PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
- International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F 17/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/09494

25 February 1999 (25.02.99)

(21) International Application Number: PCT/NZ98/00128

(22) International Filing Date: 14 August 1998 (14.08.98)

(30) Priority Data:

328552 14 August 1997 (14.08.97) NZ

(71) Applicant (for all designated States except US): AORAKI
CORPORATION LIMITED [NZ/NZ]; 17 Sir William Pick-
ering Drive, Bishopdale, Christchurch (NZ).

(72) Inventor; and

(75) Inventor/Applicant (for US only): McCOLL, Hugh [NZ/NZ];
17 Sir William Pickering Drive, Bishopdale, Christchurch
(NZ).

(74) Agents: CALHOUN, Douglas et al.; A.J. Park & Son, Huddart
Parker Building, 6th floor, Post Office Square, P.O. Box
949, Wellington 6015 (NZ).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, T™M, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: RELATIONAL DATABASE COEXISTENCE IN OBJECT ORIENTED ENVIRONMENTS

(57) Abstract

Software methodology to enable "legacy" relational
database co—existence with an object database in an object
oriented system. This comprises a declarative relational
to object schema mapping process which is implemented

External Coexistance Architecture

during development and a query engine which makes use
of the mapping at run-time to allow access to data in the
relational database by object oriented access methods. The
methodology allows access to data in the relational database
in the same manner as access to the co—existing object
database, that is without embedded SQL code, to provide
data location transparency from the application developer’s
viewpoint. Application of the methodology to the JADET™™
object oriented development and run—time environment is
disclosed.

External Database Defintion
JADE SCHEMA

External Class Dafinition {

External Coflection Defintion |

Externa! Attribute Definition | JADE Classes JADE Methods

External Reference Defiatton |

Extomal Procedure Definion

|
e

MAPPING INFORMATION

Column & Attribute Mapping
Information

I

|

!

|

Procedure Parameter !
Mapping Information {
|

f

|

2

SQL Fragments

e o - e) o - -

JADE Oject
Otlented Database

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
C1
CcM
CN
Cu
CzZ

DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Repubtic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
Mw
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
T3
™
TR
TT
UA
uG
us
UzZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-1- '

"RELATIONAL DATABASE COEXISTENCE IN OBJECT
ORIENTED ENVIRONMENTS"

TECHNICAL FIELD
This invention relates to methods and techniques for integrating relational databases

effectively with object oriented applications while ensuring co-existence with an

object database.

BACKGROUND ART

Relational databases employed in existing systems represent a significant investment
which impedes any more to an object oriented model. It has been difficult to map a
relational database to an object oriented model, particularly where it is to co-exist
with an object database. This has made it difficult to programmatically access the

data of a relational database for an object oriented model.

The problem is difficult to that presented by the interface required when an object
oriented language sits on a relational database. There the relational database can be
defined as part of the development of the object oriented application and the
application code can make use of embedded SQL commands. Further in a dedicated
object oriented application - relational database combination the database can be
accessed directly rather than through the Open Database Connectivity (ODBC) layer

provided with most relational databases.

US Patent 5,765,161 discloses a system where data from non-relational, non-object-
oriented data stores, such as IBM IMS™, are encalculated as persistent objects for
use in an object oriented application. Such a system does not allow for co-existence

with a populated object database.

US Patent 5,542,078 discloses a system for accessing and integrating non-object
oriented data stores with object applications. An application using an object

database management system is provided with an interface to access foreign data

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-2-

stores which include external data that is mapped and converted into objects for use

by the application. This system does not allow the mapping of complex

relationships between data to manipulate external data with the same degree of

effectiveness as data held in the integrated object database.

DISCLOSURE OF INVENTION

It is an object of the present invention to provide within an integrated object oriented
system true co-existence with non-object-oriented databases and in particular
relational databases in a manner which allows maximum use of object oriented
techniques and obviates the need for knowledge of structural query language (SQL)

code on the part of application developers.

Accordingly the invention in one aspect consists in a method of mapping a relational
database schema to an object oriented schema to allow co-existence of said relational
database with an object database comprising the steps of:

(a) extracting the schema data from said relational database, including database
tables, columns, special columns, primary keys, foreign keys, indexes and
stored procedures and parameters,

(b) enhancing said relational database scheme by
(i) mapping tables to classes and columns to attributes,

(ii) mapping columns to attributes,

(i) defining classes of set, array and dictionary collections based on
primary key and index data,

(iv) establishing relationships from said primary keys, foreign keys and
columns having the same names,

(v) defining relationship implementation based on ehuristics by using the
cardinality of said tables to define the cardinality of the relationship
between the corresponding classes,

(c) generating structural query language (SQL) code fragments to support
collection operations from the information derived in step (b) and storing

same for run-time access to said relational database, and

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-3-
(d) storing a description of the classes and collections established in step (b) for
use in run-time by an object oriented application whenever access to data in

said relational database is required.

In a further aspect the invention consists in a database query engine for an object
oriented application which enables access to data in one or more external non-object
oriented databases in the same manner as an internal integrated object oriented
database to provide data location transparency, said engine comprising:

an external class corresponding to each non-object oriented database which
determines how a proxy object is populated by instances from the corresponding
external database,

sub classes which re-implement methods to populate external class instances
from said external databases while maintaining an identical interface to internal
object classes,

a mechanism which produces a representation of the external database
schema, and an object identifier to unique key mapping between an external proxy
object instance and a row in the external database,

said engine carrying out the following processes:

assembling SQL statements as determined by the definition of the appropriate
external class,

appending a JOIN query predicate when accessing a property which is an end
point of a bi-directional relationship,

binding parameter values obtained from the attribute values of an external
proxy instance to parameter markers in said SQL statements, binding parameter
values obtained from the operation request which represent dictionary keys

binding parameter values obtained from the attribute values of the external
proxy instance to parameter markers specified in the JOIN predicate of the query,
and

executes the resultant SQL query against the respective non-object oriented

database.

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-4-

The said external query engine comprises the parts:

a)

b)

d)

g

External classes, which have two components -namely, an interface and a
query specification. The interfaces defines the properties (attributes and
relationships) and methods if any and their domains; the query specification
(comprising query fragments generated by the Schema Mapping) defines how
to populate a proxy with instances (tuples from the external relational

database).

Subclasses of existing classes (in a single-inheritance hierarchy), which
re-implement methods for purposes of populating external class instances
from an external data source while maintaining an identical interface and

(interface contract) to the existing internal object classes.

A mechanism to construct an in-memory "agent" representation of the
enriched schema for purposes of caching schema information and

implementing meta-schema operations

An OID (object identifier) to (unique keys) mapping between an external

(proxy) object instance and a row in the external database.

A re-implementation of object manager operations particularly get and set
property operations for read or write access to simple attribute values

A further reimplementation of get property operations for external object

properties, which represent an end-point in a bi-directional relationship.

A further reimplementation of get and set property operations, which trigger
access to 'long binary data' (or blobs - binary large objects).

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

h)

1)

k)

-5-

A mechanism to manage a 'result-set' of rows fetched from an external

RDMS, including browsing, locking, direct and relative access to rows.

An External Collection class, using h) provides the protocol to access
individual or multiple instances from a subset of a class extent. The
membership of the collection is constrained by attributes of the collection

description as defined in the enriched schema.

Three types of External Collection:

. Dictionary (providing single or multiple key access to members)
. Sets (an unordered collection of instances
. Array (an ordered collection of instances).

An external Iterator class using h) and/or in collaboration with the External
Collection class provides the protocol to iterate 'a collection' of external

instances.

The said external query engine comprises the steps:

D

Assembles various SQL statement "fragments" as determined by the
definition of the external class (determines column and table selection lists)

and the context of the class and operation to produce an SQL statement

May append filtering and sort predicate fragments as determined by an

external collection description.

