The present invention relates to a class of hydroxamic acid compounds of Formula (I), which act as alkylating agents and/or inhibitors of the HDAC pathway, having potential utility in the treatment of a neoplastic disease and immune diseases.
Novel Therapeutic Agents

The present invention relates to a class of hydroxamic acid compounds, which act as alkylation agents and/or inhibitors of the HDAC pathway, to uses thereof, to processes for the preparation thereof and compositions comprising said compounds. These compounds have potential utility in a variety of therapeutic areas including the treatment of a neoplastic disease and immune diseases.

Cancer is one of the most life threatening diseases in which cells in a part of the body experience out-of-control growth. According to latest data from American Cancer Society, it is estimated to have 1.6 million new cases of cancer in USA in 2011. Cancer is the second leading cause of death in the United States (second only to heart disease) and will claim more than 570,000 lives in 2011. In fact, it is estimated that 50% of all men and 33% of all women living in the United States will develop some type of cancer in their lifetime. Therefore cancer constitutes a major public health burden and represents a significant cost in the United States.

For decades, surgery, chemotherapy, and radiation were the established treatments for various cancers. Patients usually receive a combination of these treatments depending upon the type and extent of their disease. But the chemotherapy is most important option for cancer patient when the surgery treatment is impossible.

Bendamustine, a well known chemotherapy first synthesized in 1963, consists of an alkylation nitrogen mustard moiety and a purine-like benzimidazole moiety with a suggested purine-analog effect (Barman Balfour JA, et al, Drugs 2001; 61: 631-640). Bendamustine has been shown to have substantial activity against low-grade lymphomas (Herold M, et al., Blood, 1999; 94, Suppl 1: 262a), multiple myelomas (Poenisch W, et al., Blood 2000; 96, Suppl 1: 759a), and several solid tumors (Kollmannsberger C, et al., Anticancer Drugs 2000; 11: 535-539). It was also reported that bendamustine effectively induces apoptosis in lymphoma cells (Chow KU, et al., Haematologica, 2001; 86: 485-493). It has received FDA approval for the treatment of chronic lymphocytic leukemia (CLL) and for treatment of indolent B-cell non-Hodgkin's lymphoma (NHL) that has progressed during or within six months of treatment with rituximab or a rituximab-containing regimen.

In recent years, histone deacytases (HDAC) has emerged as an important disease target for cancer treatment [Minucci, S. et al., Nat Rev Cancer 2006, 6, 38-51]. The human HDAC enzymes have 18 isoforms grouped into Class I-IV according to their sequence homology. Class I, II and IV, commonly referred to as the classical HDACs, are comprised of 11 family
members. Class III HDACs consists of 7 enzymes and they are distinct from other HDAC family members, therefore are given a unique term sirtuins. The inhibition of HDAC enzyme leads to histone acetylation which is associated with the remodelling of chromatin and plays a key role in the epigenetic regulation of gene expression. In addition, HDAC inhibitors have been shown to evoke the acetylation of many important non-histone proteins such as HSP90, alpha-tubulin, Ku-70, Bcl-6, importin, cortactin, p53, STAT1, E2F1, GATA-1 and NF-kB, which can alter many important signaling networks related to cancer treatment. The underlying mechanism of action of HDAC inhibitors includes the differentiation, cell cycle arrest, inhibition of DNA repair, induction of apoptosis, upregulation of tumor suppressors, down regulation of growth factors, oxidative stress and autophagy. In the last decade, a large number of structurally diverse HDAC inhibitors have been identified and at least 12 HDAC inhibitors are currently in human clinical trials for cancer treatments, including short-chain fatty acid (valproic acid), hydroxamates (SAHA, LBH589, PXD101, JNJ-26481585, ITF2357, CUDC-101), cyclic tetrapeptides (FK-228), benzamide (MS-275), and several other compounds (CHR-3996, 4SC-201, SB939). Among them, SAHA and FK-228 has been approved by the US FDA for the treatment of advanced cutaneous T-cell lymphoma.

WO/2010/085377 refers to a class of hydroxamic acid derivatives, which inhibit the HDAC pathway and have potential utility in the treatment of a neoplastic disease or an autoimmune disease. Among the compounds disclosed is NL-101 having the structure shown below:

![NL-101 structure](image)

The biological assay showed that NL-101 potently inhibits HDAC enzyme (HDAC1 IC$_{50}$ of 9 nM). NL-101 was sent to NCI (NSC# 751447) for NCI-60 cell line panel screening. The data showed that NL-101 is about x 25-100 fold more potent than Bendamustine in the NCI-60 cell lines that are representative of a variety of human cancer type.

There is a continuing need for further pharmaceuticals useful for the treatment of cancer and auto-immune diseases, preferably having advantages over existing therapies, such as improved potency or selectivity, or reduced toxicity.

The present invention relates to a class of hydroxamic acid derivatives, which act as
alkylating agents and/or inhibitors of the HDAC pathway. The single dual-functional small molecules of the invention may attack the cancer cells synergistically from two distinct directions simultaneously (DNA damaging and the inhibitions of the HDAC pathway). Thus, the compounds of the present invention may be useful in treating a patient having a tumor, such as one treatable by Bendamustine and/or the inhibitors of HDAC pathway. The compounds of the invention may additionally be useful in the prevention and treatment of an immune disease.

Thus, in one aspect, this invention relates to a compound of Formula (I) or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer of said compound of formula (I) or N-oxide thereof:

\[
\begin{align*}
&X_1 \text{ Formula (I),} \\
&Z \text{ is a bond, (CR}_a\text{R}_b\text{)}^p, (CR}_a\text{R}_b\text{)}^p, N(R_a)\text{(CR}_a\text{R}_b\text{)}^q, (CR}_a\text{R}_b\text{)}^p, N(R_a)C(0)(CR}_a\text{R}_b\text{)}^q, \\
&(CR}_a\text{R}_b\text{)}^p, C(0)N(R_a)(CR}_a\text{R}_b\text{)}^q, C(R_a)\text{=}N, O, S, C(O), N(R_a), S(0_2), OC(O), C(0)0, \text{OS0}_2, \\
&S(0_2)\text{O, C(0)S, SC(O), C(0)C(0), C(0)N(R_a), N(R_a)C(0), S(0_2)N(R_a), N(R_a)S(0_2), OC(O)0,} \\
&\text{OC(O)S, OC(O)N(R_a), OC(O)N(R_a)(CR}_a\text{R}_b\text{)}^p, iN(R_a)(CR}_a\text{R}_b\text{)}^q, N(R_a)C(0)0, N(R_a)C(0)S,} \\
&N(R_a)C(0)N(R_b), \text{a bivalent alkkenyl group, or a bivalent alkynyl group in which each of }R_a\text{ and }R_b, \text{ independently, is H, alkyl, alkenyl, or alkynyl; each of }p \text{ and }q, \text{ independently, is 0, 1, 2, 3, or 4; }X_1 \text{ and }X_2, \text{ independently, is halo or OS0}_2\text{R}_c, \text{ in which }R_c \text{ is alkyl, alkenyl, or alkynyl; }Q \text{ is cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, or heteroaryl, each of which, independently, is optionally substituted with alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, halo, nitro, oxo, }-\text{C=NH, cyano, alkyl-R}_d\text{, OR}_d\text{, OC(O)R}_d\text{, OC(O)OR}_d\text{, OC(O)SR}_d\text{, SR}_d\text{, C(0)R}_d\text{, C(0)OR}_d\text{, C(0)SR}_d\text{, C(0)NR}_c\text{R}_f, SOR}_d\text{, S0}_2\text{R}_d, NR}_c\text{R}_f, \text{ or N(R}_c\text{)C(0)R}_f\text{, in which each of }R_d, R_c, \text{ and }R_f, \text{ independently, is H, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, halo, cyano, amine, nitro, hydroxy, or alkoxy; } P \text{ is } P_i \text{ or } P_2:\n\end{align*}
\]

\[\text{P}_i\text{ is:}\]
wherein \(W_i \) is \(\text{CH} \) or \(\text{N} \); \(L_i \) is a bivalent cycloalkyl, heterocycloalkyl, cycloalkenyl, or heterocycloalkenyl group; and

\[
P_2 \text{ is } Y
\]

wherein \(Y \) is \(\text{NH}_2 \) or \(\text{OH} \); \(V \) is \(Z \), bivalent cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, or heteroaryl group.

In certain embodiments, \(Q \) is an aryl or heteroaryl.

In certain embodiments, \(Q \) is a 9-10 membered aryl or heteroaryl.

In certain embodiments, the compound is represented by Formula (II)

\[
\begin{align*}
X_1 & \quad \text{NH} \quad Z \quad X_2 \\
\text{Formula (II)}
\end{align*}
\]

In certain embodiments, \(Z \) is a bond, \((\text{CH}_2)_p, (\text{CH}_2)_p\text{NH}(\text{CH}_2)_q, (\text{CH}_2)_p\text{C}(0)\text{NH}(\text{CH}_2)_q, (\text{CH}_2)_p\text{NH}(0)(\text{CH}_2)_q, \text{CH}=\text{N}, \text{CH}=\text{CH}, \text{C} = \text{C}, \text{O}, \text{S}, \text{C}(0), \text{NH}, \text{S0}_2, \text{OC}(0), \text{C}(0)\text{O}, \text{OS0}_2, \\
\text{S}(\text{O})_2\text{O}, \text{C}(0)\text{S}, \text{SC}(0), \text{C}(0)\text{C}(0), \text{C}(0)\text{NH}, \text{NHC}(0), \text{S}(0)_2\text{NH}, \text{NHS}(0)_2, \text{OC}(0)\text{O}, \text{OC}(0)\text{S}, \\
\text{OC}(0)\text{NH}, \text{OC}(0)\text{NH}(\text{CH}_2)_p+i\text{NH}(\text{CH}_2)_q, \text{NHC}(0)\text{O}, \text{NHC}(0)\text{S}, \text{or NHC}(0)\text{NH}.
\]

In certain embodiments, the compound is represented by

\[
\begin{align*}
\text{Formula (III)}
\end{align*}
\]

\[
\begin{align*}
\text{Formula (III)}
\end{align*}
\]

\[
\begin{align*}
\text{Formula (IIIA)}
\end{align*}
\]

\[
\begin{align*}
\text{Formula (IIIB)}
\end{align*}
\]
In certain embodiments, the compound is represented by

\[
\text{Formula (IV)}
\]

, or

\[
\text{Formula (IV-A)}
\]

, or

\[
\text{Formula (IV-B)}
\]

In certain embodiments, the compound is represented by Formula (V)

\[
\text{Formula (V)}
\]

wherein \(V \) is Z, bivalent heterocycloalkyl, aryl, or heteroaryl group.

In a more preferred aspect, the present invention is directed to a compound of

\[
\text{Formula (I)}
\]
wherein

\[Z = (CR_a R_b)_p N(R_a)(CR_a R_b)_q \];

\(X_1 \) and \(X_2 \) are each independently selected from halo and OS0\(_2\)R\(_c\);

\[p \text{ and } q \text{ are each independently selected from } 0, 1, 2, 3 \text{ and } 4; \]

\(P \) is a tautomer thereof or a pharmaceutically acceptable salt, solvate or polymorph of said compound or tautomer.

Preferably, \(p \) and \(q \) are each independently selected from 1, 2, and 3. More preferably, \(p \) is 1 and \(q \) is 2; or \(p \) is 2 and \(q \) is 1; or \(p \) is 0 and \(q \) is 3; or \(p \) is 3 and \(q \) is 0; or \(p \) and \(q \) are both 2.

Preferably, \(Z = (CH_2)_p NH(CH_2)_q \). Most preferably, \(Z = (CH_2)_2 NH(CH_2) \).

Preferably, \(X_1 \) and \(X_2 \) are each independently selected from halo. More preferably, \(X_1 \) and \(X_2 \) are each independently selected from chloro, bromo and iodo. Most preferably, \(X_1 \) and \(X_2 \) are both chloro.

Preferably, \(Q \) is an optionally substituted 9-10 membered heteroaryl. More preferably, \(Q \) is an optionally substituted benzimidazolyl. Yet more preferably, \(Q \) is benzimidazolyl substituted by one or more alkyl groups. Even more preferably, \(Q \) is benzimidazolyl substituted by 1, 2, or 3 methyl groups. Most preferably, \(Q \) is benzimidazolyl substituted by a methyl group.

In more preferred embodiments, the compounds of the invention are represented by Formula (III) or Formula (IIIA):
In a more preferred embodiment, the compounds of the invention are represented by Formula (III) or Formula (IIIA) wherein Xi and X₂ are each independently selected from halo, and Z is (CH₂)ₚNH(CH₂)ₚ.

In a yet more preferred embodiment, the compounds of the invention are represented by Formula (III) or Formula (IIIA) wherein Xi and X₂ are both chloro, and Z is (CH₂)₂NH(CH₂).

Compounds of the invention may contain one or more asymmetric carbon atoms. Accordingly, the compounds may exist as diastereomers, enantiomers, or mixtures thereof.

Each of the asymmetric carbon atoms may be in the R or S configuration, and both of these configurations are within the scope of the invention.

A modified compound of any one of such compounds including a modification having an improved (e.g., enhanced, greater) pharmaceutical solubility, stability, bioavailability, and/or therapeutic index as compared to the unmodified compound is also contemplated. Exemplary modifications include (but are not limited to) applicable prodrug derivatives, deuterium-enriched compounds, and conjugate with polyethylene glycol, dextran, polyvinyl alcohol, carbohydrate polymer, antibody, biomolecule such as Vitamin E or its derivatives, or mixtures thereof.

The alkene group in the compounds of Formula (I) may be in the form of either the (E) or (Z)-isomer, and are preferably the (E) isomer. In particular, the most preferred compound CY-102 is the (E)-isomer.

It should be recognized that the compounds of the present invention may be present and optionally administered in the form of salts or solvates. The invention encompasses any pharmaceutically acceptable salts and solvates of any one of the above-described compounds and modifications thereof.

Also within the scope of this invention is a pharmaceutical composition containing one or more of the compounds, modifications, and/or salts or solvates thereof described above for use in treating a neoplastic disease, or an immune disorder, therapeutic uses thereof, and use of the compounds for the manufacture of a medicament for treating the disease / disorder.

This invention also relates to a method of treating a neoplastic disorder (e.g., cancer, myelodysplasia syndrome, or myeloproliferative disease) by administering to a subject in need thereof an effective amount of one or more of the compounds, modifications, and/or salts or
solvates, and compositions thereof described above.

Furthermore, this invention relates to a method of treating an immune disease (e.g., rheumatoid arthritis and multiple sclerosis) by administering to a subject in need thereof an effective amount of one or more of the compounds, modifications, and/or salts or solvates, and compositions thereof described above.

The details of one or more embodiments of the invention are set forth in the description below. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. It should be understood that all embodiments / features of the invention (compounds, pharmaceutical compositions, methods of make / use, etc) described herein, including any specific features described in the examples and original claims, can combine with one another unless not applicable or explicitly disclaimed.

DETAILED DESCRIPTION OF THE INVENTION

Exemplary compounds described herein include, but are not limited to, the following:
<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY-103</td>
<td></td>
</tr>
<tr>
<td>CY-104</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following compounds are more preferred:

<table>
<thead>
<tr>
<th>![Chemical Structure 1]</th>
<th>![Chemical Structure 2]</th>
<th>![Chemical Structure 3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl (\text{N}^\text{N}^\text{N}\text{H} \text{H\text{N}O} \text{H}) \text{H}</td>
<td>Cl (\text{N}^\text{N}^\text{N}^\text{H} \text{H} \text{N}\text{H} \text{N} \text{O} \text{H}) \text{H}</td>
<td>Cl (\text{N}^\text{N}^\text{N}^\text{H} \text{H} \text{N}\text{H} \text{N} \text{O} \text{H}) \text{H}</td>
</tr>
<tr>
<td>Cl (\text{N}^\text{N}^\text{N}^\text{H} \text{H} \text{N}\text{H} \text{N} \text{O} \text{H}) \text{H}</td>
<td>Cl (\text{N}^\text{N}^\text{N}^\text{H} \text{H} \text{N}\text{H} \text{N} \text{O} \text{H}) \text{H}</td>
<td>Cl (\text{N}^\text{N}^\text{N}^\text{H} \text{H} \text{N}\text{H} \text{N} \text{O} \text{H}) \text{H}</td>
</tr>
<tr>
<td>![Chemical Structure 7]</td>
<td>![Chemical Structure 8]</td>
<td>![Chemical Structure 9]</td>
</tr>
<tr>
<td>Cl (\text{N}^\text{N}^\text{N}^\text{H} \text{H} \text{N}\text{H} \text{N} \text{O} \text{H}) \text{H}</td>
<td>Cl (\text{N}^\text{N}^\text{N}^\text{H} \text{H} \text{N}\text{H} \text{N} \text{O} \text{H}) \text{H}</td>
<td>Cl (\text{N}^\text{N}^\text{N}^\text{H} \text{H} \text{N}\text{H} \text{N} \text{O} \text{H}) \text{H}</td>
</tr>
<tr>
<td>![Chemical Structure 10]</td>
<td>![Chemical Structure 11]</td>
<td>![Chemical Structure 12]</td>
</tr>
<tr>
<td>Cl (\text{N}^\text{N}^\text{N}^\text{H} \text{H} \text{N}\text{H} \text{N} \text{O} \text{H}) \text{H}</td>
<td>Cl (\text{N}^\text{N}^\text{N}^\text{H} \text{H} \text{N}\text{H} \text{N} \text{O} \text{H}) \text{H}</td>
<td>Cl (\text{N}^\text{N}^\text{N}^\text{H} \text{H} \text{N}\text{H} \text{N} \text{O} \text{H}) \text{H}</td>
</tr>
</tbody>
</table>

The most preferred compound is the compound CY-102 or a pharmaceutically acceptable salt, solvate or polymorph thereof:

![Chemical Structure 13] CY-102

Compounds of the invention may contain one or more asymmetric carbon atoms.

