Abstract:
The present application provides constructs comprising an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein. Also provided are methods of making and using these constructs.

FIG. 8A

(51) International Patent Classification:
A61K 39/00 (2006.01)
A61K 38/04 (2006.01)

(21) International Application Number:
PCT/US2016/031364

(22) International Filing Date:
6 May 2016 (06.05.2016)

(25) Filing Language:
English

Publication Language:
English

(30) Priority Data:
62/158,735 8 May 2015 (08.05.2015) US
62/197,480 27 July 2015 (27.07.2015) US

(71) Applicant: EUREKA THERAPEUTICS, INC. [US/US];
5858 Horton Street, Suite 362, Emeryville, CA 94608 (US).

(72) Inventors: LIU, Cheng; 4 Commodore Drive, #D334, Emeryville, California 94608 (US). LIU, Hong; 5573 Woodview Drive, El Sobrante, CA 94803 (US). WANG, Pei; 4519 Cabello Street, Union City, CA 94587 (US). CHAN, Vivien, Wai-Fan; 1538 Brunswig Lane, Emeryville, CA 94608 (US).

(74) Agents: VANEVSKI, Filip et al; Morrison & Foerster LLP, 755 Page Mill Road, Alo Alto, CA 94304-1018 (US).

(54) Title: CONSTRUCTS TARGETING HPV16-E7 PEPTIDE/MHC COMPLEXES AND USES THEREOF

(57) Abstract: The present application provides constructs comprising an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein. Also provided are methods of making and using these constructs.
CONSTRUCTS TARGETING HPV16-E7 PEPTIDE/MHC COMPLEXES AND USES THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application No. 62/158,735, filed on May 8, 2015, and U.S. Provisional Application No. 62/197,480, filed on July 27, 2015, all of which are hereby incorporated by reference in their entireties.

FIELD OF THE INVENTION

[0002] This invention pertains to antibody constructs that specifically bind MHC molecules complexed with HPV16-E7 peptides, and uses thereof including treating and diagnosing diseases.

SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE

[0003] The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 750042000240SEQLIST.txt, date recorded: May 6, 2016, size: 125 KB).

BACKGROUND OF THE INVENTION

[0004] Human papillomaviruses (HPVs) are small, non-enveloped DNA viruses that cause warts or benign papillomas upon infection in epithelial cells. Persistent infections with high-risk HPV types can lead to more serious cytological abnormalities or lesions that, if untreated, may progress to cancer. Annual incidence of HPV-associated cancers is >26,000 in the US (according to CDC) and >600,000 worldwide (Forman D. et al., Vaccine, 30: Suppl 5:F12-23, 2012). Different types of HPV are responsible for causing almost all cases of cervical cancer (Doobar J., Clin. Sci., 110:525-541, 2006), the third leading cause of cancer-related deaths in women worldwide. In addition to cervical cancers, HPV is also associated with anogenital cancers (anus, penis, vagina and vulva) and head/neck cancers (oropharynx: back of the throat, including the base of the tongue and tonsils). In a meta-analysis of 5,046 head and neck squamous cell carcinomas (HNSCC) cancer specimens from 60 studies, the overall HPV prevalence was found to be 25.9%. Among HPV-positive HNSCC, HPV-16 was found in 86.7% of the HPV-positive oropharyngeal SCCs, 68.2% of oral SCCs and 69.2% of
laryngeal SCCs. (Kreimer A.R. et al., Cancer Epidemiol Biomarkers Prev. 14:467-475, 2005). In a more recent study (The Cancer Genome Atlas Network, Nature, 517:576-582, 2015) that classified HPV status by presence of >1,000 mapped RNA sequencing (RNA-Seq) reads of HPV E6 and E7 proteins, 36 out of 279 (12.9%) were found to be HPV-positive. [0005] Cancer development upon persistent infection with high risk HPV subtype is mainly attributable to the expression of two potential oncogenes, E6 and E7, which have been documented to degrade p53 and Rb in a proteasome-dependent manner, thereby promoting genomic instability and cellular transformation (Doorbar, supra). The HPV E6 and E7 oncoproteins are continuously expressed in the lesions, while tumor arises only several years after the initial cellular immortalizing events. In fact, the continuous expression of E6 and E7 is required for maintenance of the transformed phenotype, and prevention of cell growth arrest and/or apoptosis (McLaughlin-Drubin M.E. & Miinger K., Virology, 384:335-344, 2009). Since established lesions do not express LI, there is an unmet need for treatment of HPV+ cancers despite the availability of approved prophylactic vaccines directed against the LI protein of HPV-6, 11, 16 and 18 subtypes.

[0006] Proteins expressed by oncogenic viruses such as HPV represent excellent targets for immunotherapy due to absence of expression in normal cells. E6 and E7 are intracellular proteins that have not been targeted by traditional drug development efforts using low molecular weight compounds or antibody approaches against cell surface proteins. Recent studies in HPV16-positive high-grade vulvar intraepithelial neoplasia have demonstrated T cell and clinical responses in 50% of patients treated with vaccination approaches that utilized E6/E7 peptides (Kenter G.G. et al., N. Engl. J. Med. 361:1838-1847, 2009; Welters M.J. et al., N. Engl. J. Med. 361:1838-1847, 2010; Daayana S. et al., Br. J. Cancer 102:1129-1136, 2010). Among 13 distinct predicted HLA-A*02:01-binding E7 peptides, only E7ii_i9 (YMLDLQPET), was found to be naturally processed and displayed on HPV-16 transformed HLA-A*02:01 expressing cell lines in vitro (Riemer A.B. et al., J. Biol. Chem. 285(38):29608-29622, 2010). This peptide is conserved in 16 out of 17 HPV-16 variants in the HPV database (Zhang G.L. et al, Database, 1-12, 2014).

[0007] Recent advances in using phage display to generate mAbs have made it possible to select agents with exquisite specificity against defined epitopes from large antibody repertoires. A number of such mAbs specific for solid tumor antigens, in the context of HLA-A01 and HLA-A02, have been successfully selected from phage display libraries (Noy et al.,

[0008] The disclosures of all publications, patents, patent applications and published patent applications referred to herein are hereby incorporated herein by reference in their entirety.

BRIEF SUMMARY OF THE INVENTION

[0009] The present application in one aspect provides constructs (such as isolated constructs) that bind to a complex comprising an HPV16-E7 peptide and an MHC class I protein (referred to herein as an "HPV16-E7/MHC class I complex," or "E7MC"). In some embodiments, the constructs ("anti-E7MC constructs") comprise an antibody moiety (referred to herein as an "anti-E7MC antibody moiety") that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein.

[0010] Thus, in some embodiments, there is provided an anti-E7MC construct (such as an isolated anti-E7MC construct) comprising an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein. In some embodiments, the HPV16-E7/MHC class I complex is present on a cell surface. In some embodiments, the HPV16-E7/MHC class I complex is present on the surface of a cancer cell.

[0011] In some embodiments, the anti-E7MC construct comprises an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the MHC class I protein is HLA-A. In some embodiments, the MHC class I protein is HLA-A02. In some embodiments, the MHC class I protein is the HLA-A*02:01 subtype of the HLA-A02 allele.

[0012] In some embodiments, according to any of the anti-E7MC constructs (such as isolated anti-E7MC constructs) described above, the anti-E7MC construct comprises an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the antibody moiety cross-reacts with a complex comprising the HPV16-E7 peptide and a second MHC class I protein having a different HLA allele than the...
MHC class I protein. In some embodiments, the antibody moiety cross-reacts with a complex
comprising a variant of the HPV16-E7 peptide comprising one amino acid substitution (such
as a conservative amino acid substitution) and the MHC class I protein.

[0013] In some embodiments, according to any of the anti-E7MC constructs (such as
isolated anti-E7MC construct) described above, the anti-E7MC construct comprises an
antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and
an MHC class I protein, wherein the HPV16-E7 peptide is about 8 to about 12 (such as about
any of 8, 9, 10, 11, or 12) amino acids in length. In some embodiments, the HPV16-E7
peptide has an amino acid sequence selected from the group consisting of SEQ ID NOs: 3-14.
In some embodiments, the HPV16-E7 peptide has the amino acid sequence YMLDLQPET
(SEQ ID NO: 4).

[0014] In some embodiments, according to any of the anti-E7MC constructs (such as isolated
anti-E7MC constructs) described above, the anti-E7MC construct comprises an antibody
moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC
class I protein, wherein the antibody moiety is a full-length antibody, a Fab, a Fab’, a (Fab’)2,
an Fv, or a single chain Fv (scFv). In some embodiments, the antibody moiety is fully human,
semi-synthetic with human antibody framework regions, or humanized.

[0015] In some embodiments, according to any of the anti-E7MC constructs (such as isolated
anti-E7MC constructs) described above, the anti-E7MC construct comprises an antibody
moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC
class I protein, wherein the antibody moiety binds to the HPV16-E7/MHC class I complex
with an equilibrium dissociation constant (Kd) between about 0.1 pM to about 500 nM (such
as about any of 0.1 pM, 1.0 pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 10 nM, 50 nM, 100
nM, or 500 nM, including any ranges between these values). In some embodiments, the
isolated anti-E7MC construct binds to the HPV16-E7/MHC class I complex with a Kd
between about 0.1 pM to about 500 nM (such as about any of 0.1 pM, 1.0 pM, 10 pM, 50
pM, 100 pM, 500 pM, 1 nM, 10 nM, 50 nM, 100 nM, or 500 nM, including any ranges
between these values).

[0016] In some embodiments, the anti-E7MC construct comprises an antibody moiety that
specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I
protein, wherein the antibody moiety comprises: i) a heavy chain variable domain comprising
a heavy chain complementarity determining region (HC-CDR) 1 comprising the amino acid
sequence of G-F/G/Y-S/T-F-S/T-S-Y-A/G (SEQ ID NO: 183), or a variant thereof
comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of I-N/I-P-X-X-G-G/T/I-T/A/P or I-S-X-S/D-G/N-G/S-N-T/I/K (SEQ ID NO: 184 or 185), or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of A-R-S/R-Y/S/G-Y/V-Y/W-G-X-Y-D, A-R-G-X-X-Y-Y/G/S, or A-R-G-X-X-Y-Q/W-W-S-X-D-D (SEQ ID NOs: 186-188), or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising a light chain complementarity determining region (LC-CDR) I comprising the amino acid sequence of N-I-G-S-N/K or L-R-S/N-X-Y (SEQ ID NO: 189 or 190), or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of A/Q/N-S/A/V-W/Y/R-D-S/D-S-L/S/G-X-X-X-V (SEQ ID NO: 191), or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, wherein X can be any amino acid.

[0017] In some embodiments, the anti-E7MC construct comprises an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the antibody moiety comprises: i) a heavy chain variable domain comprising an HC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 99-191, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR I comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of
any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0018] In some embodiments, the anti-E7MC construct comprises an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the antibody moiety comprises: i) a heavy chain variable domain comprising an HC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 57-77, an HC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 78-98, and an HC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 99-19, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR regions; and ii) a light chain variable domain comprising an LC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, an LC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 141-161, and an LC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR regions.

[0019] In some embodiments, the anti-E7MC construct comprises an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the antibody moiety comprises a) a heavy chain variable domain comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 or a variant thereof having at least about 95% (such as at least about any of 95%, 96%, 97%, 98%, or 99%) sequence identity to any one of SEQ ID NOs: 15-35 and 233-237; and b) a light chain variable domain comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243 or a variant thereof having at least about 95% (such as at least about any of 95%, 96%, 97%, 98%, or 99%) sequence identity to any one of SEQ ID NOs: 36-56 and 238-243. In some embodiments, the antibody moiety comprises a heavy chain variable domain comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a light chain variable domain comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243.
In some embodiments, the anti-E7MC construct comprises a first antibody moiety that competes for binding to a target HPV16-E7/MHC class I complex with a second antibody moiety according to any of the antibody moieties described above. In some embodiments, the first antibody moiety binds to the same, or substantially the same, epitope as the second antibody moiety. In some embodiments, binding of the first antibody moiety to the target HPV16-E7/MHC class I complex inhibits binding of the second antibody moiety to the target HPV16-E7/MHC class I complex by at least about 70% (such as by at least about any of 75%, 80%, 85%, 90%, 95%, 98% or 99%), or vice versa. In some embodiments, the first antibody moiety and the second antibody moiety cross-compete for binding to the target HPV16-E7/MHC class I complex, i.e., each of the first and second antibody moieties competes with the other for binding to the target HPV16-E7/MHC class I complex.

In some embodiments, according to any of the anti-E7MC constructs described above (such as isolated anti-E7MC constructs), the isolated anti-E7MC construct is a full-length antibody. In some embodiments, the isolated anti-E7MC construct is monospecific. In some embodiments, the isolated anti-E7MC construct is multispecific. In some embodiments, the isolated anti-E7MC construct is bispecific. In some embodiments, the isolated anti-E7MC molecule is a tandem scFv, a diabody (Db), a single chain diabody (scDb), a dual-affinity retargeting (DART) antibody, a dual variable domain (DVd) antibody, a knob-into-hole (KIH) antibody, a dock and lock (DNL) antibody, a chemically cross-linked antibody, a heteromultimeric antibody, or a heteroconjugate antibody. In some embodiments, the isolated anti-E7MC construct is a tandem scFv comprising two scFvs linked by a peptide linker. In some embodiments, the peptide linker comprises (and in some embodiments consists of) the amino acid sequence GGGGS.

In some embodiments, according to any of the anti-E7MC constructs described above (such as isolated anti-E7MC constructs), the anti-E7MC construct comprises an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the isolated anti-E7MC construct further comprises a second antigen-binding moiety that specifically binds to a second antigen. In some embodiments, the second antigen-binding moiety is an antibody moiety. In some embodiments, the second antigen is an antigen on the surface of a T cell. In some embodiments, the T cell is selected from the group consisting of a cytotoxic T cell, a helper T cell, and a natural killer T cell. In some embodiments, the second antigen is selected from the group consisting of CD3y, CD35, CD38, CD3C, CD28, OX40, GITR, CD137, CD27, CD40L, and HVEM. In some
embodiments, the second antigen is CD3s, and the isolated anti-E7MC construct is a tandem scFv comprising an N-terminal scFv specific for the HPV16-E7/MHC class I complex and a C-terminal scFv specific for CD3s. In some embodiments, the second antigen is an antigen on the surface of a natural killer cell, a neutrophil, a monocyte, a macrophage, or a dendritic cell.

[0023] In some embodiments, according to any of the anti-E7MC constructs (such as isolated anti-E7MC constructs) described above, the anti-E7MC construct comprises an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the isolated anti-E7MC construct is a chimeric antigen receptor (CAR). In some embodiments, the chimeric antigen receptor comprises an extracellular domain comprising the antibody moiety, a transmembrane domain, and an intracellular signaling domain. In some embodiments, the intracellular signaling domain comprises a CD3ζ intracellular signaling sequence and a co-stimulatory signaling sequence. In some embodiments, the co-stimulatory signaling sequence is a CD28 intracellular signaling sequence.

[0024] In some embodiments, according to any of the anti-E7MC constructs (such as isolated anti-E7MC constructs) described above, the anti-E7MC construct comprises an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the isolated anti-E7MC construct is an immunoconjugate comprising the antibody moiety and an effector molecule. In some embodiments, the effector molecule is a therapeutic agent selected from the group consisting of a drug, a toxin, a radioisotope, a protein, a peptide, and a nucleic acid. In some embodiments, the therapeutic agent is a drug or a toxin. In some embodiments, the effector molecule is a label.

[0025] In yet other embodiments, there is provided a pharmaceutical composition comprising an anti-E7MC construct (such as an isolated anti-E7MC construct) according to any of the embodiments described above. In some embodiments, the pharmaceutical composition further comprises a cell (such as an effector cell) associated with the anti-E7MC construct. In some embodiments, there is provided a host cell expressing or associated with an anti-E7MC construct, or polypeptide component thereof. In some embodiments, there is provided a nucleic acid encoding an anti-E7MC construct, or polypeptide component thereof. In some embodiments, there is provided a vector comprising the nucleic acid. In some embodiments, there is provided an effector cell expressing or associated with an anti-E7MC construct. In some embodiments, the effector cell is a T cell.
In some embodiments, there is provided a method of detecting a cell presenting a complex comprising an HPV16-E7 peptide and an MHC class I protein on its surface, comprising contacting the cell with an anti-E7MC construct (such as an isolated anti-E7MC construct) according to any of the embodiments described above comprising a) an antibody moiety that specifically binds to a complex comprising the HPV16-E7 peptide and the MHC class I protein and b) a label, and detecting the presence of the label on the cell.

In some embodiments, there is provided a method of treating an individual having an HPV16-E7-positive disease, comprising administering to the individual an effective amount of a pharmaceutical composition comprising an anti-E7MC construct (such as an isolated anti-E7MC construct) according to any of the embodiments described above. In some embodiments, the pharmaceutical composition further comprises a cell (such as an effector cell) associated with the isolated anti-E7MC construct. In some embodiments, there is provided a method of treating an individual having an HPV16-E7-positive disease, comprising administering to the individual an effective amount of an effector cell expressing any of the anti-E7MC CARs described above. In some embodiments, the effector cell is a T cell. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma (SCC).

In some embodiments, there is provided a method of diagnosing an individual having an HPV16-E7-positive disease, comprising: a) administering an effective amount of an isolated anti-E7MC construct comprising a label according to any of the embodiments described above to the individual; and b) determining the level of the label in the individual, wherein a level of the label above a threshold level indicates that the individual has the HPV16-E7-positive disease. In some embodiments, there is provided a method of diagnosing an individual having an HPV16-E7-positive disease, comprising: a) contacting a sample derived from the individual with an isolated anti-E7MC construct comprising a label according to any of the embodiments described above; and b) determining the number of cells bound with the isolated anti-E7MC construct in the sample, wherein a value for the number of cells bound with the isolated anti-E7MC construct above a threshold level indicates that the individual has the HPV16-E7-positive disease. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head...
and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma (SCC).

[0029] Also provided are methods of making any of the constructs described herein, articles of manufacture, and kits that are suitable for the methods described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1 shows the size exclusion chromatography (SEC) chromatogram of HPV16-E7 11-19 peptide/HLA-A*02:01 complex following concentration by ultrafiltration. Properly folded peptide/MHC complex monomers: 212 mL; misfolded aggregates: 111 mL; free β2M: 267 mL.

[0031] FIG. 2 shows the results of phage clone ELISA for specific binding of biotinylated HPV16-E7 11-19 peptide/HLA-A*02:01 versus biotinylated C3 control peptide/HLA-A*02:01.

[0032] FIG. 3 shows the results of phage clone FACS binding assays for binding of HPV16-E7 11-19 peptide-loaded T2 cells versus C3 control peptide-loaded T2 cells. 1: Cell only negative control; 2: 2° antibody only control; 3: HPV16-E7 11-19 peptide/HLA-A*02:01-specific antibody phage clone.

[0033] FIG. 4 shows the results of phage clone #11 FACS binding assays for T2 cells loaded with HPV16-E7 11-19 peptides having a single alanine substitution at position 1, 5, or 8. 1: Cell only negative control; 2: 2° antibody only control; 3: HPV16-E7 11-19 peptide/HLA-A*02:01-specific antibody phage clone #11.

[0034] FIG. 5 shows the results of phage clone FACS binding assays for binding of HPV16-E7 11-19 peptide-loaded T2 cells versus T2 cells loaded with peptides derived from normally expressed endogenous proteins. For each phage clone, the peptides loaded from left to right are HPV16-E7 11-19, A2E1, A2E2, A2E3, A2E4, A2E5, A2E6, A2E7, A2E8, A2E9, A2E11, and A2E17.

[0035] FIG. 6 shows SDS-PAGE analysis for determining purity of anti-HPV16-E7 11-19/MHC bispecific antibodies.

[0036] FIG. 7 shows the T-cell killing of HPV16-E7 11-19 peptide-loaded T2 cells mediated by anti-HPV16-E7 11-19/HLA-A*02:01 bispecific antibodies prepared from various phage clones at 1 µg/ml and 0.2 µg/ml. Negative controls include T2 cells loaded with AFP158 peptide and bispecific antibody specific for AFP158/HLA-A*02:01. For each phage clone,
the peptides loaded from left to right are 1 µg/ml HPV16-E7 11-19, 1 µg/ml AFP158, 0.2 µg/ml HPV16-E7 11-19, and 0.2 µg/ml AFP158. NC peptide: AFP158 peptide; NC Antibody: anti-AFP158/HLA-A*02:01 bispecific antibody.

[0037] FIG. 8A shows the T-cell killing of two cancer cell lines (CaSki and MS-751) mediated by anti-HPV16-E7 11-19/MHC bispecific antibodies (BsAb).

[0038] FIG. 8B shows the dose-dependence for T-cell killing of two cancer cell lines (CaSki and MS-751) mediated by anti-HPV16-E7 11-19/MHC bispecific antibodies (BsAb) at varying BsAb concentrations.

[0039] FIG. 9 shows a schematic representation of a chimeric antigen receptor construct.

[0040] FIGS. 10A and 10B show the results of BsAb FACS binding assays for T2 cells loaded with HPV16-E7 11-19 peptides having a WT sequence or a single alanine substitution at positions 1-9. FIG. 10A shows results for BsAbs based on clones US-7, 7-1, 7-3, and 7-6. FIG. 10B shows results for BsAbs based on clones 7-7 and 7-8.

[0041] FIGS. 11A-11C show flow cytometry analysis of T cells transduced with various CARs having an anti-HPV16-E7 affinity matured or parental scFv; cells were stained with HPV16-E7 11-19 peptide /HLA-A*02:01 tetramers and co-stained with anti-CD4 antibody and anti-CD8 antibody. FIG. 11A shows flow cytometry analysis for US-7 4-1BB, 7-1 4-1BB, 7-3 4-1BB, 7-6 4-1BB, 7-7 4-1BB, and 7-8 4-1BB CAR-T cells. FIG. 11B shows flow cytometry analysis for 7-9 4-1BB, US-7 CD28, 7-1 CD28, 7-3 CD28, 7-6 CD28, and 7-7 CD28 CAR-T cells. FIG. 11C show flow cytometry analysis for 7-8 CD28 and 7-9 CD28 CAR-T cells, and mock-transduced T cells.

[0042] FIG. 12 shows the killing of cancer cell lines positive for HLA-A*02:01 and either positive or negative for HPV16-E7, mediated by T cells expressing an anti-HPV16-E7/HLA-A*02:01 CAR having an affinity matured or parental scFv. Mock-transduced cells were included as controls.

DETAILED DESCRIPTION OF THE INVENTION

[0043] The present application provides isolated constructs (referred to herein as "anti-E7MC constructs") that comprise an antibody moiety (referred to herein as an "anti-E7MC antibody moiety") that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein (referred to herein as an "HPV16-E7/MHC class I complex," or "E7MC"). The anti-E7MC constructs specifically recognize HPV16-E7/MHC class I complexes, such as
MHC-presented HPV16-E7 peptides on the surface of cells expressing HPV16-E7. Anti-E7MC constructs may specifically bind to the N-terminal portion, the C-terminal portion, or the middle portion of the HPV16-E7 peptide in the complex, and/or cross-react with at least one complex comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein (e.g., the anti-E7MC construct binds to both an HPV16-E7 peptide/HLA-A*02:01 complex and an HPV16-E7 peptide/HLA-A*02:02 complex). The anti-E7MC constructs allow for specific targeting of E7MC-presenting cells (i.e., cells presenting on their surface an HPV16-E7 peptide bound to an MHC molecule), such as disease cells expressing HPV16-E7. This strategy provides a significant technical advantage over using antibodies directed against the HPV16-E7 protein, which cannot specifically target E7MC-presenting cells. Furthermore, when fused to a detectable moiety, the anti-E7MC antibody moiety allows for diagnosis and prognosis of HPV16-E7-positive diseases or disorders with high sensitivity to changes in the number and distribution of E7MC-presenting cells, a potentially more relevant measure of disease progression than circulating HPV16-E7 levels.

[0044] Using phage display technology, we generated multiple monoclonal antibodies that are specific and high affinity against HPV16-E7 11-19 peptide/HLA-A*02:01 complex. Flow cytometry and T-cell mediated cytotoxicity assays demonstrated that the antibodies recognized HPV16-E7 peptide-pulsed T2 cells in an HPV16-E7- and HLA-A*02:01-restricted manner. When armed as anti-CD3 bispecific antibodies, the antibodies re-directed human T cells to kill HPV16-E7-positive and HLA-A*02:01-positive target cells. The data presented herein demonstrate that antibodies against HPV16-E7 peptides in the context of an HLA complex can be effective therapeutic agents for cancer indications, such as solid tumor indications.

[0045] The present application thus provides constructs (such as isolated constructs) comprising an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein. The construct can be, for example, a full-length anti-E7MC antibody, a multi-specific anti-E7MC molecule (such as a bispecific anti-E7MC antibody), an anti-E7MC chimeric antigen receptor ("CAR"), or an anti-E7MC immunoconjugate.

[0046] In another aspect, there are provided nucleic acids encoding the anti-E7MC constructs or the anti-E7MC antibody moiety portion of the constructs.

[0047] In another aspect, there are provided compositions comprising an anti-E7MC construct comprising an antibody moiety that specifically binds to a complex comprising an
HPV16-E7-peptide and an MHC class I protein. The composition can be a pharmaceutical composition comprising an anti-E7MC construct or an effector cell expressing or associated with the anti-E7MC construct (for example a T cell expressing an anti-E7MC CAR).

[0048] Also provided are methods of making and using the anti-E7MC constructs (or cells expressing or associated with the anti-E7MC constructs) for treatment or diagnostic purposes, as well as kits and articles of manufacture useful for such methods.

Definitions

[0049] As used herein, "treatment" or "treating" is an approach for obtaining beneficial or desired results, including clinical results. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, one or more of the following: alleviating one or more symptoms resulting from the disease, diminishing the extent of the disease, stabilizing the disease (e.g., preventing or delaying the worsening of the disease), preventing or delaying the spread (e.g., metastasis) of the disease, preventing or delaying the recurrence of the disease, delay or slowing the progression of the disease, ameliorating the disease state, providing a remission (partial or total) of the disease, decreasing the dose of one or more other medications required to treat the disease, delaying the progression of the disease, increasing or improving the quality of life, increasing weight gain, and/or prolonging survival. Also encompassed by "treatment" is a reduction of pathological consequence of cancer (such as, for example, tumor volume). The methods of the invention contemplate any one or more of these aspects of treatment.

[0050] The terms "recurrence," "relapse" or "relapsed" refers to the return of a cancer or disease after clinical assessment of the disappearance of disease. A diagnosis of distant metastasis or local recurrence can be considered a relapse.

[0051] The term "refractory" or "resistant" refers to a cancer or disease that has not responded to treatment.

[0052] "Activation", as used herein in relation to T cells, refers to the state of a T cell that has been sufficiently stimulated to induce detectable cellular proliferation. Activation can also be associated with induced cytokine production, and detectable effector functions.

[0053] The term "antibody moiety" includes full-length antibodies and antigen-binding fragments thereof. A full-length antibody comprises two heavy chains and two light chains. The variable regions of the light and heavy chains are responsible for antigen binding. The variables region in both chains generally contain three highly variable loops called the
complementarity determining regions (CDRs) (light chain (LC) CDRs including LC-CDR1, LC-CDR2, and LC-CDR3, heavy chain (HC) CDRs including HC-CDR1, HC-CDR2, and HC-CDR3). CDR boundaries for the antibodies and antigen-binding fragments disclosed herein may be defined or identified by the conventions of Kabat, Chothia, or Al-Lazikani (Al-Lazikani 1997; Chothia 1985; Chothia 1987; Chothia 1989; Kabat 1987; Kabat 1991). The three CDRs of the heavy or light chains are interposed between flanking stretches known as framework regions (FRs), which are more highly conserved than the CDRs and form a scaffold to support the hypervariable loops. The constant regions of the heavy and light chains are not involved in antigen binding, but exhibit various effector functions. Antibodies are assigned to classes based on the amino acid sequence of the constant region of their heavy chain. The five major classes or isotypes of antibodies are IgA, IgD, IgE, IgG, and IgM, which are characterized by the presence of α, δ, ε, γ, and μ heavy chains, respectively. Several of the major antibody classes are divided into subclasses such as IgG1 (γ1 heavy chain), IgG2 (γ2 heavy chain), IgG3 (γ3 heavy chain), IgG4 (γ4 heavy chain), IgAl (α heavy chain), or IgA2 (α2 heavy chain).

[0054] The term "antigen-binding fragment" as used herein refers to an antibody fragment including, for example, a diabody, a Fab, a Fab’, a F(ab’)2, an Fv fragment, a disulfide stabilized Fv fragment (dsFv), a (dsFv)2, a bispecific dsFv (dsFv-dsFv’), a disulfide stabilized diabody (ds diabody), a single-chain antibody molecule (scFv), an scFv dimer (bivalent diabody), a multispecific antibody formed from a portion of an antibody comprising one or more CDRs, a camelized single domain antibody, a nanobody, a domain antibody, a bivalent domain antibody, or any other antibody fragment that binds to an antigen but does not comprise a complete antibody structure. An antigen-binding fragment is capable of binding to the same antigen to which the parent antibody or a parent antibody fragment (e.g., a parent scFv) binds. In some embodiments, an antigen-binding fragment may comprise one or more CDRs from a particular human antibody grafted to a framework region from one or more different human antibodies.

[0055] The term "epitope" as used herein refers to the specific group of atoms or amino acids on an antigen to which an antibody or antibody moiety binds. Two antibodies or antibody moieties may bind the same epitope within an antigen if they exhibit competitive binding for the antigen.

[0056] As used herein, a first antibody moiety "competes" for binding to a target E7MC with a second antibody moiety when the first antibody moiety inhibits target E7MC binding of the
second antibody moiety by at least about 50% (such as at least about any of 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99%) in the presence of an equimolar concentration of the first antibody moiety, or vice versa. A high throughput process for "binning" antibodies based upon their cross-competition is described in PCT Publication No. WO 03/48731.

[0057] As use herein, the term "specifically binds" or "is specific for" refers to measurable and reproducible interactions, such as binding between a target and an antibody or antibody moiety, that is determinative of the presence of the target in the presence of a heterogeneous population of molecules, including biological molecules. For example, an antibody or antibody moiety that specifically binds to a target (which can be an epitope) is an antibody or antibody moiety that binds this target with greater affinity, avidity, more readily, and/or with greater duration than its bindings to other targets. In some embodiments, an antibody or antibody moiety that specifically binds to an antigen reacts with one or more antigenic determinants of the antigen (for example an HPV16-E7 peptide/MHC class I protein complex) with a binding affinity that is at least about 10 times its binding affinity for other targets.

[0058] An "isolated" anti-E7MC construct as used herein refers to an anti-E7MC construct that (1) is not associated with proteins found in nature, (2) is free of other proteins from the same source, (3) is expressed by a cell from a different species, or, (4) does not occur in nature.

[0059] The term "isolated nucleic acid" as used herein is intended to mean a nucleic acid of genomic, cDNA, or synthetic origin or some combination thereof, which by virtue of its origin the "isolated nucleic acid" (1) is not associated with all or a portion of a polynucleotide in which the "isolated nucleic acid" is found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence.

[0060] As used herein, the term "CDR" or "complementarity determining region" is intended to mean the non-contiguous antigen combining sites found within the variable region of both heavy and light chain polypeptides. These particular regions have been described by Kabat et al., J. Biol. Chem. 252:6609-6616 (1977); Kabat et al., U.S. Dept. of Health and Human Services, "Sequences of proteins of immunological interest" (1991); by Chothia et al., J. Mol. Biol. 196:901-917 (1987); and MacCallum et al., J. Mol. Biol. 262:732-745 (1996), where the definitions include overlapping or subsets of amino acid residues when compared against
each other. Nevertheless, application of either definition to refer to a CDR of an antibody or grafted antibodies or variants thereof is intended to be within the scope of the term as defined and used herein. The amino acid residues which encompass the CDRs as defined by each of the above cited references are set forth below in Table 1 as a comparison.

TABLE 1: CDR DEFINITIONS

<table>
<thead>
<tr>
<th></th>
<th>Kabat<sup>1</sup></th>
<th>Chothia<sup>2</sup></th>
<th>MacCallum<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>H</sub> CDR1</td>
<td>31-35</td>
<td>26-32</td>
<td>30-35</td>
</tr>
<tr>
<td>V<sub>H</sub> CDR2</td>
<td>50-65</td>
<td>53-55</td>
<td>47-58</td>
</tr>
<tr>
<td>V<sub>H</sub> CDR3</td>
<td>95-102</td>
<td>96-101</td>
<td>93-101</td>
</tr>
<tr>
<td>V<sub>L</sub> CDR1</td>
<td>24-34</td>
<td>26-32</td>
<td>30-36</td>
</tr>
<tr>
<td>V<sub>L</sub> CDR2</td>
<td>50-56</td>
<td>50-52</td>
<td>46-55</td>
</tr>
<tr>
<td>V<sub>L</sub> CDR3</td>
<td>89-97</td>
<td>91-96</td>
<td>89-96</td>
</tr>
</tbody>
</table>

Residue numbering follows the nomenclature of Kabat et al., supra
²Residue numbering follows the nomenclature of Chothia et al., supra
³Residue numbering follows the nomenclature of MacCallum et al., supra

[0061] The term "chimeric antibodies" refer to antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit a biological activity of this invention (see U.S. Patent No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:685 1-6855 (1984)).

[0062] The term "semi-synthetic" in reference to an antibody or antibody moiety means that the antibody or antibody moiety has one or more naturally occurring sequences and one or more non-naturally occurring (i.e., synthetic) sequences.

[0063] "Fv" is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This fragment consists of a dimer of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (3 loops each from the heavy and light chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv
comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

"Single-chain Fv," also abbreviated as "sFv" or "scFv," are antibody fragments that comprise the V_H and V_L antibody domains connected into a single polypeptide chain. In some embodiments, the scFv polypeptide further comprises a polypeptide linker between the V_L and V_L domains which enables the scFv to form the desired structure for antigen binding. For a review of scFv, see Pluckthun in *The Pharmacology of Monoclonal Antibodies*, vol. 113, Rosenberg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).

The term "diabodies" refers to small antibody fragments prepared by constructing scFv fragments (see preceding paragraph) typically with short linkers (such as about 5 to about 10 residues) between the V_H and V_L domains such that inter-chain but not intra-chain pairing of the V domains is achieved, resulting in a bivalent fragment, i.e., fragment having two antigen-binding sites. Bispecific diabodies are heterodimers of two "crossover" scFv fragments in which the V_H and V_L domains of the two antibodies are present on different polypeptide chains. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., *Proc. Natl. Acad. Sci. USA*, 90:6444-6448 (1993).

"Humanized" forms of non-human (e.g., rodent) antibodies are chimeric antibodies that contain minimal sequence derived from the non-human antibody. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region (HVR) of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or non-human primate having the desired antibody specificity, affinity, and capability. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies can comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human.

[0067] "Percent (%) amino acid sequence identity" or "homology" with respect to the polypeptide and antibody sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the polypeptide being compared, after aligning the sequences considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, Megalign (DNASTAR), or MUSCLE software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program MUSCLE (Edgar, R.C., Nucleic Acids Research 32(5):1792-1797, 2004; Edgar, R.C., BMC Bioinformatics 5(1):113, 2004).

[0068] The terms "Fc receptor" or "FcR" are used to describe a receptor that binds to the Fc region of an antibody. In some embodiments, an FcR of this invention is one that binds an IgG antibody (a γ receptor) and includes receptors of the FcyRI, FcyRII, and FcyRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcyRII receptors include FcyRIIA (an "activating receptor") and FcyRIIB (an "inhibiting receptor"), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcyRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcyRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain (see review M. in Daeron, Annu. Rev. Immunol. 15:203-234 (1997)). The term includes allotypes, such as FcyRIIIA allotypes: FcYRIIIA-Phel58, FcYRIIIA-Vall58, FcYRIIA-R131 and/or FCYRIIA-H 131. FCRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term "FcR" herein. The term also includes the neonatal receptor, FeRn, which is responsible for the transfer of maternal IgGs to the fetus (Goyer et al., J. Immunol. 117:587 (1976) and Kim et al, J. Immunol. . 24:249 (1994)).
[0069] The term "FcRn" refers to the neonatal Fc receptor (FcRn). FcRn is structurally similar to major histocompatibility complex (MHC) and consists of an α-chain noncovalently bound to P2-microglobulin. The multiple functions of the neonatal Fc receptor FcRn are reviewed in Ghetie and Ward (2000) Annu. Rev. Immunol. 18, 739-766. FcRn plays a role in the passive delivery of immunoglobulin IgGs from mother to young and the regulation of serum IgG levels. FcRn can act as a salvage receptor, binding and transporting pinocytosed IgGs in intact form both within and across cells, and rescuing them from a default degradative pathway.

[0070] The "CHI domain" of a human IgG Fc region (also referred to as "CI" of "HI" domain) usually extends from about amino acid 118 to about amino acid 215 (EU numbering system).

[0071] "Hinge region" is generally defined as stretching from Glu216 to Pro230 of human IgG1 (Burton, Molec. Immunol.22:161-206 (1985)). Hinge regions of other IgG isotypes may be aligned with the IgG1 sequence by placing the first and last cysteine residues forming inter-heavy chain S-S bonds in the same positions.

[0072] The "CH2 domain" of a human IgG Fc region (also referred to as "C2" of "H2" domain) usually extends from about amino acid 231 to about amino acid 340. The CH2 domain is unique in that it is not closely paired with another domain. Rather, two N-linked branched carbohydrate chains are interposed between the two CH2 domains of an intact native IgG molecule. It has been speculated that the carbohydrate may provide a substitute for the domain-domain pairing and help stabilize the CH2 domain. Burton, Molec Immunol. 22:161-206 (1985).

[0073] The "CH3 domain" (also referred to as "C2" or "H3" domain) comprises the stretch of residues C-terminal to a CH2 domain in an Fc region (i.e. from about amino acid residue 341 to the C-terminal end of an antibody sequence, typically at amino acid residue 446 or 447 of an IgG).

[0074] A "functional Fc fragment" possesses an "effector function" of a native sequence Fc region. Exemplary "effector functions" include Clq binding; complement dependent cytotoxicity (CDC); Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor; BCR), etc. Such effector functions generally require the Fc region to be combined with a binding
domain (e.g. an antibody variable domain) and can be assessed using various assays known in
the art.

[0075] An antibody with a variant IgG Fc with "altered" FcR binding affinity or ADCC
activity is one which has either enhanced or diminished FcR binding activity (e.g., FcyR or
FcRn) and/or ADCC activity compared to a parent polypeptide or to a polypeptide
comprising a native sequence Fc region. The variant Fc which "exhibits increased binding" to
an FcR binds at least one FcR with higher affinity (e.g., lower apparent K_d or IC_{50} value) than
the parent polypeptide or a native sequence IgG Fc. According to some embodiments, the
improvement in binding compared to a parent polypeptide is about 3 fold, such as about any
of 5, 10, 25, 50, 60, 100, 150, 200, or up to 500 fold, or about 25% to 1000% improvement in
binding. The polypeptide variant which "exhibits decreased binding" to an FcR, binds at least
one FcR with lower affinity (e.g., higher apparent K_d or higher IC_{50} value) than a parent
polypeptide. The decrease in binding compared to a parent polypeptide may be about 40% or
more decrease in binding.

[0076] "Antibody-dependent cell-mediated cytotoxicity" or "ADCC" refers to a form of
cytotoxicity in which secreted Ig bound to Fc receptors (FcRs) present on certain cytotoxic
cells (e.g. Natural Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic
effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the
target cell with cytotoxins. The antibodies "arm" the cytotoxic cells and are absolutely
required for such killing. The primary cells for mediating ADCC, NK cells, express FcyRIII
only, whereas monocytes express FcyRI, FcyRII and FcyRIII. FcR expression on
hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev.
ADCC assay, such as that described in US Patent No. 5,500,362 or 5,821,337 may be
performed. Useful effector cells for such assays include peripheral blood mononuclear cells
(PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the
molecule of interest may be assessed in vivo, e.g., in an animal model such as that disclosed

[0077] The polypeptide comprising a variant Fc region which "exhibits increased ADCC" or
mediates antibody-dependent cell-mediated cytotoxicity (ADCC) in the presence of human
effector cells more effectively than a polypeptide having wild type IgG Fc or a parent
polypeptide is one which in vitro or in vivo is substantially more effective at mediating
ADCC, when the amounts of polypeptide with variant Fc region and the polypeptide with
wild type Fc region (or the parent polypeptide) in the assay are essentially the same. Generally, such variants will be identified using any in vitro ADCC assay known in the art, such as assays or methods for determining ADCC activity, e.g. in an animal model etc. In some embodiments, the variant is from about 5 fold to about 100 fold, e.g. from about 25 to about 50 fold, more effective at mediating ADCC than the wild type Fc (or parent polypeptide).

[0078] "Complement dependent cytotoxicity" or "CDC" refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (Clq) to antibodies (of the appropriate subclass) which are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed. Polypeptide variants with altered Fc region amino acid sequences and increased or decreased Clq binding capability are described in US patent No. 6,194,551B1 and W099/51642. The contents of those patent publications are specifically incorporated herein by reference. See, also, Idusogie et al. J. Immunol. 164: 4178-4184 (2000).

[0079] Unless otherwise specified, a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. The phrase nucleotide sequence that encodes a protein or an RNA may also include introns to the extent that the nucleotide sequence encoding the protein may in some version contain an intron(s).

[0080] The term "operably linked" refers to functional linkage between a regulatory sequence and a heterologous nucleic acid sequence resulting in expression of the latter. For example, a first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in the same reading frame.

[0081] "Homologous" refers to the sequence similarity or sequence identity between two polypeptides or between two nucleic acid molecules. When a position in both of the two compared sequences is occupied by the same base or amino acid monomer subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then the molecules are
homologous at that position. The percent of homology between two sequences is a function of the number of matching or homologous positions shared by the two sequences divided by the number of positions compared times 100. For example, if 6 of 10 of the positions in two sequences are matched or homologous then the two sequences are 60% homologous. By way of example, the DNA sequences ATTAGC and TATAGC share 50% homology. Generally, a comparison is made when two sequences are aligned to give maximum homology.

[0082] An "effective amount" of an anti-E7MC construct or composition as disclosed herein, is an amount sufficient to carry out a specifically stated purpose. An "effective amount" can be determined empirically and by known methods relating to the stated purpose.

[0083] The term "therapeutically effective amount" refers to an amount of an anti-E7MC construct or composition as disclosed herein, effective to "treat" a disease or disorder in an individual. In the case of cancer, the therapeutically effective amount of the anti-E7MC construct or composition as disclosed herein can reduce the number of cancer cells; reduce the tumor size or weight; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. To the extent the anti-E7MC construct or composition as disclosed herein can prevent growth and/or kill existing cancer cells, it can be cytostatic and/or cytotoxic. In some embodiments, the therapeutically effective amount is a growth inhibitory amount. In some embodiments, the therapeutically effective amount is an amount that extends the survival of a patient. In some embodiments, the therapeutically effective amount is an amount that improves progression free survival of a patient.

[0084] As used herein, by "pharmaceutically acceptable” or "pharmacologically compatible” is meant a material that is not biologically or otherwise undesirable, e.g., the material may be incorporated into a pharmaceutical composition administered to a patient without causing any significant undesirable biological effects or interacting in a deleterious manner with any of the other components of the composition in which it is contained. Pharmaceutically acceptable carriers or excipients have preferably met the required standards of toxicological and manufacturing testing and/or are included on the Inactive Ingredient Guide prepared by the U.S. Food and Drug administration.

[0085] The term "label" when used herein refers to a detectable compound or composition which can be conjugated directly or indirectly to the anti-E7MC antibody moiety. The label may be detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the case of an
enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.

[0086] It is understood that embodiments of the invention described herein include "consisting" and/or "consisting essentially of" embodiments.

[0087] Reference to "about" a value or parameter herein includes (and describes) variations that are directed to that value or parameter per se. For example, description referring to "about X" includes description of "X".

[0088] As used herein, reference to "not" a value or parameter generally means and describes "other than" a value or parameter. For example, the method is not used to treat cancer of type X means the method is used to treat cancer of types other than X.

[0089] As used herein and in the appended claims, the singular forms "a," "or," and "the" include plural referents unless the context clearly dictates otherwise.

Anti-E7MC constructs

[0090] In one aspect, the present invention provides HPV16-E7/MHC class I complex-specific constructs (anti-E7MC constructs) that comprise an antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein ("HPV16-E7/MHC class I complex," or "E7MC"). The specificity of the anti-E7MC construct derives from an anti-E7MC antibody moiety, such as a full-length antibody or antigen-binding fragment thereof, that specifically binds to the E7MC. In some embodiments, reference to a moiety (such as an antibody moiety) that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein means that the moiety binds to the E7MC with a) an affinity that is at least about 10 (including for example at least about any of 10, 20, 30, 40, 50, 75, 100, 200, 300, 400, 500, 750, 1000 or more) times its binding affinity for each of full-length HPV16-E7, free HPV16-E7 peptide, MHC class I protein not bound to a peptide, and MHC class I protein bound to a non-HPV16-E7 peptide; or b) a K_d no more than about 1/10 (such as no more than about any of 1/10, 1/20, 1/30, 1/40, 1/50, 1/75, 1/100, 1/200, 1/300, 1/400, 1/500, 1/750, 1/1000 or less) times its K_d for binding to each of full-length HPV16-E7, free HPV16-E7 peptide, MHC class I protein not bound to a peptide, and MHC class I protein bound to a non-HPV16-E7 peptide. Binding affinity can be determined by methods known in the art, such as ELISA, fluorescence activated cell sorting (FACS) analysis, or radioimmunoprecipitation assay (RIA). K_d can be determined by methods known in the art, such as surface plasmon resonance (SPR) assay utilizing, for example, Biacore
instruments, or kinetic exclusion assay (KinExA) utilizing, for example, Sapidyne
instruments.

[0091] Contemplated anti-E7MC constructs include, for example, full-length anti-E7MC
antibodies, multi-specific (such as bispecific) anti-E7MC molecules, anti-E7MC chimeric
antigen receptors (CARs), and anti-E7MC immunoconjugates.

[0092] For example, in some embodiments, there is provided an anti-E7MC construct (such
as an isolated anti-E7MC construct) comprising an anti-E7MC antibody moiety that
specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I
protein. In some embodiments, the HPV16-E7 peptide is HPV16-E7 11-19 (SEQ ID NO: 4).
In some embodiments, the MHC class I protein is HLA-A02. In some embodiments, the
MHC class I protein is HLA-A*02:01 (GenBank Accession No.: AAO20853). In some
embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the
anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC
construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-
E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC
construct is an immunoconjugate. In some embodiments, the anti-E7MC construct binds the
E7MC with a K_d between about 0.1 pM to about 500 nM (such as about any of 0.1 pM, 1.0
pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 10 nM, 50 nM, 100 nM, or 500 nM, including
any ranges between these values). In some embodiments, the anti-E7MC construct cross-
reacts with at least one (such as at least any of 2, 3, 4, 5, or 6) complex comprising the MHC
class I protein and a variant of the HPV16-E7 peptide having one amino acid substitution
(such as a conservative amino acid substitution). In some embodiments, the anti-E7MC
construct cross-reacts with at least one (such as at least any of 2, 3, 4, or 5) complex
comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein.

