PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(22) International Filing Date: 21 November 1997 (21.11.97)

(30) Priority Data:
60/036,386
08/812,853

Us
us

24 January 1997 (24.01.97)
6 March 1997 (06.03.97)

(71) Applicant (for all designated States except US): CONTROL-
NET, INC. [US/US]; Suite A, 747 Camden Avenue, Camp-
bell, CA 95008 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): SRINIVASAN, Sundaram,
Raj [US/US]; 4162 Pinot Gris Way, San Jose, CA 95135

(Us).

(74) Agent: BEYER, Steve, D.; Beyer & Weaver, L.L.P., P.O. Box
61059, Palo Alto, CA 94306 (US).

(51) International Patent Classification 6: (11) International Publication Number: WO 98/35465
H04J 3/02 Al i I

(43) International Publication Date: 13 August 1998 (13.08.98)

(21) International Application Number: PCT/US97/21410 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, HU, ID, 1L, IS, JP, KE, KG, KP, KR, KZ, L.C, LK,
LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO,
NZ, PL, PT, RO, RU, SD, SE, SG, SJ, SK, SL, TJ, T™M, TR,
TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH,
KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, DE, DK, ES, H, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHODS AND APPARATUS FOR FAIR QUEUING OVER A NETWORK

(57) Abstract

Queue Selection Unit 120
_ ~QEgl
B! R
Q
~112 M—
~QEx=0 QS;=0
B2 |
Packet 2 \d\QSFI 16 SB
Classifier SN e
By By By ‘ Output Port
! To Network
QSn=0
QE=0 /
Bn
23
’(
B Hn

Disclosed is a queue selection method using a Packet classifier (112) and a Queue Selection Unit (120) for performing data transfers.
The method includes scaling a system bandwidth into a plurality of scaled bandwidth integers that extend to a maximum scaled system
bandwidth integer. Providing a plurality of queues (Q1-Qn) where each of the plurality of queues are associated with a scaled bandwidth
integer (B1-Bn), and sum of the scaled bandwidth integers for each of the plurality of queues is less than or equal to maximum scaled
system bandwidth integer (B). The method further determines an allocated bandwidth integer from the scaled bandwidth integers for each
of the plurality of queues that are enabled, and increments a system virtual time upon each cycle of a system clock while at least one of
the plurality of queues (Q1-Qn) is enabled. The method then selects one of the plurality of queues having a lowest queue virtual time, and
outputs a packet (Pnn) from the selected one of the plurality of queues having the lowest queue virtual time. And, the queue virtual time
of the selected one of the plurality of queues is incremented upon each cycle of the system clock while it is selected for transmission.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
T
UA
UG
us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

_ WO 98/35465 PCT/US97/21410

METHODS AND APPARATUS FOR FAIR QUEUING
OVER A NETWORK

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates generally to computer networks, and more particularly routers,
switches and the like for computer network systems.

2. Description of the Related Art

Computers are increasingly being coupled together into computer networks. In larger
networks, devices known as “routers” or “switches” direct the flow of data packets between
source and destination computers. Since the “bandwidth” of routers is limited, various
“queuing” techniques have been developed to prioritize the forwarding of packets by computer

network routers.

Fair queuing techniques in packet scheduling applications and devices have been
extensively researched and are described in a number of publications. Generally, network
switches are configured to receive a number of packets at their input ports (i.e., ports of entry),
where each packet is usually one among a sequence of many packets that constitute a flow. The
switch directs a flow to an output port (i.e., port of exit). Often, a flow has some requirements
on network bandwidth; for example, if the flow constitutes video information (e.g., a movie)
and the source of the information (e.g., a VCR) generates 1.5Mb/s of data, the flow would
require that the network guarantee 1.5Mb/s of bandwidth. This means that any switches that the
flow passes through on its way from the source to the destination will have to guarantee 1.5Mb/s
of bandwidth to the flow. Similarly, a flow carrying high quality audio information (e.g., 2

concert) may require 128Kb/s of bandwidth from the network.

However, each output port typically has a fixed amount of bandwidth (e.g., 100Mb/s)
available, and each output port in a switch has a number of output queues. In operation, the

switch will sort the flows bound for a particular output port into different output queues at the

10

15

20

25

WO 98/35465 PCT/US97/21410
output port, such that each output queue services a flow with a particular bandwidth requirement.
The switch must then ensure that each output queue is provided with sufficient access too the

output port so that the requirements of the associated flows are met.

The result of not meeting the bandwidth requirements of a flow is increased delay, often
beyond the tolerance of the flow. In such a situation, the source of the flow will be generating
information faster than the network can transfer it to the destination. This means that over the
course of time, some packets will be delayed excessively, and will have to be dropped (i.e.,
discarded), either because packets that have been delayed too much are rendered useless in real-
time audio and video applications, or because the network has run out of resources to buffer
packets. In either case, the result is reduced quality of reception; the reduction in quality may

vary from a minor inconvenience to total incapacitation.

The technique employed by a switch to ensure that the requirements of a flow are met is
called “fair queuing.” A problem with existing queuing techniques is that the algorithms involve
a very high number of arithmetical computations, and any simplifications made to the algorithms
for ease of implementation in hardware and software tend to introduce significant inaccuracies,
some of which are difficult to quantify. Good examples of prior art fair queuing techniques can
be found in the Ph.D. thesis of A. K. Parekh entitled “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks,” Massachusetts Institute of
Technology, LIDS-TH-2089, February 1992. The Parekh thesis describes a theoretical
generalized processor sharing (GPS) machine and the algorithms it uses to achieve fair queuing.
The thesis also describes a more realistic scheme (PGPS) to implement the theoretical machine.
In general, the PGPS computations are performed on a packet-by-packet basis to facilitate
tracking the state of the theoretical machine to a very high degree of accuracy. This high level of

accuracy enables tracking to within about one packet time.

While the apparatus and methods described by Parekh are notable advances to the art of
network switching and routing, it is noted that his method requires a substantial number of
arithmetical computations for efficient implementation in a high speed packet switch, using
software or hardware techniques. Moreover, the PGPS technique of Parekh applies only to

situations where packets are fully received before they can be forwarded. Unfortunately, the

2

~ WO 98/35465 PCT/US97/21410

inability to forward packets before being fully received may render Parekh’s method unsuitable
for today’s high-speed switches that necessarily require on-the-fly packet forwarding (also called

cut-through forwarding).

In view of the foregoing, there is a need for fair queuing methods and apparatus that
employ computationally efficient techniques to facilitate efficient hardware and software

implementation.

10

15

20

25

_ WO 98/35465 PCT/US97/21410

SUMMARY OF THE INVENTION

Broadly speaking, the present invention fills these needs by providing fair packet
queuing methods and apparatus that employ computationally efficient techniques to facilitate
hardware and software implementation. It should be appreciated that the present invention can
be implemented in numerous ways, including as a process, an apparatus, a system, a device, a
method, or a computer readable medium. Several inventive embodiments of the present

invention are described below.