Accordingly, the compounds may exist as diastereomers, enantiomers or mixtures thereof. The
syntheses of the compounds may employ racemates, diastereomers or enantiomers as starting materials or as intermediates. Diastereomeric compounds may be separated by chromatographic or crystallization methods. Similarly, enantiomeric mixtures may be separated using the same techniques or others known in the art. Each of the asymmetric carbon atoms may be in the R or S configuration and both of these configurations are within the scope of the invention.

A modified compound of any one of such compounds including a modification having an improved (e.g., enhanced, greater) pharmaceutical solubility, stability, bioavailability and/or therapeutic index as compared to the unmodified compound is also contemplated. The examples of modifications include but not limited to the prodrug derivatives, the deuterium-enriched compounds, and compound conjugates with polyethylene glycol, dextran, polyvinyl alcohol, carbohydrate polymer, antibody, small biomolecule such as Vitamin E or its derivatives, or mixtures thereof. For example:

- **Prodrug derivatives:** prodrugs, upon administration to a subject, are converted in vivo into active compounds of the present invention [Nature Reviews of Drug Discovery, 2008, Volume 7, p255]. It is noted that in many instances, the prodrugs themselves also fall within the scope of the range of compounds according to the present invention. The prodrugs of the compounds of the present invention can be prepared by standard organic reaction, for example, by reacting with a carbamylating agent (e.g., 1,1-acyloxyalkylcarbonochloridate, para-nitrophenyl carbonate, or the like) or an acylating agent. Further examples of methods and strategies of making prodrugs are described in Bioorganic and Medicinal Chemistry Letters, 1994, Vol. 4, p. 1985.

- **Deuterium-enriched compounds:** deuterium (D or 2H) is a stable, non-radioactive isotope of hydrogen and has an atomic weight of 2.0144. Hydrogen naturally occurs as a mixture of the isotopes ¹H (hydrogen or protium), D (²H or deuterium), and T (³H or tritium). The natural abundance of deuterium is 0.015%. One of ordinary skill in the art recognizes that in all chemical compounds with a H atom, the H atom actually represents a mixture of H and D, with about 0.015% being D. Thus, compounds with a level of deuterium that has been enriched to be greater than its natural abundance of 0.015%, should be considered unnatural and, as a result, novel over their nonenriched counterparts.

- **Compound-polymer conjugates:** Many anti-cancer agents exhibit excellent antitumor activity against in vivo animal xenografts. However, their water insolubility makes it difficult to administer these drugs. One approach to overcome the pharmaceutical and pharmacokinetic shortcomings of these poor soluble drugs is to covalently bind them to
polymers such as polyethylene glycol, dextran, polyvinyl alcohol, and carbohydrate polymers. Using this approach, the water solubility of the anticancer agent can be improved such that the polymeric conjugate can be parenterally administered in aqueous medium.

- **Compound-antibody conjugates:** For many years it has been an aim of scientists in the field of specifically targeted drug therapy to use monoclonal antibodies (MAbs) for the specific delivery of toxic agents to human cancers. Conjugates of tumor-associated MAbs and suitable toxic agents have been developed. The toxic agent is most commonly a chemotherapy drug, although particle-emitting radionuclides, or bacterial or plant toxins have also been conjugated to MAbs, especially for the therapy of cancer (Sharkey and Goldenberg, CA Cancer J. Clin. 2006 July-August; 56(4):226-243). The advantages of using MAb-chemotherapy drug conjugates are that (a) the chemotherapy drug itself is structurally well defined; (b) the chemotherapy drug is linked to the MAb protein using very well defined conjugation chemistries, often at specific sites remote from the MAbs antigen binding regions; (c) MAb-chemotherapy drug conjugates can be made more reproducibly than chemical conjugates involving MAbs and bacterial or plant toxins, and as such are more amenable to commercial development and regulatory approval; and (d) the MAb-chemotherapy drug conjugates are orders of magnitude less toxic systemically than radionuclide MAb conjugates.

It should be recognized that the compounds of the present invention may be present and optionally administered in the form of salts, and solvates. For example, it is within the scope of the present invention to convert the compounds of the present invention into and use them in the form of their pharmaceutically acceptable salts derived from various organic and inorganic acids and bases in accordance with procedures well known in the art.

When the compounds of the present invention possess a free base form, the compounds can be prepared as a pharmaceutically acceptable acid addition salt by reacting the free base form of the compound with a pharmaceutically acceptable inorganic or organic acid, *e.g.*, hydrohalides such as hydrochloride, hydrobromide, hydroiodide; other mineral acids such as sulfate, nitrate, phosphate, *etc.*; and alkyl and monoarylsulfonates such as ethanesulfonate, toluenesulfonate and benzenesulfonate; and other organic acids and their corresponding salts such as acetate, tartrate, maleate, succinate, citrate, benzoate, salicylate and ascorbate. Further acid addition salts of the present invention include, but are not limited to: adipate, alginate, arginate, aspartate, bisulfate, bisulfite, bromide, butyrate, camphorate, camphorsulfonate, caprylate, chloride, chlorobenzoate, cyclopentanepropionate, digluconate, dihydrogenphosphate,
dinitrobenzoate, dodecylsulfate, fumarate, galacturonate, glucoheptaoate, gluconate, glutamate, glycerophosphate, hemisuccinate, hemisulfate, heptanoate, hexanoate, hippurate, 2-hydroxyethanesulfonate, iodide, isethionate, iso-butryrate, lactate, lactobionate, malonate, mandelate, metaphosphate, methanesulfonate, methylbenzoate, monohydrogenphosphate, 2-naphthalenesulfonate, nicotinate, oxalate, oleate, pamoate, pectinate, persulfate, phenylacetate, 3-phenylpropionate, phosphonate and phthalate. It should be recognized that the free base forms will typically differ from their respective salt forms somewhat in physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free base forms for the purposes of the present invention.

When the compounds of the present invention possess a free acid form, a pharmaceutically acceptable base addition salt can be prepared by reacting the free acid form of the compound with a pharmaceutically acceptable inorganic or organic base. Examples of such bases are alkali metal hydroxides including potassium, sodium and lithium hydroxides; alkaline earth metal hydroxides such as barium and calcium hydroxides; alkali metal alkoxides, e.g., potassium ethanolate and sodium propanolate; and various organic bases such as ammonium hydroxide, piperidine, diethanolamine and N-methylglutamine. Also included are the aluminum salts of the compounds of the present invention. Further base salts of the present invention include, but are not limited to: copper, ferric, ferrous, lithium, magnesium, manganous, potassium, sodium and zinc salts. Organic base salts include, but are not limited to, salts of primary, secondary and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, e.g., arginine, betaine, caffeine, chloroprocaine, choline, N,N'-dibenzylethlenediamine (benzathine), dicyclohexylamine, diethanolamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, iso-propylamine, lidocaine, lysine, meglumine, N-methyl-D-glucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethanolamine, triethylamine, trimethylamine, tripropylamine and tris-(hydroxymethyl)-methylamine (tromethamine). It should be recognized that the free acid forms will typically differ from their respective salt forms somewhat in physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid forms for the purposes of the present invention.

In one aspect, a pharmaceutically acceptable salt is a hydrochloride salt, hydrobromide salt, methanesulfonate, toluenesulfonate, acetate, fumarate, sulfate, bisulfate, succinate, citrate, phosphate, maleate, nitrate, tartrate, benzoate, bicarbonate, carbonate, sodium hydroxide salt,
calcium hydroxide salt, potassium hydroxide salt, tromethamine salt, or mixtures thereof.

The compound CY-102 is preferably formed and/or used as the hydrochloride salt.

Compounds of the present invention that comprise tertiary nitrogen-containing groups may be quaternized with such agents as (C₃₋₄) alkyl halides, *e.g.*, methyl, ethyl, iso-propyl and tert-butyl chlorides, bromides and iodides; di-(C₄₋₆) alkyl sulfates, *e.g.*, dimethyl, diethyl and diamyl sulfates; alkyl halides, *e.g.*, decyl, dodecyl, lauryl, myristyl and stearyl chlorides, bromides and iodides; and aryl (C₄₋₆) alkyl halides, *e.g.*, benzyl chloride and phenethyl bromide. Such salts permit the preparation of both water- and oil-soluble compounds of the invention.

Amine oxides, also known as amine-\(\text{N}\)-oxide and \(\text{N}\)-oxide, of anti-cancer agents with tertiary nitrogen atoms have been developed as prodrugs [Mol Cancer Therapy. 2004 Mar; 3(3):233-44]. Compounds of the present invention that comprise tertiary nitrogen atoms may be oxidized by such agents as hydrogen peroxide (3%\%), Caro’s acid or peracids like meta-Chloroperoxybenzoic acid (mCPBA) to form amine oxide.

The compound CY-102 may, for example, be used in the form of its \(\text{N}\)-oxide or a salt thereof.

The invention encompasses pharmaceutical compositions comprising the compound of the present invention and pharmaceutical excipients, as well as other conventional pharmaceutically inactive agents. Any inert excipient that is commonly used as a carrier or diluent may be used in compositions of the present invention, such as sugars, polyalcohols, soluble polymers, salts and lipids. Sugars and polyalcohols which may be employed include, without limitation, lactose, sucrose, mannitol, and sorbitol. Illustrative of the soluble polymers which may be employed are polyoxyethylene, poloxamers, polyvinylpyrrolidone, and dextran. Useful salts include, without limitation, sodium chloride, magnesium chloride, and calcium chloride. Lipids which may be employed include, without limitation, fatty acids, glycerol fatty acid esters, glycolipids, and phospholipids.

In addition, the pharmaceutical compositions may further comprise binders (*e.g.*, acacia, cornstarch, gelatin, carboxamer, ethyl cellulose, guar gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, povidone), disintegrating agents (*e.g.*, cornstarch, potato starch, alginic acid, silicon dioxide, croscarmellose sodium, crospovidone, guar gum, sodium starch glycolate, Primogel), buffers (*e.g.*, tris-HCL, acetate, phosphate) of various pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (*e.g.*, Tween 20, Tween 80, Pluronic F68, bile acid salts), protease inhibitors, surfactants (*e.g.*, sodium lauryl sulfate), permeation enhancers, solubilizing agents (*e.g.*, glycerol, polyethylene glycerol, cyclodextrins), a glidant (*e.g.*, colloidal silicon dioxide), anti-oxidants (*e.g.*, ascorbic acid,
sodium metabisulfite, butylated hydroxyanisole), stabilizers (e.g., hydroxypropyl cellulose, hydroxypropylmethyl cellulose), viscosity increasing agents (e.g., carboxer, colloidal silicon dioxide, ethyl cellulose, guar gum), sweeteners (e.g., sucrose, aspartame, citric acid), flavoring agents (e.g., peppermint, methyl salicylate, or orange flavoring), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), lubricants (e.g., stearic acid, magnesium stearate, polyethylene glycol, sodium lauryl sulfate), flow-aids (e.g., colloidal silicon dioxide), plasticizers (e.g., diethyl phthalate, triethyl citrate), emulsifiers (e.g., carboxer, hydroxypropyl cellulose, sodium lauryl sulfate), polymer coatings (e.g., poloxamers or poloxamines), coating and film forming agents (e.g., ethyl cellulose, acrylates, polymethacrylates) and/or adjuvants.

In one embodiment, the pharmaceutical compositions are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.

Additionally, the invention encompasses pharmaceutical compositions comprising any solid or liquid physical form of the compound of the invention. For example, the compounds can be in a crystalline form, in amorphous form, and have any particle size. The particles may be micronized, or may be agglomerated, particulate granules, powders, oils, oily suspensions or any other form of solid or liquid physical form.

DEFINITIONS:

"Acyl" means a carbonyl containing substituent represented by the formula -C(0)-R in which R is H, alkyl, a carbocycle, a heterocycle, carbocycle-substituted alkyl or heterocycle-substituted alkyl wherein the alkyl, alkoxy, carbocycle and heterocycle are as defined herein. Acyl groups include alkanoyl (e.g. acetyl), aryl (e.g. benzoyl), and heteroaroyl.

"Aliphatic" means a moiety characterized by a straight or branched chain arrangement of constituent carbon atoms and may be saturated or partially unsaturated with one or more double or triple bonds.

The term "alkyl" refers to a straight or branched hydrocarbon containing 1-20 carbon atoms (e.g., Q-C10). Examples of alkyl include, but are not limited to, methyl, methylene, ethyl,
ethylene, n-propyl, i-propyl, n-butyl, i-butyl, and t-butyl. Preferably, the alkyl group has one to ten carbon atoms. More preferably, the alkyl group has one to four carbon atoms.

The term "alkenyl" refers to a straight or branched hydrocarbon containing 2-20 carbon atoms (e.g., C2-C10) and one or more double bonds. Examples of alkenyl include, but are not limited to, ethenyl, propenyl, and allyl. Preferably, the alkenylene group has two to ten carbon atoms. More preferably, the alkenylene group has two to four carbon atoms.

The term "alkynyl" refers to a straight or branched hydrocarbon containing 2-20 carbon atoms (e.g., C2-C10) and one or more triple bonds. Examples of alkynyl include, but are not limited to, ethynyl, 1-propynyl, 1- and 2-butylnyl, and 1-methyl-2-butylnyl. Preferably, the alkynyl group has two to ten carbon atoms. More preferably, the alkynyl group has two to four carbon atoms.

The term "alkylamino" refers to an -N(R)-alkyl in which R can be H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, or heteroaryl.

"Alkoxy" means an oxygen moiety having a further alkyl substituent.

"Alkoxy carbonyl" means an alkoxy group attached to a carbonyl group.

"Oxoalkyl" means an alkyl, further substituted with a carbonyl group. The carbonyl group may be an aldehyde, ketone, ester, amide, acid, or acid chloride.

The term "cycloalkyl" refers to a saturated hydrocarbon ring system having 3 to 30 carbon atoms (e.g., C3-C12, C3-C9, C3-C6). Examples of cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. The term "cycloalkenyl" refers to a non-aromatic hydrocarbon ring system having 3 to 30 carbons (e.g., C3-C12) and one or more double bonds. Examples include cyclopentenyl, cyclohexenyl, and cycloheptenyl.

The term "heterocycloalkyl" refers to a nonaromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having one or more heteroatoms, which are selected from O, N, S, and Se. Examples of heterocycloalkyl groups include, but are not limited to, piperazinyl, pyrrolidinyl, dioxanyl, morpholinyl, and tetrahydrofuranyl.

The term "heterocycloalkenyl" refers to a nonaromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having one or more heteroatoms (such as O, N, S, P, or Se) and one or more double bonds.

The term "aryl" refers to a 6-carbon monocyclic, 10-carbon bicyclic, 14-carbon tricyclic aromatic ring system. Examples of aryl groups include, but are not limited to, phenyl, naphthyl, and anthracenyl. The term "heteroaryl" refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having one or more heteroatoms.
(such as O, N, S, P, or Se). Examples of heteroaryl groups include pyridyl, furyl, imidazolyl, benzimidazolyl, pyrimidinyl, thienyl, quinolinyl, indolyl, and thiazolyl.

Alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, alkylamino, aryl, and heteroaryl mentioned above include both substituted and unsubstituted moieties. Possible substituents on alkylamino, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, and heteroaryl include, but are not limited to, C_{1-10}alkyl, C_{2-7}alkenyl, C_{2-7}alkynyl, C_{3-20}cycloalkyl, C_{3-20}cycloalkenyl, C_{i-C_{20}}heterocycloalkenyl, C_{i-C_{w}}alkylamino, aryloxycarbonyl, and heterocycloalkenyl. Examples of heteroaryl groups include pyridyl, furyl, imidazolyl, benzimidazolyl, and thiazolyl.

"Carboxy" means the radical -C(0)0-. It is noted that compounds of the invention containing amino moieties may include protected derivatives thereof. Suitable protecting groups for amino moieties include acetyl, tert-butoxycarbonyl, benzyloxycarbonyl, and the like.

"Aromatic" means a moiety wherein the constituent atoms make up an unsaturated ring system, all atoms in the ring system are sp2 hybridized and the total number of pi electrons is equal to 4n+2. An aromatic ring may be such that the ring atoms are only carbon atoms or may include carbon and non-carbon atoms (see Heteroaryl).

"Carbamoyl" means the radical -OC(0)NR_{a}R_{b} where R_{a} and R_{b} are each independently two further substituents where a hydrogen or carbon atom is alpha to the nitrogen. It is noted that carbamoyl moieties may include protected derivatives thereof. Examples of suitable protecting groups for carbamoyl moieties include acetyl, tert-butoxycarbonyl, benzyloxycarbonyl, and the like. It is noted that both the unprotected and protected derivatives fall within the scope of the invention.

"Carbonyl" means the radical -C(0)-. It is noted that the carbonyl radical may be further substituted with a variety of substituents to form different carbonyl groups including acids, acid halides, amides, esters, and ketones.

"Carboxy" means the radical -C(0)0-. It is noted that compounds of the invention
containing carboxy moieties may include protected derivatives thereof, \textit{i.e.}, where the oxygen is substituted with a protecting group. Suitable protecting groups for carboxy moieties include benzyl, tert-butyl, and the like.

"Cyano" means the radical -CN.

"Formyl" means the radical -CH=0.

"Formimino" means the radical -HC=NH.

"Halo" means fluoro, chloro, bromo or iodo.

"Halo-substituted alkyl", as an isolated group or part of a larger group, means "alkyl" substituted by one or more "halo" atoms, as such terms are defined in this Application. Halo-substituted alkyl includes haloalkyl, dihaloalkyl, trihaloalkyl, perhaloalkyl and the like.

"Hydroxy" means the radical -OH.

"Imine derivative" means a derivative comprising the moiety -C(=NR)-, wherein R comprises a hydrogen or carbon atom alpha to the nitrogen.

"Isomers" mean any compound having identical molecular formulae but differing in the nature or sequence of bonding of their atoms or in the arrangement of their atoms in space. Isomers that differ in the arrangement of their atoms in space are termed "stereoisomers."

Stereoisomers that are not mirror images of one another are termed "diastereomers" and stereoisomers that are nonsuperimposable mirror images are termed "enantiomers" or sometimes "optical isomers." A carbon atom bonded to four nonidentical substituents is termed a "chiral center." A compound with one chiral center has two enantiomeric forms of opposite chirality. A mixture of the two enantiomeric forms is termed a "racemic mixture."