[0093] In some embodiments, there is provided an anti-E7MC construct comprising an anti-
E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 11-19
peptide (SEQ ID NO: 4) and HLA-A*02:01. In some embodiments, the anti-E7MC construct
is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length
antibody. In some embodiments, the anti-E7MC construct is a multi-specific (such as
bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen
receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some
embodiments, the anti-E7MC construct binds the E7MC with a K_d between about 0.1 pM to
about 500 nM (such as about any of 0.1 pM, 1.0 pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM,
10 nM, 50 nM, 100 nM, or 500 nM, including any ranges between these values). In some embodiments, the anti-E7MC construct cross-reacts with at least one (such as at least any of 2, 3, 4, 5, or 6) complex comprising the MHC class I protein and a variant of the HPV16-E7 peptide having one amino acid substitution (such as a conservative amino acid substitution).

In some embodiments, the anti-E7MC construct cross-reacts with at least one (such as at least any of 2, 3, 4, or 5) complex comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein.

[0094] In some embodiments, there is provided an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety comprises: i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the anti-E7MC construct binds the E7MC with a K_d between about 0.1 pM to about 500 nM (such as about any of 0.1 pM, 1.0 pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 10 nM, 50 nM, 100 nM, or 500 nM, including any ranges between these values). In some embodiments, the anti-E7MC construct cross-reacts with at least one (such as at least any of 2, 3, 4, 5, or 6) complex comprising the MHC class I protein and a variant of the HPV16-E7 peptide having one amino acid substitution (such as a conservative amino acid substitution). In some embodiments, the anti-E7MC construct cross-reacts with at least one (such as at least any of
2, 3, 4, or 5) complex comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein.

[0095] In some embodiments, there is provided an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety comprises: i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 57-77; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 78-98; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 141-161; or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC construct is a multispecific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the anti-E7MC construct binds the E7MC with a K_d between about 0.1 pM to about 500 nM (such as about any of 0.1 pM, 1.0 pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 10 nM, 50 nM, 100 nM, or 500 nM, including any ranges between these values). In some embodiments, the anti-E7MC construct cross-reacts with at least one (such as at least any of 2, 3, 4, 5, or 6) complex comprising the MHC class I protein and a variant of the HPV16-E7 peptide having one amino acid substitution (such as a
conservative amino acid substitution). In some embodiments, the anti-E7MC construct cross-reacts with at least one (such as at least any of 2, 3, 4, or 5) complex comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein.

[0096] In some embodiments, there is provided an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety comprises: i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the anti-E7MC construct binds the E7MC with a K_d between about 0.1 pM to about 500 nM (such as about any of 0.1 pM, 1.0 pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 10 nM, 50 nM, 100 nM, or 500 nM, including any ranges between these values). In some embodiments, the anti-E7MC construct cross-reacts with at least one (such as at least any of 2, 3, 4, 5, or 6) complex comprising the MHC class I protein and a variant of the HPV16-E7 peptide having one amino acid substitution (such as a conservative amino acid substitution). In some embodiments, the anti-E7MC construct cross-reacts with at least one (such as at least any of 2, 3, 4, or 5) complex comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein.
In some embodiments, there is provided an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the anti-E7MC construct binds the E7MC with a K_d between about 0.1 pM to about 500 nM (such as about any of 0.1 pM, 1.0 pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 10 nM, 50 nM, 100 nM, or 500 nM, including any ranges between these values). In some embodiments, the anti-E7MC construct cross-reacts with at least one (such as at least any of 2, 3, 4, 5, or 6) complex comprising the MHC class I protein and a variant of the HPV16-E7 peptide having one amino acid substitution (such as a conservative amino acid substitution). In some embodiments, the anti-E7MC construct cross-reacts with at least one (such as at least any of 2, 3, 4, or 5) complex comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein.

In some embodiments, there is provided an anti-E7MC construct comprising a first anti-E7MC antibody moiety that competes for binding to a target HPV16-E7/MHC class I complex with a second anti-E7MC antibody moiety according to any of the anti-E7MC antibody moieties described herein. In some embodiments, the first anti-E7MC antibody moiety binds to the same, or substantially the same, epitope as the second anti-E7MC antibody moiety. In some embodiments, binding of the first anti-E7MC antibody moiety to the target HPV16-E7/MHC class I complex inhibits binding of the second anti-E7MC antibody moiety to the target HPV16-E7/MHC class I complex by at least about 70% (such as by at least about any of 75%, 80%, 85%, 90%, 95%, 98% or 99%), or vice versa. In some embodiments, the first anti-E7MC antibody moiety and the second anti-E7MC antibody
 moiety cross-compete for binding to the target HPV16-E7/MHC class I complex, i.e., each of
the first and second antibody moieties competes with the other for binding to the target
HPV16-E7/MHC class I complex.

[0099] For example, in some embodiments, there is provided an anti-E7MC construct
comprising an anti-E7MC antibody moiety that competes for binding to a target HPV16-
E7/MHC class I complex with an antibody moiety comprising i) a heavy chain variable
domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID
NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3)
amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO:
184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3)
amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one
of SEQ ID NOs: 186-188; or a variant thereof comprising up to about 3 (for example about
any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising
an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant
thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid
substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or
a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid
substitutions.

[0100] In some embodiments, there is provided an anti-E7MC construct comprising an
anti-E7MC antibody moiety that competes for binding to a target HPV16-E7/MHC class I
complex with an antibody moiety comprising i) a heavy chain variable domain sequence
comprising an HC-CDR1 comprising (and in some embodiments consisting of) the amino
acid sequence of any one of SEQ ID NOs: 57-77; or a variant thereof comprising up to about
5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2
comprising (and in some embodiments consisting of) the amino acid sequence of any one of
SEQ ID NOs: 78-98; or a variant thereof comprising up to about 5 (for example about any of
1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising (and in some
embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 99-119,
244, and 245; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3,
4, or 5) amino acid substitutions; and ii) a light chain variable domain sequence comprising
an LC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence
of any one of SEQ ID NOs: 120-140 and 246; or a variant thereof comprising up to about 5
(for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising
(and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 141-161; or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0101] In some embodiments, there is provided an anti-E7MC construct comprising an anti-E7MC antibody moiety that competes for binding to a target HPV16-E7/MHC class I complex with an antibody moiety comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0102] In some embodiments, there is provided an anti-E7MC construct comprising an anti-E7MC antibody moiety that competes for binding to a target HPV16-E7/MHC class I complex with an antibody moiety comprising a heavy chain variable domain comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity.

[0103] The different aspects are discussed in various sections below in further detail.
Anti-E7MC antibody moiety

The anti-E7MC constructs comprise an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein.

In some embodiments, the anti-E7MC antibody moiety specifically binds to an E7MC present on the surface of a cell. In some embodiments, the cell is a cancer cell. In some embodiments, the cancer cell is in a solid tumor. In some embodiments, the cancer cell is a metastatic cancer cell.

In some embodiments, the HPV16-E7 peptide is an MHC class I-restricted peptide. In some embodiments, the HPV16-E7 peptide is from about 8 to about 12 (such as about any of 8, 9, 10, 11, or 12) amino acids in length.

In some embodiments, the HPV16-E7 peptide comprises (and in some embodiments consists of) the sequence of amino acids 7-15 of HPV16-E7 (TLHEYMLDL, SEQ ID NO: 3), amino acids 11-19 of HPV16-E7 (YMLDLQPET, SEQ ID NO: 4, also referred to herein as "HPV16-E7 11-19"), amino acids 16-25 of HPV16-E7 (QPETTDLYCY, SEQ ID NO: 5), amino acids 44-52 of HPV16-E7 (QAEPDRAHY, SEQ ID NO: 6), amino acids 46-55 of HPV16-E7 (EPDRAHYNIV, SEQ ID NO: 7), amino acids 49-57 of HPV16-E7 (RAHYNIVTF, SEQ ID NO: 8), amino acids 82-90 of HPV16-E7 (LLMGTLGIV, SEQ ID NO: 9), or amino acids 86-93 of HPV16-E7 (TLGIVCPI, SEQ ID NO: 10).

In some embodiments, the MHC class I protein is HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, or HLA-G. In some embodiments, the MHC class I protein is HLA-A. In some embodiments, the HLA-A is HLA-A02. In some embodiments, the HLA-A02 is HLA-A*02:01.

In some embodiments, the anti-E7MC antibody moiety is a full-length antibody. In some embodiments, the anti-E7MC antibody moiety is an antigen-binding fragment, for example an antigen-binding fragment selected from the group consisting of a Fab, a Fab', a F(ab')2, an Fv fragment, a disulfide stabilized Fv fragment (dsFv), and a single-chain antibody molecule (scFv). In some embodiments, the anti-E7MC antibody moiety is an scFv. In some embodiments, the anti-E7MC antibody moiety is human, humanized, or semi-synthetic.

In some embodiments, the anti-E7MC antibody moiety specifically binds to the N-terminal portion of the HPV16-E7 peptide in the complex. In some embodiments, the anti-E7MC antibody moiety specifically binds to the C-terminal portion of the HPV16-E7 peptide.
in the complex. In some embodiments, the anti-E7MC antibody moiety specifically binds to the middle portion of the HPV16-E7 peptide in the complex.

[0111] In some embodiments, the anti-E7MC antibody moiety (or the anti-E7MC construct comprising the anti-E7MC antibody moiety) binds to the complex comprising the HPV16-E7 peptide and the MHC class I protein with an affinity that is at least about 10 (including for example at least about any of 10, 20, 30, 40, 50, 75, 100, 200, 300, 400, 500, 750, 1000 or more) times its binding affinity for each of full-length HPV16-E7, free HPV16-E7 peptide, MHC class I protein not bound to a peptide, and MHC class I protein bound to a non-HPV16-E7 peptide. In some embodiments, the anti-E7MC antibody moiety (or the anti-E7MC construct comprising the anti-E7MC antibody moiety) binds to the complex comprising the HPV16-E7 peptide and the MHC class I protein with a K_d no more than about 1/10 (such as no more than about any of 1/10, 1/20, 1/30, 1/40, 1/50, 1/75, 1/100, 1/200, 1/300, 1/400, 1/500, 1/750, 1/1000 or less) times its K_d for binding to each of full-length HPV16-E7, free HPV16-E7 peptide, MHC class I protein not bound to a peptide, and MHC class I protein bound to a non-HPV16-E7 peptide.

[0112] In some embodiments, the anti-E7MC antibody moiety (or the anti-E7MC construct comprising the anti-E7MC antibody moiety) binds to the complex comprising the HPV16-E7 peptide and the MHC class I protein with a K_d between about 0.1 pM to about 500 nM (such as about any of 0.1 pM, 1.0 pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 10 nM, 50 nM, 100 nM, or 500 nM, including any ranges between these values). In some embodiments, the anti-E7MC antibody moiety (or the anti-E7MC construct comprising the anti-E7MC antibody moiety) binds to the complex comprising the HPV16-E7 peptide and the MHC class I protein with a K_d between about 1 pM to about 250 pM (such as about any of 1, 10, 25, 50, 75, 100, 150, 200, or 250 pM, including any ranges between these values). In some embodiments, the anti-E7MC antibody moiety (or the anti-E7MC construct comprising the anti-E7MC antibody moiety) binds to the complex comprising the HPV16-E7 peptide and the MHC class I protein with a K_d between about 1 nM to about 500 nM (such as about any of 1, 10, 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, or 500 nM, including any ranges between these values).

[0113] In some embodiments, the anti-E7MC antibody moiety specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety cross-reacts with at least one complex comprising the HPV16-E7 peptide and an allelic variant of the MHC class I protein. In some embodiments, the allelic variant has up to about 10 (such as about any of 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) amino acid
substitutions when compared to the MHC class I protein. In some embodiments, the allelic variant is the same serotype as the MHC class I protein. In some embodiments, the allelic variant is a different serotype than the MHC class I protein. In some embodiments, the anti-E7MC antibody moiety does not cross-react with any complex comprising the HPV16-E7 peptide and an allelic variant of the MHC class I protein. In some embodiments, the anti-E7MC antibody moiety cross-reacts with at least one (such as at least any of 2, 3, 4, or 5) complex comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein.

In some embodiments, the anti-E7MC antibody moiety specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety cross-reacts with at least one complex comprising the MHC class I protein and a variant of the HPV16-E7 peptide having one amino acid substitution (such as a conservative amino acid substitution). In some embodiments, the anti-E7MC antibody moiety does not cross-react with any complex comprising the MHC class I protein and a variant of the HPV16-E7 peptide.

For example, in some embodiments, the anti-E7MC antibody moiety specifically binds to a complex comprising HPV16-E7 11-19 (SEQ ID NO: 4) and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01). In some embodiments, the anti-E7MC antibody moiety further binds to at least one (including at least about any of 2 or 3) of: a complex comprising an alanine-substituted HPV16-E7 peptide of SEQ ID NO: 12 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01); a complex comprising an alanine-substituted HPV16-E7 peptide of SEQ ID NO: 13 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01); and a complex comprising an alanine-substituted HPV16-E7 peptide of SEQ ID NO: 14 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01).

In some embodiments, the anti-E7MC antibody moiety specifically binds to: a complex comprising an HPV16-E7 peptide of SEQ ID NO: 4 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01); a complex comprising an alanine-substituted HPV16-E7 peptide of SEQ ID NO: 12 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01); and a complex comprising an alanine-substituted HPV16-E7 peptide of SEQ ID NO: 13 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01).
In some embodiments, the anti-E7MC antibody moiety specifically binds to: a complex comprising an HPV16-E7 peptide of SEQ ID NO: 4 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01); a complex comprising an alanine-substituted HPV16-E7 peptide of SEQ ID NO: 12 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01); and a complex comprising an alanine-substituted HPV16-E7 peptide of SEQ ID NO: 14 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01).

In some embodiments, the anti-E7MC antibody moiety specifically binds to: a complex comprising an HPV16-E7 peptide of SEQ ID NO: 4 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01); and a complex comprising an alanine-substituted HPV16-E7 peptide of SEQ ID NO: 12 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01).

In some embodiments, the anti-E7MC antibody moiety specifically binds to: a complex comprising an HPV16-E7 peptide of SEQ ID NO: 4 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01); and a complex comprising an alanine-substituted HPV16-E7 peptide of SEQ ID NO: 14 and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01).

In some embodiments, the anti-E7MC antibody moiety specifically binds to a complex comprising HPV16-E7 11-19 (SEQ ID NO: 4) and HLA-A*02:01. In some embodiments, the anti-E7MC antibody moiety cross-reacts with at least one (including at least about any of 2, 3, 4, 5, or 6) of: a complex comprising HPV16-E7 11-19 (SEQ ID NO: 4) and HLA-A*02:02 (GenBank Accession No.: AFL91480), a complex comprising HPV16-E7 11-19 (SEQ ID NO: 4) and HLA-A*02:03 (GenBank Accession No.: AAA03604), a complex comprising HPV16-E7 11-19 (SEQ ID NO: 4) and HLA-A*02:05 (GenBank Accession No.: AAA03603), a complex comprising HPV16-E7 11-19 (SEQ ID NO: 4) and HLA-A*02:06 (GenBank Accession No.: CCB78868), a complex comprising HPV16-E7 11-19 (SEQ ID NO: 4) and HLA-A*02:07 (GenBank Accession No.: ACR55712), and a complex comprising HPV16-E7 11-19 (SEQ ID NO: 4) and HLA-A*02:11 (GenBank Accession No.: CAB56609).

In some embodiments, the anti-E7MC antibody moiety specifically binds to: a complex comprising HPV16-E7 11-19 (SEQ ID NO: 4) and an MHC class I protein (such as HLA-A02, for example HLA-A*02:01); and a complex comprising an HPV16-E7 11-19
variant having the amino acid sequence of YMLDVQPET (SEQ ID NO: 11) and an MHC
class I protein (such as HLA-A02, for example HLA-A*02:01).

[0122] In some embodiments, the anti-E7MC antibody moiety is a semi-synthetic antibody
moiety comprising fully human sequences and one or more synthetic regions. In some
embodiments, the anti-E7MC antibody moiety is a semi-synthetic antibody moiety
comprising a fully human light chain variable domain and a semi-synthetic heavy chain
variable domain comprising fully human FR1, HC-CDR1, FR2, HC-CDR2, FR3, and FR4
regions and a synthetic HC-CDR3. In some embodiments, the semi-synthetic heavy chain
variable domain comprises a fully synthetic HC-CDR3 having a sequence from about 5 to
about 25 (such as about any of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, or 25) amino acids in length. In some embodiments, the semi-synthetic heavy chain
variable domain or the synthetic HC-CDR3 is obtained from a semi-synthetic library (such as
a semi-synthetic human library) comprising fully synthetic HC-CDR3s having a sequence
from about 5 to about 25 (such as about any of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, or 25) amino acids in length, wherein each amino acid in the sequence
is randomly selected from the standard human amino acids, minus cysteine. In some
embodiments, the synthetic HC-CDR3 is from about 7 to about 15 (such as about any of 7, 8,
9, 10, 11, 12, 13, 14, or 15) amino acids in length.

[0123] The anti-E7MC antibody moieties in some embodiments comprise specific
sequences or certain variants of such sequences. In some embodiments, the amino acid
substitutions in the variant sequences do not substantially reduce the ability of the anti-E7MC
antibody moiety to bind the E7MC. For example, alterations that do not substantially reduce
E7MC binding affinity may be made. Alterations that substantially improve E7MC binding
affinity or affect some other property, such as specificity and/or cross-reactivity with related
variants of the E7MC, are also contemplated.

[0124] In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain
variable domain comprising an HC-CDR3 comprising the amino acid sequence of any one of
SEQ ID NOs: 186-188, or a variant thereof comprising up to about 3 (for example about any
of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an
LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof
comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions.

[0125] In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain
variable domain comprising an HC-CDR3 comprising the amino acid sequence of any one of
SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191.

[0126] In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions.

[0127] In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191.

[0128] In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191; or a variant thereof comprising up
to about 3 (such as about any of 1, 2, or 3) amino acid substitutions in the LC-CDR sequences.

[0129] In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191. The sequences of the CDRs noted herein are provided in Table 2 below.

<table>
<thead>
<tr>
<th>CDR</th>
<th>SEQ ID NO</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC-CDR1</td>
<td>183</td>
<td>G-F/G/Y-S/T-F-S/T-S-Y-A/G</td>
</tr>
<tr>
<td>HC-CDR2</td>
<td>185</td>
<td>I-N/I-P-X-X-G-G/T/I-T/A/P</td>
</tr>
<tr>
<td>HC-CDR3</td>
<td>186</td>
<td>I-S-X-S/D-G/N-G/S-N-T/I/K</td>
</tr>
<tr>
<td></td>
<td>188</td>
<td>A-R-G-X-X-Y-Y/G/S</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>N-I-G-S-N/K</td>
</tr>
<tr>
<td>LC-CDR1</td>
<td>189</td>
<td>L-R-S/N-X-Y</td>
</tr>
</tbody>
</table>

[0130] In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain variable domain comprising an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-19, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.
In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain variable domain comprising an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-19, 244, and 245; and ii) a light chain variable domain comprising an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250.

In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-19, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-19, 244, and 245; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 (such as
about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250.

[0134] In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-1 19, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0135] In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-1 19, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, wherein the amino acid substitutions are in HC-CDR1 or HC-CDR2; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, wherein the amino acid substitutions are in HC-CDR1 or HC-CDR2.

[0136] In some embodiments, the anti-E7MC antibody moiety comprises i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-1 19, 244, and 245; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs:
120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250. The sequences of the HC-CDRs noted herein are provided in Table 3 below and the LC-CDRs noted herein are provided in Table 4 below.

TABLE 3

<table>
<thead>
<tr>
<th>SEQ ID NO: 57</th>
<th>GYTFIDYY</th>
<th>SEQ ID NO: 78</th>
<th>INPKSGGT</th>
<th>SEQ ID NO: 99</th>
<th>ARSYYYYYG VKDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC-CDR1 1</td>
<td></td>
<td>HC-CDR2 1</td>
<td></td>
<td>HC-CDR3 1</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 58</td>
<td>GGTFSSYA</td>
<td>SEQ ID NO: 79</td>
<td>IPIFGTA</td>
<td>SEQ ID NO: 100</td>
<td>ARGVYGYSGSAPYD</td>
</tr>
<tr>
<td>HC-CDR1 2</td>
<td></td>
<td>HC-CDR2 2</td>
<td></td>
<td>HC-CDR3 2</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 59</td>
<td>GGTFSMAA</td>
<td>SEQ ID NO: 80</td>
<td>IIPMPGIP</td>
<td>SEQ ID NO: 101</td>
<td>ARGPLYWHS DDS</td>
</tr>
<tr>
<td>HC-CDR1 3</td>
<td></td>
<td>HC-CDR2 3</td>
<td></td>
<td>HC-CDR3 3</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 60</td>
<td>GGTFSSYA</td>
<td>SEQ ID NO: 81</td>
<td>ISYDGTNK</td>
<td>SEQ ID NO: 102</td>
<td>ARMSGSYGSYFDK</td>
</tr>
<tr>
<td>HC-CDR1 4</td>
<td></td>
<td>HC-CDR2 4</td>
<td></td>
<td>HC-CDR3 4</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 61</td>
<td>GGTFRSYA</td>
<td>SEQ ID NO: 82</td>
<td>IPIFGTP</td>
<td>SEQ ID NO: 103</td>
<td>ARSSMYQYS HDD</td>
</tr>
<tr>
<td>HC-CDR1 5</td>
<td></td>
<td>HC-CDR2 5</td>
<td></td>
<td>HC-CDR3 5</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 62</td>
<td>GYTFANYG</td>
<td>SEQ ID NO: 83</td>
<td>ISASNGNT</td>
<td>SEQ ID NO: 104</td>
<td>ARSYYAGYMMFDF</td>
</tr>
<tr>
<td>HC-CDR1 8</td>
<td></td>
<td>HC-CDR2 8</td>
<td></td>
<td>HC-CDR3 8</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 63</td>
<td>GYTFSSYW</td>
<td>SEQ ID NO: 84</td>
<td>INODGSEK</td>
<td>SEQ ID NO: 105</td>
<td>ARYSVWGM MDE</td>
</tr>
<tr>
<td>HC-CDR1 9</td>
<td></td>
<td>HC-CDR2 9</td>
<td></td>
<td>HC-CDR3 9</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 64</td>
<td>GFFPSSY</td>
<td>SEQ ID NO: 85</td>
<td>ISSSSSTI</td>
<td>SEQ ID NO: 106</td>
<td>ARQNYYADYDY</td>
</tr>
<tr>
<td>HC-CDR1 10</td>
<td></td>
<td>HC-CDR2 10</td>
<td></td>
<td>HC-CDR3 10</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 65</td>
<td>GYTFSDYG</td>
<td>SEQ ID NO: 86</td>
<td>ISTYNGNT</td>
<td>SEQ ID NO: 107</td>
<td>ARGYTGSYATGD</td>
</tr>
<tr>
<td>HC-CDR1 11</td>
<td></td>
<td>HC-CDR2 11</td>
<td></td>
<td>HC-CDR3 11</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 66</td>
<td>GYTFSGYG</td>
<td>SEQ ID NO: 87</td>
<td>ISPYNGLNT</td>
<td>SEQ ID NO: 108</td>
<td>ARGSYQWSGD</td>
</tr>
<tr>
<td>HC-CDR1 13</td>
<td></td>
<td>HC-CDR2 13</td>
<td></td>
<td>HC-CDR3 13</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 67</td>
<td>GDIRKFA</td>
<td>SEQ ID NO: 88</td>
<td>IIPNLMDT</td>
<td>SEQ ID NO: 109</td>
<td>ARGSYQWSGD</td>
</tr>
<tr>
<td>HC-CDR1 17</td>
<td></td>
<td>HC-CDR2 17</td>
<td></td>
<td>HC-CDR3 17</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 68</td>
<td>GFNFSDDY</td>
<td>SEQ ID NO: 89</td>
<td>ISPGGTT</td>
<td>SEQ ID NO: 110</td>
<td>ARGHSFSYGEDY</td>
</tr>
<tr>
<td>HC-CDR1 22</td>
<td></td>
<td>HC-CDR2 22</td>
<td></td>
<td>HC-CDR3 22</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 69</td>
<td>GYTFGYY</td>
<td>SEQ ID NO: 90</td>
<td>INPNSGGT</td>
<td>SEQ ID NO: 111</td>
<td>ARGWQHYGIM D</td>
</tr>
<tr>
<td>HC-CDR1 26</td>
<td></td>
<td>HC-CDR2 26</td>
<td></td>
<td>HC-CDR3 26</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 70</td>
<td>GYTFSSYA</td>
<td>SEQ ID NO: 91</td>
<td>ISGSGGST</td>
<td>SEQ ID NO: 112</td>
<td>ARSVWSAYSD</td>
</tr>
<tr>
<td>HC-CDR1 27</td>
<td></td>
<td>HC-CDR2 27</td>
<td></td>
<td>HC-CDR3 27</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 71</td>
<td>GYTFSSYW</td>
<td>SEQ ID NO: 92</td>
<td>IKEDGSK</td>
<td>SEQ ID NO: 113</td>
<td>ARGWQVGH IDF</td>
</tr>
<tr>
<td>HC-CDR1 31</td>
<td></td>
<td>HC-CDR2 31</td>
<td></td>
<td>HC-CDR3 31</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 72</td>
<td>GYTFSSYA</td>
<td>SEQ ID NO: 93</td>
<td>IPIGLIGA</td>
<td>SEQ ID NO: 114</td>
<td>ARGTYWGSDT</td>
</tr>
<tr>
<td>HC-CDR1 32</td>
<td></td>
<td>HC-CDR2 32</td>
<td></td>
<td>HC-CDR3 32</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 73</td>
<td>GYTFSSYW</td>
<td>SEQ ID NO: 94</td>
<td>ISGSGGNT</td>
<td>SEQ ID NO: 115</td>
<td>ARWQSGYDK</td>
</tr>
<tr>
<td>HC-CDR1 39</td>
<td></td>
<td>HC-CDR2 39</td>
<td></td>
<td>HC-CDR3 39</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 74</td>
<td>GYTFSSYW</td>
<td>SEQ ID NO: 95</td>
<td>INPNTGVT</td>
<td>SEQ ID NO: 116</td>
<td>ARNVRYS M HDS</td>
</tr>
<tr>
<td>HC-CDR1 40</td>
<td></td>
<td>HC-CDR2 40</td>
<td></td>
<td>HC-CDR3 40</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 75</td>
<td>GYTFSSY</td>
<td>SEQ ID NO: 96</td>
<td>ISSSSSYI</td>
<td>SEQ ID NO: 117</td>
<td>ARGROWGYFD</td>
</tr>
<tr>
<td>HC-CDR1 41</td>
<td></td>
<td>HC-CDR2 41</td>
<td></td>
<td>HC-CDR3 41</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 76</td>
<td>GYTFSSYG</td>
<td>SEQ ID NO: 97</td>
<td>IPIFGTT</td>
<td>SEQ ID NO: 118</td>
<td>ARVGYGSFDD</td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>LC-CDR1</td>
<td>Sequence 1</td>
<td>SEQ ID NO:</td>
<td>LC-CDR2</td>
<td>Sequence 2</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>120</td>
<td>SSN</td>
<td>GGTNP</td>
<td>141</td>
<td>LC-CDR2</td>
<td>GNY</td>
</tr>
<tr>
<td>121</td>
<td>NIGMS</td>
<td>KS</td>
<td>142</td>
<td>LC-CDR2</td>
<td>YDS</td>
</tr>
<tr>
<td>122</td>
<td>SSN</td>
<td>IGNNY</td>
<td>143</td>
<td>LC-CDR2</td>
<td>DNY</td>
</tr>
<tr>
<td>123</td>
<td>NIGKS</td>
<td></td>
<td>144</td>
<td>LC-CDR2</td>
<td>YNS</td>
</tr>
<tr>
<td>124</td>
<td>QGISSW</td>
<td></td>
<td>145</td>
<td>LC-CDR2</td>
<td>AAS</td>
</tr>
<tr>
<td>125</td>
<td>NSN</td>
<td>ETNP</td>
<td>146</td>
<td>LC-CDR2</td>
<td>SYY</td>
</tr>
<tr>
<td>126</td>
<td>SLRSYY</td>
<td></td>
<td>147</td>
<td>LC-CDR2</td>
<td>GKN</td>
</tr>
<tr>
<td>127</td>
<td>NIGSKN</td>
<td></td>
<td>148</td>
<td>LC-CDR2</td>
<td>DDH</td>
</tr>
<tr>
<td>128</td>
<td>SSN</td>
<td>IGI</td>
<td>149</td>
<td>LC-CDR2</td>
<td>GNS</td>
</tr>
<tr>
<td>129</td>
<td>TGA</td>
<td>VTSGYY</td>
<td>150</td>
<td>LC-CDR2</td>
<td>STN</td>
</tr>
<tr>
<td>130</td>
<td>QSISSY</td>
<td></td>
<td>151</td>
<td>LC-CDR2</td>
<td>GAS</td>
</tr>
<tr>
<td>131</td>
<td>SSN</td>
<td>IGSNS</td>
<td>152</td>
<td>LC-CDR2</td>
<td>SNN</td>
</tr>
<tr>
<td>132</td>
<td>SSN</td>
<td>IAGYD</td>
<td>153</td>
<td>LC-CDR2</td>
<td>ESN</td>
</tr>
<tr>
<td>133</td>
<td>ILRNYY</td>
<td></td>
<td>154</td>
<td>LC-CDR2</td>
<td>GQN</td>
</tr>
<tr>
<td>134</td>
<td>NLRNSY</td>
<td></td>
<td>155</td>
<td>LC-CDR2</td>
<td>KGN</td>
</tr>
<tr>
<td>LC-CDR1 31</td>
<td>LC-CDR2 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 135</td>
<td>SEQ ID NO: 156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KLGEKY</td>
<td>QND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 136</td>
<td>SEQ ID NO: 157</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLRNYY</td>
<td>GKD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 137</td>
<td>SEQ ID NO: 158</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSNIGSNH</td>
<td>NNN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 138</td>
<td>SEQ ID NO: 159</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLRSFY</td>
<td>GKN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 139</td>
<td>SEQ ID NO: 160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGAVTSSYY</td>
<td>STS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 140</td>
<td>SEQ ID NO: 161</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSNIGTRM</td>
<td>NNN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC-CDR3 32</td>
<td>QSWASSSVYV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC-CDR3 39</td>
<td>NSRDSGDNH RV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC-CDR3 40</td>
<td>AAWDDSLNVPV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC-CDR3 41</td>
<td>NSRDSGGDPVV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC-CDR3 US-5</td>
<td>LLYYGGARV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC-CDR3 US-7</td>
<td>AAWDDNLKSYV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0137] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (including for example at least any of 96%, 97%, 98%, or 99%) sequence identity.

[0138] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243.

[0139] The heavy and light chain variable domains can be combined in various pair-wise combinations to generate a number of anti-E7MC antibody moieties.

[0140] For example, in some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 57, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 78, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of
SEQ ID NO: 99, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 120, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 141, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 162, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0141] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 57, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 78, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 99, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 120, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 141, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 162, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0142] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 57, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 78, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 99; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 120, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 141, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 162.

[0143] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 58, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 79, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 100, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1.
comprising the amino acid sequence of SEQ ID NO: 121, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 142, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 163, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0144] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 58, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 79, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 100, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 121, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 142, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 163, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0145] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 58, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 79, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 100; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 121, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 142, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 163.

[0146] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 59, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 80, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 101, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 122, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2
comprising the amino acid sequence of SEQ ID NO: 143, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 164, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0147] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 59, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 80, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 101, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 122, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 143, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 164, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0148] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 59, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 80, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 101; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 122, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 143, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 164.

[0149] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 60, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 81, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 102, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 123, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 144, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3

45
comprising the amino acid sequence of SEQ ID NO: 165, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0150] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 60, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 81, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 102, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 123, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 144, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 165, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0151] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 60, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 81, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 102; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 123, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 144, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 165.

[0152] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 61, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 82, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 103, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 124, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 145, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 166, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.
In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 61, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 82, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 103, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 124, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 145, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 166, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 61, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 82, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 103; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 124, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 145, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 166.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 62, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 83, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 104, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 125, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 146, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 167, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 62, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 83, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 104, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 125, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 146, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 167, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.
NO: 62, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 83, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 104, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 125, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 146, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 167, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0157] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 62, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 83, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 104; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 125, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 146, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 167.

[0158] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 63, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 84, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 105, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 126, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 147, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 168, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0159] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 63, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 84, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 105, or a variant thereof...
comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 126, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 147, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 168, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0160] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 63, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 84, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 105; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 126, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 147, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 168.

[0161] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 64, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 85, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 106, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 127, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 148, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 169, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0162] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 64, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 85, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 106, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising
the amino acid sequence of SEQ ID NO: 127, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 148, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 169, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0163] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 64, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 85, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 106; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 127, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 148, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 169.

[0164] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 65, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 86, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 107, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 128, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 149, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 170, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0165] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 65, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 86, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 107, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 128, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 149, and an LC-CDR3 comprising the amino acid sequence of SEQ
ID NO: 170, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 65, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 86, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 107; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 128, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 149, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 170.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 66, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 87, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 108, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 129, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 150, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 171, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 66, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 87, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 108, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 129, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 150, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 171, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.
[0169] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR 1 comprising the amino acid sequence of SEQ ID NO: 66, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 87, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 108; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 129, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 150, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 171.

[0170] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR 1 comprising the amino acid sequence of SEQ ID NO: 67, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 88, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 109, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 130, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 151, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 172, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0171] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR 1 comprising the amino acid sequence of SEQ ID NO: 67, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 88, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 109, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 130, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 151, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 172, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0172] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR 1 comprising the amino acid sequence of SEQ ID NO: 66, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 87, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 108; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 129, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 150, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 171.
NO: 67, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 88, and an HC-
CDR3 comprising the amino acid sequence of SEQ ID NO: 109; and a light chain variable
domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 130,
an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 151, and an LC-CDR3
comprising the amino acid sequence of SEQ ID NO: 172.

[0173] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID
NO: 68, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or
5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID
NO: 89, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or
5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ
ID NO: 110, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or
5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1
comprising the amino acid sequence of SEQ ID NO: 131, or a variant thereof comprising up
to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2
comprising the amino acid sequence of SEQ ID NO: 152, or a variant thereof comprising up
to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3
comprising the amino acid sequence of SEQ ID NO: 173, or a variant thereof comprising up
to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0174] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID
NO: 68, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 89, and an HC-
CDR3 comprising the amino acid sequence of SEQ ID NO: 110, or a variant thereof
comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the
HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising
the amino acid sequence of SEQ ID NO: 131, an LC-CDR2 comprising the amino acid
sequence of SEQ ID NO: 152, and an LC-CDR3 comprising the amino acid sequence of SEQ
ID NO: 173, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or
5) amino acid substitutions in the LC-CDR sequences.

[0175] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID
NO: 68, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 89, and an HC-
CDR3 comprising the amino acid sequence of SEQ ID NO: 110; and a light chain variable
domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 131, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 152, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 173.

[0176] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 69, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 90, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 111, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 132, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 153, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 174, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0177] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 69, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 90, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 111, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 132, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 153, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 174, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0178] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 69, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 90, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 111; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 132,
an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 153, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 174.

[0179] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 70, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 91, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 112, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 133, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 154, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 175, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0180] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 70, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 91, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 112, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 133, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 154, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 175, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0181] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 70, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 91, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 112; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 133, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 154, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 175.
In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 71, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 92, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 113, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 134, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 155, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 176, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 71, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 92, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 113, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 134, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 155, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 176, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 71, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 92, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 113; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 134, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 155, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 176.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 71, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 92, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 113; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 134, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 155, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 176.
NO: 72, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 93, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 114, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 135, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 156, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 177, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0186] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 72, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 93, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 114, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 135, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 156, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 177, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0187] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 72, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 93, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 114; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 135, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 156, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 177.

[0188] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 73, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID
NO: 94, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 115, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 136, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 157, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 178, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0189] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 73, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 94, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 115, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 136, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 157, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 178, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0190] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 74, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 95, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ
ID NO: 116, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 137, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 158, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 179, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0192] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 74, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 95, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 116, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 137, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 158, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 179, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0193] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 74, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 95, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 116; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 137, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 158, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 179.

[0194] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 75, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 96, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 117, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1
comprising the amino acid sequence of SEQ ID NO: 138, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 159, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 180, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0195] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 75, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 96, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 117, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 138, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 159, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 180, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0196] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 75, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 96, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 117; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 138, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 159, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 180.

[0197] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 76, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 97, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 118, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 139, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2
comprising the amino acid sequence of SEQ ID NO: 160, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 181, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0198] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 76, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 97, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 118, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 139, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 160, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 181, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0199] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 76, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 97, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 118; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 139, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 160, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 181.

[0200] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3
comprising the amino acid sequence of SEQ ID NO: 182, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0201] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 182, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0202] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 182.

[0203] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 244, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 182, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.
In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 244, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 182, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 244; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 182.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 182, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID
NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 182, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0208] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 245; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 182.

[0209] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 247, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0210] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119, or a variant thereof
comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the
HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising
the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid
sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ
ID NO: 247, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or
5) amino acid substitutions in the LC-CDR sequences.

[0211] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID
NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-
CDR3 comprising the amino acid sequence of SEQ ID NO: 119; and a light chain variable
domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140,
an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3
comprising the amino acid sequence of SEQ ID NO: 247.

[0212] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID
NO: 77, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or
5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID
NO: 98, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or
5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ
ID NO: 119, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or
5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1
comprising the amino acid sequence of SEQ ID NO: 140, or a variant thereof comprising up
to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2
comprising the amino acid sequence of SEQ ID NO: 161, or a variant thereof comprising up
to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3
comprising the amino acid sequence of SEQ ID NO: 248, or a variant thereof comprising up
to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0213] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID
NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-
CDR3 comprising the amino acid sequence of SEQ ID NO: 119, or a variant thereof
comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the
HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising
the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 248, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0214] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 248.

[0215] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 246, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 182, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0216] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 246, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ
ID NO: 182, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 246, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 182.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 249, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 249, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.
In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 249.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID
NO: 77, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 98, and an HC-CDR3 comprising the amino acid sequence of SEQ ID NO: 119; and a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 140, an LC-CDR2 comprising the amino acid sequence of SEQ ID NO: 161, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 250.

[0224] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 15, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 36, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 15 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 36.

[0225] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 16, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 37, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 16 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 37.

[0226] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 17, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 38, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 17 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 38.
In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 18, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 39, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 18 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 39.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 19, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 40, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 19 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 40.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 20, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 41, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 20 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 41.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 21, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 42, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some
embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 21 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 42.

[0231] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 22, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 43, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 22 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 43.

[0232] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 23, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 44, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 23 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 44.

[0233] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 24, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 45, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 24 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 45.

[0234] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 25, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%,
98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid
sequence set forth in SEQ ID NO: 46, or a variant thereof having at least about 95%
(including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In
some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable
domain comprising the amino acid sequence set forth in SEQ ID NO: 25 and a light chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 46.

[0235] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 26, or a variant
thereof having at least about 95% (including for example at least about any of 96%, 97%,
98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid
sequence set forth in SEQ ID NO: 47, or a variant thereof having at least about 95%
(including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In
some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable
domain comprising the amino acid sequence set forth in SEQ ID NO: 26 and a light chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 47.

[0236] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 27, or a variant
thereof having at least about 95% (including for example at least about any of 96%, 97%,
98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid
sequence set forth in SEQ ID NO: 48, or a variant thereof having at least about 95%
(including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In
some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable
domain comprising the amino acid sequence set forth in SEQ ID NO: 27 and a light chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 48.

[0237] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 28, or a variant
thereof having at least about 95% (including for example at least about any of 96%, 97%,
98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid
sequence set forth in SEQ ID NO: 49, or a variant thereof having at least about 95%
(including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In
some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable
domain comprising the amino acid sequence set forth in SEQ ID NO: 28 and a light chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 49.
In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 29, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 50, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 29 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 50.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 30, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 51, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 30 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 51.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 31, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 52, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 31 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 52.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 32, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 53, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In
some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable
domain comprising the amino acid sequence set forth in SEQ ID NO: 32 and a light chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 53.

[0242] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 33, or a variant
thereof having at least about 95% (including for example at least about any of 96%, 97%,
98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid
sequence set forth in SEQ ID NO: 54, or a variant thereof having at least about 95%
(including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In
some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable
domain comprising the amino acid sequence set forth in SEQ ID NO: 33 and a light chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 54.

[0243] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 34, or a variant
thereof having at least about 95% (including for example at least about any of 96%, 97%,
98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid
sequence set forth in SEQ ID NO: 55, or a variant thereof having at least about 95%
(including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In
some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable
domain comprising the amino acid sequence set forth in SEQ ID NO: 34 and a light chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 55.

[0244] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 35, or a variant
thereof having at least about 95% (including for example at least about any of 96%, 97%,
98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid
sequence set forth in SEQ ID NO: 56, or a variant thereof having at least about 95%
(including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In
some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable
domain comprising the amino acid sequence set forth in SEQ ID NO: 35 and a light chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 56.

[0245] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 233, or a
variant thereof having at least about 95% (including for example at least about any of 96%,
97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 56, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 233 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 56.

[0246] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 234, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 56, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 234 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 56.

[0247] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 235, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 56, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 235 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 56.

[0248] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 35, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 238, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 35 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 238.
In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 35, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 239, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 35 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 239.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 35, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 240, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 35 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 240.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 35, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 241, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 35 and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 241.

In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 35, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence set forth in SEQ ID NO: 242, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In
some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable
domain comprising the amino acid sequence set forth in SEQ ID NO: 35 and a light chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 242.

[0253] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 236, or a
variant thereof having at least about 95% (including for example at least about any of 96%,
97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the
amino acid sequence set forth in SEQ ID NO: 243, or a variant thereof having at least about
95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity.
In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable
domain comprising the amino acid sequence set forth in SEQ ID NO: 236 and a light chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 243.

[0254] In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 237, or a
variant thereof having at least about 95% (including for example at least about any of 96%,
97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the
amino acid sequence set forth in SEQ ID NO: 56, or a variant thereof having at least about
95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity.
In some embodiments, the anti-E7MC antibody moiety comprises a heavy chain variable
domain comprising the amino acid sequence set forth in SEQ ID NO: 237 and a light chain
variable domain comprising the amino acid sequence set forth in SEQ ID NO: 56.

[0255] In some embodiments, the anti-E7MC antibody moiety competes for binding to a
target HPV16-E7/MHC class I complex with a second anti-E7MC antibody moiety according
to any of the anti-E7MC antibody moieties described herein. In some embodiments, the anti-
E7MC antibody moiety binds to the same, or substantially the same, epitope as the second
anti-E7MC antibody moiety. In some embodiments, binding of the anti-E7MC antibody
moiety to the target HPV16-E7/MHC class I complex inhibits binding of the second anti-
E7MC antibody moiety to the target HPV16-E7/MHC class I complex by at least about 70%
such as by at least about any of 75%, 80%, 85%, 90%, 95%, 98% or 99%), or vice versa. In
some embodiments, the anti-E7MC antibody moiety and the second anti-E7MC antibody
moiety cross-compete for binding to the target HPV16-E7/MHC class I complex, i.e., each of
the antibody moieties competes with the other for binding to the target HPV16-E7/MHC
class I complex.
For example, in some embodiments, the anti-E7MC antibody moiety competes for binding to a target HPV16-E7/MHC class I complex with an antibody moiety comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions.

In some embodiments, the anti-E7MC antibody moiety competes for binding to a target HPV16-E7/MHC class I complex with an antibody moiety comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 57-77; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 78-98; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 141-161; or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs.
SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions.

[0258] In some embodiments, the anti-E7MC antibody moiety competes for binding to a target HPV16-E7/MHC class I complex with an antibody moiety comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences.

[0259] In some embodiments, the anti-E7MC antibody moiety competes for binding to a target HPV16-E7/MHC class I complex with an antibody moiety comprising a heavy chain variable domain comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising (and in some embodiments consisting of) the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity.

Full-length anti-E7MC antibodies

[0260] The anti-E7MC constructs in some embodiments are full-length antibodies comprising an anti-E7MC antibody moiety (also referred to herein as a "full-length anti-E7MC antibody"). In some embodiments, the full-length antibody is a monoclonal antibody.
In some embodiments, the full-length anti-E7MC antibody comprises a Fc sequence from an immunoglobulin, such as IgA, IgD, IgE, IgG, and IgM. In some embodiments, the full-length anti-E7MC antibody comprises an Fc sequence of IgG, such as any of IgG1, IgG2, IgG3, or IgG4. In some embodiments, the full-length anti-E7MC antibody comprises an Fc sequence of a human immunoglobulin. In some embodiments, the full-length anti-E7MC antibody comprises an Fc sequence of a mouse immunoglobulin. In some embodiments, the full-length anti-E7MC antibody comprises an Fc sequence that has been altered or otherwise changed so that it has enhanced antibody dependent cellular cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC) effector function.

Thus, for example, in some embodiments, there is provided a full-length anti-E7MC antibody comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, and b) an Fc region. In some embodiments, the HPV16-E7 peptide is HPV16-E7 11-19 (SEQ ID NO: 4). In some embodiments, the MHC class I protein is HLA-A*02. In some embodiments, the MHC class I protein is HLA-A*02:01. In some embodiments, there is provided a full-length anti-E7MC antibody comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 11-19 peptide (SEQ ID NO: 4) and HLA-A*02:01, and b) an Fc region. In some embodiments, the Fc region comprises an IgGl Fc sequence. In some embodiments, the Fc region comprises a human IgGl Fc sequence. In some embodiments, the Fc region comprises a mouse IgGl Fc sequence. In some embodiments, the anti-E7MC antibody moiety cross-reacts with at least one (such as at least any of 2, 3, 4, 5, or 6) complex comprising the MHC class I protein and a variant of the HPV16-E7 peptide having one amino acid substitution (such as a conservative amino acid substitution). In some embodiments, the anti-E7MC antibody moiety cross-reacts with at least one (such as at least any of 2, 3, 4, or 5) complex comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein.

In some embodiments, there is provided a full-length anti-E7MC antibody comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions.
amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and b) an Fc region. In some embodiments, the Fc region comprises an IgGl Fc sequence. In some embodiments, the Fc region comprises a human IgGl Fc sequence. In some embodiments, the Fc region comprises a mouse IgGl Fc sequence.

[0264] In some embodiments, there is provided a full-length anti-E7MC antibody comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, and b) an Fc region. In some embodiments, the Fc region comprises an IgGl Fc sequence. In some embodiments, the Fc region comprises a human IgGl Fc sequence. In some embodiments, the Fc region comprises a mouse IgGl Fc sequence.

[0265] In some embodiments, there is provided a full-length anti-E7MC antibody comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1,
2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions. In some embodiments, the Fc region comprises an IgGl Fc sequence. In some embodiments, the Fc region comprises a human IgGl Fc sequence. In some embodiments, the Fc region comprises a mouse IgGl Fc sequence.

[0266] In some embodiments, there is provided a full-length anti-E7MC antibody comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences; and b) an Fc region. In some embodiments, the Fc region comprises an IgGl Fc sequence. In some embodiments, the Fc region comprises a human IgGl Fc sequence. In some embodiments, the Fc region comprises a mouse IgGl Fc sequence.

[0267] In some embodiments, there is provided a full-length anti-E7MC antibody comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences; and b) an Fc region.
NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; and b) an Fc region. In some embodiments, the Fc region comprises an IgGl Fc sequence. In some embodiments, the Fc region comprises a human IgGl Fc sequence. In some embodiments, the Fc region comprises a mouse IgGl Fc sequence.

[0268] In some embodiments, there is provided a full-length anti-E7MC antibody comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity; and b) an Fc region. In some embodiments, the Fc region comprises an IgGl Fc sequence. In some embodiments, the Fc region comprises a human IgGl Fc sequence. In some embodiments, the Fc region comprises a mouse IgGl Fc sequence.

