Abstract:
The present invention relates to an anhydrous cosmetic or dermatological composition comprising, in a physiologically acceptable support: a) at least one merocyanine compound of formula (1) or (2) and b) at least one oily phase. Another subject of the present invention consists of a non-therapeutic cosmetic process for caring for and/or making up a keratin material, comprising the application, to the surface of the said keratin material, of at least one composition according to the invention as defined above. The invention also relates to a non-therapeutic cosmetic process for limiting the darkening of the skin and/or improving the colour and/or uniformity of the complexion, comprising the application, to the surface of the keratin material, of at least one composition as defined previously. The invention also relates to a non-therapeutic cosmetic process for preventing and/or treating the signs of ageing of a keratin material, comprising the application, to the surface of the keratin material, of at least one composition as defined previously.
Anhydrous cosmetic or dermatological composition comprising a merocyanine and an oily phase

The present invention relates to an anhydrous cosmetic or dermatological composition comprising, in a physiologically acceptable support:

a) at least one merocyanine compound of formula (1) or (2) defined herein below and
b) at least one oily phase.

Another subject of the present invention consists of a non-therapeutic cosmetic process for caring for and/or making up a keratin material, comprising the application, to the surface of the said keratin material, of at least one composition according to the invention as defined above.

The invention also relates to a non-therapeutic cosmetic process for limiting the darkening of the skin and/or improving the colour and/or uniformity of the complexion, comprising the application, to the surface of the keratin material, of at least one composition as defined previously.

The invention also relates to a non-therapeutic cosmetic process for preventing and/or treating the signs of ageing of a keratin material, comprising the application, to the surface of the keratin material, of at least one composition as defined previously.

It is known that radiation with wavelengths of between 280 nm and 400 nm permits tanning of the human epidermis and that radiation with wavelengths of between 280 and 320 nm, known as UV-B rays, harms the development of a natural tan. Exposure is also liable to bring about a detrimental change in the biomechanical properties of the epidermis, which is reflected by the appearance of wrinkles, leading to premature ageing of the skin.

It is also known that UV-A rays with wavelengths of between 320 and 400 nm penetrate more deeply into the skin than UV-B rays. UV-A rays cause immediate and persistent browning of the skin. Daily exposure to UVA rays, even of short duration, under normal conditions can result in damage to the collagen fibres and the elastin, which is reflected by a modification in the microrelief of the skin, the appearance of wrinkles and uneven pigmentation (liver spots, lack of uniformity of the complexion).

Protection against UVA and UVB rays is thus necessary. An efficient photoprotective product should protect against both UVA and UVB radiation.

Many photoprotective compositions have been proposed to date to overcome the effects induced by UVA and/or UVB radiation. They generally contain organic or mineral UV-screening agents, which function according to their own chemical nature and according to their own properties by absorption, reflection or scattering.
of the UV radiation. They generally comprise mixtures of liposoluble organic screening agents and/or water-soluble UV screening agents in combination with metal oxide pigments, such as titanium dioxide or zinc oxide.

Many cosmetic compositions for limiting the darkening of the skin and improving the colour and uniformity of the complexion have been proposed to date. It is well known in the field of antisun products that such compositions may be obtained by using UV-screening agents, and in particular UVB-screening agents. Certain compositions may also contain UVA-screening agents. This screening system should cover UVB protection for the purpose of limiting and controlling the neosynthesis of melanin, which promotes the overall pigmentation, but should also cover UVA protection so as to limit and control the oxidation of the already-existing melanin leading to darkening of the skin colour.

However, it is extremely difficult to find a composition which contains a particular combination of UV-screening agents that would be especially suited to photoprotecting the skin and particularly to improving the quality of the skin as regards both the colour and its mechanical elasticity properties.

Advantageously, this improvement is particularly sought on already-pigmented skin so as not to increase the melanin pigmentary load or the structure of the melanin already present in the skin.

In point of fact, the majority of the organic UV-screening agents consist of aromatic compounds which absorb in the wavelength range between 280 and 370 nm. In addition to their power for screening out sunlight, the desired photoprotective compounds should also have good cosmetic properties, good solubility in the usual solvents and in particular in fatty substances such as oils, and also good chemical stability and good photostability, alone or in combination with other UV-screening agents. They should also be colourless or at least have a colour that is cosmetically acceptable to the consumer.

One of the main drawbacks known to date of these compositions is that these screening systems are insufficiently effective against UV rays and in particular against long UVA rays with wavelengths beyond 370 nm, for the purpose of controlling photo-induced pigmentation and its evolution by means of a system for screening out UV over the entire UV spectrum.

Among all the compounds that have been recommended for this purpose an advantageous family of UV-screening agents has been proposed, which consists of carbon-bearing merocyanine derivatives, which is described in patent US 4 195 999, patent application WO 2004/006 878, patent applications WO2008/090066, WO201/113718, WO2009/027258, WO2013/010590, WO2013/01094, WO2013/011480 and the documents IP COM JOURNAL N°0001 79675D.
published on February 23, 2009, IP COM JOURNAL N°0001 82396D published on April 29, IP COM JOURNAL N° 0001 89542D published on November 12, 2009, IP COM Journal N°IPCOM00001 1179D published on 03/04/2004. Some of these compounds may show the following drawbacks:

- relatively unsatisfactory solubility in the usual solvents and in particular in fatty substances such as oils which may require a laborious formulation process and/or may result in cosmetic drawbacks such as a greasy effect on application;
- an unsatisfactory chemical stability and/or unsatisfactory photostability
- produce a color liable to discourage the consumer from using a cosmetic or dermatological composition containing them.

There is thus still a need to find new formulations comprising an oily phase and at least one merocyanine compound without the drawbacks as previously defined.

The Applicant has discovered, surprisingly, anhydrous compositions comprising at least one oily phase and at least one merocyanine compound of formula (1) or (2) defined hereinbelow, which make it possible to achieve this objective.

Furthermore, the merocyanine compounds of formula (1) or (2) herein below, present surprisingly the advantage to be significantly less colored than the merocyanine compounds as disclosed in the applications WO2008/090066 and WO2009/027258 as the compound MC11 (MC03).

Those discoveries form the basis of the present invention.

Thus, in accordance with one of the objects of the present invention, a cosmetic or dermatological composition is now proposed, comprising, in a physiologically acceptable support:

a) at least one merocyanine compound of formula (1) or (2) defined herein below and

b) at least one oily phase.

Another subject of the present invention consists of a non-therapeutic cosmetic process for caring for and/or making up a keratin material, comprising the application, to the surface of the said keratin material, of at least one composition according to the invention as defined above.

The invention also relates to a non-therapeutic cosmetic process for limiting the darkening of the skin and/or improving the colour and/or uniformity of the complexion, comprising the application, to the surface of the keratin material, of at least one composition as defined previously.

The invention also relates to a non-therapeutic cosmetic process for preventing and/or treating the signs of ageing of a keratin material, comprising the application,
to the surface of the keratin material, of at least one composition as defined previously.

Other characteristics, aspects and advantages of the invention will emerge on reading the detailed description that follows.

The expression "human keratin materials" means the skin (body, face, area around the eyes), hair, eyelashes, eyebrows, body hair, nails, lips or mucous membranes.

The term "physiologically acceptable" means compatible with the skin and/or its integuments, having a pleasant colour, odour and feel and not causing any unacceptable discomfort (stinging, tautness or redness) liable to discourage the consumer from using this composition.

The term "anhydrous composition" means a composition containing less than 1% by weight of water, or even less than 0.5% water, and especially free of water, the water not being added during the preparation of the composition but corresponding to the residual water provided by the mixed ingredients.

The term "between X and Y" means the range of values also including the limits X and Y.

According to the invention, the term "preventing" or "prevention" means reducing the risk of occurrence or slowing down the occurrence of a given phenomenon, namely, according to the present invention, the signs of ageing of a keratin material.

MEROCYANINES

According to the present invention, the merocyanine compounds in accordance with the invention correspond to formula (1) or (2) below

![Chemical structures](attachment:image.png)

in which:

- \mathbf{R}_1 and \mathbf{R}_2 are, independently of each other, hydrogen; an $\text{C}1-\text{C}22$ alkyl group, a $\text{C}2-\text{C}22$ alkenyl group or a $\text{C}2-\text{C}22$ alkynyl group, it being possible for these groups to be substituted with at least one hydroxyl group or to be interrupted with at least one -O-; or alternatively \mathbf{R}_1 and \mathbf{R}_2 form, together with the nitrogen atom which
connects them, a -(CH₂)ₙ⁻ ring which may optionally be interrupted with -O⁻ or -NH⁻;
R₃ is a group -(C=O)OR₆ or a group -(CO)NR₆;
R₆ is a C₁-C₂₂ alkyl group, a C₂-C₂₂ alkenyl group, a C₂-C₂₂ alkynyl group, a C₃-C₂₂
cycloalkenyl group or a C₃-C₂₂ cycloalkenyl group, it being possible for the said
groups to be substituted with one or more O H groups;
R₄ and R₅ are hydrogens; or R₄ and R₅ form a -(CH₂)ₙ⁻ ring which may be
interrupted with a C₁-C₄ alkyl group and/or interrupted with one or more -O⁻ or with
-NH⁻;
n is a number between 2 and 7;
R₇ and R₈ are, independently of each other, hydrogen; a C₁-C₂₂ alkyl group, a C₂-
c₂₂ alkenyl group or a C₂-C₂₂ alkynyl group, it being possible for the said
groups to be interrupted with one or more O and/or substituted with one or more O H groups;
a C₃-C₂₂ cycloalkenyl group or a C₃-C₂₂ cycloalkenyl group, it being possible for the
said groups to be interrupted with one or more -O⁻;
or alternatively R₇ and R₈ form, together with the nitrogen which connects them, a
(CH₂)ₙ⁻ ring which may be interrupted with one or more -O⁻;
R₹ and R₁₀ are hydrogen; or R₉ and R₁₀ form a -(CH₂)ₙ⁻ ring which may be
interrupted with a C₁-C₄ alkyl and/or interrupted with an -O⁻ or -NH⁻;
A is -O⁻ or -NH⁻;
R₁₁ is a C₁-C₂₂ alkyl group; a C₂-C₂₂ alkenyl group; a C₂-C₂₂ alkynyl group; a C₃-
c₂₂ cycloalkenyl group or a C₃-C₂₂ cycloalkenyl group, it being possible for the said
groups to be interrupted with one or more O; or a C₁-C₂₂ alkyl group or a C₂-C₂₂
alkenyl group which is substituted with a C₃-C₂₂ cycloalkenyl group or a C₃-C₂₂
cycloalkenyl group, it being possible for the said C₃-C₂₂ cycloalkenyl group or C₃-C₂₂
cycloalkenyl group to be interrupted with one or more -O⁻;
with the proviso that:
(I) at least one of the groups R₁, R₂ or R₆ is substituted with a hydroxyl;
(II) if one of the groups R₁ denotes a hydroxyethyl, R₂ does not denote a
hydrogen, a methyl or an ethyl, or a hydroxyethyl; and if R₁ denotes hydrogen, R₂
is not 1-hydroxy-3-methyl-2-butyl;
(III) if R₆ is substituted with one or more O H groups, one from among R₁ and R₂ is
a C₄-C₂₂ alkyl group; or alternatively R₁ and R₂ form, together with the nitrogen to
which they are attached, a piperidyl or morpholinyl radical;
(IV) at least one among the radicals R₇, R₉ and R₁₀ is interrupted with one or more
-O⁻.

The preferred compounds are those of formula (1) or (2) in which:
R₁ and R₂ are, independently of each other, hydrogen; a C₄-C₂₂ alkyl group; or a
C₃-C₁₂ hydroxyalkyl group; or at least one from among R₁ and R₂ is a C₃-C₁₂
hydroxyalkyl; and
R₃, R₄ and R₅ have the same meanings as previously.

The preferred compounds are also those of formula (1) in which:
R6 is a C1-C12 alkyl group which may be substituted with one or more hydroxyls.