By way of part f) above, when accessing a property which is an end-point of a
relationship, appends the JOIN query predicate (generated by schema

enrichment)

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

0)

p)

-6-

Binds parameter values obtained from the attribute values of an external
proxy instance to parameter markers specified in the SQL statement produced

by steps 1), m), n)

Further: for external dictionary operations binds parameter values obtained
from the operation request (method invocation) which represent dictionary

keys

Further: when accessing a relationship end-point property, by means of a get
property implementation, binds parameter values obtained from the attribute
values of the external proxy instance to parameter markers specified in the

JOIN predicate of the query

Executes the resultant SQL query against the external RDMS.

Automatically maintains a single-valued property (object reference) which is

the inverse property of a multi-valued property in a one-many relationship.

The said external query engine allows:

a)

b)

Location transparency of data to a Global Schema user,

By way of object identifier to external key mapping:

. direct access to objects by reference in local database cache (avoiding
external query)

. Ability to synchronise a cached replicas (or proxy instance) with the
equivalent representation in the external database.

. Test for membership of a cached object retrieved from one external

collection in any other external collection

Read or write access to external relational data (along with access to internal

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

d)

2

h)

i)

k)

)

-7-

database objects) by way of an Integrated Object-Oriented language using the
Class protocols as implemented by the external Collection and Iterator

subclasses.
Queries over the extent (or all instances) of an external class

Queries over a subset of instances of an external class as constrained by the

schema description for an external collection

Queries over a subset of instances of an external class as further constrained
by the schema description for a property that participates in a bidirectional

relationship

Using an external Dictionary, direct access to a single 'external object' via

specified keys

Using an external Dictionary, relative key access to a single 'external object’

via specified keys (gtr keys, Iss, leq keys, first last etc.)

Dictionary iterations to be started using a relative key access in either a

forward or reverse direction.

Using the automatic inverse step s) allows a direct in cache access to the
replicated proxy instance using an object reference as opposed to issuing a

further query to the external database.

The access to long binary data can to be deferred until actually referenced by

way of explicit reference to the attribute in an external proxy instance.

Ability to dynamically override filtering and sort criteria as statically defined

in schema enrichment process.

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

The invention therefore provides two complementary areas of functionality: a
relational to object schema mapping process, and a query engine that implements in

the relational database object oriented access methods.

It is possible to map one or more external relational databases to the object model,
by providing a higher level integrated view of external relational databases as part of
the existing object schema, hiding structural differences between the existing object
model and the relational model giving the appearance of assessing a single unified
database. The relationship between the tables in the relational database are mapped

to bi-directional relationships using inverse references.

Access to “relational objects” in an external database, may then be achieved using an
object oriented language, rather than constructing a structured query language (SQL)
statement. Mapping is specified declaratively using a “wizard” style mapping tool.
The external schema wizard (ESW) enables mapping of:

Tuples (which may be the result of a project/join or a view) to objects.

SQL types to object language primitive types.

Joins to bi-directional relationships based on foreign and primary keys or

arbitrary column pairs.

In the present invention existing relational database schemas are enhanced to map
the relational database into an object model. Object concepts and language
constructs can then access the data in the external relational database in the same
way as data is accessed in the co-existing object database. This then allows a query
engine that sits between the object environment and the external databases to |

implement at runtime the object database access methods.

To accommodate more than one external database a Global Conceptual Schema
(GCS) is the principal architecture adopted to map a unified schema within the

object environment. A partially automated mapping utility is provided to map

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-9.

relational schema into semantically enriched object model schemas. The GCS
provides a high-level integrated view of external relational databases as part of an
existing object database schema, hiding structural differences between the object
model and the relational model. From the application developer’s view there
appears to be a single unified database. The key to the mapping is to discover the
relationships between tables in the relational schema and to map these to bi-

directional relationships implemented using inverse references.

Developers will construct applications which will access relational objects in a
procedural manner using an object oriented language rather than by the use of
embedded SQL statements in the application code. The mapping will be able to map
tuples to objects, SQL types to object primitive types and joins to bi-directional
relationships as previously outlined. The mapping is declarative, using a ‘wizard-
style’ mapping tool, rather than programmatic. This reduces coding requirements

and increases flexibility.

Data connectivity is provided by the relational database Open Database Connectivity
(ODBC) interface, which will be used during the schema transformation phase to
access catalogue information and later at ‘runtime’ to populate virtual object

instances via SQL queries.

ODBC is a widely accepted application-programme interface for database access. It
is based on the Call-Level Interface (CLI) specifications from X/Open and ISO/IEC
for database APIs and uses Structured Query Logic (SQL) as its database access
language. ODBC is designed for maximum interoperability - that is the ability of
single application to access different database management systems (DBMSs) with
the same source. The query engine will call functions in the ODBC interface which

are implemented in database specific modules called drivers.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows diagrammatically the architecture of an object oriented system

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-10-

supporting non-object database co-existence,

Figure 2 shows functions performed by the external schema mapping "wizzard"
according to the present invention,

Figure 3 shows the architecture of the external query engine of the present invention,
and

Figure 4 shows a typical run-time configuration of an object oriented system with

external database co-existence.

BEST MODES FOR CARRYING OUT THE INVENTION/OVERVIEW

The following description will, be way of example, refer to the JADE object oriented
language and integrated object database produced by Aoraki Corporation Limited
and described in the JADE Technical Overview (4.0) published August 1997.

JADE provides both development and run-time environments. The invention
however is not limited in application to JADE and has application to object oriented

systems generally.

OVERVIEW

Global Conceptual Schema

In loosely coupled architectures (such as a gateway architecture), the user is
responsible for understanding the structural differences and access languages of the
individual database systems. The present invention supports the concept of a Global
Conceptual Schema (GCS) which will provide a high-level integrated view of an OO
schema plus one or more external relational databases. The intent is to hide the
structural differences between different database schema, giving the user the

impression that a single database is being accessed.

The proposed GCS architecture is architectured to ensure that it can be readily
adapted to support what are commonly referred to as multi-database or federated
database systems including non-relational databases such as hierarchical, network or
even other OO databases. In addition the actual connectivity may employ

mechanisms other than ODBC, such as a native call level interface or other high

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-11 -

level abstractions such as OLEDB.

Semantic Schema Enhancement

A crude approach to mapping a relational schema to a JADE model would be to
produce a one-to-one mapping of tables to classes and columns to attributes in ,
JADE. With this approach the domain (or type) of a property could never be another
class, i.e. modelling of references or aggregation via collections would not be
supportable. In addition, access to the relational database would be reduced to
value-based query semantics instead of making use of the inherent navigational
power provided by the JADE object model. In order to make effective use of the
JADE object model with a uniform conceptual schema approach a process of
semantic schema enhancement is employed. This process cannot be a simple
deterministic mapping from a pure relational schema to a JADE object model. In
general, a relational database schema will not provide the additional higher level
semantic information required for deriving useful relationships between classes.

This means that the transformation of a relational schema into a JADE object model
will be a partially automated process requiring certain additional input from a user

with some knowledge of the semantics of the relational database being mapped.

In most cases, JADE will derive certain useful information directly from the
relational catalog, such as primary and foreign key specifications. Often, foreign
key relationships will also be deduced based on naming conventions. For example,
if “dept-id” is the primary key of the department table then it may be deduced that
“dept-id” in the employee table is probably a foreign key. Other information, such

as relationship implementation, can be deduced heuristically.

Object Identifier Mapping
An ‘Object Identifier’ to primary key (or special columns) mapping allows the direct
mapping of a proxy instance to a row in the relational system. The Object identifier

property of the proxy denotes the primary key of the relational entity that the proxy

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-12-

is modelling. As a simple example, the attribute “dept_num” provides a unique
handle for each tuple (row) in a Department table. The attribute dept_num would
play the role of a foreign key in an associated Employee table. The OID to primary
key mapping is of significance for updating in certain collection operations. For
updating a proxy with a searched update it is necessary to uniquely identify the row

in the external database which the proxy represents.

External proxy classes

One of the outputs of the Schema Transformation process will be the external proxy
classes. The purpose of the proxy classes is to act as a mediator between the OO
world and the relational world. These classes will be derived from a common
abstract class: ExternalObject a subclass of the Object class. The external proxy

classes are instances class type: ExternalClass.