In one embodiment, a queue selection method for performing data transfers is disclosed.
The method includes scaling a system bandwidth into a plurality of scaled bandwidth integers
that extend to a maximum scaled system bandwidth integer. Providing a plurality of queues
where each of the plurality of queues is associated with a scaled bandwidth integer, and a sum of
the scaled bandwidth integers for each of the plurality of queues is less than or equal to the
maximum scaled system bandwidth integer. The method further determines an allocated
bandwidth integer from the scaled bandwidth integers for each of the plurality of queues that are
enabled, and increments a system virtual time upon each cycle of a system clock while at least
one of the plurality of queues is enabled. The method then selects one of the plurality of queues
having a lowest queue virtual time, and outputs a packet from the selected one of the plurality of
queues having the lowest queue virtual time. And, the queue virtual time of the selected one of
the plurality of queues is incremented upon each cycle of the system clock (i.e., while the packet
is being transmitted). Preferably, the system virtual time and the queue virtual times are

incremented by a pre-computed amount retrieved from a virtual time increment array.

In another embodiment, a queue selection method for data transfer over a network having
a system bandwidth is disclosed. The queue selection method includes providing a plurality of
queues to hold data to be transferred over the network, and each of the plurality of queues being
associated with a bandwidth integer. Each of the plurality of queues has a bandwidth less than
the system bandwidth, and the sum of the bandwidths for each of the plurality of queues is less
than or equal to a maximum system bandwidth integer. The queue selection method further

determines the plurality of queues that are enabled and determines an allocated bandwidth integer

4

10

15

20

_ WO 98/35465 PCT/US97/21410

from the bandwidth integers of each of the plurality of queues that are enabled. Then, a virtual
time is incremented by a pre-computed amount while at least one of the plurality of queues is
enabled. The queue selection method then selects one of the plurality of queues based on the

virtual time, and outputs a packet from the selected one of the plurality of queues.

In yet a further embodiment, a queue selection apparatus is disclosed. The queue
selection apparatus includes a plurality of queuing means for holding data to be transferred over
the network. Each of the plurality of queuing means being associated with a bandwidth
amount, and each of the plurality of queues having a bandwidth that is less than a system
bandwidth. The sum of the bandwidth amounts for each of the plurality of queuing means
being less than about a maximum system bandwidth integer. The queue selection apparatus
further includes an allocated bandwidth computer means for calculating an allocated bandwidth
for each of the plurality of queuing means that are enabled, and means for incrementing a
virtual time by a pre-computed amount while at least one of the plurality of queuing means is
enabled. The queue selection apparatus also includes a queue selection computer means for
selecting one of the plurality of queuing means based on the virtual time, and an output means

for outputting data from the selected one of the plurality of queuing means.

Advantageously, the embodiments of the present invention provide a fair queuing
technique that uses few basic computations such as additions and subtractions that reduce
computation overhead for hardware and software implementations. Moreover, the present
invention is also suitable for dealing with cut-through forwarding. These and other aspects and
advantages of the invention will become apparent from the following detailed description, taken
in conjunction with the accompanying drawings, illustrating by way of example the principles

of the invention.

10

15

20

‘WO 98/35465 PCT/US97/21410
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the following detailed description in
conjunction with the accompanying drawings, wherein like reference numerals designate like

structural elements, and in which:

Figure 1 illustrates a queuing mechanism as implemented in accordance with one

embodiment of the present invention.

Figure 2 illustrates a queue enable computation engine that is configured to compute

QEN; in accordance with one embodiment of the present invention.

Figure 3 illustrates an allocated bandwidth computer that is configured to compute

allocated bandwidth BA in accordance with one embodiment of the present invention.

~ Figure 4 illustrates a system virtual time (STV) computer that is configured to compute an

incremented value of STV in accordance with one embodiment of the present invention.

Figure 5 illustrates a queue virtual time (TVQ,) computer that is configured to compute an

incremented value of TVQ, in accordance with one embodiment of the present invention.

Figure 6 illustrates a queue virtual time adjuster for updating TVQ, based on the packet

virtual time TVP; in accordance with one embodiment of the present invention.

Figure 7 illustrates a queue selection computer implemented to analyze the system state
variables to fairly select an output queue for transmission in accordance with one embodiment of

the present invention.

Figure 8 is an overview functional architecture of a queue selection unit in accordance

with one embodiment of the present invention.

Figure 9 is a block diagram of an exemplary computer system for carrying out the

processing according to the invention.

10

15

20

25

_ WO 98/35465 PCT/US97/21410

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

An invention is described for fair packet quening that employs computationally efficient

techniques to facilitate hardware and software implementations. In the following description,
numerous specific details are set forth in order to provide a thorough understanding of the
present invention. It will be obvious, however, to one skilled in the art, that the present
invention may be practiced without some or all of these specific details. In other instances, well
known process operations have not been described in detail in order not to unnecessarily

obscure the present invention.

It will be useful in the understanding of the present invention to begin with some
definitions of terminology and to present an overview of how the modified system operates. The
terminology used in this document is different from the terminology used in the aforementioned
Ph.D. thesis of Parekh. However, the Parekh document is useful in understanding the basic

theory that is related to the present invention.

The Queuing System

Figure 1 illustrates a queuing mechanism as implemented in accordance with one
embodiment of the present invention. In this embodiment, a packet classifier 112 is charged
with receiving packets having different bandwidth (B,) requirements and then passing them to
queues having similar bandwidth assignments. As shown, packet classifier 112 passes packets
having bandwidths B, B, and B, to a number of output queues shown as Q,, 0,,... O,
respectively. The method used for determining the output queue for an incoming packet is not
relevant to the queuing mechanism of this embodiment. The system generally includes of a
number of input ports and one output port. As described above, it is of critical importance that
the packets queued in the output queues Q,, Q,.... @, be forwarded to an output port 116 at rate

that ensures that each output queue receives the assigned level of bandwidth.

In one embodiment, a queue is considered “empty” when there are no packets on the
queue. Associated with each output queue Q,, Q,.... @,, a queue empty (QE,) variable indicates
when one of the output queues are empty. By way of example, when a queue is empty, QF,

takes the value “1,” and when there is at least one packet in the queue, QE, takes the value of “0.”

7

10

15

20

25

_ WO 98/35465 PCT/US97/21410

As shown in Figure 1, Q, does not currently contain any packets and is therefore shown set to
QE, =1. On the other hand, Q,,... O, do contain packets and are therefore shown set to QE, =

0, ... QE,=0.

In addition, for each output queue Q,, Q,,... @,, a queue enable (QEN,) variable is
defined for indicating whether a particular queue is enabled (i.e., active) or disabled (i.e.,
inactive). By way of example, QEN. is set to “1” when a queue is enabled, and “0” when a
queue is disabled. In general, a queue is enabled whenever there is at least one packet on the
queue (that is, QF, = 0), and possibly for a short duration after the last packet on the queue has

been transmitted. The short duration is discussed in greater detail below.