The most preferential compounds are also those of formula (1) in which:
R6 is a C1-C12 alkyl group which may be substituted with one or more hydroxyls;
one of the radicals R1 or R2 is a C4-C22 alkyl group; or alternatively R1 and R2 form,
together with the nitrogen which connects them, a -(CH2)n- ring which may be interrupted with -O- and/or -NH-; and
R4 and R5 and n have the same meanings indicated previously.

The preferred compounds are those of formula (2) in which:
R11 is a radical -(CH2)m-O-Ri2, in which
R12 is a C1-C12 alkyl group or a C1-C6-alkoxy-C6-alkyl group;
m is a number from 1 to 5; and
R7, R8, R9, R10 and A have the same meanings indicated previously.

The even more preferential compounds are those of formula (1) or (2) in which:
R1 and R2, on the one hand, and R7 and R5, on the other hand, respectively form,
together with the nitrogen atom to which they are respectively attached, a piperidyl radical or a morpholinyl radical.

The preferred compounds are also those of formula (1) or (2) in which:
R4 and R5 and R9 and R10 respectively form a carbon-based ring which contains 6 carbon atoms.

The most preferential compounds are those of formula (1) in which:
R1 and R2 are, independently of each other, a hydrogen; or a C1-C22 alkyl group; or
a C1-C22 hydroxyalkyl group; or R1 and R2 form, together with the nitrogen to which
they are attached, a piperidyl or morpholinyl radical;
R3 is a group -(C=O)OR or a group -(CO)NHR;
R6 is a C1-C22 alkyl group which may be substituted with one or more -OH;
R4 and R5 are a hydrogen; or R4 and R5 are linked together to form a carbon-based ring which contains 6 carbon atoms.

The most preferential compounds are those of formula (1) in which:
R1 and R2 are, independently of each other, a hydrogen; or a C1-C22 hydroxyalkyl group; in which at least one of the radicals R1 and R2 is a C1-C22 hydroxyalkyl group;
R3 is a group -(C=O)OR or a group -(C=O)NHR;
R6 is a C1-C22 alkyl group; and
R4 and R5 are hydrogens; or R4 and R5 are linked together to form a carbon-based ring which contains 6 carbon atoms.

The most preferential compounds are those of formula (2) in which:
R₇ and Rₛ are, independently of each other, a hydrogen or a C₁-C₅ alkyl group which may be interrupted with one or more -O-:
A is -O- or -NH;
R₁₁ is a C₁-C₂₂ alkyl; and
R₉ and R₁₀ are a hydrogen; or R₉ and R₁₀ are linked together to form a carbon-based ring which contains 6 carbon atoms.

The most preferential compounds are those of formula (2) in which:
R₇ and Rₛ form, together with the nitrogen atom to which they are bonded, a morpholinyl or piperidyl radical;
A is -O- or -NH;
R₁₁ is a C₁-C₂₂ alkyl group which may be interrupted with one or more -O-; and
R₉ and R₁₀ are hydrogens; or R₉ and R₁₀ are linked together to form a carbon-based ring which contains 6 carbon atoms.

The even more preferential compounds are those of formula (2) in which:
R₁₁ is a radical -(CH₂)m-O-R₁₂, in which
R₁₂ is a C₁-C₄ alkyl group or a C₁-C₄-alkoxy-Cr₄-alkyl group;
m is a number from 1 to 3;
R₇ and Rₛ are, independently of each other, a hydrogen; a C₁-C₁₂ alkyl group which may be interrupted with one or more O; or R₇ and Rₛ form, together with the nitrogen atom to which they are attached, a morpholinyl or piperidyl radical;
R₉ and R₁₀ are hydrogens or together form a carbon-based ring which contains 6 carbon atoms; and
A is -O- or -NH.

The merocyanine compounds of the invention may be in the E/E-, E/Z- or Z/Z geometrical isomer form.

The alkyl, cydoalkyl, alkenyl, alkylidene or cydoalkenyl chains may be linear or branched, monocyclic or polycyclic chains.

A C₁-C₂₂ alkyl group is, for example, a methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2,2-dimethylpropyl, n-hexyl, n-octyl, 1,1,3,3-tetramethylbutyl, 2-ethylhexyl, nonyl, decyl, n-octadecyl, eicosyl or dodecyl.

A substituted alkyl group is, for example, a methoxyethyl, ethoxycarbonyl methyl-2-ethyloxyethyl, hydroxyethyl, chloropropyl, N,N-diethylaminopropyl, cyanophenyl, phenethyl, benzyl, p-tert-butylphenethyl, p-tert-octyloxyethylpropyl, 3-(2,4-di-tert-amylphenoxy)propyl, ethoxycarbonylmethyl-2-(2-hydroxyethoxy)ethyl or 2-furylethyl.
A hydroxyalkyl group is, for example, a hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl, hydroxypentyl, hydroxyhexyl, hydroxyheptyl, hydroxyoctyl, hydroxynonyl or hydroxydecyll.

A C2-C22 alkenyl group is, for example, a linear C2-C12 alkenyl chain or, preferentially, a branched C3-C12 alkenyl. A C2-C22 alkenyl is, for example, a vinyl, allyl, 2-propen-2-yl, 2-buten-1-yl, 3-butene-1-yl, 1,3-butadien-2-yl, 2-cyclobuten-1-yl, 2-penten-1-yl, 3-penten-2-yl, 2-methyl-1-buten-3-yl, 2-methyl-3-buten-2-yl, 3-methyl-2-buten-1-yl, 1,4-pentadien-3-yl, 2-cyclopenten-1-yl, 2-cyclohexen-1-yl, 3-cyclohexen-1-yl, 2,4-cyclohexadien-1-yl, 1-p-menthen-8-yl, 4(10)-thujen-1-0-yl, 2-norbornen-1-yl, 2,5-norbornadien-1-yl, 7,7-dimethyl-2,4-norcaradien-3-yl or the various isomers of hexenyl, octenyl, nonenyl, decenyl or dodecenyl.

A C3-C12 cycloalkyl group is, for example, a cyclopropyl, cyclobutyl, cyclopentyl, trimethylcyclohexyl or, preferentially, cyclohexyl.

Examples of merocyanines according to the present invention are listed in Table A:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Compound</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>Compound</td>
<td>Structure</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>Compound</td>
<td>Structure</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>
According to a particularly preferred form of the invention, use will be made of a merocyanine family corresponding to formula (3) below, and also the E/E- or E/Z- geometrical isomer forms thereof:

![Chemical Structure](image)

(3)
in which:
A is -O- or -NH;
R is a C1-C22 alkyl group, a C2-C22 alkenyl group, a C2-C22 alkynyl group, a C3-C22 cycloalkyl group or a C3-C22 cycloalkenyl group, the said groups possibly being interrupted with one or more O.

The merocyanine compounds of the invention may be in their E/E- or E/Z- geometrical isomer forms.

The even more preferential compounds of formula (3) are those in which:
A is -O-; R is a C1-C22 alkyl, which may be interrupted with one or more O.

Among the compounds of formula (3), use will be made more particularly of those chosen from the following group, and also the E/E- or E/Z- geometrical isomer forms thereof:

<table>
<thead>
<tr>
<th>14</th>
<th>ethyl (2Z)-cyano[3-[(3-methoxypropyl)amino]cyclohex-2-en-1-ylidene]ethanoate</th>
</tr>
</thead>
</table>
According to a more particularly preferred mode of the invention, use will be made of the compound 2-ethoxyethyl (2Z)-cyano{3-[(3-methoxypropyl)amino]cyclohex-2-en-1-ylidene}ethanoate (25) in its E/E and/or E/Z geometrical configuration.

The E/Z form has the following structure:
The E/E form has the following structure:

\[\text{Structure Image} \]

The E/E form has the following structure:

\[\text{Structure Image} \]

The screening merocyanines in accordance with the invention may be present in the compositions according to the invention in a concentration ranging from 0.1% to 10% by weight and preferentially from 0.2% to 5% by weight relative to the total weight of the composition.

The compounds of formulae (1) and (2) and especially of formula (3) may be prepared according to known processes, as described, for example, in J. Org. Chem. USSR (English translation) 26(8), p. 1562f (1990); J. Heterocycl. Chem. 33(3), p. 763-766 (1996); Khimiya Geterotsiklichesikh Soedinenii 11, p. 1537-1543 (1984); Khimiya Geterotsiklichesikh Soedinenii 3, p. 397-404 (1982); Chem. Heterocycl. Comp. (English translation) 24(8), 914-919 (1988) and in Synthetic Communications Vol. 33, No. 3, 2003, p 367-371.

\[\text{Reaction Image} \]

CH-acid vinylogen compounds are reacted with amide acetals.

In document J. Heterocyclic Chem., 27, 1990, 1143-1 151, aminoacrylic acid esters or aminoacrylonitriles are reacted with ethoxymethyleneacyanoacetates in ethanol to form the corresponding compounds of the present invention.

The compounds of formula (1) or (2) in which \(R_4 \) and \(R_5 \), on the one hand, or \(R_9 \) and \(R_{10} \), on the other hand, together form a carbocyclic ring containing 6 carbon atoms, respectively, may be prepared according to the protocols described in Pat.
OILY PHASE

The compositions in accordance with the invention comprise at least one oily phase.

For the purposes of the invention, the term "oily phase" means a phase comprising at least one cosmetically acceptable water-immiscible oil other than aromatic hydrocarbons (for example toluene), and also all of the liposoluble and lipophilic ingredients and the cosmetically acceptable fatty substances used for the formulation of the compositions of the invention.

The term "oil" means any fatty substance which is in liquid form at room temperature (20 - 25°C) and at atmospheric pressure (760 mmHg).

An oil that is suitable for use in the invention may be volatile or non-volatile.

An oil that is suitable for use in the invention may be chosen from hydrocarbon-based oils, silicone oils and fluoro oils, and mixtures thereof.

A hydrocarbon-based oil that is suitable for use in the invention may be an animal hydrocarbon-based oil, a plant hydrocarbon-based oil, a mineral hydrocarbon-based oil or a synthetic hydrocarbon-based oil.

An oil that is suitable for use in the invention may be advantageously chosen from mineral hydrocarbon-based oils, plant hydrocarbon-based oils, synthetic hydrocarbon-based oils and silicone oils, and mixtures thereof.

For the purposes of the present invention, the term "silicone oil" means an oil comprising at least one silicon atom, and especially at least one Si-O group.

The term "hydrocarbon-based oil" means an oil comprising mainly hydrogen and carbon atoms.

The term "fluoro oil" means an oil comprising at least one fluorine atom.

A hydrocarbon-based oil that is suitable for use in the invention may also optionally comprise oxygen, nitrogen, sulfur and/or phosphorus atoms, for example in the form of hydroxyl, amine, amide, ester, ether or acid groups, and in particular in the form of hydroxyl, ester, ether or acid groups.
The oily phase generally comprises, in addition to the lipophilic UV-screening agent(s), at least one volatile or non-volatile hydrocarbon-based oil and/or one volatile and/or non-volatile silicone oil.

For the purposes of the invention, the term "volatile oil" means an oil that is capable of evaporating on contact with the skin or the keratin fibre in less than one hour, at room temperature and atmospheric pressure. The volatile oil(s) of the invention are volatile cosmetic oils which are liquid at room temperature and which have a non-zero vapour pressure, at room temperature and atmospheric pressure, ranging in particular from 0.13 Pa to 40 000 Pa (10⁻³ to 300 mmHg), in particular ranging from 1.3 Pa to 13 000 Pa (0.01 to 100 mmHg) and more particularly ranging from 1.3 Pa to 1300 Pa (0.01 to 10 mmHg).

The term "non-volatile oil" means an oil which remains on the skin or the keratin fibre, at room temperature and atmospheric pressure, for at least several hours and which in particular has a vapour pressure of less than 10⁻³ mmHg (0.13 Pa).

