intelligence (AlI) applications have been traditionally designed for
and as software-driven systems. In such systems, processing elements (acting as “neurons” in
an Al “brain”) are programmed to occupy fixed states in hardware memory. The neurons are
interconnected by representative values of coupling variables to form an artificial neural
network. The states of these neurons are iteratively evaluated using activation functions that
process weights, biases, and input data to produce binary output values (i.e. a 0 or a 1). The
resultant state of a neuron is stored as an output state of the neuron in memory, and
subsequently used as an input for a connected neuron in the artificial neural network. Ata
high level, input and output states of several neurons are evaluated in an iterative fashion.
Some systems use multi-threading and multi-core processors for simultaneously evaluating
several blocks of neurons, but the system as a whole remains “serial” in nature. Larger neural
networks are capable of solving more complex and a greater variety of problems than smaller
networks. But larger neufal networks require microprocessors with larger core counts and/or
larger number of threads. Al applications are thus limited by the speed of these conventional

Pprocessors.

[0004] To compensate for the limits of traditional hardware, Al systems are designed
cleverly with various shortcuts and boundary conditions, and tuned for particular problem
sets. Since the boundary conditions are predefined, these systems are limited to highly
specific applications. For example, an Al system that is trained to recognize human faces may

not be effective in recognizing a giraffe’s face.

- [0005] Conventional systems incur large overhead, fail to achieve rapid response to
complex problem sets in a cost-effective manner, and are far from being able to achieve

artificial consciousness.
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SUMMARY

[0006] Accordingly, there is a need for systems and/or devices with more efficient
and intuitive methods for implementing artificial neural networks specifically designed for
parallel Al processing. In some implementations, the disclosed systems, devices, and
methods complement or replace conventional systems, devices, and methods for parallel
neural processing that (a) greatly reduce neural processing time necessary to process more
complex problem sets; (b) implement neuroplasticity necessary for self-learning; and (c)
introduce the concept and application of implicit memory, in addition to explicit memory,
necessary to imbue an element of intuition. With these properties, some implementations of

the disclosed invention make it possible to emulate human consciousness or awareness.

[0007] (A1) In one aspect, some implementations include a first sub-classifier
configured to process an input signal. The first sub-classifier comprises a weighted input
module that is configured to apply a weighting to the input signal to generate a weighted
input signal. The first sub-classifier also comprises a comparison module coupled to the
weighted input module. The comparison module is configured to: receive the weighted input
signal at a comparison module input line; and generate a first output signal at a comparison
module output line. The comparison module is further configured to: determine whether the
weighted input signal has a value that is between a lower window range value and an upper
window range value. In response to a determination that the weighted input signal has a value
between the lower window range value and the upper window range value, the comparison
module is configured to: set the first output signal to have a first value at the comparison
module output line. In response to a determination that the weighted input signal has a value
that is not between the lower window range value and the upper window range value, the
comparison module is configured to: set the first output signal to have a second value

different from the first value at the comparison module output line.

[0008] (A2) In some implementations of the first sub-classifier of Al, the comparison
module includes at least one operational amplifier configured to receive the weighted input

signal and set the first output signal.

[0009] (A3) In some implementations of the first sub-classifier of Al, the weighting
applied to the input signal to generate the weighted input signal is based on a second output

signal from a second sub-classifier.
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[0010] (A4) In some implementations of the first sub-classifier of A1, the first output

signal from the first sub-classifier is transmitted to a second sub-classifier.

[0011] (AS) In some implementations of the first sub-classifier of A4, the weighted
input module is configured to receive a control group signal and apply the weighting to the

input signal to generate the weighted input signal based on the control group signal.

[0012] (A6) In some implementations of the first sub-classifier of AS, the weighted
input module includes a variable resistor configured to receive the control group signal and

adjust the weighted input signal based on the control group signal.

[0013] (A7) In some implementations of the first sub-classifier of A1, the first sub-
classifier further comprises a memory module configured to receive and store the first output
signal from the comparison module and provide the first output signal to a second sub-

classifier.

[0014] (A8) In another aspect, some implementations include a classifier system
configured to process one or more input signals during one or more clock cycles. The
classifier system comprises a plurality of sub-classifiers. Each of the plurality of sub-
classifiers includes a weighted input module configured to apply a weighting to a respective
input signal for a respective clock cycle to generate a weighted input signal. Each of the
plurality of sub-classifiers also includes a comparison module coupled to the weighted input
module. The comparison module is configured to receive the weighted input signal at a
comparison module input line, and generate an output signal at a comparison module output
line. The comparison module is further configured to determine whether the weighted input
signal has a value that is between a lower window range value and an upper window range
value. The comparison module is further configured to, in response to a determination that
the weighted input signal has a value between the lower window range value and the upper
window range value, set a first output signal to have a value greater than a predetermined
output threshold at the comparison module output line. The comparison module is further
configured to, in response to a determination that the weighted input signal has a value that is
not between the lower window range value and the upper window range value, set the first
output signal to have a value less than the predetermined output threshold at the comparison
module output line. The classifier system also comprises a master classifier coupled to the
plurality of sub-classifiers. The master classifier is configured to receive each of the

respective output signals from each of the plurality of sub-classifiers during the one or more
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clock cycles, and determine a classifier response based on the subset of the plurality of sub-
classifiers that produce a respective output signal having a value greater than the

predetermined output threshold.

[0015] (A9) In some implementations of the classifier system of (A8), each of the
sub-classifiers has a respective window range between the lower window range value and the
upper window range value that does not overlap with any other respective window range of

any other sub-classifier.

[0016] (A10) In some implementations of the classifier system of (A8), the classifier
system further comprises a multiplexer coupled to the plurality of sub-classifiers, the
multiplexer configured to provide one of the input signals to the plurality of sub-classifiers

during a single clock cycle.

[0017] (A11) In another aspect, some implementations include a method to process an
input signal using a first sub-classifier. The first sub-classifier includes a weighted input
module and a comparison module coupled to the weighted input module. The method
includes applying, at the weighted input module, a weighting to the input signal to generate a
weighted input signal. The method further includes receiving, at the comparison module, the
weighted input signal at a comparison module input line. The method further includes
generating, at the comparison module, a first output signal at a comparison module output
line by an electrical process. The electrical process can be nationalized as a sequence of steps
that include determining, at the comparison module, whether the weighted input signal has a
value that is between a lower window range value and an upper window range value. The
sequence of steps further includes in response to a determination that the weighted input
signal has a value between the lower window range value and the upper window range value,
setting, at the comparison module, the first output signal to have a first value at the
comparison module output line. The sequence of steps further includes in response to a
determination that the weighted input signal has a value that is not between the lower window
range value and the upper window range value, setting, at the comparison module, the first
output signal to have a second value different from the first value at the comparison module

output line.

10018} (A12) In some implementations of the method of (A11), the comparison

module includes at least one operational amplifier module, and the method further includes
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receiving, at the at least one operational amplifier module, the weighted input signal and

setting, at the at least one operational amplifier module, the first output signal.

[0019] (A13) In some implementations of the method of (A11), the method further
includes receiving, at the weighted input module, a second output signal from a second sub-
classifier.

[0020] (A14) In some implementations of the method of (A11), the method further
includes transmitting the first output signal from the first sub-classifier to a second sub-
classifier.

[0021] (A15) In some implementations of the method of (A14), the method further

includes receiving, at the weighted input module, a control group signal, and applying, at the
weighted input module, the weighting to the input signal to generate the weighted input

signal based on the control group signal.

[0022] (A16) In sofne implementations of the method of (A15), the weighted input
module includes a current flow or voltage controller (variable resistor module, resistor ladder,
resistor network, or a circuit to control current flow) and the method further includes
receiving, at the variable resistor module, the control group signal and adjust the weighted

input signal based on the control group signal.