"Nitro" means the radical -NO₂.

"Protected derivatives" means derivatives of compounds in which a reactive site are blocked with protecting groups. Protected derivatives are useful in the preparation of pharmaceuticals or in themselves may be active as inhibitors. A comprehensive list of suitable protecting groups can be found in T.W.Greene, Protecting Groups in Organic Synthesis, 3rd edition, Wiley & Sons, 1999.

The term "substituted" means that an atom or group of atoms has replaced hydrogen as the substituent attached to another group. For aryl and heteroaryl groups, the term "substituted" refers to any level of substitution, namely mono-, di-, tri-, tetra-, or penta-substitution, where such substitution is permitted. The substituents are independently selected, and substitution may be at any chemically accessible position. The term "unsubstituted" means that a given moiety may consist of only hydrogen substituents through available valencies (unsubstituted).

If a functional group is described as being "optionally substituted," the function group
may be either (1) not substituted, or (2) substituted. If a carbon of a functional group is described as being optionally substituted with one or more of a list of substituents, one or more of the hydrogen atoms on the carbon (to the extent there are any) may separately and/or together be replaced with an independently selected optional substituent.

"Sulfide" means -S-R wherein R is H, alkyl, carbocycle, heterocycle, carbocycloalkyl or heterocycloalkyl. Particular sulfide groups are mercapto, alkylsulfide, for example methylsulfide (-S-Me); arylsulfide, e.g., phenylsulfide; aralkylsulfide, e.g., benzylsulfide.

"Sulfinyl" means the radical -S(O)-. It is noted that the sulfinyl radical may be further substituted with a variety of substituents to form different sulfinyl groups including sulfinic acids, sulfinamides, sulfinyl esters, and sulfoxides.

"Sulfonyl" means the radical -S(0)(0)-. It is noted that the sulfonyl radical may be further substituted with a variety of substituents to form different sulfonyl groups including sulfonic acids, sulfonamides, sulfonate esters, and sulfones.

"Thiocarbonyl" means the radical -C(S)-. It is noted that the thiocarbonyl radical may be further substituted with a variety of substituents to form different thiocarbonyl groups including thiaoacids, thioamides, thioesters, and thio ketones.

"Animal" includes humans, non-human mammals (e.g., non-human primates, rodents, mice, rats, hamsters, dogs, cats, rabbits, cattle, horses, sheep, goats, swine, deer, and the like) and non-mammals (e.g., birds, and the like).

"Bioavailability" as used herein is the fraction or percentage of an administered dose of a drug or pharmaceutical composition that reaches the systemic circulation intact. In general, when a medication is administered intravenously, its bioavailability is 100%. However, when a medication is administered via other routes (e.g., orally), its bioavailability decreases (e.g., due to incomplete absorption and first-pass metabolism). Methods to improve the bioavailability include prodrug approach, salt synthesis, particle size reduction, complexation, change in physical form, solid dispersions, spray drying, and hot-melt extrusion.

"Disease" specifically includes any unhealthy condition of an animal or part thereof and includes an unhealthy condition that may be caused by, or incident to, medical or veterinary therapy applied to that animal, i.e., the "side effects" of such therapy.

"Pharmaceutically acceptable" means that which is useful in preparing a pharmaceutical composition that is generally safe, non-toxic and neither biologically nor otherwise undesirable and includes that which is acceptable for veterinary use as well as human pharmaceutical use.

"Pharmaceutically acceptable salts" means organic or inorganic salts of compounds of the present invention which are pharmaceutically acceptable, as defined above, and which
possess the desired pharmacological activity. Such salts include acid addition salts formed with inorganic acids, or with organic acids. Pharmaceutically acceptable salts also include base addition salts which may be formed when acidic protons present are capable of reacting with inorganic or organic bases.

Exemplary salts include, but are not limited, to sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate, bisulfate, phosphate, acid phosphate, isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucuronate, saccharate, formate, benzoate, glutamate, methanesulfonate "mesylate," ethanesulfonate, benzenesulfonate, p-toluenesulfonate, pamoate (i.e., l,l'-methylene-bis-(2-hydroxy-3-naphthoate)) salts, alkali metal (e.g., sodium and potassium) salts, alkaline earth metal (e.g., magnesium) salts, and ammonium salts. A pharmaceutically acceptable salt may involve the inclusion of another molecule such as an acetate ion, a succinate ion or other counter ion. The counter ion may be any organic or inorganic moiety that stabilizes the charge on the parent compound. Furthermore, a pharmaceutically acceptable salt may have more than one charged atom in its structure.

Instances where multiple charged atoms are part of the pharmaceutically acceptable salt can have multiple counter ions. Hence, a pharmaceutically acceptable salt can have one or more charged atoms and/or one or more counter ion.

"Pharmaceutically acceptable carrier" means a non-toxic solvent, dispersant, excipient, adjuvant, or other material which is mixed with the compounds of the present invention in order to form a pharmaceutical composition, i.e., a dose form capable of administration to the patient. Examples of pharmaceutically acceptable carrier includes suitable polyethylene glycol (e.g., PEG400), surfactant (e.g., Cremophor), or cyclopolsaccharide (e.g., hydroxypropyl-β-cyclodextrin or sulfobutyl ether β-cyclodextrins), polymer, liposome, micelle, nanosphere, etc.

"Pharmacophore," as defined by The International Union of Pure and Applied Chemistry, is an ensemble of steric and electronic features that is necessary to ensure the optimal supramolecular interactions with a specific biological target and to trigger (or block) its biological response. For example, Camptothecin is the pharmacophore of the well known drug topotecan and irinotecan. Mechlorethamine is the pharmacophore of a list of widely used nitrogen mustard drugs like Melphalan, Cyclophosphamide, Bendamustine, and so on.

"Prodrug" means a compound that is convertible in vivo metabolically into an active pharmaceutical according to the present invention. For example, an inhibitor comprising a hydroxyl group may be administered as an ester that is converted by hydrolysis in vivo to the hydroxyl compound.
"Stability" in general refers to the length of time a drug retains its properties without loss of potency. Sometimes this is referred to as shelf life. Factors affecting drug stability include, among other things, the chemical structure of the drug, impurity in the formulation, pH, moisture content, as well as environmental factors such as temperature, oxidization, light, and relative humidity. Stability can be improved by providing suitable chemical and/or crystal modifications (e.g., surface modifications that can change hydration kinetics; different crystals that can have different properties), excipients (e.g., anything other than the active substance in the dosage form), packaging conditions, storage conditions, etc.

"Therapeutically effective amount" of a composition described herein is meant an amount of the composition which confers a therapeutic effect on the treated subject, at a reasonable benefit/risk ratio applicable to any medical treatment. The therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect). An effective amount of the composition described above may range from about 0.1 mg/kg to about 500 mg/kg, preferably from about 0.2 to about 50 mg/kg. Effective doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents. It will be understood, however, that the total daily usage of the compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or contemporaneously with the specific compound employed; and like factors well known in the medical arts.

As used herein, the term "treating" refers to administering a compound to a subject that has, for example, a neoplastic or immune disorder, or has a symptom of or a predisposition toward it, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disorder, the symptoms of or the predisposition toward the disorder. The term "an effective amount" refers to the amount of the active agent that is required to confer the intended therapeutic effect in the subject. Effective amounts may vary, as recognized by those skilled in the art, depending on route of administration, excipient usage, and the possibility of co-usage with other agents.

A "subject" refers to a human and a non-human animal. Examples of a non-human animal include all vertebrates, e.g., mammals, such as non-human primates (particularly higher
primates), dog, rodent (e.g., mouse or rat), guinea pig, cat, and non-mammals, such as birds, amphibians, reptiles, etc. In a preferred embodiment, the subject is a human. In another embodiment, the subject is an experimental animal or animal suitable as a disease model.

GENERAL

When compounds according to the present invention exhibit insufficient solubility, methods for solubilizing the compounds may be used. Such methods are known to those of skill in this art, and include, but are not limited to, pH adjustment and salt formation, using cosolvents, such as ethanol, propylene glycol, polyethylene glycol (PEG) 300, PEG 400, DMA (10-30%), DMSO (10-20%), NMP (10-20%), using surfactants, such as polysorbate 80, polysorbate 20 (1-10%), cremophor EL, Cremophor RH40, Cremophor RH60 (5-10%), Pluronic F68/Poloxamer 188 (20-50%), Solutol HS15 (20-50%), Vitamin E TPGS, and d-a-tocopheryl PEG 1000 succinate (20-50%), using complexation such as HPpCD and SBEpCD (10-40%), and using advanced approaches such as micelle, addition of a polymer, nanoparticle suspensions, and liposome formation.

"Combination therapy" includes the administration of the subject compounds of the present invention in further combination with other biologically active ingredients (such as, but not limited to, a second and different antineoplastic agent) and non-drug therapies (such as, but not limited to, surgery or radiation treatment). For instance, the compounds of the invention can be used in combination with other pharmaceutically active compounds, or non-drug therapies, preferably compounds that are able to enhance the effect of the compounds of the invention. The compounds of the invention can be administered simultaneously (as a single preparation or separate preparation) or sequentially to the other therapies. In general, a combination therapy envisions administration of two or more drugs/treatments during a single cycle or course of therapy.

In one embodiment, the compounds of the invention are administered in combination with one or more of traditional chemotherapeutic agents. The traditional chemotherapeutic agents encompass a wide range of therapeutic treatments in the field of oncology. These agents are administered at various stages of the disease for the purposes of shrinking tumors, destroying remaining cancer cells left over after surgery, inducing remission, maintaining remission and/or alleviating symptoms relating to the cancer or its treatment. Examples of such agents include, but are not limited to, alkylating agents such as Nitrosureas (e.g., Carmustine, Lomustine and Streptozocin), ethylenimines (e.g., thiopeta, hexamethylmelanine), Alkylsulfonates (e.g., Busulfan), Hydrazines and Triazines (e.g., Altretamine, Procarbazine, Dacarbazine and Temozolomide), and platinum based agents (e.g., Carboplatin, Cisplatin, and Oxaliplatin); plant
alkaloids such as Podophyllotoxins (e.g., Etoposide and Teniposide), Taxanes (e.g., Paclitaxel and Docetaxel), Vinca alkaloids (e.g., Vincristine, Vinblastine and Vinorelbine); anti-tumor antibiotics such as Chromomycins (e.g., Dactinomycin and Plicamycin), Anthracyclines (e.g., Doxorubicin, Daunorubicin, Epirubicin, Mitoxantrone, and Idarubicin), and miscellaneous antibiotics such as Mitomycin and Bleomycin; anti-metabolites such as folic acid antagonists (e.g., Methotrexate), pyrimidine antagonists (e.g., 5-Fluorouracil, Foxuridine, Cytarabine, Capecitabine, and Gemcitabine), purine antagonists (e.g., 6-Mercaptopurine and 6-Thioguanine) and adenosine deaminase inhibitors (e.g., Cladribine, Fludarabine, Nelarabine and Pentostatin); topoisomerase inhibitors such as topoisomerase I inhibitors (Topotecan, Irinotecan), topoisomerase II inhibitors (e.g., Amsacrine, Etoposide, Etoposide phosphate, Teniposide), and miscellaneous anti-neoplastics such as ribonucleotide reductase inhibitors (Hydroxyurea), adrenocortical steroid inhibitor (Mitotane), anti-microtubule agents (Estramustine), and retinoids (Bexarotene, Isotretinoin, Tretinoin (ATRA)).

In one aspect of the invention, the compounds may be administered in combination with one or more targeted anti-cancer agents that modulate protein kinases involved in various disease states. Examples of such kinases may include, but are not limited ABL1, ABL2/ARG, ACK1, AKT1, AKT2, AKT3, ALK, ALK1/ACVR1L1, ALK2/ACVR1, ALK4/ACVR1B, ALK5/TGFRB1, ALK6/BMPR1B, AMPK(A1/B1/G1), AMPK(A1/B1/G2), AMPK(A1/B1/G3), AMPK(A1/B2/G1), AMPK(A2/B1/G1), AMPK(A2/B2/G1), AMPK(A2/B2/G2), ARAF, ARK5/NUA1, ASK1/MAP3K5, ATM, Aurora A, Aurora B, Aurora C, AXL, BLK, BMRP2, BMX/ETK, BRAF, BRK, BRSK1, BRSK2, BTK, CAMK1a, CAMK1b, CAMK1d, CAMK1g, CAMKIIa, CAMKIIb, CAMKIIId, CAMKIIg, CAMK4, CAMKK1, CAMKK2, CDC7-DBF4, CDK1-cyclin A, CDK1-cyclin B, CDK1-cyclin E, CDK2-cyclin A, CDK2-cyclin Al, CDK2-cyclin E, CDK3-cyclin E, CDK4-cyclin Dl, CDK4-cyclin D3, CDK5-p25, CDK5-p35, CDK6-cyclin Dl, CDK6-cyclin D3, CDK7-cyclin H, CDK9-cyclin K, CDK9-cyclin T1, CHK1, CHK2, CKIal, CKId, CKlepsilon, CKIg1, CKIg2, CKIg3, CK2a, CK2a2, c-KIT, CLK1, CLK2, CLK3, CLK4, c-MER, c-MET, COT1/MAP3K8, CSK, c-SRC, CTK/MATK, DAPK1, DAPK2, DCAMKL1, DCAMKL2, DDR1, DDR2, DLK/MAP3K12, DMPK, DMPK2/CD42BPG, DNA-PK, DRAK1/STK17A, DYRK1/DYRK1A, DYRK1B, DYRK2, DYRK3, DYRK4, EEF2K, EGFR, EIF2AK1, EIF2AK2, EIF2AK3, EIF2AK4/GEN2, EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHB1, EPHB2, EPHB3, EPHB4, ERBB2/HER2, ERBB4/HER4, ERK1/MAP3K, ERK2/MAPK1, ERK5/MAPK7, FAK/PTK2, FER, FES/FPS, FGFR1, FGFR2, FGFR3, FGFR4, FGR, FLT1/VEGFR1, FLT3, FLT4/VEGFR3, FMS, FRK/PTK5, FYN, GCK/MAP4K2, GRK1, GRK2, GRK3, GRK4, GRK5, GRK6, GRK7,
GSK3a, GSK3b, Haspin, HCK, HGK/MAP4K4, HIPK1, HIPK2, HIPK3, HIPK4, HPK1/MAP4K1, IGF1R, IKKa/CHUK, IKKb/IKBKB, IKKe/IKBKE, IR, IRAK1, IRAK4, IRR/INSRR, ITK, JAK1, JAK2, JAK3, JNK1, JNK2, JNK3, KDR/VEGFR2, KHS/MAP4K5, LATS1, LATS2, LCK, LCK2/ICK, LKB1, LIMK1, LOK/STKIO, LRRK2, LYN, LYNB, MAPKAPK2, MAPKAPK3, MAPKAPK5/PRAK, MARK1, MARK2/PAR-IBa, MARK3, MARK4, MEK1, MEK2, MEKK1, MEKK2, MEKK3, MELK, MINK/MINK1, MKK4, M KK6, MLCK/MYLK, MLCK2/MYLK2, MLK1/MAP3K9, MLK2/MAP3K10, MLK3/MAP3K11, MNK1, MNK2, MRCKa/CDC42BPA, MRCKb/CDC42BPB, MSK1/RPS6KA5, MSK2/RPS6KA4, MSSK1/STK23, MST1/STK4, MST2/STK3, MST3/STK24, MST4, mTOR/FRAPl, MUSK, MYLK3, MY03b, NEK1, NEK2, NEK3, NEK4, NEK6, NEK7, NEK9, NEK11, NIK/MAP3K14, NLK, OSR1/OXSR1, P38a/MAPK14, P38b/MAPK11, P38d/MAPK13, P38g/MAPK12, P70S6K/RPS6KB1, P70S6Kb/RPS6KB2, PAK1, PAK2, PAK3, PAK4, PAK5, PAK6, PASK, PBK/TOPK, PDGFRa, PDGFRb, PDK1/PDPK1, PDK1/PDHK1, PDK2/PDHK2, PDK3/PDHK3, PDK4/PDHK4, PHKgl, PHKg2, PDKa, (p110a/p85a), PDKb, (p110b/p85a), PDKd, (p110d/p85a), PI3Kg(pl20g), PIM1, PIM2, PIM3, PKA, PKAcg, PKCa, PKCb1, PKCb2, PKCd, PKCepsilon, PKCeta, PKCgamma, PKCiota, PKCmu/PRKD1, PKCnu/PRKD3, PKCtheta, PKCzeta, PKD2/PRKD2, PKGla, PKGb, PKG2/PRKG2, PKN1/PRK1, PKN2/PRK2, PKN3/PRK3, PLK1, PLK2, PLK3, PLK4/Sak, PRLX, PYK2, RAF1, RET, RIPK2, RIPK3, RIPK5, ROCK1, ROCK2, RON/MST1R, ROS/ROS1, RSK1, RSK2, RSK3, RSK4, SGK1, SGK2, SGK3/SGKL, SIK1, SIK2, SLK/STK2, SNARK/NUAK2, SRMS, SSTK/TSSK6, STK16, STK22D/TSSK2, STK25/YSK1, STK32b/YANK2, STK32c/YANK3, STK33, STK38/NDR1, STK38L/NDR2, STK39/STLK3, SRPK1, SRPK2, SYK, TAK1, TAO1, TAO2, TAO2/TA01, TAOK3/JIK, TBK1, TEC, TESK1, TGFBR2, TIE2/TEK, TLK1, TLK2, TNK1, TRKA, TRKB, TRKC, TRPM7/CHAK1, TSSK2, TSSK3/STK22C, TTBK1, TTBK2, TTK, TXK, TYKI/LTK, TYK2, TYR03/SKY, ULK1, ULK2, ULK3, VRK1, VRK2, WEE1, WNK1, WNK2, WNK3, YES/YES1, ZAK/MLTK, ZAP70, ZIPK/DAPK3, KINASE, MUTANTS, ABL1(E255K), ABL1(F317I), ABL1(G250E), ABL1(H396P), ABL1(M351T), ABL1(Q252H), ABL1(T315I), ABL1(Y253F), EGFR(G719C), EGFR(G719S), EGFR(T341M), EGFR(G719C), EGFR(G719S), EGFR(L858R), BTK(E41K), CHK2(I157T), c-Kit(A829P), c-KIT(D816H), c-KIT(D816V), c-Kit(D820E), c-Kit(N822K), C-KIT(T670I), C-KIT(V559D), C-KIT(V559D/V654A), C-KIT(V559D/T670I), C-Kit(V560G), C-KIT(V654A), C-MET(D1228H), C-MET(D1228N), C-MET(F1200I), C-MET(M1250T), C-MET(Y1230A), C-MET(Y1230C), C-MET(Y1230D), C-MET(Y1230H), c-Src(T341M), EGFR(G719C), EGFR(G719S), EGFR(L858R),
EGFR(L861Q), EGFR(T790M), EGFR, (L858R,T790M), EGFR(d746-750/T790M),
EGFR(d746-750), EGFR(d747-752/P753S), EGFR(d752-759),
FGFR1(V561M), FGFR2(N549H), FGFR3(G697C), FGFR3(K650E), FGFR3(K650M),
FGFR4(N535K), FGFR4(V550E), FGFR4(V550L), FLT3(D835Y), FLT3(ITD), JAK2
(V617F), LRRK2 (G2019S), LRRK2 (I2020T), LRRK2 (R1441C), p38a(T106M),
PDGFRa(D842V), PDGFRa(T674I), PDGFRa(V561D), RET(E762Q), RET(G691S),
RET(M918T), RET(R749T), RET(R813Q), RET(V804L), RET(V804M), RET(Y791F),
TIF2(R849W), TIF2(Y897S), and TIF2(Y1108F).