Hydrocarbon-based oils

As non-volatile hydrocarbon-based oils that may be used according to the invention, mention may be made especially of:

(i) hydrocarbon-based oils of plant origin, such as glyceride triesters, which are generally triesters of fatty acids and of glycerol, the fatty acids of which can have varied chain lengths from C₄ to C₂₄, it being possible for these chains to be saturated or unsaturated and linear or branched; these oils are in particular wheat germ oil, sunflower oil, grape seed oil, sesame oil, corn oil, apricot oil, castor oil, shea oil, avocado oil, olive oil, soybean oil, sweet almond oil, palm oil, rapeseed oil, cottonseed oil, hazelnut oil, macadamia oil, jojoba oil, alfalfa oil, poppy oil, pumpkin seed oil, marrow oil, blackcurrant oil, evening primrose oil, millet oil, barley oil, quinoa oil, rye oil, safflower oil, candlenut oil, passionflower oil and musk rose oil; or also caprylic/capric acid triglycerides, such as those sold by Stearineries Dubois or those sold under the names Miglyol 810®, 812® and 818® by Dynamit Nobel;

(ii) synthetic ethers containing from 10 to 40 carbon atoms;

(iii) linear or branched hydrocarbons of mineral or synthetic origin, such as petroleum jelly, polydecenes, hydrogenated polyisobutene such as Parleam, and squalane, and mixtures thereof;

(iv) synthetic esters, for instance oils of formula RCOOR' in which R represents a linear or branched fatty acid residue containing from 1 to 40 carbon atoms and R'...
represents a hydrocarbon-based chain that is especially branched, containing from 1 to 40 carbon atoms on condition that

\[R + R' \geq 10 \]

for instance Purcellin oil (cetearyl octanoate), isopropyl myristate, isopropyl palmitate, C_{12}-C_{15} alkyl benzoate, such as the product sold under the trade name Finsolv TN® or Witconol TN® by Witco or Tegosoft TN® by Evonik Goldschmidt, 2-ethylphenyl benzoate, such as the commercial product sold under the name X-Tend 226® by ISP, isopropyl lanolate, hexyl laurate, diisopropyl adipate, isononyl isononanoate, oleyl erucate, 2-ethylhexyl palmitate, isostearyl isostearate, diisopropyl sebacate, such as the product sold under the name of "Dub Dis" by Stearinerie Dubois, octanoates, decanoates or ricinoleates of alcohols or polyalcohols, such as propylene glycol dioctanoate; hydroxylated esters, such as isostearyl lactate or diisostearyl malate; and pentaerythritol esters; citrates or tartrates, such as di(linear C_{12}-C_{13} alkyl) tartrates, such as those sold under the name Cosmacol ETI® by Enichem Augusta Industriale, and also di(linear C_{14}-C_{15} alkyl) tartrates, such as those sold under the name Cosmacol ETL® by the same company; or acetates;

(v) fatty alcohols that are liquid at room temperature, containing a branched and/or unsaturated carbon-based chain containing from 12 to 26 carbon atoms, for instance octyldodecanol, isostearyl alcohol, oleyl alcohol, 2-hexyldecanol, 2-butyl octanol or 2-undecypentadecanol;

(vi) higher fatty acids, such as oleic acid, linoleic acid or linolenic acid;

(vii) carbonates, such as dicaprylyl carbonate, such as the product sold under the name Cetiol CC® by Cognis;

(viii) fatty amides, such as isopropyl N-lauroyl sarcosinate, such as the product sold under the trade name Eldew SL 205® from Ajinomoto; and mixtures thereof.

Preference will more particularly be given, among the non-volatile hydrocarbon-based oils that may be used according to the invention, to glyceride triesters and in particular to caprylic/capric acid triglycerides, synthetic esters and in particular isononyl isononanoate, oleyl erucate, C_{12}-C_{15} alkyl benzoate, 2-ethylphenyl benzoate and fatty alcohols, in particular octyldodecanol.

Mention may in particular be made, as volatile hydrocarbon-based oils that may be used according to the invention, of hydrocarbon-based oils containing from 8 to 16 carbon atoms and in particular of branched Cs-Ci6 alkanes, such as Cs-Ci6 isoalkanes of petroleum origin (also known as isoparaffins), such as isododecane (also known as 2,2,4,4,6-pentamethyheptane), isodecane or isohexadecane, the oils sold under the Isopar or Permethyl trade names, branched Cs-Ci6 esters, isohexyl neopentanoate, and mixtures thereof.
Mention may also be made of the alkanes described in Cognis patent applications WO 2007/068 371 or WO 2008/1 55 059 (mixtures of distinct alkanes differing by at least one carbon). These alkanes are obtained from fatty alcohols, which are themselves obtained from coconut or palm oil. Mention may be made of the mixtures of n-undecane (Cn) and n-tridecane (C13) obtained in Examples 1 and 2 of patent application WO 2008/1 55 059 from the company Cognis. Mention may also be made of n-dodecane (C12) and n-tetradecane (CM) sold by Sasol under the respective references Parafol 12-97 and Parafol 14-97®, and also mixtures thereof.

Use may also be made of other volatile hydrocarbon-based oils, such as petroleum distillates, in particular those sold under the name Shell Solt® by Shell. According to one embodiment, the volatile solvent is chosen from volatile hydrocarbon-based oils containing from 8 to 16 carbon atoms, and mixtures thereof.

b) Silicone oils

The non-volatile silicone oils may be chosen in particular from non-volatile polydimethylsiloxanes (PDMSs), polydimethylsiloxanes comprising alkyl or alkoxy groups which are pendent and/or at the end of the silicone chain, which groups each contain from 2 to 24 carbon atoms, or phenyl silicones, such as phenyl trimethicones, phenyl dimethicones, phenyl(trimethylsiloxy)diphenylsiloxanes, diphenyl dimethicones, diphenyl(methyldiphenyl)trisiloxanes or (2-phenylethyl)trimethylsiloxysilicates.

Examples of volatile silicone oils that may be mentioned include volatile linear or cyclic silicone oils, especially those with a viscosity ≤ 8 centistokes (8 × 10⁻⁶ m²/s) and especially containing from 2 to 7 silicon atoms, these silicones optionally comprising alkyl or alkoxy groups containing from 1 to 10 carbon atoms. As volatile silicone oils that may be used in the invention, mention may be made especially of octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, heptamethyleneoctyltrisiloxane, heptamethyloctyltrisiloxane, hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane and dodecamethylpentasiloxane, and mixtures thereof.

Mention may also be made of the volatile linear alkyltrisiloxane oils of general formula (I):
where R represents an alkyl group comprising from 2 to 4 carbon atoms, one or more hydrogen atoms of which may be substituted with a fluorine or chlorine atom.

Among the oils of general formula (I), mention may be made of:
3-butyl-1,1,1,3,5,5,5-heptamethyltrisiloxane,
3-propyl-1,1,1,3,5,5,5-heptamethyltrisiloxane, and
3-ethyl-1,1,1,3,5,5,5-heptamethyltrisiloxane,
corresponding to the oils of formula (I) for which R is, respectively, a butyl group, a propyl group or an ethyl group.

Fluoro oils

Use may also be made of volatile fluoro oils, such as nonafluoromethoxybutane, decafluoropentane, tetradecafluorohexane, dodecafluoropentane, and mixtures thereof.

An oily phase according to the invention may also comprise other fatty substances, mixed with or dissolved in the oil.

Another fatty substance that may be present in the oily phase may be, for example:
- a fatty acid chosen from fatty acids comprising from 8 to 30 carbon atoms, such as stearic acid, lauric acid, palmitic acid and oleic acid;
- a wax chosen from waxes such as lanolin, beeswax, carnauba or candelilla wax, paraffin waxes, lignite waxes, microcrystalline waxes, ceresin or ozokerite, or synthetic waxes, such as polyethylene waxes or Fischer-Tropsch waxes;
- a gum chosen from silicone gums (dimethiconol);
- a pasty compound, such as polymeric or non-polymeric silicone compounds, esters of a glycerol oligomer, arachidyl propionate, fatty acid triglycerides and derivatives thereof;
- and mixtures thereof.

According to a particular form of the invention, the overall oily phase, including all the lipophilic substances of the composition that are capable of being dissolved in this same phase, represents from 2% to 100% by weight and preferably from 10% to 90% by weight, relative to the total weight of the composition.
ADDITIVES

a) Additional water-insoluble screening agents

Preferentially, the compositions according to the invention contain, in addition to the merocyanine compound(s) of formulae (1) and (2), one or more water-insoluble UV-screening agents.

The term "water-insoluble UV-screening agent" means any organic or mineral compound that is capable of screening out UV radiation in the wavelength range from 280 to 400 nm by absorption, reflection and/or scattering; the said compound having a solubility in water at 25°C of less than 1% by weight or even less than 0.5% by weight or further still less than 0.1% by weight.

The water-insoluble UV-screening agents are generally chosen from organic UV-screening agents that are lipophilic or insoluble in oils and/or mineral screening agents.

The term "lipophilic screening agent" means any cosmetic or dermatological organic or mineral compound for screening out UV radiation, which can be fully dissolved in molecular state in a liquid fatty phase or which can be dissolved in colloidal form (for example in micellar form) in a liquid fatty phase.

The term "oil-insoluble UV-screening agent" means any cosmetic or dermatological organic or mineral compound for screening out UV radiation which has a solubility of less than 0.5% by weight in the majority of organic solvents such as liquid paraffin, fatty alkyl benzoates and fatty acid triglycerides, for example Miglyol 812® sold by the company Dynamit Nobel. This solubility, determined at 70°C, is defined as the amount of product in solution in the solvent at equilibrium with an excess of solid in suspension after returning to room temperature. It may be readily evaluated in the laboratory.

The additional organic UV-screening agents are chosen in particular from cinnamic compounds; anthranilates; salicylic compounds; dibenzoylmethane compounds; benzylidenecamphor compounds; benzophenone compounds; β,β-diphenylacrylate compounds; triazine compounds; benzotriazole compounds; benzalmalonate compounds, in particular those cited in patent US 5 624 663; benzimidazole compounds; imidazolines; p-aminobenzoic acid (PABA) compounds; methylenebis(hydroxyphenylbenzotriazole) compounds, such as described in patent applications US 5 237 071, US 5 166 355, GB 2 303 549, DE 197 26 184 and EP 893 119; benzoazole compounds, as described in patent applications EP 0 832 642, EP 1 027 883, EP 1 300 137 and DE 101 62 844; screening polymers and screening silicones, such as those described in particular in patent application WO 93/04665; a-alkylstyrene-based dimers, such as those

As examples of organic photoprotective agents, mention may be made of those denoted hereinbelow under their INCI name:

Cinnamic compounds:
Ethylhexyl Methoxycinnamate, sold in particular under the trade name Parsol MCX® by DSM Nutritional Products,
Isopropyl Methoxycinnamate,
Isoamyl p-methoxycinnamate sold under the trade name Neo Heliopan E 1000® by Symrise,
DEA Methoxycinnamate,
Diisopropyl Methyl Cinnamate,
Glyceryl Ethylhexanoate Dimethoxycinnamate.

Dibenzoylmethane compounds:
Butylmethoxydibenzoylmethane sold in particular under the trade name Parsol 1789® by DSM Nutritional Products,
Isopropylidibenzoylmethane.

para-Aminobenzoic compounds:
PABA,
Ethyl PABA,
Ethyl Dihydroxypropyl PABA,
Ethylhexyl Dimethyl PABA, sold in particular under the name Escalol 507® by ISP,
Glyceryl PABA,
PEG-25 PABA, sold under the name Uvinul P 25® by BASF.

Salicylic compounds:
Homosalate, sold under the name Eusolex HMS® by Rona/EM Industries,
Ethylhexyl Salicylate, sold under the name Neo Heliopan OS® by Symrise,
Dipropylene Glycol Salicylate, sold under the name Dipsal® by Scher,
TEA Salicylate, sold under the name Neo Heliopan TS® by Symrise.

β,β-Diphenylacrylate compounds:
Octocrylene, sold in particular under the trade name Uvinul N 539® by BASF,
Etocrylene, sold in particular under the trade name Uvinul N 35® by BASF.