[0023] (A17) In some implementations of the method of (A13), the first sub-classifier
includes a memory module coupled to the comparison module, and the method further
includes receiving and storing, at the memory module, the first output signal from the

comparison module and provide the first output signal to a second sub-classifier.

[0024] (A18) In yet another aspect, some implementations include a method to
process one or more input signals during one or more clock cycles using a classifier system.
The classifier system includes a plurality of sub-classifiers and a master classifier coupled to
the plurality of sub-classifiers, the plurality of sub-classifiers each including a weighted input
module and a comparison module. The method includes at each sub-classifier applying, at
the weighted input module, a weighting to a respective input signal for a respective clock
cycle to generate a weighted input signal; receiving, at the comparison module, the weighted
input signal at a comparison module input line; and generating, at the comparison module, an
output signal at a comparison module output line by an electrical process. The process can be

nationalized as a sequence of steps that include determining, at the comparison module,
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whether the weighted input signal has a value that is between a lower window range value
and an upper window range value. The sequence of steps further includes in response to a
determination that the weighted input signal has a value between the lower window range
value and the upper window range value, setting, at the comparison module, an output signal
to have a value greater than a predetermined output threshold at the comparison module
output line. The sequence of steps further includes in response to a determination that the
weighted input signal has a value that is not between the lower window range value and the

“upper window range value, setting, at the comparison module, the output signal to have a
value less than the predetermined output threshold at the comparison module output line.
The method further includes at the master classifier: receiving each of the output signals from
each of the plurality of sub-classifiers during the one or more clock cycles, and determining a
classifier response based on the subset of the plurality of sub-classifiers that produce a

respective output signal having a value greater than the predetermined output threshold.

[0025] (A19) In some implementations of the method of (A18), each of the sub-
classifiers has a respective window range between the lower window range value and the
upper window range value that does not overlap with any other respective window range of

any other sub-classifier.

[0026] (A20) In some implementations of the method of (A18), the classifier system
includes a multiplexer module coupled to the plurality of sub-classifiers, and the method
further includes providing, at the multiplexer module, one of the input signals to the plurality

of sub-classifiers during a single clock cycle.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] For a better understanding of the various described implementations, reference
should be made to the Description of Implementations below, in conjunction with the
following drawings in which like reference numerals refer to corresponding parts throughout

the figures.

[0028] Figures 1A and 1B are block diagrams illustrating example system
architectures with a parallel neural processing (PNP) Al processor, according to some

implementations.
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[0029] Figure 2A illustrates an analog window comparator, a component of the PNP
Al processor, according to some implementations; and Figure 2B illustrates a non-inverting

window comparator, according to some implementations.

[0030] Figure 3 illustrates a series of window comparator circuits in a neural network,

according to some implementations.

[0031] Figure 4 illustrates a series of window comparators in an interconnected neural

network with data flow control stages, according to some implementations.

[0032] Figure 5 illustrates the series of window comparators in Figure 4 with an
added control group (CG) to control neuroplasticity and behavior of the neural network,

according to some implementations.

[0033] Figure 6 illustrates the series of window comparators in Figure 5 with an
added implicit memory block addressable through the CG and the neural network, according

to some implementations.

[0034] Figure 7 is a block diagram illustrating a representative system 700 with a

parallel neural processor of Figures 1A or 1B, according to some implementations.

[0035] Figures 8A-8D illustrate a flowchart representation of a method of processing
input signals using a sub-classifier that includes a weighted input module and a comparison

module coupled to the weighted input module, according to some implementations.

[0036] Figures 9A-9E illustrate a flowchart representation of a method of processing
one or more input signals during one or more clock cycles using a classifier, the classifier
including a plurality of sub-classifiers and a master classifier coupled to the plurality of sub-
classifiers, the plurality of sub-classifiers each including a weighted input module and a

comparison module, according to some implementations.

DESCRIPTION OF IMPLEMENTATIONS

[0037] Reference will now be made in detail to implementations, examples of which
are illustrated in the accompanying drawings. In the following detailed description,
numerous specific details are set forth in order to provide a thorough understanding of the
various described implementations. However, it will be apparent to one of ordinary skill in
the art that the various described implementations may be practiced without these specific

details. In other instances, well-known methods, procedures, components, circuits, and
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networks have not been described in detail so as not to unnecessarily obscure aspects of the

implementations.

[0038] It will also be understood that, although the terms first, second, etc. are, in
some instances, used herein to describe various elements, these elements should not be
limited by these terms. These terms are only used to distinguish one element from another.
For example, a first electronic device could be termed a second electronic device, and,
similarly, a second electronic device could be termed a first electronic device, without
departing from the scope of the various described implementations. The first electronic
device and the second electronic device are both electronic devices, but they are not

necessarily the same electronic device.

[0039] The terminology used in the description of the various described
implementations herein is for the purpose of describing particular implementations only and
is not intended to be limiting. As used in the description of the various described
implementations and the appended claims, the singular forms “a”, “an” and “the” are
intended to include the plural forms as well, unless the context clearly indicates otherwise. It
will also be understood that the term “and/or” as used herein refers to and encompasses any
and all possible combinations of one or more of the associated listed items. It will be further

1%

understood that the terms “includes,” “including,

bR N4Y

comprises,” and/or “comprising,” when
used in this specification, specify the presence of stated features, integers, steps, operations,
elements, and/or components, but do not preclude the presence or addition of one or more

other features, integers, steps, operations, elements, components, and/or groups thereof.

[0040] As used herein, the term “if” is, optionally, construed to mean “when” or
“upon” or “in response to determining” or “in response to detecting” or “in accordance with a
determination that,” depending on the context. Similarly, the phrase “if it is determined” or
“if [a stated condition or event] is detected” is, optionally, construed to mean “upon
determining” or “in response to determining” or “upon detecting [the stated condition or
event]” or “in response to detecting [the stated condition or event]” or “in accordance with a

determination that [a stated condition or event] is detected,” depending on the context.

[0041] Figures 1A and 1B are block diagrams illustrating example system
architectures with a parallel neural processing (PNP) Al processor, according to some
implementations. Figure 1A is a block diagram illustrating an example system architecture

100 that integrates a PNP Al processor 102 with an evaluation system 116 that processes raw

8
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data, transmits Al tasks (e.g., image recognition, natural language processing) to the PNP Al
processor 102, and evaluates the output of the PNP Al processor 102, according to some
implementations. Evaluation system 116transmitsAl tasks to the PNP Al processor 102
permitting the system to react quickly to external stimuli 112 with meaningful responses 114.
In this configuration, the PNP Al processor 102 serves as a co-processor, executing critical
tasks received from evaluation system 116. In some implementations, the evaluation system
116 comprises conventional microprocessors, software, embedded, or mobile applications.
Figure 1B is a block diagram illustrating an example system architecture 120 in which the
PNP Al processor 102 operates independently (without the assistance of evaluation system
116 of Figure 1A) in response to the input stimulus 112, processes the input stimulus 112 and
generates responses 114. In this configuration, as the dashed lines indicate, the PNP Al
processor 102 can also operate in conjunction with a conventional system comprising of

existing microprocessors, software, embedded, or mobile applications.

[0042] When the PNP Al processor 102 acts as a co-processor, as shown in Figure
1A, the evaluation system 116 (sometimes herein called the processor sub-system) is
responsible for pre-processing raw data input (sometimes herein called stimulus) from
external input devices and sending the raw data input to the PNP Al processor 102, according
to some implementations. For example, the processor sub-system converts input data into
representative voltage levels input to the PNP Al processor. In various implementations,
such stimulus include data entered by the user (e.g., a keyboard or a mouse), an image or
video input from an external device (e.g., a camera), an audio input, sensory data from
sensors and/or motors. This list is exemplary and not intended to be exhaustive. As an
illustration, when a movable robotic arm controlled by the system architecture 100 is stuck
due to an external physical constraint (e.g., blocked by a wall), one or more sensors in the
robotic arm can generate feedback to the system that affects the control group (CG) module

108 (described below in detail with reference to Figure 6).