[0269] In some embodiments, there is provided a full-length anti-E7MC antibody comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243; and b) an Fc region. In some embodiments, the Fc region comprises an IgGl Fc sequence. In some embodiments, the Fc region comprises a human IgGl Fc sequence. In some embodiments, the Fc region comprises a mouse IgGl Fc sequence.

[0270] In some embodiments, the full-length anti-E7MC antibody binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein with a K_d between about 0.1 pM to about 500 nM (such as about any of 0.1 pM, 1.0 pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 10 nM, 50 nM, 100 nM, or 500 nM, including any ranges between these values). In some embodiments, the full-length anti-E7MC antibody binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein with a K_d between about 1 pM to about 250 pM (such as about any of 1, 10, 25, 50, 75, 100, 150, 200, or 250 pM, including any ranges between these values).
Multi-Specific anti-E7MC molecules

[0271] The anti-E7MC constructs in some embodiments comprise a multi-specific anti-E7MC molecule comprising an anti-E7MC antibody moiety and a second binding moiety (such as a second antigen-binding moiety). In some embodiments, the multi-specific anti-E7MC molecule comprises an anti-E7MC antibody moiety and a second antigen-binding moiety.

[0272] Multi-specific molecules are molecules that have binding specificities for at least two different antigens or epitopes (e.g., bispecific antibodies have binding specificities for two antigens or epitopes). Multi-specific molecules with more than two valencies and/or specificities are also contemplated. For example, trispecific antibodies can be prepared. Tutt et al. J. Immunol. 147: 60 (1991). It is to be appreciated that one of skill in the art could select appropriate features of individual multi-specific molecules described herein to combine with one another to form a multi-specific anti-E7MC molecule of the invention.

[0273] Thus, for example, in some embodiments, there is provided a multi-specific (e.g., bispecific) anti-E7MC molecule comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, and b) a second binding moiety (such as an antigen-binding moiety). In some embodiments, the second binding moiety specifically binds to a complex comprising a different HPV16-E7 peptide bound to the MHC class I protein. In some embodiments, the second scFv specifically binds to a complex comprising the HPV16-E7 peptide bound to a different MHC class I protein. In some embodiments, the second binding moiety specifically binds to a different epitope on the complex comprising the HPV16-E7 peptide and the MHC class I protein. In some embodiments, the second binding moiety specifically binds to a different antigen. In some embodiments, the second binding moiety specifically binds to an antigen on the surface of a cell, such as a cytotoxic cell. In some embodiments, the second binding moiety specifically binds to an antigen on the surface of a lymphocyte, such as a T cell, an NK cell, a neutrophil, a monocyte, a macrophage, or a dendritic cell. In some embodiments, the second binding moiety specifically binds to an effector T cell, such as a cytotoxic T cell (also known as cytotoxic T lymphocyte (CTL) or T killer cell).

[0274] In some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, and b) a second antigen-binding moiety that binds specifically to CD3. In some embodiments, the second antigen-binding moiety
specifically binds to CD3s. In some embodiments, the second antigen-binding moiety specifically binds to an agonistic epitope of CD3s. The term "agonistic epitope", as used herein, means (a) an epitope that, upon binding of the multi-specific molecule, optionally upon binding of several multi-specific molecules on the same cell, allows said multi-specific molecules to activate TCR signaling and induce T cell activation, and/or (b) an epitope that is solely composed of amino acid residues of the epsilon chain of CD3 and is accessible for binding by the multi-specific molecule, when presented in its natural context on T cells (i.e. surrounded by the TCR, the CD3y chain, etc.), and/or (c) an epitope that, upon binding of the multi-specific molecule, does not lead to stabilization of the spatial position of CD3s relative to CD3y.

[0275] In some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, and b) a second antigen-binding moiety that binds specifically to an antigen on the surface of an effector cell, including for example CD3y, CD35, CD3s, CD3C, CD28, CD16a, CD56, CD68, and GDS2D.

[0276] In some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, and b) a second antigen-binding moiety that binds specifically to a component of the complement system, such as Clq. Clq is a subunit of the C1 enzyme complex that activates the serum complement system.

[0277] In some embodiments, the second antigen-binding moiety specifically binds to an Fc receptor. In some embodiments, the second antigen-binding moiety specifically binds to an Fey receptor (FeyR). The FeyR may be an FeyRIII present on the surface of natural killer (NK) cells or one of FeyRI, FeyRIIA, FeyRIIB, FeyRIIB2, and FeyRIIB3 present on the surface of macrophages, monocytes, neutrophils and/or dendritic cells. In some embodiments, the second antigen-binding moiety is an Fc region or functional fragment thereof. A "functional fragment" as used in this context refers to a fragment of an antibody Fc region that is still capable of binding to an FcR, in particular to an FeyR, with sufficient specificity and affinity to allow an FeyR bearing effector cell, in particular a macrophage, a monocyte, a neutrophil and/or a dendritic cell, to kill the target cell by cytotoxic lysis or phagocytosis. A functional Fc fragment is capable of competitively inhibiting the binding of the original, full-length Fc portion to an FcR such as the activating FeyRI. In some embodiments, a functional Fc fragment retains at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% of its affinity to
an activating FcyR. In some embodiments, the Fc region or functional fragment thereof is an enhanced Fc region or functional fragment thereof. The term "enhanced Fc region", as used herein, refers to an Fc region that is modified to enhance Fc receptor-mediated effector-functions, in particular antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and antibody-mediated phagocytosis. This can be achieved as known in the art, for example by altering the Fc region in a way that leads to an increased affinity for an activating receptor (e.g. FcyRIIIA (CD16A) expressed on natural killer (NK) cells) and/or a decreased binding to an inhibitory receptor (e.g. FcyRIIBl/B2 (CD32B)). In yet other embodiments, the second antigen-binding moiety is an antibody or antigen-binding fragment thereof that specifically binds to an FcR, in particular to an FcyR, with sufficient specificity and affinity to allow an FcyR bearing effector cell, in particular a macrophage, a monocyte, a neutrophil and/or a dendritic cell, to kill the target cell by cytotoxic lysis or phagocytosis.

[0278] In some embodiments, the multi-specific anti-E7MC molecule allows killing of E7MC-presenting target cells and/or can effectively redirect CTLs to lyse E7MC-presenting target cells. In some embodiments, the multi-specific (e.g., bispecific) anti-E7MC molecule of the present invention shows an in vitro EC_{50} ranging from 10 to 500 ng/ml, and is able to induce redirected lysis of about 50% of the target cells through CTLs at a ratio of CTLs to target cells of from about 1:1 to about 50:1 (such as from about 1:1 to about 15:1, or from about 2:1 to about 10:1).

[0279] In some embodiments, the multi-specific (e.g., bispecific) anti-E7MC molecule is capable of cross-linking a stimulated or unstimulated CTL and the target cell in such a way that the target cell is lysed. This offers the advantage that no generation of target-specific T cell clones or common antigen presentation by dendritic cells is required for the multi-specific anti-E7MC molecule to exert its desired activity. In some embodiments, the multi-specific anti-E7MC molecule of the present invention is capable of redirecting CTLs to lyse the target cells in the absence of other activating signals. In some embodiments, the second antigen-binding moiety of the multi-specific anti-E7MC molecule specifically binds to CD3 (e.g., specifically binds to CD3s), and signaling through CD28 and/or IL-2 is not required for redirecting CTLs to lyse the target cells.

[0280] Methods for measuring the preference of the multi-specific anti-E7MC molecule to simultaneously bind to two antigens (e.g., antigens on two different cells) are within the normal capabilities of a person skilled in the art. For example, when the second binding
moiety specifically binds to CD3, the multi-specific anti-E7MC molecule may be contacted with a mixture of CD3+/HPV16-E7− cells and CD37HPV16-E7+ cells. The number of multi-specific anti-E7MC molecule-positive single cells and the number of cells cross-linked by multi-specific anti-E7MC molecules may then be assessed by microscopy or fluorescence-activated cell sorting (FACS) as known in the art.

For example, in some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, and b) a second antigen-binding moiety. In some embodiments, the HPV16-E7 peptide is HPV16-E7 11-19 (SEQ ID NO: 4). In some embodiments, the MHC class I protein is HLA-A02. In some embodiments, the MHC class I protein is HLA-A*02:01. In some embodiments, the second antigen-binding moiety specifically binds to a complex comprising a different HPV16-E7 peptide bound to the MHC class I protein. In some embodiments, the second antigen-binding moiety specifically binds to a complex comprising the HPV16-E7 peptide bound to a different MHC class I protein. In some embodiments, the second antigen-binding moiety specifically binds to an antigen on the surface of a cell, such as an E7MC-presenting cell. In some embodiments, the second antigen-binding moiety specifically binds to an antigen on the surface of a cell that does not express HPV16-E7. In some embodiments, the second antigen-binding moiety specifically binds to an antigen on the surface of a cytotoxic cell. In some embodiments, the second antigen-binding moiety specifically binds to an antigen on the surface of a lymphocyte, such as a T cell, an NK cell, a neutrophil, a monocyte, a macrophage, or a dendritic cell. In some embodiments, the second antigen-binding moiety specifically binds to an antigen on the surface of an effector T cell, such as a cytotoxic T cell. In some embodiments, the second antigen-binding moiety specifically binds to an antigen on the surface of an effector cell, including for example CD3y, CD35, CD3s, CD3ζ, CD28, CD16a, CD56, CD68, and GDS2D. In some embodiments, the anti-E7MC antibody moiety is human, humanized, or semi-synthetic. In some embodiments, the second antigen-binding moiety is an antibody moiety. In some embodiments, the second antigen-binding moiety is a human, humanized, or semi-synthetic antibody moiety. In some embodiments, the multi-specific anti-E7MC molecule further comprises at least one (such as at least about any of 2, 3,
4, 5, or more) additional antigen-binding moieties. In some embodiments, the anti-E7MC antibody moiety cross-reacts with at least one (such as at least any of 2, 3, 4, 5, or 6) complex comprising the MHC class I protein and a variant of the HPV16-E7 peptide having one amino acid substitution (such as a conservative amino acid substitution). In some embodiments, the anti-E7MC antibody moiety cross-reacts with at least one (such as at least any of 2, 3, 4, or 5) complex comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein.

[0282] In some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 11-19 peptide (SEQ ID NO: 4) and HLA-A*02:01, and b) a second antigen-binding moiety.

[0283] In some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and b) a second antigen-binding moiety.

[0284] In some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid
sequence of SEQ ID NO: 189 or 190, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, and b) a second antigen-binding moiety.

[0285] In some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and b) a second antigen-binding moiety.

[0286] In some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof.
comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences; and b) a second antigen-binding moiety.

[0287] In some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; and b) a second antigen-binding moiety.

[0288] In some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity; and b) a second scFv.

[0289] In some embodiments, there is provided a multi-specific anti-E7MC molecule comprising a) an anti-E7MC antibody moiety comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243; and b) a second antigen-binding moiety.

[0290] In some embodiments, the multi-specific anti-E7MC molecule is, for example, a diabody (Db), a single-chain diabody (scDb), a tandem scDb (Tandab), a linear dimeric scDb (LD-scDb), a circular dimeric scDb (CD-scDb), a di-diabody, a tandem scFv, a tandem di-scFv (e.g., a bispecific T cell engager), a tandem tri-scFv, a tri(a)body, a bispecific Fab2, a di-miniantibody, a tetrabody, an scFv-Fc-scFv fusion, a dual-affinity retargeting (DART) antibody, a dual variable domain (DVD) antibody, an IgG-scFab, an scFab-ds-scFv, an Fv2-Fe, an IgG-scFv fusion, a dock and lock (DNL) antibody, a knob-into-hole (KiH) antibody.
(bispecific IgG prepared by the KiH technology), a DuoBody (bispecific IgG prepared by the Duobody technology), a heteromultimeric antibody, or a heteroconjugate antibody. In some embodiments, the multi-specific anti-E7MC molecule is a tandem scFv (e.g., a tandem di-scFv, such as a bispecific T cell engager).

Tandem scFv

[0291] The multi-specific anti-E7MC molecule in some embodiments is a tandem scFv comprising a first scFv comprising an anti-E7MC antibody moiety and a second scFv (also referred to herein as a "tandem scFv multi-specific anti-E7MC antibody"). In some embodiments, the tandem scFv multi-specific anti-E7MC antibody further comprises at least one (such as at least about any of 2, 3, 4, 5, or more) additional scFv.

[0292] In some embodiments, there is provided a tandem scFv multi-specific (e.g., bispecific) anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, and b) a second scFv. In some embodiments, the HPV16-E7 peptide is HPV16-E7 11-19 (SEQ ID NO: 4). In some embodiments, the MHC class I protein is HLA-A02. In some embodiments, the MHC class I protein is HLA-A*02:01. In some embodiments, the second scFv specifically binds to a complex comprising a different HPV16-E7 peptide bound to the MHC class I protein. In some embodiments, the second scFv specifically binds to a complex comprising the HPV16-E7 peptide bound to a different MHC class I protein. In some embodiments, the second scFv specifically binds to a different epitope on the complex comprising the HPV16-E7 peptide and the MHC class I protein. In some embodiments, the second scFv specifically binds to another antigen. In some embodiments, the second scFv specifically binds to an antigen on the surface of a cell, such as an E7MC-presenting cell. In some embodiments, the second scFv specifically binds to an antigen on the surface of a cell that does not express HPV16-E7. In some embodiments, the second scFv specifically binds to an antigen on the surface of a cytotoxic cell. In some embodiments, the second scFv specifically binds to an antigen on the surface of a lymphocyte, such as a T cell, an NK cell, a neutrophil, a monocyte, a macrophage, or a dendritic cell. In some embodiments, the second scFv specifically binds to an antigen on the surface of an effector T cell, such as a cytotoxic T cell. In some embodiments, the second scFv specifically binds to an antigen on the surface of an effector cell, including for example CD3y, CD35, CD3s, Co3ζ, CD28, CD16a, CD56, CD68, and GDS2D. In some embodiments, the first scFv is human, humanized, or semi-synthetic. In
some embodiments, the second scFv is human, humanized, or semi-synthetic. In some
embodiments, both the first scFv and the second scFv are human, humanized, or semi-
synthetic. In some embodiments, the tandem scFv multi-specific anti-E7MC antibody further
comprises at least one (such as at least about any of 2, 3, 4, 5, or more) additional scFv. In
some embodiments, the anti-E7MC antibody moiety cross-reacts with at least one (such as at
least any of 2, 3, 4, 5, or 6) complex comprising the MHC class I protein and a variant of the
HPV16-E7 peptide having one amino acid substitution (such as a conservative amino acid
substitution). In some embodiments, the anti-E7MC antibody moiety cross-reacts with at
least one (such as at least any of 2, 3, 4, or 5) complex comprising the HPV16-E7 peptide and
a different subtype of the MHC class I protein.

[0293] In some embodiments, there is provided a tandem scFv multi-specific (e.g.,
bispecific) anti-E7MC antibody comprising a) a first scFv that specifically binds to a
complex comprising an HPV16-E7 11-19 peptide (SEQ ID NO: 4) and HLA-A*02:01, and b)
a second scFv.

[0294] In some embodiments, there is provided a tandem scFv multi-specific (e.g.,
bispecific) anti-E7MC antibody comprising a) a first scFv that specifically binds to a
complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy
chain variable domain sequence comprising an HC-CDR1 comprising the amino acid
sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example
about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid
sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for
example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the
amino acid sequence of any one of SEQ ID NOs: 186-188, or a variant thereof comprising up
to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain
variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID
NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2,
or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ
ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or
3) amino acid substitutions, and b) a second scFv.

[0295] In some embodiments, there is provided a tandem scFv multi-specific (e.g.,
bispecific) anti-E7MC antibody comprising a) a first scFv that specifically binds to a
complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy
chain variable domain sequence comprising an HC-CDR1 comprising the amino acid
sequence of SEQ ID NO: 183, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, and b) a second scFv.

[0296] In some embodiments, there is provided a tandem scFv multi-specific (e.g., bispecific) anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 5 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and b) a second scFv.

[0297] In some embodiments, there is provided a tandem scFv multi-specific (e.g., bispecific) anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-
CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences; and b) a second scFv.

[0298] In some embodiments, there is provided a tandem scFv multi-specific (e.g., bispecific) anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; and b) a second scFv.

[0299] In some embodiments, there is provided a tandem scFv multi-specific (e.g., bispecific) anti-E7MC antibody comprising a) a first scFv comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity; and b) a second scFv.

[0300] In some embodiments, there is provided a tandem scFv multi-specific (e.g., bispecific) anti-E7MC antibody comprising a) a first scFv comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243; and b) a second scFv.

[0301] In some embodiments, there is provided a tandem scFv multi-specific (e.g., bispecific) anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, and b) a second scFv, wherein the tandem scFv multi-specific anti-E7MC antibody is a tandem di-scFv or a tandem tri-scFv. In some embodiments, the tandem scFv multi-specific anti-E7MC antibody
is a tandem di-scFv. In some embodiments, the tandem scFv multi-specific anti-E7MC antibody is a bispecific T-cell engager.

[0302] For example, in some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, and b) a second scFv that specifically binds to an antigen on the surface of a T cell. In some embodiments, the HPV16-E7 peptide is HPV16-E7 11-19 (SEQ ID NO: 4). In some embodiments, the MHC class I protein is HLA-A02. In some embodiments, the MHC class I protein is HLA-A*02:01. In some embodiments, the second scFv specifically binds to an antigen on the surface of an effector T cell, such as a cytotoxic T cell. In some embodiments, the second scFv specifically binds to an antigen selected, for example, from the group consisting of CD3y, CD35, CD3s, CD3C, CD28, OX40, GITR, CD137, CD27, CD40L, and HVEM. In some embodiments, the second scFv specifically binds to an agonistic epitope on an antigen on the surface of a T cell, wherein the binding of the second scFv to the antigen enhances T cell activation. In some embodiments, the first scFv is human, humanized, or semi-synthetic. In some embodiments, the second scFv is human, humanized, or semi-synthetic. In some embodiments, both the first scFv and the second scFv are human, humanized, or semi-synthetic.

[0303] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 11-19 peptide (SEQ ID NO: 4) and HLA-A*02:01, and b) a second scFv that specifically binds to an antigen on the surface of a T cell.

[0304] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and
an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and b) a second scFv that specifically binds to an antigen on the surface of a T cell.

[0305] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, and b) a second scFv that specifically binds to an antigen on the surface of a T cell.

[0306] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and b) a second scFv that specifically binds to an antigen on the surface of a T cell.

[0307] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain
sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences, and b) a second scFv that specifically binds to an antigen on the surface of a T cell.

In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; and b) a second scFv that specifically binds to an antigen on the surface of a T cell.

In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and b) a second scFv that specifically binds to an antigen on the surface of a T cell.
[0310] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, and b) a second scFv that specifically binds to an antigen on the surface of a T cell.

[0311] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, and b) a second scFv that specifically binds to CD3s. In some embodiments, the HPV16-E7 peptide is HPV16-E7 11-19 (SEQ ID NO: 4). In some embodiments, the MHC class I protein is HLA-A*02. In some embodiments, the MHC class I protein is HLA-A*02:01. In some embodiments, the first scFv is fused to the second scFv through linkage with a peptide linker. In some embodiments, the peptide linker is between about 5 to about 20 (such as about any of 5, 10, 15, or 20, including any ranges between these values) amino acids in length. In some embodiments, the peptide linker comprises (and in some embodiments consists of) the amino acid sequence GGGGS. In some embodiments, the first scFv is human, humanized, or semi-synthetic. In some embodiments, the second scFv is human, humanized, or semi-synthetic. In some embodiments, both the first scFv and the second scFv are human, humanized, or semi-synthetic.

[0312] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 11-19 peptide (SEQ ID NO: 4) and HLA-A*02:01, and b) a second scFv that specifically binds to CD3s. In some embodiments, the first scFv is fused to the second scFv through linkage with a peptide linker. In some embodiments, the peptide linker is between about 5 to about 20 (such as about any of 5, 10, 15, or 20, including any ranges between these values) amino acids in length. In some embodiments, the peptide linker comprises (and in some embodiments consists of) the amino acid sequence GGGGS. In some embodiments, the first scFv is human, humanized, or semi-synthetic. In some embodiments, the second scFv is human, humanized, or semi-synthetic. In some embodiments, both the first scFv and the second scFv are human, humanized, or semi-synthetic.

[0313] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183,
or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and b) a second scFv that specifically binds to CD3s. In some embodiments, the first scFv is fused to the second scFv through linkage with a peptide linker. In some embodiments, the peptide linker is between about 5 to about 20 (such as about any of 5, 10, 15, or 20, including any ranges between these values) amino acids in length. In some embodiments, the peptide linker comprises (and in some embodiments consists of) the amino acid sequence GGGGS. In some embodiments, the first scFv is human, humanized, or semi-synthetic. In some embodiments, the second scFv is human, humanized, or semi-synthetic. In some embodiments, both the first scFv and the second scFv are human, humanized, or semi-synthetic.

[0314] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, and b) a second scFv that specifically binds to CD3s. In some embodiments, the first scFv is fused to the second scFv through linkage with a peptide linker. In some embodiments, the peptide linker is between about 5 to about 20 (such as about any of 5, 10, 15, or 20, including any ranges between these values) amino acids in length. In some embodiments, the peptide linker comprises (and in some embodiments consists of) the amino acid sequence GGGGS. In some embodiments, the first scFv is human, humanized, or semi-
synthetic. In some embodiments, the second scFv is human, humanized, or semi-synthetic. In some embodiments, both the first scFv and the second scFv are human, humanized, or semi-synthetic.

[0315] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and b) a second scFv that specifically binds to CD3s. In some embodiments, the first scFv is fused to the second scFv through linkage with a peptide linker. In some embodiments, the peptide linker is between about 5 to about 20 (such as about any of 5, 10, 15, or 20, including any ranges between these values) amino acids in length. In some embodiments, the peptide linker comprises (and in some embodiments consists of) the amino acid sequence GGGGS. In some embodiments, the first scFv is human, humanized, or semi-synthetic. In some embodiments, the second scFv is human, humanized, or semi-synthetic. In some embodiments, both the first scFv and the second scFv are human, humanized, or semi-synthetic.

[0316] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID
NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences, and b) a second scFv that specifically binds to CD3s. In some embodiments, the first scFv is fused to the second scFv through linkage with a peptide linker. In some embodiments, the peptide linker is between about 5 to about 20 (such as about any of 5, 10, 15, or 20, including any ranges between these values) amino acids in length. In some embodiments, the peptide linker comprises (and in some embodiments consists of) the amino acid sequence GGGGS. In some embodiments, the first scFv is human, humanized, or semi-synthetic. In some embodiments, the second scFv is human, humanized, or semi-synthetic. In some embodiments, both the first scFv and the second scFv are human, humanized, or semi-synthetic.

[0317] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; and b) a second scFv that specifically binds to CD3s. In some embodiments, the first scFv is fused to the second scFv through linkage with a peptide linker. In some embodiments, the peptide linker is between about 5 to about 20 (such as about any of 5, 10, 15, or 20, including any ranges between these values) amino acids in length. In some embodiments, the peptide linker comprises (and in some embodiments consists of) the amino acid sequence GGGGS. In some embodiments, the first scFv is human, humanized, or semi-synthetic.
synthetic. In some embodiments, the second scFv is human, humanized, or semi-synthetic. In some embodiments, both the first scFv and the second scFv are human, humanized, or semi-synthetic.

[0318] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and b) a second scFv that specifically binds to CD3s. In some embodiments, the first scFv is fused to the second scFv through linkage with a peptide linker. In some embodiments, the peptide linker is between about 5 to about 20 (such as about any of 5, 10, 15, or 20, including any ranges between these values) amino acids in length. In some embodiments, the peptide linker comprises (and in some embodiments consists of) the amino acid sequence GGGGS. In some embodiments, the first scFv is human, humanized, or semi-synthetic. In some embodiments, the second scFv is human, humanized, or semi-synthetic. In some embodiments, both the first scFv and the second scFv are human, humanized, or semi-synthetic.

[0319] In some embodiments, there is provided a tandem di-scFv bispecific anti-E7MC antibody comprising a) a first scFv comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, and b) a second scFv that specifically binds to CD3s. In some embodiments, the first scFv is fused to the second scFv through linkage with a peptide linker. In some embodiments, the peptide linker is between about 5 to about 20 (such as about any of 5, 10, 15, or 20, including any ranges between these values) amino acids in length. In some embodiments, the peptide linker comprises (and in some embodiments consists of) the amino acid sequence GGGGS. In some embodiments, the first scFv is human, humanized, or semi-synthetic. In some embodiments, the second scFv is human, humanized, or semi-synthetic. In some embodiments, both the first scFv and the second scFv are human, humanized, or semi-synthetic.

[0320] In some embodiments, the tandem di-scFv bispecific anti-E7MC antibody binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein with a K_d between
about 0.1 pM to about 500 nM (such as about any of 0.1 pM, 1.0 pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 10 nM, 50 nM, 100 nM, or 500 nM, including any ranges between these values). In some embodiments, the tandem di-scFv bispecific anti-E7MC antibody binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein with a K_d between about 1 nM to about 500 nM (such as about any of 1, 10, 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, or 500 nM, including any ranges between these values).

Chimeric Antigen Receptor (CAR) and CAR effector cells

[0321] The anti-E7MC construct in some embodiments is a chimeric antigen receptor (CAR) comprising an anti-E7MC antibody moiety (also referred to herein as an "anti-E7MC CAR"). Also provided is a CAR effector cell (e.g., T cell) comprising a CAR comprising an anti-E7MC antibody moiety (also referred to herein as an "anti-E7MC CAR effector cell", e.g., "anti-E7MC CAR T cell").

[0322] The anti-E7MC CAR comprises a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein and b) an intracellular signaling domain. A transmembrane domain may be present between the extracellular domain and the intracellular domain.

[0323] Between the extracellular domain and the transmembrane domain of the anti-E7MC CAR, or between the intracellular domain and the transmembrane domain of the anti-E7MC CAR, there may be a spacer domain. The spacer domain can be any oligo- or polypeptide that functions to link the transmembrane domain to the extracellular domain or the intracellular domain in the polypeptide chain. A spacer domain may comprise up to about 300 amino acids, including for example about 10 to about 100, or about 25 to about 50 amino acids.

[0324] The transmembrane domain may be derived either from a natural or from a synthetic source. Where the source is natural, the domain may be derived from any membrane-bound or transmembrane protein. Transmembrane regions of particular use in this invention may be derived from (i.e. comprise at least the transmembrane region(s) of) the α, β, δ, γ, or ζ chain of the T-cell receptor, CD28, CD3s, CO3ζ, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, or CD154. In some embodiments, the transmembrane domain may be synthetic, in which case it may comprise predominantly hydrophobic residues such as leucine and valine. In some embodiments, a triplet of phenylalanine, tryptophan and valine may be found at each end of a synthetic
transmembrane domain. In some embodiments, a short oligo- or polypeptide linker, having a length of, for example, between about 2 and about 10 (such as about any of 2, 3, 4, 5, 6, 7, 8, 9, or 10) amino acids in length may form the linkage between the transmembrane domain and the intracellular signaling domain of the anti-E7MC CAR. In some embodiments, the linker is a glycine-serine doublet.

[0325] In some embodiments, the transmembrane domain that naturally is associated with one of the sequences in the intracellular domain of the anti-E7MC CAR is used (e.g., if an anti-E7MC CAR intracellular domain comprises a CD28 co-stimulatory sequence, the transmembrane domain of the anti-E7MC CAR is derived from the CD28 transmembrane domain). In some embodiments, the transmembrane domain can be selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins to minimize interactions with other members of the receptor complex.

[0326] The intracellular signaling domain of the anti-E7MC CAR is responsible for activation of at least one of the normal effector functions of the immune cell in which the anti-E7MC CAR has been placed in. Effector function of a T cell, for example, may be cytolytic activity or helper activity including the secretion of cytokines. Thus the term "intracellular signaling domain" refers to the portion of a protein which transduces the effector function signal and directs the cell to perform a specialized function. While usually the entire intracellular signaling domain can be employed, in many cases it is not necessary to use the entire chain. To the extent that a truncated portion of the intracellular signaling domain is used, such truncated portion may be used in place of the intact chain as long as it transduces the effector function signal. The term "intracellular signaling sequence" is thus meant to include any truncated portion of the intracellular signaling domain sufficient to transduce the effector function signal.

[0327] Examples of intracellular signaling domains for use in the anti-E7MC CAR of the invention include the cytoplasmic sequences of the T cell receptor (TCR) and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivative or variant of these sequences and any synthetic sequence that has the same functional capability.

[0328] It is known that signals generated through the TCR alone are insufficient for full activation of the T cell and that a secondary co-stimulatory signal is also required. Thus, T cell activation can be said to be mediated by two distinct classes of intracellular signaling
sequence: those that initiate antigen-dependent primary activation through the TCR (primary signaling sequences) and those that act in an antigen-independent manner to provide a secondary or co-stimulatory signal (co-stimulatory signaling sequences).

[0329] Primary signaling sequences regulate primary activation of the TCR complex either in a stimulatory way, or in an inhibitory way. Primary signaling sequences that act in a stimulatory manner may contain signaling motifs which are known as immunoreceptor tyrosine-based activation motifs or ITAMs. The anti-E7MC CAR constructs in some embodiments comprise one or more ITAMs.

[0330] Examples of ITAM containing primary signaling sequences that are of particular use in the invention include those derived from TCRζ, FeRy, FeRp, CD3γ, CD3δ, CD5, CD22, CD79a, CD79b, and CD66d.

[0331] In some embodiments, the anti-E7MC CAR comprises a primary signaling sequence derived from CD3ζ. For example, the intracellular signaling domain of the CAR can comprise the CD3ζ intracellular signaling sequence by itself or combined with any other desired intracellular signaling sequence(s) useful in the context of the anti-E7MC CAR of the invention. For example, the intracellular domain of the anti-E7MC CAR can comprise a CD3ζ intracellular signaling sequence and a costimulatory signaling sequence. The costimulatory signaling sequence can be a portion of the intracellular domain of a costimulatory molecule including, for example, CD27, CD28, 4-1BB (CD137), OX40, CD30, CD40, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, B7-H3, a ligand that specifically binds with CD83, and the like.

[0332] In some embodiments, the intracellular signaling domain of the anti-E7MC CAR comprises the intracellular signaling sequence of CD3ζ and the intracellular signaling sequence of CD28. In some embodiments, the intracellular signaling domain of the anti-E7MC CAR comprises the intracellular signaling sequence of CD3ζ and the intracellular signaling sequence of 4-1BB. In some embodiments, the intracellular signaling domain of the anti-E7MC CAR comprises the intracellular signaling sequence of CD3ζ and the intracellular signaling sequences of CD28 and 4-1BB.

[0333] Thus, for example, in some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, b) a transmembrane domain, and c) an intracellular signaling domain. In some embodiments, the HPV16-E7 peptide is HPV16-E7 11-19 (SEQ ID NO: 4). In some
embodiments, the MHC class I protein is HLA-A02. In some embodiments, the MHC class I protein is HLA-A*02:01. In some embodiments, the intracellular signaling domain is capable of activating an immune cell. In some embodiments, the intracellular signaling domain comprises a primary signaling sequence and a co-stimulatory signaling sequence. In some embodiments, the primary signaling sequence comprises a CD3ζ intracellular signaling sequence. In some embodiments, the co-stimulatory signaling sequence comprises a CD28 intracellular signaling sequence. In some embodiments, the intracellular domain comprises a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence. In some embodiments, the anti-E7MC antibody moiety cross-reacts with at least one (such as at least any of 2, 3, 4, 5, or 6) complex comprising the MHC class I protein and a variant of the HPV16-E7 peptide having one amino acid substitution (such as a conservative amino acid substitution). In some embodiments, the anti-E7MC antibody moiety cross-reacts with at least one (such as at least any of 2, 3, 4, or 5) complex comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein.

[0334] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 11-19 peptide (SEQ ID NO: 4) and HLA-A*02:01, b) a transmembrane domain, and c) an intracellular signaling domain. In some embodiments, the intracellular signaling domain is capable of activating an immune cell. In some embodiments, the intracellular signaling domain comprises a primary signaling sequence and a co-stimulatory signaling sequence. In some embodiments, the primary signaling sequence comprises a CD3ζ intracellular signaling sequence. In some embodiments, the co-stimulatory signaling sequence comprises a CD28 intracellular signaling sequence. In some embodiments, the intracellular domain comprises a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0335] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the
amino acid sequence of any one of SEQ ID NOs: 186-188, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, b) a transmembrane domain, and c) an intracellular signaling domain. In some embodiments, the intracellular signaling domain is capable of activating an immune cell. In some embodiments, the intracellular signaling domain comprises a primary signaling sequence and a co-stimulatory signaling sequence. In some embodiments, the primary signaling sequence comprises a CD3ζ intracellular signaling sequence. In some embodiments, the co-stimulatory signaling sequence comprises a CD28 intracellular signaling sequence. In some embodiments, the intracellular domain comprises a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0336] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191; b) an intracellular signaling domain. In some embodiments, the intracellular signaling domain is capable of activating an immune cell. In some embodiments, the intracellular signaling domain comprises a primary signaling sequence and a co-stimulatory signaling sequence. In some embodiments, the primary signaling sequence comprises a CD3ζ intracellular signaling sequence. In some embodiments, the co-stimulatory signaling sequence comprises a CD28 intracellular signaling sequence. In some embodiments, the intracellular domain comprises a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0337] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy
chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-19, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; b) a transmembrane domain, and c) an intracellular signaling domain. In some embodiments, the intracellular signaling domain is capable of activating an immune cell. In some embodiments, the intracellular signaling domain comprises a primary signaling sequence and a co-stimulatory signaling sequence. In some embodiments, the primary signaling sequence comprises a CD3ζ intracellular signaling sequence. In some embodiments, the co-stimulatory signaling sequence comprises a CD28 intracellular signaling sequence. In some embodiments, the intracellular domain comprises a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0338] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-19, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-
CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences; b) a transmembrane domain, and c) an intracellular signaling domain. In some embodiments, the intracellular signaling domain is capable of activating an immune cell. In some embodiments, the intracellular signaling domain comprises a primary signaling sequence and a co-stimulatory signaling sequence. In some embodiments, the primary signaling sequence comprises a CD3ζ intracellular signaling sequence. In some embodiments, the co-stimulatory signaling sequence comprises a CD28 intracellular signaling sequence. In some embodiments, the intracellular domain comprises a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0339] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-1 19, 244, and 245; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; b) an intracellular signaling domain. In some embodiments, the intracellular signaling domain is capable of activating an immune cell. In some embodiments, the intracellular signaling domain comprises a primary signaling sequence and a co-stimulatory signaling sequence. In some embodiments, the primary signaling sequence comprises a CD3ζ intracellular signaling sequence. In some embodiments, the co-stimulatory signaling sequence comprises a CD28 intracellular signaling sequence.

[0340] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any
of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising
the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof
having at least about 95% (including for example at least about any of 96%, 97%, 98%, or
99%) sequence identity; b) a transmembrane domain, and c) an intracellular signaling
domain. In some embodiments, the intracellular signaling domain is capable of activating an
immune cell. In some embodiments, the intracellular signaling domain comprises a primary
signaling sequence and a co-stimulatory signaling sequence. In some embodiments, the
primary signaling sequence comprises a CD3ζ intracellular signaling sequence. In some
embodiments, the co-stimulatory signaling sequence comprises a CD28 intracellular
signaling sequence. In some embodiments, the intracellular domain comprises a CD3ζ
intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0341] In some embodiments, there is provided an anti-E7MC CAR comprising a) an
extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a
complex comprising an HPV16-E7 peptide and an MHC class I protein comprising a heavy
chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35
and 233-237 and a light chain variable domain comprising the amino acid sequence of any
one of SEQ ID NOs: 36-56 and 238-243; b) an intracellular signaling domain. In some
embodiments, the intracellular signaling domain is capable of activating an immune cell. In
some embodiments, the intracellular signaling domain comprises a primary signaling
sequence and a co-stimulatory signaling sequence. In some embodiments, the primary
signaling sequence comprises a CD3ζ intracellular signaling sequence. In some
embodiments, the co-stimulatory signaling sequence comprises a CD28 intracellular
signaling sequence. In some embodiments, the intracellular domain comprises a CD3ζ
intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0342] In some embodiments, there is provided an anti-E7MC CAR comprising a) an
extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a
complex comprising an HPV16-E7 peptide and an MHC class I protein, b) a transmembrane
domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling
sequence and a CD28 intracellular signaling sequence. In some embodiments, the HPV16-E7
peptide is HPV16-E7 11-19 (SEQ ID NO: 4). In some embodiments, the MHC class I protein
is HLA-A02. In some embodiments, the MHC class I protein is HLA-A*02:01.

[0343] In some embodiments, there is provided an anti-E7MC CAR comprising a) an
extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a
complex comprising an HPV16-E7 11-19 peptide (SEQ ID NO: 4) and HLA-A*02:01, b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ
intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0344] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0345] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0346] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a
complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-19, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0347] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-19, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences; b) a transmembrane domain, and c) an
intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0348] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-199, 244, and 245; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0349] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity; b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0350] In some embodiments, there is provided an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243; b) a transmembrane domain, and c) an intracellular
signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

[0351] Also provided herein are effector cells (such as lymphocytes, e.g., T cells) expressing an anti-E7MC CAR.

[0352] Also provided is a method of producing an effector cell expressing an anti-E7MC CAR, the method comprising introducing a vector comprising a nucleic acid encoding the anti-E7MC CAR into the effector cell. In some embodiments, introducing the vector into the effector cell comprises transducing the effector cell with the vector. In some embodiments, introducing the vector into the effector cell comprises transfecting the effector cell with the vector. Transduction or transfection of the vector into the effector cell can be carried about using any method known in the art.

Immunocojugates

[0353] The anti-E7MC constructs in some embodiments comprise an immunoconjugate comprising an anti-E7MC antibody moiety attached to an effector molecule (also referred to herein as an "anti-E7MC immunoconjugate"). In some embodiments the effector molecule is a therapeutic agent, such as a cancer therapeutic agent, which is either cytotoxic, cytostatic or otherwise provides some therapeutic benefit. In some embodiments, the effector molecule is a label, which can generate a detectable signal, either directly or indirectly.

[0354] In some embodiments, there is provided an anti-E7MC immunoconjugate comprising an anti-E7MC antibody moiety and a therapeutic agent (also referred to herein as an "antibody-drug conjugate", or "ADC"). In some embodiments, the therapeutic agent is a toxin that is either cytotoxic, cytostatic or otherwise prevents or reduces the ability of the target cells to divide. The use of ADCs for the local delivery of cytotoxic or cytostatic agents, i.e., drugs to kill or inhibit tumor cells in the treatment of cancer (Syrigos and Epenetos, *Anticancer Research* 19:605-614 (1999); Niculescu-Duvaz and Springer, *Adv. Org. Del. Rev.* 26:151 -172 (1997); U.S. Patent No. 4,975,278) allows targeted delivery of the drug moiety to target cells, and intracellular accumulation therein, where systemic administration of these unconjugated therapeutic agents may result in unacceptable levels of toxicity to normal cells as well as the target cells sought to be eliminated (Baldwin et al., *Lancet* (Mar. 15, 1986):603-605 (1986); Thorpe, (1985) "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review," in Monoclonal Antibodies '84: Biological And Clinical Applications, A. Pinchera et al. (eds.), pp. 475- 506). Maximal efficacy with minimal toxicity is sought
thereby. Importantly, since most normal cells do not present the E7MC on their surface, they cannot bind the anti-E7MC immunoconjugate, and are protected from the killing effect of the toxin or other therapeutic agents.

[0355] Therapeutic agents used in anti-E7MC immunoconjugates include, for example, daunomycin, doxorubicin, methotrexate, and vindesine (Rowland et al., Cancer Immunol. Immunother. 21:183-187 (1986)). Toxins used in anti-E7MC immunoconjugates include bacterial toxins such as diphtheria toxin, plant toxins such as ricin, small molecule toxins such as geldanamycin (Mandler et al., J.Nat. Cancer Inst. 92(19):1573-1581 (2000); Mandler et al., Bioorganic & Med. Chem. Letters 10:1025-1028 (2000); Mandler et al., Bioconjugate Chem. 13:786-791 (2002)), maytansinoids (EP 1391213; Liu et al., Proc. Natl. Acad. Sci. USA 93:8618-8623 (1996)), and calicheamicin (Lode et al., Cancer Res. 58:2928 (1998); Hinman et al., Cancer Res. 53:3336-3342 (1993)). The toxins may exert their cytotoxic and cytostatic effects by mechanisms including tubulin binding, DNA binding, or topoisomerase inhibition. Some cytotoxic drugs tend to be inactive or less active when conjugated to large antibodies or protein receptor ligands.

[0356] Enzymatically active toxins and fragments thereof that can be used include, for example, diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, a-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the trichothecenes. See, e.g., WO 93/21232 published October 28, 1993.

[0357] Anti-E7MC immunoconjugates of an anti-E7MC antibody moiety and one or more small molecule toxins, such as a calicheamicin, maytansinoids, dolastatins, aurostatins, a trichothecene, and CC1065, and the derivatives of these toxins that have toxin activity, are also contemplated herein.

[0358] In some embodiments, there is provided an anti-E7MC immunoconjugate comprising a therapeutic agent that has an intracellular activity. In some embodiments, the anti-E7MC immunoconjugate is internalized and the therapeutic agent is a cytotoxin that blocks the protein synthesis of the cell, therein leading to cell death. In some embodiments, the therapeutic agent is a cytotoxin comprising a polypeptide having ribosome-inactivating activity including, for example, gelonin, bouganin, saporin, ricin, ricin A chain, bryodin, diphtheria toxin, restrictocin, Pseudomonas exotoxin A and variants thereof. In some
embodiments, where the therapeutic agent is a cytotoxin comprising a polypeptide having a ribosome-inactivating activity, the anti-E7MC immunoconjugate must be internalized upon binding to the target cell in order for the protein to be cytotoxic to the cells.

[0359] In some embodiments, there is provided an anti-E7MC immunoconjugate comprising a therapeutic agent that acts to disrupt DNA. In some embodiments, the therapeutic agent that acts to disrupt DNA is, for example, selected from the group consisting of enediyne (e.g., calicheamicin and esperamicin) and non-enediyne small molecule agents (e.g., bleomycin, methidiumpropyl-EDTA-Fe(II)). Other cancer therapeutic agents useful in accordance with the present application include, without limitation, daunorubicin, doxorubicin, distamycin A, cisplatin, mitomycin C, eceitnascidins, duocarmycin/CC-1065, and bleomycin/ppeleomycin.

[0360] The present invention further contemplates an anti-E7MC immunoconjugate formed between the anti-E7MC antibody moiety and a compound with nucleolytic activity (e.g., a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).

[0361] In some embodiments, the anti-E7MC immunoconjugate comprises an agent that acts to disrupt tubulin. Such agents may include, for example, rhizoxin/maytansine, paclitaxel, vincristine and vinblastine, colchicine, auristatin dolastatin 10 MMAE, and peloruside A.

[0362] In some embodiments, the anti-E7MC immunoconjugate comprises an alkylating agent including, for example, Asaley NSC 167780, AZQ NSC 182986, BCNU NSC 409962, Busulfan NSC 750, carboxyphthalatoplumtinum NSC 271674, CBDCA NSC 241240, CCNU NSC 79037, CHIP NSC 256927, chlorambucil NSC 3088, chlorozotocin NSC 178248, cisplatinum NSC 119875, clomigone NSC 338947, cyanomorpholinodoxorubicin NSC 357704, cyclodisone NSC 348948, dihydrogalactitol NSC 132313, fluorodopan NSC 73754, hepsulfam NSC 329680, hycanthone NSC 142982, melphalan NSC 8806, methyl CCNU NSC 95441 , mitomycin C NSC 26980, mitozolamide NSC 353451 , nitrogen mustard NSC 762, PCNU NSC 95466, piperazine NSC 344007, piperazinedione NSC 135758, pipobroman NSC 25154, porfiromyci NSC 56410, spirohydantoin mustard NSC 172112, teroxirone NSC 296934, tetrpaltin NSC 363812, thio-tepa NSC 6396, triethylenemelamine NSC 9706, uracil nitrogen mustard NSC 34462, and Yoshi-864 NSC 102627.

[0363] In some embodiments, the cancer therapeutic agent portion of the anti-E7MC immunoconjugate of the present application may comprise an antimitotic agent including, without limitation, allocolchicine NSC 406042, Halichondrin B NSC 609395, colchicine
NSC 757, colchicine derivative NSC 33410, dolastatin 10 NSC 376128 (NG - auristatin derived), maytansine NSC 153858, rhizoxin NSC 332598, taxol NSC 125973, taxol derivative NSC 608832, thicocolchicine NSC 361792, trityl cysteine NSC 83265, vinblastine sulfate NSC 49842, and vincristine sulfate NSC 67574.

[0364] In some embodiments, the anti-E7MC immunoconjugate comprises a topoisomerase I inhibitor including, without limitation, camptothecin NSC 94600, camptothecin, Na salt NSC 100880, aminocamptothecin NSC 603071, camptothecin derivative NSC 95382, camptothecin derivative NSC 107124, camptothecin derivative NSC 643833, camptothecin derivative NSC 629971, camptothecin derivative NSC 295500, camptothecin derivative NSC 249910, camptothecin derivative NSC 606985, camptothecin derivative NSC 374028, camptothecin derivative NSC 176323, camptothecin derivative NSC 295501, camptothecin derivative NSC 610458, camptothecin derivative NSC 606172, camptothecin derivative NSC 606173, camptothecin derivative NSC 610457, camptothecin derivative NSC 618939, camptothecin derivative NSC 610457, camptothecin derivative NSC 610456, camptothecin derivative NSC 364830, camptothecin derivative NSC 606497, and morpholinodoxorubicin NSC 354646.

[0365] In some embodiments, the anti-E7MC immunoconjugate comprises a topoisomerase II inhibitor including, without limitation, doxorubicin NSC 123127, amonafide NSC 308847, m-AMSA NSC 249992, anthrapyrazole derivative NSC 355644, pyrazoloacridine NSC 366140, bisantrene HCL NSC 337766, daunorubicin NSC 82151, deoxydoxorubicin NSC 267469, mitoxantrone NSC 301739, menogaril NSC 269148, N,N-dibenzyl daunomycin NSC 268242, oxanthrazole NSC 349174, rubidazone NSC 164011, VM-26 NSC 122819, and VP-16 NSC 141540.

[0366] In some embodiments, the anti-E7MC immunoconjugate comprises an RNA or DNA antimetabolite including, without limitation, L-alanosine NSC 153353, 5-azacytidine NSC 102816, 5-fluorouracil NSC 19893, acicin NSC 163501, aminopterin derivative NSC 132483, aminopterin derivative NSC 184692, aminopterin derivative NSC 134033, an antifol NSC 633713, an antifol NSC 623017, Baker's soluble antifol NSC 139105, dichlorallyllawsone NSC 126771, brequinar NSC 368390, ftorafur (pro-drug) NSC 148958, 5,6-dihydro-5-azacytidine NSC 264880, methotrexate NSC 740, methotrexate derivative NSC 174121, N-(phosphonoacetyl)-L-aspartate (PALA) NSC 224131, pyrazofurin NSC 143095, trimetrexate NSC 352122, 3-HP NSC 95678, 2'-deoxy-5-fluorouridine NSC 27640, 5-HP NSC 107392, a-TGDR NSC 71851, aphidicolin glycinate NSC 303812, ara-C NSC 63878, 5-
aza-2’-deoxycytidine NSC 127716, β-TGDR NSC 71261, cyclocytidine NSC 145668, guanazole NSC 1895, hydroxyurea NSC 32065, inosine glycodialdehyde NSC 118994, macbecin II NSC 330500, pyrazoloimidazole NSC 51143, thioguanine NSC 752, and thiopurine NSC 755.