The switching system is defined to be in a “busy period” whenever at least one queue is
enabled, and is in an “idle period” when no queues in the system are enabled. Thus, the system
will go through a series of busy periods separated by idle periods. As mentioned earlier, queues
Q, through Q, are shown containing packets which are defined as the “i*> packet on the “j"
queue (i.e., P,). By way of example, in Q,, three packets are shown identified as P,,, P,, and
P,,, and in Q,, two packets are shown identified as P,, and P,,. Further, each packet P; also has
an associated length that will be denoted as /. Accordingly, the packet at the head of queue Q, is

packet P,, that will preferably have a length /,,.

In one embodiment, a queue selection unit 120 at the output port 116 examines a set of
system state variables to appropriately select one of the enabled queues for transmission. As
will be described in greater detail below, the queue enable (QEN,) variable is one of the system
state variables that are constantly updated after each packet transmission. Therefore, as packets
are transmitted, the system state variables of the switching system are updated. After a packet is
transmitted, the queue selection unit 120 again examines the system state variables to ascertain
which one of the enabled queues is to be selected for the next packet transmission. In this
manner, if a queue becomes empty (i.e., QE, = 1) after a particular packet transmission, the
excess bandwidth is advantageously distributed to the remaining enabled queues. Thus, for each
packet transmission, the system state variables will preferably be different. Accordingly, queue
selection unit 120 is responsible for efficiently selecting enabled queues after each packet

transmission to ensure that each enabled queue receives fair access to output port 116.

8

5

10

15

20

25

WO 98/35465 PCT/US97/21410

Also shown associated with each output queve Q,, Q,,... Q, is an integer 0S,, OS,,...
QS that is set to a value “1” when that particular queue is selected for transmission, and “0”
when it is not selected for transmission. In the example shown, QS, is set to “1” because it is

selected for transmission, and all other queues are set to “0.”

The System State Variables

In one embodiment, the system state variables are broken down in terms of: a) time, and
b) bandwidth. An exemplary time variable associated with queue selection unit 120 is a “system
clock” (referred to herein as “TR”) which is the “actual” current time. Thus, system clock TR is
the real time. The units of system clock TR are clock “ticks.” In this embodiment, a system
clock tick corresponds to a fixed time interval. There are also state variables whose values are
defined in “virtual time” units. Unlike the system clock TR, virtual time ticks are preferably not
fixed time intervals. In operation, output port 116 preferably has associated with it a system

virtual time (STV).

Further, each output queue Q, (i.e., output queues Q,, Q,,... 0,) has an associated queue
virtual time (TVQ,). In general, when each packet P;; queued in its respective output queue, the
packet is time stamped with a packet virtual time (TVP;). A queue is considered enabled (i.e.,
active) when either QF, = 0 (that is, there is at least one packet on the queue), or the queue virtual
time (TVQ,) for that queue is greater than the system virtual time (STV). Accordingly, when

these conditions are satisfied, QEN, will have the value 1, otherwise it will have the value O.

With respect to bandwidth variables, the speed of the output port is defined in terms of
system bandwidth (SB). As can be appreciated, the fair queuing methods of the present
invention are directly correlated to the allocation of the system bandwidth (SB) to all of the
output queues Q,, Q.,... Q, that are enabled. As shown in Figure 1, each queue will have an

associated bandwidth B,, B,,... B, that defines their desired minimum flow rate. The sum of the

queue bandwidths (i.e., X, ,, B;) therefore must not exceed the system bandwidth (SB). This

relationship is therefore expressed by the following inequality:

2ennBi<SB (Equation 1)

10

15

20

25

WO 98/35465 PCT/US97/21410
As described above, it is possible that not all queues will be active at a given time.
Therefore, an allocated bandwidth (BA) is defined as the sum of the queue bandwidths for any

currently enabled queues. This relationship is expressed in the following equation:

BA =X

ie[1..n]

B, * QEN, (Equation 2)

System Operation

It will be appreciated that the packet switching methods of the present invention are major
implementation advancements over the theoretical methods proposed by Parekh. In addition, the
methods of the present invention also allow for cut-through forwarding which is an important

requirement in fast switching networks.

As mentioned earlier, the system may traverse (in time) through a series of busy periods
separated by idle periods. Because the same principles of operation apply to all busy periods,
the operation of the entire system will be described with reference to one busy period. In
general, the operation states begin at an initial state (i.e., the state following an idle period), and
then transition to a busy state. From the busy state, the system may then transition back to an

idle state.

In one embodiment, the system bandwidth SB and the queue bandwidths B, can vary
during system operation. However, these variables are changed by external entities that are not
controlled by the queuing system. Accordingly, these variables are viewed as “configuration
parameters,” and are not part of the aforementioned system state variables that are updated by the

system itself during the course of system operation.

When the queuing system is in an initial state at the end of an idle period, the exact value
of the system clock TR is not relevant, but for the purposes of the following examples, it will be
assumed that the system clock is set to zero (i.e., TR = 0). Of course, when the system enters
the initial state, the system goes to a “busy” state. In general, the system clock will always be
running. By way of example, when TR = 0, the system state variables will have the following

values.

10

10

15

20

25

WO 98/35465 PCT/US97/21410

The system virtual time STV is set to “0,” and for each Q,, the queue virtual time TVQ, is
set to “0.” Queue empty QE, is set to “1” indicative of no packets being queued, queue enable
QEN, is set to “0” indicative of inactivity, and queue selected QS is set to “0” indicative of not
being selected. And finally, the sum of queue bandwidths B, is preferably less than or equal to

the system bandwidth SB as expressed in Equation 1 above.

Therefore, the system becomes enabled (i.e., active) when one or more packets are
queued onto one or more output queues. That is, when at least one queue assumes a QEN,; value
of 1 (i.e., is enabled), the system becomes busy at a time 7R = 0. At the instant the system
becomes busy, the system virtual time STV starts incrementing, and the queue selection unit 120
begins selecting from the active queues for transmission of packets. When a packet P; is queued
in a selected Q,, the packet is assigned a time stamp TVP; that is equal to a current value of the

system virtual time STV. In other words, TVP; = STV at the instant packet P; is queued.

As noted above, STV starts incrementing when the system enters a busy period.

Therefore, when allocated bandwidth (BA) is constant for a real time interval of ATR, an

increment in system virtual time STV is determined by the following equation.

ASTV = ATR * (SB/BA) (Equation 3)

Thus STV is a continuous, piece-wise linear function whose slope changes whenever the
allocated bandwidth BA changes as fraction of the system bandwidth. Thus, virtual time
increments are preferably computed at various events which include packet arrivals and the end

of packet transmissions.

In one embodiment, the output queue Q, selected for transmission is the (non-empty QE;
= 0) queue that has the least value for TVQ, among all non-empty queues. In case of ties, the
queue with the minimum index “j” is selected . After queue Q, is selected, the time stamp TVP;

of the first packet is examined. If the queue virtual time TVQ; is less than TVP;;, it is set equal to

TVPij. Otherwise, it is not changed.

Therefore, the queue virtual time TVQ, of the selected queue increments each time its is

selected for transmission. Preferably, the increment by which the queue virtual time TVQ;

11

10

15

20

25

WO 98/35465 PCT/US97/21410

advances is based on the length of the packet P; being transmitted and the bandwidth B; of the

selected queue. The incremental value may be calculated using the following equation:
ATVQ, =1,/ B, (Equation 4)

It is important to note that the length ; of the packet being transmitted need not be known
until after the packet transmission has been completed. Advantageously, this feature enables the

switching system to forward packets on-the-fly.