[0043] Evaluation system 116 shown in Figure 1A, implements an interactive
intelligence system in combination with a PNP Al Processor, according to some
implementations. In some implementations, the evaluation system evaluates action options
received from the PNP Al processor 102 (sometimes herein referred to as a classifier, or
classifier system) in response to a stimulus, against a stored set of experiences, according to
some implementations. In some implementations, the evaluation system 116 classifies the

probability of success of the action options based on the stored set of experiences and returns
9
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the highest ranking action (i.e., the action with the highest probability of success).
Subsequently, in some implementations, the evaluation system 116 generates an action
response (e.g., starts a motor that moves a robotic arm) corresponding to the highest ranking
(stimulated, implicit, reflex) action. In some implementations, the evaluation system 116
compares experience data stored in EMEM of memory 110 with data stored in IMEM of
memory 110, and generates an action if there is a match between the two data (evaluated,
explicit, cognitive). In some such implementations, if the explicit and the implicit responses
mismatch, the evaluation system adjusts (neuroplasticity) one or more factors or variables in
the CG module 108 (described below with reference to Figure 5). As explained below in
further detail, the factors or variable from the CG module 108 impact the number of neurons
utilized during a processing clock cycle as well as the learning rate of the neurons. Further, in
some implementations, if the stimulus led to a successful action, information indicating the
successful action is fed back to the PNP Al Processor (e.g., via a feedback signal to the
memory block 110 and/or the CG module 108) for further use in subsequent processing steps.
In some implementations, the action taken corresponding to the stimulus leads to further

stimuli.

[0044] Attention is now directed to the PNP Al processor 102. As shown in Figures
1A and 1B, in some implementations, the PNP Al processor 102 comprises of one or more
layers of neural networks (e.g., an information layer or primary layer of neural network 104
that extracts information from data input or stimulus, and/or a concept layer or secondary
layer of neural network 106 that extracts concepts from the information output of the primary
layer 104), a control group (CG) module 108, and one or more memory blocks 110 (e.g.,
implicit memory block IMEM, an explicit memory block EMEM).In some implementations,

the CG module 108 and/or the memory blocks 110 are optional components.

[0045] Each layer 104, 106 may comprise a plufality of interconnected neurons (also
referred to herein as sub-classifiers). In some implementations, the neurons are connected
based on a topology that is configurable. The neurons (explained in detail below with 4
reference to Figures 2-6) are the processing elements or engines of a neural network. Similar
to how software neurons operate in an artificial neural network, hardware neurons in the
parallel neural processor 102 also process and classify data. However, unlike software
neurons, the hardware neurons operate in parallel, sometimes in sets of millions, billions, or
even trillions at a time. In some implementations, the network of neurons in a layer is

organized in stages, with each set of neurons in a stage operating in parallel during a given
10
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clock cycle. For example, a first stage of neurons operates on an input, followed by one or
more stages of neurons (sometimes called hidden layers) processing the output of the first
stage of neurons in succession, and finally feeding into an output stage of neurons. Each
stage takes one clock cycle to complete with all the neurons in a stage operating on the same
input, according to some implementations. Thus, these implementations achieve faster
processing rates as compared to fully software-implemented systems. For the input stage,
hardware (e.g., a multiplexer) that is either external or internal to the neural processor
supplies or distributes the raw data across the neural network, according to some
implementations. In some implementations, evaluation system 116 pre-processes the raw
data (e.g., raw data 112) and feeds the PNP Al preprocessor with processed input (e.g.,
predetermined voltage levels). Once a network of neuron is trained on a particular data set,
different groups of neurons activate for different sets of data, according to some
implementations. For example, one set of neurons (with a first winner neuron) activates in
response to receiving input data representative of an image of tennis ball, whereas another set
of neurons (with a second winner neuron) activates in response to receiving input data

representative of an image of a flower.

[0046] The control group(CG) module 108 is explained in detail in reference to
Figures 5 and 6 below, according to some implementations. The memory block 110 is
explained in reference to Figure 6 below. The various internal connections between the
modules of the PNP Al processor 102, and the external connections from the PNP Al
processor 102 are indicated by solid black lines in Figure 1A, according to some

implementations.

[0047] In some implementations, the input stimulus 112 is connected directly to one
or more neural networks in the parallel neural processor 102, without the need of an
evaluation system 116 to pre-process raw input data. In some implementations, the output of
the PNP Al processor 102 is directly connected to the response module 114 without an
intervening evaluation system 116. In some implementations, the stimulus receiving module
112 and/or the response module 114 are integrated within the PNP Al processor, i.e., the PNP
Al processor 102 can receive stimulus (e.g., some kind of interference) and/or generate

response (€.g., move a robotic arm) without external software/hardware.

[0048] The circuits described here and below enable parallel hardware implementation of

neural networks that employ millions, billions, or even trillions of neurons. Such massively

11
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parallel hardware implementations enable Al implementations that address complex problem

sets.

[0049] In some implementations, various sections of a neural network are organized in a
hierarchical manner to produce multi-dimensional layers of neurons that feed into each other in
stages. For example, a hierarchical neural network resembles how a network of neurons is
organized in the human eye. As another example, a neural network is organized in two layers,
with a first layer of neurons data (e.g., layer of neurons 104, Figures 1A and 1B) extracting
information from the input, and a second 1ayer of neurons data (e.g., layer of neurons 106,
Figures 1A and 1B) recognizing concepts based on the output of the first layer. In some such
implementations, with the ability to extract and retain high-level concepts out of low-level
information (e.g., raw data containing patterns), a neural network processes and generates
response to new stimuli (i.e., data not previously seen while training). For example, a neural
network using the circuits described above can recognize related high-level concepts, such as
“hearing is to ears as sight is to eyes (senses)” can be extracted in higher connected layers and

applied during new, unrelated and yet un-experienced, stimulus such as taste.

[0050] Figure 2A illustrates an analog window comparator (WC) 216, a component of
a sub-classifier, of the PNP Al processor 102 of Figures 1A-1B, according to some
implementations. In some implementations, unlike conventional neural networks that emulate
artificial neurons through the use of microprocessors, random access memory, operating
system/embedded system, and software, the system disclosed here is a hardware
implementation. A WC circuit (sometimes herein called a comparator) 216, such as the one
shown in Figure 2A, forms the basis of a neuron, according to some implementations. In
some implementations, WC circuits are constructed using a variety of basic electronic
components (e.g., junction transistors, FETs). In some implementations, WC circuits are
constructed using integrated circuits (e.g., Operational Amplifiers). As shown in Figure 2A,
a WC circuit outputs (Owc 214) a high bit (1) if the voltage applied to its input (Iwc 206) falls
between a Low Reference Voltage (Rr 208) and a High Reference Voltage (Ru 210), and
outputs (/Owc 212)a low bit (0) if the input (Iwc 206) falls outside the High and Low
Reference Voltages reference voltages, according to some implementations. In some
implementations, a single WC circuit forms an individual “hardware neuron” which “fires”
(or activates) if the input voltage is within a range, producing an all-or-none response similar

to the response of a virtual neuron achieved via software applications.

12
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[0051] Figure 2B illustrates a non-inverting WC 218, according to some
implementations. In some implementations, WC 218 performs substantially the same
functions as the WC circuit 216 in Figure 2A. In some implementations, WC 218 is formed

using two connected operational amplifiers (Op-Amp 202 and Op-Amp 204 of Figure 2A).

[0052] In some implementations, the WC circuits are configured to be inverting or
non-inverting with respect to the input condition. For the sake of simplicity, only the non-
inverting output (Owc 214) of the WC is shown in Figures 2A-2B. The examples discussed

herein should be considered as exemplars, rather than limitations.