[0367] In some embodiments, the anti-E7MC immunoconjugate comprises a highly radioactive atom. A variety of radioactive isotopes are available for the production of radioconjugated antibodies. Examples include 211At, 131I, 125I, 90Y, 186Re, 188Re, 153Sm, 212Bi, 32P, 212Pb and radioactive isotopes of Lu.

[0368] In some embodiments, the anti-E7MC antibody moiety can be conjugated to a "receptor" (such as streptavidin) for utilization in tumor pre-targeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is conjugated to a cytotoxic agent (e.g., a radionucleotide).

[0369] In some embodiments, an anti-E7MC immunoconjugate may comprise an anti-E7MC antibody moiety conjugated to a prodrug-activating enzyme. In some such embodiments, a prodrug-activating enzyme converts a prodrug (e.g., a peptidyl chemotherapeutic agent, see WO 81/01145) to an active drug, such as an anti-cancer drug. Such anti-E7MC immunoconjugates are useful, in some embodiments, in antibody-dependent enzyme-mediated prodrug therapy ("ADEPT"). Enzymes that may be conjugated to an antibody include, but are not limited to, alkaline phosphatases, which are useful for converting phosphate-containing prodrugs into free drugs; arylsulfatases, which are useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase, which is useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5-fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), which are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, which are useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as β-galactosidase and neuraminidase, which are useful for converting glycosylated prodrugs into free drugs; β-lactamase, which is useful for converting drugs derivatized with β-lactams into free drugs; and penicillin amidases, such as penicillin V amidase and penicillin G amidase, which are useful for converting drugs derivatized at their amine nitrogens with phenoxyacetyl or phenylacetyl groups, respectively, into free drugs. In some embodiments, enzymes may be

[0370] In some embodiments, the therapeutic portion of the anti-E7MC immunoconjugates may be a nucleic acid. Nucleic acids that may be used include, but are not limited to, antisense RNA, genes or other polynucleotides, including nucleic acid analogs such as thioguanine and thiopurine.

[0371] The present application further provides anti-E7MC immunoconjugates comprising an anti-E7MC antibody moiety attached to an effector molecule, wherein the effector molecule is a label, which can generate a detectable signal, indirectly or directly. These anti-E7MC immunoconjugates can be used for research or diagnostic applications, such as for the in vivo detection of cancer. The label is preferably capable of producing, either directly or indirectly, a detectable signal. For example, the label may be radio-opaque or a radioisotope, such as 3H, 14C, 32P, 35S, 123I, 125I, 131I; a fluorescent (fluorophore) or chemiluminescent (chromophore) compound, such as fluorescein isothiocyanate, rhodamine or luciferin; an enzyme, such as alkaline phosphatase, P-galactosidase or horseradish peroxidase; an imaging agent; or a metal ion. In some embodiments, the label is a radioactive atom for scintigraphic studies, for example 99Tc or 123I, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, MRI), such as zirconium-89, iodine-123, iodine-131, indium-III, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron. Zirconium-89 may be complexed to various metal chelating agents and conjugated to antibodies, e.g., for PET imaging (WO 2011/056983).

[0372] In some embodiments, the anti-E7MC immunoconjugate is detectable indirectly. For example, a secondary antibody that is specific for the anti-E7MC immunoconjugate and contains a detectable label can be used to detect the anti-E7MC immunoconjugate.

[0373] Thus, for example, in some embodiments, there is provided an anti-E7MC immunoconjugate comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, and b) an effector molecule. In some embodiments, the HPV16-E7 peptide is HPV16-E7 11-19 (SEQ ID NO: 4). In some embodiments, the MHC class I protein is HLA-A02. In some embodiments, the MHC class I protein is HLA-A*02:01. In some embodiments, the effector molecule is covalently attached to the anti-E7MC antibody moiety. In some embodiments, the effector molecule is a therapeutic agent selected, for example, from the group consisting of a drug, a toxin, a radioisotope, a protein, a peptide, and a nucleic acid. In some embodiments, the
effector molecular is a cancer therapeutic agent. In some embodiments, the cancer therapeutic agent is a chemotherapeutic. In some embodiments, the cancer therapeutic agent is a highly radioactive atom selected, for example, from the group consisting of 211At, 131I, 125I, 90Y, 186Re, 188Re, 153Sm, 212Bi, 32P, and 212Pb. In some embodiments, the effector molecule is a label that can generate a detectable signal, either directly or indirectly. In some embodiments, the label is a radioisotope selected, for example, from the group consisting of 3H, 14C, 32P, 35S, 123I, 125I, and 131I. In some embodiments, the anti-E7MC antibody moiety is an scFv. In some embodiments, the anti-E7MC antibody moiety cross-reacts with at least one (such as at least any of 2, 3, 4, 5, or 6) complex comprising the MHC class I protein and a variant of the HPV16-E7 peptide having one amino acid substitution (such as a conservative amino acid substitution). In some embodiments, the anti-E7MC antibody moiety cross-reacts with at least one (such as at least any of 2, 3, 4, or 5) complex comprising the HPV16-E7 peptide and a different subtype of the MHC class I protein.

[0374] In some embodiments, there is provided an anti-E7MC immunoconjugate comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 11-19 peptide (SEQ ID NO: 4) and HLA-A*02:01, and b) an effector molecule. In some embodiments, the effector molecule is covalently attached to the anti-E7MC antibody moiety. In some embodiments, the effector molecule is a therapeutic agent selected, for example, from the group consisting of a drug, a toxin, a radioisotope, a protein, a peptide, and a nucleic acid. In some embodiments, the effector molecular is a cancer therapeutic agent. In some embodiments, the cancer therapeutic agent is a chemotherapeutic. In some embodiments, the cancer therapeutic agent is a highly radioactive atom selected, for example, from the group consisting of 211At, 131I, 125I, 90Y, 186Re, 188Re, 153Sm, 212Bi, 32P, and 212Pb. In some embodiments, the effector molecule is a label that can generate a detectable signal, either directly or indirectly. In some embodiments, the label is a radioisotope selected, for example, from the group consisting of 3H, 14C, 32P, 35S, 123I, 125I, and 131I. In some embodiments, the anti-E7MC antibody moiety is an scFv. In some embodiments, the anti-E7MC antibody moiety is human, humanized, or semi-synthetic.

[0375] In some embodiments, there is provided an anti-E7MC immunoconjugate comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID
NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and b) an effector molecule.

[0376] In some embodiments, there is provided an anti-E7MC immunoconjugate comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, and b) an effector molecule.

[0377] In some embodiments, there is provided an anti-E7MC immunoconjugate comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-1 19, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of
any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and b) an effector molecule.

[0378] In some embodiments, there is provided an anti-E7MC immunoconjugate comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences, and b) an effector molecule.

[0379] In some embodiments, there is provided an anti-E7MC immunoconjugate comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, and b) an effector molecule.

[0380] In some embodiments, there is provided an anti-E7MC immunoconjugate comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising a heavy chain variable domain
comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and b) an effector molecule.

In some embodiments, there is provided an anti-E7MC immunoconjugate comprising a) an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, b) an effector molecule.

Nucleic Acids

Nucleic acid molecules encoding the anti-E7MC constructs or anti-E7MC antibody moieties are also contemplated. In some embodiments, there is provided a nucleic acid (or a set of nucleic acids) encoding a full-length anti-E7MC antibody. In some embodiments, there is provided a nucleic acid (or a set of nucleic acids) encoding a multi-specific anti-E7MC molecule (e.g., a multi-specific anti-E7MC antibody, a bispecific anti-E7MC antibody, or a bispecific T-cell engager anti-E7MC antibody), or polypeptide portion thereof. In some embodiments, there is provided a nucleic acid (or a set of nucleic acids) encoding an anti-E7MC CAR. In some embodiments, there is provided a nucleic acid (or a set of nucleic acids) encoding an anti-E7MC immunoconjugate, or polypeptide portion thereof.

The present application also includes variants to these nucleic acid sequences. For example, the variants include nucleotide sequences that hybridize to the nucleic acid sequences encoding the anti-E7MC constructs or anti-E7MC antibody moieties of the present application under at least moderately stringent hybridization conditions.

The present invention also provides vectors in which a nucleic acid of the present invention is inserted.

In brief summary, the expression of an anti-E7MC construct (e.g., anti-E7MC CAR) or polypeptide portion thereof by a natural or synthetic nucleic acid encoding the anti-E7MC construct or polypeptide portion thereof can be achieved by inserting the nucleic acid into an appropriate expression vector, such that the nucleic acid is operably linked to 5' and 3'
regulatory elements, including for example a promoter (e.g., a lymphocyte-specific promoter) and a 3’ untranslated region (UTR). The vectors can be suitable for replication and integration in eukaryotic host cells. Typical cloning and expression vectors contain transcription and translation terminators, initiation sequences, and promoters useful for regulation of the expression of the desired nucleic acid sequence.

[0386] The nucleic acids of the present invention may also be used for nucleic acid immunization and gene therapy, using standard gene delivery protocols. Methods for gene delivery are known in the art. See, e.g., U.S. Pat. Nos. 5,399,346, 5,580,859, 5,589,466, incorporated by reference herein in their entireties. In some embodiments, the invention provides a gene therapy vector.

[0387] The nucleic acid can be cloned into a number of types of vectors. For example, the nucleic acid can be cloned into a vector including, but not limited to a plasmid, a phagemid, a phage derivative, an animal virus, and a cosmid. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors, and sequencing vectors.

[0388] Further, the expression vector may be provided to a cell in the form of a viral vector. Viral vector technology is well known in the art and is described, for example, in Sambrook et al. (2001, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York), and in other virology and molecular biology manuals. Viruses which are useful as vectors include, but are not limited to, retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, and lentiviruses. In general, a suitable vector contains an origin of replication functional in at least one organism, a promoter sequence, convenient restriction endonuclease sites, and one or more selectable markers (see, e.g., WO 01/96584; WO 01/29058; and U.S. Pat. No. 6,326,193).

[0389] A number of viral based systems have been developed for gene transfer into mammalian cells. For example, retroviruses provide a convenient platform for gene delivery systems. A selected gene can be inserted into a vector and packaged in retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to cells of the subject either in vivo or ex vivo. A number of retroviral systems are known in the art. In some embodiments, adenovirus vectors are used. A number of adenovirus vectors are known in the art. In some embodiments, lentivirus vectors are used. Vectors derived from retroviruses such as the lentivirus are suitable tools to achieve long-term gene transfer since they allow long-term, stable integration of a transgene and its propagation in daughter cells. Lentiviral vectors have the added advantage over vectors derived from onco-retroviruses such
as murine leukemia viruses in that they can transduce non-proliferating cells, such as hepatocytes. They also have the added advantage of low immunogenicity.

Additional promoter elements, e.g., enhancers, regulate the frequency of transcriptional initiation. Typically, these are located in the region 30-10 bp upstream of the start site, although a number of promoters have recently been shown to contain functional elements downstream of the start site as well. The spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another. In the thymidine kinase (tk) promoter, the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline.

One example of a suitable promoter is the immediate early cytomegalovirus (CMV) promoter sequence. This promoter sequence is a strong constitutive promoter sequence capable of driving high levels of expression of any polynucleotide sequence operatively linked thereto. Another example of a suitable promoter is Elongation Growth Factor-1a (EF-1a). However, other constitutive promoter sequences may also be used, including, but not limited to the simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV) long terminal repeat (LTR) promoter, MoMuLV promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, a Rous sarcoma virus promoter, as well as human gene promoters such as, but not limited to, the actin promoter, the myosin promoter, the hemoglobin promoter, and the creatine kinase promoter. Further, the invention should not be limited to the use of constitutive promoters. Inducible promoters are also contemplated as part of the invention.

The use of an inducible promoter provides a molecular switch capable of turning on expression of the polynucleotide sequence which it is operatively linked when such expression is desired, or turning off the expression when expression is not desired. Examples of inducible promoters include, but are not limited to a metallothionine promoter, a glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter.

In order to assess the expression of a polypeptide or portions thereof, the expression vector to be introduced into a cell can also contain either a selectable marker gene or a reporter gene or both to facilitate identification and selection of expressing cells from the population of cells sought to be transfected or infected through viral vectors. In other aspects, the selectable marker may be carried on a separate piece of DNA and used in a co-transfection procedure. Both selectable markers and reporter genes may be flanked with
appropriate regulatory sequences to enable expression in the host cells. Useful selectable markers include, for example, antibiotic-resistance genes, such as neo and the like.

[0393] Reporter genes are used for identifying potentially transfected cells and for evaluating the functionality of regulatory sequences. In general, a reporter gene is a gene that is not present in or expressed by the recipient organism or tissue and that encodes a polypeptide whose expression is manifested by some easily detectable property, e.g., enzymatic activity. Expression of the reporter gene is assayed at a suitable time after the DNA has been introduced into the recipient cells. Suitable reporter genes may include genes encoding luciferase, β-galactosidase, chloramphenicol acetyl transferase, secreted alkaline phosphatase, or the green fluorescent protein gene (e.g., Ui-Tel et al., 2000 FEBS Letters 479: 79-82). Suitable expression systems are well known and may be prepared using known techniques or obtained commercially. In general, the construct with the minimal 5’ flanking region showing the highest level of expression of reporter gene is identified as the promoter. Such promoter regions may be linked to a reporter gene and used to evaluate agents for the ability to modulate promoter-driven transcription.

[0394] Methods of introducing and expressing genes into a cell are known in the art. In the context of an expression vector, the vector can be readily introduced into a host cell, e.g., mammalian, bacterial, yeast, or insect cell by any method in the art. For example, the expression vector can be transferred into a host cell by physical, chemical, or biological means.

[0395] Physical methods for introducing a polynucleotide into a host cell include calcium phosphate precipitation, lipofection, particle bombardment, microinjection, electroporation, and the like. Methods for producing cells comprising vectors and/or exogenous nucleic acids are well-known in the art. See, for example, Sambrook et al. (2001, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York). In some embodiments, the introduction of a polynucleotide into a host cell is carried out by calcium phosphate transfection.

[0396] Biological methods for introducing a polynucleotide of interest into a host cell include the use of DNA and RNA vectors. Viral vectors, and especially retroviral vectors, have become the most widely used method for inserting genes into mammalian, e.g., human cells. Other viral vectors can be derived from lentivirus, poxviruses, herpes simplex virus 1, adenoviruses and adeno-associated viruses, and the like. See, for example, U.S. Pat. Nos. 5,350,674 and 5,585,362.
Chemical means for introducing a polynucleotide into a host cell include colloidal
dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads,
and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and
liposomes. An exemplary colloidal system for use as a delivery vehicle \textit{in vitro} and \textit{in vivo} is
a liposome (\textit{e.g.}, an artificial membrane vesicle).

In the case where a non-viral delivery system is utilized, an exemplary delivery
vehicle is a liposome. The use of lipid formulations is contemplated for the introduction
of the nucleic acids into a host cell (\textit{in vitro}, \textit{ex vivo} or \textit{in vivo}). In another aspect, the nucleic
acid may be associated with a lipid. The nucleic acid associated with a lipid may be
encapsulated in the aqueous interior of a liposome, interspersed within the lipid bilayer of a
liposome, attached to a liposome via a linking molecule that is associated with both the
liposome and the oligonucleotide, entrapped in a liposome, complexed with a liposome,
dispersed in a solution containing a lipid, mixed with a lipid, combined with a lipid,
contained as a suspension in a lipid, contained or complexed with a micelle, or otherwise
associated with a lipid. Lipid, lipid/DNA or lipid/expression vector associated compositions
are not limited to any particular structure in solution. For example, they may be present in a
bilayer structure, as micelles, or with a "collapsed" structure. They may also simply be
interspersed in a solution, possibly forming aggregates that are not uniform in size or shape.

Lipids are fatty substances which may be naturally occurring or synthetic lipids. For example,
lipids include the fatty droplets that naturally occur in the cytoplasm as well as the class of
compounds which contain long-chain aliphatic hydrocarbons and their derivatives, such as
fatty acids, alcohols, amines, amino alcohols, and aldehydes.

Regardless of the method used to introduce exogenous nucleic acids into a host cell
or otherwise exposes a cell to the inhibitor of the present invention, in order to confirm the
presence of the recombinant DNA sequence in the host cell, a variety of assays may be
performed. Such assays include, for example, "molecular biological" assays well known to
those of skill in the art, such as Southern and Northern blotting, RT-PCR and PCR;
"biochemical" assays, such as detecting the presence or absence of a particular peptide, \textit{e.g.},
by immunological means (ELISAs and Western blots) or by assays described herein to
identify agents falling within the scope of the invention.
MHC class I proteins

MHC class I proteins are one of two primary classes of major histocompatibility complex (MHC) molecules (the other being MHC class II) and are found on nearly every nucleated cell of the body. Their function is to display fragments of proteins from within the cell to T cells; healthy cells will be ignored, while cells containing foreign proteins will be attacked by the immune system. Because MHC class I proteins present peptides derived from cytosolic proteins, the pathway of MHC class I presentation is often called the cytosolic or endogenous pathway. Class I MHC molecules bind peptides generated mainly from degradation of cytosolic proteins by the proteasome. The MHC I peptide complex is then inserted into the plasma membrane of the cell. The peptide is bound to the extracellular part of the class I MHC molecule. Thus, the function of the class I MHC is to display intracellular proteins to cytotoxic T cells (CTLs). However, class I MHC can also present peptides generated from exogenous proteins, in a process known as cross-presentation.

MHC class I proteins consist of two polypeptide chains, a and p2-microglobulin (β2M). The two chains are linked noncovalently via interaction of b2m and the a3 domain. Only the a chain is polymorphic and encoded by a HLA gene, while the b2m subunit is not polymorphic and encoded by the β-2 microglobulin gene. The a3 domain is plasma membrane-spanning and interacts with the CD8 co-receptor of T-cells. The a3-CD8 interaction holds the MHC I molecule in place while the T cell receptor (TCR) on the surface of the cytotoxic T cell binds its α1-α2 heterodimer ligand, and checks the coupled peptide for antigenicity. The a1 and a2 domains fold to make up a groove for peptides to bind. MHC class I proteins bind peptides that are 8-10 amino acid in length.

The human leukocyte antigen (HLA) genes are the human versions of the MHC genes. The three major MHC class I proteins in humans are HLA-A, HLA-B, and HLA-C, while the 3 minor ones are HLA-E, HLA-F, and HLA-G. HLA-A is ranked among the genes in humans with the fastest-evolving coding sequence. As of December 2013, there were 2432 known HLA-A alleles coding for 1740 active proteins and 117 null proteins. The HLA-A gene is located on the short arm of chromosome 6 and encodes the larger, α-chain, constituent of HLA-A. Variation of HLA-A α-chain is key to HLA function. This variation promotes genetic diversity in the population. Since each HLA has a different affinity for peptides of certain structures, greater variety of HLAs means greater variety of antigens to be ‘presented’ on the cell surface, enhancing the likelihood that a subset of the population will be resistant to any given foreign invader. This decreases the likelihood that a single pathogen has the
capability to wipe out the entire human population. Each individual can express up to two types of HLA-A, one from each of their parents. Some individuals will inherit the same HLA-A from both parents, decreasing their individual HLA diversity; however, the majority of individuals will receive two different copies of HLA-A. This same pattern follows for all HLA groups. In other words, a person can only express either one or two of the 2432 known HLA-A alleles.

All alleles receive at least a four digit classification, e.g., HLA-A*02:12. The A signifies which HLA gene the allele belongs to. There are many HLA-A alleles, so that classification by serotype simplifies categorization. The next pair of digits indicates this assignment. For example, HLA-A*02:02, HLA-A*02:04, and HLA-A*02:324 are all members of the A2 serotype (designated by the *02 prefix). This group is the primary factor responsible for HLA compatibility. All numbers after this cannot be determined by serotyping and are designated through gene sequencing. The second set of digits indicates what HLA protein is produced. These are assigned in order of discovery and as of December 2013 there are 456 different HLA-A02 proteins known (assigned names HLA-A*02:01 to HLA-A*02:456). The shortest possible HLA name includes both of these details. Each extension beyond that signifies a nucleotide change that may or may not change the protein.

In some embodiments, the anti-E7MC antibody moiety specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the MHC class I protein is HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, or HLA-G. In some embodiments, the MHC class I protein is HLA-A, HLA-B, or HLA-C. In some embodiments, the MHC class I protein is HLA-A. In some embodiments, the MHC class I protein is HLA-B. In some embodiments, the MHC class I protein is HLA-C. In some embodiments, the MHC class I protein is HLA-A01, HLA-A02, HLA-A03, HLA-A09, HLA-A10, HLA-A11, HLA-A19, HLA-A23, HLA-A24, HLA-A25, HLA-A26, HLA-A28, HLA-A29, HLA-A30, HLA-A31, HLA-A32, HLA-A33, HLA-A34, HLA-A36, HLA-A43, HLA-A66, HLA-A68, HLA-A69, HLA-A74, or HLA-A80. In some embodiments, the MHC class I protein is HLA-A02. In some embodiments, the MHC class I protein is any one of HLA-A*02:01-555, such as HLA-A*02:01, HLA-A*02:02, HLA-A*02:03, HLA-A*02:04, HLA-A*02:05, HLA-A*02:06, HLA-A*02:07, HLA-A*02:08, HLA-A*02:09, HLA-A*02:10, HLA-A*02:11, HLA-A*02:12, HLA-A*02:13, HLA-A*02:14, HLA-A*02:15, HLA-A*02:16, HLA-A*02:17, HLA-A*02:18, HLA-A*02:19, HLA-A*02:20, HLA-A*02:21, HLA-A*02:22, or HLA-A*02:24. In some embodiments, the MHC class I protein is HLA-A*02:01. HLA-
A*02:01 is expressed in 39-46% of all Caucasians, and therefore represents a suitable choice of MHC class I protein for use in the present invention.

[0405] HPV16-E7 peptides suitable for use in generating anti-E7MC antibody moieties can be determined, for example, based on the presence of HLA-A*02:01 -binding motifs and cleavage sites for proteasomes and immune-proteasomes using computer prediction models known to those of skill in the art. For predicting MHC binding sites, such models include, but are not limited to, IEDB (Vita et al., The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2014 Oct 9. pii: gku938), ProPred (described in more detail in Singh and Raghava, ProPred: prediction of HLA-DR binding sites. BIOINFORMATICS 17(12): 1236-1237, 2001), and SYFPEITHI (see Schuler et al. SYFPEITHI, Database for Searching and T-Cell Epitope Prediction. in Immunoinformatics Methods in Molecular Biology, vol 409(1): 75-93, 2007).

[0406] Once appropriate peptides have been identified, peptide synthesis may be done in accordance with protocols well known to those of skill in the art. Because of their relatively small size, the peptides of the invention may be directly synthesized in solution or on a solid support in accordance with conventional peptide synthesis techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. The synthesis of peptides in solution phase has become a well-established procedure for large-scale production of synthetic peptides and as such is a suitable alternative method for preparing the peptides of the invention (See for example, Solid Phase Peptide Synthesis by John Morrow Stewart and Martin et al. Application of Almez-mediated Amidation Reactions to Solution Phase Peptide Synthesis, Tetrahedron Letters Vol. 39, pages 1517-1520, 1998).

[0407] The binding activity of candidate HPV16-E7 peptides can be tested using the antigen-processing-deficient T2 cell line, which increases expression of HLA-A when stabilized by a peptide in the antigen-presenting groove. T2 cells are pulsed with the candidate peptide for a time sufficient to stabilize HLA-A expression on the cell surface, which can be measured using any methods known in the art, such as by immuno staining with a fluorescently labeled monoclonal antibody specific for HLA-A (for example, BB7.2) followed by fluorescence-activated cell-sorting (FACS) analysis.

Preparation of anti-E7MC antibodies and anti-E7MC antibody moieties

[0408] In some embodiments, the anti-E7MC antibody or anti-E7MC antibody moiety is a monoclonal antibody. Monoclonal antibodies can be prepared, e.g., using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975) and
Sergeeva et al, Blood, 117(16):4262-4272, using the phage display methods described herein and in the Examples below, or using recombinant DNA methods [see, e.g., US Patent No. 4,816,567).

[0409] In a hybridoma method, a hamster, mouse, or other appropriate host animal is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro. The immunizing agent can include a polypeptide or a fusion protein of the protein of interest, or a complex comprising at least two molecules, such as a complex comprising an HPV16-E7 peptide and an MHC class I protein. Generally, peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell. See, e.g., Goding, Monoclonal Antibodies: Principles and Practice (New York: Academic Press, 1986), pp. 59-103. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine, and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which prevents the growth of HGPRT-deficient cells.

[0410] In some embodiments, the immortalized cell lines fuse efficiently, support stable high-level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. In some embodiments, the immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies. Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al. Monoclonal Antibody Production Techniques and Applications (Marcel Dekker, Inc.: New York, 1987) pp. 51-63.

[0411] The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the polypeptide. The binding
specificity of monoclonal antibodies produced by the hybridoma cells can be determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980).

After the desired hybridoma cells are identified, the clones can be sub cloned by limiting dilution procedures and grown by standard methods. Goding, supra. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the sub clones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

In certain phage display methods, repertoires of VH and VL genes are separately cloned by polymerase chain reaction (PCR) and recombined randomly in phage libraries, which can then be screened for antigen-binding phage as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994). Phage typically display antibody fragments, either as single-chain Fv (scFv) fragments or as Fab fragments. Libraries from immunized sources provide high-affinity antibodies to the immunogen without the requirement of constructing hybridomas. Alternatively, the naive repertoire can be cloned (e.g., from human) to provide a single source of antibodies to a wide range of non-self and also self antigens without any

[0416] The antibodies or antigen-binding fragments thereof can be prepared using phage display to screen libraries for antibodies specific to a complex comprising an HPV16-E7 peptide and an MHC class I protein. The library can be a human scFv phage display library having a diversity of at least one x 10^9 (such as at least about any of 1 x 10^9, 2.5 x 10^9, 5 x 10^9, 7.5 x 10^9, 1 x 10^10, 2.5 x 10^10, 5 x 10^10, 7.5 x 10^10, or 1 x 10^11) unique human antibody fragments. In some embodiments, the library is a naïve human library constructed from DNA extracted from human PMBCs and spleens from healthy donors, encompassing all human heavy and light chain subfamilies. In some embodiments, the library is a naïve human library constructed from DNA extracted from PBMCs isolated from patients with various diseases, such as patients with autoimmune diseases, cancer patients, and patients with infectious diseases. In some embodiments, the library is a semi-synthetic human library, wherein heavy chain CDR3 is completely randomized, with all amino acids (with the exception of cysteine) equally likely to be present at any given position (see, e.g., Hoet, R.M. et al., Nat. Biotechnol. 23(3):344-348, 2005). In some embodiments, the heavy chain CDR3 of the semi-synthetic human library has a length from about 5 to about 24 (such as about any of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24) amino acids. In some embodiments, the library is a non-human phage display library.

[0417] Phage clones that bind to the E7MC with high affinity can be selected by iterative binding of phage to the E7MC, which is bound to a solid support (such as, for example, beads for solution panning or mammalian cells for cell panning), followed by removal of non-bound phage and by elution of specifically bound phage. In an example of solution panning, the E7MC can be biotinylated for immobilization to a solid support. The biotinylated E7MC is mixed with the phage library and a solid support, such as streptavidin-conjugated Dynabeads M-280, and then E7MC-phage-bead complexes are isolated. The bound phage clones are then eluted and used to infect an appropriate host cell, such as E. coli XL1-Blue,
for expression and purification. In an example of cell panning, T2 cells (a TAP-deficient, HLA-A*02:01+ lymphoblast cell line) loaded with the HPV16-E7 peptide of the E7MC are mixed with the phage library, after which the cells are collected and the bound clones are eluted and used to infect an appropriate host cell for expression and purification. The panning can be performed for multiple (such as about any of 2, 3, 4, 5, 6 or more) rounds with either solution panning, cell panning, or a combination of both, to enrich for phage clones binding specifically to the E7MC. Enriched phage clones can be tested for specific binding to the E7MC by any methods known in the art, including for example ELISA and FACS.

Monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). Hybridoma cells as described above or E7MC-specific phage clones of the invention can serve as a source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains and/or framework regions in place of the homologous non-human sequences (U.S. Patent No. 4,816,567; Morrison et al., supra) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a nonimmunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

The antibodies can be monovalent antibodies. Methods for preparing monovalent antibodies are known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy-chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking.
In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly Fab fragments, can be accomplished using any method known in the art.

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant-domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. In some embodiments, the first heavy-chain constant region (CHI) containing the site necessary for light-chain binding is present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies, see, for example, Suresh et al., Methods in Enzymology, 121: 210 (1986).

Human and Humanized Antibodies

The anti-E7MC antibodies or antibody moieties can be humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains, or fragments thereof (such as Fv, Fab, Fab', F(ab')2, scFv, or other antigen-binding subsequences of antibodies) that typically contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a CDR of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody can comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin, and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. In some embodiments, the humanized antibody will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. See, e.g., Jones et al., Nature, 321: 522-525 (1986); Riechmann et al, Nature, 332: 323-329 (1988); Presta, Curr. Op. Struct. Biol, 2:593-596 (1992).
Generally, a humanized antibody has one or more amino acid residues introduced into it from a source that is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. According to some embodiments, humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321: 522-525 (1986); Riechmann et al, Nature, 332: 323-327 (1988); Verhoeven et al., Science, 239: 1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

As an alternative to humanization, human antibodies can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array into such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., PNAS USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immunol., 7:33 (1993); U.S. Patent Nos. 5,545,806, 5,569,825, 5,591,669; 5,545,807; and WO 97/17852. Alternatively, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed that closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; and 5,661,016, and Marks et al, Bio/Technology, 10: 779-783 (1992); Lonberg et al, Nature, 368: 856-859 (1994); Morrison, Nature, 368: 812-813 (1994); Fishwild et al, Nature Biotechnology, 14: 845-851 (1996); Neuberger, Nature Biotechnology, 14: 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol, 13: 65-93 (1995).
Multi-specific Antibodies

In some embodiments, the anti-E7MC construct is a multi-specific antibody. Suitable methods for making multi-specific (e.g., bispecific) antibodies are well known in the art. For example, the production of bispecific antibodies can be based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two pairs each have different specificities, and upon association result in a heterodimeric antibody (see, e.g., Milstein and Cuello, *Nature*, 305: 537-539 (1983); WO 93/08829, and Traunecker et al, *EMBO J*. 10: 3655 (1991)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829 and in Traunecker et al, *EMBO*, 10: 3655-3659 (1991). Alternatively, the combining of heavy and light chains can be directed by taking advantage of species-restricted pairing (see, e.g., Lindhofer et al., *J. Immunol.*, 155:219-225 (1995)) and the pairing of heavy chains can be directed by use of "knob-into hole" engineering of CH3 domains (see, e.g., U.S. Pat. No. 5,731,168; Ridgway et al., *Protein Eng.*, 9(7):617-621 (1996)). Multi-specific antibodies may also be made by engineering electrostatic steering effects for making antibody Fc-heterodimeric molecules (see, e.g., WO 2009/089004A1). In yet another method, stable bispecific antibodies can be generated by controlled Fab-arm exchange, where two parental antibodies having distinct antigen specificity and matched point mutations in the CH3 domains are mixed in reducing condition to allow for separation, reassembly, and reoxidation to form highly pure bispecific antibodies. Labrigin et al, *Proc. Natl. Acad. Set*, 110(13):5 145-5 150 (2013). Such antibodies, comprising a mixture of heavy-chain/light-chain pairs, are also referred to herein as "heteromultimeric antibodies".

Antibodies or antigen-binding fragments thereof having different specificities can also be chemically cross-linked to generate multi-specific heteroconjugate antibodies. For example, two F(ab')2 molecules, each having specificity for a different antigen, can be chemically linked. Pullarkat et al, *Trends Biotechnol*, 48:9-21 (1999). Such antibodies have, for example, been proposed to target immune-system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection. WO 91/00360; WO 92/200373; EP 03089. It is contemplated that the antibodies can be prepared *in vitro* using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins
can be constructed using a disulfide-exchange reaction or by forming a thioether bond.
Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptopbutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

[0428] In some embodiments, multi-specific antibodies can be prepared using recombinant DNA techniques. For example, a bispecific antibody can be engineered by fusing two scFvs, such as by fusing them through a peptide linker, resulting in a tandem scFv. One example of a tandem scFv is a bispecific T cell engager. Bispecific T cell engagers are made by linking an anti-CD3 scFv to an scFv specific for a surface antigen of a target cell, such as a tumor-associated antigen (TAA), resulting in the redirection of T cells to the target cells. Mack et al, Proc. Natl. Acad. Set, 92:7021-7025 (1995); Brischwein et al, Mol. Immunol, 43(8): 1129-1143 (2006). By shortening the length of a peptide linker between two variable domains, they can be prevented from self-assembling and forced to pair with domains on a second polypeptide, resulting in a compact bispecific antibody called a diabody (Db). Holliger et al, Proc. Natl. Acad. Set, 90:6444-6448 (1993). The two polypeptides of a Db each comprise a VH connected to a VL by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one polypeptide are forced to pair with the complementary VL and VH domains of another polypeptide, thereby forming two antigen-binding sites. In a modification of this format, the two polypeptides are linked by another peptide linker, resulting in a single chain diabody (scDb). In yet another modification of the Db format, dual-affinity retargeting (DART) bispecific antibodies can be generated by introducing a disulfide linkage between cysteine residues at the C-terminus of each polypeptide, optionally including domains prior to the C-terminal cysteine residues that drive assembly of the desired heterodimeric structure. Veri et al, Arthritis Rheum., 62(7): 1933-1943 (2010). Dual-variable-domain immunoglobulins (DVD-Ig™), in which the target-binding variable domains of two monoclonal antibodies are combined via naturally occurring linkers to yield a tetravalent, bispecific antibody, are also known in the art. Gu and Ghayur, Methods Enzymol, 502:25-41 (2012). In yet another format, Dock and Lock (DNL), bispecific antibodies are prepared by taking advantage of the dimerization of a peptide (DDD2) derived from the regulatory subunit of human cAMP-dependent protein kinase (PKA) with a peptide (AD2) derived from the anchoring domains of human A kinase anchor proteins (AKAPs). Rossi et al, Proc. Natl. Acad. Set, 103:6841-6846 (2006).
Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5): 1547-1553 (1992). This method can also be utilized for the production of antibody homodimers.

Anti-E7MC variants

In some embodiments, amino acid sequence variants of the antibody moieties provided herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody moiety. Amino acid sequence variants of an antibody moiety may be prepared by introducing appropriate modifications into the nucleotide sequence encoding the antibody moiety, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of residues within the amino acid sequences of the antibody moiety. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics, e.g., antigen-binding.

In some embodiments, antibody moiety variants having one or more amino acid substitutions are provided. Sites of interest for substitutional mutagenesis include the HVRs and FRs. Amino acid substitutions may be introduced into an antibody moiety of interest and the products screened for a desired activity, e.g., retained/improved antigen binding, decreased immunogenicity, or improved ADCC or CDC.

Conservative substitutions are shown in Table 5 below.

<table>
<thead>
<tr>
<th>Original Residue</th>
<th>Exemplary Substitutions</th>
<th>Preferred Substitutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala (A)</td>
<td>Val; Leu; Ile</td>
<td>Val</td>
</tr>
<tr>
<td>Arg (R)</td>
<td>Lys; Gln; Asn</td>
<td>Lys</td>
</tr>
<tr>
<td>Asn (N)</td>
<td>Gln; His; Asp, Lys; Arg</td>
<td>Gln</td>
</tr>
<tr>
<td>Asp (D)</td>
<td>Glu; Asn</td>
<td>Glu</td>
</tr>
<tr>
<td>Cys (C)</td>
<td>Ser; Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Gln (Q)</td>
<td>Asn; Glu</td>
<td>Asn</td>
</tr>
<tr>
<td>Glu (E)</td>
<td>Asp; Gln</td>
<td>Asp</td>
</tr>
<tr>
<td>Gly (G)</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>His (H)</td>
<td>Asn; Gln; Lys; Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Ile (I)</td>
<td>Leu; Val; Met; Ala; Phe; Norleucine</td>
<td>Leu</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Leu (L)</td>
<td>Norleucine; Ile; Val; Met; Ala; Phe</td>
<td>He</td>
</tr>
<tr>
<td>Lys (K)</td>
<td>Arg; Gin; Asn</td>
<td>Arg</td>
</tr>
<tr>
<td>Met (M)</td>
<td>Leu; Phe; He</td>
<td>Leu</td>
</tr>
<tr>
<td>Phe (F)</td>
<td>Trp; Leu; Val; He; Ala; Tyr</td>
<td>Tyr</td>
</tr>
<tr>
<td>Pro (P)</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser (S)</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr (T)</td>
<td>Val; Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>Trp (W)</td>
<td>Tyr; Phe</td>
<td>Tyr</td>
</tr>
<tr>
<td>Tyr (Y)</td>
<td>Trp; Phe; Thr; Ser</td>
<td>Phe</td>
</tr>
<tr>
<td>Val (V)</td>
<td>He; Leu; Met; Phe; Ala; Norleucine</td>
<td>Leu</td>
</tr>
</tbody>
</table>

[A0433] Amino acids may be grouped into different classes according to common side-chain properties:

a. hydrophobic: Norleucine, Met, Ala, Val, Leu, He;
b. neutral hydrophilic: Cys, Ser, Thr, Asn, Gin;
c. acidic: Asp, Glu;
d. basic: His, Lys, Arg;
e. residues that influence chain orientation: Gly, Pro;
f. aromatic: Trp, Tyr, Phe.

[A0434] Non-conservative substitutions will entail exchanging a member of one of these classes for another class.

[A0435] An exemplary substitutional variant is an affinity matured antibody moiety, which may be conveniently generated, e.g., using phage display-based affinity maturation techniques. Briefly, one or more CDR residues are mutated and the variant antibody moieties displayed on phage and screened for a particular biological activity (e.g. binding affinity). Alterations (e.g., substitutions) may be made in HVRs, e.g., to improve antibody moiety affinity. Such alterations may be made in HVR "hotspots," i.e., residues encoded by codons that undergo mutation at high frequency during the somatic maturation process (see, e.g., Chowdhury, Methods Mol. Biol. 207:179-196 (2008)), and/or specificity determining residues (SDRs), with the resulting variant VH or VL being tested for binding affinity. Affinity maturation by constructing and reselecting from secondary libraries has been

[0436] In some embodiments of affinity maturation, diversity is introduced into the variable genes chosen for maturation by any of a variety of methods (e.g., error-prone PCR, chain shuffling, or oligonucleotide-directed mutagenesis). A secondary library is then created. The library is then screened to identify any antibody moiety variants with the desired affinity. Another method to introduce diversity involves HVR-directed approaches, in which several HVR residues (e.g., 4-6 residues at a time) are randomized. HVR residues involved in antigen binding may be specifically identified, e.g., using alanine scanning mutagenesis or modeling. CDR-H3 and CDR-L3 in particular are often targeted.

[0437] In some embodiments, substitutions, insertions, or deletions may occur within one or more HVRs so long as such alterations do not substantially reduce the ability of the antibody moiety to bind antigen. For example, conservative alterations (e.g., conservative substitutions as provided herein) that do not substantially reduce binding affinity may be made in HVRs. Such alterations may be outside of HVR "hotspots" or SDRs. In some embodiments of the variant VH and VL sequences provided above, each HVR either is unaltered, or contains no more than one, two or three amino acid substitutions.

[0438] A useful method for identification of residues or regions of an antibody moiety that may be targeted for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells (1989) Science, 244:1081-1085. In this method, a residue or group of target residues (e.g., charged residues such as arg, asp, his, lys, and glu) are identified and replaced by a neutral or negatively charged amino acid (e.g., alanine or polyalanine) to determine whether the interaction of the antibody moiety with antigen is affected. Further substitutions may be introduced at the amino acid locations demonstrating functional sensitivity to the initial substitutions. Alternatively, or additionally, a crystal structure of an antigen-antibody moiety complex can be determined to identify contact points between the antibody moiety and antigen. Such contact residues and neighboring residues may be targeted or eliminated as candidates for substitution. Variants may be screened to determine whether they contain the desired properties.

[0439] Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody moiety with an N-terminal methionyl residue. Other
insertional variants of the antibody moiety include the fusion to the N- or C-terminus of the antibody moiety to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody moiety.

Fc Region Variants

[0440] In some embodiments, one or more amino acid modifications may be introduced into the Fc region of a full-length anti-E7MC antibody provided herein, thereby generating an Fc region variant. In some embodiments, the Fc region variant has enhanced antibody dependent cellular cytotoxicity (ADCC) effector function, often related to binding to Fc receptors (FcRs). In some embodiments, the Fc region variant has decreased ADCC effector function. There are many examples of changes or mutations to Fc sequences that can alter effector function. For example, WO 00/42072 and Shields et al. *J Biol. Chem.* 9(2): 6591-6604 (2001) describe antibody variants with improved or diminished binding to FcRs. The contents of those publications are specifically incorporated herein by reference.

[0441] Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) is a mechanism of action of therapeutic antibodies against tumor cells. ADCC is a cell-mediated immune defense whereby an effector cell of the immune system actively lyases a target cell (e.g., a cancer cell), whose membrane-surface antigens have been bound by specific antibodies (e.g., an anti-E7MC antibody). The typical ADCC involves activation of NK cells by antibodies. An NK cell expresses CD16 which is an Fc receptor. This receptor recognizes, and binds to, the Fc portion of an antibody bound to the surface of a target cell. The most common Fc receptor on the surface of an NK cell is called CD16 or FcyRIII. Binding of the Fc receptor to the Fc region of an antibody results in NK cell activation, release of cytolytic granules and consequent target cell apoptosis. The contribution of ADCC to tumor cell killing can be measured with a specific test that uses NK-92 cells that have been transfected with a high-affinity FcR. Results are compared to wild-type NK-92 cells that do not express the FcR.

[0442] In some embodiments, the invention contemplates an anti-E7MC construct variant comprising an Fc region that possesses some but not all effector functions, which makes it a desirable candidate for applications in which the half-life of the anti-E7MC construct *in vivo* is important yet certain effector functions (such as CDC and ADCC) are unnecessary or deleterious. *In vitro* and/or *in vivo* cytotoxicity assays can be conducted to confirm the reduction/depletion of CDC and/or ADCC activities. For example, Fc receptor (FcR) binding assays can be conducted to ensure that the antibody lacks FcyR binding (hence likely lacking
ADCC activity), but retains FcRn binding ability. The primary cells for mediating ADCC, NK cells, express FcRRIII only, whereas monocytes express FcRI, FcRRII and FcRRIII. FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, *Annu. Rev. Immunol.* 9:457-492 (1991). Non-limiting examples of *in vitro* assays to assess ADCC activity of a molecule of interest is described in U.S. Pat. No. 5,500,362 (see, e.g. Hellstrom, I. *et al.* Proc. Nat’l Acad. Sci. USA 83:7059-7063 (1986)) and Hellstrom, I *et al.*, *Proc. Nat’l Acad. Sci. USA* 82:1499-1502 (1985); U.S. Pat. No. 5,821,337 (see Bruggemann, M. *et al.*, *J. Exp. Med.* 166:1351-1361 (1987)). Alternatively, non-radioactive assay methods may be employed (see, for example, ACTITM non-radioactive cytotoxicity assay for flow cytometry (CellTechnology, Inc. Mountain View, Calif.; and CytoTox 96TM non-radioactive cytotoxicity assay (Promega, Madison, Wis.). Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed *in vivo*, e.g., in an animal model such as that disclosed in Clynes *et al.* Proc. Nat’l Acad. Sci. USA 95:652-656 (1998). Clq binding assays may also be carried out to confirm that the antibody is unable to bind Clq and hence lacks CDC activity. See, e.g., Clq and C3c binding ELISA in WO 2006/029879 and WO 2005/100402. To assess complement activation, a CDC assay may be performed (see, for example, Gazzano-Santoro *et al.*, *J. Immunol. Methods* 202:163 (1996); Cragg, M. S. *et al.*, *Blood* 101:1045-1052 (2003); and Cragg, M. S. and M. J. Glennie, *Blood* 103:2738-2743 (2004)). FcRn binding and *in vivo* clearance/half life determinations can also be performed using methods known in the art (see, e.g., Petkova, S. B. *et al.*, *Int’l. Immunol.* 18(12): 1759-1769 (2006)).

[0443] Antibodies with reduced effector function include those with substitution of one or more of Fc region residues 238, 265, 269, 270, 297, 327 and 329 (U.S. Pat. No. 6,737,056). Such Fc mutants include Fc mutants with substitutions at two or more of amino acid positions 265, 269, 270, 297 and 327, including the so-called "DANA" Fc mutant with substitution of residues 265 and 297 to alanine (U.S. Pat. No. 7,332,581).

[0444] Certain antibody variants with improved or diminished binding to FcRs are described. (See, e.g., U.S. Pat. No. 6,737,056; WO 2004/056312, and Shields *et al.*, *J. Biol. Chem.* 9(2): 6591-6604 (2001).)

[0445] In some embodiments, there is provided an anti-E7MC construct (e.g., a full-length anti-E7MC antibody) variant comprising a variant Fc region comprising one or more amino acid substitutions which improve ADCC. In some embodiments, the variant Fc region
comprises one or more amino acid substitutions which improve ADCC, wherein the substitutions are at positions 298, 333, and/or 334 of the variant Fc region (EU numbering of residues). In some embodiments, the anti-E7MC construct (e.g., full-length anti-E7MC antibody) variant comprises the following amino acid substitution in its variant Fc region: S298A, E333A, and K334A.

[0446] In some embodiments, alterations are made in the Fc region that result in altered (i.e., either improved or diminished) Clq binding and/or Complement Dependent Cytotoxicity (CDC), e.g., as described in U.S. Pat. No. 6,194,551, WO 99/51642, and Idusogie et al, J. Immunol. 164: 4178-4184 (2000).

[0447] In some embodiments, there is provided an anti-E7MC construct (e.g., a full-length anti-E7MC antibody) variant comprising a variant Fc region comprising one or more amino acid substitutions which increase half-life and/or improve binding to the neonatal Fc receptor (FcRn). Antibodies with increased half-lives and improved binding to FcRn are described in US2005/0014934A1 (Hinton et al). Those antibodies comprise an Fc region with one or more substitutions therein which improve binding of the Fc region to FcRn. Such Fc variants include those with substitutions at one or more of Fc region residues: 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424 or 434, e.g., substitution of Fc region residue 434 (U.S. Pat. No. 7,371,826).

[0449] Anti-E7MC constructs (such as full-length anti-E7MC antibodies) comprising any of the Fc variants described herein, or combinations thereof, are contemplated.

Glycosylation Variants

[0450] In some embodiments, an anti-E7MC construct provided herein is altered to increase or decrease the extent to which the anti-E7MC construct is glycosylated. Addition or deletion of glycosylation sites to an anti-E7MC construct may be conveniently accomplished by altering the amino acid sequence of the anti-E7MC construct or polypeptide portion thereof such that one or more glycosylation sites is created or removed.