Benzophenone compounds:
Benzophenone-1, sold under the trade name Uvinul 400® by BASF,
Benzophenone-2, sold under the trade name Uvinul D 50® by BASF,
Benzophenone-3 or Oxybenzone, sold under the trade name Uvinul M 40® by BASF,
Benzophenone-4, sold under the trade name Uvinul MS 40® by BASF,
Benzophenone-5,
Benzophenone-6, sold under the trade name Helisorb 11® by Norquay,
Benzophenone-8, sold under the trade name Spectra-Sorb UV-24® by American Cyanamid,
Benzophenone-9, sold under the trade name Uvinul DS 49® by BASF,
Benzophenone-1 2,
n-Hexyl 2-(4-diethylamino-2-hydroxybenzoyl)benzoate, sold under the trade name Uvinul A Plus® or, as a mixture with octyl methoxycinnamate, under the trade name Uvinul A Plus B® by BASF,
1,1’-(1,4-Piperazinediyl)bis[1-[2-[4-(diethylamino)-2-hydroxybenzoyl]phenyl]methanone] (CAS 919803-06-8), such as described in patent application WO 2007/071 584; this compound advantageously being used in micronized form (mean size of 0.02 to 2 µm), which may be obtained, for example, according to the micronization process described in patent applications GB-A-2 303 549 and EP-A-893 119, and in particular in the form of an aqueous dispersion.

Benzyldienecamphor compounds:
3-Benzylidene Camphor, manufactured under the name Mexoryl SD® by Chimex,
4-Methylbenzylidene Camphor, sold under the name Eusolex 6300® by Merck,
Benzyldene Camphor Sulfonic Acid, manufactured under the name Mexoryl SL® by Chimex,
Camphor Benzalkonium Methosulfate, manufactured under the name Mexoryl SO® by Chimex,
Terephthalylidene Dicamphor Sulfonic Acid, manufactured under the name Mexoryl SX® by Chimex,
Polyacrylamidomethyl Benzyldene Camphor, manufactured under the name Mexoryl SW® by Chimex.

Phenylbenzimidazole compounds:
Phenylbenzimidazole Sulfonic Acid, sold in particular under the trade name Eusolex 232® by Merck.

Bis-benzazolyl compounds:
Disodium Phenyl Dibenzimidazole Tetrasulfonate, sold under the trade name Neo Heliopan AP® by Haarmann and Reimer.

Phenylbenzotriazole compounds:
Drometrizole Trisiloxane, sold under the name Silatrizole® by Rhodia Chimie.

Methylenebis(hydroxyphenylbenzotriazole) compounds:
Methylenebis(benzotriazolyl)tetrannethylbutylphenol especially in solid form, for instance the product sold under the trade name Mixxim BB/100® by Fairmount Chemical or in the form of an aqueous dispersion of micronized particles with a mean particle size ranging from 0.01 to 5 \(\mu \text{m} \), more preferentially from 0.01 to 2 \(\mu \text{m} \) and more particularly from 0.02 to 2 \(\mu \text{m} \) with at least one alkylpolyglycoside surfactant of structure \(C_{n-H\text{H}_{2n+1}} O(C_{6}H_{10}O_{5})_{x} H \), in which \(n \) is an integer from 8 to 16 and \(x \) is the mean degree of polymerization of the \((C_{6}HiO_{5}) \) unit and ranges from 1.4 to 1.6, such as described in patent GB-A-2 303 549, sold in particular under the trade name Tinosorb M® by BASF, or in the form of an aqueous dispersion of micronized particles with a mean particle size ranging from 0.02 to 2 \(\mu \text{m} \), more preferably from 0.01 to 1.5 \(\mu \text{m} \) and more particularly from 0.02 to 1 \(\mu \text{m} \), in the presence of at least one polyglyceryl mono(\(C_{8}-C_{20} \))alkyl ester with a degree of glycerol polymerization of at least 5, such as the aqueous dispersions described in patent application WO 2009/063 392.

Triazine compounds:
Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine, sold under the trade name Tinosorb S® by BASF,
Ethylhexyl Triazone, sold in particular under the trade name Uvinul T150® by BASF,
Diethylhexyl Butamido Triazone, sold under the trade name Uvasorb HEB® by Sigma 3V,
2,4,6-tris(dineopentyl 4′-aminobenzalmalonate)-s-triazine,
2,4,6-tris(diisobutyl 4′-aminobenzalmalonate)-s-triazine;
2,4-bis(n-butyl 4′-aminobenzalzoate)-6-(aminopropyltrisiloxane)-s-triazine,
2,4-bis(dineopentyl 4′-aminobenzalmalonate)-6-(n-butyl 4′-aminobenzoate)-s-triazine,
symmetrical triazine screening agents substituted with naphthalenyl groups or polyphenyl groups described in patent US 6 225 467, patent application WO 2004/085 412 (see compounds 6 and 9) or the document "Symmetrical Triazine Derivatives", IP.COM IPCOM000031 257 Journal, INC, West Henrietta, NY, US (20 September 2004), in particular 2,4,6-tris(diphenyl)triazine and 2,4,6-tris(terphenyl)triazine, which is also mentioned in patent applications WO 06/035 000, WO 06/034 982, WO 06/034 991, WO 06/035 007, WO 2006/034 992 and WO 2006/034 985, these compounds advantageously being used in micronized form (mean particle size of 0.02 to 3 \(\mu \text{m} \)), which may be obtained, for example, according to the micronization process described in patent applications GB-A-2 303 549 and EP-A-893 119, and in particular in the form of an aqueous dispersion; silicone triazines substituted with two aminobenzoate groups, as described in patent EP 0 841 341, in particular 2,4-bis(n-butyl 4′-aminobenzalmalonate)-6-[(3-1,3,3,3-tetramethyl-1 -[(trimethylsilyl)oxy]disiloxylyl]propyl]amino]-s-triazine.

Anthranilic compounds:
Menthyl Anthranilate, sold under the trade name Neo Heliopan MA® by Symrise.
Imidazoline compounds:
Ethylhexyl dimethoxybenzylidene dioxoimidazoline propionate.

Benzalmalonate compounds:
Polyorganosiloxane comprising benzalmalonate functional groups, such as Polysilicone-1 5, sold under the trade name Parsol SLX® by Hoffmann-LaRoche.

4,4-Diarylbutadiene compounds:
1,1'-Dicarboxy(2,2'-dimethylpropyl)-4,4-diphenylbutadiene.

Benzoxazole compounds:
2,4-Bis[4-[5-(1,1'-dimethylpropyl)benzoxazol-2-yl]phenylimino]-6-[2-ethylhexylimino]-1,3,5-triazine, sold under the name of Uvasorb K2A® by Sigma 3V.

The preferred organic screening agents are chosen from:
Ethylhexyl Methoxycinnamate,
Ethylhexyl salicylate,
Homosalate,
Butyl Methoxy Dibenzoylmethane,
Octocrylene,
Phenylbenzimidazole Sulfonic Acid,
Benzophenone-3,
Benzophenone-4,
Benzophenone-5,
n-Hexyl 2-(4-diethylamino-2-hydroxybenzoyl)benzoate,
4-Methylbenzylidene Camphor,
Terephthalylidene Dicamphor Sulfonic Acid,
Disodium Phenyl Dibenzimidazole Tetrasulfonate,
Methylene Bis-Benzotriazolyl Tetramethylbutylphenol,
Bis-Ethylhexyloxyphe nyl Methoxyphenyl Triazine,
Ethylhexyl Triazine,
Diethylhexyl Butamido Triazine,
2,4,6-Tris(dineopentyl 4'-aminobenzalmalonate)-s-triazine,
2,4,6-Tris(diisobutyl 4'-aminobenzalmalonate)-s-triazine,
2,4-bis(n-butyl 4'-aminobenzoate)-6-(aminopro pyltrisiloxane)-s-triazine,
2,4-Bis(dineopentyl 4'-aminobenzalmalonate)-6-(n-butyl 4'-aminobenzoate)-s-triazine,
2,4,6-Tris(diphenyl)triazine,
2,4,6-Tris(terphenyl)triazine,
2,4-Bis(n-butyl 4'-aminobenzalmalonate)-6-[[3-(1,3,3,3-tetramethyl-1-methylsilyl)oxy]disiloxanyl]propylamino]-s-triazine,
1.1-Dicarboxy(2,2'-dinitralkylpropyl)-4,4-diphenylbutadiene,
2.4-Bis[4][5-(1,1-dimethylpropyl)benoxazol-2-yl]phenylimino]-6-[(2-ethylhexyl)imino]-3,5-triazine,
and mixtures thereof.

The particularly preferred organic screening agents are chosen from:
Ethylhexyl salicylate,
Homosalate,
Butylmethoxydibenzoylmethane,
Octocrylene,
n-Hexyl 2-(4-diethylamino-2-hydroxybenzoyl)benzoate,
Terephthalylidene Dicamphor Sulfonic Acid,
Bis(ethylhexyloxyphenol)methoxyphenyltriazine,
Ethylhexyl Triazone,
Octocrylene,
2,4-Bis(n-butyl 4'-aminobenzalmalonate)-6-[(3-{1,3,3,3-tetramethyl-1-[trimethylisilyl]oxy}disiloxypropyl)amino]-s-triazine,
Drometrizole Trisiloxane,
and mixtures thereof.

The additional mineral UV-screening agents used in accordance with the present invention are metal oxide pigments. More preferentially, the mineral UV-screening agents are metal oxide particles with a mean elementary particle size of less than or equal to 0.5 µm, more preferentially between 0.005 and 0.5 µm, even more preferentially between 0.01 and 0.2 µm, better still between 0.01 and 0.1 µm and more particularly between 0.015 and 0.05 µm.

They may be selected in particular from titanium oxide, zinc oxide, iron oxide, zirconium oxide and cerium oxide, or mixtures thereof.

Such coated or uncoated metal oxide pigments are described in particular in patent application EP-A-0 518 773. Commercial pigments that may be mentioned include the products sold by the companies Sachtleben Pigments, Tayca, Merck and Degussa.

The metal oxide pigments may be coated or uncoated and preferably coated with at least one hydrophobic material.

The coated pigments are pigments that have undergone one or more surface treatments of chemical, electronic, mechanochemical and/or mechanical nature with compounds such as amino acids, beeswax, fatty acids, fatty alcohols, anionic surfactants, lecithins, sodium, potassium, zinc, iron or aluminium salts of fatty acids, metal alkoxides (of titanium or aluminium), polyethylene, silicones, proteins
(collagen, elastin), alkanolamines, silicon oxides, metal oxides or sodium hexametaphosphate.

The coated pigments are more particularly titanium oxides that have been coated:
- with silica, such as the product Sunveil® from the company Ikeda,
- with silica and iron oxide, such as the product Sunveil F® from the company Ikeda,
- with silica and alumina, such as the products Microtitanium Dioxide MT 500 SA® and Microtitanium Dioxide MT 100 SA from the company Tayca and Tioveil from the company Tioxide,
- with alumina, such as the products Tipaque TTO-55 (B)® and Tipaque TTO-55 (A)® from the company Ishihara and UVT 14/4 from the company Sachtleben Pigments,
- with alumina and aluminium stearate, such as the products Microtitanium Dioxide MT 100 T®, MT 100 TX®, MT 100 Z® and MT-01® from the company Tayca, the products Solaveil CT-10 W® and Solaveil CT 100® from the company Uniqema and the product Eusolex T-AVO® from the company Merck,
- with silica, alumina and alginic acid, such as the product MT-100 AQ® from the company Tayca,
- with alumina and aluminium laurate, such as the product Microtitanium Dioxide MT 100 S® from the company Tayca,
- with iron oxide and iron stearate, such as the product Microtitanium Dioxide MT 100 F® from the company Tayca,
- with zinc oxide and zinc stearate, such as the product BR 351® from the company Tayca,
- with silica and alumina and treated with a silicone, such as the products Microtitanium Dioxide MT 600 SAS®, Microtitanium Dioxide MT 500 SAS® or Microtitanium Dioxide MT 100 SAS® from the company Tayca,
- with silica, alumina and aluminium stearate and treated with a silicone, such as the product STT-30-DS® from the company Titan Kogyo,
- with silica and treated with a silicone, such as the product UV-Titan X 195® from the company Sachtleben Pigments,
- with alumina and treated with a silicone, such as the products Tipaque TTO-55 (S)® from the company Ishihara or UV Titan M 262® from the company Sachtleben Pigments,
- with triethanolamine, such as the product STT-65-S from the company Titan Kogyo,
- with stearic acid, such as the product Tipaque TTO-55 (C)® from the company Ishihara,
- with sodium hexametaphosphate, such as the product Microtitanium Dioxide MT 150 W® from the company Tayca,
- TiO₂ treated with octyltrimethylsilane, sold under the trade name T 805® by the company Degussa Silices,
- TiO₂ treated with a polydimethylsiloxane, sold under the trade name 70250 Cardre UF TiO2Si3® by the company Cardre,
- anatase/rutile TiO₂ treated with a polydimethylhydrogenosiloxane, sold under the trade name Microtitanium Dioxide USP Grade Hydrophobic® by the company Color Techniques.