[0053] Figure 3 illustrates a series of WC circuits (WCi, WC2, WCs, ..., WCn) in a
neural network (e.g., primary layer 104 or secondary layer 106 of Figures 1A-1B), according
to some implementations. In some implementations, a series of WCs are interconnected to
form a neural network similar to how software neurons form a software-based conventional
neural network. The WCs are interconnected based on a neural network topology, according
to some implementations. A neural network topology represents the way in which neurons
are connected to form a network. The neural network topology can also be seen as the
relationship between the neurons by means of their connections. The WCs may each operate

on the same input stimulus Iwc (318) to produce a corresponding output.

[0054] In some implementations, each WC has a Window Voltage Range (WVR)
where the WC will produce a first value if the input is within the WVR and produce a second
value if the input is outside of the WVR. In some implementations, the WVR is the
difference between the Low Reference Voltage and the High Reference Voltage. In some
implementations each WC has a unique WVR. For example, in Figure 3, the reference
voltages for comparator WCi (RL! 302and Ru! 304), comparator WC2 (R.? 306 and Ru? 308),
comparator WC3 (R13310 and Ry 312), and comparator WCN (RiN314and RuN 316) are each
set up such that the corresponding WVRs are all unique. In some implementations, the
WVRs are non-overlapping. In some implementations, the WVRs are overlapping such that
more than one WC responds to a given stimulus. For example, the output of more than one
WCs (e.g., Owc! 322, Owc? 324, Owc® 326, and Owc™ 328) could equal a high value (1) for a
given input stimulus Iwc(318). The reference voltage inputs Rr and Ry of each WC are
loaded with a voltage such that Ru> Ry thereby creating a WVR for each WC. Each WC is
initialized with a corresponding WVR at start-up, according to some implefnentations. In

some implementations, each WC is initialized with a random WVR. In some other
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implementations, each WC is initialized with a WVR such that the WVRs form a uniform

gradient over the entire neural network.

[0055] Figure 4 illustrates a series of WCs in an interconnected neural network (e.g.,
primary layer 104 or secondary layer 106 of Figures 1A-1B) with data flow control stages,
according to some implementations. Primary stage (S1) is the data input stage or where the
stimulus (e.g., input Iwc 402) is input to the system. In some implementations, a Weight
Voltage (WV) circuit is used to control input weights to the WC by introducing voltage in
“addition to the input data voltage Iwc. The Weight Voltages for different WCs (e.g., WV 404,
WYV 406, and WV 408) can be set to same or different voltage values in various
implementations. In some implementations, a circuitry (which may be referred to herein as a
weighted input module) is used to combine input stimulus with a weight voltage, and to
supply net weighted input to a respective WC. For example, in Figure 4, circuitry 440
combines a weight voltage from WC 404 with input stimulus Iwc 402 to supply a weighted
input to comparator WCi1450, circuitry 442 combines a weight voltage from WC 406 with
input stimulus Iwc 402 to supply a weighted input to comparator WC2 452, and circuitry 444
combines a weight voltage from WC 408 with input stimulus Iwc 402 to supply a weighted
input to comparator WCn 454. In some implementations, a sub-classifier includes a weighted
input module coupled to a comparator module. For example, in Figure 4, comparator WCi
450 is coupled to weighted input module 440, comparator WC2 452 is coupled to weighted
input module 442, and comparator WCn 454 is coupled to weighted input module 444.

[0056] For some topologies, a secondary stage (S2) circuit of latches or temporary
memory cells (sometimes herein called memory modules, e.g., latches 410, 412, and 414)
store the output of the WCs (Owc), according to some implementations. There are various
latching techniques to store data using different sequences. For example, in a simplified
sequence, the latches store response to one stimulus at a time for a specified time period. In
more complex sequences, the input data is divided into data chunks and the latches store

response data corresponding to one data chunk at a time.

[0057] In some implementations, the output (Owc) data of a respective WC is input to
the other WCs based on the topology or method of interconnectivity of the neural network,
according to some implementations. In some implementations, another set of circuits in the
neural network (e.g., circuits 416, 418, and 420), placed after the secondary stage (S2)
memory latches feed voltage back into the neighbor neurons (WC) so as to adjust the WV of
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input stage of the WCs in stage 3 (S3), as shown in Figure 4. In some implementations,
additional connections (e.g., connections 428, 430, and 432) from one or more neurons in the
neural network is applied to the WV circuit as indicated by the topology bus Onn (e.g.,
topology bus 422, 424, or 426). In some implementations, without a secondary stage (S2)
circuit of latches, the clock cycle for activation of neurons or the pulse width may be set so
that the current feedback does not saturate the network of neurons, and the neurons turn on

only based on the output of the neurons.

[0058] Although the topology buses (e.g., buses 422, 424, and 426) are identified by
the same name Onn in Figure 4, in various implementations, the topology buses are
configured differently; for example, different portions or regions of a neural network can be
organized or interconnected differently based on a local topology. Similar to how the human
brain is divided into highly specialized regions, in some implementations, a single wafer of
silicon (with millions or even billiohs of WCs) can be further subdivided into regions of
neural networks, with individual topologies specialized for specific functions (such as speech,

vision, hearing, etc.) that are themselves interconnected to form an artificial brain.

[0059] Due to the type of circuitry and hardware connectivity, all the WCs can be
processed simultaneously in a parallel computing fashion yielding significant performance
gains while also providing broad application as compared to fully software-based networks.
For example, with one million WCs etched on a semiconductor wafer, the entire set of one
million or more WCs can be evaluated in a single clock cycle. Assuming the clock frequency
is 2GHz, for example, two billion or more iterations of the neural network of one million or

more neurons (WCs) can be evaluated in one second.

[0060] To further illustrate how a network of WCs described above in reference to
Figures 2-4 is used to build a neural network, consider an example construction of a Self-
Organizing Map (SOM), a type of unsupervised learning network, according to some
implementations. The self-organizing process in a SOM consists of initialization,
competition, cooperation, and adaptation. Initially, the weight vector of every neuron is
initialized with small random values. In the case of WC hardware neurons, the weight
voltages (WVs) are initialized to random values. The neurons compute their respective
values of a discriminant function for each input pattern (e.g., all pixels in an image). The
discriminant function generally employed in conventional virtual neurons is the squared

Euclidean distance between the input vector and the interconnection weight vector for each
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neuron. For WC-based hardware neurons, a discriminant function can be the squared
Euclidean distance between the input voltage and the weight voltages. The particular neuron
with the smallest value of the discriminant function is considered to be the determinant
neuron. For a WC-based hardware neural network, depending on the initial configuration of
voltage thresholds, and associated weights, one or more WC neurons could be the
determinant neuron in response to an input pattern. For simplicity, consider for example a
single determinant neuron. The determinant neuron determines, based on a topology, the
spatial location of a neighborhood of activated neurons that cooperate (for e.g., to adjust
weights in the neighborhood). When one neuron activates, its closest neighbors tend to have
a more impacted response than those neighbors located further away. In a WC-based
hardware neural network, because the voltage output from the determinant neuron is
connected to its neighbors, the output affects the weight voltages of the neighbors. The
impacted neurons update their individual values of the discriminant function in relation to the
input pattern through an adjustment of the associated connection weights. In a WC-based
neural network, the weights are continuously adapted. The response of the determinant

neuron to the subsequent application of a similar input pattern is thus enhanced.