In another aspect of the invention, the subject compounds may be administered in
combination with one or more targeted anti-cancer agents that modulate non-kinase biological
targets, pathway, or processes. Such targets pathways, or processes include but not limited to
heat shock proteins (e.g. HSP90), poly-ADP (adenosine diphosphate)-ribose polymerase
(PARP), hypoxia-inducible factors (HIF), proteasome, Wnt/Hedgehog/Notch signaling proteins,
TNF-alpha, matrix metalloproteinase, farnesyl transferase, apoptosis pathway (e.g. Bcl-xL, Bcl-
2, Bcl-w), histone deacetylases (HDAC), histone acetyltransferases (HAT), and
methyltransferase (e.g. histone lysine methyltransferases, histone arginine methyltransferase,
DNA methyltransferase, etc).

In another aspect of the invention, the compounds of the invention are administered in
combination with one or more of other anti-cancer agents that include, but are not limited to,
hormonal therapies (e.g. Tamoxifen, Fulvestrant, Clomifene, Anastrozole, Exemestane,
Formestane, Letrozole, etc), vascular disrupting agent, gene therapy, RNAi cancer therapy,
chemoprotective agents (e.g., amphotericin, mesna, and dextrazoxane), antibody conjugate(e.g
brentuximab vedotin, ibritumomab tuxetan), cancer immunotherapy such as Interleukin-2,
cancer vaccines (e.g., sipuleucel-T) or monoclonal antibodies (e.g., Bevacizumab,
Alemtuzumab, Rituximab, Trastuzumab, etc).

In another aspect of the invention, the subject compounds are administered in
combination with radiation therapy or surgeries. Radiation is commonly delivered internally
(implantation of radioactive material near cancer site) or externally from a machine that employs
photon (x-ray or gamma-ray) or particle radiation. Where the combination therapy further
comprises radiation treatment, the radiation treatment may be conducted at any suitable time so
long as a beneficial effect from the co-action of the combination of the therapeutic agents and
radiation treatment is achieved. For example, in appropriate cases, the beneficial effect is still
achieved when the radiation treatment is temporally removed from the administration of the
therapeutic agents, perhaps by days or even weeks.
In certain preferred embodiments, the compounds of the invention are administered in combination with one or more of radiation therapy, surgery, or anti-cancer agents that include, but are not limited to, DNA damaging agents, anti-metabolites, topoisomerase inhibitors, anti-microtubule agents, EGFR inhibitors, HER2 inhibitors, VEGFR2 inhibitors, BRAF inhibitors, Bcr-Abl inhibitors, PDGFR inhibitors, ALK inhibitors, PLK inhibitors, MET inhibitors, epigenetic agents, HSP90 inhibitors, PARP inhibitors, CHK inhibitors, aromatase inhibitor, estrogen receptor antagonist, and antibodies targeting VEGF, HER2, EGFR, CD50, CD20, CD30, CD33, etc.

In certain preferred embodiments, the compounds of the invention are administered in combination with one or more of abarelix, abiraterone acetate, aldesleukin, alemtuzumab, altretamine, anastrozole, asparaginase, bevacizumab, bexarotene, bicalutamide, bleomycin, bortezombib, brentuximab vedotin, busulfan, capecitabine, carboplatin, Carmustine, cetuximab, chlorambucil, cisplatin, cladribine, clofarabine, clomifene, crizotinib, cyclophosphamide, dasatinib, daunorubicin liposomal, decitabine, degarelix, denileukin diftitox, denileukin difftox, denosumab, docetaxel, doxorubicin, doxorubicin liposomal, epirubicin, eribulin mesylate, erlotinib, estramustine, etoposide phosphate, everolimus, exemestane, fludarabine, fluorouracil, fotemustine, fulvestrant, gefitinib, gemcitabine, gemtuzumab ozogamicin, goserelin acetate, histrelinacetate, hydroxyurea, ibritumomab tiuxetan, idarubicin, ifosfamide, imatinib mesylate, interferon alfa 2a, ipilimumab, ixabepilone, lapatinib ditosylate, lenalidomide, letrozole, leucovorin, leuprolide acetate, levamisole, lomustine, mechlorethamine, melphalan, methotrexate, mitomycin C, mitoxantrone, nelarabine, nilotinib, oxaliplatin, paclitaxel, paclitaxel protein-bound particle, pamidronate, panitumumab, pegaspargase, peginterferon alfa-2b, pemetrexed disodium, pentostatin, raloxifene, rituximab, sorafenib, streptozocin, sunitinib maleate, tamoxifen, temsirolimus, teniposide, thalidomide, toremifene, tositumomab, trastuzumab, tretinoin, uramustine, vandetanib, vemurafenib, vinorelbine, zoledronate, radiation therapy, or surgery.

A wide variety of administration methods may be used in conjunction with the compounds of the present invention. Compounds of the present invention may be administered or coadministered orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraocularly, via local delivery (for example by catheter or stent), subcutaneously, intraadiposally, intraarticularly, or intrathecally. The compounds according to the invention may also be administered or coadministered in slow release dosage forms. Compounds may be in gaseous, liquid, semi-liquid or solid form, formulated in a manner.
suitable for the route of administration to be used. For oral administration, suitable solid oral formulations include tablets, capsules, pills, granules, pellets, sachets and effervescent, powders, and the like. Suitable liquid oral formulations include solutions, suspensions, dispersions, emulsions, oils and the like. For parenteral administration, reconstitution of a lyophilized powder is typically used. Tablets and iv infusion may be preferred.

The invention further provides methods for the prevention or treatment of a neoplastic disease or immune disease. In one embodiment, the invention relates to a method of treating a neoplastic disease or immune disease in a subject in need of treatment comprising administering to said subject a therapeutically effective amount of a compound of the invention. In one embodiment, the invention further provides for the use of a compound of the invention in the manufacture of a medicament for halting or decreasing a neoplastic disease or immune disease.

In certain embodiments, the neoplastic disease is a solid tumor. Representative treatable solid tumors include melanoma, breast cancer, lung cancer (e.g., small cell lung cancer (SCLC), or non-small cell lung cancer (NSCLC)), colon cancer, renal cancer, or sarcoma.kyl

In certain embodiments, the method may further include administering a second therapeutic agent known to be effective for treating the solid tumor.

For example, effective second therapeutic agent known to be effective for treating breast cancer includes: Methotrexate (Abitrexate, Folex, Folex PFS, Methotrexate LPF, Mexate-AQ); Paclitaxel (Taxol); Paclitaxel Albumin-stabilized Nanoparticle Formulation (Abraxane); Doxorubicin Hydrochloride (Adriamycin, Adriamycin PFS; Adriamycin RDF); Fluorouracil (Adrucil, Efudex, Fluoroplex); Everolimus (Afinitor); Anastrozole (Arimidex); Exemestane (Aromasin); Capecitabine (Xeloda); Cyclophosphamide (Clafen, Cytoxan, Neosar); Docetaxel (Taxotere); Epirubicin Hydrochloride (Ellence); Everolimus; Toremifene (Fareston); Fulvestrant (Faslodex); Letrozole (Femara); Gemcitabine Hydrochloride (Gemzar); Trastuzumab (Herceptin); Ixabepilone (Ixempra); Lapatinib Ditosylate; Tamoxifen Citrate (Nolvadex, Novaldex); Pertuzumab (Perjeta); Toremifene; Lapatinib Ditosylate (Tykerb); Doxorubicin Hydrochloride & Cyclophosphamide; Doxorubicin Hydrochloride & Cyclophosphamide &
Paclitaxel; Doxorubicin Hydrochloride & Cyclophosphamide & Fluorouracil; Cyclophosphamide & Methotrexate & Fluorouracil; Fluorouracil & Cyclophosphamide & Epirubicin Hydrochloride.

Effective second therapeutic agent known to be effective for treating small cell lung cancer (SCLC) includes: Methotrexate (Abitrexate, Folex, Folex PFS, Methotrexate LPF, Mexate, Mexate-AQ); Etoposide (Toposar, VePesid); Etoposide Phosphate (Etopophos); Topotecan Hydrochloride (Hycamtin).

Effective second therapeutic agent known to be effective for treating non-small cell lung cancer (NSCLC) includes: Methotrexate (Abitrexate, Folex, Folex PFS, Methotrexate LPF, Mexate, Mexate-AQ); Paclitaxel (Taxol); Paclitaxel Albumin-stabilized Nanoparticle Formulation (Abraxane); Pemetrexed Disodium (Alimta); Bevacizumab (Avastin); Carboplatin (Paraplat, Paraplatin); Cisplatin (Platinol, Platinol-AQ); Crizotinib (Xalkori); Erlotinib Hydrochloride; Gefitinib (Iressa); Gemcitabine Hydrochloride (Gemzar); Pemetrexed Disodium; Erlotinib Hydrochloride (Tarceva); Carboplatin & Paclitaxel; Gemcitabine Hydrochloride & Cisplatin.

Other than the standard surgical treatment, effective second therapeutic agent known to be effective for treating melanoma includes: imiquimod (Zyclara, Aldara, Beselna, R-837); interferon (adjuvant therapy after surgery); Bacille Calmette-Guerin (BCG) vaccine; interleukin-2; Ipilimumab (Yervoy); Vemurafenib (Zelboraf); Dacarbazine (DTIC); Temozolomide (Temodar); interferon & temozolomide; interferon, interleukin-2, and temozolomide; or isolated limb perfusion (ILF, infusing the limb with a heated solution of chemotherapy), depending on the specific stages of the melanoma at the time of diagnosis.

Effective second therapeutic agent known to be effective for treating colon cancer includes: Fluorouracil (Adrucil, Efudex, Fluoroplex); Bevacizumab (Avastin); Irinotecan Hydrochloride (Camptosar); Cetuximab (Xeloda); Cetuximab (Erbitux); Oxaliplatin (Eloxatin); Leucovorin Calcium; Panitumumab (Vectibix); Regorafenib (Stivarga); Leucovorin Calcium (Wellcovorin); Ziv-Aflibercept (Zaltrap); Leucovorin Calcium & Fluorouracil & Irinotecan Hydrochloride; Leucovorin Calcium & Fluorouracil & Irinotecan Hydrochloride + Bevacizumab; Leucovorin Calcium (Folinic Acid) & Fluorouracil & Oxaliplatin; Capecitabine & Oxaliplatin.

Effective second therapeutic agent known to be effective for treating renal cancer includes: Fluorouracil (Adrucil, Efudex, Fluoroplex); Bevacizumab (Avastin); Irinotecan Hydrochloride (Camptosar); Cetuximab (Erbitux); Panitumumab (Vectibix); Regorafenib (Stivarga); Ziv-Aflibercept (Zaltrap); Capecitabine & Oxaliplatin; Leucovorin Calcium (Folinic
Acid) & Fluorouracil & Irinotecan Hydrochloride; Leucovorin Calcium & Fluorouracil & Irinotecan Hydrochloride + Bevacizumab; Leucovorin Calcium (Folinic Acid) & Fluorouracil & Oxaliplatin.

Preferred combinations of compounds of the invention, especially in combination with CY-102 or a pharmaceutically acceptable salt, solvate or polymorph thereof include combinations with:

- Proteasome inhibitors (e.g. bortezomib, carfilzomib).
- IMIDs (e.g. Thalidomide, lenalidomide, pomalidomide).
- Platinum agents (e.g. cisplatin, carboplatin).
- Folate antagonists (e.g. pemetrexed, pralatrexate).
- CD30 antibodies and conjugates (e.g. brentuximab, vendotin).
- Antibodies (also conjugated) to treat haematological malignancies like anti CD20 (e.g. ofatumumab, rituximab, GA101, etc).
- B-cell receptor antagonists (e.g. ibrutinib).
- PI3K antagonists (e.g. GS1101 or IPI145).
- BTK inhibitors.
- Taxanes (e.g. taxol, paclitaxel).
- Antibodies (also conjugated) to treat ovarian cancer (e.g. alpha folate receptor mabs, CA125 antibodies).
- Antibodies to treat multiple myeloma (e.g. elotuzumab, anti CD38 mabs).
- Anthracyclines (e.g. doxorubicin, idarubicin).
- Nucleoside analogues (purine antagonists) like cytarabine, fludarabine, gemcitabine.
- PNP antagonists (e.g. forodesine).
- Bcr-abl tyrosinekinase blockers (e.g. imatinib, dasatinib, ponatinib, nilotinib).
- mTor antagonists (e.g. temsirolimus, everolimus).
- Agents influencing the CD40 activation (e.g. CD40 antagonists, CD40 gene medicines).
- Multi tyrosine kinase antagonists (e.g. sorafenib, axitinib).
- Bifunctional antibodies (e.g. CD19/CD3, also conjugated, also recognising other CD epitopes).

Preferred combinations of compounds of the invention, especially in combination with CY-102 or a pharmaceutically acceptable salt, solvate or polymorph thereof include combinations with one or more, such as one, two or three, of the above-identified therapeutic agents.

Especially preferred combinations of compounds of the invention include combinations
of CY-102 or a pharmaceutically acceptable salt, solvate or polymorph thereof and forodesine, optionally in combination with one or more, such as one, two or three, of the above-identified therapeutic agents.

The combinations of compounds of the invention include combinations of CY-102 or a pharmaceutically acceptable salt, solvate or polymorph thereof and forodesine, optionally in combination with one or more, such as one, two or three, of the above-identified therapeutic agents.

The treatment above may be in conjunction with other treatments, such as surgery, radiation therapy, laser therapy, stem cell transplant.

In a further aspect, the present invention is directed to combinations of one or more compounds of the invention with one or more additional therapeutic agents. In a further aspect, the present invention is directed to combinations of one or more compounds of the invention with one or more additional therapeutic agents for use as a medicament, and in particular, for use in the treatment of the diseases disclosed herein. In a further aspect, the present invention is directed to the use of combinations of one or more compounds of the invention with one or more additional therapeutic agents in the treatment of the diseases disclosed herein. In preferred embodiments of all aspects of the invention, the disease to be treated is CLL.

In a further aspect, the present invention is directed to a kit comprising (a) a first pharmaceutical composition comprising one or more compounds of the present invention and (b) a second pharmaceutical composition comprising one or more additional therapeutic agents as defined herein. In a further aspect, the present invention is directed to a kit comprising (a) a first pharmaceutical composition comprising one or more compounds of the present invention and (b) a second pharmaceutical composition comprising one or more additional therapeutic agents as defined herein for use as a medicament, and in particular, for use in the treatment of the diseases disclosed herein. In a further aspect, the present invention is directed to a kit comprising (a) a first pharmaceutical composition comprising one or more compounds of the present invention and (b) a second pharmaceutical composition comprising one or more additional therapeutic agents as defined herein in the treatment of the diseases disclosed herein. In preferred embodiments of all aspects of the invention, the disease to be treated is CLL.

In a further aspect, the present invention is directed to a product containing a compound of formula (I) as defined herein, or a tautomer thereof or a pharmaceutically acceptable salt, solvate or polymorph of said compound or tautomer, and one or more other therapeutic agents as defined herein, as a combined preparation for simultaneous, separate or sequential use in treating a neoplastic disease or an immune disease.
It is well known that immunosuppression is one of major side-effect of many conventional chemotherapeutics. For example, at low dose, cyclophosphamide can be used to treat immune diseases such as multiple sclerosis, rheumatoid arthritis and the suppression of transplant rejections (Emadi A, et al, Nat Rev Clin Oncol. 2009 Nov; 6(11):638-47; Perini P, et al. Neurol Sci. 2008 Sep; 29 Suppl 2:S233-4) and is also widely used in bone marrow transplantation "conditioning" and "mobilization" regimens, and for the treatment of refractory severe autoimmune conditions, such as systemic lupus erythematosus (SLE), minimal change disease, severe rheumatoid arthritis, Wegener's granulomatosis (with trade name Cytoxan), scleroderma, and multiple sclerosis (with trade name Revimmune). In addition, HDAC has recently emerging as a promising target for treating immune disease [Szyf M. Clin Rev Allergy Immunol. 2010 Aug;39(1):62-77]. The compounds of present invention may therefore be used for treatment of an immune disease.