[0451] Where the anti-E7MC construct comprises an Fc region, the carbohydrate attached thereto may be altered. Native antibodies produced by mammalian cells typically comprise a branched, biantennary oligosaccharide that is generally attached by an N-linkage to Asn297 of the CH2 domain of the Fc region. See, e.g., Wright et al, TIBTECH 15:26-32 (1997). The
oligosaccharide may include various carbohydrates, e.g., mannose, N-acetyl glucosamine (GlcNAc), galactose, and sialic acid, as well as a fucose attached to a GlcNAc in the "stem" of the biantennary oligosaccharide structure. In some embodiments, modifications of the oligosaccharide in an anti-E7MC construct of the invention may be made in order to create anti-E7MC construct variants with certain improved properties.

[0452] In some embodiments, anti-E7MC construct (such as full-length anti-E7MC antibody) variants are provided comprising an Fc region wherein a carbohydrate structure attached to the Fc region has reduced fucose or lacks fucose, which may improve ADCC function. Specifically, anti-E7MC constructs are contemplated herein that have reduced fucose relative to the amount of fucose on the same anti-E7MC construct produced in a wild-type CHO cell. That is, they are characterized by having a lower amount of fucose than they would otherwise have if produced by native CHO cells (e.g., a CHO cell that produce a native glycosylation pattern, such as, a CHO cell containing a native FUT8 gene). In some embodiments, the anti-E7MC construct is one wherein less than about 50%, 40%, 30%, 20%, 10%, or 5% of the N-linked glycans thereon comprise fucose. For example, the amount of fucose in such an anti-E7MC construct may be from 1% to 80%, from 1% to 65%, from 5% to 65% or from 20% to 40%. In some embodiments, the anti-E7MC construct is one wherein none of the N-linked glycans thereon comprise fucose, i.e., wherein the anti-E7MC construct is completely without fucose, or has no fucose or is afucosylated. The amount of fucose is determined by calculating the average amount of fucose within the sugar chain at Asn297, relative to the sum of all glycostructures attached to Asn 297 (e.g. complex, hybrid and high mannose structures) as measured by MALDI-TOF mass spectrometry, as described in WO 2008/077546, for example. Asn297 refers to the asparagine residue located at about position 297 in the Fc region (Eu numbering of Fc region residues); however, Asn297 may also be located about +3 amino acids upstream or downstream of position 297, i.e., between positions 294 and 300, due to minor sequence variations in antibodies. Such fucosylation variants may have improved ADCC function. See, e.g., US Patent Publication Nos. US 2003/0157108 (Presta, L.); US 2004/0093621 (Kyowa Hakko Kogyo Co., Ltd). Examples of publications related to "defucosylated" or "fucose-deficient" antibody variants include: US 2003/0157108; WO 2000/61739; WO 2001/29246; US 2003/0115614; US 2002/0164328; US 2004/0093621; US 2004/0132140; US 2004/0110704; US 2004/0110282; US 2004/0109865; WO 2003/085119; WO 2003/084570; WO 2005/035586; WO 2005/035778; WO2005/053742; WO2002/031140; Okazaki et al J. Mol. Biol. 336:1239-1249 (2004);

[0453] Anti-E7MC construct (such as full-length anti-E7MC antibody) variants are further provided with bisected oligosaccharides, e.g., in which a biantennary oligosaccharide attached to the Fc region of the anti-E7MC construct is bisected by GlcNAc. Such anti-E7MC construct (such as full-length anti-E7MC antibody) variants may have reduced fucosylation and/or improved ADCC function. Examples of such antibody variants are described, e.g., in WO 2003/011878 (Jean-Mairet *et al*); U.S. Pat. No. 6,602,684 (Umana *et al*); US 2005/0123546 (Umana *et al*), and Ferrara *et al.*, Biotechnology and Bioengineering, 93(5): 851-861 (2006). Anti-E7MC construct (such as full-length anti-E7MC antibody) variants with at least one galactose residue in the oligosaccharide attached to the Fc region are also provided. Such anti-E7MC construct variants may have improved CDC function. Such antibody variants are described, e.g., in WO 1997/30087 (Patel *et al*); WO 1998/58964 (Raju, S.); and WO 1999/22764 (Raju, S.).

[0454] In some embodiments, the anti-E7MC construct (such as full-length anti-E7MC antibody) variants comprising an Fc region are capable of binding to an FcyRIII. In some embodiments, the anti-E7MC construct (such as full-length anti-E7MC antibody) variants comprising an Fc region have ADCC activity in the presence of human effector cells or have increased ADCC activity in the presence of human effector cells compared to the otherwise same anti-E7MC construct (such as full-length anti-E7MC antibody) comprising a human wild-type IgG1Fc region.

Cysteine Engineered Variants

[0455] In some embodiments, it may be desirable to create cysteine engineered anti-E7MC constructs (such as full-length anti-E7MC antibodies) in which one or more amino acid residues are substituted with cysteine residues. In some embodiments, the substituted residues occur at accessible sites of the anti-E7MC construct. By substituting those residues with cysteine, reactive thiol groups are thereby positioned at accessible sites of the anti-E7MC
construct and may be used to conjugate the anti-E7MC construct to other moieties, such as drug moieties or linker-drug moieties, to create an anti-E7MC immunoconjugate, as described further herein. Cysteine engineered anti-E7MC constructs (such as full-length anti-E7MC antibodies) may be generated as described, e.g., in U.S. Pat. No. 7,521,541.

Derivatives

In some embodiments, an anti-E7MC construct provided herein may be further modified to contain additional nonproteinaceous moieties that are known in the art and readily available. The moieties suitable for derivatization of the anti-E7MC construct include but are not limited to water soluble polymers. Non-limiting examples of water soluble polymers include, but are not limited to, polyethylene glycol (PEG), copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-l,3-dioxolane, poly-l,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), and dextran or poly(n-vinyl pyrrolidone)polyethylene glycol, propylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g., glycerol), polyvinyl alcohol, and mixtures thereof. Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water. The polymer may be of any molecular weight, and may be branched or unbranched. The number of polymers attached to the anti-E7MC construct may vary, and if more than one polymer are attached, they can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of the anti-E7MC construct to be improved, whether the anti-E7MC construct derivative will be used in a therapy under defined conditions, etc.

In some embodiments, conjugates of an anti-E7MC construct and nonproteinaceous moiety that may be selectively heated by exposure to radiation are provided. In some embodiments, the nonproteinaceous moiety is a carbon nanotube (Kam et al., Proc. Natl. Acad. Sci. USA 102: 11600-1 1605 (2005)). The radiation may be of any wavelength, and includes, but is not limited to, wavelengths that do not harm ordinary cells, but which heat the nonproteinaceous moiety to a temperature at which cells proximal to the anti-E7MC construct-nonproteinaceous moiety are killed.
CAR Effector Cell Preparation

[0458] The present invention in one aspect provides effector cells (such as lymphocytes, for example T cells) expressing an anti-E7MC CAR. Exemplary methods of preparing effector cells (such as T cells) expressing the anti-E7MC CARs (anti-E7MC CAR effector cells, such as anti-E7MC CAR T cells) are provided herein.

[0459] In some embodiments, an anti-E7MC CAR effector cell (such as T cell) can be generated by introducing a vector (including for example a lentiviral vector) comprising an anti-E7MC CAR (for example a CAR comprising an anti-E7MC antibody moiety and CD28 and CD3ζ intracellular signaling sequences) into the effector cell (such as T cell). In some embodiments, the anti-E7MC CAR effector cells (such as T cells) of the invention are able to replicate in vivo, resulting in long-term persistence that can lead to sustained control of an HPV16-E7-positive disease (such as cancer, e.g., squamous cell carcinoma, cervical cancer, or anal cancer).

[0460] In some embodiments, the invention relates to administering a genetically modified T cell expressing an anti-E7MC CAR for the treatment of a patient having an HPV16-E7-positive disease or at risk of having an HPV16-E7-positive disease using lymphocyte infusion. In some embodiments, autologous lymphocyte infusion is used in the treatment. Autologous PBMCs are collected from a patient in need of treatment and T cells are activated and expanded using the methods described herein and known in the art and then infused back into the patient.

[0461] In some embodiments, the anti-E7MC CAR T cell expresses an anti-E7MC CAR comprising an anti-E7MC antibody moiety (also referred to herein as an "anti-E7MC CAR T cell"). In some embodiments, the anti-E7MC CAR T cell expresses an anti-E7MC CAR comprising an extracellular domain comprising an anti-E7MC antibody moiety and an intracellular domain comprising intracellular signaling sequences of CD3ζ and CD28. The anti-E7MC CAR T cells of the invention can undergo robust in vivo T cell expansion and can establish E7MC-specific memory cells that persist at high levels for an extended amount of time in blood and bone marrow. In some embodiments, the anti-E7MC CAR T cells of the invention infused into a patient can eliminate E7MC-presenting cells, such as E7MC-presenting cancer cells, in vivo in patients having an HPV16-E7-positive disease. In some embodiments, the anti-E7MC CAR T cells of the invention infused into a patient can eliminate E7MC-presenting cells, such as E7MC-presenting cancer cells, in vivo in patients having an HPV16-E7-positive disease that is refractory to at least one conventional treatment.
Prior to expansion and genetic modification of the T cells, a source of T cells is obtained from a subject. T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In some embodiments of the present invention, any number of T cell lines available in the art may be used. In some embodiments of the present invention, T cells can be obtained from a unit of blood collected from a subject using any number of techniques known to the skilled artisan, such as Ficoll™ separation. In some embodiments, cells from the circulating blood of an individual are obtained by apheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. In some embodiments, the cells collected by apheresis may be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media for subsequent processing steps. In some embodiments, the cells are washed with phosphate buffered saline (PBS). In some embodiments, the wash solution lacks calcium and may lack magnesium or may lack many if not all divalent cations. As those of ordinary skill in the art would readily appreciate a washing step may be accomplished by methods known to those in the art, such as by using a semi-automated “flow-through” centrifuge (for example, the Cobe 2991 cell processor, the Baxter CytoMate, or the Haemonetics Cell Saver 5) according to the manufacturer’s instructions. After washing, the cells may be resuspended in a variety of biocompatible buffers, such as Ca²⁺-free, Mg²⁺-free PBS, PlasmaLyte A, or other saline solutions with or without buffer. Alternatively, the undesirable components of the apheresis sample may be removed and the cells directly resuspended in culture media.

In some embodiments, T cells are isolated from peripheral blood lymphocytes by lysing the red blood cells and depleting the monocytes, for example, by centrifugation through a PERCOLL™ gradient or by counterflow centrifugal elutriation. A specific subpopulation of T cells, such as CD3⁺, CD28⁺, CD4⁺, CD8⁺, CD45RA⁺, and CD45RO⁺ T cells, can be further isolated by positive or negative selection techniques. For example, in some embodiments, T cells are isolated by incubation with anti-CD3/anti-CD28 (i.e., 3x28)-conjugated beads, such as DYNABEADS® M-450 CD3/CD28 T, for a time period sufficient for positive selection of the desired T cells. In some embodiments, the time period is about 30 minutes. In some embodiments, the time period ranges from 30 minutes to 36 hours or longer and all integer values there between. In some embodiments, the time period is at least one, 2,
3, 4, 5, or 6 hours. In some embodiments, the time period is 10 to 24 hours. In some embodiments, the incubation time period is 24 hours. For isolation of T cells from patients with leukemia, use of longer incubation times, such as 24 hours, can increase cell yield. Longer incubation times may be used to isolate T cells in any situation where there are few T cells as compared to other cell types, such as in isolating tumor infiltrating lymphocytes (TIL) from tumor tissue or from immune-compromised individuals. Further, use of longer incubation times can increase the efficiency of capture of CD8^+ T cells. Thus, by simply shortening or lengthening the time T cells are allowed to bind to the CD3/CD28 beads and/or by increasing or decreasing the ratio of beads to T cells, subpopulations of T cells can be preferentially selected for or against at culture initiation or at other time points during the process. Additionally, by increasing or decreasing the ratio of anti-CD3 and/or anti-CD28 antibodies on the beads or other surface, subpopulations of T cells can be preferentially selected for or against at culture initiation or at other desired time points. The skilled artisan would recognize that multiple rounds of selection can also be used in the context of this invention. In some embodiments, it may be desirable to perform the selection procedure and use the "unselected" cells in the activation and expansion process. "Unselected" cells can also be subjected to further rounds of selection.

[0464] Enrichment of a T cell population by negative selection can be accomplished with a combination of antibodies directed to surface markers unique to the negatively selected cells. One method is cell sorting and/or selection via negative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, to enrich for CD4^+ cells by negative selection, a monoclonal antibody cocktail typically includes antibodies to CD 14, CD20, CD1 lb, CD 16, HLA-DR, and CD8. In some embodiments, it may be desirable to enrich for or positively select for regulatory T cells which typically express CD4^+, CD25^+, CD62Lhi, GITR^+, and FoxP3^+. Alternatively, in some embodiments, T regulatory cells are depleted by anti-CD25 conjugated beads or other similar methods of selection.

[0465] For isolation of a desired population of cells by positive or negative selection, the concentration of cells and surface (e.g., particles such as beads) can be varied. In some embodiments, it may be desirable to significantly decrease the volume in which beads and cells are mixed together (i.e., increase the concentration of cells), to ensure maximum contact of cells and beads. For example, in some embodiments, a concentration of about 2 billion cells/ml is used. In some embodiments, a concentration of about 1 billion cells/ml is used. In
some embodiments, greater than about 100 million cells/ml is used. In some embodiments, a concentration of cells of about any of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used. In some embodiments, a concentration of cells of about any of 75, 80, 85, 90, 95, or 100 million cells/ml is used. In some embodiments, a concentration of about 125 or about 150 million cells/ml is used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T cells, or from samples where there are many tumor cells present (i.e., leukemic blood, tumor tissue, etc.). Such populations of cells may have therapeutic value and would be desirable to obtain. For example, using high concentration of cells allows more efficient selection of CD8+ T cells that normally have weaker CD28 expression.

In some embodiments of the present invention, T cells are obtained from a patient directly following treatment. In this regard, it has been observed that following certain cancer treatments, in particular treatments with drugs that damage the immune system, shortly after treatment during the period when patients would normally be recovering from the treatment, the quality of T cells obtained may be optimal or improved for their ability to expand \textit{ex vivo}. Likewise, following \textit{ex vivo} manipulation using the methods described herein, these cells may be in a preferred state for enhanced engraftment and \textit{in vivo} expansion. Thus, it is contemplated within the context of the present invention to collect blood cells, including T cells, dendritic cells, or other cells of the hematopoietic lineage, during this recovery phase. Further, in some embodiments, mobilization (for example, mobilization with GM-CSF) and conditioning regimens can be used to create a condition in a subject wherein repopulation, recirculation, regeneration, and/or expansion of particular cell types is favored, especially during a defined window of time following therapy. Illustrative cell types include T cells, B cells, dendritic cells, and other cells of the immune system.

Whether prior to or after genetic modification of the T cells to express a desirable anti-E7MC CAR, the T cells can be activated and expanded generally using methods as described, for example, in U.S. Pat. Nos. 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and U.S. Patent Application Publication No. 20060121005.

Generally, the T cells of the invention are expanded by contact with a surface having attached thereto an agent that stimulates a CD3/TCR complex associated signal and a
ligand that stimulates a co-stimulatory molecule on the surface of the T cells. In particular, T cell populations may be stimulated, such as by contact with an anti-CD3 antibody, or antigen-binding fragment thereof, or an anti-CD2 antibody immobilized on a surface, or by contact with a protein kinase C activator (e.g., bryostatin) in conjunction with a calcium ionophore. For co-stimulation of an accessory molecule on the surface of the T cells, a ligand that binds the accessory molecule is used. For example, a population of T cells can be contacted with an anti-CD3 antibody and an anti-CD28 antibody, under conditions appropriate for stimulating proliferation of the T cells. To stimulate proliferation of either CD4+ T cells or CD8+ T cells, an anti-CD3 antibody and an anti-CD28 antibody. Examples of an anti-CD28 antibody include 9.3, B-T3, XR-CD28 (Diaclone, Besançon, France) can be used as can other methods commonly known in the art (Berg et al., Transplant Proc. 30(8):3975-3977, 1998; Haenen et al., J. Exp. Med. 190(9): 13191328, 1999; Garland et al., J. Immunol. Meth. 227(1-2):53-63, 1999).

Immunoclonal conjugate preparation

[0470] The anti-E7MC antibody moiety of an anti-E7MC immunoconjugate may be "attached to" the effector molecule by any means by which the anti-E7MC antibody moiety can be associated with, or linked to, the effector molecule. For example, the anti-E7MC antibody moiety of an anti-E7MC immunoconjugate may be attached to the effector molecule by chemical or recombinant means. Chemical means for preparing fusions or conjugates are known in the art and can be used to prepare the anti-E7MC immunoconjugate. The method used to conjugate the anti-E7MC antibody moiety and effector molecule must be capable of joining the binding protein with the effector molecule without interfering with the ability of the binding protein to bind to the antigen on the target cell.

[0471] The anti-E7MC antibody moiety of an anti-E7MC immunoconjugate may be linked indirectly to the effector molecule. For example, the anti-E7MC antibody moiety of an anti-E7MC immunoconjugate may be directly linked to a liposome containing the effector molecule of one of several types. The effector molecule(s) and/or the anti-E7MC antibody moiety may also be bound to a solid surface.
In some embodiments, the anti-E7MC antibody moiety of an anti-E7MC immunoconjugate and the effector molecule are both proteins and can be conjugated using techniques well known in the art. There are several hundred crosslinkers available that can conjugate two proteins. (See for example "Chemistry of Protein Conjugation and Crosslinking", 1991, Shans Wong, CRC Press, Ann Arbor). The crosslinker is generally chosen based on the reactive functional groups available or inserted on the anti-E7MC antibody moiety and/or effector molecule. In addition, if there are no reactive groups, a photoactivatable crosslinker can be used. In certain instances, it may be desirable to include a spacer between the anti-E7MC antibody moiety and the effector molecule. Crosslinking agents known to the art include the homobifunctional agents: glutaraldehyde, dimethyladipimidate and Bis(diazobenzidine) and the heterobifunctional agents: m-Maleimidobenzoyl-N-Hydroxysuccinimide and Sulfo-m Maleimidobenzoyl-N-Hydroxysuccinimide.

In some embodiments, the anti-E7MC antibody moiety of an anti-E7MC immunoconjugate may be engineered with specific residues for chemical attachment of the effector molecule. Specific residues used for chemical attachment of molecule known to the art include lysine and cysteine. The crosslinker is chosen based on the reactive functional groups inserted on the anti-E7MC antibody moiety, and available on the effector molecule.

An anti-E7MC immunoconjugate may also be prepared using recombinant DNA techniques. In such a case a DNA sequence encoding the anti-E7MC antibody moiety is fused to a DNA sequence encoding the effector molecule, resulting in a chimeric DNA molecule. The chimeric DNA sequence is transfected into a host cell that expresses the fusion protein. The fusion protein can be recovered from the cell culture and purified using techniques known in the art.

The radio- or other labels may be incorporated in the immunoconjugate in known ways. For example, the peptide may be biosynthesized or may be synthesized by chemical
amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as 99Tc or 125I, 186Re, 188Re and 111In can be attached via a cysteine residue in the peptide. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al., Biochem. Biophys. Res. Commun. 80:49-57 (1978)) can be used to incorporate iodine-123. "Monoclonal Antibodies in Immunoscinintigraphy" (Chatal, CRC Press 1989) describes other methods in detail.

Immunoconjugates of the antibody moiety and a cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridylthio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), iminobenzyl (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCl), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzyol) hexanediame), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl) ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238:1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methylidihytylene traminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See, e.g., WO94/1026. The linker may be a "cleavable linker" facilitating release of the cytotoxic drug in the cell. For example, an acid-labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chari et al., Cancer Research 52:127-131 (1992); U.S. Patent No. 5,208,020) may be used.

The anti-E7MC immunoconjugates of the invention expressly contemplate, but are not limited to, ADC prepared with cross-linker reagents: BMPS, EMCS, GMBS, HBVS, LC-SMCC, MBS, MBH, SBAP, SIA, SIAB, SMCC, SMPB, SMPH, sulfo-EMCS, sulfo-GMBS, sulfo-KMUS, sulfo-MBS, sulfo-SIAB, sulfo-SMCC, and sulfo-SMPB, and SVSB (succinimidyl-(4-vinylsulfone)benzoate) which are commercially available (e.g., from Pierce Biotechnology, Inc., Rockford, IL, U.S.A). See pages 467-498, 2003-2004 Applications Handbook and Catalog.

Pharmaceutical Compositions

Also provided herein are compositions (such as pharmaceutical compositions, also referred to herein as formulations) comprising an anti-E7MC construct. In some
embodiments, the composition further comprises a cell (such as an effector cell, e.g., a T cell) associated with the anti-E7MC construct. In some embodiments, there is provided a pharmaceutical composition comprising an anti-E7MC construct and a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutical composition further comprises a cell (such as an effector cell, e.g., a T cell) associated with the anti-E7MC construct.

[0480] Suitable formulations of the anti-E7MC constructs are obtained by mixing an anti-E7MC construct having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propylparaben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as olyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG). Exemplary formulations are described in WO98/56418, expressly incorporated herein by reference. Lyophilized formulations adapted for subcutaneous administration are described in WO97/04801. Such lyophilized formulations may be reconstituted with a suitable diluent to a high protein concentration and the reconstituted formulation may be administered subcutaneously to the individual to be treated herein. Lipofectins or liposomes can be used to deliver the anti-E7MC constructs of this invention into cells.

[0481] The formulation herein may also contain one or more active compounds in addition to the anti-E7MC construct as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. For example, it may be desirable to further provide an anti-neoplastic agent, a growth inhibitory agent, a cytotoxic agent, or a chemotherapeutic agent in addition to the anti-E7MC construct. Such
molecules are suitably present in combination in amounts that are effective for the purpose intended. The effective amount of such other agents depends on the amount of anti-E7MC construct present in the formulation, the type of disease or disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein or about from 1 to 99% of the heretofore employed dosages.

The anti-E7MC constructs may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980). Sustained-release preparations may be prepared.

Sustained-release preparations of the anti-E7MC constructs can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody (or fragment thereof), which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they can denature or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization of anti-E7MC constructs depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization can be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
In some embodiments, the anti-E7MC construct is formulated in a buffer comprising a citrate, NaCl, acetate, succinate, glycine, polysorbate 80 (Tween 80), or any combination of the foregoing. In some embodiments, the anti-E7MC construct is formulated in a buffer comprising about 100 mM to about 150 mM glycine. In some embodiments, the anti-E7MC construct is formulated in a buffer comprising about 50mM to about 100 mM NaCl. In some embodiments, the anti-E7MC construct is formulated in a buffer comprising about 10mM to about 50 mM acetate. In some embodiments, the anti-E7MC construct is formulated in a buffer comprising about 10mM to about 50 mM succinate. In some embodiments, the anti-E7MC construct is formulated in a buffer comprising about 0.005% to about 0.02% polysorbate 80. In some embodiments, the anti-E7MC construct is formulated in a buffer having a pH between about 5.1 and 5.6. In some embodiments, the anti-E7MC construct is formulated in a buffer comprising 10 mM citrate, 100 mM NaCl, 100mM glycine, and 0.01% polysorbate 80, wherein the formulation is at pH 5.5.

The formulations to be used for in vivo administration must be sterile. This is readily accomplished by, e.g., filtration through sterile filtration membranes.

Methods for treatment using anti-E7MC constructs

The anti-E7MC constructs and/or compositions of the invention can be administered to individuals (e.g., mammals such as humans) to treat a disease and/or disorder associated with HPV16-E7 expression (also referred to herein as an "HPV16-E7-positive" disease or disorder), including, for example, HPV16-E7-positive cancer (such as squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer). The present application thus in some embodiments provides a method of treating an HPV16-E7-positive disease (such as cancer, e.g., squamous cell carcinoma) in an individual comprising administering to the individual an effective amount of a composition (such as a pharmaceutical composition) comprising an anti-E7MC construct comprising an anti-E7MC antibody moiety, such as any one of the anti-E7MC constructs described herein. In some embodiments, the composition further comprises a cell (such as an effector cell) associated with the anti-E7MC construct. In some embodiments, the cancer is selected, for example, from the group consisting of squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer.
For example, in some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein. In some embodiments, the HPV16-E7 peptide is HPV16-E7 11-19 (SEQ ID NO: 4). In some embodiments, the MHC class I protein is HLA-A02. In some embodiments, the MHC class I protein is HLA-A*02:01. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the composition further comprises a cell (such as an effector cell) associated with the anti-E7MC construct. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 11-19 peptide (SEQ ID NO: 4) and HLA-A*02:01. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the composition further comprises a cell (such as an effector cell) associated with the anti-E7MC construct. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.
In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety comprises: i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the composition further comprises a cell (such as an effector cell) associated with the anti-E7MC construct. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety comprises: i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183,
an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the composition further comprises a cell (such as an effector cell) associated with the anti-E7MC construct. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

[0491] In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety comprises: i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-1, 19, 244, and 245; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-183; and iii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 184 or 185, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and iv) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 189 or 190, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 191.
NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the composition further comprises a cell (such as an effector cell) associated with the anti-E7MC antibody. In some embodiments, the composition further comprises a cell (such as an effector cell) associated with the anti-E7MC construct. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

[0492] In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety comprises: i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-1, 19, 244, and 245; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (for example about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the composition further comprises a cell (such as an effector cell) associated with the anti-E7MC...
construct. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety comprises: i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the composition further comprises a cell (such as an effector cell) associated with the anti-E7MC construct. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an anti-E7MC construct comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, wherein the anti-E7MC antibody moiety comprises a heavy chain variable domain
comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a
variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%,
or 99%) sequence identity, and a light chain variable domain comprising the amino acid
sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least
about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity. In
some embodiments, the anti-E7MC construct is non-naturally occurring. In some
embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the
anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments,
the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-
E7MC construct is an immunoconjugate. In some embodiments, the composition further
comprises a cell (such as an effector cell) associated with the anti-E7MC construct. In some
embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is,
for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar
cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments,
the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the
individual is human.

[0495] In some embodiments, there is provided a method of treating an HPV16-E7-positive
disease in an individual comprising administering to the individual an effective amount of a
composition comprising an anti-E7MC construct comprising an anti-E7MC antibody moiety
that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I
protein, wherein the anti-E7MC antibody moiety comprises a heavy chain variable domain
comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a
light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs:
36-56 and 238-243. In some embodiments, the anti-E7MC construct is non-naturally
occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some
embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In
some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some
embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the
composition further comprises a cell (such as an effector cell) associated with the anti-E7MC
construct. In some embodiments, the HPV16-E7-positive disease is cancer. In some
embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal
cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal
cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

[0496] In some embodiments of any of the methods for treating an HPV16-E7-positive disease described above, the anti-E7MC construct is conjugated to a cell (such as an immune cell, e.g., a T cell) prior to being administered to the individual. Thus, for example, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising a) conjugating any one of the anti-E7MC constructs described herein to a cell (such as an immune cell, e.g., a T cell) to form an anti-E7MC construct/cell conjugate, and b) administering to the individual an effective amount of a composition comprising the anti-E7MC construct/cell conjugate. In some embodiments, the cell is derived from the individual. In some embodiments, the cell is not derived from the individual. In some embodiments, the anti-E7MC construct is conjugated to the cell by covalent linkage to a molecule on the surface of the cell. In some embodiments, the anti-E7MC construct is conjugated to the cell by non-covalent linkage to a molecule on the surface of the cell. In some embodiments, the anti-E7MC construct is conjugated to the cell by insertion of a portion of the anti-E7MC construct into the outer membrane of the cell. In some embodiments, the anti-E7MC construct is non-naturally occurring. In some embodiments, the anti-E7MC construct is a full-length antibody. In some embodiments, the anti-E7MC construct is a multi-specific (such as bispecific) molecule. In some embodiments, the anti-E7MC construct is a chimeric antigen receptor. In some embodiments, the anti-E7MC construct is an immunoconjugate. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

[0497] In some embodiments, the individual is a mammal (e.g., human, non-human primate, rat, mouse, cow, horse, pig, sheep, goat, dog, cat, etc.). In some embodiments, the individual is a human. In some embodiments, the individual is a clinical patient, a clinical trial volunteer, an experimental animal, etc. In some embodiments, the individual is younger than about 60 years old (including for example younger than about any of 50, 40, 30, 25, 20, 15, or 10 years old). In some embodiments, the individual is older than about 60 years old (including for example older than about any of 70, 80, 90, or 100 years old). In some embodiments, the individual is diagnosed with or genetically prone to one or more of the
diseases or disorders described herein (such as squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer). In some embodiments, the individual has one or more risk factors associated with one or more diseases or disorders described herein.

[0498] The present application in some embodiments provides a method of delivering an anti-E7MC construct (such as any one of the anti-E7MC constructs described herein) to a cell presenting on its surface a complex comprising an HPV16-E7 peptide and an MHC class I protein in an individual, the method comprising administering to the individual a composition comprising the anti-E7MC construct. In some embodiments, the anti-E7MC construct to be delivered is associated with a cell (such as an effector cell, e.g., a T cell).

[0499] Many diagnostic methods for HPV16-E7-positive cancer (such as squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer) or any other disease exhibiting HPV16-E7 expression and the clinical delineation of those diseases are known in the art. Such methods include, but are not limited to, e.g., immunohistochemistry, PCR, and fluorescent in situ hybridization (FISH).

[0500] In some embodiments, the anti-E7MC constructs and/or compositions of the invention are administered in combination with a second, third, or fourth agent (including, e.g., an antineoplastic agent, a growth inhibitory agent, a cytotoxic agent, or a chemotherapeutic agent) to treat diseases or disorders involving HPV16-E7 expression. In some embodiments, the anti-E7MC construct is administered in combination with an agent that increases the expression of MHC class I proteins and/or enhances the surface presentation of HPV16-E7 peptides by MHC class I proteins. In some embodiments, the agent includes, for example, IFN receptor agonists, Hsp90 inhibitors, enhancers of p53 expression, and chemotherapeutic agents. In some embodiments, the agent is an IFN receptor agonist including, for example, IFNγ, IFNα, and IFNβ. In some embodiments, the agent is an Hsp90 inhibitor including, for example, tanespimycin (17-AAG), alvespimycin (17-DMAG), retaspimycin (IPI-504), IPI-493, CNF2024/BIIB021, MPC-3100, Debio 0932 (CUDC-305), PU-H71, Ganetespib (STA-9090), NVP-AUY922 (VER-52269), HSP990, KW-2478, AT13387, SNX-5422, DS-2248, and XL888. In some embodiments, the agent is an enhancer of p53 expression including, for example, 5-fluorouracil and nutlin-3. In some embodiments, the agent is a chemotherapeutic agent including, for example, topotecan, etoposide, cisplatin, paclitaxel, and vinblastine.
In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual, wherein the cells expressing HPV16-E7 do not normally present, or present at relatively low levels, a complex comprising an HPV16-E7 protein and an MHC class I protein on their surface, the method comprising administering to the individual a composition comprising an anti-E7MC construct in combination with an agent that increases the expression of MHC class I proteins and/or enhances the surface presentation of HPV16-E7 peptides by MHC class I proteins. In some embodiments, the agent includes, for example, IFN receptor agonists, Hsp90 inhibitors, enhancers of p53 expression, and chemotherapeutic agents. In some embodiments, the agent is an IFN receptor agonist including, for example, IFNy, IFNP, and IFNa. In some embodiments, the agent is an Hsp90 inhibitor including, for example, tanespimycin (17-AAG), alvespimycin (17-DMAG), retaspimycin (IPI-504), IPI-493, CNF2024/BIIBO21, MPC-3100, Debio 0932 (CUDC-305), PU-H71, Ganetespib (STA-9090), NVP-AUY922 (VER-52269), HSP990, KW-2478, AT13387, SNX-5422, DS-2248, and XL888. In some embodiments, the agent is an enhancer of p53 expression including, for example, 5-fluorouracil and nutlin-3. In some embodiments, the agent is a chemotherapeutic agent including, for example, topotecan, etoposide, cisplatin, paclitaxel, and vinblastine.

Cancer treatments can be evaluated, for example, by tumor regression, tumor weight or size shrinkage, time to progression, duration of survival, progression free survival, overall response rate, duration of response, quality of life, protein expression and/or activity. Approaches to determining efficacy of the therapy can be employed, including for example, measurement of response through radiological imaging.

In some embodiments, the efficacy of treatment is measured as the percentage tumor growth inhibition (% TGI), calculated using the equation 100-(T/C x 100), where T is the mean relative tumor volume of the treated tumor, and C is the mean relative tumor volume of a non-treated tumor. In some embodiments, the %TGI is about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, or more than 95%.

Dosing and Method of Administering the anti-E7MC construct Compositions

The dose of the anti-E7MC construct compositions administered to an individual (such as a human) may vary with the particular composition, the mode of administration, and the type of disease being treated. In some embodiments, the amount of the composition is effective to result in an objective response (such as a partial response or a complete
response). In some embodiments, the amount of the anti-E7MC construct composition is sufficient to result in a complete response in the individual. In some embodiments, the amount of the anti-E7MC construct composition is sufficient to result in a partial response in the individual. In some embodiments, the amount of the anti-E7MC construct composition administered (for example when administered alone) is sufficient to produce an overall response rate of more than about any of 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 64%, 65%, 70%, 75%, 80%, or 90% among a population of individuals treated with the anti-E7MC construct composition. Responses of an individual to the treatment of the methods described herein can be determined, for example, based on RECIST levels.

[0505] In some embodiments, the amount of the composition is sufficient to prolong progress-free survival of the individual. In some embodiments, the amount of the composition is sufficient to prolong overall survival of the individual. In some embodiments, the amount of the composition (for example when administered alone) is sufficient to produce clinical benefit of more than about any of 50%, 60%, 70%, or 77% among a population of individuals treated with the anti-E7MC construct composition.

[0506] In some embodiments, the amount of the composition, alone or in combination with a second, third, and/or fourth agent, is an amount sufficient to decrease the size of a tumor, decrease the number of cancer cells, or decrease the growth rate of a tumor by at least about any of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 100% compared to the corresponding tumor size, number of cancer cells, or tumor growth rate in the same subject prior to treatment or compared to the corresponding activity in other subjects not receiving the treatment. Standard methods can be used to measure the magnitude of this effect, such as in vitro assays with purified enzyme, cell-based assays, animal models, or human testing.

[0507] In some embodiments, the amount of the anti-E7MC construct (e.g., full-length anti-E7MC antibody, multi-specific anti-E7MC molecule, anti-E7MC CAR, or anti-E7MC immunoconjugate) in the composition is below the level that induces a toxicological effect (i.e., an effect above a clinically acceptable level of toxicity) or is at a level where a potential side effect can be controlled or tolerated when the composition is administered to the individual.

[0508] In some embodiments, the amount of the composition is close to a maximum tolerated dose (MTD) of the composition following the same dosing regimen. In some embodiments, the amount of the composition is more than about any of 80%, 90%, 95%, or 98% of the MTD.
In some embodiments, the amount of an anti-E7MC construct (e.g., full-length anti-E7MC antibody, multi-specific anti-E7MC molecule, anti-E7MC CAR, or anti-E7MC immunoconjugate) in the composition is included in a range of about 0.001 µg to about 1000 µg.

In some embodiments of any of the above aspects, the effective amount of an anti-E7MC construct (e.g., full-length anti-E7MC antibody, multi-specific anti-E7MC molecule, anti-E7MC CAR, or anti-E7MC immunoconjugate) in the composition is in the range of about 0.1 µg/kg to about 100 mg/kg of total body weight.

The anti-E7MC construct compositions can be administered to an individual (such as human) via various routes, including, for example, intravenous, intra-arterial, intraperitoneal, intrapulmonary, oral, inhalation, intravesicular, intramuscular, intra-tracheal, subcutaneous, intraocular, intrathecal, transmucosal, and transdermal. In some embodiments, sustained continuous release formulation of the composition may be used. In some embodiments, the composition is administered intravenously. In some embodiments, the composition is administered intraportally. In some embodiments, the composition is administered intraarterially. In some embodiments, the composition is administered intraperitoneally. In some embodiments, the composition is administered intrahepatically. In some embodiments, the composition is administered by hepatic arterial infusion.

Anti-E7MC CAR Effector Cell Therapy

The present application also provides methods of using an anti-E7MC CAR to redirect the specificity of an effector cell (such as a primary T cell) to a complex comprising an HPV16-E7 peptide and an MHC class I protein. Thus, the present invention also provides a method of stimulating an effector cell-mediated response (such as a T cell-mediated immune response) to a target cell population or tissue comprising E7MC-presenting cells in a mammal, comprising the step of administering to the mammal an effector cell (such as a T cell) that expresses an anti-E7MC CAR.

Anti-E7MC CAR effector cells (such as T cells) expressing the anti-E7MC CAR can be infused to a recipient in need thereof. The infused cell is able to kill E7MC-presenting cells in the recipient. In some embodiments, unlike antibody therapies, anti-E7MC CAR effector cells (such as T cells) are able to replicate *in vivo* resulting in long-term persistence that can lead to sustained tumor control.
In some embodiments, the anti-E7MC CAR effector cells are anti-E7MC CAR T cells that can undergo robust in vivo T cell expansion and can persist for an extended amount of time. In some embodiments, the anti-E7MC CAR T cells of the invention develop into specific memory T cells that can be reactivated to inhibit any additional tumor formation or growth.

The anti-E7MC CAR T cells of the invention may also serve as a type of vaccine for ex vivo immunization and/or in vivo therapy in a mammal. In some embodiments, the mammal is a human.

With respect to ex vivo immunization, of least one of the following occurs in vitro prior to administering the cell into a mammal: i) expansion of the cells, ii) introducing a nucleic acid encoding an anti-E7MC CAR to the cells, and/or iii) cryopreservation of the cells.

Ex vivo procedures are well known in the art and are discussed more fully below. Briefly, cells are isolated from a mammal (preferably a human) and genetically modified (i.e., transduced or transfected in vitro) with a vector expressing an anti-E7MC CAR disclosed herein. The anti-E7MC CAR cell can be administered to a mammalian recipient to provide a therapeutic benefit. The mammalian recipient may be a human and the anti-E7MC CAR cell can be autologous with respect to the recipient. Alternatively, the cells can be allogeneic, syngeneic or xenogeneic with respect to the recipient.

The procedure for ex vivo expansion of hematopoietic stem and progenitor cells is described in U.S. Pat. No. 5,199,942, incorporated herein by reference, can be applied to the cells of the present invention. Other suitable methods are known in the art, therefore the present invention is not limited to any particular method of ex vivo expansion of the cells. Briefly, ex vivo culture and expansion of T cells comprises: (1) collecting CD34+ hematopoietic stem and progenitor cells from a mammal from peripheral blood harvest or bone marrow explants; and (2) expanding such cells ex vivo. In addition to the cellular growth factors described in U.S. Pat. No. 5,199,942, other factors such as flt3-L, IL-1, IL-3 and c-kit ligand, can be used for culturing and expansion of the cells.

In addition to using a cell-based vaccine in terms of ex vivo immunization, the present invention also provides compositions and methods for in vivo immunization to elicit an immune response directed against an antigen in a patient.

The anti-E7MC CAR effector cells (such as T cells) of the present invention may be administered either alone, or as a pharmaceutical composition in combination with diluents.
and/or with other components such as IL-2 or other cytokines or cell populations. Briefly, pharmaceutical compositions of the present invention may comprise anti-E7MC CAR effector cells (such as T cells), in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextran, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (e.g., aluminum hydroxide); and preservatives. In some embodiments, anti-E7MC CAR effector cell (such as T cell) compositions are formulated for intravenous administration.

[0521] The precise amount of the anti-E7MC CAR effector cell (such as T cell) compositions of the present invention to be administered can be determined by a physician with consideration of individual differences in age, weight, tumor size, extent of infection or metastasis, and condition of the patient (subject). In some embodiments, a pharmaceutical composition comprising the anti-E7MC CAR effector cells (such as T cells) is administered at a dosage of about 10^4 to about 10^9 cells/kg body weight, such any of about 10^4 to about 10^5, about 10^5 to about 10^6, about 10^6 to about 10^7, about 10^7 to about 10^8, or about 10^8 to about 10^9 cells/kg body weight, including all integer values within those ranges. Anti-E7MC CAR effector cell (such as T cell) compositions may also be administered multiple times at these dosages. The cells can be administered by using infusion techniques that are commonly known in immunotherapy (see, e.g., Rosenberg et al., New Eng. J. of Med. 319:1676, 1988). The optimal dosage and treatment regimen for a particular patient can readily be determined by one skilled in the art of medicine by monitoring the patient for signs of disease and adjusting the treatment accordingly.

[0522] In some embodiments, it may be desired to administer activated anti-E7MC CAR T cells to a subject and then subsequently redraw blood (or have an apheresis performed), activate T cells therefrom according to the present invention, and reinfuse the patient with these activated and expanded T cells. This process can be carried out multiple times every few weeks. In some embodiments, T cells can be activated from blood draws of from 10 cc to 400 cc. In some embodiments, T cells are activated from blood draws of 20 cc, 30 cc, 40 cc, 50 cc, 60 cc, 70 cc, 80 cc, 90 cc, or 100 cc.

[0523] The administration of the anti-E7MC CAR effector cells (such as T cells) may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. The compositions described herein may be
administered to a patient subcutaneously, intradermally, intratumorally, intranodally, intramедullary, intramuscularly, by intravenous (i.v.) injection, or intraperitoneally. In some embodiments, the anti-E7MC CAR effector cell (such as T cell) compositions of the present invention are administered to a patient by intradermal or subcutaneous injection. In some embodiments, the anti-E7MC CAR effector cell (such as T cell) compositions of the present invention are administered by i.v. injection. The compositions of anti-E7MC CAR effector cells (such as T cells) may be injected directly into a tumor, lymph node, or site of infection.

Thus, for example, in some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an effector cell (such as a T cell) expressing an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein, b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence. In some embodiments, the HPV16-E7 peptide is HPV16-E7 11-19 (SEQ ID NO: 4). In some embodiments, the MHC class I protein is HLA-A02. In some embodiments, the MHC class I protein is HLA-A*02:01. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an effector cell (such as a T cell) expressing an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 11-19 peptide (SEQ ID NO: 4) and HLA-A*02:01, b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.
In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an effector cell (such as a T cell) expressing an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of SEQ ID NO: 191, or a variant thereof comprising up to about 3 (for example about any of 1, 2, or 3) amino acid substitutions, b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an effector cell (such as a T cell) expressing an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of SEQ ID NO: 183, an HC-CDR2 comprising the amino acid sequence of SEQ ID NO: 184 or 185, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 186-188; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of SEQ ID NO: 189 or 190, and an LC-CDR3
comprising the amino acid sequence of SEQ ID NO: 191, b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

[0528] In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an effector cell (such as a T cell) expressing an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.
In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an effector cell (such as a T cell) expressing an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the HC-CDR sequences; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions in the LC-CDR sequences; b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an effector cell (such as a T cell) expressing an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain sequence comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77; an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98; and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; and ii) a light chain variable domain sequence comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246; an LC-CDR2 comprising the amino acid sequence of
sequence of any one of SEQ ID NOs: 141-161; and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

[0531] In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an effector cell (such as a T cell) expressing an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising i) a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% (for example at least about any of 96%, 97%, 98%, or 99%) sequence identity, and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% (including for example at least about any of 96%, 97%, 98%, or 99%) sequence identity; b) a transmembrane domain, and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

[0532] In some embodiments, there is provided a method of treating an HPV16-E7-positive disease in an individual comprising administering to the individual an effective amount of a composition comprising an effector cell (such as a T cell) expressing an anti-E7MC CAR comprising a) an extracellular domain comprising an anti-E7MC antibody moiety that specifically binds to a complex comprising an HPV16-E7 peptide and an MHC class I protein comprising a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243; b) a transmembrane domain,
and c) an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence. In some embodiments, the HPV16-E7-positive disease is cancer. In some embodiments, the cancer is, for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer. In some embodiments, the cancer is an HPV16-E7-positive squamous cell carcinoma. In some embodiments, the individual is human.

Cancers

[0533] The anti-E7MC constructs and anti-E7MC CAR cells in some embodiments can be useful for treating HPV16-E7-positive cancer. Cancers that may be treated using any of the methods described herein include tumors that are not vascularized, or not yet substantially vascularized, as well as vascularized tumors. The cancers may comprise non-solid tumors (such as hematological tumors, for example, leukemias and lymphomas) or may comprise solid tumors. Types of cancers to be treated with the anti-E7MC constructs and anti-E7MC CAR cells of the invention include, but are not limited to, carcinoma, blastoma, and sarcoma, and certain leukemia or lymphoid malignancies, benign and malignant tumors, and malignancies e.g., sarcomas, carcinomas, and melanomas. Adult tumors/cancers and pediatric tumors/cancers are also included.

[0534] Hematologic cancers are cancers of the blood or bone marrow. Examples of hematological (or hematogenous) cancers include leukemias, including acute leukemias (such as acute lymphocytic leukemia, acute myelocytic leukemia, acute myelogenous leukemia and myeloblasts, promyelocytic, myelomonocytic, monocytic and erythroleukemia), chronic leukemias (such as chronic myelocytic [granulocytic] leukemia, chronic myelogenous leukemia, and chronic lymphocytic leukemia), polycythemia vera, lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma (indolent and high grade forms), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, myelodysplastic syndrome, hairy cell leukemia and myelodysplasia.

[0535] Solid tumors are abnormal masses of tissue that usually do not contain cysts or liquid areas. Solid tumors can be benign or malignant. Different types of solid tumors are named for the type of cells that form them (such as sarcomas, carcinomas, and lymphomas). Examples of solid tumors, such as sarcomas and carcinomas, include fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteosarcoma, and other sarcomas, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma,
lymphoid malignancy, pancreatic cancer, breast cancer, lung cancers, ovarian cancer, prostate cancer, hepatocellular carcinoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, medullary thyroid carcinoma, papillary thyroid carcinoma, pheochromocytoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, Wilms' tumor, cervical cancer (e.g., cervical carcinoma and pre-invasive cervical dysplasia), cancer of the anus, anal canal, or anorectum, vaginal cancer, cancer of the vulva (e.g., squamous cell carcinoma, intraepithelial carcinoma, adenocarcinoma, and fibrosarcoma), penile cancer, oropharyngeal cancer, head cancers (e.g., squamous cell carcinoma), neck cancers (e.g., squamous cell carcinoma), testicular cancer (e.g., seminoma, teratoma, embryonal carcinoma, teratocarcinoma, choriocarcinoma, sarcoma, Leydig cell tumor, fibroma, fibroadenoma, adenomatoid tumors, and lipoma), bladder carcinoma, melanoma, cancer of the uterus (e.g., endometrial carcinoma), urothelial cancers (e.g., squamous cell carcinoma, transitional cell carcinoma, adenocarcinoma, ureter cancer, and urinary bladder cancer), and CNS tumors (such as a glioma (such as brainstem glioma and mixed gliomas), glioblastoma (also known as glioblastoma multiforme) astrocytoma, CNS lymphoma, germinoma, medulloblastoma, Schwannoma craniopharygioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendrogioma, menangioma, neuroblastoma, retinoblastoma and brain metastases).

Cancer treatments can be evaluated, for example, by tumor regression, tumor weight or size shrinkage, time to progression, duration of survival, progression free survival, overall response rate, duration of response, quality of life, protein expression and/or activity. Approaches to determining efficacy of the therapy can be employed, including for example, measurement of response through radiological imaging.
Methods for Diagnosis and Imaging Using anti-E7MC constructs

Labeled anti-E7MC antibody moieties and derivatives and analogs thereof, which specifically bind to an E7MC on the surface of a cell, can be used for diagnostic purposes to detect, diagnose, or monitor diseases and/or disorders associated with the expression of HPV16-E7, including any of the diseases and disorders described above, such as cancer. For example, the anti-E7MC antibody moieties of the invention can be used in in situ, in vivo, ex vivo, and in vitro diagnostic assays or imaging assays.