[0061] As a way to visualize the self-organizing process of a WC-based neural
network, consider how a set of data input in a continuous two-dimensional input space is
mapped onto a set of WC-based neurons. The WC-based neurons are organized or connected
according to a topology (e.g., every neuron is connected to every other neuron). The WC-
based neurons may start at random assignments (e.g., voltage values) and the weights are
initialized to random initial values or according to a gradation. Each of the neurons read a
first input which is converted to a corresponding voltage value (by e.g., a pre-processor).
One of the neurons, a “determinant neuron”, will respond with a high value output. In
various configurations, more than one neuron could respond to the input. The determinant
neuron is said to move towards the data input because the initial value of the weights of the
determinant neuron are adjusted, in response to the input voltage, to have the determinant
neuron and its neighbors respond to the input voltage. The neighboring neurons also move
towards the data input, but by smaller amounts. Because all the neurons feed on the same
input at each step to select one or more determinant neurons and/or associated neighbors, the
process is parallel (i.e., the WC-based neurons operate in unison). The weights (voltage
values for all the WC-based neurons) are adjusted at the end of this step. Next, a second data

input is chosen for training. A different neuron than the first “determinant neuron” is
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determinant in this second round. And the neurons next to the new determinant neuron
respond by moving towards the second data input by a smaller amount. The weights are
adjusted again at the end of this step. The process continues until the weights of all the
neurons reach a stable state (e.g., there are no longer large variations in the weight voltages of
the neurons in the neural network), and at least until all the input data is processed. For
example, the process is repeated several times using a given data set. In the end, the whole

output grid of WC-based neurons represents the input space.

[0062] Figure 5 illustrates a series of WCs (as in Figure 4) with an added CG signal
502 from a CG module (not shown). The CG module controls neuroplasticity and behavior
of the neural network, according to some implementations. With neuroplasticity, a neural
network performs self-learning. Conventional networks are trained via repeated exposure to
dataset and converge over a period of time, and the weights of the connections are adjusted to
match the dataset to produce a meaningful output. The training period depends on the learning
rate. As an example, for Self Organizing Maps (SOM), the training period also depends on the
learning radius or the number of neurons called into the influence of training. The learning radius
indicates the distance from a Best Matching Unit (BMU), the neuron that activates (sometimes
herein called the “determinant neuron™) for a particular input. These parameters are gradually
reduced until the neural network is fully trained to respond to a stimulus in a desired way.
However, any new dataset not accounted for during the initial training falls outside the purview
of the trained neural network. This limits the ability of the neural network to achieve
neuroplasticity, and the neural network must be retrained to handle new datasets or redesigned to

accommodate new data.

[0063] To address these limitations with traditional neural networks, in some
implementations, as shown in Figure 5, CG signals (e.g., signal 502) either enhance or inhibit
response to input stimulus, and modify the learning rate and/or the number of neurons. In some
implementations, the CG signals are applied to the neural network continuously and/or
intermittently so as to affect the behavior of the neural network. Such behavioral changes
include how attentive, relaxed, and/or responsive the neural network is in response to a
stimulus. In some implementations, the CG signals limit the focus of the neural network to
specific stimulus, and/or the overall learning ability of the neural network. The CG signals thus
implement adaptive learning even as the neural network processes a stimulus. In some
implementations, more than one CG variable is used contemporaneously, covering complex

behavioral patterns. In some implementations, the CG signals can influence local
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behaviot/plasticity and/or global behavior/plasticity of a group of WC neurons. In some
implementations, the CG signal may influence the sensitivity of the comparison module. In
some implementations, the CG signal may influence the input signal prior to the weighting
module. In Figure 5, for example, the CG signal 502 affects the input to neurons or
comparators WCi, WC2 and WChn. In some implementations, different CG signals are applied

to different regions or neighborhoods of WC neurons to impact the neural network behavior.

[0064] The WV circuitry (e.g., WV 504, WV 506, WV 508) receives a CG signal
(e.g., signal 502) and adjusts the weighted input to the respective WCs based on the CG
signal, according to some implementations. In various implementations, the WV circuitry is
constructed using voltage control resistors (VCR) and/or variable resistors (e.g., a
potentiometer or digital potentiometer, field effect transistor, resistor ladder, resistor bridge,
resistor network, junction transistor, or other current or voltage control circuitry) that,

depending on the CG signal, control the weighted output compared with an input stimulus by
a WC.

[0065] Figure 6 illustrates a series of WCs with the CG signal of Figure 5, and an
additional memory 604 (also referred to herein as Implicit Memory (IMEM)), according to
some implementations. IMEM 604 may permit fast redirection of memory pointers to sub--
regions, and/or provides memory addresses for memory regions that contain data necessary
for responding to stimulus. With IMEM 604, the evaluation system 116 (of Figures 1A~1B)
avoids reading a large memory space to search for data specific to a given input stimulus in

order to evaluate the specific data and provide a response 114.

[0066] Implicit memory can enhance a neural network to have intuitive responses to
stimulus, for example by triggering a response even if the input stimulus only resembles (and
does not exactly match) a previous experience, according to some implementations. In
comparison to IMEM, explicit memory blocks (e.g., EMEM blocks 606, 608, and 610) can be
configured to store exact data (for e.g., past responses for past input) to be retrieved in
response to an input stimulus, according to some implementations. For example, the PNP Al
processor 102 can match a current input to a previous input (e.g., an equivalent of a peréon
having visited a room or seen a video or an image), can retrieve a previously-generated
virtual image from EMEM, and compare it to current input to generate a matching response.
More detailed data is accessible via EMEM, whereas IMEM stores and represents general

patterns of information and concepts extracted from data.
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[0067] In some implementations, memory 604 can be visualized as a set of one or
more memory blocks, with each memory block representing data to be retrieved. A memory
block can be referenced both as an IMEM block as well as an EMEM block, according to
some implementations. In some implementations, IMEM is addressable using a combination of
one or more WC outputs (e.g., output from a given block of neurons of the neural network),
and/or the CG states. For example, in Figure 6, IMEM 604 is addressable directly via control
signal 602 (shown by the signals 618, 620 and 622 that connect with corresponding EMEM
blocks 606, 608, and 610, respectively), and/or WC output 612, 614, and 616. In some such
implementations, CG signals influence the size of the memory blocks, or the number of
memory blocks accessed for responding to a stimulus. In contrast to IMEM blocks, EMEM
blocks are addressed via the WC output. For example, the connecting lines (e.g., lines 612,
614, and 616) are used to address the EMEM blocks in Figure 6, according to some

implementations.

[0068] As indicated in Figure 6, data from the different memory blocks (e.g., blocks
624, 626, and 628) are used by evaluation system 116 (shown in Figures 1A-1B) to respond
to input stimulus (e.g., output to response processes 624, 626, and 628), according to some

implementations.

[0069] Similar to how caches memory architectures improve memory access by
storing previously and/or frequently used functions or data for quicker access, IMEM
architecture improves memory access based on the familiarity of stimulus. For example, a
stimulus that is repeatedly observed can provide feedback to the system such that one or more
control group signals can be used to directly access one or more objects in memory, without
having to rely on pattern matching the output of the neural network to specify memory
locations. But, unlike caches, IMEM improves memory access (e.g., via the direct accesses
using CG and WC output) without requiring extra storage or performing repetitive search

iterations to parse and find the correct memory location.

[0070] Although Figure 6 illustrates the EMEM blocks as if a respective EMEM
block is connected to only a single sub-classifier (e.g., the line 612 connecting the first sub-
classifier to EMEM Block 1), the sub-classifiers can access more than one EMEM block.

The connecting lines (e.g., lines 612, 614, and 616) are intended to show the addressability of
the EMEM blocks via the output of the comparators.
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[0071] As indicated by the block 630, in some implementations, a master classifier
comprises a plurality of sub-classifiers, IMEM blocks, and/or CG signals. In some
implementations, a master classifier 630 is an independent module (not shown in Figure 6)
coupled to a plurality of sub-classifiers, IMEM blocks, and/or CG signals. In some such
implementations, the master classifier 630 receives each of the respective output signals from
each of the plurality of sub-classifiers (e.g., via memory 604) during the one or more clock
cycles, and determines a classifier response based on the subset of the plurality of sub-
classifiers that produce a respective output signal having a value greater than a predetermined

output threshold.