Assuming that the last packet has just been transmitted from the selected O, and the
queue virtual time 7V(Q, has just been incremented in the manner indicated in (Equation 4), and
the system virtual time STV has been incremented as indicated in (Equation 3). In this
embodiment, all queues having a queue virtual time TV(Q, that is greater than the system virtual
time STV are considered to be enabled. That is, these queues are still enabled even when no
packets remain in the queue. As a result, only when the system virtual time STV has advanced
beyond all queue virtual times TVQ, having no queued packets will the queuning system enter the
idle state. When the system enters the idle state, the system state variables will revert to their

nitial values.

As described above, the queuing system will preferably assume an initialized state when the
system virtual time STV is set to “0,” and for each Q,, the queue virtual time TVQi is set to “0.”
Queue empty QE, is set to “1” indicative of no packets being queued, queue enable QEN, is set to
“0” indicative of inactivity, and queue selected QS; is set to “0” indicative of no queues being
selected. And finally, the sum of queue bandwidths B, is preferably less than or equal to the

system bandwidth SB as expressed in Equation 1 above.

In an alternative embodiment, a method is disclosed which does not require knowledge
of a packet’s length in order to compute a queue virtual time TVQ,. In this embodiment, the
system bandwidth (SB) is divided (i.e., scaled) into fixed units “«” of bandwidth. If the unit of
allocation is u%, the system bandwidth SB will have a value of 100/u. Thus, when u = 1%, SB
will be 100 (i.e., SB = 100/1 = 100). Accordingly, if the system bandwidth SB is 100 megabits
per second (Mb/s), and u = 1%, a particular queue may have a bandwidth B; that is an integral

multiple of “1 Mb/s” between about IMb/s and about 100 Mb/s, subject to the constraint
' 12

10

15

20

25

WO 98/35465 PCT/US97/21410
expressed in (Equation 1). That is, the sum of the enabled queues must not exceed the total
system bandwidth which is 100 Mb/s in this example. Therefore, each queue O, may have an

integral value bandwidth B, in a range between about 1 and 100.

As another example, if the unit of allocation u is changed to 0.5%, the system bandwidth
SB will have a value of 200, and for each queue Q,, B; will have an integral value in the range 1
through 200. Of course, an allocation of 0% is a special case, since a quene with 0% allocation

will never become enabled.

For comparison purposes, Equation 3 and Equation 4 illustrate methods by which the
system virtual time STV is incremented, and the queue virtual time TVQ, is incremented based on
the length of the transmitted packet. In this embodiment, it is not necessary to take into account
the length of the packets being transmitted. As can be appreciated, eliminating the multiplication
and division operations of (Equations 3 and 4) is advantageous because multiplication operations
tend to increase hardware requirements (e.g., increase number of transistors in a semiconductor

chip).

In one embodiment, the system bandwidth SB is set to the above-defined value of 100/u,
and the system virtual time STV and the queue virtual times TVQ are incremented by pre-
computed values that are rapidly accessed after each “tick” of the system clock TR. That is, the
pre-computed values define the amount by which the system virtual time STV and the queue

virtual times TVQ, are incremented.

The pre-computed values are preferably stored in a “virtual time increment (VTT) array”
having a length of 100/u (which is equal to the total system bandwidth SB). In this manner, the
i™ element of the VTI array is denoted by VTL (or sometimes by VTI[i]). The VTI array is

computed as follows:
VTL = C* (100/ (i * u)), where i € [1..100/u] (Equation 5)

Note that the lowest index is 1 and the highest index is 100/u, which is the scaled value
of the system bandwidth SB. C is a constant used to scale virtual time increments in order to

minimize the impact of rounding errors. It should be understood that virtual times are preferably

13

WO 98/35465 PCT/US97/21410

only used in performing comparisons that aid in the selection of a queue for transmission. The
selection of a queue for transmission will be described in greater detail with reference to Figure 7
below. Accordingly, the absolute magnitude of a virtual time does not affect the algorithm used.
In addition, relative magnitudes are not affected because the constant C used for scaling applies

5 to all virtual times.

As such, it should be noted from Equation 5 that VTL only depends on u and C. By way
of example, if u = 1% and C = 512, the VTI array will only have 100 elements. The following

table shows exemplary pre-computed virtual time increment (VTI) values for the VTT array.

10
Pre-Computed

Virtual Time Increments
VTIL = 51200
VTI, = 25600
VTIL, = 17067
VTI, = 12800
VTL = 10240
VTI, = 8533
VTIL, = 7314
VTIL, = 6400
VT, = 5689
VTL, = 2560
VTL,,= 1707
VT, = 1280
VT, = 569
VTL, = 517
VTIL, = 512

14

10

15

20

WO 98/35465 PCT/US97/21410

Preferably, the system virtual time STV is updated on every tick of the system clock TR
as defined in Equation 3 above. In this example, when ATR =1 is input into Equation 3, ASTV
is set equal to SB/BA. As described above, BA is the sum of the bandwidths for the enabled

queues. By way of example, if in Figure 1, Q, has a bandwidth B, = 20, Q, has a bandwidth B,
=30 and Q, has a bandwidth B, = 40, then BA would be 90 (i.e., 20 + 30 + 40 = 90). Because

BA is 90 (an integer in the range of 1 through SB), ASTV is the 90" element of VTI. Therefore,

on every “tick” of the system clock TR, the system virtual time STV is incremented by an
amount equal to the 90" element of VTI (that is, VTI[BA]). In this example, the 90™ element of

VTI is equal to 569.

In addition, the queue virtual time TVQ; will be updated on every “tick” of the system
clock while QS; has the value I (that is, while Q; is selected for transmission), according to
equation (4). The amount of the increment is derived as follows. The length [; of the packet is

expressed as follows:
lij =k * SB (Equation 6)

In Equation 6, “k” is the number of “ticks” of the system clock TR takes to transmit a
packet, and SB is the system bandwidth. By substituting Equation 6 into Equation 4, the

following equation is derived:
ATVQ,=k * SB/B; (Equation 7)

Thus, the increment for each tick of the system clock is SB/B;, which is the B j‘h element
of VTI. By way of example, if in Figure 1, Q, has a bandwidth of B, = 20, then the increment

for each tick of the system clock will be VTL,,= 2560. As an example, it takes three ticks to

transmit a packet, the virtual time increments made to the queue virtual time ATVQ, =3 * 2560 =

7680. Thus, on every tick of the system clock, while QSJ. has the value 1, the queue virtual time

TVQ, will be incremented by an amount equal to the Bj‘h element of VTI (that is, VTI[B,}).

15

10

15

20

25

WO 98/35465 PCT/US97/21410

By applying the above described techniques, a computationally efficient fair queuing
system is implemented. As such, queue selection unit 120 of Figure 1 is able to select an output
queve Q,, Q,,... O, while reducing the number of computations that unfortunately increase the
demands of hardware (i.e., increases transistor count) and software queue selection units.
Furthermore, once a queue is selected for transmission, the system state variables are updated

before the next queue is selected for transmission.