Additional embodiments of the invention include methods of diagnosing a disease or disorder associated with expression of HPV16-E7 in an individual (e.g., a mammal such as a human). The methods comprise detecting E7MC-presenting cells in the individual. In some embodiments, there is provided a method of diagnosing a disease or disorder associated with expression of HPV16-E7 in an individual (e.g., a mammal, such as a human) comprising (a) administering an effective amount of a labeled anti-E7MC antibody moiety according to any of the embodiments described above to the individual; and (b) determining the level of the label in the individual, such that a level of the label above a threshold level indicates that the individual has the disease or disorder. The threshold level can be determined by various methods, including, for example, by detecting the label according to the method of diagnosing described above in a first set of individuals that have the disease or disorder and a second set of individuals that do not have the disease or disorder, and setting the threshold to a level that allows for discrimination between the first and second sets. In some embodiments, the threshold level is zero, and the method comprises determining the presence or absence of the label in the individual. In some embodiments, the method further comprises waiting for a time interval following the administering of step (a) to permit the labeled anti-E7MC antibody moiety to preferentially concentrate at sites in the individual where the E7MC is expressed (and for unbound labeled anti-E7MC antibody moiety to be cleared). In some embodiments, the method further comprises subtracting a background level of the label. Background level can be determined by various methods, including, for example, by detecting the label in the individual prior to administration of the labeled anti-E7MC antibody moiety, or by detecting the label according to the method of diagnosing described above in an individual that does not have the disease or disorder. In some embodiments, the disease or disorder is cancer. In some embodiments, the cancer is selected, for example, from the group consisting of squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer.
Anti-E7MC antibody moieties of the invention can be used to assay levels of E7MC-presenting cell in a biological sample using methods known to those of skill in the art. Suitable antibody labels are known in the art and include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine (\(^{131}\)I, \(^{125}\)I, \(^{123}\)I, \(^{121}\)I), carbon (\(^{14}\)C), sulfur (\(^{35}\)S), tritium (\(^{3}\)H), indium (\(^{115}\)In, \(^{113}\)In, \(^{112}\)In, \(^{111}\)In), technetium (\(^{99}\)Tc, \(^{99m}\)Tc), thallium (\(^{201}\)Ti), gallium (\(^{68}\)Ga, \(^{67}\)Ga), palladium (\(^{103}\)Pd), molybdenum (\(^{99}\)Mo), xenon (\(^{133}\)Xe), fluorine (\(^{18}\)F), samarium (\(^{153}\)Sm), lutetium (\(^{177}\)Lu), gadolinium (\(^{159}\)Gd), promethium (\(^{149}\)Pm), lanthanum (\(^{140}\)La), ytterbium (\(^{175}\)Yb), holmium (\(^{166}\)Ho), yttrium (\(^{90}\)Y), scandium (\(^{47}\)Sc), rhenium (\(^{186}\)Re, \(^{188}\)Re), praseodymium (\(^{142}\)Pr), rhodium (\(^{103}\)Rh), and ruthenium (\(^{97}\)Ru); luminol; fluorescent labels, such as fluorescein and rhodamine; and biotin.

Techniques known in the art may be applied to labeled anti-E7MC antibody moieties of the invention. Such techniques include, but are not limited to, the use of bifunctional conjugating agents (see e.g., U.S. Pat. Nos. 5,756,065; 5,714,631; 5,696,239; 5,652,361; 5,505,931; 5,489,425; 5,435,990; 5,428,139; 5,342,604; 5,274,119; 4,994,560; and 5,808,003). Aside from the above assays, various in vivo and ex vivo assays are available to the skilled practitioner. For example, one can expose cells within the body of the subject to an anti-E7MC antibody moiety which is optionally labeled with a detectable label, e.g., a radioactive isotope, and binding of the anti-E7MC antibody moiety to the cells can be evaluated, e.g., by external scanning for radioactivity or by analyzing a sample (e.g., a biopsy or other biological sample) derived from a subject previously exposed to the anti-E7MC antibody moiety.

Articles of Manufacture and Kits

In some embodiments of the invention, there is provided an article of manufacture containing materials useful for the treatment of an HPV16-E7-positive disease such as cancer (for example, squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer), for delivering an anti-E7MC construct to a cell presenting an E7MC on its surface, or for isolation or detection of E7MC-presenting cells in an individual. The article of manufacture can comprise a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, etc. The containers may be formed from a variety of materials such as glass or plastic. Generally, the container holds a composition which is effective for treating a disease or disorder described herein, and may have a sterile access port.
(for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is an anti-E7MC construct of the invention. The label or package insert indicates that the composition is used for treating the particular condition. The label or package insert will further comprise instructions for administering the anti-E7MC construct composition to the patient. Articles of manufacture and kits comprising combinatorial therapies described herein are also contemplated.

[0542] Package insert refers to instructions customarily included in commercial packages of therapeutic products that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products. In some embodiments, the package insert indicates that the composition is used for treating HPV16-E7-positive cancer (such as squamous cell carcinoma, cervical cancer, anal cancer, vaginal cancer, vulvar cancer, penile cancer, head and neck cancer, or oropharyngeal cancer).

[0543] Additionally, the article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.

[0544] Kits are also provided that are useful for various purposes, e.g., for treatment of an HPV16-E7-positive disease or disorder described herein, for delivering an anti-E7MC construct to a cell presenting an E7MC on its surface, or for isolation or detection of E7MC-presenting cells in an individual, optionally in combination with the articles of manufacture. Kits of the invention include one or more containers comprising an anti-E7MC construct composition (or unit dosage form and/or article of manufacture), and in some embodiments, further comprise another agent (such as the agents described herein) and/or instructions for use in accordance with any of the methods described herein. The kit may further comprise a description of selection of individuals suitable for treatment. Instructions supplied in the kits of the invention are typically written instructions on a label or package insert (e.g., a paper sheet included in the kit), but machine-readable instructions (e.g., instructions carried on a magnetic or optical storage disk) are also acceptable.

[0545] For example, in some embodiments, the kit comprises a composition comprising an anti-E7MC construct (e.g., a full-length anti-E7MC antibody, a multi-specific anti-E7MC
molecule (such as a bispecific anti-E7MC antibody), or an anti-E7MC immunoconjugate). In some embodiments, the kit comprises a) a composition comprising an anti-E7MC construct, and b) an effective amount of at least one other agent, wherein the other agent increases the expression of MHC class I proteins and/or enhances the surface presentation of HPV16-E7 peptides by MHC class I proteins (e.g., IFNy, IFNP, IFNa, or Hsp90 inhibitor). In some embodiments, the kit comprises a) a composition comprising an anti-E7MC construct, and b) instructions for administering the anti-E7MC construct composition to an individual for treatment of an HPV16-E7-positive disease, including for example squamous cell carcinoma, cervical cancer, or anal cancer. In some embodiments, the kit comprises a) a composition comprising an anti-E7MC construct, b) an effective amount of at least one other agent, wherein the other agent increases the expression of MHC class I proteins and/or enhances the surface presentation of HPV16-E7 peptides by MHC class I proteins (e.g., IFNy, IFNP, IFNa, or Hsp90 inhibitor), and c) instructions for administering the anti-E7MC construct composition and the other agent(s) to an individual for treatment of an HPV16-E7-positive disease, including for example squamous cell carcinoma, cervical cancer, or anal cancer. The anti-E7MC construct and the other agent(s) can be present in separate containers or in a single container. For example, the kit may comprise one distinct composition or two or more compositions wherein one composition comprises an anti-E7MC construct and another composition comprises another agent.

[0546] In some embodiments, the kit comprises a) a composition comprising an anti-E7MC construct (e.g., a full-length anti-E7MC antibody, a multi-specific anti-E7MC molecule (such as a bispecific anti-E7MC antibody), or an anti-E7MC immunoconjugate), and b) instructions for combining the anti-E7MC construct with cells (such as cells, e.g., immune cells, derived from an individual) to form a composition comprising anti-E7MC construct/cell conjugates and administering the anti-E7MC construct/cell conjugate composition to the individual for treatment of an HPV16-E7-positive disease (including for example squamous cell carcinoma, cervical cancer, or anal cancer). In some embodiments, the kit comprises a) a composition comprising an anti-E7MC construct, and b) a cell (such as a cytotoxic cell). In some embodiments, the kit comprises a) a composition comprising an anti-E7MC construct, b) a cell (such as a cytotoxic cell), and c) instructions for combining the anti-E7MC construct with the cell to form a composition comprising anti-E7MC construct/cell conjugates and administering the anti-E7MC construct/cell conjugate composition to an individual for the treatment of an HPV16-E7-positive disease, including for example squamous cell carcinoma,
cervical cancer, or anal cancer. In some embodiments, the kit comprises a composition comprising an anti-E7MC construct in association with a cell (such as a cytotoxic cell). In some embodiments, the kit comprises a) a composition comprising an anti-E7MC construct in association with a cell (such as a cytotoxic cell), and b) instructions for administering the composition to an individual for the treatment of an HPV16-E7-positive disease, including for example squamous cell carcinoma, cervical cancer, or anal cancer. In some embodiments, the kit comprises a) a composition comprising a nucleic acid (or set of nucleic acids) encoding an anti-E7MC construct (e.g., a full-length anti-E7MC antibody, a multi-specific anti-E7MC molecule (such as a bispecific anti-E7MC antibody), an anti-E7MC CAR, or an anti-E7MC immunoconjugate) or polypeptide portions thereof. In some embodiments, the kit comprises a) a nucleic acid (or set of nucleic acids) encoding an anti-E7MC construct or polypeptide portions thereof, and b) a host cell (such as an effector cell) for expressing the nucleic acid (or set of nucleic acids). In some embodiments, the kit comprises a) a nucleic acid (or set of nucleic acids) encoding an anti-E7MC construct or polypeptide portions thereof, and b) instructions for i) expressing the anti-E7MC construct in a host cell (such as an effector cell, e.g., a T cell), ii) preparing a composition comprising the anti-E7MC construct or the host cell expressing the anti-E7MC construct, and iii) administering the composition comprising the anti-E7MC construct or the host cell expressing the anti-E7MC construct to an individual for the treatment of an HPV16-E7-positive disease, including for example squamous cell carcinoma, cervical cancer, or anal cancer. In some embodiments, the kit comprises a) a nucleic acid (or set of nucleic acids) encoding an anti-E7MC construct or polypeptide portions thereof, b) a host cell (such as an effector cell) for expressing the nucleic acid (or set of nucleic acids), and c) instructions for i) expressing the anti-E7MC construct in the host cell, ii) preparing a composition comprising the anti-E7MC construct or the host cell expressing the anti-E7MC construct, and iii) administering the composition comprising the anti-E7MC construct or the host cell expressing the anti-E7MC construct to an individual for the treatment of an HPV16-E7-positive disease, including for example squamous cell carcinoma, cervical cancer, or anal cancer.
In some embodiments, the kit comprises a nucleic acid encoding an anti-E7MC CAR. In some embodiments, the kit comprises a vector comprising a nucleic acid encoding an anti-E7MC CAR. In some embodiments, the kit comprises a) a vector comprising a nucleic acid encoding an anti-E7MC CAR, and b) instructions for i) introducing the vector into effector cells, such as T cells derived from an individual, ii) preparing a composition comprising the anti-E7MC CAR effector cells, and iii) administering the anti-E7MC CAR effector cell composition to the individual for treatment of an HPV16-E7-positive disease, including for example squamous cell carcinoma, cervical cancer, or anal cancer.

The kits of the invention are in suitable packaging. Suitable packaging includes, but is not limited to, vials, bottles, jars, flexible packaging (e.g., sealed Mylar or plastic bags), and the like. Kits may optionally provide additional components such as buffers and interpretative information. The present application thus also provides articles of manufacture, which include vials (such as sealed vials), bottles, jars, flexible packaging, and the like.

The instructions relating to the use of the anti-E7MC construct compositions generally include information as to dosage, dosing schedule, and route of administration for the intended treatment. The containers may be unit doses, bulk packages (e.g., multi-dose packages) or sub-unit doses. For example, kits may be provided that contain sufficient dosages of an anti-E7MC construct (e.g., a full-length anti-E7MC antibody, a multi-specific anti-E7MC molecule (such as a bispecific anti-E7MC antibody), an anti-E7MC CAR, or an anti-E7MC immunoconjugate) as disclosed herein to provide effective treatment of an individual for an extended period, such as any of a week, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 4 months, 5 months, 7 months, 8 months, 9 months, or more. Kits may also include multiple unit doses of the anti-E7MC construct and pharmaceutical compositions and instructions for use and packaged in quantities sufficient for storage and use in pharmacies, for example, hospital pharmacies and compounding pharmacies.
EXEMPLARY EMBODIMENTS

[0551] Embodiment 1. In some embodiments, there is provided an isolated anti-E7MC construct comprising an antibody moiety that specifically binds to a complex comprising human papilloma virus subtype 16 (HPV16) E7 peptide and a major histocompatibility (MHC) class I protein (an HPV16-E7/MHC class I complex, or E7MC).

[0552] Embodiment 2. In some further embodiments of embodiment 1, the HPV16-E7/MHC class I complex is present on a cell surface.

[0553] Embodiment 3. In some further embodiments of embodiment 1, the HPV16-E7/MHC class I complex is present on the surface of a cancer cell.

[0554] Embodiment 4. In some further embodiments of any one of embodiments 1-3, the MHC class I protein is human leukocyte antigen (HLA)-A.

[0555] Embodiment 5. In some further embodiments of embodiment 4, the MHC class I protein is HLA-A02.

[0556] Embodiment 6. In some further embodiments of embodiment 5, the MHC class I protein is selected from the group consisting of HLA-A*02:01, HLA-A*02:02, HLA-A*02:06, HLA-A*02:07, and HLA-A*02:11.

[0557] Embodiment 7. In some further embodiments of embodiment 6, the MHC class I protein is HLA-A*02:01.

[0558] Embodiment 8. In some further embodiments of any one of embodiments 1-7, the antibody moiety cross-reacts with a complex comprising the HPV16-E7 peptide and a second MHC class I protein having a different HLA allele than the MHC class I protein.

[0559] Embodiment 9. In some further embodiments of any one of embodiments 1-8, the HPV16-E7 peptide is 8 to 12 amino acids in length.

[0560] Embodiment 10. In some further embodiments of any one of embodiments 1-9, the HPV16-E7 peptide is derived from the E7 protein of human papilloma virus subtype 16.

[0561] Embodiment 11. In some further embodiments of any one of embodiments 1-10, the HPV16-E7 peptide has an amino acid sequence selected from the group consisting of SEQ ID NOs: 3-14.

[0562] Embodiment 12. In some further embodiments of embodiment 10, the HPV16-E7 peptide has the amino acid sequence of YMLDLQPET (SEQ ID NO: 4).
[0563] Embodiment 13. In some further embodiments of embodiment 12, the isolated anti-E7MC construct cross-reacts with a complex comprising a variant of the HPV16-E7 peptide having the amino acid sequence of YMLDVQPET (SEQ ID NO: 11) and the MHC class I protein.

[0564] Embodiment 14. In some further embodiments of any one of embodiments 1-13, the antibody moiety is human, humanized, or semi-synthetic.

[0565] Embodiment 15. In some further embodiments of any one of embodiments 1-14, the antibody moiety is a full-length antibody, a Fab, a Fab', a (Fab')2, an Fv, or a single chain Fv (scFv).

[0566] Embodiment 16. In some further embodiments of any one of embodiments 1-15, the antibody moiety binds to the HPV16-E7/MHC class I complex with an equilibrium dissociation constant (Kd) from about 0.1 pM to about 500 nM.

[0567] Embodiment 17. In some further embodiments of any one of embodiments 1-16, the isolated anti-E7MC construct binds to the HPV16-E7/MHC class I complex with a Kd from about 0.1 pM to about 500 nM.

[0568] Embodiment 18. In some further embodiments of any one of embodiments 1-17, the antibody moiety comprises:

 i) a heavy chain variable domain comprising a heavy chain complementarity determining region (HC-CDR) 1 comprising the amino acid sequence of G-F/G/Y-S/T-F-S/T-S-Y-A/G (SEQ ID NO: 183), or a variant thereof comprising up to about 3 amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of I-N/I-P-X-X-G-G/T/I-T/A/P or I-S-X-S/D-G/N-G/S-N-T/I/K (SEQ ID NO: 184 or 185), or a variant thereof comprising up to about 3 amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of A-R-S/R-Y/S/G-Y/V-Y/W-G-X-Y-D, A-R-G-X-X-Y-Y/G/S, or A-R-G-X-X-Y-QAV-W-S-X-D-D (SEQ ID NOs: 186-188), or a variant thereof comprising up to about 3 amino acid substitutions; and

 ii) a light chain variable domain comprising a light chain complementarity determining region (LC-CDR) 1 comprising the amino acid sequence of N-I-G-S-N/K or L-R-S/N-X-Y (SEQ ID NO: 189 or 190), or a variant thereof comprising up to about 3 amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of A/Q/N-S/A/V-W/Y/R-D-S/D-S-L/S/G-X-X-V (SEQ ID NO: 191), or a variant thereof comprising up to about 3 amino acid substitutions, wherein X can be any amino acid.

186
Embodiment 19. In some further embodiments of any one of embodiments 1-17, the antibody moiety comprises:

i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-1 19, 244, and 245; or a variant thereof comprising up to about 5 amino acid substitutions; and

ii) a light chain variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 amino acid substitutions.

Embodiment 20. In some further embodiments of any one of embodiments 1-17, the antibody moiety comprises:

i) a heavy chain (HC) variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-1 19, 244, and 245; or a variant thereof comprising up to about 5 amino acid substitutions in the HC-CDR regions; and

ii) a light chain (LC) variable domain comprising an LC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 amino acid substitutions in the LC-CDR regions.

Embodiment 21. In some further embodiments of embodiment 19 or 20, the antibody moiety comprises a) a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% sequence identity to any one of SEQ ID NOs: 15-35 and 233-237; and b) a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-
56 and 238-243, or a variant thereof having at least about 95% sequence identity to any one of SEQ ID NOs: 36-56 and 238-243.

[0572] Embodiment 22. In some further embodiments of embodiment 21, the antibody moiety comprises a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237 and a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243.

[0573] Embodiment 23. In some further embodiments of any one of embodiments 1-22, the isolated anti-E7MC construct is a full-length antibody.

[0574] Embodiment 24. In some further embodiments of any one of embodiments 1-23, the isolated anti-E7MC construct is monospecific.

[0575] Embodiment 25. In some further embodiments of any one of embodiments 1-23, the isolated anti-E7MC construct is multispecific.

[0576] Embodiment 26. In some further embodiments of embodiment 25, the isolated anti-E7MC construct is bispecific.

[0577] Embodiment 27. In some further embodiments of embodiment 25 or 26, the isolated anti-E7MC construct is a tandem scFv, a diabody (Db), a single chain diabody (scDb), a dual-affinity retargeting (DART) antibody, a dual variable domain (DVD) antibody, a knob-into-hole (KiH) antibody, a dock and lock (DNL) antibody, a chemically cross-linked antibody, a heteromultimeric antibody, or a heteroconjugate antibody.

[0578] Embodiment 28. In some further embodiments of embodiment 27, the isolated anti-E7MC construct is a tandem scFv comprising two scFvs linked by a peptide linker.

[0579] Embodiment 29. In some further embodiments of embodiment 28, the peptide linker comprises the amino acid sequence GGGGS.

[0580] Embodiment 30. In some further embodiments of any one of embodiments 25-29, the isolated anti-E7MC construct further comprises a second antibody moiety that specifically binds to a second antigen.

[0581] Embodiment 31. In some further embodiments of embodiment 30, the second antigen is an antigen on the surface of a T cell.

[0582] Embodiment 32. In some further embodiments of embodiment 31, the second antigen is selected from the group consisting of CD3y, CD35, CD3s, CD3C, CD28, OX40, GITR, CD137, CD27, CD40L and HVEM.

[0583] Embodiment 33. In some further embodiments of embodiment 31, the second antigen is CD3s, and wherein the isolated anti-E7MC construct is a tandem scFv comprising
an N-terminal scFv specific for the HPV16-E7/MHC class I complex and a C-terminal scFv specific for CD3s.

Embodiment 34. In some further embodiments of embodiment 31, the T cell is selected from the group consisting of a cytotoxic T cell, a helper T cell, and a natural killer T cell.

Embodiment 35. In some further embodiments of embodiment 30, the second antigen is an antigen on the surface of a natural killer cell, a neutrophil, a monocyte, a macrophage or a dendritic cell.

Embodiment 36. In some further embodiments of any one of embodiments 1-41, the isolated anti-E7MC construct is a chimeric antigen receptor.

Embodiment 37. In some further embodiments of embodiment 36, the chimeric antigen receptor comprises an extracellular domain comprising the antibody moiety, a transmembrane domain, and an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

Embodiment 38. In some further embodiments of any one of embodiments 1-41, the isolated anti-E7MC construct is an immunoconjugate comprising the antibody moiety and an effector molecule.

Embodiment 39. In some further embodiments of embodiment 37, the effector molecule is a therapeutic agent selected from the group consisting of a drug, a toxin, a radioisotope, a protein, a peptide, and a nucleic acid.

Embodiment 40. In some further embodiments of embodiment 39, the therapeutic agent is a drug or a toxin.

Embodiment 41. In some further embodiments of embodiment 38, the effector molecule is a label.

Embodiment 42. In some embodiments, there is provided a pharmaceutical composition comprising the isolated anti-E7MC construct of any one of embodiments 1-40.

Embodiment 43. In some embodiments, there is provided a host cell expressing the isolated anti-E7MC construct of any one of embodiments 1-41.

Embodiment 44. In some embodiments, there is provided a nucleic acid encoding the polypeptide components of the isolated anti-E7MC construct of any one of embodiments 1-41.

Embodiment 45. In some embodiments, there is provided a vector comprising the nucleic acid of embodiment 44.
Embodiment 46. In some embodiments, there is provided an effector cell expressing the isolated anti-E7MC construct of embodiment 36 or 37.

Embodiment 47. In some further embodiments of embodiment 46, the effector cell is a T cell.

Embodiment 48. In some embodiments, there is provided a method for detecting a cell presenting a complex comprising an HPV16-E7 peptide and an MHC class I protein on its surface, comprising contacting the cell with the isolated anti-E7MC construct of embodiment 41 and detecting the presence of the label on the cell.

Embodiment 49. In some embodiments, there is provided a method for treating an individual having an HPV16-E7-positive disease, comprising administering to the individual an effective amount of the pharmaceutical composition of embodiment 42.

Embodiment 50. In some embodiments, there is provided a method for treating an individual having an HPV16-E7-positive disease, comprising administering to the individual an effective amount of the effector cell of embodiment 46 or 47.

Embodiment 51. In some embodiments, there is provided a method of diagnosing an individual having an HPV16-E7-positive disease, comprising:

 a) administering an effective amount of the isolated anti-E7MC construct of embodiment 41 to the individual; and

 b) determining the level of the label in the individual, wherein a level of the label above a threshold level indicates that the individual has the HPV16-E7-positive disease.

Embodiment 52. In some embodiments, there is provided a method of diagnosing an individual having an HPV16-E7-positive disease, comprising:

 a) contacting a sample derived from the individual with the isolated anti-E7MC construct of embodiment 41; and

 b) determining the number of cells bound with the isolated anti-E7MC construct in the sample, wherein a value for the number of cells bound with the isolated anti-E7MC construct above a threshold level indicates that the individual has the HPV16-E7-positive disease.

Embodiment 53. In some further embodiments of embodiments 49-52, the HPV16-E7-positive disease is HPV16-E7-positive cancer.

Embodiment 54. In some further embodiments of embodiment 53, the HPV16-E7-positive cancer is squamous cell carcinoma.
Embodyment 55. In some further embodiments of embodiment 53, the HPV16-E7-positive cancer is cervical cancer, anogenital cancer, head and neck cancer, or oropharyngeal cancer.

EXEMPLARY

Those skilled in the art will recognize that several embodiments are possible within the scope and spirit of this invention. The invention will now be described in greater detail by reference to the following non-limiting examples. The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.

Matteials

Cell Samples, Cell Lines, and Antibodies

The cell lines include: CaSki (ATCC CRL-1550; HLA-A2+, HPV16+), head and neck squamous cell carcinoma cell line UM-SCC-104 (Millipore; HLA-A2+, HPV16+), liver adenocarcinoma cell line SK-HEP-1 (ATCC HTB-52; HLA-A2+, HPV16+), cervical squamous cell carcinoma cell line SiHa (ATCC HTB-35; HLA-A2+, HPV16+), cervical cancer cell line C33A (ATCC HTB-31; HLA-A2+, HPV16+), cervical carcinoma cell line MS-751 (ATCC HTB-34; HLA-A2+, HPV16+), cervical adenocarcinoma cell line HeLa (ATCC CCL-2; HLA-A2+, HPV16+), hepatocellular carcinoma cell line Hep3B (ATCC HB-8064; HLA-A2+, HPV16+), hepatocellular carcinoma cell line HepG2 (ATCC HB-8065; HLA-A2+, HPV16+), lymphoma cell line Raji (ATCC CCL-86; HLA-A2+, HPV16+), T cell leukemia cell line Jurkat (ATCC TIB-152; HLA-A2+, HPV16+), lymphoma cell line Daudi (ATCC CCL-213; HPA-A2+, HPV16+), leukemia cell line K562 (ATCC CCL-243; HLA-A2+, HPV16+), and lymphoblast cell line T2 (ATCC CRL-1992; HLA-A2+, HPV16+). T2 is a TAP-deficient cell line. The cell lines were cultured in RPMI 1640 supplemented with 5% FCS, penicillin, streptomycin, 2 mmol/L glutamine, and 2-mercaptoethanol at 37° C/5% CO2.

All peptides were purchased and synthesized by Genemed Synthesis, Inc. (San Antonio, Tex.). Peptides were >90% pure. The peptides were dissolved in DMSO and diluted in saline at 5 mg/mL and frozen at -180 C. Biotinylated single chain HPV16-E7 peptide/HLA-A*02:01 and control peptides/HLA-A*02:01 complexes were synthesized by refolding the peptides with recombinant HLA-A02 and beta-2 microglobulin (β2M) (~2M). 11 control peptides (SEQ ID NOs: 193-203) that bind HLA-A*02:01 were generated from
the following 10 genes: BCR, BTG2, CALR, CD247, CTSG, DDX5, HLA-E, IFI30, PPP2R1B, SSR1.

Example 1. Production of biotinylated HPV16-E7/HLA-A*02:01 complex monomer

[0609] Biotinylated HPV16-E7/HLA-A*02:01 complex monomers were prepared according to standard protocols (John D. Altman and Mark M. Davis, *Current Protocols in Immunology* 17.3.1-17.3.33, 2003). In brief, DNA encoding full-length human beta-2 microglobulin (β2m) was synthesized by Genewiz and cloned into vector pET-27b. The BirA substrate peptide (BSP) was added to the C-terminus of HLA-A*02:01 extracellular domain (ECD). DNA encoding HLA-A*02:01 ECD-BSP was also synthesized by Genewiz and cloned into vector pET-27b. The vectors expressing human β2m and HLA-A*02:01 ECD-BSP were transformed into *E.coli* BL21 cells separately, and expressed proteins were isolated as inclusion bodies from bacterial culture. Peptide ligand HPV16-E7 peptide 11-19 was refolded with human p2m and HLA-A*02:01 ECD-BSP to form HPV16-E7 peptide/HLA-A*02:01 complex monomer. Folded peptide/HLA-A*02:01 monomers were concentrated by ultrafiltration and further purified through size-exclusion chromatography. HiPrep 26/60 Sephacryl S-300 HR was equilibrated with 1.5 column volumes of Hyclone Dulbecco's Phosphate Buffered Saline solution (Thermo Scientific, Cat No. SH3002802). The unpurified sample was loaded and eluted with 1 column volume. The first peak, corresponding to misfolded aggregates, eluted at approximately 111 mL, the peak corresponding to the properly folded MHC complex was observed at 212 mL, and the peak corresponding to free β2M was observed at 267 mL (FIG. 1). Peptide/HLA-A*02:01 monomers were biotinylated via BirA-mediated enzymatic reaction and subsequently purified by high-resolution anion-exchange chromatography. Biotinylated peptide/HLA-A*02:01 monomers were stored in PBS at -80°C.

[0610] SDS-PAGE of the purified HPV16-E7 peptide/MHC complex can be performed to determine protein purity. For example, 1µg of the protein complex is mixed with 2.5µL of the NuPAGE LDS Sample Buffer (Life Technologies, NP0008) and brought up to 10µL with deionized water. The sample is heated at 70°C for 10 minutes, and then loaded onto the gel. Gel electrophoresis is performed at 180V for 1 hour.
Example 2. Selection and Characterization of scFv Specific for HPV16-E7/HLA-A*02:01 Complexes.

[0611] A collection of human scFv antibody phage display libraries (diversity = 10x10^10) constructed by Eureka Therapeutics was used for the selection of human mAbs specific to HPV16-E7/HLA-A*02:01. 15 fully human phage scFv libraries were used to pan against HPV16-E7/HLA-A*02:01 complex. In order to reduce the conformational change of MHC I complex introduced by immobilizing the protein complex onto plastic surfaces, solution panning and cell panning were used in place of conventional plate panning. In solution panning, biotinylated antigens were first mixed with the human scFv phage library after extended washing with PBS buffer, and then antigen-scFv antibody phage complexes were pulled down by streptavidin-conjugated Dynabeads M-280 through a magnetic rack. The bound clones were then eluted and used to infect E.coli XL1-Blue cells. In cell panning, T2 cells loaded with HPV16-E7 peptide were first mixed with the human scFv phage library. T2 cells are a TAP-deficient, HLA-A*02:01 + lymphoblast cell line. To load peptide, T2 cells were pulsed with peptides (50µg/ml) in serum-free RPMI1640 medium in the presence of 20 µg/ml β2M overnight. After extended washing with PBS, peptide-loaded T2 cells with bound scFv antibody phage were spun down. The bound clones were then eluted and used to infect E.coli XL1-Blue cells. The phage clones expressed in bacteria were then purified. The panning was performed for 3-4 rounds with either solution panning, cell panning or a combination of solution and cell panning to enrich for scFv phage clones that bound HPV 16-E7/HLA-A*02:01 specifically.

[0612] Streptavidin ELISA plates were coated with biotinylated HPV 16-E7 11-19 peptide/HLA-A*02:01 complex monomer or biotinylated C3 control peptide/HLA-A*02:01 monomer respectively. C3 peptide is human nuclear protein p68-derived peptide YLLPAIVHI (SEQ ID NO: 193). Individual phage clones from enriched phage display panning pools against HPV16-E7 11-19 peptide/HLA-A*02:01 complex were incubated in the coated plates. Binding of the phage clones was detected by HRP-conjugated anti-M13 antibodies and developed using HRP substrate. The absorbance was read at 450nm. 145 positive clones were identified through ELISA screening of 1272 phage clones enriched from phage panning. FIG. 2 provides an example of phage clone binding to biotinylated HPV 16-E7/HLA-A*02:01 monomer in an ELISA assay. 41 unique clones were identified by DNA sequencing of the 145 ELISA-positive phage clones. Specific and unique clones were further tested for their binding to HLA-A*02:01/peptide complexes on live cell surface by flow
cytometry (FACS analysis) using HPV16-E7-loaded live T2 cells. FIG. 3 demonstrates binding of exemplar positive clones to HPV16-E7 11-19 peptide-loaded T2 cells or control peptide (C3 peptide)-loaded T2 cells. Controls included T2 cells without peptide loading (cell only) and R-PE conjugated horse anti-mouse IgG control (secondary antibody only). In brief, T2 cells loaded with HPV16-E7 11-19 peptide or C3 peptide were first stained with purified scFv phage clones, followed by a second staining with mouse anti-M13 mAb, and a third staining with R-PE conjugated horse anti-mouse IgG from Vector Labs. Each staining step was performed for between 30-60 minutes on ice and the cells were washed twice between stainings. Among the 41 clones tested, 24 recognized HPV16-E7-loaded T2 cells specifically. These 24 phage clones specifically bound to HPV16-E7-loaded T2 cells and did not recognize T2 cells loaded with C3 peptide in the context of HLA-A*02:01, or T2 cells without peptide loaded.

Example 3. Characterization of FACS-positive HPV16-E7-specific phage clones

Cross-reactivity to HPV16-E7 peptide 11-19 variants

[0613] The HPV16-E7 11-19 peptide selected in this invention is highly conserved among various HPV16 strains. In one study, this peptide was found to be fully conserved in 16 of 17 known HPV16-E7 protein sequences. A single amino acid mutation within E7 11-19 was identified in the remaining sequence. This variant was then found in 1 of 35 HPV16 infected cervical cancer or cervicitis patients analyzed (Zhang G.L. et al., Database (Oxford), 2014:bau031, 2014). Clones selected from FACS binding analysis against HPV16-E7 peptide 11-19-loaded T2 cells are characterized further for cross-reactivity towards this HPV16-E7 peptide 11-19 variant/HLA-A*02:01 complex on live cell surfaces by FACS analysis using variant HPV16-E7 peptide-loaded live T2 cells. The variant peptide differs from the conserved HPV16-E7 11-19 peptide by a single amino acid at position 5. The variant peptide sequence is YMLDVQPET (SEQ ID NO: 11), while the conserved HPV16-E7 11-19 sequence is YMLDLQPET (SEQ ID NO: 4).

[0614] In brief, T2 cells are loaded with the conserved HPV16-E7 11-19 peptide, the variant HPV16-E7 11-19 peptide, or β2M. The peptide-loaded T2 cells are stained with purified scFv phage clones, followed by a second staining with a mouse anti-M13 mAb and a third staining with R-PE conjugated horse anti-mouse IgG from Vector Labs. Each staining step is performed on ice for 30-60 minutes and the cells are washed twice between each staining.
Epitope mapping by alanine walking

To investigate with precision the epitope for the mAb recognition, HPV16-E7 peptides with alanine substitutions at positions 1, 5 and 8 were pulsed onto T2 cells. Antibody phage clones were then tested for binding to these peptide-loaded T2 cells by FACS analysis. FACS mean fluorescent intensity (MFI) values of each FACS assay are shown in table 6. K07 helper phage is a negative control showing that the phage alone without scFv presentation on the phage particle surface does not bind to any of the peptide-loaded T2 cell groups. Antibody BB7.2 recognizes the HLA-A02 alpha chain. Peptide binding to MHC complex stabilizes cell-surface MHC complexes. Therefore, T2 cells loaded with MHC-binding peptide have enhanced BB7.2 binding signal compared to T2 cells without peptide loading (as shown in the first row of table 6). BB7.2 binding data indicate that the alanine-substituted peptides are still able to bind HLA-A*02:01 molecules on the T2 cell surface. Although all the antibodies tested recognized the small conformational epitope formed by the HPV16-E7 peptide and its surrounding MHC alpha chain residues, the key peptide residues interacting with the various antibodies were quite different. For example, clone #4 is predicted to bind to the N-terminal half of the HPV16-E7 peptide since alanine substitution at position 1 or 5 dramatically reduced binding to the peptide-loaded T2 cells. In contrast, alanine substitutions at position 8 did not change the binding of the same clone to the HLA-A*02:01 complex. Clone #11, on the other hand, was insensitive to alanine substitution at position 1 and 8, but alanine substitution at position 5 completely abrogated its binding. FIG. 4 provides an example of FACS analysis, showing the binding of phage clone #11 to T2 cells loaded with the various HPV16-E7 peptides. Controls included T2 cells without peptide loading (cell only) and R-PE conjugated horse anti-mouse IgG control (secondary antibody only). Antibody binding to T2 cells loaded with these different peptides were tested by FACS assays.

Table 6

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Wild type HPV16-E7 peptide YMIDLOPET (FACS MFI)</th>
<th>Alanine substitution at position 1 AMLDLOPET (FACS MFI)</th>
<th>Alanine substitution at position 5 YMLDAQPET (FACS MFI)</th>
<th>Alanine substitution at position 8 YMLDLOQAPET (FACS MFI)</th>
<th>T2 cell alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody BB7.2</td>
<td>1456</td>
<td>1501</td>
<td>1205</td>
<td>1500</td>
<td>1040</td>
</tr>
<tr>
<td>K07 Helper Phage</td>
<td>9.76</td>
<td>9.71</td>
<td>10.3</td>
<td>10</td>
<td>NA</td>
</tr>
</tbody>
</table>
Antibody binding specificity evaluation against endogenous peptide

On average, each nucleated cell in the human body expresses about half a million different peptide/MHC Class I complexes. In order to develop anti-peptide/MHCI-complex antibodies into anti-cancer drugs with high specificity and therapeutic index, it is essential for the antibodies to specifically recognize the target peptide/MHCI complex, but not the MHCI molecule itself, or MHCI molecules bound to other peptides presented on cell surfaces. For the current study, the relevant MHCI molecule is HLA-A*02:01. During the early stages of our phage panning and screening, we eliminated antibodies that bound to the HLA-A*02:01 molecule alone (see, for example, FIGs. 2 and 3). The top phage clones were also screened against 11 endogenous HLA-A*02:01 peptides, which were derived from proteins normally expressed in multiple types of nucleated human cells, such as globin alpha chain, beta chain, nuclear protein p68, and the like. Recombinant peptide/HLA-A*02:01 complexes folded with 11 endogenous peptides (Table 7, SEQ ID NOs: 193-203) separately were coated on streptavidin plates and antibody binding was determined through ELISA analysis. In brief, individual phage clones were incubated on the peptide/HLA-A*02:01 complex-coated plates. Binding of the phage clones was detected by HRP-conjugated anti-M13 antibodies and developed using HRP substrate. The absorbance was read at 450nm. As shown in FIG. 5, the HPV16-E7 peptide/HLA-A*02:01 -specific antibody phage clones bound HPV16-E7 peptide/HLA-A*02:01 complex, but not HLA-A*02:01 complexes folded with endogenous peptides. We conclude that the identified antibodies are specific to HPV16-E7 peptide/HLA-
A*02:01 complexes, and do not recognize HLA-A*02:01 molecules bound to other HLA-A*02:01-restricted peptides.

Table 7

<table>
<thead>
<tr>
<th>Peptide Code</th>
<th>Peptide Sequence</th>
<th>GeneID</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2E-1</td>
<td>LLDVPTAAV</td>
<td>10437</td>
<td>IFI30</td>
<td>interferon, gamma-inducible protein 30</td>
</tr>
<tr>
<td>A2E-2</td>
<td>TLWVDPYEV</td>
<td>7832</td>
<td>BTG2</td>
<td>BTG family, member 2</td>
</tr>
<tr>
<td>A2E-3</td>
<td>FLDHLKRV</td>
<td>613</td>
<td>BCR</td>
<td>breakpoint cluster region</td>
</tr>
<tr>
<td>A2E-4</td>
<td>LLDVPTAAV</td>
<td>10437</td>
<td>IFI30</td>
<td>interferon, gamma-inducible protein 30</td>
</tr>
<tr>
<td>A2E-5</td>
<td>VLFRGGPRGILLAV</td>
<td>6745</td>
<td>SSR1</td>
<td>signal sequence receptor, alpha</td>
</tr>
<tr>
<td>A2E-6</td>
<td>SLLPAIVEL</td>
<td>5519</td>
<td>PPP2R1B</td>
<td>protein phosphatase 2, regulatory subunit A, beta</td>
</tr>
<tr>
<td>A2E-7 (C3 peptide)</td>
<td>YLLPAIVHI</td>
<td>1655</td>
<td>DDX5</td>
<td>DEAD (Asp-Glu-Ala-Asp) box helicase 5</td>
</tr>
<tr>
<td>A2E-8</td>
<td>FLLPTGAEA</td>
<td>1511</td>
<td>CTSG</td>
<td>cathepsin G</td>
</tr>
<tr>
<td>A2E-9</td>
<td>LLDPKLCYLL</td>
<td>919</td>
<td>CD247</td>
<td>CD247 molecule</td>
</tr>
<tr>
<td>A2E-11</td>
<td>MLSSVPLLGL</td>
<td>811</td>
<td>CALR</td>
<td>calreticulin</td>
</tr>
<tr>
<td>A2E-17</td>
<td>MVDGTLLLL</td>
<td>3133</td>
<td>HLA-E</td>
<td>major histocompatibility complex, class I, E</td>
</tr>
</tbody>
</table>

Example 4. Engineering bispecific antibodies

[0617] Bispecific antibodies (BsAbs) were generated using scFv sequences of the HPV16-E7/HLA-A*02:01-specific phage clones. The BsAbs are single-chain bispecific antibodies comprising the scFv sequence of an HPV16-E7/HLA-A*02:01-specific phage clone at the N-terminal end and an anti-human CD3s mouse monoclonal scFv at the C-terminal end (Brischwein, K. et al., Molecular Immunology 43:1129-1143, 2006). DNA fragments coding for the HPV16-E7 scFv and the anti-human CD3s scFv were synthesized by Genewiz and subcloned into Eureka's mammalian expression vector pGSN-Hyg using standard DNA techniques. A hexhistamine tag was inserted at the C-terminal end for antibody purification and detection. Chinese hamster ovary (CHO) cells were transfected with the BsAb expression vector, and then cultured for 7 days for BsAb antibody production. CHO cell supernatants containing secreted HPV16-E7 BsAb molecules were collected. BsAbs were purified using HisTrap HP column (GE healthcare) by FPLC AKTA system. Briefly, CHO cell culture was clarified and loaded onto the column with low imidazole concentration (20 mM), and then an isocratic high imidazole concentration elution buffer (500 mM) was used to elute the bound BsAb proteins. Purity and molecular weight of the purified HPV16-E7 BsAbs was determined under reducing conditions by gel electrophoresis. 4µg of the protein was mixed with 2.5µE of the NuPAGE LDS Sample Buffer (Life Technologies, NP0008) and brought
up to 10 µL with deionized water. The sample was heated at 70°C for 10 minutes, and then loaded onto the gel. Gel electrophoresis was performed at 180V for 1 hour. -50 KD bands are observed as the major bands on the gel (FIG. 6).

[0618] Antibody aggregation can be assessed by size-exclusion chromatography (SEC). For example, 50 µL of the sample is injected into a SEC column (for example Agilent, BioSEC-3,300A, 4.6x300mm) while flowing a buffer consisting of Dulbecco's Phosphate Buffered Saline (Fisher Scientific, SH30028.FS) and 0.2M arginine adjusted to pH 7.0. BsAbs with high molecular weight aggregation less than 10% are selected for further characterization.

Example 5. Characterization of HPV16-E7 BsAb antibodies

Bounding affinity of HPV16-E7 BsAb antibodies

[0619] The binding affinity of HPV 16-E7 BsAb antibodies to recombinant HPV 16-E7/HLA-A*02:01 complex is measured, for example, by Surface Plasma Resonance (BiaCore). The binding parameters between the HPV16-E7 BsAb and the HPV 16-E7/HLA-A*02:01 complex are measured, for example, using a His Capture Kit (GE Healthcare, Cat# 28995056) on a Biacore X100 (GE Healthcare) according to the manufacturer's protocol for multi-cycle kinetics measurement. All of the proteins used in the assay are diluted using HBS-E buffer. For example, 1 µg/mL of the HPV16-E7 BsAb is immobilized onto a Sensor Chip pre-functionalized with the anti-histidine antibody by flowing the solution through the flow cell 2 at 2 µE/ηL for 2 minutes. Binding towards the HPV16-E7/A*02:01 complex is analyzed at, for example, 0.19, 0.38, 7.5, 15, and 30 µg/mL, each run consisting of a 3 minute association and 3 minute dissociation at 30 µE/ηL. At the end of cycle, the surface is regenerated using the regeneration buffer from the His Capture kit. Following the kinetics measurement, the surface is regenerated using the regeneration solution from the kit. The data are analyzed using 1:1 binding site mode with the BiaCore X-100 evaluation software. The binding parameters (association on rate constant k_a, dissociation constant k_d, and equilibrium dissociation constant K_d) are then calculated.

T-cell killing assay with peptide-pulsed T2 cells

[0620] Tumor cytotoxicity was assayed by LDH Cytotoxicity Assay (Promega). Human T cells purchased from AllCells were activated and expanded with CD3/CD28 Dynabeads (Invitrogen) according to manufacturer's protocol. Activated T cells (ATC) were cultured and maintained in RPMI1640 medium with 10% FBS plus 30 U/ml IL-2, and used at day 7-14.
The T cells were > 99% CD3+ by FACS analysis. Activated T cells (effector cells) and target peptide-loaded T2 cells were co-cultured at a 5:1 ratio with 1 µg/ml or 0.2 µg/ml of BsAbs for 16 hours. Peptide-loaded T2 cells were prepared by incubating T2 cells overnight with 50 µg/ml of either the target HPV16-E7 11-19 peptide (YMLDLQPET, SEQ ID NO: 4) or negative control AFP158 peptide (FMNKFIYEI, SEQ ID NO: 192). A negative control AFP158/HLA-A*02:01 specific BsAb was also included. Cytotoxicities were determined by measuring LDH activities in culture supernatants. As shown in FIG. 7, clones #2, #5, #17 and #40 killed the HPV16-E7 peptide-loaded T2 cells in a selective and dose-dependent manner. The negative control anti-AFP158/HLA-A*02:01 BsAb specifically directed killing of the AFP158 peptide-loaded T2 cells.

T-cell killing assay with cancer cell lines

[0621] Tumor cytotoxicity was assayed by LDH Cytotoxicity Assay (Promega). Human T cells were purchased from AllCells and activated and expanded with CD3/CD28 Dynabeads (Invitrogen) according to manufacturer's protocol. Activated T cells (ATC) were cultured and maintained in RPMI1640 medium with 10% FBS plus 30 U/ml IL-2, and used at day 7-14. Activated T cells (effector cells) and target cancer cells were co-cultured at a 5:1 ratio with different concentrations of BsAbs (including for example 0.2, 0.04, 0.008, and 0.0016 µg/ml BsAbs) for 16 hours. Cytotoxicities were then determined by measuring LDH activities in culture supernatants.

[0622] Target cancer cells tested included cervical cancer cell line CaSki (ATCC CRL-1550; HLA-A2+, HPV16+) and cervical carcinoma cell line MS-751 (ATCC HTB-34; HLA-A2+, HPV16+). As shown in FIG. 8A, multiple clones (e.g. 2, 41 and US-7) mediated selective killing of HPV-16+ cell line CaSki vs HPV-16- cell line MS-751 at 0.2 µg/ml BsAb. The BsAb-mediated killing of target-positive CaSki is dose-dependent as shown in FIG. 8B.

[0623] Additional target cancer cells that may be tested include head and neck squamous cell carcinoma cell line UM-SCC-104 (Millipore; HLA-A2+, HPV16+), liver adenocarcinoma cell line SK-HEP-1 (ATCC HTB-52; HLA-A2+, HPV16+), cervical squamous cell carcinoma cell line SiHa (ATCC HTB-35; HLA-A2+, HPV16+), cervical cancer cell line C33A (ATCC HTB-31; HLA-A2+, HPV16+), cervical adenocarcinoma cell line HeLa (ATCC CCL-2; HLA-A2+, HPV16+), hepatocellular carcinoma cell line Hep3B (ATCC HB-8064; HLA-A2+, HPV16+), hepatocellular carcinoma cell line HepG2 (ATCC HB-8065; HLA-A2+, HPV16+), lymphoma cell line Raji (ATCC CCL-86; HLA-A2+, HPV16+), T cell leukemia cell line
Jurkat (ATCC TIB-152; HLA-A2', HPV16'), lymphoma cell line Daudi (ATCC CCL-213; HPA-A2', HPV16'), and leukemia cell line K562 (ATCC CCL-243; HLA-A2', HPV16').