In a preferred embodiment, the immune disease is selected from the group consisting of the rejection of transplanted organs and tissues, a graft-versus-host disease, a non-autoimmune inflammatory disease, and an autoimmune disease, wherein said autoimmune disease is selected from the group consisting of acute disseminated encephalomyelitis, addison's disease, ankylosing spondylitis, antiphospholipid antibody syndrome, autoimmune hemolytic anemia, autoimmune hepatitis, autoimmune inner ear disease, bullous pemphigoid, coeliac disease, chagas disease, chronic obstructive pulmonary disease, churg-strauss syndrome, dermatomyositis, Crohn's disease, diabetes mellitus type 1, endometriosis, goodpasture's syndrome, graves' disease, guillain-barre syndrome, hashimoto's disease, hidradenitis suppurativa, idiopathic thrombocytopenic purpura, interstitial cystitis, lupus erythematosus, morphea, multiple sclerosis, myasthenia gravis, narcolepsy, neuromyotonia, pemphigus vulgaris, pernicious anaemia, polymyositis, primary biliary cirrhosis, psoriasis, psoriatic arthritis, rheumatoid arthritis, schizophrenia, scleroderma, temporal arteritis, vasculitis, vitiligo, and Wegener's granulomatosis.

It should be understood that the invention is not limited to the particular embodiments shown and described herein, but that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the claims.

GENERAL SYNTHETIC METHODS

The compounds according to the present invention may be synthesized according to a variety of reaction schemes. Necessary starting materials may be obtained by standard procedures of organic chemistry. The compounds and processes of the present invention will be better understood in connection with the following representative synthetic schemes and
examples, which are intended as an illustration only and not limiting of the scope of the invention. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, substituents, derivatives, and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims.

A typical approach using \(Z = (\text{CH}_2)_p \) as an example to illustrate the synthesis of the Formula (III) compounds is described in Scheme 1. \(X_1 \) and \(R_d \) in general Scheme 1 are the same as those described in the Summary section above.

![Scheme 1](image)

The commercially available starting material 1-1 (CAS#: 41939-61-1) can react with appropriate carboxylic acid to form the benzimidazole intermediate 1-2, which can react with methyl acrylate by a Pd-catalyzed coupling to afford the cinnamate intermediate 1-3. The intermediate (1-3) can be subsequently reduced, for example with \(\text{H}_2 \), Pd/C, to an amino-substituted intermediate (1-4), which can react with oxirane to easily afford intermediate (1-5). After that, intermediate 1-5 can be converted to intermediate (1-6) with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride. Finally the hydroxylamination of intermediate (1-6) in \(\text{NH}_2\text{OH} \) can afford the target compounds.

Alternatively, Formula (III) compounds can be synthesized according to the general Scheme 1A. \(X_1 \) and \(R_d \) in general Scheme 1A are the same as those described in the Summary section above.
Scheme 1A

1A-2 can be prepared by standard organic reactions. After that the commercially available starting material 1A-1 (CAS#: 41939-61-1) can react with 1A-2 to form the benzimidazole intermediate 1A-3, which can be subsequently reduced, for example with H₂, Pd/C, to an amino-substituted intermediate (1A-4), which can react with oxirane to easily afford intermediate (1A-5). After that, intermediate 1A-5 can be converted to intermediate (1A-6) with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride. Finally the hydroxylamination of intermediate (1A-6) in NH₂OH can afford the target compounds.

Similarly, a typical approach using Z is (CH₂)pNH(CH₂)q as an example to illustrate the synthesis of the Formula (III) compounds is described in Scheme 2. X₁ and Rₙ in general Scheme 2 are the same as those described in the Summary section above.
The starting material 2-1 can be converted to 2-2 by standard organic reactions. The secondary amine of intermediate (2-2) can be protected by a protecting group (-PG) such as Boc to yield intermediate (2-3), which undergo hydrolysis to afford the carboxylic acid intermediate 2-4. After that, 2-4 can react with N1-methyl-4-nitrobenzene-1,2-diamine to form the benzimidazole intermediate 2-5, which can react with methyl acrylate by a Pd-catalyzed coupling to afford the cinnamate intermediate 2-6. The intermediate 2-6 can be subsequently reduced, for example Fe/NH\textsubscript{4}Cl, Fe/HCl or Zn/FeSO\textsubscript{4}, to an amino-substituted intermediate (2-7), which can react with oxirane to easily afford intermediate (2-8). After that, 2-8 can be converted to intermediate (2-9) with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride. The de-protection of intermediate (2-9) affords the intermediate 2-10. Finally, the oxylamination of 2-10 in NH\textsubscript{2}OH can afford the target compounds of Formula (III).

Alternatively, Formula (III) compounds can be synthesized according to the Scheme 2a. Xi and R\textsubscript{d} in general Scheme 2a are the same as those described in the Summary section above.
The starting material 2^a^-1 with different p and q can be prepared by standard organic reactions. After that, 2^a^-1 can be converted to carboxylic acid intermediate 2^a^-2 with TFA. The secondary amine of intermediate 2^a^-2 can be protected by a protecting group such as Boc to yield intermediate 2^a^-3, which can react with N^1^-methyl-4-nitrobenzene-1,2-diamine to form the benzimidazole intermediate 2^a^-4. Next, the intermediate 2^a^-4 can be subsequently reduced, for example Zn/acetone, Fe/NH_4Cl, Fe/HCl or Zn/FeS_0_4, to an amino-substituted intermediate (2^a^-5), which can react with oxirane to easily afford alcohol intermediate (2^a^-6). After that 2^a^-6 can be converted to intermediate (2^a^-7) with high yield by reaction with a chlorinating reagent such as thionyl chloride, MsCl/LiCl, or phosphorus pentachloride. The hydrolysis of ester 2^a^-7, e.g. in LiOH will afford carboxylic acid intermediate 2^a^-8, which can couple with NH_2OH to form the hydroxamic acid intermediate 2^a^-9. Finally, the de-protection of 2^a^-9 afford the target compounds of Formula (III).

As a further example, the several different approaches to synthesize CY-102 are described in the following scheme 2A:
As showed in Scheme 2A, CY-102-IV can be prepared by reacting CY-102-I with hydroxylamine, in the presence of a base such as for example potassium hydroxide. Said reaction is performed in an appropriate solvent, such as, for example, methanol. Finally, the de-Boc of CY-102-IV will lead to CY-102.

Another route showed in Scheme 2A for the preparation of CY-102 is follows: first, the hydrolysis of CY-102-I, e.g in LiOH or HCl to afford the carboxylic acid intermediate CY-102-II; next, CY-102-11 can either couple with NH₂OH at the presence of appropriate reagents such as HATU/TEA/DCM to form CY-102-IV or can be converted CY-102-IV by such as the method reported in Tetrahedron Letters, 41, (2000), 6285-6288; finally, the de-Boc of CY-102-IV will lead to CY-102.

Alternative route to prepare CY-102 is first to hydrolyze CY-102-I e.g in LiOH or HCl to afford the carboxylic acid intermediate CY-102-11, which can coupled with O or N-protected hydroxylamine such as NH₂-0-THP, NH₂-0-Bn, N-t-Boc-O-THP, N-t-Boc-O-TBDMS, N,O-bis-(phenoxy carbonyl)-hydroxylamine, N,0-bis(tert-butoxycarbonyl)hydroxylamine, and N,N,0-tris-(trimethylsilyl)-hydroxylamine to form intermediate CY-102-III. For example, CY-102-11 can couple with NH₂-0-THP in the presence of appropriate reagents such as N-L-(ethylcarbonimidoyl)-N,N-dimethyl-1,3-propanediamine, monohydrochloride (EDC) and 1-hydroxy-1H-benzotriazole (HOBT) to form intermediate CY-102-III. This reaction may be performed in the presence of a base such as triethylamine, in a suitable solvent, such as, a mixture of dichloromethane and tetrahydrofuran. Finally CY-102 can be prepared by deprotecting CY-102-III with an appropriate reagents, such as for example, trifluoro acetic acid. Said reaction is performed in an appropriate solvent, such as, for example, methanol or dichloromethane.

The approaches to synthesize the intermediate CY-102-I are described in Scheme 2B-2C.
The commercially available starting material 2B-1 (CAS#: 41939-61-1) react with amine protected 3-aminopropanoic acid followed by a deprotection process to form the benzimidazole intermediate 2B-2, which can react with (E)-methyl 3-(4-formylphenyl)acrylate to afford the cinnamate intermediate 2B-3. The secondary amine of intermediate (2B-3) can be protected by a protecting group (-PG) such as Boc to yield intermediate (2B-4), which can be subsequently reduced, for example by Fe/NH$_4$Cl, Fe/HCl or Zn/FeSO$_4$, to an amino-substituted intermediate (2B-5). Intermediate 2B-5 can react with oxirane to easily afford intermediate (2B-6) which can be converted to intermediate (CY-102-I) with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride.

The commercially available starting material 2C-1 (CAS#: 364-76-1) can react with oxirane to easily afford intermediate 2C-2. The OH group of intermediate (2C-2) can be protected by a protecting group (-PG) to form the intermediate (2C-3). After that 2C-3 can react
with NH$_2$CH$_3$ to afford intermediate 2C-4, which can be reduced for example by Fe/NH$_4$Cl, Fe/HCl or Zn/FeSO$_4$, to an amino-substituted intermediate (2C-5). At the same time, the commercially available starting material 2C-6 can be converted to the intermediate 2C-7 and then the Boc protected 2C-8 by standard organic reactions, which will react with 2C-5 to form the benzimidazole intermediate 2C-9. Next, the OH group of 2C-9 will undergo the deprotection reaction to yield intermediate 2C-10, which can be subsequently converted to CY-102-I with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride.

The preferred method to prepare CY-102 as shown in Scheme 2D.

The commercially available starting material 2D-1 (4-bromobenzaldehyde) is converted to cinnamic intermediate 2D-2. After that 2D-2 can react with tert-butyl 3-aminopropanoate to form 2D-3, which can be converted to carboxylic acid intermediate 2D-4 with an appropriate reagent, such as for example, trifluoro acetic acid. The Boc protection of amine of 2D-4 will lead to intermediate 2D-5, which will react with NI-methyl-4-nitrobenzene-1,2-diamine(CAS#: 41939-61-1) to form intermediate 2D-6 followed by a cyclization reaction to form benzimidazole intermediate 2D-7. Intermediate 2D-7 can be reduced for example by Zn/AcOH, Fe/NH$_4$Cl, Fe/HCl or Zn/FeSO$_4$, to an amino-substituted intermediate (2D-8), which can react with oxirane to easily afford intermediate (2D-9). 2D-9 can be converted to intermediate 2D-10 with high yield by reaction with a chlorinating reagent such as thionyl chloride, MsCl/LiCl, or phosphorus pentachloride. The hydrolysis of 2D-10 e.g in LiOH will afford the carboxylic acid intermediate 2D-11, which can couple with NH$_2$OH at the presence of appropriate coupling reagents such as HATU/TEA/DCM to form intermediate 2D-12. Finally, the de-Boc of 2D-12 will lead to the target molecule of CY-102.

A typical approach using Z =S(O$_2$)NH as an example to illustrate the synthesis of the
Formula (IIIA) is described in Scheme 2E. \(X_i \) and \(R_d \) in general Scheme 2E are the same as those described in the Summary section above.

The commercial available starting material \(2E-1 \) (CAS#: 41939-61-1) reacts with \(\text{CS}_2 \) to form intermediate \(2E-2 \), which can be sequently converted to \(2E-3 \) by standard organic reaction. The intermediate \(2E-3 \) will react with \(2E-B \) to afford \(2E-4 \), which can be reduced for example by \(\text{Fe/NH}_4\text{Cl} \), \(\text{Fe/HCl} \) or \(\text{Zn/FeSO}_4 \), to an amino-substituted intermediate \((2E-5) \). The intermediate \(2E-5 \) can react with oxirane to easily afford intermediate \((2E-6) \), which can be converted to intermediate \(2E-7 \) with high yield by reaction with a chlorinating reagent such as thionyl chloride, \(\text{MsCl/LiCl} \), or phosphorus pentachloride. The hydrolysis of \(2E-7 \) e.g in \(\text{LiOH} \) will afford the carboxylic acid intermediate \(2E-8 \), which can couple with \(\text{NH}_2\text{OH} \) at the presence of appropriate reagents such as HATU/TEA/DCM to form compounds of formula (IIIA).

A typical approach using \(Z = \text{S(0}_2 \text{)} \) as an example to illustrate the synthesis of the Formula (IIIB) compounds is described in Scheme 2F. \(X_i \) and \(R_d \) in general Scheme 2F are the same as those described in the Summary section above.
The commercial available starting material **2F-1** (CAS#: 41939-61-1) reacts with \(\text{CS}_2 \) to form intermediate **2F-2**, which can be sequently converted to **2F-3** by standard organic reaction. The intermediate **2F-3** will react with **2F-B** to afford **2F-4**, which can be reduced for example by Fe/NH₄Cl, Fe/HCl or Zn/FeSO₄ to an amino-substituted intermediate **(2F-5)**. The intermediate **2F-5** can react with oxirane to easily afford intermediate **(2F-6)**, which can be converted to intermediate **2F-7** with high yield by reaction with a chlorinating reagent such as thionyl chloride, MsCl/LiCl, or phosphorus pentachloride. The hydrolysis of **2F-7** will afford the carboxylic acid intermediate **2F-8**, which can couple with \(\text{NH}_2\text{OH} \) at the presence of appropriate reagents such as HATU/TEA/DCM to form compounds of formula (IIIB).

A typical approach using \(Z = \text{deleted}, \) and \(L_{1} = \) in which \(m, n \) is 0, 1, 2, 3, or 4 as an example to illustrate the synthesis of the Formula (IIIC) compounds is described in Scheme 2G. \(X_{1} \) and \(R_{d} \) in general Scheme 2G are the same as those described in the Summary section above.
The starting material 2G-1 can react with ethyl acrylate by a Pd-catalyzed coupling to afford the cinnamate intermediate 2G-2, which can be further reduced to alcohol intermediate 2G-3. After that 2G-3 will be converted to alkyl bromide intermediate 2G-4, which will react with appropriate cycloamine to form intermediate 2G-5. 2G-5 will undergo hydrolysis in trifluoroacetic acid to afford intermediate 2G-6, which will react with N-ethyl-4-nitrobenzene-1,2-diamine (CAS#: 41939-61-1) to form the benzimidazole intermediate 2G-7. 2G-7 can be subsequently reduced, for example Fe/NH₄Cl, Fe/HCl or Zn/FeSO₄, to an amino-substituted intermediate (2G-8), which can react with oxirane to easily afford intermediate (2G-9). After that 2G-9 can be converted to intermediate (2G-10) with high yield by reaction with a chlorinating reagent such as thionyl chloride, MsCl/LiCl, or phosphorus pentachloride. The hydrolysis of 2G-10 will afford the carboxylic acid intermediate 2G-11, which can couple with NH₂OH at the presence of appropriate reagents such as HATU/TEA/DCM to form compounds of Formula (IIIC).

Similarly, a typical approach using Z = -(CH₂)ₘ₋ₙ₋₂⁻, and L₁ = =, in which m is 0, 1, 2, 3, or 4 as an example to illustrate the synthesis of the Formula (IIIC) compounds is described in Scheme 2H. m,n, X₁ and Rₜ in general Scheme 2H are the same as those described in the Summary section above.
The starting material 2H-1 is first converted to a Boc-protected intermediate 2H-2, which can react with ethyl acrylate by a Pd-catalyzed coupling to afford the cinnamate intermediate 2H-3, followed by a de-Boc process to form intermediate 2H-4. Meanwhile, N1-methyl-4-nitrobenzene-1,2-diamine (CAS#: 41939-61-1) can react with appropriate alcohol carboxylic acid to form the benzimidazole intermediate 2H-6, which can be converted to haloalkyl intermediate 2H-7 by standard organic reactions. The reaction of 2H-7 and 2H-4 will produce intermediate 2H-8, which be subsequently reduced, for example Fe/NH4Cl, Fe/HCl or Zn/FeSO4, to an amino-substituted intermediate (2H-9). After that, 2H-9 can react with oxirane to easily afford intermediate (2H-10) and then 2H-10 can be converted to intermediate (2H-11) with high yield by reaction with a chlorinating reagent such as thionyl chloride, MsCl/LiCl, or phosphorus pentachloride. The hydrolysis of 2H-11 will afford the carboxylic acid intermediate 2H-12, which can couple with NH2OH at the presence of appropriate reagents such as HATU/TEA/DCM to form compounds of Formula (IIIC).

The similar strategy can be explored in the synthesis of other Formula (III), Formula (IIIA), Formula (IIIB), Formula (IIIC), and Formula (HID) compounds with different Z moieties.

A typical approach using \(Z = (\text{CH}_2)_p \text{NH}(\text{CH}_2)_q \) as an example to illustrate the synthesis of the Formula (IV) compounds is described in Scheme 3. \(X \) and \(W \) in general Scheme 3 are the same as those described in the Summary section above.
The starting material 3-1 is converted to 3-2 by standard organic reaction. After that the secondary amine of intermediate 3-2 is protected by a protecting group PG to afford intermediate 3-3 so that the PG can be deprotected at different condition as compared to the protecting group PGi (e.g. PG can be cleaved in acid condition and PGi can be cleaved at basic condition). The hydrolysis of intermediate 3-3 to afford intermediate 3-4, which can react with N1-methyl-4-nitrobenzene-1,2-diamine (CAS#: 41939-61-1) to form the benzimidazole intermediate 3-5. The deprotection of PGi of intermediate 3-5 result the intermediate 3-6, which can react with methyl 2-chloropyrimidine-5-carboxylate to afford intermediate 3-7. After that intermediate 3-7 can be subsequently reduced, for example with H2, Pd/C, to an amino-substituted intermediate (3-8). Intermediate 3-8 can react with oxirane to easily afford intermediate (3-9) which can be converted to intermediate (3-10) with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride. The deprotection of PG of intermediate (3-10) affords the intermediate 3-11. Finally the hydroxylamination of intermediate (3-11) in NH2OH can afford the target compound of Formula (IV).