The proxy classes that comprise the transformation schema have two components:
(a) a interface, and (b) a mapping or query specification. The interface defines the
properties (and methods, if any) and the mapping specification, comprising of ‘SLQ-
like’ queries, defines how to populate a proxy with instances from an external
database. The tuples or instances retrieved by this query are ‘virtual-instances’ of
the proxy. The user must deal with instances of the external classes defined in the

schema.

An external class definition can be mapped from any one of the following relational
‘entities’: a base table, a view defined in the relational schema, a query e.g. a join,

or the result set of a stored procedure

External class properties

The properties of an external class may be either: (a) attributes, or (b) external
references. Attributes are simple types whose domain is one of the supported JADE
primitive types. The type of an external reference can be another external class type

or an external collection. External references are used to represent the endpoints of a

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-13-

relationship. External references are always defined as explicit inverses. These

references are implemented using mapping methods, which employ either an

external object or an external collection method to retrieve an instance or instances.

External collection types

External Array
An ordered collection - requires a sort specification (ORDERED BY clause),
optional filtering expression (WHERE clause)

External Dictionary
Requires keys, sort (ORDERED BY) and optionally a filtering specification
(WHERE clause)

ExternalSet

An unordered collection, may be Class extend optional filtering expression
(WHERE clause)

SQL to JADE data type mapping
The following table lists the ANSI SQL data types and shows the JADE primitive to
which they are mapped by default.

ANSI SQL data type JADE primitive type
BINARY, VARBINARY, LONGVARBINARY Binary

BIT Boolean

CHAR[1], TINYINT Character

CHAR, VARCHAR, LONGVARCHAR String

DECIMAL(p, s), NUMERIC(p, s) Decimal]p, s]

REAL, FLOAT, DOUBLE Real

INTEGER, SMALLINT Integer

BIGINT (64-bit integer) Decimal[20, 0]
DATE Date

TIME Time

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-14 -

TIMESTAMP Timestamp

'p=precision, s=scalefactor

Inheritance
External proxy classes can be organised into an inheritance hierarchy adding further
semantics above the relational model. In the mapping process, an external proxy
class could be made a subclass of another provided it met the following
requirements:
The properties mapped in the superclass are a subset of the properties of the
subclass
The ‘set of instances’ of the subclass are a subset of the ‘set of instances’ of

the superclass

Summary

Mapping technology is used to enhance relational schemas with object model
semantics.

Tables (base, derived or predefined views) are mapped to subclasses of External
object.

Columns are mapped to attributes.

Foreign key definitions are used to deduce inverse relationships.

Tuples (or rows) map to instances of external classes.

Each external database is represented by a subclass of ExternalDatabase and a
singleton instance.

Object Identifier to ‘primary key’ mapping allows unique identification of a tuple
and map this to a ‘proxy’ object.

Inverse relationships will be defined and implemented using references to class

types.
Multi-valued properties will be implemented with Dictionary, Set or Array types.

Schema Transformation Support

Overview

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-15-
In order to support the process of transforming a relational schema into an object
model a schema transformation “Wizard” is provided within the development
environment. The Wizard accesses catalog information from selected external data
bases and generates classes under the direction of the developer. Some data sources
or ODBC drivers may not support all the catalog functions used and some catalogs
may not contain all the information required for deriving or suggesting potential

relationships.

The Wizard:

(1) allows selection of data sources configured on the development machine,

(2) imports information from relational catalog, including tables, columns, primary
and foreign keys, indexes, stored procedures,

(3) supports table selection,

(4) maps base tables or views as well as derived tables join to classes,

(5) provides column selection and column to attribute mapping,

(6) suggests default names for all entities but user can override defaults,

(7) automatically maps SQL types to JADE types,

(8) allows default QO types and length mappings to be overridden,

(9) supports definition of external collection types - will suggest potential

dictionaries using primary key and index information obtained from the catalog,

(10)supports the definition of relationships between derived classes - will suggest

potential relationships using foreign key information with user specifying

cardinality and kind,

(11)stored procedures with parameters and a result set will be mapped to methods on
the external database subclass of an ExternalDatabase, class

(12)supports iterative and round-trip definition, and

(13)provides a mechanism to update a mapped object model when the relational

schema changes (without having to start from scratch).

Accessing a relational database from JADE

Overview

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-16 -

The user will access the relational database using the JADE language and by
navigating relationships via inverse references, e.g. it is possible to code the
following style of iterative access:
for each emp in dept.employees do
emp.display();

endforeach,;

This is made possible using the collaboration of a new ‘external iterator’ and an
‘external collection’. The ‘external collection’ will issue the required SQL query to
create a ‘virtual collection’ of instances. That is, in the employee and department
tables example, the virtual collection of instances will be the rows of the employee
table where employee.dept_id = department.dept_id. The dept_id foreign key is
obtained from the virtual department instance, which is the parent of the virtual
employees dictionary. The external iterator class will implement the standard
iterator protocol i.e. next() and back() methods etc. The external iterator/collection
collaboration, will allow constructs such as for each to function in a transparent

fashion.

Using external collections
External collections implement most of the non-updating collection methods e.g.

first, last, size etc.

External dictionaries provide direct key access to an ‘external object instances’ i.e.
random access to a row or tuple in the relational database.
Example:

department := E_Company.departments [name];

Relative key access is provided using getAtKeyGtr, Geq, Leq and Lss style methods.

ADHOC query extensions
‘ADHOC queries’ are supported to some extent by allowing filtering (WHERE

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-17-
clause) and sort specifications (ORDER BY) to be explicitly set on external

collections at runtime, overriding the ‘canned query’ associated with the collection.

Sequential access

External iterators implement the standard iterator protocol and may be used directly.
Standard JADE for each syntax is fully supported including reversed and where
clause.

Class::instances to retrieve ‘class extent’.

Exception handling
An exception class is provided to provide additional information specific to using the
ODBC interface. Special consideration is given to detecting and handling changes

to the relational schema which may become inconsistent with the schema mapping.

Where clause optimisation

In the JADE 'for each' instruction, JADE currently optimise special cases when the
predicate following the where consists of a conditional key expression. A similar
optimisation will be useful when iterating with a for each over an external proxy
collection. A special case occurs when the predicate following the where clause
contains operands which are all attributes of the collection member type. In this
case, the where predicate from the for each can either become the where predicate in
the SQL statement or can be conjoined with an existing where predicate in the query

specification associated with the external collection.

Updating external databases
An External Database class will provide transaction support and direct SQL
execution with beginExternalTransaction, commitExternalTransaction,

abortExternal Transaction.

Searched updates will be possible using the ExternalDatabase::executeSQL method.

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-18 -

Positioned or cursor-based updates will be supported by an external collection

method to create instances and external object methods to update or delete instances.

Attributes of a proxy can be updated in the same fashion as normal JADE objects, by

using the assignment operator.

MORE DETAILED SPECIFICATIONS WITH REFERENCE JADE OBJECT
CONCEPTS AND LANGUAGE CONSTRUCTS

(1)

THE DECLARATIVE MAPPING TOOL

Definition Requirements

Class Definition

A class can be defined from one or more base tables. If multiple tables are
specified it is equivalent to a JOIN. If a class is defined as a JOIN of two or more
tables its unique or primary key columns will be the combination of all the tables
unique or primary key columns. By selecting only those attributes which are
required for a class a table projection can be effected, ie the class can access a
subset only of the columns for the table. This has resource and performance

benefits for large tables and joins.

Each external class defined must include attributes (possibly hidden) that
correspond to the unique or primary key columns of the tables it uses. This is
required to give each object uniqueness. This is necessary for random updating

and the collection method ‘includes’.

Attribute Mapping methods are created for all attributes that have a base type of
String or Binary and whose length is > 540 or have an unbounded length. This
hence includes all SLOBS and BLOBS for which no space would be allocated
in the object buffer. This allows the reading of large strings and binaries only

when required.

Reference Mapping methods are created for all for single references. This method

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-19-

calls getProxy with feature number of the reference property to allow the returning

of the appropriate proxy.