Mention may also be made of TiO₂ pigments doped with at least one transition metal such as iron, zinc or manganese and more particularly manganese. Preferably, the said doped pigments are in the form of an oily dispersion. The oil present in the oily dispersion is preferably chosen from triglycerides including those of capric/caprylic acids. The oily dispersion of titanium oxide particles may also comprise one or more dispersants, for instance a sorbitan ester, for instance sorbitan isostearate, or a polyoxyalkylenated fatty acid ester of glycerol, for instance TRI-PPG3 myristyl ether citrate and polyglyceryl-3 polrycinolinate.

Preferably, the oily dispersion of titanium oxide particles comprises at least one dispersant chosen from polyoxyalkylenated fatty acid esters of glycerol. Mention may be made more particularly of the oily dispersion of TiO₂ particles doped with manganese in capric/caprylic acid triglycerides in the presence of TRI-PPG3 myristyl ether citrate and polyglyceryl-3 polrycinolinate and sorbitan isostearate having the INCI name: titanium dioxide (and) TRI-PPG-3 myristyl ether citrate (and) polyglyceryl-3 ricinolinate (and) sorbitan isostearate, for instance the product sold under the trade name Optisol TD50® by the company Croda.

The uncoated titanium oxide pigments are sold, for example, by the company Tayca under the trade names Microtitanium Dioxide MT 500 B or Microtitanium Dioxide MT 600 B®, by the company Degussa under the name P 25, by the company Wackher under the name Transparent titanium oxide PW®, by the company Miyoshi Kasei under the name UFTR®, by the company Tomen under the name ITS® and by the company Tioxide under the name Tioveil AQ.

The uncoated zinc oxide pigments are for example:

- those sold under the name Z-Cote by the company Sunsmart;
- those sold under the name Nanox® by the company Elementis;
- those sold under the name Nanogard WCD 2025® by the company Nanophase Technologies.

The coated zinc oxide pigments are for example:

- those sold under the name Zinc Oxide CS-5® by the company Toshiba (ZnO coated with polymethylhydrogenosiloxane);
- those sold under the name Nanogard Zinc Oxide FN® by the company Nanophase Technologies (as a 40% dispersion in Finsolv TN®, C₁₂-C₁₅ alkyl benzoate);
- those sold under the name Daitopersion Zn-30® and Daitopersion Zn-50® by the company Daito (dispersions in cyclopolydimethylsiloxane/oxyethylenated polydimethylsiloxane, containing 30% or 50% of zinc oxides coated with silica and polymethylhydrogenosiloxane);
- those sold under the name NFD Ultrafine ZnO® by the company Daikin (ZnO coated with perfluoroalkyl phosphate and copolymer based on perfluoroalkylethyl as a dispersion in cyclopentasiloxane);
- those sold under the name SPD-Z1® by the company Shin-Etsu (ZnO coated with silicone-grafted acrylic polymer, dispersed in cyclodimethylsiloxane);
- those sold under the name Escalol Z100® by the company ISP (alumina-treated ZnO dispersed in an ethylhexyl methoxycinnamate/PVP-hexadecene copolymer/methicone mixture);
- those sold under the name Fuji ZnO-SMS-10® by the company Fuji Pigment (ZnO coated with silica and polymethylsilsesquioxane);
- those sold under the name Nanox Gel TN® by the company Elementis (ZnO dispersed at a concentration of 55% in C12-C15 alkyl benzoate with hydroxystearic acid polycondensate).

The uncoated cerium oxide pigments may be, for example, those sold under the name Colloidal Cerium Oxide® by the company Rhone-Poulenc.

The uncoated iron oxide pigments are sold, for example, by the company Arnaud under the names Nanogard WCD 2002® (FE 45B®), Nanogard Iron FE 45 BL AQ, Nanogard FE 45R AQ® and Nanogard WCD 2006® (FE 45R®) or by the company Mitsubishi under the name TY-220®.

The coated iron oxide pigments are sold, for example, by the company Arnaud under the names Nanogard WCD 2008 (FE 45B FN®), Nanogard WCD 2009® (FE 45B 556®), Nanogard FE 45 BL 345® and Nanogard FE 45 BL® or by the company BASF under the name Transparent Iron Oxide®.

Mention may also be made of mixtures of metal oxides, in particular of titanium dioxide and of cerium dioxide, including the equal-weight mixture of titanium dioxide and cerium dioxide coated with silica, sold by the company Ikeda under the name Sunveil A®, and also the mixture of titanium dioxide and zinc dioxide coated with alumina, silica and silicone, such as the product M 261® sold by the company Sachtleben Pigments, or coated with alumina, silica and glycerol, such as the product M 211® sold by the company Sachtleben Pigments.

According to the invention, coated or uncoated titanium dioxide pigments are particularly preferred, and even more particularly titanium dioxide pigments coated with at least one hydrophobic material.
The additional UV-screening agents according to the invention are preferably present in the compositions according to the invention in proportions ranging from 0.1% to 50% by weight, relative to the total weight of the composition, and preferably ranging from 2% to 30% by weight, relative to the total weight of the composition.

b) Other additives

The compositions in accordance with the present invention may also comprise conventional cosmetic adjuvants chosen in particular from organic solvents, ionic or nonionic thickeners, softeners, humectants, opacifiers, stabilizers, emollients, silicones, antifoams, fragrances, preserving agents, anionic, cationic, nonionic, zwitterionic or amphoteric surfactants, active agents, fillers, polymers, propellants, or any other ingredient commonly used in the cosmetic and/or dermatological field.

Among the organic solvents that may be mentioned are lower alcohols and polyols. These polyols may be chosen from glycols and glycol ethers, for instance ethylene glycol, propylene glycol, butylene glycol, dipropylene glycol or diethylene glycol.

Thickeners that may be mentioned include the Pemulen products (acrylate/C18-"C30-alkyl acrylate copolymer) (Pemulen TR1® or Pemulen TR2®); polysaccharides and especially gums such as xanthan gum, and mixtures thereof.

Among the active agents for caring for keratin materials such as the skin, the lips, the scalp, the hair, the eyelashes or the nails, examples that may be mentioned include:
- vitamins and derivatives or precursors thereof, alone or as mixtures;
- antioxidants;
- free-radical scavengers;
- antipollution agents;
- self-tanning agents;
- antiglycation agents;
- calmatives;
- deodorants;
- essential oils;
- NO-synthase inhibitors;
- agents for stimulating the synthesis of dermal or epidermal macromolecules and/or which prevent their decomposition;
- agents for stimulating the proliferation of fibroblasts;
- agents for stimulating the proliferation of keratinocytes;
- muscle relaxants;
- refreshing agents;
- tensioning agents;
- mattifying agents;
- depigmenting agents;
- propigmenting agents;
- keratolytic agents;
- desquamating agents;
- moisturizers;
- antiinflammatory agents;
- antimicrobial agents;
- slimming agents;
- agents acting on the energy metabolism of cells;
- insect repellents;
- substance P or CGRP antagonists;
- hair-loss counteractants;
- antiwrinkle agents;
- antiageing agents.

A person skilled in the art will select the said active principle(s) according to the effect desired on the skin, the hair, the eyelashes, the eyebrows or the nails.

Needless to say, a person skilled in the art will take care to select the abovementioned optional additional compound(s) and/or the amounts thereof such that the advantageous properties intrinsically associated with the compositions in accordance with the invention are not, or are not substantially, adversely affected by the envisaged addition(s).

GALENICAL FORMS

The compositions according to the invention may be prepared according to the techniques that are well known to those skilled in the art for manufacturing anhydrous compositions. They may be in the form of a fluid lotion, a gel or a compact composition, for example a hot-cast composition. They may optionally be in the form of a loose or compacted powder.

Preferably, the compositions according to the invention are in the form of a fluid composition or a gel.

For the purposes of the invention, the term "fluid composition" means a composition that is not in solid form and whose viscosity, measured using a Rheomat 180 viscometer at 25°C at a spin speed of 200 rpm after 30 seconds of rotation, is less than 0.5 Pa.s, more preferentially less than 0.2 Pa.s and more particularly ranging from 0.0001 Pa.s to 0.1 Pa.s.

According to one particularly preferred form of the invention, the compositions will be transparent and will preferably have a turbidity of less than 1000 NTU (nephelometric turbidity units) at 25°C, preferably less than 50 NTU at 25°C and
even more preferentially less than 1.5 NTU, measured using a 2100P turbidimeter
machine from the company Hach.

According to a particular form of the invention, the composition of the invention is a
fluid composition also comprising:
a) at least one linear C1-C4 monoalkanol and
b) at least one lipophilic polyamide polycondensate.

LIPOPHILIC POLYAMIDE POLYCONDENSATE

For the purposes of the invention, the term "polycondensate" means a polymer
obtained by polycondensation, i.e. by chemical reaction between monomers
bearing different functional groups chosen in particular from acid, alcohol and
amine functions.

For the purposes of the invention, the term "polymer" means a compound
containing at least two repeating units, preferably at least three repeating units
and better still ten repeating units.

The term "lipophilic polymer" means any polymer that can be fully dissolved in
molecular form in a liquid fatty phase or that can be dissolved in colloidal form (for
example in micellar form) in a liquid fatty phase.

The lipophilic polyamide polycondensate(s) are preferably present in the
compositions of the invention in concentrations ranging from 0.1% to 15% by
weight and more preferentially from 1% to 8% by weight relative to the total
weight of the composition.

The lipophilic polyamide polycondensates may be chosen especially from
polyamide polymers comprising a) a polymer backbone containing hydrocarbon-
based repeating units bearing at least one non-pendent amide unit, and
optionally b) at least one pendent fatty chain and/or at least one terminal fatty
chain, which are optionally functionalized, comprising at least four carbon atoms
and being attached to these hydrocarbon-based units.

For the purposes of the invention, the term "functionalized chains" means an
alkyl chain comprising one or more functional groups or reagents chosen
especially from amide, hydroxyl, ether, oxyalkylene or polyoxyalkylene, halogen,
including fluoro or perfluoro groups, and ester, siloxane and polysiloxane groups.
In addition, the hydrogen atoms of one or more fatty chains may be at least
partially replaced with fluorine atoms.

For the purposes of the invention, the term "hydrocarbon-based repeating units"
means a unit comprising from 2 to 80 carbon atoms and preferably from 2 to 60
carbon atoms, bearing hydrogen atoms and optionally oxygen atoms, which may
be linear, branched or cyclic, and saturated or unsaturated. These units each
also comprise at least one amide group that is advantageously non-pendent,
which is in the polymer backbone.
The pendent chains are advantageously bonded directly to at least one of the nitrogen atoms of the polymer backbone.

The lipophilic polyamide polycondensate may comprise between the hydrocarbon-based units silicone units or oxyalkylene units.

In addition, the lipophilic polyamide polycondensate of the composition of the invention advantageously comprises from 40% to 98% of fatty chains relative to the total number of amide units and fatty chains, and better still from 50% to 95%.

The pendent fatty chains are preferably bonded to at least one of the nitrogen atoms of the amide units of the polymer. In particular, the fatty chains of this polyamide represent from 40% to 98% of the total number of amide units and of fatty chains, and better still from 50% to 95%.

Advantageously, the lipophilic polyamide polycondensate has a weight-average molecular mass of less than 100 000 (especially ranging from 1000 to 100 000), in particular less than 50 000 (especially ranging from 1000 to 50 000) and more particularly ranging from 1000 to 30 000, preferably from 2000 to 20 000 and better still from 2000 to 10 000.