[0072] Figure 7 is a block diagram illustrating a representative system 700 with a
parallel neural processor (e.g., PNP Al processor 102), according to some implementations.
In some implementations, the system 700 (e.g., any device with system architecture 100,
Figure 1A} includes one or more processing units (e.g., CPUs, ASICS, FPGAs,
microprocessors, and the like) 702, one or more communication interfaces 714, memory 718,
external sensors 704, audio/video input 706, and one or more communication buses 720 for

interconnecting these components (sometimes called a chipset).

[0073] In some implementations, the system 700 includes a user interface 708. In
some implementations, the user interface 708 includes one or more output devices 710 that
enable presentation of media content, including one or more speakers and/or one or more
visual displays. In some implementations, user interface 708 also includes one or more input
devices 712, including user interface components that facilitate user input such as a keyboard,
a mouse, a voice-command input unit or microphone, a touch screen display, a touch-
sensitive input pad, a gesture capturing camera, or other input buttons or controls.
Furthermore, some systems use a microphone and voice recognition or a camera and gesture

recognition to supplement or replace the keyboard.

[0074] In some implementations, the system 700 includes one or more image/video
capture or audio/video input devices 706 (e.g., cameras, video cameras, scanners, photo
sensor units). Optionally, the system 700 includes a location detection device (not shown) for

determining the location of the system device 700.

[0075] In some implementations, the system 700 includes one or more built-in
sensors 718. In some implementations, the built-in sensors 718 include, for example, one or

more thermal radiation sensors, ambient temperature sensors, humidity sensors, IR sensors,
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occupancy sensors (e.g., using RFID sensors), ambient light sensors, motion detectors,

accelerometers, and/or gyroscopes.

[0076] In some implementations, the system 700 includes one or more external
sensors 704. In some implementations, the external sensors 704 include, for example, one or
more thermal radiation sensors, ambient temperature sensors, humidity sensors, IR sensors,
occupancy sensors (e.g., using RFID sensors), ambient light sensors, motion detectors,

accelerometers, and/or gyroscopes.

[0077] The system 700 includes one or more parallel neural processors 716 for
performing/offloading Al tasks (e.g., PNP Al processors 102 in Figures 1A or 1B) described

above in reference to Figures 1-6, according to some implementations.

[0078] Communication interfaces 720 include, for example, hardware capable of data
communications using any of a variety of custom or standard wireless protocols (e.g., IEEE
802.15.4, Wi-Fi, ZigBee, 6LoWPAN, Thread, Z-Wave, Bluetooth Smart, ISA100.11a,
Wireless HART, MiWi, etc.) and/or any of a variety of custom or standard wired protocols
(e.g., Ethernet, Home Plug, etc.), or any other suitable communication protocol,‘including

communication protocols not yet developed as of the filing date of this document.

[0079] Memory 721includes high-speed random access memory, such as DRAM,
SRAM, DDR RAM, or other random access solid state memory devices; and, optionally,
includes non-volatile memory, such as one or more magnetic disk storage devices, one or
more optical disk storage devices, one or more flash memory devices, or one or more other
non-volatile solid state storage devices. Memory 721, or alternatively the non-volatile
memory within memory 721, includes a non-transitory computer readable storage medium.
In some implementations, memory 721, or the non-transitory computer readable storage
medium of memory 721, stores the following programs, modules, and data structures, or a
subset or superset thereof:

. operating logic 722 including procedures for handling various basic system services

and for performing hardware dependent tasks;

. device communication module 724 for connecting to and communicating with other
network devices (e.g., network interface, such as a router that provides Internet
connectivity, networked storage devices, network routing devices, server system, etc.)
connected to one or more networks via one or more communication interfaces 720

(wired or wireless);
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input processing module 726 for detecting one or more user inputs or interactions
from the one or more input devices 712 and interpreting the detected inputs or

interactions;

user interface module 728 for providing and displaying a user interface in which
settings, captured data, and/or other data for one or more devices (not shown) can be

configured and/or viewed;

one or more application modules 730 for execution by the system 700 for controlling
devices, and for reviewing data captured by devices (e.g., device status and settings,
captured data, or other information regarding the system 700 and/or other

client/electronic devices);

PNP pre-processing module 732, which provides functionalities for pre-processing

data for PNP Al processor(s) 716, including but not limited to:

o data receiving module 7320 for receiving data from one or more input devices
712, external sensors 704, built-in sensors 718, and/or audio/video input 706

that is to be processed by the PNP Al processor(s) 716;

o data pre-processing module 7322 for processing data captured or received by
the data receiving module 7320, and for preparing (e.g., for creating set of
vectors from raw data input, organizing the vectors into a table, and/or
converting raw data into voltage values), and for sending processed data (e.g.,

loading data by applyingv current) to the PNP Al processor(s) 716;

PNP training module 734 that co-ordinates with the PNP pre-processing module 732
and/or PNP feedback and response module 734 (described below) to train the one or
more PNP Al processor(s) 716 (e.g., setting up the voltage values / thresholds,

initializing the neural network(s), and monitoring the learning rate and progress); and
PNP feedback and response module 734, including but not limited to:

o data receiving module 7360 for receiving data from the PNP Al processor(s)
716 (e.g., for receiving voltage values from the output of window comparator

circuits);

o data post-processing module 7362 for post-processing data received from the
PNP Al processor(s) 716 (e.g., for converting voltage values or neural network

output to another format useful for further processing by the system);
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o feedback module 7364 for generating feedback to the PNP Al processor(s)
716 based on its output (for e.g., to readjust control values), or based on input

from other devices in the system (including changing environment); and

o response module 7366 for generating system response based on output of the
PNP Al processor(s) (e.g., moving a robotic arm, changing the position of a

camera, or signaling an alarm).

[0080] Each of the above identified elements may be stored in one or more of the
previously mentioned memory devices, and corresponds to a set of instructions for
performing a function described above. The above identified modules or programs (i.e., sets
of instructions) need not be implemented as separate software programs, procedures, or
modules, and thus various subsets of these modules may be combined or otherwise
rearranged in various implementations. In some implementations, memory 606, optionally,
stores a subset of the modules and data structures identified above. Furthermore, memory

606, optionally, stores additional modules and data structures not described above.

[0081] Figures 8A-8D illustrate a flowchart representation of a method 800 of
processing input signals (802) using a sub-classifier that includes a weighted input module
and a comparison module coupled to the weighted input module, according to some
implementations. Sub-classifiers were described above in reference to Figure 4. In some
implementations, the comparison module includes (804) at least one operational amplifier
module (for e.g., analog WC described above in reference to Figures 2A and 2B). The first
sub-classifier applies (806), at the weighted input module, a weighting to the input signal to
generated a weighted input signal. For example, in Figure 4, weighted input module 440
applies weighting 404 to input signal 402 to generate a weighted input signal to comparator
WC1450. In some implementations, the weighted input module receives (808) a second
output signal from a second sub-classifier. For example, in Figure 4, weighted input module
442 receives output signals 418 from other sub-classifiers (e.g., from sub-classifier output

from memory latch 410).

[0082] The method 800 further includes receiving (810), at the comparison module,
the weighted input signal at a comparison module input line. For example, in Figure 4,
comparator WCi 450 receives weighted input signal from weighted input module 440 on the
line shown connecting module 440 with comparator 450. In some implementations, the

comparison module includes at least one operational amplifier module (described above in
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reference to 804), and receiving the weighted input signal comprises receiving (812), at the at

least one operational amplifier module, the weighted input signal.