Rules for collection candidate creation

Create a dictionary for each index of the class if all the columns of the index have
corresponding user defined attributes ie not hidden. Create a dictionary based
on the primary key of the class if all the columns of the primary key have
corresponding user defined attributes ie not hidden. Create an array based on the
primary key of the class if all the columns of the primary key have corresponding

user defined attributes ie not hidden. Create a set for each class.

Rules for creating candidate relationships

Create a candidate for each primary key/foreign key pair between the tables on
each side. Create a candidate for each matching pair of column names that have
the same base type. Exclude any that have either end already involved in an actual

or candidate relationship.

Relational to Object Oriented Heuristics
Cardinality
Use the cardinality of the respective tables to indicate the cardinality of the

relationship between the corresponding classes.

Given two tables with a primary key/foreign key relationship defined between
them :

cardinality of primary key table < cardinality of foreign key table => one to
many relationship.

cardinality of primary key table >= cardinality of foreign key table => one to one

relationship.

10

15

20

25

30

WO 99/09494 ' PCT/NZ98/00128

-20-
Relationship Type

Using the ‘delete rule’ of a foreign key we can infer parent-child relationships.

Cascade => parent-child relationship

Delete SetNull or SetDefault => optional => one to one relationship.

Restrict, Set To Null, Default => peer -peer relationship.

Is it possible to build a relationship graph from the primary key/foreign key
definitions and table cardinality. As we define relationships this can be modified
to better guess the cardinality, implementation and parent /child relationship of

subsequent relationships.

If cardinality information is not available then a relationship is based on a primary
key/foreign key pair is likely to be a one to many relationship. If no delete rule

information is available assume a peer-peer relationships.

Other factors that could be used to infer relationship characteristics are
connectivity, common substrings in names and by analysing the frequency counts

of data in an actual database.

Example Transformation

Relational Schema;

Table Product 1---- restrict ----M Table Orderltem M------ cascade------ 1 Table Order

.name : String(pkey) JineOrdinal : Integer id :

Integer (pkey)

.orderld (fkey for Order.id, cascade)

.productName (fkey for Product.name)

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-21-
Jade Schema:
Class Product Class Order
.name :String id : Integer

.orders : OrderSet .products : ProductByNameDict
.orderltems : OrderltemArray

peer-peer \ / parent/child

Class Orderltem
JineOrder : Integer
.product : Product

.order :Order

OrderSet = Set of Order
OrderltemArray = Array of Orderltem ordered by .lineOrder
ProductByNameDict = Dictionary of Product ordered by .name

M:M Relationships and Intermediate Tables
Intermediate tables are tables that are used to allow an M:M relationship to be
implemented between two other tables. They can have additional columns beyond

those participating in the relationship or they can consist solely of those columns.

These tables can be identified for a particular pair of tables by the following

heuristics:

1. They have foreign keys to both pairs of tables.
2. They have existing 1:M or 1:1 relationships to both tables

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-22.-

M:M relationships are usually implemented as Sets.

Reference FromList SQL fragments are required to be appended

SQL Fragment Generation
SELECT List
Class Based

List of column identifiers corresponding to all the attributes of the class. This

includes any hidden attributes.

FROM List
Class Based

List of table identifiers corresponding to all the tables included in the class

Reference Based
List of table identifiers corresponding to all the tables included in a reference

query that are not class based ie. all intermediate tables in an M:M relationship.

WHERE Predicates
User specified Class Extent and Table Join
This fragment is optionally specified by the user.

Reference Join
The ExternalReference joinPredicate and the ExternalReference.joinPredicateInfo

properties. are used for reference querying using the late-binding technique.

Given a relationship defined as follows :

IhsClass rhsClass

IhsColumn1 - - thsColumn1
IhsColumn2 -| |- thsColumn2
IhsColumn3 - - thsColumn3

... €tc

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-23.

The joinPredicate consists of an equality term for each rhs column of the
relationship and a '?" placeholder for bound parameters at runtime.

ie joinPredicate =(thsColumn] = ?) AND (thsColumn2 = ?) AND... etc

The joinPredicateInfo consists of an integer for each '?' in the joinPredicate. Each
integer is the column/attribute ordinal of the parameter to be bound at runtime.
ie,. joinPredicateInfo = <column/attribute ordinal for lhsColumnl>,

<column/attribute ordinal for lhsColumn1> ...etc

Collection getAtKey
Determines the keyEqPredicate and keyEqPredicateInfo required for a keyEq
operation on an ExternalDictionary. If either of these properties is null then the

keyEq operation is undefined.

The keyEqPredicate consists of an equality term for each key column of the
collection. Each term consists of the columns identifier, an '=' sign and a '?'
placeholder for bound parameters. All these terms are ANDed together and
enclosed in braces. The keyEqPredicateInfo consists of an integer for each '?' in
the keyEqPredicate. Each integer is the ordinal of the key to be bound as a
parameter at runtime. This method must handle both single and multiple key

collections.

Eg.

Given a dictionary with key1, key2 etc corresponding to column1, column?2 etc
keyEqPredicate = (column1=?) AND (column2=?) AND ... etc
keyEqPredicateInfo = ordinal of key1, ordinal of key?2, ... etc.

Collection gegKey,gtKey,leqKey,ltKey
Determines the key<CmpOp>Predicate and key<CmpOp>Predicatelnfo required

for a key<CmpOp> operation on an ExternalDictionary, where <CmpOp> can

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-24-
be Geq, Gtr, Leq, Lss.

If either of these properties is null then the key<CmpOp> operation is undefined.

The key<CmpOp>Predicate consists of a comparison term for each key of the
collection.

As keys have an implicit precedence each key consists of two factors ORed
together, except for the last key. The first factor handles the major domain range
for the key ie the ™' part of a ">=' comparison. The second factor ie the '=' part
of a >="is ANDed with the first factor of the next key. If the next key is the last
key then its term is used in its entirety. Each factor consists of a column identifier,
a comparison operator and a '?' placeholder for bound parameters.

The key<CmpOp>PredicateInfo consists of an integer for each '?' in the
key<CmpOp>Predicate. Each integer is the ordinal of the key to be bound as a

parameter at runtime. This method must handle both single and multiple key

collections.

Eg.
Given a dictionary with key1, key2 etc corresponding to columnl, column?2 the

terms for geqKey are :

keyGeqPredicate = ((column1>?) OR ((columnl = ?) AND ((column2>?)
OR(column2 = ?) AND ... etc.

keyGeqPredicateInfo = ordinal of key1, ordinal of key1, ordinal of key?2, ordinal
of key2 ... etc.

Collection includes

Determines and then sets the includesPredicate and includesPredicateInfo
properties for this collection. If either of these properties is null then the includes
method is undefined. The includesPredicate consists of an equality term for each
unique column of the tables that are used by the collections member class. Each
term consists of the columns identifier, an '=' sign and a '?' placeholder for bound

parameters. All these terms are ANDed together and enclosed in braces. The

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-25-
includesPredicateInfo consists of an integer for each '?" in the includesPredicate.
Each integer is the column/attribute ordinal of the parameter to be bound at

runtime. This method must handle both single and multiple table classes, and both

single and multiple unique column tables.

Eg.
Given a collection with a member class whose table(s) have unique columns

columnl, column?2 the terms for includes are :

includesPredicate = (column1=?) AND (column2=?) AND ... etc.
includesPredicateInfo = <column/attribute ordinal for columnl>,

<column/attribute ordinal for column2> ...etc

Collection first, last

Not currently used.

ORDER BY List
Collection Key
List of column identifiers and ASC/DESC specifiers corresponding to all the keys

of a dictionary or the order attributes of an array.

User specified Class

This fragment is optionally specified by the user.

Column and Table Identifiers

Table identifies are generated from the table name, and any schema and catalog
names specified for the table. These are combined according to the driver
information for their usage, prefix/suffix usage and the driver quote character.
Instead of using table identifiers directly, correlation names (also known as
aliases) are used, unless the driver does not support this. Table name aliases are

defined in the FROM clause and are used instead of table identifiers in SELECT,

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-26 -

and WHERE clauses. Table name aliases are generated that are unique across the

entire External Database definition and not just for a particular query.