The lipophilic polyamide polycondensate is insoluble in water, especially at 25°C. In particular, it contains no ionic groups.

As preferred lipophilic polyamide polycondensates that may be used in the invention, mention may be made of polyamides branched with pendent fatty chains and/or terminal fatty chains containing from 6 to 120 carbon atoms and better still from 8 to 120 and in particular from 12 to 68 carbon atoms, each terminal fatty chain being bonded to the polyamide backbone via at least one bonding group L. The bonding group L may be chosen from ester, ether, amine, urea, urethane, thioester, thioether, thiourea and thiourethane groups. Preferably, these polymers comprise a fatty chain at each end of the polyamide backbone.

These polymers are preferably polymers resulting from a polycondensation between a dicarboxylic acid containing at least 32 carbon atoms (in particular containing from 32 to 44 carbon atoms) and an amine chosen from diamines containing at least 2 carbon atoms (in particular from 2 to 36 carbon atoms) and triamines containing at least 2 carbon atoms (in particular from 2 to 36 carbon atoms). The diacid is preferably a dimer of a fatty acid containing ethylenic unsaturation containing at least 16 carbon atoms, preferably from 16 to 24 carbon atoms, for instance oleic acid, linoleic acid or linolenic acid. The diamine is preferably ethylenediamine, hexylenediamine or hexamethylenediamine. The triamine is, for example, ethylenetriamine. For the polymers comprising one or two terminal carboxylic acid groups, it is advantageous to esterify them with a monoalcohol containing at least four carbon atoms, preferably from 10 to 36 carbon atoms, better still from 12 to 24 and even better from 16 to 24, for example 18 carbon atoms.
The lipophilic polyamide polycondensate of the composition according to the invention may be chosen in particular from the polymers of formula (A) below:

\[
\begin{array}{c}
\text{R'}^1 - \text{L} - \text{C}_n \text{R'}^2 - \text{N}_m \text{R'}^3 - \text{N}_m \\
\text{O} \quad \text{O} \\
\end{array}
\]

(A)

in which:
- \(n \) is an integer ranging from 1 to 30;
- \(\text{R'}^1 \) represents independently in each case a fatty chain and is chosen from an alkyl or alkenyl group containing at least 1 carbon atom and especially from 4 to 24 carbon atoms;
- \(\text{R'}^2 \) represents independently in each case a hydrocarbon-based radical comprising from 1 to 52 carbon atoms;
- \(\text{R'}^3 \) represents independently in each case an organic group comprising at least one atom chosen from carbon, hydrogen and nitrogen atoms, on condition that \(\text{R'}^3 \) comprises at least three carbon atoms;
- \(\text{R'}^4 \) represents independently in each case: a hydrogen atom, an alkyl group comprising from 1 to 10 carbon atoms, or a direct bond to at least one group chosen from \(\text{R'}^3 \) and another \(\text{R'}^4 \) such that when the said group is another \(\text{R'}^4 \), the nitrogen atom to which are attached both \(\text{R'}^3 \) and \(\text{R'}^4 \) forms part of a heterocyclic structure defined by \(\text{R'}^4 \text{-N-}\text{R'}^3 \), on condition that at least 50% of the \(\text{R'}^4 \) represent a hydrogen atom, and
- \(\text{L} \) represents a bonding group preferably chosen from ester, ether, amine, urea, urethane, thioester, thioether, thiourea and thiourethane, optionally substituted with at least one group \(\text{R'}^1 \) as defined above.

According to one embodiment, these polymers are chosen from the polymers of formula (A) in which the bonding group \(\text{L} \) represents an ester group:

\[
\begin{array}{c}
\text{C} - \text{O} - \\
\text{O} \\
\end{array}
\]

These polymers are more especially the ones described in document US-A-5 783 657 from the company Union Camp.

Each of these polymers in particular satisfies formula (B) below:

\[
\begin{array}{c}
\text{R''} - \text{O} - \text{C}_n \text{R''}^1 - \text{N}_m \text{R''}^3 - \text{N}_m \\
\text{O} \quad \text{O} \\
\end{array}
\]

(B)

in which:
m denotes a whole number of amide units such that the number of ester groups represents from 10% to 50% of the total number of ester and amide groups;
- \(R^i \) is independently in each case an alkyl or alkenyl group containing at least 4 carbon atoms and especially from 4 to 24 carbon atoms;
- \(R^\prime_2 \) represents independently in each case a \(C_4 \) to \(C_8 \) hydrocarbon-based group, on condition that 50% of the groups \(R_2 \) represent a \(C_6 \) to \(C_8 \) hydrocarbon-based group;
- \(R^\prime_3 \) represents independently in each case an organic group bearing at least two carbon atoms, hydrogen atoms and optionally one or more oxygen or nitrogen atoms;
- and \(R^\prime_4 \) represents independently in each case a hydrogen atom, a \(C_i \) to \(C_{10} \) alkyl group or a direct bond to \(R^\prime_3 \) or to another \(R_4 \) such that the nitrogen atom to which are attached both \(R^\prime_3 \) and \(R^\prime_4 \) forms part of a heterocyclic structure defined by \(R^\prime_4 = N-R^\prime_3 \), with at least 50% of the groups \(R_4 \) representing a hydrogen atom.

In the particular case of formula (B), the terminal fatty chains that are optionally functionalized for the purposes of the invention are terminal chains linked to the last nitrogen atom of the polyamide backbone.

In particular, the ester groups of formula (B), which form part of the terminal and/or pendent fatty chains within the meaning of the invention, represent from 15% to 40% and better still from 20% to 35% of the total number of ester and amide groups.

Furthermore, m advantageously represents an integer ranging from 1 to 5 and better still greater than 2.

Preferably, \(R^i \) is a \(C_{12} \) to \(C_{22} \) and preferably \(C_{16} \) to \(C_{22} \) alkyl group.
Advantageously, \(R^\prime_2 \) may be a \(C_{10} \) to \(C_{22} \) hydrocarbon-based (alkylene) group.
Preferably, at least 50% and better still at least 75% of the groups \(R^\prime_2 \) are groups containing from 30 to 42 carbon atoms. The other groups \(R^\prime_2 \) are \(C_4 \) to \(C_{19} \) and better still \(C_4 \) to \(C_{12} \) hydrogen-containing groups.

Preferably, \(R^\prime_3 \) represents a \(C_2 \) to \(C_{36} \) hydrocarbon-based group or a polyoxyalkylene group and \(R_4 \) represents a hydrogen atom. Preferably, \(R_3 \) represents a \(C_2 \) to \(C_{12} \) hydrocarbon-based group.

The hydrocarbon-based groups may be linear, cyclic or branched, and saturated or unsaturated groups. Moreover, the alkyl and alkylene groups may be linear or branched, and saturated or unsaturated groups.

In general, the polymers of formula (B) are in the form of mixtures of polymers, these mixtures also possibly containing a synthetic product corresponding to a compound of formula (B) in which \(n = 0 \), i.e. a diester.

According to a particularly preferred form of the invention, use will be made of a mixture of copolymers of a \(C_{36} \) diacid condensed onto ethylenediamine; the terminal ester groups result from the esterification of the remaining acid end
groups with cetyl alcohol, stearyl alcohol or mixtures thereof (also known as cetylstearyl alcohol) (INCI name: Ethylenediamine/stearyl dimer dilinoleate copolymer). Its weight-average molecular mass is preferably 6000. These mixtures are especially sold by the company Arizona Chemical under the trade names Uniclear 80 and Uniclear 100 VG in the form, respectively, of a gel at 80% (of active material) in a mineral oil, and at 100% (of active material). They have a softening point of 88°C to 94°C.

As polyamide polycondensates corresponding to the general formula (A), mention may also be made of polymers comprising at least one terminal fatty chain bonded to the polymer backbone via at least one tertiary amide bonding group (also known as an amide-terminated polyamide or ATPA). For further information regarding these polymers, reference may be made to US 6 503 522.

According to a particularly preferred form of the invention, use will be made more particularly of a copolymer of hydrogenated linoleic diacid, of ethylenediamine and of di(Ci₄-Ci₉)alkylamine(s) (INCI name: ETHYLENEDIAMIDE/HYDROGENATED DIMER DILINOLEATE COPOLYMER BIS-DI-Ci₄-Ci₉ ALKYL AMIDE). This copolymer is especially sold under the trade name Sylvaclear A200V by the company Arizona Chemical.

According to another embodiment, the polyamide of formula (A) may also be an ester-terminated poly(ester-amide) (ETPEA), for instance those whose preparation is described in US 6 552 160.

According to one particularly preferred form of the invention, use will be made more particularly of a copolymer of hydrogenated linoleic diacid, of ethylenediamine and of neopentyl glycol and stearyl alcohol (INCI name: BIS-STEARYL ETHYLENEDIAMINE/NEOPENTYL GLYCOL/STEARYL HYDROGENATED DIMER DILINOLEATE COPOLYMER). This copolymer is especially sold under the trade name Sylvaclear C75 V by the company Arizona Chemical.

As polyamide polycondensates that may be used in the invention, mention may also be made of those comprising at least one terminal fatty chain bonded to the polymer backbone via at least one ether or polyether bonding group (it is then referred to as an ether-terminated poly(ether)amide). Such polymers are described, for example, in US 6 399 713.

The polyamides in accordance with the invention advantageously have a softening point of greater than 65°C, which may be up to 190°C. It preferably has a softening point ranging from 70°C to 130°C and better still from 80°C to 105°C. The polyamide is in particular a non-waxy polymer.

As polyamide polycondensates that may be used in the invention, mention may also be made of polyamide resins resulting from the condensation of an aliphatic dicarboxylic acid and a diamine (including compounds containing more than 2 carbonyl groups and 2 amine groups), the carbonyl and amine groups of adjacent individual units being condensed via an amide bond. These polyamide resins are especially the products sold under the brand name Versamid® by the
companies General Mills, Inc. and Henkel Corp. (Versamid 930, 744 or 1655) or by the company Olin Mathieson Chemical Corp., under the brand name Onamid® especially Onamid S or C. These resins have a weight-average molecular mass ranging from 6000 to 9000. For further information regarding these polyamides, reference may be made to US 3 645 705 and US 3 148 125. Use is made more especially of Versamid® 930 or 744.

It is also possible to use the polyamides sold by the company Arizona Chemical under the references Uni-Rez (2658, 2931, 2970, 2621, 2613, 2624, 2665, 1554, 2623 and 2662) and the product sold under the reference Macromelt 6212 by the company Henkel. For further information regarding these polyamides, reference may be made to US 5 500 209.

It is also possible to use vegetable-based polyamide resins, for instance those described in patents US 5 783 657 and US 5 998 570.

LINEAR Ci-C₄ MONOALCOHOL

The term "CrC₄ monoalkanol" means any linear or branched saturated alkane compound containing from 1 to 4 carbon atoms and only one hydroxyl (OH) function.

The Ci-C₄ monoalcohol(s) present in the compositions of the invention may be chosen from methanol, ethanol and propanol, or mixtures thereof. Ethanol will be chosen more particularly.

They are generally present in concentrations ranging from 0.1% to 40% by weight and more preferentially from 2% to 10% by weight relative to the total weight of the composition.

Another subject of the present invention consists of the use of the compositions according to the invention as defined above for the manufacture of products for the cosmetic treatment of the skin, the lips, the nails, the hair, the eyelashes, the eyebrows and/or the scalp, especially care products, antisun products and makeup products.

The cosmetic compositions according to the invention may be used, for example, as makeup products.

Another subject of the present invention consists of a non-therapeutic cosmetic process for caring for and/or making up a keratin material, which consists in applying, to the surface of the said keratin material, at least one composition according to the invention as defined above.

The cosmetic compositions according to the invention may be used, for example, as care products and/or antisun protection products for the face and/or the body, of liquid to solid consistency, such as lotions, more or less smooth gels, and
pastes. They may optionally be packaged in aerosol form and may be in the form of a mousse or a spray.

The compositions according to the invention in the form of vaporizable fluid lotions in accordance with the invention are applied to the skin or the hair in the form of fine particles by means of pressurization devices. The devices in accordance with the invention are well known to those skilled in the art and comprise non-aerosol pumps or "atomizers", aerosol containers comprising a propellant and aerosol pumps using compressed air as propellant. These devices are described in patents US 4 077 441 and US 4 850 517.