The initial state at the end of a system idle period will now be described. The system
bandwidth SB and queue bandwidths B, are scaled to values in the range of 1 through 100/u,
where u is the unit of bandwidth allocation. The VTI array, of length 100/u, has the pre-
computed virtual time increments. The virtual time state variables STV, and TVQi are set to 0.

For each Q,, queue empty QE; = 1. The derived variables BA, QS,, and QEN, are all set to zero.

When a packet P;; is queued in a particular queve Q,, the packet is given a time stamp
equal to STV. In other words, the packet virtual time TVP; is set to the current value of STV.
At the same time, queue empty QE, is set to 0, since Q; is no longer empty. If there are no more
packets on Q, after a packet is transmitted out from the queue, QE; is set to 1. | However, if

packets remain on Q;, QE, will remain set to 0.

Figure 2 illustrates a queue enable computation engine 208 that is configured to compute
QEN, in accordance with one embodiment of the present invention. Preferably, queue enable
computation engine 208 receives queue empty QE, 202 signals, queune virtual times TVQ, 204
signals, and a system virtual time STV 206 signal. When QE, 202 is equal to zero “0” (i.e., the
queue is not empty), or TVQ, 204 is greater than STV 206, queue enable QEN, will be set to 1.
On the other hand, if neither QE, 202 is equal to zero “0,” nor is TVQi 204 greater than STV
206, queue enable QEN, will be set to zero “0.” As described above, when queue enable QEN,

is set to zero “0,” that queue is said to be disabled.

Figure 3 illustrates an allocated bandwidth computer 302 that is configured to compute
allocated bandwidth BA in accordance with one embodiment of the present invention. In this
embodiment, a sum of each queue’s bandwidths “B.” for which QEN, is 1 is calculated. In other

words, the bandwidths of each of the enabled queues are added together to generate an allocated

16

10

15

20

25

WO 98/35465 PCT/US97/21410

bandwidth BA. In the example given above, when Q, has a bandwidth B, = 20, Q, has a
bandwidth B, = 30 and Q, has a bandwidth B, = 40, the allocated bandwidth BA will be 90
(i.e., 20 + 30 + 40 = 90).

Figure 4 illustrates a system virtual time (STV) computer 402 that is configured to
compute an incremented value of STV after each system clock TR 410 tick in accordance with
one embodiment of the present invention. In general, after every tick of the system clock TR
410, the allocated bandwidth BA (that is output from the allocated bandwidth computer 302 of
Figure 3) is input into the system virtual time computer 402. At the same time, after every tick of
the system clock TR 410, the current value of STV 404 is incremented by a BA™ element of
virtual time increments VTI 406. Once incremented, the new incremented value of STV will

become a current value of STV 404 as illustrated by a feedback line 408.

Figure 5 illustrates a queue virtual time (TVQ,) computer 502 that is preferably suited to
compute an incremented value of TVQ, in accordance with one embodiment of the present
invention. By way of example, while QS is set equal to “1” (i.e., the queue is currently selected
for transmission), the current 7VQj 204 is incremented by a Bjth element of VTT (VTI[B]) 406
for every “tick” of the system clock TR 410. Accordingly, the Bjth element establishes an
incremental amount per-tick; however, the actual increment for TVQj 204 is actually a summation
of the established incremental amount. That is, one incremental amount is added for each tick

required to transmit a packet.

Queue virtual time (TVQ,) computer 502 is also shown receiving a selected queue QS;
506 signal and the queue bandwidths B, for each of the active queues. In sum, queue virtual
time TVQ, 204 for the selected queue is incremented, and then updated by a feedback line 504

that replaces the previous TVQ, 204 with an incremented TVQ, 204.

Figure 6 illustrates a queue virtual time adjuster 602 for updating TVQ; based on the
packet virtual time TVP; in accordance with one embodiment of the present invention. By way
of example, when a queue is selected for transmission, the packet virtual time TVP; is compared
to the queue virtual time TVQ,. If the TVP; assigned to the packet when queued is greater than

the queue virtual time TVQ,, then the queue virtual time TVQ), is set equal to the packet virtual

17

10

15

20

25

_WO 98/35465 PCT/US97/21410

time TVP;. However, if the queue virtual time TVQ, is greater than or equal to the packet virtual

time TVP;, then the queue virtual time TVQ;is not adjusted.

This adjustment is necessary to avoid selecting a queue merely because it has been
inactive for a long period of time. As can be appreciated, this is advantageous to prevent giving

a queue unfair selection merely because it has been inactive for a long period of time.

Figure 7 illustrates a queue selection computer 702 implemented to analyze the system
state variables to fairly select an output queue for transmission in accordance with one
embodiment of the present invention. As shown, each of the queue empty QE, 202 data signals
as well as each of the queue virtual time TVQ, 204 signals are input into the queue selection
computer 702. The queue selection computer then identifies each of the non-empty queues (i.e.,
QE, = 0). Once the non-empty queues are identified, the queue virtual time TVQ, 204 for the
non-empty QE, 202 are compared to determine which TVQ; 204 has the lowest value (i.e., which
has been waiting longer). Once the queue having the lowest queue virtual time TVQ, is
identified, the queue select QS, associated with the Jowest value queue virtual time TVQ, is set to
1 (i.e., QS, = 1). In a further embodiment, if there is more than one queue virtual time TVQ,
having a lowest queue virtual time value (i.e., a tie for the lowest TVQ,), then the TVQ, having a

minimum value of “i” is selected. Once a QS,; is selected, all other OS; are set to zero “0.”

Figure 8 is an overview functional architecture of a queue selection unit 120 in
accordance with one embodiment of the present invention. Although only the processing flow of
exemplary output queues Q,, Q,,... @, are shown, it should be apparent that the processing

techniques described above are applicable to any number of output queues.

As described above, the system bandwidth SB and queue bandwidths B, , , ., are scaled
to values in the range of 1 through 100/u, where u is a unit of bandwidth allocation. To
increment system virtual time STV and the queue virtual times TVQ;, both the system virtual time
computer 402 and the queue virtual time computer 502 are configured to receive data from the
VTI array. As described above, the values selected from the VTI array are determined based on
the allocated bandwidth “BA” for the system virtual time computer 402, and the queue

bandwidths “B,” for each queue virtual time computer 502.

18

10

15

20

25

WO 98/35465 PCT/US97/21410

As illustrated, the system virtual time computer 402 is preferably configured to receive
the allocated bandwidth “BA” from the allocated bandwidth computer 302, and each queue
virtual time computer 502 is configured to receive queue bandwidth “B,” information for its
associated queue. The virtual time increment is preferably performed after each system clock TR
410 tick. Accordingly, the system clock TR 410 is shown coupled to the system virtual time
computer 402 and each of the queue virtual time computers 502. Once the system virtual time
STV is incremented, the incremented value is updated via the feedback line 408 and each of the
queue virtual times TVQj are updated via the feedback lines 504. In this manner, the updated

values are stored in registers 802 and 804 respectively.