Column identifiers are a combination of a column's table identifier (or alias) and

its name separated by a '.' character.

EXTERNAL DATABASE QUERY ENGINE

The relational Query engine has two functions as indicated in figures 1 and 3.
The first is to implement the behaviour of external proxy classes and collections
that provide access to external databases (see also figure 4). The second is to
provide catalog Query functions, which import catalog information from an

external database populating meta information objects used by the External
Schema ESW.

Catalog import methods

The query engine will provide methods on the external schema entities used by
the external schema Wizard to import catalog information from a relational
schema. These methods will employ the relevant ODBC catalog functions. Some
drivers/data sources may not support all the required functions, in which case the
external schema Wizard have less information to use for producing a default
mapping. The JADE query engine will always query driver capability to determine

whether a required function is available before using it.

The following entities will be imported from relational catalogs and stored as
persistent meta information in the users schema: Tables, Columns, Special
Columns, Primary Keys, Foreign Keys, Indexes, Stored Procedures and
parameters. The catalog import functions will either create new entities in the
JADE schema or update existing definitions if they already exist. This is required

to allow the External database wizard to provide schema upgrade capabilities.

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-27-
Outputs from the Schema Transformation Process

The schema transformation process creates an object model, which can be
employed by developers as an abstract O-O view of a relational database. The
query engine will implement the required access methods to allow this abstract
object model to work. In addition to the external class, database and collection
definitions, the query engine will also depend on a number of stored SQL queries

and mapping methods generated by the external database wizard.

Each external database is mapped to a subclass of the a class called
ExternalDatabase, which has a singleton persistent instance. The external database
class provides properties and methods relevant to the external data source and
connection. At run-time a transient instance is created; this instance can be

accessed in user logic to invoke database specific operations.

A meta schema class, ExternalClass, implements behaviour specific to external
proxy classes. The class is used by the query engine when creating virtual proxy
instances. In particular, each external class will contain the SQL query required

to populate a “class extent’ or to do a join query for a single valued reference.

Another meta schema class, ExternalCollClass, implements behaviour specific
to external collection classes. The class is used by the query engine to populate

an external virtual collection.

Usage
The user will access the relational database using the OO language and by
navigating relationships via inverse references, e.g. in JADE it will be possible

to code the following style of iterative access:

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-28 -
foreach emp in dept.employees do
emp.display();

endforeach;

This is made possible using the collaboration of an ‘external iterator’ and an
‘external collection’. The ‘external collection’ will issue the required SQL query
to create a “virtual collection’ of instances, that is the rows of the employee table
where employee.dept_id = department.dept_id. The dept_id foreign key will be
obtained from the virtual department instance, which is the parent of the virtual
employees dictionary. The external iterator class will implement the standard
iterator protocol i.e. next() and back() methods etc. The external iterator/collection
collaboration, will allow constructs such as foreach to function in a transparent

fashion.

External collections
External collections will implement non-updating collection methods e.g. first,
last, size etc. External dictionaries will provide direct key access to an ‘external

object instances’ i.e. random access to a row or tuple in the relational database.

Example JADE:

department := E_Company.departments[name];
Relative key access will be provided using getAtKeyGtr, Geq, Leq and Lss style

methods.

The external database wizard will generate stored SQL queries for the standard
key search operations implemented at the external dictionary level. These will

be in the form of parameterised SQL statements.

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-29.
DHOC QUERY EXTENSIONS

‘ADHOC queries’ will be supported to some extent by allowing filtering
(WHERE clause) and sort specifications (ORDER BY) to be explicitly set on
external collections at runtime, overriding the ‘stored query’ associated with the

collection. The filtering and sort specifications can be set using the external

collection properties:

ExternalCollection::filterExpression

ExternalCollection::sortExpression

These properties may be set before a collection is used in a foreach statement or
in conjunction with an iterator. The filterExpression allows the SQL WHERE
clause associated with a collection to be specified or overridden and the
sortExpression allows the SQL ‘ORDER BY” clause to be specified or overridden.
These expressions will be combined with the column list and table selection
expressions to build a SQL query. If the resultant query is invalid, an exception

will be raised.

One way of using this facility would be to create a shared external collection
instance, set the filter and sort expressions and then use an iterator or foreach to

fetch the instances. For example:

findRichCustomers();
accounts : CustomerAccountSet;
account : Account;
begin
create accounts;
accounts.filterExpression := “account.balance > 100000”;

accounts.sortExpression := “account.balance”;

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-30-

foreach account in accounts do
display(account.number, account.name);endforeach;

end;

It is more appropriate to use the filter and sort expressions with external sets, than

with dictionaries and arrays.

Sequential access
External iterators implement a standard iterator protocol and may be used for
iterating over any external collection. Standard JADE foreach syntax is fully

supported including reversed and where clause.

The ExternalClass::instances property is implemented to provide access to the
class extent in a similar fashion to the existing JADE Class::instances ‘virtual
collection’ property. If the external class has a defined ORDER BY, then instances
will be retrieved in this order, otherwise the order will be data-source dependent.
A filter (“WHERE’ clause) may be defined in the External database wizard to

restrict the rows included class extent.

Schema mismatch exceptions

Special consideration will be given to detecting and handling changes to the
relational schema that may become inconsistent with an existing schema mapping.
In some cases, changes are handled transparently. For example: when a column
is added or a column type changed and a valid type mapping still exists, then the
query engine will create an external proxy, mapping the actual columns to the
attributes as defined in JADE. Certain possible changes to the relational schema
will render mappings and/or queries invalid, for example when a table that is
mapped to an external class is deleted. When a mapping or query that is no longer
valid is referenced, then an appropriate ODBC exception will be raised. When
the schema mapping gets too far out of date to be useable then developers must

return to the schema External database wizard in order to update the mapping

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-31-

information.

Updating external databases

Two styles of updating are supported, which in relational terminology are referred

to as:
. Non-cursor updates
. Cursor-based updates

Non-cursor Updates

The ExternalDatabase class will provide transaction support using
beginExternalTransaction, commitExternalTransaction and
abortExternalTransaction methods. NonCursor or searched updates will be

possible using the ExternalDatabases::executeSQL method.

Cursor-based updates
Positioned or cursor-based updates will be supported by an external collection
method to create a new instance (insert a row) and external object methods to

delete or apply updates to an external object.

ExternalCollection::createObject
ExternalObject::deleteSelf
ExternalObject::update

Attributes of a proxy can be updated in the same fashion as normal JADE objects,

by using the assignment operator.

Interoperability

To allow a single application to operate with many different DBMSs difference
ODBC drivers are use (see figure 4) This is because the use of the ODBC
standard does not itself enure interoperability. The ODBC standard is very broad

and one of its goals is to allow a large number of DBMSs to expose as wide a

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-32-
feature set as possible. Drivers are provided to work with a single DBMS and,

by definition, are not interoperable. They play a role in interoperability by

correctly implementing and exposing ODBC over a single DBMS.

The query engine will aim to be capability driven as opposed to employing driver
or data source specific code as far as possible. The query engine will interrogate
connected ODBC drivers and make use of certain features when available.
Examples include catalog functions, block mode and scrollable cursors. In other
cases the way we use the driver has to be tailored based on the requirements of

the driver and the way the data source behaves.

SUPPORTING CLASSES AND METHODS
getExternalDatabase method

Application::getExternalDatabase

getExternalDatabase(dbName : String) : ExternalDatabase;

The getExternalDatabase method returns a reference to the shared transient

instance of the external database identified by dbName.

ExternalDatabase Class
The ExternalDatabase class represents a connection to an external database and

provides methods that operate on the data source.

ClassExternalDatabase public, abstract
Inherits From: Object

10

15

20

25

WO 99/09494 PCT/NZ98/00128
-33.