[0083] As shown the Figure 8B, the method 800 further includes generating (814), at
the comparison module, a first output signal at a comparison module output line, according to
some implementations. For example, in Figure 4, comparator WC1 450 generates output
signal O'wc on the line connecting the comparator WC1450 with the memory latch 410.
Generating the first output signal (814) comprises determining (816), at the comparison
module, whether the weighted input signal has a value that is between a lower window range
value and an upper window range value. Comparison operation was described above in
reference to Figures 2A, 2B, 3, and 4, according to some implementations. For example, in
Figure 2A, Op-Amp 202 and Op-Amp 204 determine if the input voltage Iwc 206 is between
lower voltage threshold R 208 and upper voltage threshold Ru210. Generating the first
output signal (814) further comprises in response to a determination that the weighted input
signal has a value between the lower window range value and the upper window range value,
setting (818), at the comparison module, the first output signal to have a first value at the
comparison module output line. For example, in Figure 2A, Op-Amp 204 sets output Owc if
the input voltage Iwc 206 is between lower voltage threshold Ri. 208 and upper voltage
threshold Ru210. As another example, in Figure 4, comparator WC (450) sets output
O'wc(to a high voltage value) at the line connecting the comparator with the memory latch
410 if the input voltage Iwc 402 is between lower voltage threshold Ri! and upper voltage
threshold Ru'. Generating the first output signal (814) further comprises in response to a
determination that the weighted input signal has a value that is not between the lower window
range value and the upper window range value, setting (820), at the comparison module, the
first output signal to have a second value different from the first value at the comparison
module output line. For example, in Figure 2A, Op-Amp 202sets output /Owc if the input
voltage Iwc 206 is not between lower voltage threshold R 208 and upper voltage threshold
Ru210. As another example, in Figure 4, comparator WC1 (450) sets output O'wc (to a low
voltage value) at the line connecting the comparator with the memory latch 410 if the input
voltage Iwc 402 is between lower voltage threshold R.! and upper voltage threshold Ry, In
some implementations, the comparison module comprises of at least one operational
amplifier (e.g., as described in Figure 2A), and generating the first output signal (814) further
comprises setting (822), at the at least one operational amplifier module, the first output

signal.
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[0084] In some implementations, the method 800 further comprises, as shown in
Figure 8C, transmitting (824) the first output signal from the first sub-classifier to a second
sub-classifier. For example, in Figure 4, output signal from comparator WC1 450 latched in
memory latch 410 is transmitted (shown as a dashed line, input 418) to a second sub-

classifier that includes the comparator WC2452 and the weighted input module 442.

[0085] In some implementations, the method 800 further includes receiving (826), at
the weighted input module, a control group signal. In some such implementations, the
weighted input module includes a variable resistor module, and the method includes
receiving (828), at the variable resistor module, the control group signal and adjusting the
weighted input signal based on the control group signal. In some implementations, the
method 800 further includes applying (830), at the weighted input module, the weighting to
the input signal to generate the weighted input signal based on the control group signal.
Receiving and processing control group signals were explained above in reference to Figure
5. For example, in Figure 5, control group signal 502 is applied and adjust the weight values
in the circuitries 504, 506, 508 before consumed by the corresponding weighted input

modules.

[0086] In some implementations, as shown in Figure 8D, the first sub-classifier
includes (832) a memory module coupled to the comparison module. In some
implementations, the memory latch, the comparator, and the weighted input module comprise
a sub-classifier. In some such implementations, the first sub-classifier receives, and stores
(834), at the memory module, the first output signal from the comparison module and
provides the first output signal to a second sub-classifier. For example, in Figure 4, memory
latch 410 is coupled to the comparator WCi (450), memory latch 412 is coupled to the
comparator WC2(452), and memory latch 414 is coupled to the comparator WCn (454),

according to some implementations.

[0087] Figures 9A-9E illustrate a flowchart representation of a method 900 of
processing one or more input signals during one or more clock cycles using a classifier
system. The classifier system includes (902) a plurality of sub-classifiers and a master
classifier coupled to the plurality of sub-classifiers, the plurality of sub-classifiers each
including a weighted input module and a comparison module, according to some
implementations. Example master classifier coupled to a plurality of sub-classifiers was

discussed above in reference to Figure 6. In some implementations of the method 900, as
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shown in 920, Figure 9B, each of the sub-classifiers has a respective window range between
the lower window range value and the upper window range value that does not overlap with
any other respective window range of any other sub-classifier. For example, in Figure 3, the
reference voltages for comparator WC1 (Re.! 302and Ry 304), comparator WCz (R.? 306and
Ru? 308), comparator WCs (Re? 310and Ry® 312), and comparator WCx (RN 314and Ru™
316) are each set up such that the corresponding WVRs are all unique. In some
implementations, the WVRs are non-overlapping. In some implementations of the method
900, as shown in 922, Figure 9C, the classifier system includes a multiplexer module coupled
to the plurality of sub-classifiers. In some such implementations, the method 900 includes
providing (924), at the multiplexer module, one of the input signals to the plurality of sub-
classifiers during a single clock cycle. Examples of multiplexer and/or pre-processing

modules was described above in reference to Figure 1A.

[0088] In some implementations, the method 900 includes (906), at each sub-
classifier, applying (908), at the weighted input module, a weighting to a respective input
signal for a respective clock cycle to generate a weighted input signal. In some such
implementations, the method (900) further includes at each sub-classifier receiving (910), at
the comparison module, the weighted input signal at a comparison module input line. In
some such implementations, the method (900) further includes generating (912), at the
comparison module, an output signal at a comparison module output line. An example
weighted input module was described above in reference to Figure 4, according to some

implementations.

[0089] In some implementations, as shown in Figure 9D, generating (912) an output
signal at the comparison module comprises: determining (926), at the comparison module,
whether the weighted input signal has a value that is between a lower window range value
and an upper window range value; in response to a determination that the weighted input
signal has a value between the lower window range value and the upper window range value,
setting (928), at the comparison module, an output signal to have a value greater than a
predetermined output threshold at the comparison module output line; and in response to a
determination that the weighted input signal has a value that is not between the lower window
range value and the upper window range value, setting (930), at the comparison module, the
output signal to have a value less than the predetermined output threshold at the comparison

module output line. Operations of the comparison module were described above in reference
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to Figure 8B above and apply to the operations shown in Figure 9D, according to some

implementations.

[0090] Referring back to Figure 9A, in some implementations, the method 900
includes (914) at the master classifier, receiving (916) each of the output signals from each of
the plurality of sub-classifiers during the one or more clock cycles. In some such
implementations, the method 900 further includes, at the master classifier, determining (918)
a classifier response based on the subset of the plurality of sub-classifiers that produce a

respective output signal having a value greater than the predetermined output threshold.

[0091] In some implementations of the method 900, the classifier includes (932) a
memory block coupled to the master classifier and/or the plurality of sub-classifiers. In some
such implementations, the method further comprises, at the weighted input module of each of
the plurality of sub-classifiers (934): receiving (936) a control group signal, and applying
(938) the weighting to the input signal to generate the weighted input signal based on the
control group signal. The method further comprises storing (940) one or more responses of
the classifier, at the memory block, the memory block including one or more memory sub-
blocks addressable using the output signal of one or more sub-classifiers of the plurality of
sub-classifiers, and the control group signal. The method further comprises determining
(942), at the master classifier, the classifier response based on the one or more memory sub-
blocks. Details of the master classifier were discussed above in reference to Figure 6,
according to some implementations. Further, as indicated in the discussions related to Figure
6, the output of the EMEM blocks (e.g., output 624, 626, and 628) are used to determining

the classifier response, according to some implementations.

[0092] It should be understood that the particular order in which the operations in
Figures 8A-8D and 9A-9E have been described is merely an example and is not intended to
indicate that the described order is the only order in which the operations could be performed.
One of ordinary skill in the art would recognize various ways to reorder the operations
described herein. Additionally, it should be noted that details of other processes described
with respect to method 800 are also applicable in an analogous manner to the method 900

described above with respect to Figures 9A-9E.