The compositions packaged as an aerosol in accordance with the invention generally comprise conventional propellants, such as, for example, hydrofluoro compounds, dichlorodifluoromethane, difluoroethane, dimethyl ether, isobutane, n-butane, propane or trichlorofluoromethane. They are preferably present in amounts ranging from 15% to 50% by weight relative to the total weight of the composition.

ASSEMBLY

According to another aspect, the invention also relates to a cosmetic assembly comprising:

i) a container delimiting one or more compartment(s), the said container being closed by a closing member and optionally not being leaktight; and

ii) a makeup and/or care composition in accordance with the invention placed inside the said compartment(s).

The container may be, for example, in the form of a jar or a box.

The closing member may be in the form of a lid comprising a cap mounted so as to be able to move by translation or by pivoting relative to the container housing the said makeup and/or care composition(s).

The examples that follow serve to illustrate the invention without, however, being limiting in nature. In these examples, the amounts of the composition ingredients are given as % by weight, relative to the total weight of the composition.

Example A1: Preparation of compound (14)

![Chemical Structure](14)
122.23 g of 3-[(3-methoxypropyl)amino]-2-cyclohexen-1-one were alkylated with dimethyl sulfate or alternatively with diethyl sulfate and treated with 75.45 g of ethyl cyanoacetate in approximately equimolar proportions in the presence of a base and optionally of a solvent.

The following base/solvent combinations were used:

<table>
<thead>
<tr>
<th>Example</th>
<th>Base</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example A1.1</td>
<td>DBU (1,8-diazabicyclo[5.4.0]undec-7-ene)</td>
<td>dimethylacetamide</td>
</tr>
<tr>
<td>Example A1.2</td>
<td>triethylamine</td>
<td>isopropanol</td>
</tr>
<tr>
<td>Example A1.3</td>
<td>3-methoxypropylamine</td>
<td>isopropanol</td>
</tr>
<tr>
<td>Example A1.4</td>
<td>3-methoxypropylamine</td>
<td>tert-amyl alcohol</td>
</tr>
<tr>
<td>Example A1.5</td>
<td>3-methoxypropylamine</td>
<td>toluene</td>
</tr>
<tr>
<td>Example A1.6</td>
<td>3-methoxypropylamine</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>Example A1.7</td>
<td>3-methoxypropylamine</td>
<td>no solvent</td>
</tr>
<tr>
<td>Example A1.8</td>
<td>N-morpholine</td>
<td>isopropanol</td>
</tr>
</tbody>
</table>

The completion of the alkylation reaction was monitored, for example, via methods such as TLC, GC or HPLC.

162.30 g of compound (14) were obtained in the form of a brown oil.

After crystallization, the product was obtained in the form of yellowish crystals. Melting point: 92.7°C.

Example A2: Preparation of compound (15)

![Compound (15)]

101.00 g of 3-[(3-methoxypropyl)amino]-2-cyclohexen-1-one were alkylated with dimethyl sulfate or alternatively with diethyl sulfate and treated with 86.00 g of 2-cyano-N-(3-methoxypropyl)acetamide in approximately equimolar proportions in the presence of a base and optionally of a solvent.

The following base/solvent combinations were used:

<table>
<thead>
<tr>
<th>Example</th>
<th>Base</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example A2.1</td>
<td>DBU (1,8-diazabicyclo[5.4.0]undec-7-ene)</td>
<td>dimethylacetamide</td>
</tr>
</tbody>
</table>
Example A2.2 triethylamine isopropanol
Example A2.3 3-methoxypropylamine isopropanol
Example A2.4 3-methoxypropylamine tert-amyl alcohol
Example A2.5 3-methoxypropylamine toluene
Example A2.6 3-methoxypropylamine dimethylformamide
Example A2.7 3-methoxypropylamine no solvent

The crude product (15) is obtained in the form of a dark brown oil.

After chromatography on a column of silica gel (eluent: 99/1 toluene/methanol), 81.8 g of product are obtained in the form of yellowish crystals. Melting point: 84.7-85.3°C.

Example A3: Preparation of compound (27)

![Chemical Structure](image)

13.09 g of 3-[(3-methoxypropyl)amino]-2-cyclohexen-1-one are alkylated with dimethyl sulfate or alternatively with diethyl sulfate and treated with 10.12 g of isobutyl cyanoacetate in approximately equimolar proportions in the presence of a base and optionally of a solvent.

The following base/solvent combinations are used:

<table>
<thead>
<tr>
<th>Example</th>
<th>Base</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example A3.1</td>
<td>DBU (1,8-diazabicyclo[5.4.0]undec-7-ene)</td>
<td>dimethylacetamide</td>
</tr>
<tr>
<td>Example A3.2</td>
<td>triethylamine</td>
<td>isopropanol</td>
</tr>
<tr>
<td>Example A3.3</td>
<td>3-methoxypropylamine</td>
<td>isopropanol</td>
</tr>
<tr>
<td>Example A3.4</td>
<td>N-methylmorpholine</td>
<td>tert-amyl alcohol</td>
</tr>
<tr>
<td>Example A3.5</td>
<td>3-methoxypropylamine</td>
<td>toluene</td>
</tr>
<tr>
<td>Example A3.6</td>
<td>3-methoxypropylamine</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>Example A3.7</td>
<td>3-methoxypropylamine</td>
<td>no solvent</td>
</tr>
</tbody>
</table>

15.97 g of the crude product (27) are obtained in the form of a dark brown oil.

After chromatography on a column of silica gel (eluent: toluene/acetone), 13.46 g of product are obtained in the form of yellowish crystals. Melting point: 96.3°C.
Example A4: Preparation of compound (25)

![Chemical structure of compound (25)]

148.4 g of 3-[(3-methoxypropyl)annino]-2-cyclohexen-1-one were alkylated with dimethyl sulfate or alternatively with diethyl sulfate and treated with 130.00 g of 2-ethoxyethyl cyanoacetate in the presence of a base and a solvent.

The following base/solvent combinations were used:

<table>
<thead>
<tr>
<th>Example</th>
<th>Base</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example A4.1</td>
<td>DBU (1,8-diazabicyclo[5.4.0]undec-7-ene)</td>
<td>dimethylacetamide</td>
</tr>
<tr>
<td>Example A4.2</td>
<td>triethylamine</td>
<td>isopropanol</td>
</tr>
<tr>
<td>Example A4.3</td>
<td>3-methoxypropylamine</td>
<td>isopropanol</td>
</tr>
<tr>
<td>Example A4.4</td>
<td>N-methylmorpholine</td>
<td>tert-amyl alcohol</td>
</tr>
<tr>
<td>Example A4.5</td>
<td>3-methoxypropylamine</td>
<td>toluene</td>
</tr>
<tr>
<td>Example A4.6</td>
<td>3-methoxypropylamine</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>Example A4.7</td>
<td>3-methoxypropylamine</td>
<td>no solvent</td>
</tr>
</tbody>
</table>

Formulation Examples 1 to 4

The formulations 1 to 4 below were prepared, in which the chemical stability of compound (25) of the invention was evaluated. The amounts are expressed in % weight relative to the total weight of the composition. The formulation 3 was constructed such that the proportion by weight of each ingredient was identical to the proportion by weight of each ingredient in the fatty phase of the formulation 4.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Ingredients</th>
<th>Formulation 1 (invention) Oil</th>
<th>Formulation 2 (outside the invention) Emulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C12-15 ALKYL BENZOATE</td>
<td>qs 100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ISOPROPYL PALMITATE</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LIQUID PARAFFIN</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>OCTYLDODECANOL</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ETHYLENEDIAMINE/STEARYL DIMER DILINOLEATE COPOLYMER (UNICLEAR 100 VG® - ARIZONA CHEMICAL)</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Compound (25)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Phase</td>
<td>Ingredients</td>
<td>Formulation 3 (invention) Oil</td>
<td>Formulation 4 (outside the invention) Emulsion</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>A</td>
<td>Isopropyl Lauroyl Sarcosinate (Eldew SL-205®)</td>
<td>73.1 7</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Compound (25)</td>
<td>4.88</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Stearic Acid</td>
<td>3.66</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Glyceryl Stearate (and) PEG-1 00 Stearate (Arlacel 165®)</td>
<td>6.1 0</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Cetyl Alcohol</td>
<td>1.22</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Cetearyl Alcohol (and) Cetearyl Glucoside (Montanov 68® – SEPPIC)</td>
<td>4.88</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Dimethicone</td>
<td>1.22</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Preservative</td>
<td>2.44</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>WATER</td>
<td>-</td>
<td>qs 100</td>
</tr>
<tr>
<td></td>
<td>GLYCERIN</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>TRIETHANOLAMINE</td>
<td>-</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>DISODIUM EDTA</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>POTASSIUM CETYL PHOSPHATE (AMPHISOL K® -DSM NUTRITIONAL PRODUCTS)</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>ISOHEXADECANE</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ACRYLATES/C10-30 ALKYL ACRYLATE CROSSPOLYMER (PEMULEN TR1)</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>XANTHAN GUM</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>D</td>
<td>ETHANOL</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>WATER</td>
<td>-</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>TRIETHANOLAMINE</td>
<td>-</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Method for preparing formulation 1 and 3 (oil):

The oily formulations of the invention were prepared in the following manner. Phase A was heated to 80°C with stirring. Once this phase was clear, the alcohol (phase D) was added at room temperature with continued stirring using a magnetic stirrer for between 10 minutes and 1 hour.

Method for preparing formulations 2 and 4 (emulsion):

The oily phase A and aqueous phase B were prepared by mixing the starting materials with mechanical stirring at 80°C. Once the oily solution A and aqueous solution B were macroscopically homogeneous, the emulsion outside the invention was prepared by introducing phase A into phase B, both of which were stirred using a rotor-stator homogenizer (mixer in the case of the invention). Stirring was maintained for 10 to 20 minutes before adding phase C, with continued stirring. The emulsion was cooled to room temperature before adding the ingredients of phase D.

Protocol for evaluating the merocyanine stability:

The stability of the merocyanines in formulation was evaluated by UPLC assay of the residual merocyanine content after 2 months of storage of the formulations at 4°C and 45°C.

The percentage of degradation of the merocyanines after 2 months at 45°C is expressed as:
Degradation $t^{2M45 \circ C}(\%) = \frac{\text{Merocyanine}_{t^{2M45 \circ C}} - \text{Merocyanine}_{t^0M_4 \circ C}}{\text{Merocyanine}_{t^0M_4 \circ C}} \times 100$

The percentage of degradation of the merocyanines after 1 month at 45°C is expressed as:

$$\text{Degradation} \ t^{1M45 \circ C}(\%) = \frac{\text{Merocyanine}_{t^{1M45 \circ C}} - \text{Merocyanine}_{\text{theoretical}}}{\text{Merocyanine}_{\text{theoretical}}} \times 100$$

The theoretical content corresponds to the initial introduced content.