Properties

connectionString' Contains parameters ulre o cnect to a data
source

serverName The name of the server as defined for the data
source

userName Contains a user-id to be used to establish a
connection

password Contains password is required by the data source

ExternalDatabase::connectionString

connectionString : String

This string should contain any parameters required for connecting to a data
source. The parameters are generally driver/data source specific. A default
connection string can be obtained automatically when connecting to a data-
source using the External database wizard browse facility. However, the
default string can be overridden at runtime on a per user or connection basis
by setting this attribute. The UID and PWD parameters should not be
included in this string.

xternalDatabase::serverName

serverName : String

This attribute contains the name of the database server if this is defined for

the data source.

ExternalDatabase::userName

userName : String

This attribute should contain the name of a valid user id, used for

authentication at the data source. A default user-id is established at design

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-34-

time using the External database wizard. However, this of course may be
changed at run-time on a per user basis, prior to opening a database

connection.

ExternalDatabase::password

password : String

The password attribute is used in conjunction with userName for
authentication, if required, at the data source. A default password may be
stored on the database object, if the schema translator has allowed this. In any
case, this may be changed at run-time on a per user basis, prior to opening a

database connection.

Methods

open Open a connection to an external database
close Close the connection to an external database
beginExternal Transaction Start a database transaction

commitExternalTransact Commit a transaction

ion

abortExternalTransaction Rollback the changes made during the current

transaction
executeSQL Execute an SQL statement directly
canTransact Returns true if database supports transactions
isUpdateable Returns true if database is updateable
1sSQL Valid Check the syntax of an SQL statement

ExternalDatabase::open

open();

This method establishes a connection to the external database. The
connectionString, userName and password(if this is required by the data

source) must be set before opening a connection. Default values for these are

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-35.

established by the External database wizard.

ExternalDatabase::close

close();

This method closes any open connection to the external database.

ExternalDatabase::canTransact

canTransact() : Boolean,;

Call this method to determine whether the connected database supports

transactions.

ExternalDatabase::isUpdateable
isUpdateable() : Boolean,;

Call this method to determine whether the connected database allows updates.
Not all drivers support updating, an example would be the JADE ODBC

driver.

ExternalDatabase::beginExternalTransaction

beginExternalTransaction();

If the external database supports transactions, this method should be called at
the start of a series of updating operations: creates, deletes and updates that
must be applied atomically to the target database for consistency and
recoverability reasons. By default, updates are committed immediately;
calling beginExternalTransaction delays the commitment of updates until
commitExternalTransaction is called. If the external database doesn’t support
transactions(use the canTransact method to determine this), then calling this

method will have no effect.

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-36-

ExternalDatabase::commitExternalTransaction

commitExternalTransaction();

If the external database supports transactions, this method should be called at
the end of a series of updating operations: creates, deletes and updates to
commit or apply the changes to the external database. If the external database
doesn’t support transactions(use the canTransact method to determine this),

then calling this method will have no effect.

ExternalDatabase::abortExternalTransaction

abortExternal Transaction();

If the external database supports transactions, this method can be used to
undo the effects of a transaction. All updating operations: creates, deletes and
updates made since the last beginExternalTransaction call are reversed to the
state that existed at the time of that call. If the external database doesn’t
support transactions(use the canTransact method to determine this), then

calling this method will have no effect.

ExternalDatabase::executeSQL

executeSQL(sql : String);

Call this method to execute an SQL command directly. The SQL statement is
passed via the sql string parameter. This method does not return any data so it
is not suitable for data retrieval operations. It is most suited to performing
searched updates or calling stored procedures, which don’t return a result set.
If the SQL statement is invalid, an ODBC exception containing driver and/or

data source diagnostics will be raised.

ExternalDatabase::checkSQL
1sSQLValid(sql : String) : Boolean;

WO 99/09494 PCT/NZ98/00128
-37-
Call this method to check that the syntax of an SQL statement is both valid
and supported by the driver and data source. The method returns true if the
syntax is valid and supported, otherwise it returns false. No exception is

raised if the syntax is not acceptable.

ExternalClass Class

IsUpdatable Returns true if instances are updateable (i.e. can create,

delete or update instances)

ExternalClass::isUpdatable
isUpdateable() : Boolean;

Call this method to determine whether instances of the external class can be
updated This method will return false if either the data-source is read-only or
the class is read-only. An external class will be read-only if it is based on a

relational view or join query defined by the External database wizard.

ExternalObject Class

DeleteSelf Deletes the external object
Update Completes a create or update operation, saving changes

to the external database

External Collection Classes

The external collection classes represent the ‘result set’ of a selection from an
external data source. The external collections are virtual in the sense that
member instances don’t actually exist until they are first referenced. When a
member is first referenced by a direct key access or via iteration an external
proxy instance is created which represents the corresponding row in the result
set. External collections provide the operations to support direct and relative

key access and may be used in collaboration with external iterators to access

10

15

20

25

WO 99/09494 PCT/NZ98/00128
-38-

rows in a result set sequentially.

There is a corresponding external collection type for each of the existing

JADE collection types as shown by the following table:

ExternalCollection Abstract superclass of all external collections
External Array An ordered collection - requires an ‘ORDER BY’

clause, optional filtering expression (WHERE

clause)
ExternalDictionary Requires keys, requires an ‘ORDERED BY” on

keys and optionally a filtering specification

(WHERE clause)
ExternalSet An unordered collection, no ‘ORDER BY”,

optional filtering expression (WHERE clause)

ExternalCollection Class

The ExternalCollection class inherits the interface of the Collection class and
most non-updating methods will be implemented and supported. External
collections are in themselves read-only. Operations such as add, remove, clear
and purge are not supported. The compiler will prevent the use of updating
methods for external collections in the same way that they are prevented for

automatic collections participating in an inverse relationship.

Class ExternalCollection public, abstract
Inherits From: Collection
Properties

filterExpression Used as a filter to select specific rows

sortExpression Used to control how instances are ordered in the collection

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-39.

ExternalCollection::filterExpression

filterExpression : String;

This attribute may be specified to override the default filtering or WHERE
predicate defined for an external collection. This may be useful for selecting a
subset of records at runtime. The filtering expression should not contain the
WHERE keyword. The filtering expression must be defined in terms of
external column names, not the attribute names to which they are mapped. If
the resultant SQL statement is not valid then an ODBC exception will be

raised.

ExternalCollection::sortExpression

sortExpression : String;

This attribute may be specified to override the default sort or SQL ‘ODER
BY’ specification defined for an external collection. The sort expression
should not contain the ‘ORDER BY’ SQL keywords. The filtering expression
must be defined in terms of external column names, not the attribute names to
which they are mapped. If the resultant SQL statement is not valid then an
ODBC exception will be raised.

Methods

The methods listed in the following table are defined for the ExternalCollection class

createlterator Creates an external iterator for an external collection

first Returns the first entry in the collection

getOwner Returns the parent or owner of the collection

includes Returns true if the external collection contains a
specified object

inspect Provides an inspector for external instances

last Returns the last entry in the collection

canCreate Returns true if member type instances may be created

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-40-

createObject Create a new external proxy instance

size

Returns the current number of entries in the collection

ExternalCollection::createlterator

createlterator(): Iterator;

The createlterator method is used to create an external iterator for use with

external collections.

ExternalCollection::first

first(): MemberType;

The first method returns a proxy reference representing the first entry in the
virtual collection. For ordered collections such as dictionaries and arrays the
proxy will represent the first row selected as determined by the ‘ORDER BY”

clause.

ExternalCollection::getOwner

getOwner(): Object;

The getOwner method returns the owner or parent of the external collection

ExternalCollection::includes

includes(value: MemberType): Boolean;

The includes method returns true if the virtual collection or result set contains
the specified object. This method will result in a key equal query based on the
attributes which comprise the primary keys of the proxy.

ExternalCollection::last

last(): MemberType;

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-41 -

The last method returns a proxy reference representing the last entry in the
virtual collection. For ordered collections such as dictionaries and arrays the
proxy will represent the last row selected as determined by the ‘ORDER BY’
clause. The SQL query used to retrieve the last record will be constructed to
give the optimiser the opportunity to perform a singleton select. In cases

where an index exists on attributes in the ORDER BY a sort should also be

avoided.