[0093] Although some of various drawings illustrate a number of logical stages in a
particular order, stages that are not order dependent may be reordered and other stages may

be combined or broken out. While some reordering or other groupings are specifically
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mentioned, others will be obvious to those of ordinary skill in the art, so the ordering and
groupings presented herein are not an exhaustive list of alternatives. Moreover, it should be
recognized that the stages could be implemented in hardware, firmware, software or any

combination thereof.

[0094] The foregoing description, for purpose of explanation, has been described with
reference to specific implementations. However, the illustrative discussions above are not
intended to be exhaustive or to limit the scope of the claims to the precise forms disclosed.
Many modifications and variations are possible in view of the above teachings. The
implementations were chosen in order to best explain the principles underlying the claims
and their practical applications, to thereby enable others skilled in the art to best use the

implementations with various modifications as are suited to the particular uses contemplated.
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What is claimed is:

1. A first sub-classifier configured to process an input signal, the first sub-classifier
comprising:
a weighted input module, the weighted input module configured to apply a weighting
to the input signal to generate a weighted input signal,
a comparison module coupled to the weighted input module, the comparison module
configured to:
receive the weighted input signal at a comparison module input line; and
generate a first output signal at a comparison module output line; the
comparison module being further configured to:
determine whether the weighted input signal has a value that is
between a lower window range value and an upper window rahge value;
in response to a determination that the weighted input signal has a
value between the lower window range value and the upper window range value, set the first
output signal to have a first value at the comparison module output line; and
in response to a determination that the weighted input signal has a
value that is not between the lower window range value and the upper window range value,
set the first output signal to have a second value different from the first value at the

comparison module output line.

2. The first sub-classifier of claim 1, wherein the comparison module includes at least
one operational amplifier configured to receive the weighted input signal and set the first

output signal.

3. The first sub-classifier of any of claims 1-2, wherein the weighting applied to the
input signal to generate the weighted input signal is based on a second output signal from a

second sub-classifier.

4. The first sub-classifier of any of claims 1-3, wherein the first output signal from the

first sub-classifier is transmitted to a second sub-classifier.

5. The first sub-classifier of claim 4, wherein the weighted input module is configured to
receive a control group signal and apply the weighting to the input signal to generate the

weighted input signal based on the control group signal.
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6. The first sub-classifier of claim 5, wherein the weighted input module includes:
a variable resistor or variable current or voltage regulator configured to receive the
control group signal and adjust the weighted input signal based on the control group signal or

influence the stimulus sensitivity of comparison module.

7. The first sub-classifier of any of claims 1-6, further comprising:
a memory module configured to receive and store the first output signal from the

comparison module and provide the first output signal to a second sub-classifier.

8. A classifier system configured to process one or more input signals during one or
more clock cycles, comprising:
a plurality of sub-classifiers, each of the plurality of sub-classifiers including:

a weighted input module, the weighted input module configured to apply a
weighting to a respective input signal for a respective clock cycle to generate a weighted
input signal;

a comparison module coupled to the weighted input module, the comparison
module configured to:

receive the weighted input signal at a comparison module input line;
and
generate an output signal at a comparison module output line; the
comparison module being further configured to:
determine whether the weighted input signal has a value that is
between a lower window range value and an upper window range value;
in response to a determination that the weighted input signal
has a value between the lower window range value and the upper window range value, set an
first output signal to have a value greater than a predetermined output threshold at the
compari;on module output line; and
in response to a determination that the weighted input signal
has a value that is not between the lower window range value and the upper window range
value, set the first output signal to have a value less than the predetermined output threshold
at the comparison module output line; and
a master classifier coupled to the plurality of sub-classifiers, the master classifier

configured to:
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receive each of the respective output signals from each of the plurality of sub-
classifiers during the one or more clock cycles, and
determine a classifier response based on the subset of the plurality of sub-
classifiers that produce a respective output signal having a value greater than the

predetermined output threshold.

9. The classifier system of claim 8, wherein each of the sub-classifiers has a respective
window range between the lower window range value and the upper window range value that

does not overlap with any other respective window range of any other sub-classifier.

10.  The classifier system of any of claims 8-9, further comprising:
a multiplexer coupled to the plurality of sub-classifiers, the multiplexer configured to

provide one of the input signals to the plurality of sub-classifiers during a single clock cycle.

11. A method to process an input signal using a first sub-classifier, the first sub-classifier
including a weighted input module and a comparison module coupled to the weighted input
module, the method comprising:
applying, at the weighted input module, a weighting to the input signal to generate a
weighted input signal;
receiving, at the comparison module, the weighted input signal at a comparison
module input line;
generating, at the comparison module, a first output signal at a comparison module
output line, including:
determining, at the comparison module, whether the weighted input signal has
a value that is between a lower window range value and an upper window range value;
in response to a determination that the weighted input signal has a value
between the lower window range value and the upper window range value, setting, at the
comparison module, the first output signal to have a first value at the comparison module
output line; and
in response to a determination that the weighted input signal has a value that is
not between the lower window range value and the upper window range value, setting, at the
comparison module, the first output signal to have a second value different from the first

value at the comparison module output line.
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12.  The method of claim 11, wherein the comparison module includes at least one
operational amplifier module, the method further comprising:
receiving, at the at least one operational amplifier module, the weighted input signal

and setting, at the at least one operational amplifier module, the first output signal.

13.  The method of any of claims 11-12, further comprising:
receiving, at the weighted input module, a second output signal from a second sub-

classifier.

14.  The method of any of claims 11-13, further comprising:
transmitting the first output signal from the first sub-classifier to a second sub-

classifier.

15.  The method of claim 14, further comprising:
receiving, at the weighted input module, a control group signal; and
applying, at the weighted input module, the weighting to the input signal to generate

the weighted input signal based on the control group signal.

16.  The method of claim 15, wherein the weighted input module includes a variable
resistor module, the method further comprising:
receiving, at the variable resistor module, the control group signal and adjusting the

weighted input signal based on the control group signal.

17.  The method of any of claims 11-16, wherein the first sub-classifier includes a memory
module coupled to the comparison module, the method further comprising:
receiving and storing, at the memory module, the first output signal from the

comparison module and provide the first output signal to a second sub-classifier.

18. A method to process one or more input signals during one or more clock cycles using
a classifier system, the classifier system including a plurality of sub-classifiers and a master
classifier coupled to the plurality of sub-classifiers, the plurality of sub-classifiers each
including a weighted input module and a comparison module, the method comprising:
at each sub-classifier:
applying, at the weighted input module, a weighting to a respective input

signal for a respective clock cycle to generate a weighted input signal;
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_receibving, at the comparison module, the weighted input signal at a
comparison module input line; and
generating, at the comparison module, an output signal at a comparison
module output line, including:
determining, at the comparison module, whether the weighted input
signal has a value that is between a lower window range value and an upper window range
value;
in response to a determination that the weighted input signal has a
value between the lower window range value and the upper window range value, setting, at
the comparison module, an output signal to have a value greater than a predetermined output
threshold at the comparison module output line; and
in response to a determination that the weighted input signal has a
value that is not between the lower window range value and the upper window range value,
setting, at the comparison module, the output signal to have a value less than the
predetermined output threshold at the comparison module output line; and
at the master classifier:
receiving each of the output signals from each of the plurality of sub-
classifiers during the one or more clock cycles, and
determining a classifier response based on the subset of the plurality of sub-
classifiers that produce a respective output signal having a value greater than the

predetermined output threshold.

19.  The method of claim 18, wherein each of the sub-classifiers has a respective window
range between the lower window range value and the upper window range value that does not

overlap with any other respective window range of any other sub-classifier.

20.  The method of any of claims 18-19, wherein the classifier system includes a
multiplexer module coupled to the plurality of sub-classifiers, further comprising:
providing, at the multiplexer module, one of the input signals to the plurality of sub-

classifiers during a single clock cycle.
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