Initially, the queue virtual times TVQ, are input into the queue virtual time adjusters 602,
where the queue virtual times TVQ, are compared to the TVP; (i.e., packet time stamps) of the
incoming packets. If the TVP, is greater than the queue virtual times TVQ;, the queue virtual
times TVQ, are set equal to the later time of the TVP;. Once this adjustment is made (if
necessary), the new queue virtual times TVQ;are passed to the registers 804 and fed back as an

input to the queue virtual time adjusters 602 via feedback lines 604.

To compute the aforementioned allocated bandwidth BA, allocated bandwidth computer
302 needs to determine which queues are actually enabled. To do this, the queue enable
computation engines 208 feed the QEN; signals into allocated bandwidth computer 302. Once
the QEN, information is received, the scaled bandwidth data B,, B, and B, are reccived by the
allocated bandwidth computer 302. These values are used to compute BA which is passed to the
system virtual time computer 402. As described above, the system virtual time computer 402
uses the BA value received from the allocated bandwidth computer 302 to pick-out the pre-
computed system virtual time STV increment from the VTI array. Further, the queue enable
computation engines 208 are configured to receive the updated system virtual time STV, the
queue virtual time TVQ, data from the queue virtual time computers 502 and the queue empty QE;

signals for each queue.

Accordingly, when the queue empties QE; are equal to zero “0” (i.e., the queues are not
empty), or the queue virtual times TVQ, are greater than the system virtual times STV, the queue

enables QEN, will be set to 1. On the other hand, if neither of the queue empties QE; are equal to
' 19

10

15

20

25

_ WO 98/35465 PCT/US97/21410

zero “0,” nor are the queue virtual times TVQ, greater than the system virtual time STV, the

queue enables QEN, will be set to zero “0.”

When a queue is selected for transmission, QS, = 1 is input into the queue virtual time
computer 502 which increments the queue virtual time TVQ, by a pre-calculated increment
selected from the VTI array” for every system clock tick, while Qs;= 1. As described above,
this new value is then stored in register 804 which is communicated to the queue selection
computer 702. Once the queue selection computer 702 holds the current values for all queue
virtual times TVQ, and information on whether each queue is enabled, the queue selection
computer 702 will select the queue having the lowest queue virtual time TVQ; as described with

reference to Figure 7.

The present invention may be implemented using any type of integrated circuit logic or
software driven computer-implemented operations. By way of example, a hardware description
language (HDL) based design and synthesis program may be used to design the silicon-level

circuitry necessary to appropriately perform the data and control operations in accordance with

one embodiment of the present invention. By way of example, a VHDL® hardware description
language available from IEEE of New York, New York may be used to design an appropriate

silicon-level layout. Although any suitable design tool may be used, another layout tool may

include a hardware description language “Verilog®” tool available from Cadence Design

Systems, Inc. of Santa Clara, California.

The invention may also employ various computer-implemented operations involving
data stored in computer systems. These operations are those requiring physical manipulation of
physical quantities. Usually, though not necessarily, these quantities take the form of electrical
or magnetic signals capable of being stored, transferred, combined, compared, and otherwise
manipulated. Further, the manipulations performed are often referred to in terms, such as

producing, identifying, determining, or comparing.

Any of the operations described herein that form part of the invention are useful
machine operations. The invention also relates to a device or an apparatus for performing these

operations. The apparatus may be specially constructed for the required purposes, or it may be

20

10

15

20

25

~ WO 98/35465 PCT/US97/21410

a general purpose computer selectively activated or configured by a computer program stored in
the computer. In particular, various general purpose machines may be used with computer
programs written in accordance with the teachings herein, or it may be more convenient to
construct a more specialized apparatus to perform the required operations. An exemplary

structure for the invention is described below.

Figure 9 is a block diagram of an exemplary computer system 900 for carrying out the
processing according to the invention. The computer system 900 includes a digital computer
902, a display screen (or monitor) 904, a printer 906, a floppy disk drive 908, a hard disk drive
910, a network interface 912, and a keyboard 914. The digital computer 902 includes a
microprocessor 916, a memory bus 918, random access memory (RAM) 920, read only
memory (ROM) 922, a peripheral bus 924, and a keyboard controller 926. The digital
computer 900 can be a personal computer (such as an IBM compatible personal computer, a
Macintosh computer or Macintosh compatible computer), a workstation computer (such as a

Sun Microsystems or Hewlett-Packard workstation), or some other type of computer.

The microprocessor 916 is a general purpose digital processor which controls the
operation of the computer system 900. The microprocessor 916 can be a single-chip processor
or can be implemented with multiple components. Using instructions retrieved from memory,
the microprocessor 916 controls the reception and manipulation of input data and the output and
display of data on output devices. According to the invention, a particular function of

microprocessor 916 is to assist in the queuing tasks.

The memory bus 918 is used by the microprocessor 916 to access the RAM 920 and the
ROM 922. The RAM 920 is used by the microprocessor 916 as a general storage area and as
scratch-pad memory, and can also be used to store input data and processed data. The ROM
922 can be used to store instructions or program code followed by the microprocessor 916 as

well as other data.

The peripheral bus 924 is used to access the input, output, and storage devices used by

the digital computer 902. In the described embodiment, these devices include the display

21

10

15

20

25

~ WO 98/35465 PCT/US97/21410
screen 904, the printer device 906, the floppy disk drive 908, the hard disk drive 910, and the
network interface 912. The keyboard controller 926 is used to receive input from keyboard 914

and send decoded symbols for each pressed key to microprocessor 916 over bus 928.

The display screen 904 is an output device that displays images of data provided by the
microprocessor 916 via the peripheral bus 924 or provided by other components in the
computer system 900. The printer device 906 when operating as a printer provides an image on
a sheet of paper or a similar surface. Other output devices such as a plotter, typesetter, etc. can

be used in place of, or in addition to, the printer device 906.

The floppy disk drive 908 and the hard disk drive 910 can be used to store various
types of data. The floppy disk drive 908 facilitates transporting such data to other computer

systems, and hard disk drive 910 permits fast access to large amounts of stored data.

The microprocessor 916 together with an operating system operate to execute computer
code and produce and use data. The computer code and data may reside on the RAM 920, the
ROM 922, or the hard disk drive 910. The computer code and data could also reside on a
removable program medium and loaded or installed onto the computer system 900 when
needed. Removable program mediums include, for example, CD-ROM, PC-CARD, floppy

disk and magnetic tape.

The network interface 912 is used to send and receive data over a network connected to
other computer systems. An interface card or similar device and appropriate software
implemented by the microprocessor 916 can be used to connect the computer system 900 to an

existing network and transfer data according to standard protocols.

The keyboard 914 is used by a user to input commands and other instructions to the
computer system 900. Other types of user input devices can also be used in conjunction with
the present invention. For example, pointing devices such as a computer mouse, a track ball, a
stylus, or a tablet can be used to manipulate a pointer on a screen of a general-purpose

computer.