ExternalCollection::size

size(): Integer;

The size method returns the number of entries in the virtual collection. This
method will result in an SQL query that will actually count the rows in the
selected tables mapped to the proxy class. This method should therefore be
used with caution if there are expected to large number of rows in the result-

set.

ExternalCollection::canCreate

canCreate() : Boolean,;

Call this method to determine whether instances of the member-type of the
collection can be created. This method will return false if either the data-
source is read-only or the class of the collection members is read-only. An
external class will be read-only if it is based on a relational view or join query

defined by the External database wizard.

ExternalArray Class

An external array is an ordered virtual collection which represents the rows in
a result set generated from an SQL query containing a sort specification i.e. an
‘ORDER BY’ clause. The member instances occur in the order determined by

the ‘ORDER BY”

WO 99/09494 PCT/NZ98/00128
-42 -

Subscripting External Arrays
The bracket [] subscript operators may be used to access rows at a specified

position in the result-set, for example to access the nth transaction in an

external array called transactions, you may do the following:

transaction := transactionsin];

The [] notation is a syntax shortcut for the ExternalArray::at method

Class ExternalArray public, transient

10 Inherits From: ExternalCollection

The methods provided by the ExternalArray class are listed in the following
table.

15

Returns the entry at a specified index in the array

ExternalArray::at
at(index: Integer): MemberType;
20
The at method returns the entry in the virtual array at the position specified by
the index parameter. This corresponds to accessing the nth row in the result-

set.

25 If there is no row at the specified index in the result set, an exception will be

raised.

ExternalSet Class

An external set is an unordered virtual collection which represents the rows in
30 a result set generated from an SQL query which has no sort specification

(ORDER BY). The order in which instances are fetched is data-source

dependent.

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-43 -
Class ExternalSet public, transient
Inherits From: ExternalCollection

The methods provided by the ExternalSet class are listed in the following
table.

includes Returns true if the specified object occurs in the set

Methods

ExternalSet::includes

includes(key: MemberType): Boolean;

The includes method returns true if the virtual collection or result set contains
the specified object. This method will result in a key equal query based on the
attributes which comprise the primary keys of the proxy.

ExternalDictionary Class

An external dictionary is an ordered virtual collection which represents the
rows in a result set generated from an SQL query with a sort specification
(ORDER BY). The ‘ORDER BY” specification is generated by the External
database wizard and represents the order specifications defined for the

member-key attribute values.

Associative key access using subscript notation
The bracket [] subscript notation can be used as a shortcut for the getAtKey
method which supports random access with a key equal search condition. For

example:

customer := customers[name];

WO 99/09494 PCT/NZ98/00128
-44 -

Class ExternalDictionary public, transient

Inherits From: ExternalCollection

The methods provided by the ExternalDictionary class are listed in the
5 following table.

getAtKey Returns the object at the specified key
getAtKeyGeq Returns the object with a key greater or equal to the
specified key
10 | getAtKeyGtr Returns the object with a key greater than the specified
key
getAtKeyLeq Returns an object with a key less than or equal to the
specified key
getAtKeyLss Returns an object with key less than the specified key
includesKey Returns true if the receiver contains an entry at the
specified key
startKeyGeq Sets a start position within a collection for an iterator
object
15 | startKeyGtr Sets a start position within a collection for an iterator
object at the next object after the specified key
startKeyLeq Sets a start position within a collection for an iterator
object at the object equal to or before the specified key
startKeyLss Sets a start position within a collection for an iterator
object at the object before the specified key

Methods
20

ExternalDictionary::getAtKey
getAtKey(keys: KeyType): MemberType;

The getAtKey method issues a singleton SQL select which searches for an

25 exact match between the member-key attribute values of virtual instances

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-45 -

(rows) and the corresponding key parameters. If a row is selected, then a

proxy reference representing the row is returned; otherwise, the method

returns null.

ExternalDictionary::getAtKeyGeq
getAtKeyGeq(keys: KeyType): MemberType;

The getAtKeyGeq method issues a singleton SQL select that searches for a
‘greater than or equal’ key match between the member-key attribute values of
virtual instances (rows) and the corresponding key parameters. If a row is
selected, then a proxy reference representing the row is returned; otherwise,

the method returns null.

ExternalDictionary::getAtKeyGtr
getAtKeyGtr(keys: KeyType): MemberType;

The getAtKeyGtr method issues a singleton SQL select that searches for a
greater than key match between the member-key attribute values of virtual
instances (rows) and the corresponding key parameters. If a row is selected
then a proxy reference representing the row is returned; otherwise, the method

returns null.

ExternalDictionary::getAtKeyLeq
getAtKeyLeq(keys: KeyType): MemberType;

The getAtKeyLeq method issues a singleton SQL select that searches for a
‘less than or equal’ key match between the member-key attribute values of
virtual instances (rows) and the corresponding key parameters. If a row is
selected then a proxy reference representing the row is returned; otherwise, the

method returns null.

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-46 -

ExternalDictionary::getAtKeyLss
getAtKeyLss(keys: KeyType): MemberType;

The getAtKeyLss method issues a singleton SQL select that searches for a
‘less than’ key match between the member-key attribute values of virtual
instances (rows) and the corresponding key parameters. If a row is selected
then a proxy reference representing the row is returned; otherwise, the method

returns null.

ExternalDictionary::includesKey

includesKey(key: KeyType): Boolean;

The includesKey method issues a singleton SQL select which searches for an
exact match between the member-key attribute values of virtual instances
(rows) and the corresponding key parameters. The method return true if a row

is selected, otherwise, it returns false.

ExternalDictionary::startKeyGeq
startKeyGeq(keys: KeyType; iter: Externallterator);

The startKeyGeq method sets a start position within a collection for an

iterator object.

ExternalDictionary::startKeyGtr
startKeyGtr(keys: KeyType; iter: Externallterator);

The startKeyGtr method sets a start position within a collection for an

iterator at the next object after the key specified in the Keys parameter

ExternalDictionary::startKeyLeq
startKeyLeq(keys: KeyType; iter: Externallterator);

WO 99/09494 ' PCT/NZ98/00128
-47 -

The startKeyLeq method sets a start position within a collection for an

iterator object at the object equal to or before the key specified in the keys

parameter.

5 ExternalDictionary::startKeyLss
startKeyLss(keys: KeyType; iter: Externallterator);

The startKeyLss method sets a start position within a collection for an

iterator object at the object before the key specified in the keys parameter.
10

Externallterator Class
The Externallterator class is used in collaboration with an external
collection. An external iterator instance is used to access the virtual instances
of the collection sequentially, either forwards or in a reverse direction. In

15 reality, external iterators will provide the operations to scroll an SQL cursor
associated with the result set of the query, which was used to populate the

external collection.

Class Externallterator public, real, transient

20 Inherits From: Iterator

The methods provided by the Externallterator class are listed in the following table.

25 | back Accesses entries in reverse order in the collection to

which the iteration is attached
getCollection Returns the collection associated with the receiver
next Accesses successive entries in the collection to which the

iteration is attached
reset Initializes an iterator
startAtIndex Sets the starting position of the iterator to a relative index

in the result-set of the external collection query

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-48 -

Methods

Externallterator::back

back(value: ExternalObject output) : Boolean updating;

The back method is used to scroll backwards through an SQL result-set and

return a proxy-reference representing each row as the cursor is scrolled.

Externallterator::getCollection

getCollection() : ExternalCollection;

The getCollection method returns the external collection currently associated
with the receiver. A null value is returned if no collection is associated with

the receiver.

Externallterator::next

next(value: ExternalObject output): Boolean updating;

The back method is used to scroll forwards through an SQL result-set and

return a proxy-reference representing each row as the cursor is scrolled.

Externallterator::reset

reset() updating;

The reset method resets the state of an iterator. After an iterator has been
reset, the first next or back operation will cause the default SQL query

associated with the attached external collection to be re-issued.

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128
-49 .-

Externallterator::startAtIndex

startAtIndex(index: Integer) updating;

The startAtIndex method is used to position a cursor at a specified row in the

result-set.

The required position is specified in the index parameter.