<table>
<thead>
<tr>
<th>Evaluated chemical stability</th>
<th>Formulation 1 (invention)</th>
<th>Formulation 2 (outside the invention)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual merocyanine after 2 months at 4°C (%)</td>
<td>0.54</td>
<td>0.49</td>
</tr>
<tr>
<td>Residual merocyanine after 2 months at 45°C (%)</td>
<td>0.54</td>
<td>0.46</td>
</tr>
<tr>
<td>Merocyanine degradation after 2 months at 45°C (%)</td>
<td>< 1%</td>
<td>8 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluated chemical stability</th>
<th>Formulation 3 (invention)</th>
<th>Formulation 4 (outside the invention)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical content (%)</td>
<td>4.88</td>
<td>2</td>
</tr>
<tr>
<td>Residual merocyanine after 1 month at 45°C (%)</td>
<td>4.85</td>
<td>1.78</td>
</tr>
<tr>
<td>Merocyanine degradation after 1 month at 45°C (%)</td>
<td>0.6</td>
<td>11</td>
</tr>
</tbody>
</table>

The stability results obtained on formulations 1 and 3 according to the invention in comparison with formulations 2 and 4 show that the merocyanines of the invention, formulated in anhydrous compositions of the invention, are chemically more stable than when they are formulated in a support comprising an emulsifying system containing at least one alkali metal salt of a phosphoric acid ester of a fatty alcohol.
CLAIMS

1. Anhydrous cosmetic or dermatological composition comprising, in a physiologically acceptable support:
 a) at least one merocyanine compound corresponding to one of the following formulae (1) and (2) or one of the E/E- or E/Z- geometrical isomer forms thereof:

 ![Chemical Structures](image)

 in which:

 R₁ and R₂ are, independently of each other, hydrogen; a C₁-C₂₂ alkyl group, a C₂-C₂₂ alkenyl group or a C₂-C₂₂ alkynyl group, it being possible for these groups to be substituted with at least one hydroxyl group or to be interrupted with at least one -O-; or alternatively R₁ and R₂ form, together with the nitrogen atom which connects them, a -(CH₂)n- ring which may optionally be interrupted with -O- or -NH-;

 R₃ is a group -(C=O)OR₆ or a group -(CO)NHR₅;

 R₆ is a C₁-C₂₂ alkyl group, a C₂-C₂₂ alkenyl group, a C₂-C₂₂ alkynyl group, a C₃-C₂₂ cycloalkyi group or a C₃-C₂₂ cycloalkenyl group, it being possible for the said groups to be substituted with one or more O H groups;

 R₄ and R₅ are hydrogens; or R₄ and R₅ form a -(CH₂)n- ring which may be substituted with a C₁-C₄ alkyl group and/or interrupted with one or more -O- or with -NH-;

 n is a number between 2 and 7;

 R₇ and R₈ are, independently of each other, hydrogen; a C₁-C₂₂ alkyl group, a C₂-C₂₂ alkenyl group or a C₂-C₂₂ alkynyl group, it being possible for the said groups to be interrupted with one or more O and/or substituted with one or more O H groups;

 a C₃-C₂₂ cycloalkyi group or a C₃-C₂₂ cycloalkenyl group, it being possible for the said groups to be interrupted with one or more -O-;

 or alternatively R₇ and R₈ form, together with the nitrogen which connects them, a -(CH₂)n- ring which may be interrupted with one or more -O-;

 R₉ and R₁₀ are hydrogen; or R₉ and R₁₀ form a -(CH₂)n- ring which may be substituted with a C₁-C₄ alkyl and/or interrupted with an -O- or -NH-;

 A is -O- or -NH-;

 R₁₁ is a C₁-C₂₂ alkyl group; a C₂-C₂₂ alkenyl group; a C₂-C₂₂ alkynyl group; a C₃-C₂₂ cycloalkyi group or a C₃-C₂₂ cycloalkenyl group, it being possible for the said groups to be interrupted with one or more O; or a C₁-C₂₂ alkyl group or a C₂-C₂₂ alkenyl group which is substituted with a C₃-C₂₂ cycloalkyi group or a C₃-C₂₂ cycloalkenyl group, it being possible for the said C₃-C₂₂ cycloalkyi group or C₃-C₂₂ cycloalkenyl group to be interrupted with one or more -O-;

 with the proviso that:
(I) at least one of the groups \(R_i, R_2 \) or \(R_6 \) is substituted with a hydroxyl;
(II) if one of the groups \(R_i \) denotes a hydroxyethyl, \(R_2 \) does not denote a hydrogen, a methyl or an ethyl, or a hydroxyethyl; and if \(R_i \) denotes hydrogen, \(R_2 \) is not 1-hydroxy-3-methyl-2-butyl;
(III) if \(R_6 \) is substituted with one or more OH groups, one from among \(R_1 \) and \(R_2 \) is a \(C_4\)-\(C_{22} \) alkyl group; or alternatively \(R_i \) and \(R_2 \) form, together with the nitrogen to which they are attached, a piperidyl or morpholinyl radical;
(IV) at least one among the radicals \(R_7, R_s \) and \(R_n \) is interrupted with one or more -O-; and

b) at least one oily phase.

2. Composition according to Claim 1, in which the compounds of formula (1) are chosen from those for which:

\(R_6 \) is a \(\text{Cl-Ci}_2 \) alkyl group which may be substituted with one or more hydroxyls.

3. Composition according to Claim 1 or 2, in which the compounds of formula (1) are chosen from those for which:

\(R_6 \) is a \(\text{Cl-Ci}_2 \) alkyl group which may be substituted with one or more hydroxyls; one of the radicals \(R_i \) or \(R_2 \) is a \(C_4\)-\(C_{22} \) alkyl group; or alternatively \(R_i \) and \(R_2 \) form, together with the nitrogen which connects them, a \(-(\text{CH}_2)_n\)- ring which may be interrupted with -O- and/or -NH-; and \(R_4 \) and \(R_5 \) and \(n \) have the same meanings indicated in Claim 1.

4. Composition according to Claim 1, in which the compounds of formula (2) are chosen from those for which:

\(R_n \) is a radical \(-(\text{CH}_2)_m\)-OH, in which
\(R_i \) is a \(\text{Cl-Ci}_2 \) alkyl group or a \(\text{Cl-Ci}-\text{alkoxy-CrC6-alkyl} \) group;
\(m \) is a number from 1 to 5; and \(R_7, R_8, R_g, R_i, n, R_4 \) and \(A \) have the same meanings indicated in Claim 1.

5. Composition according to any one of Claims 1 to 4, in which the compounds of formula (1) or (2) are chosen from those for which:

\(R_i \) and \(R_2 \), on the one hand, and \(R_7 \) and \(R_s \), on the other hand, respectively form, together with the nitrogen atom to which they are respectively attached, a piperidyl radical or a morpholinyl radical.

6. Composition according to any one of Claims 1 to 5, in which the compounds of formula (1) or (2) are chosen from those for which:

\(R_i \) and \(R_5 \) and \(R_g \) and \(R_i \) respectively form a carbon-based ring which contains 6 carbon atoms.

7. Composition according to Claim 1, in which the compounds of formula (1) are chosen from those for which:
R₁ and R₂ are, independently of each other, a hydrogen; or a C₁-C₂₂ alkyl group; or a C₁-C₂₂ hydroxyalkyl group; or R₁ and R₂ form, together with the nitrogen to which they are attached, a piperidyl or morpholinyl radical; R₃ is a group -(C=O)OR₆ or a group -(C=O)NHR₆;

R₆ is a C₁-C₂₂ alkyl group which may be substituted with one or more -OH groups; R₄ and R₅ are a hydrogen; or R₄ and R₅ are linked together to form a carbon-based ring which contains 6 carbon atoms.

8. Composition according to Claim 1, in which the compounds of formula (1) are chosen from those for which:
R₁ and R₂ are, independently of each other, a hydrogen; or a C₁-C₂₂ hydroxyalkyl group; in which at least one of the R₁ and R₂ radicals is a C₁-C₂₂ hydroxyalkyl group; R₃ is a group -(C=O)OR₆ or a group -(C=O)NHR₆;
R₆ is a C₁-C₂₂ alkyl group; and R₄ and R₅ are hydrogens; or R₄ and R₅ are linked together to form a carbon-based ring which contains 6 carbon atoms.

9. Composition according to Claim 1, in which the compounds of formula (2) are chosen from those for which:
R₇ and Rₛ are, independently of each other, a hydrogen or a C₁-Cₛ alkyl group which may be interrupted with one or more -O-; A is -O- or -NH; R₁₁ is a C₁-C₂₂ alkyl; and R₉ and R₁₀ are a hydrogen; or R₉ and R₁₀ are linked together to form a carbon-based ring which contains 6 carbon atoms.

10. Composition according to Claim 1, in which the compounds of formula (2) are chosen from those for which:
R₇ and Rₛ form, together with the nitrogen atom to which they are attached, a morpholinyl or piperidyl radical; A is -O- or -NH; R₁₁ is a C₁-C₂₂ alkyl group which may be interrupted with one or more -O-; and R₉ and R₁₀ are hydrogens; or R₉ and R₁₀ are linked together to form a carbon-based ring which contains 6 carbon atoms.

11. Composition according to Claim 1, in which the compounds of formula (2) are chosen from those for which:
R₁₁ is a radical -(CH₂)ₘ-O-R₂ in which R₁₂ is a C₁-C₄ alkyl group or a C₁-C₄-alkoxy-C₄-alkyl group; m is a number from 1 to 3; R₇ and Rₛ are, independently of each other, a hydrogen; a C₁-C₁₂ alkyl group which may be interrupted with one or more O; or R₇ and Rₛ form, together with the nitrogen atom to which they are attached, a morpholinyl or piperidyl radical;
R_{g} and R_{10} are hydrogens or together form a carbon-based ring which contains 6 carbon atoms; and

A is -O- or -NH.

12. Composition according to one of the preceding claims, in which the compounds of formula (1) or (2) are chosen from the following compounds and also the E/E- or E/Z- geometrical isomer forms thereof:

<table>
<thead>
<tr>
<th>Table A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>Compound</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>Compound</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>Compound</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>
Composition according to one of the preceding claims, in which the compounds of formula (1) or (2) are chosen from those corresponding to the following formula (3) and also the E/E- or E/Z- geometrical isomer forms thereof:

\[\text{(3)} \]

in which:

A is -O- or -NH;

R is a C1-C22 alkyl group, a C2-C22 alkenyl group, a C2-C22 alkynyl group, a C3-C22 cydoalkyi group or a C3-C22 cydoalkenyl group, it being possible for the said groups to be interrupted with one or more O.
14. Composition according to Claim 13, in which the merocyanines of formula (3) are chosen from the following compounds and also the E/E- or E/Z- geometrical isomer forms thereof:

<table>
<thead>
<tr>
<th>No.</th>
<th>Chemical Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td>ethyl (2Z)-cyano{3-[(3-methoxypropyl)amino]cyclohex-2-en-1-ylidene}ethanoate</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>(2Z)-2-cyano-N-(3-methoxypropyl)-2-{3-[[3-methoxypropyl]amino]cyclohex-2-en-1-ylidene}ethanamide</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>2-ethoxyethyl (2Z)-cyano{3-[(3-methoxypropyl)amino]cyclohex-2-en-1-ylidene}ethanoate</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>2-methylpropyl (2Z)-cyano{3-[(3-methoxypropyl)amino]cyclohex-2-en-1-ylidene}ethanoate</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>2-butoxyethyl (2Z)-cyano{3-[(3-methoxypropyl)amino]cyclohex-2-en-1-ylidene}ethanoate</td>
</tr>
</tbody>
</table>
15. Composition according to Claim 14, in which the merocyanine of formula (3) is the compound 2-ethoxyethyl (2Z)-cyano[3-[(3-methoxypropyl)amino]cyclohex-2-en-1-ylidene]ethanoate (25) in its E/Z geometrical configuration having the following structure:

![Structural formula](image)

and/or the E/E form having the following structure:

![Structural formula](image)

16. Composition according to any one of Claims 1 to 15, also comprising at least one water-insoluble UV-screening agent.

17. Composition according to any one of the preceding claims, in which the overall oily phase represents from 2% to 100% by weight and preferentially from 10% to 90% by weight relative to the total weight of the composition.

18. Composition according to any one of the preceding claims, characterized in that it is transparent and has a turbidity at 25°C of less than 1000 NTU, preferably less than 50 NTU and even more preferentially less than 15 NTU.
19. Composition according to any one of the preceding claims, characterized in that it is in the form of fluid composition and also comprises:
a) at least one linear C1-C4 monoalkanol and
b) at least one lipophilic polyamide polycondensate.

20. Non-therapeutic cosmetic process for caring for and/or making up a keratin material, comprising the application, to the surface of the said keratin material, of at least one composition as defined in any one of the preceding claims.

21. Non-therapeutic cosmetic process for limiting the darkening of the skin and/or improving the colour and/or uniformity of the complexion, comprising the application, to the surface of the skin, of at least one composition as defined in any one of the preceding claims.

22. Non-therapeutic cosmetic process for preventing and/or treating the signs of ageing of a keratin material, comprising the application, to the surface of the keratin material, of at least one composition as defined in any one of the preceding claims.