22

10

15

WO 98/35465 PCT/US97/21410

The invention can also be embodied as computer readable code on a computer readable
medium. The computer readable medium is any data storage device that can store data which
can be thereafter be read by a computer system. Examples of the computer readable medium
include read-only memory, random-access memory, CD-ROMs, magnetic tape, optical data
storage devices. The computer readable medium can also be distributed over a network coupled
computer systems so that the computer readable code is stored and executed in a distributed

fashion.

Although the foregoing invention has been described in some detail for purposes of
clarity of understanding, it will be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. In addition, it should be understood that the
various processing functions described above may be implemented both in silicon as hardware
integrated circuits, or as software code that may be stored and retrieved from any suitable
storage medium. Accordingly, the present embodiments are to be considered as illustrative and
not restrictive, and the invention is not to be limited to the details given herein, but may be

modified within the scope and equivalents of the appended claims.

23

10

15

20

25

_ WO 98/35465 PCT/US97/21410

Claims
1. A queue selection method for data transfer, comprising:
scaling a system bandwidth into a plurality of scaled bandwidth integers extending to a

maximum scaled system bandwidth integer;

providing a plurality of queues, each of the plurality of queues being associated with a
scaled bandwidth integer such that a sum of the scaled bandwidth integers for each of the

plurality of queues is less than or equal to the maximum scaled system bandwidth integer;

determining an allocated bandwidth integer from the scaled bandwidth integers for each

of the plurality of queues that are enabled;

incrementing a system virtual time upon each cycle of a system clock while at least one

of the plurality of queues is enabled;
selecting one of the plurality of queues having a lowest queue virtual time;

outputting a packet from the selected one of the plurality of queues having the lowest

queue virtual time; and

incrementing the queue virtual time of the selected one of the plurality of queues upon

each cycle of the system clock.

2. A queue selection method for data transfer as recited in claim 1, wherein the

incrementing the system virtual time comprises incrementing by a pre-computed amount.

3. A queue selection method for data transfer as recited in claim 2, wherein the pre-

computed amount is retrieved from a virtual time increment array.

4. A queue selection method for data transfer as recited in claim 3, wherein the
determined allocated bandwidth integer is mapped to a specific pre-computed amount in the

virtual time increment array.

24

10

15

20

25

WO 98/35465 PCT/US97/21410

5. A queue selection method for data transfer as recited in claim 1, wherein the

incrementing the queue virtual time comprises incrementing by a pre-computed amount.

6. A queue selection method for data transfer as recited in claim 5, wherein the pre-

computed amount is retrieved from a virtual time increment array.

7. A queue selection method for data transfer as recited in claim 6, wherein the
scaled bandwidth integer of the selected one of the plurality of queues is mapped to a specific

pre-computed amount in the virtual time increment array.

8. A queue selection method for data transfer as recited in claim 1, further

comprising:

comparing a packet virtual time of a packet queued in one of the plurality of queues with

the queue virtual time associated with the one of the plurality of queues; and

updating the queue virtual time to the packet virtual time when the packet virtual time is

greater than the queue virtual time.

9. A queue selection method for data transfer as recited in claim 8, wherein the

packet virtual time is assigned the system virtual time when the packet is queued.

10. A queue selection method for data transfer over a network having a system

bandwidth, comprising:

providing a plurality of queues to hold data to be transferred over the network, each of
the plurality of queues being associated with a bandwidth integer, each of the plurality of queues
having a bandwidth less than the system bandwidth, and the sum of the bandwidths for each of

the plurality of queues is less than or equal to a maximum system bandwidth integer;

25

_ WO 98/35465 PCT/US97/21410
determining the plurality of queues that are enabled;

determining an allocated bandwidth integer from the bandwidth integers for each of the

plurality of queues that are enabled;

incrementing a virtual time by a pre-computed amount while at least one of the plurality

5 of queues is enabled;
selecting one of the plurality of queues based on the virtual time; and

outputting a packet from the selected one of the plurality of queues.

11. A queue selection method for data transfer over a network having a system
10 bandwidth as recited in claim 10, wherein the incrementing a virtual time comprises

incrementing a system virtual time for each cycle of a system clock.

12. A queue selection method for data transfer over a network having a system
bandwidth as recited in claim 11, wherein the pre-computed amount is retrieved from a virtual

15 time increment array.

12. A queue selection method for data transfer over a network having a system
bandwidth as recited in claim 12, wherein the allocated bandwidth integer is mapped to a

specific pre-computed amount in the virtual time increment array.

20
14. A queue selection method for data transfer over a network having a system
bandwidth as recited in claim 10, wherein the incrementing of the virtual time comprises
incrementing a queue virtual time of the selected one of the plurality of queues.
25 15. A queue selection method for data transfer over a network having a system

bandwidth as recited in claim 14, wherein the incrementing of the queue virtual time is

performed upon each cycle of a system clock.

26

10

15

20

25

_WO 98/35465 PCT/US97/21410

16. A queue selection method for data transfer over a network having a system
bandwidth as recited in claim 15, wherein the incrementing of the queue virtual time is
performed for at least one cycle of the system clock while the outputting of the packet from the

selected one of the plurality of queues is in progress.

17. A queue selection method for data transfer over a network having a system
bandwidth as recited in claim 16, wherein the pre-computed amount is retrieved from a virtual

time increment array.

18. A queue selection method for data transfer over a network having a system
bandwidth as recited in claim 17, wherein the bandwidth integer of the selected one of the
plurality of queues is mapped to a specific pre-computed amount in the virtual time increment

array.

19. A queue selection method for data transfer as recited in claim 14, further

comprising:

comparing a packet virtual time of a packet queued in one of the plurality of queues with

the queue virtual time associated with the one of the plurality of queues; and

updating the queue virtual time to be the packet virtual time when the packet virtual time

is greater than the queue virtual time.

20. A queue selection method for data transfer as recited in claim 17, wherein the

packet virtual time is assigned a system virtual time when the packet is queued.

21. A queue selection apparatus, comprising:

a plurality of queuing means for holding data to be transferred over the network, each of

the plurality of queuing means being associated with a bandwidth amount, each of the plurality

27

10

15

20

25

~ WO 98/35465 PCT/US97/21410

of queues having a bandwidth that is less than a system bandwidth, and the sum of the
bandwidth amounts for each of the plurality of queuing means is less than about a maximum

system bandwidth integer;

an allocated bandwidth computer means for calculating an allocated bandwidth for each

of the plurality of queuing means that are enabled;

means for incrementing a virtual time by a pre-computed amount while at least one of the

plurality of queuing means is enabled;

a queue selection computer means for selecting one of the plurality of queuing means

based on the virtual time; and

an output means for outputting data from the selected one of the plurality of queuing

means.

22. A queue selection apparatus as recited in claim 21, wherein the means for
incrementing a virtual time comprises incrementing a system virtual time in a system virtual

time computer means for each cycle of a system clock.

23. A queue selection apparatus as recited in claim 22, wherein the pre-computed

amount is retrieved from a virtual time increment array.

24. A queue selection apparatus as recited in claim 23, wherein the allocated

bandwidth is mapped to a specific pre-computed amount in the virtual time increment array.