ODBCException Class

Class ODBCException public, real, transient

Inherits From: NormalException
Properties

NativeError Native data-source specific error code
State Five-character ODBC defined state variable

ODBCException::nativeError

nativeError : Integer;

This attribute will contain a native error code, specific to the data source. A
description of the meaning of this should be available in the documentation for

the data source.

ODBCException::state
state : String[5];

This attribute will contain the five-character ODBC state code returned by the
ODBC driver. The first two characters indicate the class of the error; the next

three indicate the subclass.

10

15

20

25

30

WO 99/09494 PCT/NZ98/00128

-50-

CLAIMS

(a)

(b)

(©)

d

A method of mapping a relational database schema to an object oriented
schema to allow co-existence of said relational database with an object
database comprising the steps of:

extracting the schema data from said relational database, including database

tables, columns, special columns, primary keys, foreign keys, indexes and

stored procedures and parameters,

enhancing said relational database schema by

@) mapping tables to classes and columns to attributes,

(i) mapping columns to attributes,

(iii) defining classes of set, array and dictionary collections based on
primary key and index data,

(iv) establishing relationships from said primary keys, foreign keys and
columns having the same names,

(v) defining relationship implementation based on heuristics by using the
cardinality of said tables to define the cardinality of the relationship
between the corresponding classes,

generating structural query language (SQL) code fragments to support

collection operations from the information derived in step (b) and storing

same for run-time access to said relational database, and

storing a description of the classes and collections established in step (b) for

use in run-time by an object oriented application whenever access to data in

said relational database is required.

A method according to claim 1 wherein statistical information is extracted
from the relational database and is used in step (b)(v) as a determinant in

defining relationship implementation.

10

15

20

25

WO 99/09494 PCT/NZ98/00128
-51-

3. A database query engine for an object oriented application which enables
access to data in one or more external non-object oriented databases in the
same manner as an internal integrated object oriented database to provide data
location transparency, said engine comprising:

an external class which determines how a proxy object is populated by

instances from the corresponding external database,

sub classes which re-implement methods to populate external class

instances from said external databases while maintaining an identical interface to

internal object classes,

a mechanism which produces a representation of the external database
schema, and an object identifier to unique key mapping between an external
proxy object instance and a row in the external database,

said engine carrying out the following processes:

assembling SQL statements as determined by the definition of the

appropriate external class,

appending a JOIN query predicate when accessing a property which is
an end point of a bi-directional relationship,

binding parameter values obtained from the attribute values of an

external proxy instance to parameter markers in said SQL statements, binding

parameter values obtained from the operation request which represent dictionary
keys,

binding parameter values obtained from the attribute values of the

external proxy instance to parameter markers specified in the JOIN predicate of the

query, and

executes the resultant SQL query against the respective non-object

oriented database.

WO 99/09494 PCT/NZ98/00128

1/4
FIG. 1
External Coexistance Architecture

\

External Schema
Wizard

Mapping Jade
Information Schema

External Database Definition

JADE SCHEMA

External Class Definition

External Collection Definition
External Attribute Definition JADE Classes JADE Methods
External Reference Definition

External Procedure Definition

|]
JADE
MAPPING INFORMATION | | COMPLER
Column & Attribute Mapping '
Information l !
l JADE
Procedure Parameter INTERPRETER
Mapping Information |
| '
SQL Fragments I JADE
' OBJECT MANAGER
JADE QUERY ENGINE
Catalog Runtime
Queries Queries
External ODBC ,
Driver JADE Oject

Oriented Database

A

External Relational
Database

SUBSTITUTE SHEET (RULE 26)

WO 99/09494 ' PCT/NZ98/00128

2/4

External Schema Wizard
Mapping Technology

Relational
Schema

User Supplied
Semantics

Relational <> 00
Heuristics

Semantic
Schema
Enrichment

Schema &
Mapping
Generation

JADE
Schema

Mapping
Information

SUBSTITUTE SHEET (RULE 26)

WO 99/09494 PCT/NZ98/00128

3/4

External Query Engine Architecture

One Per External Database JADE Qject
Manager
Database Database External f1—
Inplementor Database =
QOject
Methods
External =
Iterator -
External =
Collection =

In Memory Meta Schema Info - One Per Class Class

Agents

External Class Descripter

Meta *From Lists * Select Lists
Info *Ordered By * Where clause
*Collection Attribute Maps

External Collection Descripter

|| Meta *Key Search Predicator
Info *Ordered By
SQL Cursor External Oject
(Proxy)

Object

B E Properties Methods

%
Table P

FIG. 3

SUBSTITUTE SHEET (RULE 26)

Column

PCT/NZ98/00128

WO 99/09494

4/4

SPON JEXNELS
JOAI9S AV ssaibuj S =)
IN XN/dH IN XV
ﬂ 81eMJ0S YIOMIBN
JaAuQ JanuQ Jaaug JaAug yoddng
SS800VY-SIN ssaibuj JoanIss 0S8 8gjoelQ 9800 2u0ads JOpusp
Idv 04900
Jabeuep Jaaug 24900
suibug Lanp jeuwssix3 3avr
Jabeuepy 10910 3avr
14 € 4 8 ’
uonesddy uoneoyddy uoneoyddy uoneoyddy suoneoyddy 3avr

uoneinbyuoy awnuny [eoidA)

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/NZ 98/00128
A CLASSIFICATION OF SUBJECT MATTER
Int CI6: GOGF 1730

According to International Patent Classification (TIPC) or to both national classification and IPC

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC? - GO6F 17/30, IPC’® - GOG6F 15/40

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPAT - OBJECT () ORIENT: AND RELAT:

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document. with indication. where appropriate, of the relevant passages Relevant to claim No.
WO 96/10232 (ONTOS) 4 April 1996 1-3
See whole document
EP 0504085 (INTERNATIONAL BUSINESS MACHINES CORPORATION)
16 September 1992
See whole document 1-3
WO 95/03586 (PERSISTANCE SOFTWARE) 2 February 1995
See whole document 1-3
Further documents are listed in the See patent family annex
continuation of Box C
* Special categories of cited documents: *T* later document published after the international filing date or
A" document defining the general state of the art which is priority date and not in conflict with the application but cited to
not considered to be of particuiar relevance understand the principle or theory underlying the invention
E" earlier application or patent but published on or after "X" document of particular relevance; the claimed invention cannot
the intemnational filing date be considered novel or cannot be considered to involve an
" document which may throw doubts on priority claim(s) inventive step when the document is taken alone
or which is cited to establish the publication date of "Y" document of particular relevance; the claimed invention cannot
another citation or other special reason (as specified) be considered to involve an inventive step when the document is
*o" document referring to an oral disclosure, use, combined with one or more other such documents, such
exhibition or other means combination being obvious to a person skilled in the art
*p" document published prior to the intemational filing "&" document member of the same patent family
date but later than the prioritv date claimed
Date of the actual completion of the international search Date of mailing of the international search report
30 October 1998 10 NOV 1998
Name and mailing address of the ISA/AU Authorized officer
AUSTRALIAN PATENT OFFICE
PO BOX 200
WODEN ACT 2606 J.W. THOMSON
AUSTRALIA
Facsimile No.: (02) 6285 3929 Telephone No.: (02) 6283

Form PCT/ISA/210 (second sheet) (July 1998) coprem

INTERNATIONAL SEARCH REPORT International application No.

PCT/NZ 98/00128
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
US 5504885 (ALASHQUR) 2 April 1996
X See whole document 1-3
US 5765162 (BLACKMAN et al.) 9 June 1998
P, X See whole document 3

Form PCT/ISA/210 (continuation of second sheet) (July 1998) coprem

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members PCT/NZ 98/00128

This Annex lists the known "A" publication level patent family members relating to the patent documents cited
in the above-mentioned international search report. The Australian Patent Office is in no way liable for these
particulars which are merely given for the purpose of information.

Patent Document Cited in Search Patent Family Member
Report
EP 504085 US 5212787
WO 9503586 US 5499371
WO 9610232 EP 783738 US 5542078

END OF ANNEX

Form PCT/ISA/2 10 (extra sheet) (July 1998) coprem

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