Alternatively, the Formula (IV) compounds with Z = (CH2)pNH(CH2)q can be prepared according to Scheme 3a. X1 and Wi in general Scheme 3a are the same as those described in the Summary section above.
The starting material 3a-1 with different p and q and protected amine can be prepared by standard organic reactions. After that, it will react with ethyl 2-chloropyrimidine-5-carboxylate followed by the amine deprotection to afford 3a-2, which can be subsequently converted to carboxylic acid intermediate 3a-3 with TFA. The secondary amine of intermediate 3a-3 can be protected by a protecting group such as Boc to yield intermediate 3a-4, which can react with N1-methyl-4-nitrobenzene-1,2-diamine to form the benzimidazole intermediate 3a-5. Next, the intermediate 3a-5 can be subsequently reduced, for example Fe/NH\textsubscript{4}Cl, Fe/HCl or Zn/FeSO\textsubscript{4}, to an amino-substituted intermediate (3a-6), which can react with oxirane to easily afford alcohol intermediate (3a-7). After that 3a-7 can be converted to intermediate (3a-8) with high yield by reaction with a chlorinating reagent such as thionyl chloride, MsCl/LiCl, or phosphorus pentachloride. The hydrolysis of 3a-8 in NH\textsubscript{2}OH will afford carboxylic acid intermediate 3a-9, which can undergo the de-protection to afford the target compounds of Formula (IV).

As a further example, the approach to synthesize the compound CY-103 is described in Scheme 3A.
As showed in Scheme 3A, CY-103-IV can be prepared by reacting CY-103-I with hydroxylamine, in the presence of a base such as for example potassium hydroxide. Said reaction is performed in an appropriate solvent, such as, for example, methanol. Finally, the de-Boc of CY-103-IV will lead to CY-103.

Another route showed in Scheme 3A for the preparation of CY-103 is follows: First, the hydrolysis of CY-103-I, e.g in LiOH or HCl to afford the carboxylic acid intermediate CY-103-II. Next, CY-103-II can either couple with NH$_2$OH at the presence of appropriate reagents such as HATU/TEA/DCM to form CY-103-IV or can be converted CY-103-IV by such as the method reported in Tetrahedron Letters, 41, (2000), 6285-6288. Finally, the de-Boc of CY-103-IV will lead to CY-103.

Alternative route to prepare CY-103 is first to hydrolyze CY-103-I e.g in LiOH or HCl to afford the carboxylic acid intermediate CY-103-II, which can coupled with O/N-protected hydroxylamine such as NH$_2$-0-THP, NH$_2$-0-Bn, N-t-Boc-O-THP, N-t-Boc-O-TBDMS, N,O-bis-(phenoxy carbonyl)- hydroxylamine, N,N-0-bis(tert-butoxycarbonyl) hydroxylamine and N,N,0-tris-(trimethylsilyl)- hydroxylamine to form intermediate CY-103-III. For example, CY-103-II can couple with NH$_2$-0-THP in the presence of appropriate reagents such as N$_1$-(ethylcarbonimidoyl)-N,N-dimethyl-1,3-propanediamine, monohydrochloride (EDC) and 1-hydroxy-1H-benzotriazole (HOBT) to form intermediate CY-103-III. This reaction may be performed in the presence of a base such as triethylamine, in a suitable solvent, such as, a mixture of dichloromethane and tetrahydrofuran. Finally CY-103 can be prepared by deprotecting CY-103-III with an appropriate reagents, such as for example, trifluoro acetic acid. Said reaction is performed in an appropriate solvent, such as, for example, methanol or dichloromethane.

The approaches to synthesize CY-103-I are described in Scheme 3B-3E.
Scheme 3B shows the synthesis of several key intermediates. The commercially available starting material 3B-1 can react with the Boc protected piperidin-4-ylmethanamine to form intermediate 3B-2, which can be converted to 3B-3 by a deprotection process. Similarly, the starting material 3B-1 can react with protected piperidin-4-ylmethanol to afford the intermediate 3B-4, which will undergo the deprotection to yield the alcohol intermediate 3B-5 and then be oxidized to form aldehyde intermediate 3B-6. Next, 3B-6 can be converted to 3B-7 by standard organic reactions, which can be treated with TFA followed by a Boc protection to form the key intermediate 3B-8.

The reaction of 2C-5 (as shown in Scheme 2C) with 3B-8 (as shown in Scheme 3B) will form the benzimidazole intermediate 3C-1. Next, the OH group of 3C-1 can undergo the deprotection reaction to yield intermediate 3C-2, which can be subsequently converted to CY-103-1 with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride.
The commercially available starting material **3D-1** (CAS#: 41939-61-1) will react with 2-aminoacetic acid to afford intermediate **3D-2**, which will subsequently couple with **3B-6** (as shown in Scheme 3B) to form the intermediate **3D-3**. The secondary amine of intermediate (3D-3) can be protected by a protecting group (-PG) such as Boc to yield intermediate (3D-4), which can be subsequently reduced, for example by Fe/NH$_4$Cl, Fe/HCl or Zn/FeSO$_4$, to an amino-substituted intermediate (3D-5). After that, 3D-5 can react with oxirane to easily afford intermediate (3D-6), which can be subsequently converted to CY-103-I with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride.

The preferred method to prepare CY-103 is shown as Scheme 3F.
Intermediate **3B-8** will react with N¹-methyl-4-nitrobenzene-1,2-diamine (CAS#: 41939-61-1) to form the benzimidazole intermediate **3F-1**. After that **3F-1** can be reduced for example by Fe/NH₄Cl, Fe/HCl or Zn/FeS₂₉₄, to an amino-substituted intermediate (3F-2), which can react with oxirane to easily afford intermediate (3F-3). **3F-3** can be converted to intermediate **3F-4** with high yield by reaction with a chlorinating reagent such as thionyl chloride, MsCl/LiCl, or phosphorus pentachloride. The hydrolysis of **3F-4** e.g in LiOH will afford the carboxylic acid intermediate **3F-5**, which can couple with NH₂OH at the presence of appropriate reagents such as HATU/TEA/DCM to form intermediate **3F-6**. Finally, the de-Boc of **3F-6** will lead to the target molecule of **CY-103**.

A typical approach using $Z = S(O)₂$ and $W₁ = N$ as an example to illustrate the synthesis of the Formula (IV) compounds is described in Scheme 4. Xi in general Scheme 4 are the same as those described in the Summary section above.

The commercial available starting material **4-1** (CAS#: 41939-61-1) reacts with CS₂ to form intermediate **4-2**, which can be sequently converted to **4-3** by standard organic reaction.
The intermediate 4-3 will react with Boc-protected piperazine to afford intermediate 4-4, which will undergo deprotection to form intermediate 4-5. After that, intermediate 4-5 can react with ethyl 2-chloropyrimidine-5-carboxylate to afford intermediate 4-6, which can be subsequently reduced, for example with H₂, Pd/C, to an amino-substituted intermediate 4-7. Intermediate 4-7 can react with oxirane to easily afford intermediate (4-8) which can be converted to intermediate (4-9) with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride. Finally, the hydroxylamination of intermediate (3-11) in NH₂OH can afford the target compound of Formula (IV).

A typical approach using \(Z = (\text{CH}_2)_p \) and \(R_d = \text{alkyl} \) as an example to illustrate the synthesis of the Formula (IV-A) compounds is described in Scheme 4A. \(X_1 \) in general Scheme 4A are the same as those described in the Summary section above.

The starting material 4A-1 with different \(p \) and \(q \) can be prepared by standard organic reactions. After that, it will undergo a Boc protection process to form intermediate 4A-2, which can react with \(\text{N}^1\)-methyl-4-nitrobenzene-1,2-diamine to form the benzimidazole intermediate 4A-3. Next, the intermediate 4A-3 will undergo a Boc de-protection process to form 4A-4, which can react with ethyl 2-chloropyrimidine-5-carboxylate to form intermediate 4A-5. Intermediate 4A-5 can be subsequently reduced, for example Fe/NH₄Cl, Fe/HCl or Zn/FeSO₄, to an amino-substituted intermediate (4A-6), which can react with oxirane to easily afford alcohol intermediate (4A-7). After that 4A-7 can be converted to intermediate (4A-8) with high yield by
reaction with a chlorinating reagent such as thionyl chloride, MsCl/LiCl, or phosphorus pentachloride. The hydrolysis of 4A-8, e.g. in LiOH will afford carboxylic acid intermediate 4A-9, which can be one step converted to the target compounds of Formula (IV-A).

The similar strategy can be explored in the synthesis of other Formula (IV), Formula (IV-A), and Formula (IV-B) compounds with different Z moieties.

A typical approach using Z = NH, V = deleted, Y = NH₂ as an example to illustrate the synthesis of the Formula (V) compounds is described in Scheme 5. X_i and R_d in general Scheme 5 are the same as those described in the Summary section above.

The bromination of the benzimidazole starting material 5-1 (CAS#: 5381-78-2) forms the intermediate 5-2, which can react with amine to intermediate 5-3. The protection of amine of 5-3 leads to the intermediate 5-4, which can be subsequently reduced, for example with H₂, Pd/C, to an amino-substituted intermediate 5-5. Intermediate 5-5 can react with oxirane to easily afford intermediate (5-6) which can be converted to intermediate (5-7) with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride. The hydrolysis of intermediate 5-7 forms the intermediate 5-8, which can couple with appropriate Boc-protected amine to afford intermediate 5-9. A number of coupling agent, like DCC(N,N'-dicyclohexylcarbodiimide), DIC(N,N'-diisopropylcarbodiimide), EDC (also EDAC or EDCI, acronyms for 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide), HBTU (O-(Benzotriazol-l-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate), TBTU (O-(Benzotriazol-l-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate), HATU (O-(7-Azabenzotriazol-l-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate), HCTU (O-(6-Chlorobenzotriazol-l-yl)-
N,N,N’,N’-tetramethyluronium hexafluorophosphate), could be used for the coupling reaction. Finally the deprotection of Boc group of 5-9 can afford the target compound of Formula (V).

A typical approach using \(Z = (\text{CH}_2)_p \), \(V = \text{C}(\text{O})\text{NH} \), \(Y = \text{NH}_2 \) as an example to illustrate the synthesis of the Formula (V) compounds is described in Scheme 6. \(X_1 \) and \(R_d \) in general Scheme 6 are the same as those described in the Summary section above.

The starting material (6-1), a 2,4-dinitroaniline can couple with an appropriate acyl chloride to give a N-acylated intermediate (6-2). The alkylation of N-acylated intermediate (6-2) with an alkylation agent such dimethylsulfate will lead to a dinitroaromatic intermediate (6-3). The reduction of the dinitroaromatic intermediate (6-3), for example with \(\text{H}_2 \), Pd/C, followed by dehydration with acid will form benzimidazole intermediate (6-4). The intermediate (6-4) can react with oxirane to easily afford intermediate (6-5), which can be converted to intermediate (6-6) with high yield by reaction with a chlorinating reagent such as thionyl chloride. The hydrolysis of (6-6) will result the carboxylic acid intermediate 6-7, which can couple with appropriate amine to form intermediate 6-8. A number of coupling agent, like DCC, DIC, EDC (also EDAC or EDCI), HBTU, TBTU, HATU, and HCTU, could be used for this coupling reaction. The intermediate 6-8 will undergo hydrolysis to afford carboxylic acid intermediate 6-9, which can couple with appropriate Boc-protected amine to form intermediate 6-10. A number of coupling agent, like DCC, DIC, EDC (also EDAC or EDCI), HBTU, TBTU, HATU, and HCTU, could be used for this coupling reaction. Finally the deprotection of Boc-group of 6-10 will afford the target compound of Formula (V).
A typical approach using \(Z = (\text{CH}_2)_p \), \(V = \text{bivalent heterocycloalkyl group} \) (e.g. \(Y = \text{NH}_2 \) as an example to illustrate the synthesis of the Formula (V) compounds is described in Scheme 7. \(X_1 \) and \(R_d \) in general Scheme 7 are the same as those described in the Summary section above.

The commercial available starting material (7-1) is first converted to 7-2, then react with the commercial available reagent 7-3 (CAS: 1253-46-9) to afford intermediate 7-4, which can be subsequently reduced to intermediate 7-5, followed by the deprotection to yield the key intermediate 7-6.

Meanwhile, the commercial available starting material 7-7 (CAS#: 41939-6 1-1) is coupled with the appropriate carboxylic acid to afford the intermediate 7-8, which can be easily converted to the alkyl bromide 7-9. The reaction of 7-9 with 7-6 will afford intermediate 7-10, which can be subsequently reduced, for example with \(\text{H}_2 \), Pd/C, to an amino-substituted intermediate 7-11. Intermediate 7-11 can react with oxirane to easily afford intermediate (7-12) which can be converted to intermediate (7-13) with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride. The hydrolysis of 7-13 forms the carboxylic acid intermediate 7-14, which can couple with appropriate Boc-protected amine to
afford intermediate 7-15. A number of coupling agent, like DCC, DIC, EDC (also EDAC or EDCI), HBTU, TBTU, HATU, and HCTU, could be used for this coupling reaction. Finally the deprotection of Boc-group of 7-15 will afford the target compound of Formula (V).

A typical approach using \(Z = (\text{CH}_2)_p \), \(V = \text{bivalent heteroaryl group} \) (e.g. \(Y = \text{NH}_2 \)) as an example to illustrate the synthesis of the Formula (V) compounds is described in Scheme 8. \(X_1 \) and \(R_a \) in general Scheme 8 are the same as those described in the Summary section above.

The commercial available starting material 8-1 (CAS#: 41939-61-1) is coupled with the appropriate aldehyde to afford the intermediate 8-2, which can be converted to the intermediate 8-3. Meanwhile, the intermediate 8-4 can be obtained by one step converted from the commercially available starting material 2-(4-(methoxycarbonyl)phenyl)acetic acid. The reaction of 8-3 with 8-4 will afford the key intermediate 8-5, which can be subsequently reduced, for example with \(\text{H}_2, \text{Pd/C} \), to an amino-substituted intermediate 8-6. Intermediate 8-6 can react with oxirane to easily afford intermediate (8-7) which can be converted to intermediate (8-8) with high yield by reaction with a chlorinating reagent such as thionyl chloride or phosphorus pentachloride. The hydrolysis of 8-8 forms the carboxylic acid intermediate 8-9, which can couple with appropriate Boc-protected amine to afford intermediate 8-10. A number
of coupling agent, like DCC, DIC, EDC (also EDAC or EDCI), HBTU, TBTU, HATU, and HCTU, could be used for this coupling reaction. Finally the deprotection of Boc-roup of 8-10 will afford the target compound of Formula (V).

The similar strategy can be explored in the synthesis of other Formula (V) compounds with different Z and V moieties (e.g. V = \(\begin{align*} & N \quad \text{or} \quad N, \\
& N \quad \text{or} \quad N \end{align*} \)).

EXAMPLES

The compounds and processes of the present invention will be better understood in connection with the following examples, which are intended as an illustration only and not limiting of the scope of the invention. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, substituents, derivatives, formulations and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims.

Where NMR data are presented, \(^1H \) spectra were obtained on either a Varian VXR-200 (200 MHz, \(1H \)), Varian Gemini-300 (300 MHz) or XL400 (400 MHz) and are reported as ppm down field from Me\(_4\)Si with number of protons, multiplicities, and coupling constants in Hertz indicated parenthetically. Where HPLC data are presented, analyses were performed using an Agilent 1100 system. Where LC/MS data are presented, analyses were performed using an Agilent 6210 TOF LC/MS or an Applied Biosystems API-100 mass spectrometer and Shimadzu SCL-IOA LC column: Altech platinum C18, 3 micron, 33 mmx7 mm ID; Samples were eluted using a linear gradient of 0-100% acetonitrile/pH4.50, 200 mM NH\(_4\) acetate over 10 minutes with a flow rate of 3.0 mL/min. Chromatograms were generated over the range 240-400 nm using a diode array detector.

In the following examples:

DCM = dichloromethane

Boc = tert-butylxocarbonyl

HATU = 0-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate

TEA = triethanolamine

MsCl = methanesulfonyl chloride

DMF = dimethyl fluoride

THF = tetrahydrofuran
Example 1: Preparation of CY-102

1.1: General procedure for Preparation of 2D-3: A mixture of 2D-1 (5.8 g, 31.8 mmol) and K₂CO₃ (13.2 g, 95.6 mmol) in 1,2-dichloroethane (150 mL) was stirred for 20 mins and filtered. To the filtrate was added 2D-2 (5 g, 24.51 mmol), and then NaBH(OAc)₃ (6.24 g, 29.4 mmol) was added in portions. The resulting mixture was stirred at r.t. overnight. The mixture was quenched with water and extracted with DCM. The organic phases were dried and concentrated. The residue was re-crystallized by DCM to give the product 2D-3 (4.0 g, yield 49.2%), as a white solid. HNMR-Analysis: H NMR (CDC13) δ: 7.67 (d, J=16.04 Hz, 1H), 7.49 (d, J=7.43 Hz, 2H), 7.35 (d, J=7.43 Hz, 2H), 6.42 (d, J=16.04 Hz, 1H), 4.27 (q, J=6.91 Hz, 2H), 3.84 (s, 3H), 2.87 (t, J=5.87 Hz, 3H), 2.48 (t, J=6.06 Hz, 3H), 1.44 (s, 11H), 1.34 (t, J=7.04 Hz, 3H).

1.2: General procedure for Preparation of 2D-4: To a suspension of 2D-3 (25.0 g, 75.1 mmol) in DCM (300 mL) was added TFA (30 mL) and the mixture was stirred at r.t. overnight. The mixture was concentrated, the residue was dissolved in DCM, adjusted to pH=7 with NaOH solution, the mixture was concentrated. The residue was dissolved in DCM and MeOH, then filtered and the filtrate was concentrated to give the crude product 2D-4 (20.0 g, yield 96.2%). HNMR-Analysis: H NMR (DMSO-J) δ: 1.23 (t, J=7.04 Hz, 3H), 2.67 (t, J=7.43 Hz, 2H), 3.01 - 3.12 (m, 2H), 4.16 (d, J=7.04 Hz, 4H), 6.67 (d, J=16.04 Hz, 1H), 7.53 (d, J=7.83 Hz, 2H), 7.63 (d, J=16.04 Hz, 1H), 7.77 (d, J=8.22 Hz, 2H), 9.13 (brs., 2H).