Cross-reactivity of HPV16-E7 BsAb antibodies against multiple HLA-A02 alleles

Human MHCI molecules consist of 6 class isoforms, HLA-A, -B, -C, -E, -F and G. The HLA-A, -B and-C heavy chain genes are highly polymorphic. For each isoform, the HLA genes are further grouped according to the similarity of heavy chain sequences. For example, HLA-A is divided into different alleles such as HLA-A01, -A02, -A03, etc. For the HLA-A02 allele, there are multiple subtypes, such as HLA-A*02:01, A*02:02, etc. Between the different subtypes of HLA-A02 group, the sequence differences are limited to only several amino acids. So in many cases, peptides that bind to HLA-A*02:01 molecule can also form complexes with multiple subtypes of the HLA-A02 allele. As shown in Table 8 (http://www.allelefrequencies.net/), although HLA-A*02:01 is the dominant HLA-A02 subtype among Caucasian populations, in Asia, A*02:05, A*02:06, A*02:07 and A*02:11 are also common HLA-A02 subtypes. The ability of HPV16-E7 antibodies to recognize not only HPV16-E7 peptide in the context of HLA-A02:01, but also other subtypes of HLA-A02, will greatly broaden the patient population that might be able to benefit from HPV16-E7 antibody drug treatment. To determine cross-reactivity, HPV16-E7/MHC class I complexes with other subtypes of the HLA-A02 allele are generated and the binding affinity of the HPV16-E7/HLA-A*02:01-specific antibodies for these other complexes is tested. Binding affinity is determined, for example, using a ForteBio Octet QK. Briefly, 5 μg/mL biotinylated HPV16-E7 peptide/HLA-A02 MHC complex having varying subtypes is loaded onto a streptavidin biosensor. After washing off excess antigen, BsAbs are tested at, for example, 10 μg/mL for association and dissociation kinetics. Binding parameters are calculated using a 1:1 binding site, partial fit model.

Table 8

<table>
<thead>
<tr>
<th></th>
<th>Australia</th>
<th>China</th>
<th>Europe</th>
<th>India</th>
<th>North Africa</th>
<th>Sub-Saharan Africa</th>
<th>Taiwan</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*02:01</td>
<td>97.8%</td>
<td>39.5%</td>
<td>94.0%</td>
<td>53.9%</td>
<td>73.3%</td>
<td>56.3%</td>
<td>35.1%</td>
<td>79.4%</td>
</tr>
<tr>
<td>A*02:02</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.3%</td>
<td>0.9%</td>
<td>9.7%</td>
<td>24.1%</td>
<td>0.0%</td>
<td>3.6%</td>
</tr>
<tr>
<td>A*02:03</td>
<td>0.0%</td>
<td>15.3%</td>
<td>0.2%</td>
<td>4.9%</td>
<td>0.0%</td>
<td>0.4%</td>
<td>19.3%</td>
<td>2.2%</td>
</tr>
<tr>
<td>A*02:04</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.3%</td>
<td>2.6%</td>
<td>0.4%</td>
<td>0.0%</td>
<td>0.2%</td>
</tr>
<tr>
<td>A*02:05</td>
<td>1.1%</td>
<td>0.9%</td>
<td>3.2%</td>
<td>5.8%</td>
<td>13.8%</td>
<td>15.9%</td>
<td>0.1%</td>
<td>4.5%</td>
</tr>
<tr>
<td>A*02:06</td>
<td>0.0%</td>
<td>16.0%</td>
<td>0.9%</td>
<td>10.6%</td>
<td>0.0%</td>
<td>0.7%</td>
<td>12.8%</td>
<td>5.5%</td>
</tr>
<tr>
<td>A*02:07</td>
<td>1.1%</td>
<td>26.1%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>32.7%</td>
<td>2.4%</td>
</tr>
<tr>
<td>A*02:08</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>A*02:09</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Example 6. Generation of HPV16-E7/HLA-A*02:01 specific chimeric antigen receptor-presenting T cells (CAR-T)

Chimeric antigen receptor therapy (CAR-T therapy) is a new form of targeted immunotherapy. It merges the exquisite targeting specificity of monoclonal antibodies with the potent cytotoxicity and long-term persistence provided by cytotoxic T cells. This technology enables T cells to acquire long-term novel antigenic specificity independent of the endogenous TCR. Clinical trials have shown clinically significant antitumor activity of CAR-T therapy in neuroblastoma (Louis C.U. et al., Blood 118(23):6050-6056, 2014), CLL (Brentjens R.J. et al., Blood 118(18):4817-4828, 2011), and B cell lymphoma (Kochenderfer J.N. et al., Blood. 116(20):4099-4102, 2010). In one study, a 90% complete remission rate in 30 patients with B-ALL treated with CD19-CAR T therapy was reported (Maude S.L. et al., N. Engl. J. Med. 371(16):1507-1517, 2014), and B cell lymphoma (Kochenderfer J.N. et al., Blood. 116(20):4099-4102, 2010). To further explore the potency of the HPV16-E7/HLA-A*02:01 specific antibodies, HPV16-E7 scFv expressing CARs are constructed and transduced into T cells. For example, HPV16-E7/HLA-A*02:01 specific CARs are constructed using a lentiviral CAR expression vector. Anti-HPV16-E7/HLA-A*02:01 scFvs are grafted onto a second generation CAR (Mackall C.L. et al, Nat. Rev. Clin. Oncol. 11(12):693-703, 2014) with CD28 signaling domain and TCRζ engineered in cis to provide intracellular T cell stimulation signals and to activate T cells. FIG. 9 provides a schematic illustration of an HPV16-E7 CAR construct.

Example 7. Characterization of HPV16-E7 CAR-T cells

In vitro Cytotoxicity study of HPV16-E7 CAR-T cells

Lentiviruses containing HPV16-E7/HLA-A*02:01 specific chimeric antigen receptors are produced, for example, by transfection of 293T cells with CAR vectors. Human T-cells are used for transduction after 2-day stimulation with CD3/CD28 beads (Dynabeads®, Invitrogen) in the presence of interleukin-2 at 30 U/ml. Concentrated lentiviruses are applied to T-cells in Retronectin (Takara) coated 6-well plates for 72 hours. Transduction efficiency is assessed by FACS using biotinylated HPV16-E7 tetramer and PE-
conjugated streptavidin. Repeat FACS analyses are done at 72 hours and every 3-4 days thereafter.

Functional assessment of the transduced T cells (HPV16-E7 CAR-T cells) is performed using LDH Cytotoxicity Assay. Effector-to-target ratios used include, for example, 5:1 and 10:1. The target cell lines may include, for example, cervical cancer cell line CaSki (ATCC CRL-1550; HLA-A2+, HPV16+), head and neck squamous cell carcinoma cell line UM-SCC-104 (Millipore; HLA-A2+, HPV16+), liver adenocarcinoma cell line SK-HEP-1 (ATCC HTB-52; HLA-A2+, HPV16-), cervical squamous cell carcinoma cell line SiHa (ATCC HTB-35; HLA-A2-, HPV16+), cervical cancer cell line C33A (ATCC HTB-31; HLA-A2+, HPV16+), cervical carcinoma cell line MS-751 (ATCC HTB-34; HLA-A2+, HPV16+), cervical adenocarcinoma cell line HeLa (ATCC CCL-2; HLA-A2-, HPV16-), hepatocellular carcinoma cell line Hep3B (ATCC HB-8064; HLA-A2-, HPV16+), hepatocellular carcinoma cell line HepG2 (ATCC HB-8065; HLA-A2-, HPV16+), lymphoma cell line Raji (ATCC CCL-86; HLA-A2-, HPV16-), T cell leukemia cell line Jurkat (ATCC TIB-152; HLA-A2-, HPV16-), lymphoma cell line Daudi (ATCC CCL-213; HPA-A2-, HPV16-), and leukemia cell line K562 (ATCC CCL-243; HLA-A2-, HPV16-). As a control, SK-HEP-1-MiniG is generated by transducing SK-HEP-1 with an HPV16-E7 peptide expressing minigene cassette, which results in a high level of cell surface expression of HPV16-E7/HLA-A*02:01 complex. The specificity and efficiency of the HPV16-E7 CAR expressing T cells to kill the target-positive cancer cells is determined.

Example 8. Generation and Characterization of the full-length IgGl HPV16-E7 antibodies

Full-length human IgGl of the selected phage clones are produced, for example, in HEK293 and Chinese hamster ovary (CHO) cell lines, as described (Tomimatsu K. et al., Biosci. Biotechnol. Biochem. 73(7):1465-1469, 2009). In brief, antibody variable regions are subcloned into mammalian expression vectors, with matching human lambda or kappa light chain constant region and human IgGl constant region sequences. Applying the same cloning strategy, chimeric HPV16-E7 full-length antibodies with mouse IgGl heavy chain and light chain constant regions are generated. Molecular weight of the purified full length IgG antibodies is measured under both reducing and non-reducing conditions by electrophoresis. SDS-PAGE of purified HPV16-E7 mouse chimeric IgGl antibodies is performed to determine protein purity. In brief, 2µg of the protein is mixed with 2.5µL of NuPAGE LDS
Sample Buffer (Life Technologies, NP0008) and brought up to 10µL with deionized water. The sample is heated at 70°C for 10 minutes, and then loaded onto the gel. Gel electrophoresis is performed at 180V for 1 hour.

0630 HPV16-E7 chimeric IgGl antibody is tested for binding towards HPV16-E7 presenting SK-HEP-1 cells by flow cytometry. SK-HEP-1 is an HLA-A*02:01 positive and HPV16-E7 negative cell line. An HPV16-E7 minigene cassette is transfected into SK-HEP-1 cells to generate the HPV16-E7-presenting SK-HEP-1-miniG cells. 10 µg/mL of antibody is added to cells on ice for 1 hour. After washing, R-PE conjugated anti-mouse IgG(H+L) (Vector Labs#EI-2007) is added to detect antibody binding. Binding affinity of the mouse chimeric IgGl HPV16-E7 antibodies is determined by ForteBio Octet QK. 5 µg/mL biotinylated HPV16-E7 peptide/HLA-A*02:01 complex is loaded onto a streptavidin biosensor. After washing off excess antigen, mouse chimeric full-length antibodies are tested at 10 µg/mL for association and dissociation kinetics. Binding parameters are calculated using a 1:1 binding site, partial fit model.

0631 HPV16-E7-specific and negative control (such as ET901) mouse chimeric IgGl are tested for binding towards HPV16-E7/HLA-A*02:01. HPV16-E7 recombinant protein and free HPV16-E7 peptide in an ELISA assay. Antibodies are tested, for example, at 3x serial dilution, starting from 100 ng/mL for a total of 8 concentrations. Biotinylated HPV16-E7/HLA-A*02:01 MHC is coated onto streptavidin plates at 2 µg/mL. HPV16-E7 protein is coated at 2 µg/mL and HPV16-E7 peptide is coated at 40 ng/mL. The ability of full-length anti-HPV16-E7/HLA-A*02:01 antibodies to recognize the HPV16-E7 peptide only in the context of HLA-A02, and not bind recombinant HPV16-E7 protein or free HPV16-E7 peptide is determined.

Example 9. In vivo efficacy studies

HPV16-E7 CAR-T cell treatment in mice

0632 HLA-A02+/HPV16-E7+ cancer cell line (such as CaSki or UM-SCC-104) subcutaneous (s.c.) xenograft models are generated in SCID-beige (no functional T-, B-, NK-cells) mice. Animals are randomized when average s.c. tumor volume reaches 200 mm³. 24 hours prior to CART administration, animals are treated (via intraperitoneal route) with 60 mg/kg cyclophosphamide. Mice are divided into 4 groups (n=8-10 mice/group) that receive one of the following: (i) no treatment (ii) 10⁷ mock transduced CAR T cells, lx/week for 4 weeks (iii) 10⁷ anti-E7MC CAR T cells, lx/week for 4 weeks, or (iv) 2x10⁶ anti-E7MC CAR
T cells, lx/week for 4 weeks. The animals in each group are monitored for tumor volume, adverse response, human cytokine profile, histopathology of tumor for human CD3+ cells in tumor and organs for CAR T cell infiltration, serum HPV16-E7, body weight and general health condition (eating, walking, daily activities).

Example 10. Affinity Maturation of anti-HPV16-E7 antibody agents

This example demonstrates the affinity maturation of anti-HPV16-E7 antibody agents. In particular, this example specifically demonstrates the generation of a series of antibody variants by incorporation of random mutations into a representative anti-HPV16-E7 antibody agent (clone US-7) followed by screening and characterization of the antibody variants.

Generation of variant phage libraries

DNA encoding anti-HPV16-E7 clone US-7 scFv was subjected to random mutagenesis using GeneMorph II Random Mutagenesis kit (Agilent Technologies) according to the manufacturer's specifications. After mutagenesis, DNA sequences were cloned into an scFv-expressing phagemid vector to build a variant human antibody phage library which contained about 5x10^8 unique phage clones. On average, variant clones have two nucleotide mutations compared with the parental anti-HPV16-E7 clone, ranging from 1 to 4 nucleotide mutations, per scFv sequence.

Cell panning

The human phage scFv library with mutants generated from clone US-7 was used to pan against HPV16-E7 11-19 peptide/HLA-A*02:01 complex as described in Example 2. In particular, cell panning was used. Human scFv phage library was first mixed with T2 cells loaded with 50 ug/ml of a pool of 20 different endogenous peptides (P20, SEQ ID NOs: 193-212) as negative control panning. The negative control-depleted human scFv phage library was then mixed with T2 cells loaded with HPV16-E7 11-19 peptide (1.5 ug/ml first round, 0.8 ug/ml second round, 0.4 ug/ml third round). To load peptide, T2 cells were pulsed with peptides in serum-free RPMI1640 medium in the presence of 20 μg/ml β2M overnight. After extended washing with PBS, peptide-loaded T2 cells with bound scFv antibody phage were spun down. The bound clones were then eluted and used to infect E.coli XL1-Blue cells. The phage clones expressed in bacteria were then purified. The panning was performed for 3 rounds to enrich for scFv phage clones that bound HPV16-E7 11-19 peptide/HLA-A*02:01 specifically.
Streptavidin ELISA plates were coated with biotinylated HPV 16-E7 11-19 peptide/HLA-A*02:01 complex monomer or biotinylated P20 control peptides/HLA-A*02:01 monomer. Individual phage clones from enriched phage display panning pools against HPV16-E7 11-19 peptide/HLA-A*02:01 complex were incubated in the coated plates. Binding of the phage clones was detected by HRP-conjugated anti-M13 antibodies and developed using HRP substrate. The absorbance was read at 450nm. 15 positive clones were identified through ELISA screening of 135 phage clones enriched from phage panning. 11 unique clones were identified by DNA sequencing of the 15 ELISA-positive phage clones. Specific and unique clones were further tested for their binding to HLA-A*02:01/peptide complexes on live cell surface by flow cytometry (FACS analysis) using HPV16-E7 11-19 peptide-loaded live T2 cells. Controls included T2 cells without peptide loading (cells only) and R-PE conjugated horse anti-mouse IgG control (secondary antibody only). Briefly, T2 cells loaded with HPV16-E7 11-19 peptide or P20 peptide pool were first stained with purified scFv phage clones, followed by a second staining with mouse anti-M13 mAb, and a third staining with R-PE conjugated horse anti-mouse IgG from Vector Labs. Each staining step was performed for 30-60 minutes on ice and the cells were washed twice between staining steps. Among the 10 unique clones tested, 8 recognized HPV16-E7 11-19-loaded T2 cells specifically (SEQ ID NOs: 223-230). These 8 phage clones specifically bound to HPV16-E7 11-19-loaded T2 cells and did not recognize T2 cells loaded with P20 peptide pool in the context of HLA-A*02:01, or T2 cells without peptide loaded.

Example 11. Characterization of bi-specific antibody molecules based on anti-HPV16-E7 affinity maturation variants

Generation of bispecific antibodies

Bispecific antibodies (BsAbs) were generated using scFv sequences of the affinity matured HPV16-E7/HLA-A*02:01-specific phage clones isolated in Example 10 (SEQ ID NOs: 223-232) using the method described in Example 4. The resulting single-chain bispecific antibodies comprised the scFv sequence of an HPV16-E7/HLA-A*02:01-specific phage clone at the N-terminal end and an anti-human CD3s mouse monoclonal scFv at the C-terminal end.

*Determination of binding affinities of bispecific antibodies to HPV16-E7/HLA-A*02:01*

The binding affinity of 7 HPV16-E7 BsAb antibodies (derived from affinity matured clones 7-1, 7-3, 7-6, 7-7, 7-8, and 7-9, corresponding to SEQ ID NOs: 223, 225, and 227-230, respectively, and parental clone US-7) to recombinant HPV16-E7/HLA-A*02:01
complex was measured by Surface Plasma Resonance (BiaCore). The binding parameters between the HPV16-E7 BsAbs and HPV16-E7/HLA-A*02:01 complex were measured using a Biotin CAPture Kit (GE Healthcare, Cat# 28920233) on a Biacore X100 (GE Healthcare) according to the manufacturer’s protocol for multi-cycle kinetics measurement. All of the proteins used in the assay were diluted using HBS-EP running buffer. 5 µg/mL of biotinylated HPV16-E7 11-19/HLA-A*02:01/p2M complex was immobilized onto a Sensor Chip CAP pre-functionalized with streptavidin (-3,800 RU of streptavidin captured) by flowing the solution through the flow cell at 5 µL/min for 75 seconds (-120 RU of MHC complex was captured per cycle). Binding towards the HPV16-E7 BsAbs was analyzed at 150 nM, 75 nM, 37.5 nM, 18.8 nM, and 9.4 nM, each run consisting of a 2 minute association and 10 minute dissociation at 30 µL/min. At the end of cycle, the surface was regenerated using the regeneration buffer from the Biotin CAPture kit. The data was analyzed using 1:1 binding site mode with the BiaCore X-100 evaluation software. The binding parameters (association on rate constant k_a, dissociation constant k_d, and equilibrium dissociation constant K_d) were then calculated, and are shown in Table 9. BsAbs derived from clones 7-1, 7-3, 7-6, 7-7, and 7-9 showed increased binding affinity compared to the BsAb derived from parental clone US-7, while the BsAb derived from clone 7-8 showed decreased binding affinity.

Table 9

<table>
<thead>
<tr>
<th>Protein</th>
<th>k_a [1/Ms]</th>
<th>k_d [1/s]</th>
<th>K_d [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clone # US-7 BsAb</td>
<td>3.46x10^-4</td>
<td>1.93x10^-3</td>
<td>55.6</td>
</tr>
<tr>
<td>Clone # 7-1 BsAb</td>
<td>7.29x10^-5</td>
<td>5.14x10^-3</td>
<td>7.0</td>
</tr>
<tr>
<td>Clone # 7-3 BsAb</td>
<td>1.67x10^-5</td>
<td>1.37x10^-3</td>
<td>8.2</td>
</tr>
<tr>
<td>Clone # 7-6 BsAb</td>
<td>1.30x10^-5</td>
<td>1.60x10^-3</td>
<td>12.1</td>
</tr>
<tr>
<td>Clone # 7-7 BsAb</td>
<td>1.04x10^-5</td>
<td>1.22x10^-3</td>
<td>11.7</td>
</tr>
<tr>
<td>Clone # 7-8 BsAb</td>
<td>4.58x10^-4</td>
<td>2.66x10^-3</td>
<td>58.0</td>
</tr>
<tr>
<td>Clone # 7-9 BsAb</td>
<td>1.37x10^-5</td>
<td>8.23x10^-4</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Cross-reactivity and binding affinities of HPV16-E7 bispecific antibodies against multiple HLA-A02 alleles

[0639] As described above in Example 5, the different subtypes of the HLA-A02 group are quite conserved, and cross-reactivity against multiple HLA-A02 subtypes is highly desired. Therefore, experiments were performed to determine whether the bi-specific antibodies (BsAb) generated from the parental clone US-7 and the affinity maturation variants cross-
react with non-HLA-A*02:01 subtypes of the HLA-A02 group. Specifically, HPV16-E7 11-19/MHC class I complexes with various subtypes of the HLA-A02 allele were generated, and their binding affinities to the HPV16-E7 11-19/HLA-A*02:01-specific antibodies were determined using the Octet® QKe System by Pall ForteBio LLC (Menlo Park, CA), which utilizes the Biolayer Interferometry (BLI) technology. The BsAbs tested include the parental clone US-7 and affinity maturation variant clones 7-1, 7-3, 7-6, 7-7, 7-8, and 7-9. Five µg/mL biotinylated HPV16-E7 11-19 peptide/HLA-A02 complex having varying subtypes of HLA-A02 was loaded onto a streptavidin biosensor. After washing off excess antigen (the HPV16-E7 peptide/HLA-A02 complex), BsAbs were tested at 10 µg/mL for association and dissociation kinetics. Binding parameters were calculated using a 1:1 binding site, partial fit model. The results of the BLI assay are shown below in Table 10.

Table 10. HLA-A02 subtype binding parameters

<table>
<thead>
<tr>
<th>BsAb</th>
<th>Binding Affinity (K_D[nM])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A0201</td>
</tr>
<tr>
<td>Clone #US-7</td>
<td>51.5</td>
</tr>
<tr>
<td>Clone #7-1</td>
<td>45.3</td>
</tr>
<tr>
<td>Clone #7-3</td>
<td>42.4</td>
</tr>
<tr>
<td>Clone #7-6</td>
<td>58.5</td>
</tr>
<tr>
<td>Clone #7-7</td>
<td>32.8</td>
</tr>
<tr>
<td>Clone #7-8</td>
<td>99.7</td>
</tr>
<tr>
<td>Clone #7-9</td>
<td>21.7</td>
</tr>
</tbody>
</table>

“-” indicates no detectable specific binding

[0640] The results show that each of the tested antibody clones specifically bound to at least four out of the seven HLA-A02 subtypes tested. Several affinity maturation variant antibodies bound to more HLA-A02 subtypes than the parental clone did, and many of the affinity maturation variant antibodies bound to HPV16-E7 11-19/HLA-A02 with higher affinities than the parental clone did, indicated by lower K_D values.

Peptide binding specificity assay

[0641] In order to confirm the specificity of the peptide recognized by the affinity maturation variant antibodies, a FACS analysis was performed with T2 cells loaded with
HPV16-E7 11-19 peptide, the P20 peptide pool, or no peptide. The result showed that all the BsAbs tested, including the parental clone US-7 and affinity maturation variant clones 7-1, 7-3, 7-6, 7-7, 7-8, and 7-9, specifically bound to T2 cells loaded with HPV16-E7 11-19 peptide, but did not bind to T2 cells loaded with the P20 peptide pool or not loaded with any peptide. The FACS data is shown herein in Table 12.

Epitope mapping by alanine walking

To investigate with precision the sensitive residues of the HPV16-E7 11-19 peptide for recognition by BsAbs Clone # US-7 and its affinity maturation variants, a series of mutant peptides were designed and synthesized to have each of the nine residues substituted with alanine (shown in Table 11).

Table 11. HPV16-E7 11-19 wild-type and mutant peptides

<table>
<thead>
<tr>
<th>Peptide ID</th>
<th>Peptide sequence</th>
<th>Ala Substitution Position</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV16-E7 11-19</td>
<td>YMLDLQPET</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>HPV16-E7 11-19mut1</td>
<td>AMLDLQPET</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>HPV16-E7 11-19mut2</td>
<td>YALDLQPET</td>
<td>2</td>
<td>258</td>
</tr>
<tr>
<td>HPV16-E7 11-19mut3</td>
<td>YMADLQPET</td>
<td>3</td>
<td>259</td>
</tr>
<tr>
<td>HPV16-E7 11-19mut4</td>
<td>YMLALQPET</td>
<td>4</td>
<td>260</td>
</tr>
<tr>
<td>HPV16-E7 11-19mut5</td>
<td>YMLDAQPET</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>HPV16-E7 11-19mut6</td>
<td>YMLDLAPET</td>
<td>6</td>
<td>261</td>
</tr>
<tr>
<td>HPV16-E7 11-19mut7</td>
<td>YMLDLQAT</td>
<td>7</td>
<td>262</td>
</tr>
<tr>
<td>HPV16-E7 11-19mut8</td>
<td>YMLDLQPAE</td>
<td>9</td>
<td>263</td>
</tr>
</tbody>
</table>

BsAb clones were then tested by FACS analysis for binding to T2 cells loaded with the peptides from Table 11. T2 cells loaded with the negative control P20 peptide pool, or T2 cells with no peptide loaded. Peptide binding to MHC on the T2 cells was assessed by BB7.2 mouse antibody staining. All peptides except for HPV16-E7 11-19mut8 showed greater BB7.2 antibody binding compared to control T2 cells without peptide (data not shown), indicated that all peptides except for HPV16-E7 11-19mut8 were successfully able to bind MHC on the T2 cells. For BsAb analysis, cells were stained with 10 μg/mL BsAb followed by 20X dilution of APC anti-His antibody (R&D System #IC050A). FACS mean fluorescent intensity (MFI) values of each FACS assay are shown in Table 12. The parental US-7 and affinity matured scFvs are predicted to bind to the C-terminal half of the HPV16-E7 peptide.
since alanine substitution at positions 5-8 generally reduced binding to the peptide-loaded T2 cells. The individual FACS binding assay results are shown in FIGS. 10A and 10B.

Table 12. Alanine walking of HPV16-E7 11-19 (FACS, mean fluorescent intensity)

<table>
<thead>
<tr>
<th>BsAb</th>
<th>Sample</th>
<th>Clone # US-7</th>
<th>Clone # 7-1</th>
<th>Clone # 7-3</th>
<th>Clone # 7-6</th>
<th>Clone # 7-7</th>
<th>Clone # 7-8</th>
<th>Clone # 7-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 with no peptide</td>
<td>24000</td>
<td>27000</td>
<td>25700</td>
<td>24100</td>
<td>20800</td>
<td>22400</td>
<td>17600</td>
<td></td>
</tr>
<tr>
<td>HPV16-E7 11-19 (wild-type?)</td>
<td>20700</td>
<td>23100</td>
<td>19700</td>
<td>21000</td>
<td>18900</td>
<td>19100</td>
<td>15500</td>
<td></td>
</tr>
<tr>
<td>HPV16-E7 11-19mut1</td>
<td>19100</td>
<td>24000</td>
<td>20300</td>
<td>22300</td>
<td>17600</td>
<td>19100</td>
<td>15900</td>
<td></td>
</tr>
<tr>
<td>HPV16-E7 11-19mut2</td>
<td>18100</td>
<td>24100</td>
<td>20300</td>
<td>20600</td>
<td>18200</td>
<td>17700</td>
<td>16100</td>
<td></td>
</tr>
<tr>
<td>HPV16-E7 11-19mut4</td>
<td>21600</td>
<td>24200</td>
<td>21700</td>
<td>22100</td>
<td>19300</td>
<td>20900</td>
<td>16800</td>
<td></td>
</tr>
<tr>
<td>HPV16-E7 11-19mut5</td>
<td>6274</td>
<td>13400</td>
<td>11900</td>
<td>11300</td>
<td>8452</td>
<td>8242</td>
<td>9660</td>
<td></td>
</tr>
<tr>
<td>HPV16-E7 11-19mut6</td>
<td>9221</td>
<td>16800</td>
<td>15700</td>
<td>13600</td>
<td>12300</td>
<td>4864</td>
<td>11500</td>
<td></td>
</tr>
<tr>
<td>HPV16-E7 11-19mut7</td>
<td>7575</td>
<td>14000</td>
<td>13900</td>
<td>11600</td>
<td>9650</td>
<td>9199</td>
<td>10100</td>
<td></td>
</tr>
<tr>
<td>HPV16-E7 11-19-mut8</td>
<td>237</td>
<td>733</td>
<td>703</td>
<td>211</td>
<td>740</td>
<td>293</td>
<td>1135</td>
<td></td>
</tr>
<tr>
<td>HPV16-E7 11-19-mut9</td>
<td>19200</td>
<td>20900</td>
<td>19900</td>
<td>22900</td>
<td>18500</td>
<td>19700</td>
<td>16100</td>
<td></td>
</tr>
<tr>
<td>Sensitive Position*</td>
<td>5,6,7,8</td>
<td>5,8</td>
<td>5,8</td>
<td>5,6,7,8</td>
<td>5,8</td>
<td>5,6,7,8</td>
<td>5,8</td>
<td></td>
</tr>
<tr>
<td>Reduced binding</td>
<td>6.7</td>
<td>6.7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6.7</td>
<td></td>
</tr>
</tbody>
</table>

*: Sensitive position: < 50% MFI (T2 loaded with wild-type HPV16-E7 11-19)
**: Reduced binding: 50-75% MFI (T2 loaded with wild-type HPV16-E7 11-19)

Example 12. Generation of chimeric antigen receptor-presenting T cells (CAR-T) with anti-HPV16-E7 affinity maturation scFvs variants

[0644] Chimeric antigen receptors expressing affinity matured HPV16-E7 scFvs were constructed and transduced into T cells. CAR vectors for production of lentivirus encoding the HPV16-E7/HLA-A*02:01 specific CARs were constructed by fusing an affinity matured scFv isolated in Example 10 (7-1, 7-3, 7-6, 7-7, 7-8, and 7-9, corresponding to SEQ ID NOs: 223, 225, and 227-230, respectively) or the parental US-7 scFv with either a polypeptide having CD28 and CD3ζ signaling domains (SEQ ID NO: 256) or a polypeptide having 4-1BB and CD3ζ signaling domains (SEQ ID NO: 257).

[0645] Lentiviruses containing the HPV16-E7/HLA-A*02:02:01 specific chimeric antigen receptors were produced by transfection of 293T cells with the CAR vectors. Human T-cells were used for transduction after 1-day stimulation with CD3/CD28 beads (Dynabeads®,...
Invitrogen) in the presence of interleukin-2 at 100 U/ml. Concentrated lentiviruses were applied to T-cells in Retronectin (Takara) coated 6-well plates for 72 hours. Five days after transduction, HPV16-E7 CAR-T cells and mock-transduced cells were co-stained with biotinylated HPV16-E7 11-19 peptide/HLA-A*02:01 tetramers and CD4 or CD8 antibodies and analyzed by flow cytometry. FIGS. 11A-11C show flow cytometry results for HPV16-E7 CAR-T cells and mock-transduced cells. Results are summarized in Table 13. Each of the tested CARs with an affinity matured scFv had higher transduction efficiency than the CAR with the parental scFv.

Table 13

<table>
<thead>
<tr>
<th>Clone</th>
<th>% Tetramer<sup>+</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mock</td>
<td>0.12</td>
</tr>
<tr>
<td>US-7 4-1BB/CD3ζ</td>
<td>39.8</td>
</tr>
<tr>
<td>US-7 CD28/CD3ζ</td>
<td>43.0</td>
</tr>
<tr>
<td>7-1 4-1BB/CD3ζ</td>
<td>69.6</td>
</tr>
<tr>
<td>7-1 CD28/CD3ζ</td>
<td>67.9</td>
</tr>
<tr>
<td>7-3 4-1BB/CD3ζ</td>
<td>74.4</td>
</tr>
<tr>
<td>7-3 CD28/CD3ζ</td>
<td>70.5</td>
</tr>
<tr>
<td>7-6 4-1BB/CD3ζ</td>
<td>64.3</td>
</tr>
<tr>
<td>7-6 CD28/CD3ζ</td>
<td>68.3</td>
</tr>
<tr>
<td>7-7 4-1BB/CD3ζ</td>
<td>68.4</td>
</tr>
<tr>
<td>7-7 CD28/CD3ζ</td>
<td>62.9</td>
</tr>
<tr>
<td>7-8 4-1BB/CD3ζ</td>
<td>71.2</td>
</tr>
<tr>
<td>7-8 CD28/CD3ζ</td>
<td>63.6</td>
</tr>
<tr>
<td>7-9 4-1BB/CD3ζ</td>
<td>77.3</td>
</tr>
<tr>
<td>7-9 CD28/CD3ζ</td>
<td>66.1</td>
</tr>
</tbody>
</table>

Example 13. T-cell killing assay using CAR-T with anti-HPV16-E7 affinity maturation variants with cancer cell lines

In vitro Cytotoxicity study of HPV16-E7 CAR-T cells

[0646] Tumor cytotoxicity of T cells expressing a CAR having an affinity matured scFv (7-1, 7-3, 7-6, 7-7, 7-8, and 7-9, corresponding to SEQ ID NOs: 223, 225, and 227-230, respectively) or the parental US-7 scFv was assayed by LDH Cytotoxicity Assay (Promega).
Human T cells purchased from AllCells were activated, then transduced with the CAR and expanded with CD3/CD28 Dynabeads (Invitrogen) according to manufacturer's protocol. Activated CAR-T cells were cultured and maintained in RPMI1640 medium with 10% FBS plus 100 U/ml IL-2, and used at day 7-14. Activated CAR-T cells (effector cells) and target cancer cells were co-cultured at a 5:1 ratio for 16 hours. Cytotoxicities were then determined by measuring LDH activities in culture supernatants.

[0647] Target cancer cells tested included cervical cancer cell line CaSki (ATCC CRL-1550; HLA-A2+, HPV16+), cervical carcinoma cell line MS-751 (ATCC HTB-34; HLA-A2+, HPV16+), and mantle cell lymphoma cell line JeKo-1 (ATCC CRL-3006; HLA-A2+, HPV16-). As shown in FIG. 12, the affinity matured clones (7-1, 7-3, 7-6, 7-7, 7-8, and 7-9) demonstrated significantly increased killing activity in both CD28/CD3ζ and 4-1BB/CD3ζ formats compared to the parental clone US-7.

[0648] Additional target cancer cells that may be tested include head and neck squamous cell carcinoma cell line UM-SCC-104 (Millipore; HLA-A2+, HPV16+), liver adenocarcinoma cell line SK-HEP-1 (ATCC HTB-52; HLA-A2+, HPV16+), cervical squamous cell carcinoma cell line SiHa (ATCC HTB-35; HLA-A2-, HPV16+), cervical cancer cell line C33A (ATCC HTB-31; HLA-A2+, HPV16+), cervical adenocarcinoma cell line HeLa (ATCC CCL-2; HLA-A2-, HPV16+), hepatocellular carcinoma cell line Hep3B (ATCC HB-8064; HLA-A2-, HPV16+), hepatocellular carcinoma cell line HepG2 (ATCC HB-8065; HLA-A2-, HPV16-), lymphoma cell line Raji (ATCC CCL-86; HLA-A2-, HPV16-), T cell leukemia cell line Jurkat (ATCC TIB-152; HLA-A2-, HPV16-), lymphoma cell line Daudi (ATCC CCL-213; HPA-A2+, HPV16-), and leukemia cell line K562 (ATCC CCL-243; HLA-A2-, HPV16-).
Sequence Listing

SEP ID NO: 1, HPV16 E7 protein
MHGDTPTLHEYMLDLQPETTDLYCYEQLNDSSEEEDEIDGPAGQAEPDRAHYNIVTF
CCKCDSTLRVLQSTHVDIRTLEDLLMGTTLGIVCPICSQKP

SEP ID NO: 2, HPV16 E7 CDS
ATGCATGGAGATACACCTACATTGCATGAATATATGTTATGATTGCAACCAGAGA
CAACTGATCTCTCTACTGTATGAGCAATTAATGACAGCTCAAGGAGAGAGGATG
AAATAGATGCTCCAGCTGGACAAGCAGAACCAGAGGCCATTACAATAATATGG
TAACCTTTTGTGGCAAAGTGTGACCTACTACGTCTGGTGTGCTACAAAGCAACA
AATTTTGTGGCGTATGGCTGCAACAAGCAACAAGCAACAAGCAACAAGCAACA
CACTCTGGTTCTCAGAAACCATAA

SEP ID NP: 3, HPV16 E7 7-15
TLHEYMLDL

SEP ID NP: 4, HPV16 E7 11-19
YMLDLQPET

SEP ID NP: 5, HPV16 E7 16-25
QPETTDLYCY

SEP ID NP: 6, HPV16-E7 44-52
QAEPDRAHY

SEP ID NP: 7, HPV16-E7 46-55
EPDRAHYNIV

SEP ID NP: 8, HPV16-E7 49-57
RAHYNIVTF

SEP ID NP: 9, HPV16 E7 82-90
LLMGTLGIV

SEP ID NP: 10, HPV16 E7 86-93
TLGIVCPI

SEP ID NP: 11, HPV16 E7 11-19 variant
YMLDVQPET

SEP ID NP: 12, HPV16 E7 11-19 A1
AMDLDLQPET

SEP ID NP: 13, HPV16 E7 11-19 A5
YMLDAAQPET

SEP ID NP: 14, HPV16 E7 11-19 A8
YMLDLQPAT

SEP ID NO: 15, HCVR 1
QVQLVQSGAEVKPGASVKSCKASGTYTFIDYYIHWRQAPGQGLEWMGWINPKSGGTKYAQKFQGRVTMTRDTSITATTAYMESSLTSDDTAVYVYCAHRSYYYGGVYKYWGQGTLVTVSS

SEP ID NO: 16, HCVR 2
QVQLVQSGAEVKPGSSVKSCKASGTFSSYAIHWVRQAPQGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMESSLRSEDTAVYYCARGVYGYSAPYDEWQGTLVTVSS

SEP ID NO: 17, HCVR 3
EVQLVQSGAEVKPGSSVKSCKASGTFSSMAAIHWVRQAPQGQGLEWMGRIIPIMIGIPDYAQEFQGRVTFTADRSSTAYMESSLRSDDTAVYYCARGPLYWWHDSWQGTLVTVSS

SEP ID NO: 18, HCVR 4
QVQLVQSGGGVQQPGRSLRSLCAASGFTSSYAIHWVRQAPQGQGLEWMGRIIPIMIGIPDYAQEFQGRVTFTADRSSTAYMESSLRSDDTAVYYCARGPLYWWHDSWQGTLVTVSS

SEP ID NO: 19, HCVR 5
QVQLVQSGAEVKPGSSVKSCKASGTFRSYAVSWVRQAPQGQGLEWMGRIIPIFGTPYAQKFQGRVTITADSTSTAHMELSGLRSDDTAVYYCARGPPLYWHDSWQGTLVTVSS

SEP ID NO: 20, HCVR 8
QVQLVQSGAEVKPGSSVKSCKASGTFSSYAIHWVRQAPQGQGLEWMGRIIPIMIGIPDYAQEFQGRVTFTADRSSTAYMESSLRSDDTAVYYCARGPPLYWHDSWQGTLVTVSS

SEP ID NO: 21, HCVR 9
QVQLVQSGAEVKPGSSVKSCKASGTFSSYAIHWVRQAPQGQGLEWMGRIIPIMIGIPDYAQEFQGRVTFTADRSSTAYMESSLRSDDTAVYYCARGPPLYWHDSWQGTLVTVSS

SEP ID NO: 22, HCVR 10
QVQLVQSGAEVKPGSSVKSCKASGTFSSYAIHWVRQAPQGQGLEWMGRIIPIMIGIPDYAQEFQGRVTFTADRSSTAYMESSLRSDDTAVYYCARGPPLYWHDSWQGTLVTVSS

SEP ID NO: 23, HCVR 11
QVQLVQSGAEVKPGSSVKSCKASGTFSSYAIHWVRQAPQGQGLEWMGRIIPIMIGIPDYAQEFQGRVTFTADRSSTAYMESSLRSDDTAVYYCARGPPLYWHDSWQGTLVTVSS

SEP ID NO: 24, HCVR 13
QVQLVQSGAEVKPGASVKSCKASKGTYFTSYGISWVRQAPGQGLEWGWISPYN
GNTNYAQLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARGYKDYWGQGT
LVTVSS

SEP ID NO: 25, HCVR 17
QVQLVQSGAEVRKPGSSVKSCASKGDFIRKFAVSVWRQAPGQGPEWMGRIIPNL DI
TDKPKQFQGRVTLS ADKSTSTVYLELS SLRSEDTAVYYCARGSIYQWS GWDSWGWQG
TLTVSS

SEP ID NO: 26, HCVR 22
EVQLVESGGGLVKPGSSLRCSASGFYDSDYMTWIRQAPGKLEWLS YISPGGT T
YYAASVEGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARGHSFSSYGEDYWGQGT
LVTVSS

SEP ID NO: 27, HCVR 26
QVQLVQSGAEVKPGASVKSCKASKGTYFTGYYMHWVRQAPGQGLEWGWISPYN
SGGTNYAQLQGRVTMTRDTSTAYMELRSLRSDDTAVYYCARGWHQYGIMDYW
GQGTLTVSS

SEP ID NO: 28, HCVR 27
EVQLVESGGGLVQPGSRLSCAASGFYDSDYMTWIRQAPGKGLEWVSAISGSGG
STYADSVKGRFTISRDNKNTLYLQMNSLRAEDTAVYYCARRVWSAYDSWGQG
TLTVSS

SEP ID NO: 29, HCVR 31
QVQLVQSGGGLVQPGSSLRLSCAASGFYDSDYMTWIRQAPGKGLEWVGNIKEDG
SVKYYYVDSVKGRFTISRDNKNTLYLQMNSLRAEDTAVYYCARRVWSAYDSWGQG
TLTVSS

SEP ID NO: 30, HCVR 32
EVQLVQSGAEVKPGASVKSCKASKGTYFTGYYMHWVRQAPGQGLEWGWISPYN
SGGTNYAQLQGRVTMTRDTSTAYMELRSLRSDDTAVYYCARRVWSAYDSWGQG
TLTVSS

SEP ID NO: 31, HCVR 39
QVQLVQSGGGLVQPGSSLRLSCAASGFYDSDYMTWIRQAPGKGLEWVSAISGSGG
NTYSDSVEGRFTMSRDNSKNTLYLQMNSLRAEDTAVYYCARRVWSAYDSWGQG
TLTVSS

SEP ID NO: 32, HCVR 40
EVQLVQSGAEVKPGASVKSCTASGYSFSDYIYLYLQGPGQGLEWGWISPYN
GVTTHYAQLQGRVTMTRDTSTIYLYMELRSLRSDDTAVYYCARRVWSAYDSWGQG
TLTVSS

SEP ID NO: 33, HCVR 41
QAQLVQSGGGLVQPGSSLRLSCAASGFYDSDYMTWIRQAPGKLEWVSAISGSGG
NTYSDSVEGRFTISRDNKNTLYLQMNSLRAEDTAVYYCARRVWSAYDSWGQG
TLTVSS
SEP ID NO: 34, HCVR US-5
EVQLVQSGAEVKPGSSKVSSKKASGLTFSYGISWVRQAPGQGLEWMGWGIIPIFT
TYAQKQQFGRTTITADESTRTAYMEELSLRSEDATAVVYCARVYGSYFDFDQGTL
VTSS

SEP ID NO: 35, HCVR US-7
QYQLQQWAGLLKPSSTLTCAYGGFSGYHWISWIRQPGKGLEWIGEINHGST
NYPSLRSVTISVTSDKQNSLKLSSVTADATAVVYCARAPQSWYVGDVWQQGTL
VTSS

SEP ID NP: 36, LCVR 1
QAVLTQPPSASTPGQRVTISCGSSSAIGNPVTWYQHLGAPTAKLIIYGNYQRPSPG
VPDRFSGKSGTSAASLAISSQLSEQEADYCYCACWDDSITGVFGTGTKTVL

SEP ID NP: 37, LCVR 2
QSVLTQPPSLVAPGTAATTCGNGNMKSVHWYQKPGQAPVLVIYYDSDRSGIP
GRFSGSNSGNTATLTSRVCEAGDEAYCQVWDTTDHPGVFGTGTKTVL

SEP ID NP: 38, LCVR 3
QSVVTQPPSVAAPQKVSTISCGSSSAIGNYVSVWHQHPGAPKLLIIYNKRPSPG
IPDRFSGKSSTGSAALTISGGQQTGDAEAYCQWDDSSHDVFGMTGTKTVL

SEP ID NP: 39, LCVR 4
SYELTQPPSLSVAPGKTARITCGGNNIGSWSVHWYQKPGQAPVLVIYNSDRSGIP
ERFSGSNSGNTATLTSRVCEAGDEAYCQVWDDSSHDVFGMTGTKTVL

SEP ID NP: 40, LCVR 5
DIQMTQSPSSAVSGDVRVITCRASPQGSSSWLAVWYQKPGQAPKLLIIYAASLQSG
VPSRFSGSSTDLTTFISQLQEDFAYYCQQANSFPTFGGFTPVEIKR

SEP ID NP: 41, LCVR 6
QSVLTQPPSASGTPQVRVTISCGSSGHSNITNPVSVWYQQVPTPKLIIYSAASLQSG
VPSRFSGSSGTVTDLTISQLQEDFAYCQQANSFPTFGGFTPVEIKR

SEP ID NP: 42, LCVR 7
QSVLTQPPSASGTPQVRVTISCGSSGHSNITNPVSVWYQQVPTPKLIIYASASLQSG
VPSRFSGSSGTVTDLTISQLQEDFAYCQQANSFPTFGGFTPVEIKR

SEP ID NP: 43, LCVR 8
QSVLTQPPSASGTPQVRVTISCGSSGHSNITNPVSVWYQQVPTPKLIIYASASLQSG
VPSRFSGSSGTVTDLTISQLQEDFAYCQQANSFPTFGGFTPVEIKR

SEP ID NP: 44, LCVR 9
QSVLTQPPSASGTPQVRVTISCGSSGHSNITNPVSVWYQQVPTPKLIIYASASLQSG
VPSRFSGSSGTVTDLTISQLQEDFAYCQQANSFPTFGGFTPVEIKR

SEP ID NP: 45, LCVR 10
QTVVTQEPSLTVSPGTVTLTCASSTGAVTSGYYPNWFQKPGQAPRALIYSTNNKH
SWTPARDPSGSLGTQATGQAEDAYCQWDDSSHDVFGMTGTKTVL

SEP ID NP: 46, LCVR 11
QAVLTQPPSASGTPQVRVTISCGSSGHSNITNPVSVWYQQVPTPKLIIYASASLQSG
VPSRFSGSSGTVTDLTISQLQEDFAYCQQANSFPTFGGFTPVEIKR

SEP ID NP: 47, LCVR 12
QTVVTQEPSLTVSPGTVTLTCASSTGAVTSGYYPNWFQKPGQAPRALIYSTNNKH
SWTPARDPSGSLGTQATGQAEDAYCQWDDSSHDVFGMTGTKTVL

215
SEP ID NO: 46, LCVR 17
DIQMTQSPSLSAVGDRVTITCRASQSISSLYNWYQQKPGQAPNLLIYGASSFQSGV
PSRFSGSGSTDFTLTISSLQPEDFATYYCQSSIDAPSAPLTFGGGTKVDIKR

SEP ID NO: 47, LCVR 22
QAVLTQPSSASGTPGQRVTISCGSSSNIGSNVNWYQQVPGTAPKLLIYSNNRPSSG
VPDRFSGKSCTASALAITKLQSEDEADYCCAAWDDSLNYVFGTGTKVTVLG

SEP ID NP: 48, LCVR 26
QSVLTQPSSVSGAPGQRVTISCTGSSSNIAGYDVHWYQQLPGTAPKLLIESNNRPSSG
VPDRFSGSKSCTASALAITGLQAEDADYYCQSYDTSKGVFGPGTKVTVLG

SEP ID NP: 49, LCVR 27
SSELTQPDPSVALGQTVTITCQDGILRNYYATWYQQKPGQAPLSVLGYQNNRPSSGI
PDRFSGSTGNTASLTITGAQAEDEGDYYCDMDSSGNGHVFQGGGTKLTVL