25. A queue selection apparatus as recited in claim 24, wherein the means for
incrementing a virtual time comprises incrementing a queue virtual time for the selected one of

the plurality of queuing means in a queue virtual time computer means.

28

10

15

20

25

WO 98/35465 PCT/US97/21410

26. A queue selection apparatus as recited in claim 25, wherein the queue virtual
time computer means increments the queue virtual time for the selected one of the plurality of

queuing means upon each cycle of a system clock.

27. A queue selection apparatus as recited in claim 26, wherein the incrementing is

performed for each cycle of the system clock while the outputting of the data is in progress.

28. A queue selection apparatus as recited in claim 27, wherein said apparatus
further comprises a virtual time increment array that stores a plurality of pre-computed

amounts, and

wherein the pre-computed amount is retrieved from the virtual time increment array by

the means for incrementing.

29. A queue selection apparatus as recited in claim 28, wherein the plurality of pre-
computed amounts stored in the virtual time increment array are determined in accordance with

the following equation:

C * (100 /(u * 1)), where i € [1..100/u],

wherein C is a constant, i and u are integers, and where i is an integer representing an
index to the virtual time increment array and u is a unit of bandwidth allocation that is a

percentage of the system bandwidth..

30. A queue selection apparatus as recited in claim 29, wherein the bandwidth of the
selected one of the plurality of queuing means is mapped to a specific pre-computed amount in

the virtual time increment array.

31. A queue selection apparatus as recited in claim 25, further comprising:

29

WO 98/35465 PCT/US97/21410

a queue virtual time adjuster for comparing a packet virtual time of a packet queued in
one of the plurality of queuing means with the queue virtual time associated with the one of the
plurality of queuing means, and adjusting the queue virtual time to be the packet virtual time

when the packet virtual time is greater than the queue virtual time.

30

112

Queue Selection Unit

120

Packet
Classifier

QSi1=0

(92 3INY) 133HS ILNLILSENS

\&51-6_

/ =

r*QEl-’: 1
B1 R
Q,
~QE=0
B2 -
Q,
AN
B, By By
QE~0
Bn
0,
71
Bn Bn
Figure 1

SB

o
Output Port
To Network

9/1

S9PSE/86 OM

0IF1T/L6SN/LDd

WO 98/35465 PCT/US97/21410

2/6

208
J

Queue Enable
“TVQi"
Queue Computation ————» QEN,
Virtual

Time

Engine
llSTVII
System
Virtual
Time
Figure 2
302
f 0
B, —_—N
QEN, ———¥
Allocated

QEN, ————— Bandwidth [> 54

Computer

Figure 3

SUBSTITUTE SHEET (RULE 26)

_ WO 98/35465

PCT/US97/21410
3/6
408
404 f
IISTV" 402
System I
Vix:tual
Time System Virtual
BA —————» Time » STV
“WTI" Computer
Virtual Time
Increments Z—406 i
1
f4 0
TR
System
Clock
Figure 4
504
204 f
IITV LT
Cuod 0
Virtual
506
Queue Virtual
Selected .
i
. ime y TVO,
J Computer
IIVTIH
Virtual Time
Increments Z—406 410
I
TR
System
Clock
Figure 5

' SUBSTITUTE SHEET (RULE 26)

WO 98/35465 PCT/US97/21410

4/6

604
204 L

Js 602

Virtual
Time

Queue Virtual
Time _
Adjuster » TVQj

Packet
Vi.rtual

606

Figure 6

" QEl L}
Queue
Empty

”" QEZ“
Queue
Empty

f 702

v

os,

v

0s,

Queue

204 Selection

"TVQI]
Queue
Virtual

Time

Computer

A\ 4

os,

204

" V 1
Qo

Virtual
Time

Figure 7

SUBSTITUTE SHEET (RULE 26)

(92 I1NH) 133HS 3LNLILSANS

Queue Selection Unit

Figure 8§

VQp 604
TVQ 51 By VTI o4
602 804 $ i 502 1~
LY ~ 208
Queue Queue P
TVP: (——t Virtual - Ié Virtual | TVQ1]
il Time [TVQ; l_g}_ Time Queue QEN;
Adjuster »Computer] QEr—"| Enable
»| Computation B
: X 1. B2 B
TVQ, 604 Engine | 2
602 bt Qsy BoVTI l l l 302
TVE, | ek 504 L4 s 3 208 =
12 Queue Queue [. d
802 40% l Virual > g J »| Virtual |TVQ2 - Allocate
- "| Time |tyQ T ™ Queue QEN ,
> . 21 G ime 2 Bandwidth u
System Adjuster Comput E;—»> _ Enable > <
g STV Virtual STY -Computer] Q | Computation | c BA o
G Time 1 TV Engine > omputer
Qn 604 2
I Computer Qsn BaVTI
VTI— - nen
7\ 602 304 504
Y ¢ i i 502
Queue A Queve |~ /%08
_| Virtual g | Virtual | TVQn| QE; QE2QEn
1 Adjuster [TV _Computer] QEr—» Emable [GEN 702
10 »| Computation n
Enei
3 TVEn nEmne N Queue Qs
TR
System Selection |—— Qs2
Clock _
.| Computer [Qsn

S9YSE/86 OM

0I¥17/L6SN/LDd

(9Z 3Nt 133HS 3LNLILSENS

900

982 {/
920 904
% —> N
_—~918
RAM l<t—P> 916 P
M g IFi 906
M L\,_,/"__“‘
o P
R H
¥ R
0 @ MICROPROCESSOR €2 0lq | 8 008
S B -
U
S B
ROM t—P> 028 U [— 910
S S
KBC |——926 < >
A
912
FIG. 9

gnogooooog

pnooooooo

EDDDDDDDD
n

914

9/9

S9PSE/86 OM

0TYIT/L6SN/LOd

INTERNATIONAL SEARCH REPORT

Intemational application No.
PCT/US97/21410

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :H04J 3/02
US CL : 395/200.62

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

us. :

Minimum documentation searched (classification system followed by classification symbols)

395/200.62, 200.63, 200.64, 200.65; 370/229, 230, 235, 412

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

APS, IEEE data base on disk

24 June 1996. Pages 3-26.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X,P US 5,689,508 A (LYLES) 18 November 1997, col. 5-6 and 8. 1,10,21

Y,P 1120, 2229, 31
Y SURI ET AL. Leap Forward Virtual Clock. Washington University. | 11-20, 22-29, 31

D Further documents are listed in the continuation of Box C.

D See patent family annex.

wpe

Special categories of cited documents:

document defining the general state of the art which is not considered

to be of particular relevance

carlier document published on or after the international filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other

special reason (as specified)

document referring to an oral di
means

Ly
o, use, ex

document published prior to the international filing date but later than

the priority date claimed

or other

e

Y

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such d ents, such combinati
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the intemational search

18 FEBRUARY 1998

/',

Date of maglg o%ttem"ggl, search report

Facsim

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

ile No. (703) 305-3230

thorized officer

B N
Parshotam Lall \j,@_f\,;

elephone No.

WM

(703) 305-3900

Form PCT/ISA/210 (second sheet}July 1992)»

]

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