1.3: General procedure for Preparation of 2D-5: A mixture of 2D-4 (20 g, 72.2 mmol) and Boc₂O (31.5 g, 144.4 mmol) in 1,4-dioxane (250 mL) was heated to reflux for 5 hrs. The mixture was concentrated and the residue was purified by column flash to give 2D-5 (22.1 g, yield 81.2%) as a white solid. HNMR-Analysis: H NMR (CDC13) δ: 1.33 (t, J=7.24 Hz, 3H),
1.4: **General procedure for Preparation of 2D-6:** To a mixture of compound N1-methyl-4-nitrobenzene-1,2-diamine (41 g, 0.11 mol) and TEA (20.4 g, 0.2 mol) in DCM (1000 mL) was added HATU (45.7 g, 0.12 mol) and 2D-5 (16.1 g, 0.11 mol) at 0°C and the reaction mixture was stirred at 20°C for 12 hrs. The reaction mixture was poured into water, washed with water for three times. The organic phase was dried over Na2SO4 and concentrated to give 2D-6 (50 g), as a red oil, which was used directly in the next step without further purification.

1H NMR of 2D-6: 1.44 (s, 9 H) 1.33(m, 3H) 2.67 (t, J=6 Hz, 2 H) 2.92 (s, 3 H) 3.18 (m, 2 H) 3.61 (t, J=5.6, 2H) 4.26 (q, J=7.2 Hz, 2H) 4.48 (s, 2 H) 6.41 (d, J=16 Hz, 1 H) 6.57 (d, J=9.2 Hz, 1 H) 7.15(d, J=7.6, 2 H) 7.49 (d, J=8 Hz, 2 H) 7.65(d, J=16. Hz, 1 H) 7.98-8.11(m, 2 H).

1.5: **General procedure for Preparation of 2D-7:** a mixture of compound 2D-6 (45 g, crude) in toluene and acetic acid (500 mL) was stirred at 100°C for 30 mins. The reaction mixture was concentrated to give 2D-7 (50 g), as a red oil, which was used directly in the next step without further purification. 1H NMR-Analysis of 2D-7: 1.27(t, 3H)1.33 (brs, 9 H) 3.05-3.18 (m, 4 H) 3.50 - 3.76 (m, 5 H) 4.20 (m, 2 H) 4.39 (s, 2 H) 6.31 (dd, J=16.04, 2.35 Hz, 1 H) 7.15 - 7.34 (m, 5 H) 7.48 - 7.60 (dd, J=16,3,2 Hz,1 H) 8.13 (d, J=4.4 Hz, 1 H) 8.52 (s, 1 H).

1.6: **General procedure for Preparation of 2D-8:** To a mixture of compound 2D-7 (50 g, crude) and AcOH (20 mL) in DCM (1000 mL) was added Zn (15 g, 0.23 mol) at 0°C and the reaction mixture was stirred at 20°C for 1 h. The reaction mixture was filtered; the filtrate was concentrated to give the crude product (80 g) as red oil which was used to next step without further purification. 1H NMR-Analysis of 2D-8: 1.39 - 1.50 (m, 9 H) 3.11 (q, J=7.30 Hz, 3 H) 3.38 (br.s., 2 H) 3.67 (d,J=11.74 Hz, 3 H) 4.22 - 4.38 (m, 4 H) 6.36 (d, J=16.04 Hz, 1 H) 6.74 (d, J=8.61 Hz, 1 H) 6.99 - 7.20 (m, 3 H) 7.22 (s, 1 H) 7.33 (d, J=6.65 Hz, 2 H) 7.56 (d,J=16.04 Hz, 1 H).

1.7: **General procedure for Preparation of 2D-9:** a mixture of compound 2D-8 (80 g, crude) and ethylene oxide (80 mL) in water (1000 mL) and acetic acid (20 mL) was stirred at 23°C for 5 hrs. The reaction mixture was concentrated to give 2D-9 (63 g), as a red oil, which was used directly in the next step without further purification. 1H NMR (MeOD 400MHz): 1.30 (m, 12 H) 3.22 (br.s., 2 H) 3.50 (d, J=4.8, 3 H) 3.563 (q , 1 H) 3.67 (m, 10 H) 4.23 (q, 2 H) 6.43 (d, 2 H) 6.38 (d, J=16.1 H) 6.91 (d, J=8.4, 2H) 7.22(t,2H) 7.29(d, 2H) 7.33 (d, J=8 Hz, 2 H) 7.44(q, 2H) 7.60 (t, 1 H).

1.8: **General procedure for Preparation of 2D-10:** to a mixture of compound 2D-9 (70
g, crude) and TEA (20.4 g, 0.2 mol) in DCM (1000 mL) was added MsCl (13.74 g, 0.12 mol) at 0°C and the reaction mixture was stirred at 20°C for 1 h. The reaction mixture was poured into water, washed with water three times. The organic phase was dried over Na₂SO₄ and concentrated to give the crude product (100 g). The crude product was dissolved in DMF (500 mL) and LiCl (16.8 g, 0.4 mol) and the resulting mixture was stirred at 100°C for 2 hrs. The mixture was concentrated and purified by silica gel chromatography to give 2D-10 (18 g).

1HNMR (DMSO 400MHz): 1.25 (m, 12 H) 3.03 (br. s., 2 H) 3.51 (m, 2 H) 3.58 - 3.69 (m, 10 H) 4.17 (q, J=7.6 Hz, 2 H) 4.45 (br. s., 2 H) 6.58 (d, J=16 Hz, 1 H) 6.8 (t,1H) 6.9 (br.s,1H) 7.25 (d, J=8, 1H) 7.33 (d, J=9.2, 1H) 7.60 (d, J=16, 1H) 7.66 (d, J=7.2, 2 H).

1.9: General procedure for Preparation of 2D-11: A mixture of compound 2D-10 (36 g, 59.6 mmol) and LiOH H₂O (3.78 g, 88 mmol) in a mixture of THF and water (600 mL) was stirred at 23°C for 5 hrs. The reaction mixture was acidified with HCl(lM) to pH=7 and the mixture was filtered. The solid was collected to give 2D-11 (20 g, yield: 59%), as a white solid, which was used directly in the next step without further purification.

1.10: General procedure for Preparation of 2D-12: To a mixture of 2D-11 (16.4 g, 28.52 mmol) and TEA (15.0 g, 0.147 mol) in DCM (500 mL) was added HATU (16.8 g, 44 mmol) and NH₂OH-HCl (5.16 g, 73.7 mmol) in turn at 20°C. The reaction mixture was stirred at 20°C for 5 hrs. The mixture was poured into water, diluted with DCM, washed with water for three times. The organic phase was dried over Na₂SO₄ and concentrated to give the crude product. The crude product was purified with prep-HPLC to give 2D-12 (7 g, yield: 42%) as white solid.

1.11: General procedure for Preparation of CY-102: A mixture of compound 2D-12 (7 g, 11.86 mmol) and HCl/EA (50 mL) in DCM (100 mL) was stirred at 23°C for 2 hrs. The reaction mixture was concentrated to give CY-102 (5.875 g, yield: 95%) as a yellow powder.

1HNMR (MeOD 400MHz): 3.73 (m, 8 H) 3.87 (m, 4 H) 4.04 (s, 3 H) 4.38 (s, 2 H) 6.50 (d, J=16Hz, 1 H) 6.88 (d, J=2Hz, 1H) 7.18 (dd, J=9.2, 2Hz, 1 H) 7.50 (d, J=16 Hz, 1 H) 7.68 (m, 5 H). m/z(MH⁺) is 490.
The following compounds were prepared by methods analogous to those disclosed in Scheme 1 to 8:

<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>m/z(MH^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>512</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>530</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>530</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>530</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>486</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>493</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>493</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>557</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>535</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td>507</td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td>452</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>553</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>511</td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td>569</td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td>565</td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td>578</td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td>577</td>
</tr>
</tbody>
</table>
Example 2 Inhibition of Histone Deacetylase Enzymatic Activity

The following assay protocol is used to assess the inhibitory activity of the compounds of the invention against the HDAC enzymes (Hela Nuclear Extract assay):

- Buffer: 25 mM HEPES, pH 8.0, 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl$_2$
- Substrate: Fluor-de-Lys substrate (Biomol, Cat. # KI-104) in a 50 mM stock solution in DMSO.
- Enzyme stock solution: 4 µg/mL enzyme in buffer.

To begin the assay, test compounds (2 µl in DMSO diluted to 13 µl in buffer for transfer to the assay plate) are pre-incubated with enzyme (20 µl of 4 µg/mL stock solution) for 10 minutes at room temperature in 35 µl pre-incubation volume. The reaction is started by bringing the temperature to 37°C and adding 15 µl substrate. Total reaction volume is 50 µl. The reaction is stopped after 20 minutes by adding 50 µl developer, prepared as directed by Biomol (Fluor-de-Lys developer, Cat. # KI-105). Assay plate is incubated in the dark for 10 minutes at room temperature before reading ($\lambda_{ex} = 360$ nm, $\lambda_{em} = 470$ nm, Cutoff filter at 435 nm). The HDAC inhibitors SAHA and TSA are used as reference compounds. Such assays, carried out with a range of doses of test compounds, allow the determination of an approximate IC$_{50}$ value.

As an example, the following table shows the results obtained for CY-102 and Bendamustine. In the HDAC (nuclear extract) assay, CY-102 is about 10-fold more potent than the FDA approved HDAC inhibitor SAHA.

<table>
<thead>
<tr>
<th></th>
<th>Bendamustine</th>
<th>CY-102</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC$_{50}$ (Nuclear Extract)</td>
<td>3.5 nM</td>
<td>26.4 nM</td>
</tr>
<tr>
<td></td>
<td>SAHA</td>
<td>Trichostatin A</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>2.1 nM</td>
<td>N/A*</td>
</tr>
</tbody>
</table>

* No HDAC activity up to highest testing concentration of 10µM

Example 3 Molecular Docketing Study

Computer modeling with the MOE program (Chemical Computer Group, Canada) was used to assess the interaction between CY-102 and HDAC8. The result (not shown) indicates that CY-102 tightly binds to HDAC8 at its catalytic center, which is consistent with the existing
data showing that CY-102 is a strong HDAC inhibitor.

Example 4 Water Solubility

To measure water solubility, to approximately 10 mg of a sample in a tube-stoppered 10 mL graduated cylinder, increasing volumes of distilled water at room temperature were added according to the steps shown in the table below:

<table>
<thead>
<tr>
<th>Water Solubility</th>
<th>step 1</th>
<th>step 2</th>
<th>step 3</th>
<th>step 4</th>
<th>step 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total volume of H₂O added (mL)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Approximate solubility (mg/mL)</td>
<td>10</td>
<td>5</td>
<td>2.5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

After each addition of water to give the indicated total volume, the mixture was vortexed or sonicated for 1 min and was visually inspected for any undissolved parts of the sample. If, after a total of 10 mL of water had been added (step 5), the sample or parts of it remained undissolved, the contents of the measuring cylinder was transferred to a 100 mL measuring cylinder which was then filled up with water up to 100 mL (20 ml, 25 ml, 50 ml, 100 ml) and shaken. The approximate solubility was given in the table under that volume of added water in which complete dissolution of the sample occurred. If the substance was still apparently insoluble, further dilution was undertaken to ascertain whether the column elution or the flask solubility method should be used.

Using the method described above, water solubility of CY-102 was determined to be greater than about 20 mg/mL, which is at least about 200-fold more water soluble than NL-101.

Example 5 General In vitro Anti-proliferation Assay

Cell antiproliferation assay is performed by using the PerkinElmer ATPlite™ Luminescence Assay System. Briefly, the various test cancer cell lines are plated at a density of about 1 x 10⁴ cells per well in Costar 96-well plates, and are incubated with different concentrations of compounds for about 72 hours in medium supplemented with 5% FBS. One lyophilized substrate solution vial is then reconstituted by adding 5 mL of substrate buffer solution, and is agitated gently until the solution is homogeneous. About 50 μL of mammalian cell lysis solution is added to 100 μL of cell suspension per well of a microplate, and the plate is shaken for about five minutes in an orbital shaker at -700 rpm. This procedure is used to lyse the cells and to stabilize the ATP. Next, 50 μL substrate solution is added to the wells and microplate is shaken for five minutes in an orbital shaker at -700 rpm. Finally, the
luminescence is measured by a PerkinElmer TopCount® Microplate Scintillation Counter. Such assays, carried out with a range of doses of test compounds, allow the determination of the cellular anti-antiproliferative IC₅₀ of the compounds of the present invention.

Example 6 In vitro Assay: NCI-60 DTP Human Tumor Cell Line Screen at 10 µM

NL-101 and CY-102 was sent to U.S. National Cancer Institute (NCI) for NCI 60-cell line screening using a single compound dose (10 µM).

The human tumor cell lines of the cancer screening panel were grown in RPMI 1640 medium containing 5% fetal bovine serum (5% FBS) and 2 mM L-glutamine. For a typical screening experiment, cells were inoculated into 96-well microtiter plates in 100 µL, at plating densities ranging from 5,000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the microtiter plates were incubated at 37°C, 5% CO₂, 95% air, and 100% relative humidity for 24 h prior to addition of experimental compounds. After 24 hr, two plates of each cell line were fixed in situ with TCA, to represent a measurement of the cell population for each cell line at the time of drug addition (Tz). Experimental drugs were solubilized in dimethyl sulfoxide at 400-fold the desired final maximum test concentration and stored frozen prior to use. At the time of drug addition, an aliquot of frozen concentrate was thawed and diluted to twice the desired final maximum test concentration with complete medium containing 50 µg/ml gentamicin. Aliquots of 100 µL of these different drug dilutions were added to the appropriate microtiter wells already containing 100 µL of medium, resulting in the required final drug concentrations.

Following drug addition, the plates were incubated for an additional 48 hrs at 37°C, 5% CO₂, 95% air, and 100% relative humidity. For adherent cells, the assay was terminated by the addition of cold TCA. Cells were then fixed in situ by the gentle addition of 50 µL of cold 50% (w/v) TCA (final concentration, 10% TCA) and incubated for 60 minutes at 4°C. The supernatant was discarded, and the plates were washed five times with tap water and air dried. Sulforhodamine B (SRB) solution (100 µL) at 0.4% (w/v) in 1% acetic acid was added to each well, and plates were incubated for 10 minutes at room temperature. After staining, unbound dye was removed by washing five times with 1% acetic acid and the plates were air dried. Bound stain was subsequently solubilized with 10 mM trizma base, and the absorbance was read on an automated plate reader at a wavelength of 515 nm. For suspension cells, the methodology was the same except that the assay was terminated by fixing settled cells at the bottom of the wells by gently adding 50 µL of 80% TCA (final concentration, 16 % TCA).

Using the seven absorbance measurements [time zero, (Tz), control growth, (C), and test growth in the presence of drug at the 10 µM concentration levels (Ti)], percentage growth was
calculated at each of the drug concentrations levels. Percentage growth inhibition was calculated as: \([\frac{(Ti-Tz)}{(C-Tz)}] \times 100\) for which \(Ti\geq Tz\) or \([\frac{(Ti-Tz)}{Tz}] \times 100\) for which \(Ti<Tz\).

The results of the assays for CY-102 and NL-101 are summarized in the table below.