SEP ID NP: 50, LCVR 31
SSELTQPDPSVALGQTVTITCRDGNNLSYASWYQQKPGQAPVVLGLYGNRRPSGI
PDRFSGSSNTASLTITGAQAEDEADYYCQSWASSDVVFQGGGTKLTVL

SEP ID NP: 51, LCVR 32
SYVLTQPSSVSGAPGQTASITCGSKDLGKEKVYYWYWQQPGPQPVLVIFQNDKRSGIP
ERLGSRSGNTATLITSTGQAMDEADYYCQSWASSDVVFQGGGTKLTVL

SEP ID NP: 52, LCVR 39
SSELTQPDPSVALGQTVRTICQDGSLRNYYASWYQQKPGQAPVVLGLYGNRRPSGI
IPDRFSGSSNTASLTITGAQAEDEADYYCQSWASSDVVFQGGGTKLTVL

SEP ID NP: 53, LCVR 40
QAVLTQPSSASGTPGQRVTISCGSSSNIGSNHNVNWYQQLPGTAPKLLISNNRPSSG
VPDRFSGKSCTASALASIAGLQSEDEADYYCCAADDDSLNVPVFQGGGTKLTVL

SEP ID NP: 54, LCVR 41
SSELTQPDPSVALGQTVRTICQDGTLRSFYASWYQQKPGQAPVLFYGGKNNRPSSGI
PERFSGNSSENTASLTIGAQAEDADYYCNSRDSGDPVVFQGGGTKLTVL

SEP ID NP: 55, LCVR US-5
QAVVTQEPLTSVPGTVTLCTASSTGAVTSYYPNWQQKPGQAPRALIYSTSNTH
SWTPARFSGSLGGKAALTVSGVQPEDEAEYYCLLGYGARVFQGGGTKLTVL

SEP ID NP: 56, LCVR US-7
SYELTQPPSVGTPGQRVAISCSSCSSNIGTRMVTVYYHPGTAPKLLIFNNQNRPSSG
VPDRFSAKSGATASLAAIGLQSDDEADYYCAADDNLKSYVFGTGTKVTVLG

SEP ID NP: 57, HC-CDR1 1
GYTFIDYY

SEP ID NP: 58, HC-CDR1 2
GGTFSSYA

SEP ID NO: 59, HC-CDRl 3
GGTFSSMAA

SEP ID NO: 60, HC-CDRl 4
GFTFSSYA

SEP ID NP: 61, HC-CDRl 5
GGFTFRSYA

SEP ID NP: 62, HC-CDRl 8
GYTFANYG

SEP ID NP: 63, HC-CDRl 9
GFTFSSYW

SEP ID NP: 64, HC-CDRl 10
GFPFSSYS

SEP ID NP: 65, HC-CDRl 11
GYTFSDYG

SEP ID NP: 66, HC-CDRl 13
GYTFTSYG

SEP ID NP: 67, HC-CDRl 17
GDIFRKFA

SEP ID NP: 68, HC-CDRl 22
GFNFSDYY

SEP ID NP: 69, HC-CDRl 26
GYTFTGYY

SEP ID NP: 70, HC-CDRl 27
GFTFSSYA

SEP ID NP: 71, HC-CDRl 31
GFTFSSYW

SEP ID NP: 72, HC-CDRl 32
GGTFSSYA

SEP ID NP: 73, HC-CDRl 39
GFSFSRHA

SEP ID NP: 74, HC-CDRl 40
GYSFSDYY
SEP ID NO: 75, HC-CDR1 41
GFTFSSYS

SEP ID NP: 76, HC-CDR1 US-5
GGTFSSYG

SEP ID NP: 77, HC-CDR1 US-7
GGSFSGYY

SEP ID NP: 78, HC-CDR2 1
INPKSGGT

SEP ID NP: 79, HC-CDR2 2
IIPIFGTA

SEP ID NP: 80, HC-CDR2 3
IIPMIGIP

SEP ID NP: 81, HC-CDR2 4
ISYDGTNK

SEP ID NP: 82, HC-CDR2 5
IIPIFGTP

SEP ID NP: 83, HC-CDR2 8
ISASNGNT

SEP ID NP: 84, HC-CDR2 9
INQDGSEK

SEP ID NP: 85, HC-CDR2 10
ISSSSSTI

SEP ID NP: 86, HC-CDR2 11
ISTYNGNT

SEP ID NP: 87, HC-CDR2 13
ISPYNGNT

SEP ID NP: 88, HC-CDR2 17
IIPNLDIT

SEP ID NP: 89, HC-CDR2 22
ISPGGTT

SEP ID NP: 90, HC-CDR2 26
INPNSGGT
SEP_ID NO: 91, HC-CDR2 27
ISGSGGST

SEP_ID NO: 92, HC-CDR2 31
IKEDGSVK

SEP_ID NP: 93, HC-CDR2 32
IIPILGIA

SEP_ID NP: 94, HC-CDR2 39
ISGSGGNT

SEP_ID NP: 95, HC-CDR2 40
INPNTGVT

SEP_ID NP: 96, HC-CDR2 41
ISSSSSYI

SEP_ID NP: 97, HC-CDR2 US-5
IIPIFGTT

SEP_ID NP: 98, HC-CDR2 US-7
INHSGST

SEP_ID NP: 99, HC-CDR3 1
ARYYYYYGGVKDY

SEP_ID NP: 100, HC-CDR3 2
ARGVYGYSGSAPYDE

SEP_ID NP: 101, HC-CDR3 3
ARGPLYWWHSDS

SEP_ID NP: 102, HC-CDR3 4
ARMHGSGSPECT

SEP_ID NP: 103, HC-CDR3 5
ARSSMYQYSHDD

SEP_ID NP: 104, HC-CDR3 8
ARSYYAGYYMFMDF

SEP_ID NP: 105, HC-CDR3 9
ARYSVWGMMDE

SEP_ID NP: 106, HC-CDR3 10
ARQNYYADYDY

SEP_ID NP: 107, HC-CDR3 11
<table>
<thead>
<tr>
<th>ID No.</th>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>ARGYTGSYYATGDE</td>
<td>SEP I D HC-CDR3 13</td>
</tr>
<tr>
<td>109</td>
<td>ARGYKDY</td>
<td>SEP I D HC-CDR3 17</td>
</tr>
<tr>
<td>110</td>
<td>ARGSIYQWSGWDS</td>
<td>SEP I D HC-CDR3 22</td>
</tr>
<tr>
<td>111</td>
<td>ARGHSFSYGEDY</td>
<td>SEP I D HC-CDR3 26</td>
</tr>
<tr>
<td>112</td>
<td>ARGWHQYGIMDY</td>
<td>SEP I D HC-CDR3 27</td>
</tr>
<tr>
<td>113</td>
<td>ARRSVWSAYDS</td>
<td>SEP I D HC-CDR3 31</td>
</tr>
<tr>
<td>114</td>
<td>ARGGVWGHIDF</td>
<td>SEP I D HC-CDR3 32</td>
</tr>
<tr>
<td>115</td>
<td>ARRGVWGSIDT</td>
<td>SEP I D HC-CDR3 39</td>
</tr>
<tr>
<td>116</td>
<td>ARGWGSYDK</td>
<td>SEP I D HC-CDR3 40</td>
</tr>
<tr>
<td>117</td>
<td>ARNVYRYSMMHDS</td>
<td>SEP I D HC-CDR3 41</td>
</tr>
<tr>
<td>118</td>
<td>ARRGVWGYFDS</td>
<td>SEP I D HC-CDR3 US-5</td>
</tr>
<tr>
<td>119</td>
<td>ARVYGSFYDD</td>
<td>SEP I D HC-CDR3 US-7</td>
</tr>
<tr>
<td>120</td>
<td>ARAPQSWYVGDV</td>
<td>SEP I D LC-CDR1 1</td>
</tr>
<tr>
<td>121</td>
<td>NIGMKS</td>
<td>SEP I D LC-CDR1 2</td>
</tr>
<tr>
<td>122</td>
<td>NIGSKS</td>
<td>SEP I D LC-CDR1 3</td>
</tr>
<tr>
<td>123</td>
<td>NIGSKS</td>
<td>SEP I D LC-CDR1 4</td>
</tr>
</tbody>
</table>
SEP ID NO: 124, LC-CDRI 5
QGISSW

SEP ID NO: 125, LC-CDRI 8
NSNIETNP

SEP ID NP: 126, LC-CDRI 9
SLRSYY

SEP ID NP: 127, LC-CDRI 10
NIGSKN

SEP ID NP: 128, LC-CDRI 11
SSNIGINT

SEP ID NP: 129, LC-CDRI 13
TGAVTSGYY

SEP ID NP: 130, LC-CDRI 17
QSISSY

SEP ID NP: 131, LC-CDRI 22
SSNIGSNS

SEP ID NP: 132, LC-CDRI 26
SSNIGAGYD

SEP ID NP: 133, LC-CDRI 27
ILRNYY

SEP ID NP: 134, LC-CDRI 31
NLRNSY

SEP ID NP: 135, LC-CDRI 32
KLGEKY

SEP ID NP: 136, LC-CDRI 39
SLRNYY

SEP ID NP: 137, LC-CDRI 40
SSNIGSNH

SEP ID NP: 138, LC-CDRI 41
TLRSFY

SEP ID NP: 139, LC-CDRI US-5
TGAVTSSYY
SEP ID NO: 140, LC-CDR1 US-7
SSNIGTRM

SEP ID NO: 141, LC-CDR2 1
GNY

SEP ID NP: 142, LC-CDR2 2
YDS

SEP ID NP: 143, LC-CDR2 3
DNY

SEP ID NP: 144, LC-CDR2 4
YNS

SEP ID NP: 145, LC-CDR2 5
AAS

SEP ID NP: 146, LC-CDR2 8
SYY

SEP ID NP: 147, LC-CDR2 9
GKN

SEP ID NP: 148, LC-CDR2 10
DDH

SEP ID NP: 149, LC-CDR2 11
GNS

SEP ID NP: 150, LC-CDR2 13
STN

SEP ID NP: 151, LC-CDR2 17
GAS

SEP ID NP: 152, LC-CDR2 22
SNN

SEP ID NP: 153, LC-CDR2 26
ESN

SEP ID NP: 154, LC-CDR2 27
GQN

SEP ID NP: 155, LC-CDR2 31
GKN

SEP ID NP: 156, LC-CDR2 32
QND

SEP ID NO: 157, LC-CDR2 3
GKD

SEP ID NO: 158, LC-CDR2 4
NNN

SEP ID NP: 159, LC-CDR2 4
GKN

STS

SEP ID NP: 161, LC-CDR2 US-7
NNN

SEP ID NP: 162, LC-CDR3 1
AAWDDSLTGYV

SEP ID NP: 163, LC-CDR3 2
QVWDTTGDHPGYV

SEP ID NP: 164, LC-CDR3 3
GTWDSSLSAYV

SEP ID NP: 165, LC-CDR3 4
QVWDSSSDHWV

SEP ID NP: 166, LC-CDR3 5
QQANSFPLT

SEP ID NP: 167, LC-CDR3 8
ASWDDSVQGYV

SEP ID NP: 168, LC-CDR3 9
NSRDSSGNHQV

SEP ID NP: 169, LC-CDR3 10
QVWDSSSDHVV

SEP ID NP: 170, LC-CDR3 11
QSYDTSLTVI

SEP ID NP: 171, LC-CDR3 13
LLYYGGAQLWV

SEP ID NP: 172, LC-CDR3 17
QQSYSAPLT
<table>
<thead>
<tr>
<th>SEPI</th>
<th>D NO:</th>
<th>LC-CDR3</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>173</td>
<td></td>
<td>22</td>
<td>AAWDDSLNGYV</td>
</tr>
<tr>
<td>174</td>
<td></td>
<td>26</td>
<td>QSYDTSLKGV</td>
</tr>
<tr>
<td>175</td>
<td></td>
<td>27</td>
<td>DSRDSSGNHWV</td>
</tr>
<tr>
<td>176</td>
<td></td>
<td>31</td>
<td>NSRDSSGFPPYV</td>
</tr>
<tr>
<td>177</td>
<td></td>
<td>32</td>
<td>QSWASSSVYYV</td>
</tr>
<tr>
<td>178</td>
<td></td>
<td>39</td>
<td>NSRDSSGNHRV</td>
</tr>
<tr>
<td>179</td>
<td></td>
<td>40</td>
<td>AAWDDSLNPV</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td>41</td>
<td>NSRDSGGDPVV</td>
</tr>
<tr>
<td>181</td>
<td></td>
<td>US-5</td>
<td>LLYYGGARV</td>
</tr>
<tr>
<td>182</td>
<td></td>
<td>US-7</td>
<td>AAWDDNLKSYV</td>
</tr>
<tr>
<td>183</td>
<td></td>
<td>HC-CDR1 consensus</td>
<td>G-F/G/Y-S/T-F-S/T-S-Y-A/G</td>
</tr>
<tr>
<td>184</td>
<td></td>
<td>HC-CDR2 consensus 1</td>
<td>I-N/I-P-X-X-G-G/T/I-T/A/P</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>HC-CDR2 consensus 2</td>
<td>I-S-X-S/D-G/N-G/S-N-T/I/K</td>
</tr>
</tbody>
</table>
SEP ID NO: 189, LC-CDR1 consensus 1
N-I-G-S-N/K

SEP ID NO: 190, LC-CDR1 consensus 2
L-R-S/N-X-Y

SEP ID NP: 191, LC-CDR3 consensus

SEP ID NP: 192, AFP158 control peptide
FMNKFIYEI

SEP ID NP: 193, C3 control peptide (A2E-7)
YLLPAIVHI

SEP ID NP: 194, A2E-1
LLDVPTAAAV

SEP ID NP: 195, A2E-2
TLWVDPYEV

SEP ID NP: 196, A2E-3
FLLDHLKRV

SEP ID NP: 197, A2E-4
LLLDVPTAAV

SEP ID NP: 198, A2E-5
VLFRGGPRGLLAV

SEP ID NP: 199, A2E-6
SLLPAIVEL

SEP ID NP: 200, A2E-8
FLLPTGAE

SEP ID NP: 201, A2E-9
LLDPKLCYLL

SEP ID NP: 202, A2E-11
MLLSVPLL

SEP ID NP: 203, A2E-17
MVDGTL

SEP ID NP: 204, DMTN control
SLPHFH

SEP ID NP: 205, PIM1 control
LLYDMVCGDIP
SEP ID NO: 206, IFI30 control
LLLDVPTAAVQ
SEP ID NO: 207, IFI30 control
LLLDVPTAAVQA
SEP ID NP: 208, SSR1 control
VLFRGGPRGLLAVA
SEP ID NP: 209, RPS6KB1 control
YMAPEILMRS
SEP ID NP: 210, CSF2RA control
FIYNADLMNC
SEP ID NP: 211, IL7 control
KQYESVLMVSI
SEP ID NP: 212, Beta globin control
KVNVDEVGGE
SEP ID NP: 213, Clone 7-1 CDS
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCTGGGACCCCCGGGCAGAGGGTCG
CCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGGACTCGTATGGTGACCTGGTA
CCAGCATGTCCCAGGGACGGCCCCCAAACTCCTCATCTTTAATAACAATCAGCGG
CCCTCAGGGGTCCCTGACCGATTCTCTGCCTCCAAGTCTGGCACCTCAGCCTCCC
TGGCCATCATTGGGCTCCAGTCTGACGATGAGGCTGATTATTACTGTGCAGCATG
GGATGACAACCTGAAAAGTTATGTCTTCGGAACTGGGACCAAGGTCACCGTCCT
AGGTTCTAGAGGTGGTGGTGGTAGCGGCGGCGGCGGCTCTGGTGGTGGTGGATC
CCTCGAGATGGCCCAGGTGCAGCTACAGCAGTGGGGCGCAGGACTGTTGAAGCC
TTCGGAGACCCTGTCCCTCACCTGCGCTGTCTATGGTGGGTCCTTCAGTGGTTACT
ACTGGAGCTGGATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGGAAA
TCAATCATAGTGGAAGCACCAACTACAACCCGTCCCTCAAGAGTCGAGTCACCA
TATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC
CGCGGACACGGCCGTGTATTACTGTGCGCGCGCTCCGCAGTCGTGGTACCGAGGT
GATGTTTGGGGTCAAGGTACTCTGGTGACCGTCTCCTCA
SEP ID NP: 214, Clone 7-2 CDS
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCTGGGACCCCCGGGCAGAGGGTCG
CCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGGACTCGTATGGTGACCTGGTA
CCAGCATGTCCCAGGGACGGCCCCCAAACTCCTCATCTTTAATAACAATCAGCGG
CCCTCAGGGGTCCCTGACCGATTCTCTGCCTCCAAGTCTGGCACCTCAGCCTCCC
TGGCCATCATTGGGCTCCAGTCTGACGATGAGGCTGATTATTACTGTGCAGCATG
GGATGACAACCTGAAAAGTTATGTCTTCGGAACTGGGACCAAGGTCACCGTCCT
AGGTTCTAGAGGTGGTGGTGGTAGCGGCGGCGGCGGCTCTGGTGGTGGTGGATC
CCTCGAGATGGCCCAGGTGCAGCTACAGCAGTGGGGCGCAGGACTGTTGAAGCC
TTCGGAGACCCTGTCCCTCACCTGCGCTGTCTATGGTGGGTCCTTCAGTGGTTACT


ACTGGAGCTGAGTCCAGCAGCCACCCAGGGAGAGGTGAGTGGATTTGGAGAAA
TCATCAATGGTAGAAGCAACTCAAACCATCCACCCAGGCTCAGTCGACCTC
TATCAGTAGACGCTCCAAAGACAGGCTTCTCCATGAAGCTAGCTCTTGGAC
CGCGGACACGCCGCGTGTATTACTGTTTGGCGGCAGCGCAGTCCTCTGGTAC
GATGTATGGGGTCAAGTGAGTCTCGGACCGCTCCCTTC

SEP ID NO: 215, Clone 7-3 CDS

TCCTATGAGTCTGACTCCAGCACAACCCAGTTGCTGGGACCCCGGCAAGGAG
CCATCTCTCTGGTGGAGAAGCAGGCCCAACATGCGGACTGATGCACTGGT
CCACATATGGCCACGCCGCCGCCGCCACCTCAACTCTCTTGAATACATCACGCG
CCCGCAGGCTCCAGCCGAGGCAGCAGTGGCGCAGGACCTGTTGAAAGCC
TCGCGAGGCTCCAGCCGAGGCAGCAGTGGCGCAGGACCTGTTGAAAGCC
TCGCGAGGCTCCAGCCGAGGCAGCAGTGGCGCAGGACCTGTTGAAAGCC

SEP ID NO: 216, Clone 7-5 CDS

TCCTATGAGTCTGACTCCAGCACAACCCAGTTGCTGGGACCCCGGCAAGGAG
CCATCTCTCTGGTGGAGAAGCAGGCCCAACATGCGGACTGATGCACTGGT
CCACATATGGCCACGCCGCCGCCGCCACCTCAACTCTCTTGAATACATCACGCG
CCCGCAGGCTCCAGCCGAGGCAGCAGTGGCGCAGGACCTGTTGAAAGCC
TCGCGAGGCTCCAGCCGAGGCAGCAGTGGCGCAGGACCTGTTGAAAGCC
TCGCGAGGCTCCAGCCGAGGCAGCAGTGGCGCAGGACCTGTTGAAAGCC

SEP ID NO: 217, Clone 7-6 CDS

TCCTATGAGTCTGACTCCAGCACAACCCAGTTGCTGGGACCCCGGCAAGGAG
CCATCTCTCTGGTGGAGAAGCAGGCCCAACATGCGGACTGATGCACTGGT
CCACATATGGCCACGCCGCCGCCGCCACCTCAACTCTCTTGAATACATCACGCG
CCCGCAGGCTCCAGCCGAGGCAGCAGTGGCGCAGGACCTGTTGAAAGCC
TCGCGAGGCTCCAGCCGAGGCAGCAGTGGCGCAGGACCTGTTGAAAGCC
TCGCGAGGCTCCAGCCGAGGCAGCAGTGGCGCAGGACCTGTTGAAAGCC
TCAATCATAGTGGAAGCACCAACTACAACCCGTCCCTCAAGAGTCGAGTCACCA
TATCAGTAGACGTACGCACCCCTCAGTGTTCTGGGACCCCCGGCAGAGGTCG
TCATCTCTGGTCTCAGGAAGCGACCTCAACACTGGGACTGTTGGTGACTCGTA
CCAGCATGTGCGCCCTCCACACCCCGCCCTCAGTTGGTGACCGTCTCCTCA
SEP
I
D
NO: 218, Clone 7-7 CDS
TCCTATGAGCTGACTCAAGCCACCCCTCAGTGTTCTGGGACCCCCGGCAGAGGTCG
CCACAGAACATGCACTCGAGAAGCTCAGAACATCGGAAGCTCAGGACTCGTA
CCAGCATGTGCGCCCTCCACACCCCGCCCTCAGTTGGTGACCGTCTCCTCA
SEP
I
D
NO: 219, Clone 7-8 CDS
TCCTATGAGCTGACTCAAGCCACCCCTCAGTGTTCTGGGACCCCCGGCAGAGGTCG
CCACAGAACATGCACTCGAGAAGCTCAGAACATCGGAAGCTCAGGACTCGTA
CCAGCATGTGCGCCCTCCACACCCCGCCCTCAGTTGGTGACCGTCTCCTCA
SEP
I
D
NO: 220, Clone 7-9 CDS
TCCTATGAGCTGACTCAAGCCACCCCTCAGTGTTCTGGGACCCCCGGCAGAGGTCG
CCACAGAACATGCACTCGAGAAGCTCAGAACATCGGAAGCTCAGGACTCGTA
CCAGCATGTGCGCCCTCCACACCCCGCCCTCAGTTGGTGACCGTCTCCTCA
SEP
I
D
NO: 220, Clone 7-9 CDS
TATCAGTGACAGCCTGAAGAACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGCGCGGACACGGCCGTGTATTACTGTGCGCGCGCTCCGCAGTCTTGGTACGTTGGTGATGTTTGGGGTCAAGGTACTCTGGTGACCGTCTCCTCA

SEP ID: NO: 221, Clone 7-10 CDS
TCCTATGACCTGACTCAGCCACCCCTCAGTGTCTGGGACCCCCGGGCAGAGGGTCGCCATCTCATGTTCTGGAAGCAGCTCCAACATCGGGACTCGTATGGTGACCTGGTACAGCATGTCCCAGGGACGGCCCCCAAACTCCTCATCTTTAATAACAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGCCTCCAAGTCTGGCACCTCAGCCTCCC

SEP ID: NO: 222, Clone 7-11 CDS
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCTGGGACCCCCGGGCAGAGGGTCGCCATCTCATGTTCTGGAAGCAGCTCCAACATCGGGACTCGTATGGTGACCTGGTACAGCATGTCCCAGGGACGGCCCCCAAACTCCTCATCTTTAATAACAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGCCTCCAAGTCTGGCACCTCAGCCTCCC

SEP ID: NP: 223, Clone 7-1 protein
SYELTQPSSVSGTPGQRVAISCGSGGSSNSGTRMVTVYQHQPGTAPKLIFNNSQRSGVPDRFSASKTSASLAAIGLQSDDEAYCAAWDNLKSYVFGTGKTIVLGSRGGGSGGGGSGGGGSLMAQQVQLQQWAGGLKPSLETLSCTAVYYGSFSGYWSWI

SEP ID: NP: 224, Clone 7-2 protein
SYELTQPSSVSGTPGQRVAISCGSGGSSNSGTRMVTVYQHQPGTAPKLIFNNSQRSGVPDRFSASKTSASLAAIGLQSDDEAYCAAWDNLKSYVFGTGKTIVLGSRGGGSGGGGSGGGGSLMAQQVQLQQWAGGLKPSLETLSCTAVYYGSFSGYWSWI
SEP ID NO: 225, Clone 7-3 protein
SYELTPPS VSGTPGQRVAISCGSSSNIGTRMVTWYQHPGTAPKLLIFNQNRPSG
VDPDRFASKGTSASLAIIQGQSDDEADYYCAWDNKLKSYVFQTGTKTVLGSRG
GGGSSGGSSGGGSLMEAQVQQLQQGAGLKLKPSLTSLTCAYGGGSFGGYWSWIR
QPPGKGLEWIGEINHS GSTYNPSLKSRTVISVDTSKQFSLKLSVTAAATAVYYCA
ARAPQSWYRGDVWGQGTLVTTSS

SEP ID NO: 226, Clone 7-5 protein
SYELTPPS VSGTPGQRVAISCGSSSNIGTRMVTWYQHPGTAPKLLIFNQNRPSG
VDPDRFASKGTSASLAIIQGQSDDEADYYCAWDNKLKSYVFQTGTKTVLGSRG
GGGSSGGSSGGGSLMEAQVQQLQQGAGLKLKPSLTSLTCAYGGGSFGGYWSWIR
QPPGKGLEWIGEINHS GSTYNPSLKSRTVISVDTSKQFSLKLSVTAAATAVYYCA
ARAPQSWYRGDVWGQGTLVTTSS

SEP ID NP: 227, Clone 7-6 protein
SYELTPPS VSGTPGQRVAISCGSSSNIGTRMVTWYQHPGTAPKLLIFNQNRPSG
VDPDRFASKGTSASLAIIQGQSDDEADYYCAWDNKLKSYVFQTGTKTVLGSRG
GGGSSGGSSGGGSLMEAQVQQLQQGAGLKLKPSLTSLTCAYGGGSFGGYWSWIR
QPPGKGLEWIGEINHS GSTYNPSLKSRTVISVDTSKQFSLKLSVTAAATAVYYCA
ARAPQSWYRGDVWGQGTLVTTSS

SEP ID NP: 228, Clone 7-7 protein
SYELTPPS VSGTPGQRVAISCGSSSNIGTRMVTWYQHPGTAPKLLIFNQNRPSG
VDPDRFASKGTSASLAIIQGQSDDEADYYCAWDNKLKSYVFQTGTKTVLGSRG
GGGSSGGSSGGGSLMEAQVQQLQQGAGLKLKPSLTSLTCAYGGGSFGGYWSWIR
QPPGKGLEWIGEINHS GSTYNPSLKSRTVISVDTSKQFSLKLSVTAAATAVYYCA
ARAPQSWYRGDVWGQGTLVTTSS

SEP ID NP: 229, Clone 7-8 protein
SYELTPPS VSGTPGQRVAISCGSSSNIGTRMVTWYQHPGTAPKLLIFNQNRPSG
VDPDRFASKGTSASLAIIQGQSDDEADYYCAWDNKLKSYVFQTGTKTVLGSRG
GGGSSGGSSGGGSLMEAQVQQLQQGAGLKLKPSLTSLTCAYGGGSFGGYWSWIR
QPPGKGLEWIGEINHS GSTYNPSLKSRTVISVDTSKQFSLKLSVTAAATAVYYCA
ARAPQSWYRGDVWGQGTLVTTSS

SEP ID NP: 230, Clone 7-9 protein
SYELTPPS VSGTPGQRVAISCGSSSNIGTRMVTWYQHPGTAPKLLIFNQNRPSG
VDPDRFASKGTSASLAIIQGQSDDEADYYCAWDNKLKSYVFQTGTKTVLGSRG
GGGSSGGSSGGGSLMEAQVQQLQQGAGLKLKPSLTSLTCAYGGGSFGGYWSWIR
QPPGKGLEWIGEINHS GSTYNPSLKSRTVISVDTSKQFSLKLSVTAAATAVYYCA
ARAPQSWYRGDVWGQGTLVTTSS

SEP ID NP: 231, Clone 7-10 protein
SYELTPPS VSGTPGQRVAISCGSSSNIGTRMVTWYQHPGTAPKLLIFNQNRPSG
VDPDRFASKGTSASLAIIQGQSDDEADYYCAWDNKLKSYVFQTGTKTVLGSRG
GGGSSGGSSGGGSLMEAQVQQLQQGAGLKLKPSLTSLTCAYGGGSFGGYWSWIR
QPPGKGLEWIGEINHS GSTYNPSLKSRTMSVDTSKRQFSLKLSVTAAATAVYYCA
ARAPQSWYRGDVWGQGTLVTTSS
SEP ID NO: 232, Clone 7-11
SYELTQPPSVSGTPQQRVAISCSSSGSSNSIGTRMTWYVQHVPGTAPKLLIFNNNQRPSGVPDRFASKGTSASLAIIGQSDDEADYYCAAWDDNLKSYVFGETGTKVTVLGGSGGSGGSGDGGSGSLEMAQVQLQQWGAGLLKPSSETLSLTCAVYGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVDTSKRQFSLKLSVTADTAAYYCARAPQSWYVGDVGQGQTVLTVSS

SEP ID NO: 233, HCVR 7-1
QVQLQQWGAGLLKPSSETLSLTCAVYGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVDTSKNQFSLKLSVTAADTAAYYCARAPQSWYRGDVGQGQTVLTVSS

SEP ID NP: 234, HCVR 7-2
QVQLQQWGAGLLKPSSETMLTCAVYGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVDTSKNQFSLKLSVTAADTAAYYCLRAPQSWYVGDVGQGQTVLTVSS

SEP ID NP: 235, HCVR 7-3
QVQLQQWGAGLLKPSETMSLTCAVYGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVDTSKNQFSLKLSVTADTAAYYCARAPQSWYRGDVGQGQTVLTVSS

SEP ID NP: 236, HCVR 7-10
QVQLQQWGAGLLKPSETLSLTCAVYGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTMSVDTSKRQFSLKLSVTADTAAYYCARAPQSWYVGDVGQGQTVLTVSS

SEP ID NP: 237, HCVR 7-11
QVQLQQWGAGLLKPSETLSLTCAVYGSFSGYYWSWIRQLPGKGLEWIGEINHSGSTNYNPSLKRVTISVDTSKRQFSLKLSVTADTAAYYCARAPQSWYVGDVGQGQTVLTVSS

SEP ID NP: 238, LCVR 7-5
SYELTQPPSVSGTPQQRVAISCSSSSNSIGTRMTWYVQHVPGTAPKLLIFNNNQRPSGVPDRFASKGTSASLAIIGQSDDEADYYCATWDENPKSYVFGETGTKVTVLGGSGGSGGSGDGGSGSLEMAQVQLQQWGAGLLKPSSETLSLTCAVYGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVDTSKRQFSLKLSVTADTAAYYCARAPQSWYVGDVGQGQTVLTVSS

SEP ID NP: 239, LCVR 7-6
SYELTQPPSVSGTPQQRVAISCSSSSNSIGTRMTWYVQHVPGTAPKLLIFNNNQRPSGVPDRFASKGTSASLAIIGQSDDEADYYCATWEDNRKSYVFGETGTKVTVLGGSGGSGGSGDGGSGSLEMAQVQLQQWGAGLLKPSSETLSLTCAVYGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVDTSKRQFSLKLSVTADTAAYYCARAPQSWYVGDVGQGQTVLTVSS

SEP ID NP: 240, LCVR 7-7
SYELTQPPSVSGTPQQRVAISCSSSSNSIGTRMTWYVQHVPGTAPKLLIFNNNQRPSGVPDRFASKGTSASLAIIGQSDDEADYYCAAWDDNLKSYVFGETGTKVTVLGGSGGSGGSGDGGSGSLEMAQVQLQQWGAGLLKPSSETLSLTCAVYGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVDTSKRQFSLKLSVTADTAAYYCARAPQSWYVGDVGQGQTVLTVSS

SEP ID NP: 241, LCVR 7-8
SYELTQPPSVSGTPQQRVAISCSSSSNSIGTRMTWYVQHVPGTAPKLLIFNNNQRPSGVPDRFASKGTSASLAIIGQSDDEADYYCATWDDNVKSYVFGETGTKVTVLGGSGGSGGSGDGGSGSLEMAQVQLQQWGAGLLKPSSETLSLTCAVYGSFSGYYWSWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVTISVDTSKRQFSLKLSVTADTAAYYCARAPQSWYVGDVGQGQTVLTVSS
SEP ID NO: 242, LCVR 7-9
SYELTQPPSVSGTPGQRVAISCGSNSIGTRMVTWYQHVPGTAPKLIFNNNQRPSGVPD
RFSASKGSASLASLAIQLGSDDEADYYCAAWDDNPKSYHFGTGKVTVLG

SEP ID NO: 243, LCVR 7-10
SYELTQPPSVSGTPGQRVAISCGSNSIGTRMVTWYQHVPGTAPKLIFNNNQRPSGVPD
RFSASKGSASLASLIIQLGSDDEADYYCAAWDDNLKSYVFGTGKVTVLG

SEP ID NP: 244, HC-CDR3 7-1
ARAPQSWYRGDV

SEP ID NP: 245, HC-CDR3 7-2
LRAPQSWYVGDV

SEP ID NP: 246, LC-CDR1 7-7
SSNIGTRV

SEP ID NP: 247, LC-CDR3 7-5
ATWDENPKSYV

SEP ID NP: 248, LC-CDR3 7-6
ATWEDNRKSYV

SEP ID NP: 249, LC-CDR3 7-8
ATWDDNKSYV

SEP ID NP: 250, LC-CDR3 7-9
AAWDDNPKSYH

SEP ID NP: 251, HC-FR1 7-3
VQLQQWGAGLLKPSETMSLTCAVY

SEP ID NP: 252, HC-FR2 7-11
WSWIRQLPGKGLWEIGE

SEP ID NP: 253, HC-FR3 7-10
NYPRLKSRTMVDTSKRQFLKLSVTAADTAYYC

SEP ID NP: 254, HC-FR3 7-11
NYPYLLKSRVTISVDTSKRQFLKLSVTAADTAYYC

SEP ID NP: 255, LC-FR3 7-10
QRPSGVPDREASKGSASLTIIGLQSDDEADYYC

SEP ID NP: 256, CD28/CD3C
AAAIEVMYPPPYLDEKEKSNGTIIHVKGHLCPSLPFGPSKPFVWLVVVGVLACYS
LLVTVAIIIFWVRSKRSLHELSDYMNMPRPPGPTRKHYQPYAPPRAAYRSRVKF
SRASSADAPAYQQQINQLYNELNLGRREEYDVLDKRRGRDPEMGKPRKNPQEGLY
NELQKDMAEAYSEIGMKERRRGKGDGLYQGLSTATKDYDALHMQLPPER
SEP ID NO: 257, 4-1BB/CD3C
TGTTTPAPRPPTAPTIAS QPLS LRPEACRPAAGGA VHTRGLDFACDIYIW APLAGTC
GVLLLSLVTLYCKRGRKLLLYIFKQPFMRPVQTTEEDGCSCRFPEEEEGGCELDEVK
FSRSADAPAYQQGQNQLYNELNLGRREEYDVLKRRGRDEPGKPRKRPNNPQEGGLY
YNELQKDKMAEAYSEIGMKGERRRGKGHRDGLYQGLSTATKDTYDALHMQALPPR

SEP ID NO: 258, HPV16 E7 11-19 A2
YALDLQPET

SEP ID NP: 259, HPV16 E7 11-19 A3
YMADLQPET

SEP ID NP: 260, HPV16 E7 11-19 A4
YMLALQPET

SEP ID NP: 261, HPV16 E7 11-19 A6
YMLDLAPET

SEP ID NP: 262, HPV16 E7 11-19 A7
YMLDLQAET

SEP ID NP: 263, HPV16 E7 11-19 A9
YMLDLQPEA
CLAIMS

What is claimed is:

1. An isolated anti-E7MC construct comprising an antibody moiety that specifically
binds to a complex comprising human papilloma virus subtype 16 (HPV16) E7
peptide and a major histocompatibility (MHC) class I protein (an HPV16-E7/MHC
class I complex, or E7MC).

2. The isolated anti-E7MC construct of claim 1, wherein the MHC class I protein is
selected from the group consisting of HLA-A*02:01, HLA-A*02:02, HLA-A*02:06,
HLA-A*02:07, and HLA-A*02:11.

3. The isolated anti-E7MC construct of claim 2, wherein the MHC class I protein is
HLA-A*02:01.

4. The isolated anti-E7MC construct of any one of claims 1-3, wherein the HPV16-E7
peptide has an amino acid sequence selected from the group consisting of SEQ ID
NOs: 3-14.

5. The isolated anti-E7MC construct of claim 4, wherein the HPV16-E7 peptide has the
amino acid sequence of YMLDLQPET (SEQ ID NO: 4).

6. The isolated anti-E7MC construct of any one of claims 1-5, wherein the antibody
moiety is a full-length antibody, a Fab, a Fab', a (Fab')2, an Fv, or a single chain Fv
(scFv).

7. The isolated anti-E7MC construct of any one of claims 1-6, wherein the isolated anti-
E7MC construct binds to the HPV16-E7/MHC class I complex with a K_d from about
0.1 pM to about 500 nM.

8. The isolated anti-E7MC construct of any one of claims 1-7, wherein the antibody
moiety comprises:
i) a heavy chain variable domain comprising a heavy chain complementarity
determining region (HC-CDR) 1 comprising the amino acid sequence of G-F/G/Y-
S/T-F-S/T-S-Y-A/G (SEQ ID NO: 183), or a variant thereof comprising up to about 3
amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of I-N/I-
P-X-X-G/G/T/I-T/A/P or I-S-X-S/D-G/N-G/S-N-T/I/K (SEQ ID NO: 184 or 185), or
a variant thereof comprising up to about 3 amino acid substitutions, and an HC-CDR3
comprising the amino acid sequence of any one of A-R-S/R-Y/S/G- Y/V-Y/W -G-X-
Y-D, A-R-G-X-X-Y-Y/G/S, or A-R-G-X-X-Y-Q/W-W-S-X-D-D (SEQ ID NOs: 186-188), or a variant thereof comprising up to about 3 amino acid substitutions; and
ii) a light chain variable domain comprising a light chain complementarity determining region (LC-CDR) 1 comprising the amino acid sequence of N-I-G-S-N/K or L-R-S/N-X-Y (SEQ ID NO: 189 or 190), or a variant thereof comprising up to about 3 amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of A/Q/N-S/A/V-W/Y/R-D-S/D-S-L/S/G-X-X-X-V (SEQ ID NO: 191), or a variant thereof comprising up to about 3 amino acid substitutions, wherein X can be any amino acid.

9. The isolated anti-E7MC construct of any one of claims 1-7, wherein the antibody moiety comprises:
i) a heavy chain variable domain comprising an HC-CDR1 comprising the amino acid sequence of any one of SEQ ID NOs: 57-77, or a variant thereof comprising up to about 5 amino acid substitutions, an HC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 78-98, or a variant thereof comprising up to about 5 amino acid substitutions, and an HC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 99-119, 244, and 245; or a variant thereof comprising up to about 5 amino acid substitutions; and
ii) a light chain variable domain comprising an LC-CDR 1 comprising the amino acid sequence of any one of SEQ ID NOs: 120-140 and 246, or a variant thereof comprising up to about 5 amino acid substitutions, an LC-CDR2 comprising the amino acid sequence of any one of SEQ ID NOs: 141-161, or a variant thereof comprising up to about 3 amino acid substitutions, and an LC-CDR3 comprising the amino acid sequence of any one of SEQ ID NOs: 162-182 and 247-250; or a variant thereof comprising up to about 5 amino acid substitutions.

10. The isolated anti-E7MC construct of claim 9, wherein the antibody moiety comprises
a) a heavy chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 15-35 and 233-237, or a variant thereof having at least about 95% sequence identity to any one of SEQ ID NOs: 15-35 and 233-237; and b) a light chain variable domain comprising the amino acid sequence of any one of SEQ ID NOs: 36-56 and 238-243, or a variant thereof having at least about 95% sequence identity to any one of SEQ ID NOs: 36-56 and 238-243.
11. The isolated anti-E7MC construct of any one of claims 1-10, wherein the isolated anti-E7MC construct is multispecific.

12. The isolated anti-E7MC construct of claim 11, wherein the isolated anti-E7MC construct is a tandem scFv, a diabody (Db), a single chain diabody (scDb), a dual-affinity retargeting (DART) antibody, a dual variable domain (DVD) antibody, a knob-into-hole (KiH) antibody, a dock and lock (DNL) antibody, a chemically cross-linked antibody, a heteromultimeric antibody, or a heteroconjugate antibody.

13. The isolated anti-E7MC construct of claim 12, wherein the isolated anti-E7MC construct is a tandem scFv comprising two scFvs linked by a peptide linker.

14. The isolated anti-E7MC construct of any one of claims 11-13, wherein the isolated anti-E7MC construct further comprises a second antibody moiety that specifically binds to a second antigen.

15. The isolated anti-E7MC construct of claim 14, wherein the second antigen is selected from the group consisting of CD3y, CD35, CD3s, CO3ζ, CD28, OX40, GITR, CD137, CD27, CD40L and HVEM.

16. The isolated anti-E7MC construct of claim 14, wherein the second antigen is CD3s, and wherein the isolated anti-E7MC construct is a tandem scFv comprising an N-terminal scFv specific for the HPV16-E7/MHC class I complex and a C-terminal scFv specific for CD3s.

17. The isolated anti-E7MC construct of any one of claims 1-10, wherein the isolated anti-E7MC construct is a chimeric antigen receptor comprising an extracellular domain comprising the antibody moiety, a transmembrane domain, and an intracellular signaling domain comprising a CD3ζ intracellular signaling sequence and a CD28 intracellular signaling sequence.

18. The isolated anti-E7MC construct of any one of claims 1-10, wherein the isolated anti-E7MC construct is an immunoconjugate comprising the antibody moiety and an effector molecule, wherein the effector molecule is a therapeutic agent selected from the group consisting of a drug, a toxin, a radioisotope, a protein, a peptide, and a nucleic acid.

19. The isolated anti-E7MC construct of any one of claims 1-10, wherein the isolated anti-E7MC construct is an immunoconjugate comprising the antibody moiety and a label.
20. A pharmaceutical composition comprising the isolated anti-E7MC construct of any one of claims 1-18.
21. A host cell expressing the isolated anti-E7MC construct of any one of claims 1-19.
22. A nucleic acid encoding the polypeptide components of the isolated anti-E7MC construct of any one of claims 1-19.
23. An effector cell expressing the isolated anti-E7MC construct of claim 17.
24. The effector cell of claim 23, wherein the effector cell is a T cell.
25. A method of detecting a cell presenting a complex comprising an HPV16-E7 peptide and an MHC class I protein on its surface, comprising contacting the cell with the isolated anti-E7MC construct of claim 19 and detecting the presence of the label on the cell.
26. A method of treating an individual having an HPV16-E7-positive disease, comprising administering to the individual:
 a) an effective amount of the pharmaceutical composition of claim 20; or
 b) an effective amount of the effector cell of claim 23 or 24.
27. A method of diagnosing an individual having an HPV16-E7-positive disease, comprising:
 a) administering an effective amount of the isolated anti-E7MC construct of claim 19 to the individual; and
 b) determining the level of the label in the individual, wherein a level of the label above a threshold level indicates that the individual has the HPV16-E7-positive disease.
28. A method of diagnosing an individual having an HPV16-E7-positive disease, comprising:
 a) contacting a sample derived from the individual with the isolated anti-E7MC construct of claim 19; and
 b) determining the number of cells bound with the isolated anti-E7MC construct in the sample, wherein a value for the number of cells bound with the isolated anti-E7MC construct above a threshold level indicates that the individual has the HPV16-E7-positive disease.
29. The method of any one of claims 26-28, wherein the HPV16-E7-positive disease is HPV16-E7-positive cancer.
30. The method of claim 29, wherein the HPV16-E7-positive cancer is squamous cell carcinoma.

31. The method of claim 29, wherein the HPV16-E7-positive cancer is cervical cancer, anogenital cancer, head and neck cancer, or oropharyngeal cancer.
FIG. 2

ELISA of HPV16-E7 Positive Antibody Phage Clones

OD 450

Clone #

1 2 3 4 5 8 9 10 11 13 17 22 26 27 31 32 39 40 41

HPV16-E7 11-19 peptide/HLA-A*0201

C3 control peptide/HLA-A*0201
1. Cell only negative control
2. Secondary antibody only control
3. HPV16-E7 11-19 peptide-specific antibody phage clone
1. Cell only negative control
2. Secondary antibody only control
3. HPV16-E7 11-19 peptide-specific antibody phage clone #11
1. #4, loading 4ug.
2. #9, loading 4ug.
3. #10, loading 4ug.
4. #22, loading 4ug.
5. #27, loading 4ug.
6. #31, loading 4ug.
7. #40, loading 4ug.
8. #8, loading 4ug.
FIG. 7

OD 450

Antibody Clone #

1 2 3 4 5 8 9

1 μg - HPV 1 μg – NC peptide 0.2 μg - HPV 0.2 μg – NC peptide

Antibody Clone #

10 17 22 27 31 40 NC

OD 450

SUBSTITUTE SHEET (RULE 26)
FIG. 10A

Clone US-7
- 1-4, 9, W
- N
- 8

Clone 7-1
- 1-7, 9, W
- N
- 8

Clone 7-3
- 1-7, 9, W
- N
- 8

Clone 7-6
- 1-4, 9, W
- N
- 8

<table>
<thead>
<tr>
<th>N: No peptide</th>
<th>W: WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: HPV16-E7 11-19 mut1</td>
<td>6: HPV16-E7 11-19 mut6</td>
</tr>
<tr>
<td>2: HPV16-E7 11-19 mut2</td>
<td>7: HPV16-E7 11-19 mut7</td>
</tr>
<tr>
<td>3: HPV16-E7 11-19 mut3</td>
<td>8: HPV16-E7 11-19 mut8</td>
</tr>
<tr>
<td>4: HPV16-E7 11-19 mut4</td>
<td>9: HPV16-E7 11-19 mut9</td>
</tr>
<tr>
<td>5: HPV16-E7 11-19 mut5</td>
<td></td>
</tr>
</tbody>
</table>
FIG. 10B

Clone 7-7

Clone 7-8

Normalized to Mode

APC-A

APC-A

N: No peptide
1: HPV16-E7 11-19 mut1
2: HPV16-E7 11-19 mut2
3: HPV16-E7 11-19 mut3
4: HPV16-E7 11-19 mut4
5: HPV16-E7 11-19 mut5

W: WT
6: HPV16-E7 11-19 mut6
7: HPV16-E7 11-19 mut7
8: HPV16-E7 11-19 mut8
9: HPV16-E7 11-19 mut9
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8): A61K 39/00, A61K 39/42, A61K 38/04 (2016.01)

CPC: A61K 38/00, A61K 2039/505, C07K 7/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8): A61K 39/00, A61K 39/42, A61K 38/04 (2016.01)

CPC: A61K 38/00, A61K 2039/505, C07K 7/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC: 424/139.1, 424/147.1, 530/328 (keyword search, terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PubWEST (USPT, PGPB, EPAB, JPAB), Google Patents/Scholar

Search Terms Used: HPY16 E7, MHC, HLA, antibody, peptide-loaded MHC, YMLDLQ PET

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category**</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 20140065708 A1 (Receptor Logic, LLC) 06 March 2014 (06.03.2014) para [0093], [0118], [0121], Table 1, claim 1</td>
<td>1, (4-5)/1 ***</td>
</tr>
<tr>
<td>Y</td>
<td>Riemer et al. "A Conserved E7-derived Cytotoxic T Lymphocyte Epitope Expressed on Human Papillomavirus 16-transformed HLA-A2+ Epithelial Cancers" JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 285, NO. 38, pp. 29608-29622, September 17, 2010; Table 2, pg 29614, col 2, para 2</td>
<td>2-3, (4-5)/(2-3)</td>
</tr>
</tbody>
</table>

Additional documents are listed in the continuation of Box C.

Date of the actual completion of the international search

05 August 2016 (05.08.2016)

Date of mailing of the international search report

30 August 2016

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-8300

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely.

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos. 6-31
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

□ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

□ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

□ No protest accompanied the payment of additional search fees.