<table>
<thead>
<tr>
<th>Cell Panel</th>
<th>Cell Line</th>
<th>NL-101 Growth %</th>
<th>CY-102 Growth %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia</td>
<td>HL-60(TB)</td>
<td>18.98</td>
<td>-10.34</td>
</tr>
<tr>
<td>Leukemia</td>
<td>K-562</td>
<td>31.63</td>
<td>1.07</td>
</tr>
<tr>
<td>Leukemia</td>
<td>MOLT-4</td>
<td>18.01</td>
<td>2.17</td>
</tr>
<tr>
<td>Leukemia</td>
<td>CCRF-CEM</td>
<td>17.16</td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td>RPMI-8226</td>
<td>49.23</td>
<td>2.28</td>
</tr>
<tr>
<td>Leukemia</td>
<td>SR</td>
<td>29.62</td>
<td>0.09</td>
</tr>
<tr>
<td>NSCLC</td>
<td>A549/ATCC</td>
<td>43.54</td>
<td>-32.69</td>
</tr>
<tr>
<td>NSCLC</td>
<td>EKVX</td>
<td>92.48</td>
<td></td>
</tr>
<tr>
<td>NSCLC</td>
<td>HOP-62</td>
<td>13.56</td>
<td>-30.02</td>
</tr>
<tr>
<td>NSCLC</td>
<td>HOP-92</td>
<td>22.07</td>
<td>-35.89</td>
</tr>
<tr>
<td>NSCLC</td>
<td>NCI-H226</td>
<td>60.27</td>
<td>-20.77</td>
</tr>
<tr>
<td>NSCLC</td>
<td>NCI-H23</td>
<td>30.14</td>
<td>-6.76</td>
</tr>
<tr>
<td>NSCLC</td>
<td>NCI-H322M</td>
<td>75.30</td>
<td>-15.30</td>
</tr>
<tr>
<td>NSCLC</td>
<td>NCI-H460</td>
<td>25.56</td>
<td>2.61</td>
</tr>
<tr>
<td>NSCLC</td>
<td>NCI-H522</td>
<td>-5.90</td>
<td></td>
</tr>
<tr>
<td>Colon Cancer</td>
<td>COLO 205</td>
<td>54.36</td>
<td>-81.34</td>
</tr>
<tr>
<td>Colon Cancer</td>
<td>HCC-2998</td>
<td>86.98</td>
<td>-80.55</td>
</tr>
<tr>
<td>Colon Cancer</td>
<td>HCT-116</td>
<td>23.73</td>
<td>-1.84</td>
</tr>
<tr>
<td>Colon Cancer</td>
<td>HCT-15</td>
<td>76.48</td>
<td>9.96</td>
</tr>
<tr>
<td>Colon Cancer</td>
<td>HT29</td>
<td>37.10</td>
<td>-50.67</td>
</tr>
<tr>
<td>Colon Cancer</td>
<td>KM 12</td>
<td>65.79</td>
<td>-78.14</td>
</tr>
<tr>
<td>Colon Cancer</td>
<td>SW-620</td>
<td>30.40</td>
<td>2.33</td>
</tr>
<tr>
<td>CNS Cancer (Glioma)</td>
<td>SF-268</td>
<td>10.27</td>
<td>-31.46</td>
</tr>
<tr>
<td>CNS Cancer (Glioma)</td>
<td>SF-295</td>
<td>43.95</td>
<td>-53.87</td>
</tr>
<tr>
<td>CNS Cancer (Glioma)</td>
<td>SF-539</td>
<td>23.72</td>
<td></td>
</tr>
<tr>
<td>CNS Cancer (Glioma)</td>
<td>SNB-19</td>
<td>55.62</td>
<td>-10.81</td>
</tr>
<tr>
<td>CNS Cancer (Glioma)</td>
<td>SNB-75</td>
<td>19.79</td>
<td>-48.45</td>
</tr>
<tr>
<td>Tumor Type</td>
<td>Cell Line</td>
<td>Value 1</td>
<td>Value 2</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>CNS Cancer</td>
<td>U251</td>
<td>35.03</td>
<td>-39.66</td>
</tr>
<tr>
<td>Melanoma</td>
<td>LOX IMVI</td>
<td>-23.43</td>
<td>-26.41</td>
</tr>
<tr>
<td>Melanoma</td>
<td>MALME-3M</td>
<td>28.59</td>
<td>-64.17</td>
</tr>
<tr>
<td>Melanoma</td>
<td>M14</td>
<td>39.93</td>
<td>-76.75</td>
</tr>
<tr>
<td>Melanoma</td>
<td>MDA-MB-435</td>
<td>49.07</td>
<td>-73.24</td>
</tr>
<tr>
<td>Melanoma</td>
<td>SK-MEL-2</td>
<td>37.31</td>
<td>-21.36</td>
</tr>
<tr>
<td>Melanoma</td>
<td>SK-MEL-28</td>
<td>59.32</td>
<td>-21.36</td>
</tr>
<tr>
<td>Melanoma</td>
<td>SK-MEL-5</td>
<td>-6.55</td>
<td>-79.31</td>
</tr>
<tr>
<td>Melanoma</td>
<td>UACC-257</td>
<td>33.75</td>
<td>-36.39</td>
</tr>
<tr>
<td>Melanoma</td>
<td>UACC-62</td>
<td>12.99</td>
<td>-69.24</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>IGROV1</td>
<td>55.99</td>
<td>-14.43</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>OVCAR-3</td>
<td>50.40</td>
<td>-55.02</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>OVCAR-4</td>
<td>68.52</td>
<td>-19.00</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>OVCAR-5</td>
<td>66.28</td>
<td>-3.75</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>OVCAR-8</td>
<td>32.65</td>
<td>-26.88</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>NCI/ADR-RES</td>
<td>77.80</td>
<td>17.78</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>SK-OV-3</td>
<td>34.40</td>
<td>-41.53</td>
</tr>
<tr>
<td>Renal Cancer</td>
<td>786-0</td>
<td>19.82</td>
<td>-30.40</td>
</tr>
<tr>
<td>Renal Cancer</td>
<td>A498</td>
<td>49.70</td>
<td>-81.56</td>
</tr>
<tr>
<td>Renal Cancer</td>
<td>ACHN</td>
<td>14.30</td>
<td>-19.97</td>
</tr>
<tr>
<td>Renal Cancer</td>
<td>CAKI-1</td>
<td>27.64</td>
<td>-25.49</td>
</tr>
<tr>
<td>Renal Cancer</td>
<td>RXF 393</td>
<td>5.95</td>
<td>-35.55</td>
</tr>
<tr>
<td>Renal Cancer</td>
<td>SN12C</td>
<td>17.91</td>
<td>-1.53</td>
</tr>
<tr>
<td>Renal Cancer</td>
<td>TK-10</td>
<td>48.48</td>
<td>-28.81</td>
</tr>
<tr>
<td>Renal Cancer</td>
<td>UO-31</td>
<td>63.69</td>
<td>-9.19</td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td>PC-3</td>
<td>51.40</td>
<td>-1.86</td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td>DU-145</td>
<td>18.47</td>
<td>-16.06</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>MCF7</td>
<td>37.24</td>
<td>-15.28</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>MDA-MB-231</td>
<td>72.24</td>
<td>-35.33</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>HS 578T</td>
<td>24.01</td>
<td>8.17</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>BT-549</td>
<td>79.21</td>
<td>-33.26</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>T-47D</td>
<td>-16.57</td>
<td>-27.48</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>MDA-MB-468</td>
<td>-34.68</td>
<td>-21.52</td>
</tr>
</tbody>
</table>
The results show that, when NL-101 and CY-102 were tested side-by-side at a single dose of about 10 µM in 60 cancer cell lines of leukemia, multiple myeloma, non small cell lung cancer (NSCLC), breast cancer, melanoma, ovarian cancer, prostate cancer, colon cancer, CNS cancer, and renal cancer, the mean growth percent of NL-101 in the 60 cancer cell lines is 36%. In contrast, the mean growth percent of CY-102 is -28%. Based on this data, the average cellular IC$_{50}$ of CY-102 in the 60 cancer cell lines is expected to be at least 10-fold more potent than the IC$_{50}$ of NL-101, which on average is about 2 µM.

More impressively, CY-102 was found to be particularly potent in several solid tumor cell lines, such as breast cancer (e.g., MCF7, MDA-MB-231, BT-549, T-47D, MDA-MB-468), colon cancer (e.g., COLO 205, HCC-2998, HT29, SW-620), renal (e.g., A498), and particularly in melanoma (e.g., MALME-3M, M14, MDA-MB-435, SK-MEL-5, UACC-62), suggesting that CY-102 may have wide applications in treating solid tumors. On the other hand, NL-101 appears to be more effective against hematological cancers such as leukemia, lymphoma, and multiple myeloma.

Example 7 In vitro hERG Assay

The hERG (Human Ether-a-gogoRelated-Gene) assay was used to assess cardiotoxic effects of drug candidates, CY-102. Results (not shown) demonstrated that CY-102 has much lower (about 5-10 fold less) cardiotoxicity compared to that of NL-101.

Example 8 In vivo Xenograft Studies

As compared to NL-101, CY-102 is much more potent in in vitro cellular antiproliferative assay (about 10-fold more potent, see above), shows much less in vitro cardiotoxicity in the hERG assay (about 5-10 fold less, see above), and is significantly more (>200 fold) soluble in water (see above). Thus, CY-102 is selected for in vivo studies in the xenograft models of Breast cancer (MBA-MD-231, MX-1), SCLC (H69, H526), Sarcoma (HT-1080, SJSA-1), Melanoma(MDA-MB-435, SK-MEL-5), and NSCLC (H1975, HCC827, H3255, PC-9).

Athymic nude mice (CD-I nu/nu) or SCID mice are obtained at age 6-8 weeks from vendors and acclimated for a minimum 7-day period. The cancer cells are then implanted into the nude mice. Depending on the specific tumor type, tumors are typically detectable about two weeks following implantation. When tumor sizes reach -100-200 mm3, the animals with appreciable tumor size and shape are randomly assigned into groups of 8 mice each, including one vehicle control group and treatment groups. Dosing varies depending on the purpose and
length of each study, which typically proceeds for about 3-4 weeks. Tumor sizes and body weight are typically measured three times per week. In addition to the determination of tumor size changes, the last tumor measurement is used to generate the tumor size change ratio (T/C value), a standard metric developed by the National Cancer Institute for xenograft tumor evaluation. In most cases, %T/C values are calculated using the following formula: % T/C = 100 x ΔT/AC if ΔT > 0. When tumor regression occurred (ΔT < 0), however, the following formula is used: % T/T0 = 100 x ΔT/T0. Values of <42% are considered significant.
Claims

1. A compound of Formula (I) or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer of said compound of formula (I) or N-oxide thereof:

\[\text{Formula (I)} \]

wherein

- \(Z \) is a bond, (CR\(_a\)R\(_b\))\(_p\), (CR\(_a\)R\(_b\))\(_p\)N(R\(_a\))(CR\(_a\)R\(_b\))\(_q\), (CR\(_a\)R\(_b\))\(_p\)N(R\(_a\))C(0)(CR\(_a\)R\(_b\))\(_q\), (CR\(_a\)R\(_b\))\(_p\)C(0)N(R\(_a\))(CR\(_a\)R\(_b\))\(_q\), C(R\(_a\))=N, O, S, C(O), N(R\(_a\)), S(0)\(_2\), OC(O), C(0)\(_0\), OS(0)\(_2\), S(0)\(_2\)O, C(O)\(_0\), OC(O)\(_0\), OC(O)S, OC(O)N(R\(_a\)), OC(O)OR\(_d\), OC(O)SR\(_d\), C(R\(_a\))=N(R\(_a\))(CR\(_a\)R\(_b\))\(_p\)N(R\(_a\))(CR\(_a\)R\(_b\))\(_q\), N(R\(_a\))C(0)\(_0\), N(R\(_a\))C(0)S, N(R\(_a\))C(0)N(R\(_b\)), a bivalent alkenyl group, or a bivalent alkynyl group in which each of R\(_a\) and R\(_b\), independently, is H, alkyl, alkenyl, or alkynyl;
- each of \(p \) and \(q \), independently, is 0, 1, 2, 3, or 4;
- \(X_1 \) and \(X_2 \) independently, is halo or OS(0)\(_2\)R\(_e\), in which R\(_e\) is alkyl, alkenyl, or alkynyl;
- Q is cycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, or heteroaryl, each of which, independently, is optionally substituted with alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, heteroaryl, halo, nitro, oxo, -C=NH, cyano, alkyl-R\(_d\), OR\(_d\), OC(O)R\(_d\), OC(O)OR\(_d\), OC(O)SR\(_d\), SR\(_d\), C(0)R\(_d\), C(0)OR\(_d\), C(0)SR\(_d\), C(0)NR\(_d\), SOR\(_d\), S(0)\(_2\)R\(_d\), NR\(_d\)R\(_e\), or N(R\(_e\))C(0)R\(_f\), in which each of R\(_d\), R\(_e\), and R\(_f\), independently, is H, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, halo, cyano, amine, nitro, hydroxy, or alkoxy;
- P is Pi or P\(_2\);

\[\text{Pi is} \]

wherein \(W_i \) is CH or N; \(L_i \) is a bivalent cycloalkyl, heterocycloalkyl, cycloalkenyl, or heterocycloalkenyl group; and
wherein \(Y \) is \(\text{NH}_2 \) or \(\text{OH} \); \(V \) is \(Z \), bivalent cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, aryl, or heteroaryl group.

2. A compound according to claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein \(Q \) is an aryl or heteroaryl.

3. A compound according to claim 2 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein \(Q \) is a 9-10 membered aryl or heteroaryl.

4. A compound according to claim 3 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein the compound is represented by Formula (II):

\[
\text{Formula (II)}
\]

5. A compound according to any one of claims 1 to 4 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein \(Z \) is a bond, \((\text{CH}_2)p\), \((\text{CH}_2)p\text{NH}(\text{CH}_2)q\), \((\text{CH}_2)p\text{C}(0)\text{NH}(\text{CH}_2)q\), \((\text{CH}_2)p\text{NHC}(0)(\text{CH}_2)q\), \(\text{CH}=\text{N}\), \(\text{CH}=\text{CH}\), \(\text{C}≡\text{C}\), \(\text{O}, \text{S}, \text{C}(0), \text{NH}, \text{SO}_2, \text{OC}(0), \text{C}(0)\text{O}, \text{OSO}_2, \text{S}(0)\text{O}, \text{C}(0)\text{S}, \text{SC}(0), \text{C}(0)\text{C}(0), \text{C}(0)\text{NH}, \text{NHC}(0), \text{S}(0)\text{NH}, \text{NHS}(0)\text{ }, \text{OC}(0)\text{O}, \text{OC}(0)\text{S}, \text{OC}(0)\text{NH}, \text{OC}(0)\text{NH}(\text{CH}_2)p\text{iNH}(\text{CH}_2)q, \text{NHC}(0)\text{O}, \text{NHC}(0)\text{S}, \text{or NHC}(0)\text{NH}.

6. A compound according to claim 5 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein the compound is represented by Formula (III):

\[
\text{Formula (III)}
\]
7. A compound according to claim 5 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein the compound is represented by Formula (IIIB):

Formula (IIIB)

8. A compound according to claim 5 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein the compound is represented by

Formula (IIIC)

in which \(L_i \) is a bivalent heterocycloalkyl group.

9. A compound according to claim 5 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein the compound is represented by Formula (IV):

Formula (IV)

10. A compound according to claim 5 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein the compound is represented by Formula (IV-A):

Formula (IV-A)

11. A compound according to claim 5 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein the compound is represented by Formula (V):
in which V is Z, bivalent heterocycloalkyl, aryl, or heteroaryl group.

12. A compound according to claim 5 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein the compound is

13. A compound according to claim 5 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein the compound is

14. A compound according to claim 5 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein the compound is
15. A compound according to claim 5 or an N-oxide thereof, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer thereof, wherein the compound is

![Chemical Structure]

16. A pharmaceutical composition comprising a compound of formula (I) or an N-oxide thereof as defined in any one of claims 1 to 15, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer of said compound of formula (I) or an N-oxide thereof, and a pharmaceutically acceptable diluent or carrier.

17. A combination comprising a compound of formula (I) or an N-oxide thereof as defined in any one of claims 1 to 15, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer of said compound of formula (I) or N-oxide thereof, together one or more other therapeutic agents.

18. A combination according to claim 17 wherein the one or more other therapeutic agents is selected from:

- proteasome inhibitors (e.g. bortezomib, carfilzomib),
- IMIDs (e.g. Thalidomide, lenalidomide, pomalidomide),
- platinum agents (e.g. cisplatin, carboplatin),
- folate antagonists (e.g. pemetrexed, pralatrexate),
- CD30 antibodies and conjugates (e.g. brentuximab, vendotin),
- antibodies (also conjugated) to treat haematological malignancies like anti CD20 (e.g. ofatumumab, rituximab, GA101, etc),
- B-cell receptor antagonists (e.g. ibrutinib),
- PI3K antagonists (e.g. GS1101 or IPI145),
- BTK inhibitors,
- taxanes (e.g. taxol, paclitaxel),
- antibodies (also conjugated) to treat ovarian cancer (e.g. alpha folate receptor mabs, CA125 antibodies),
- antibodies to treat multiple myeloma (e.g. elotuzumab, anti CD38 mabs),
anthracyclines (e.g. doxorubicin, idarubicin),
nucleoside analogues (purine antagonists) like cytarabine, fludarabine, gemcitabine,
PNP antagonists (e.g. forodesine),
Bcr-abl tyrosinekinase blockers (e.g. imatinib, dasatinib, ponatinib, nilotinib),
mTor antagonists (e.g. temsirolimus, everolimus),
aAgents influencing the CD40 activation (e.g. CD40 antagonists, CD40 gene medicines),
multi tyrosine kinase antagonists (e.g. sorafenib, axitinib), and
bifunctional antibodies (e.g. CD19/CD3, also conjugated, also recognising other CD epitopes).

19. A compound of formula (I) or an N-oxide thereof as defined in any one of claims 1 to 15, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer of said compound of formula (I) or N-oxide thereof, or a combination according to claim either claim 17 or claim 18, for use as a medicament.

20. A compound of formula (I) or an N-oxide thereof as defined in any one of claims 1 to 15, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer of said compound of formula (I) or N-oxide thereof, or a combination according to either claim 17 or claim 18, for use as a medicament for treating a neoplastic disease or an immune disease.

21. A method of treating a neoplastic disease or an immune disease, comprising
administering to a subject in need thereof an effective amount of a compound of formula (I) or an N-oxide thereof as defined in any one of claims 1 to 15, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer of said compound of formula (I) or N-oxide thereof, or a combination according to either claim 17 or claim 18.

22. A compound or combination for use, according to claim 20, or a method according to claim 21, wherein the neoplastic disease is a solid tumor.

23. A compound or combination for use, or a method according to claim 22, wherein the solid tumor is melanoma, breast cancer, lung cancer, colon cancer, renal cancer, or sarcoma.

24. A product containing a compound of formula (I) or an N-oxide thereof as defined in any one of claims 1 to 15, or a pharmaceutically acceptable salt, solvate, polymorph or tautomer of said compound of formula (I) or N-oxide thereof, and one or more other
therapeutic agents as defined in claim 18, as a combined preparation for simultaneous, separate or sequential use in treating a neoplastic disease or an immune disease.
INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2013/051949

<table>
<thead>
<tr>
<th>A. CLASSIFICATION OF SUBJECT MATTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV. C07D235/12 C07D235/14 C07D235/16 C07D235/24 C07D235/26 C07D235/28 C07D235/30 C07D403/14 C07D413/06 A61K31/4184</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) into both national classification and IPC

<table>
<thead>
<tr>
<th>B. FIELDS SEARCHED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum documentation searched (classification system followed by classification symbols)</td>
</tr>
<tr>
<td>C07D A61K</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

<table>
<thead>
<tr>
<th>Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO-Internal , CHEM ABS Data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. DOCUMENTS CONSIDERED TO BE RELEVANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category*</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 March 2013</td>
<td>11/03/2013</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer
Guazzel 1i, Giuditta

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2008050125 AI</td>
<td>02-05-2008</td>
<td>US 2010063144 AI</td>
<td>11-03-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008050125 AI</td>
<td>02-05-2008</td>
</tr>
<tr>
<td>WO 2010085377 A2</td>
<td>29-07-2010</td>
<td>CA 2750413 AI</td>
<td>29-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102186842 A</td>
<td>14-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2389375 A2</td>
<td>30-11-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012515776 A</td>
<td>12-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011269706 AI</td>
<td>03-11-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010085377 A2</td>
<td>29-07-2010</td>
</tr>
</tbody>
</table>