Abstract:
The present disclosure relates in general to therapeutic lysosomal enzyme fusion proteins useful for treating lysosomal storage diseases, liquid formulations comprising such fusion proteins and associated methods useful for treating lysosomal storage diseases in mammals.
TARGETED THERAPEUTIC LYSOSOMAL ENZYME FUSION PROTEINS,
ASSOCIATED FORMULATIONS AND USES THEREOF

FIELD OF THE DISCLOSURE

[0001] The present disclosure relates, in general, to therapeutic lysosomal enzyme fusion proteins useful for treating lysosomal storage diseases, formulations comprising such therapeutic lysosomal enzyme fusion proteins and associated methods for treating lysosomal storage diseases in mammals.

BACKGROUND

[0002] Normally, mammalian lysosomal enzymes are synthesized in the cytosol and traverse the ER where they are glycosylated with N-linked, high mannose type carbohydrate. In the golgi, the high mannose carbohydrate is modified on lysosomal enzymes by the addition of mannose-6-phosphate (M6P) which targets these proteins to the lysosome. The M6P-modified enzymes are then delivered to the lysosome via interaction with either/both of two M6P receptors.

[0003] More than forty lysosomal storage diseases (LSDs) are caused, directly or indirectly, by the absence of one or more lysosomal enzymes in the lysosome. Enzyme replacement therapy for LSDs is being actively pursued. Therapy generally requires that LSD proteins be taken up and delivered to the lysosomes of a variety of cell types in an M6P-dependent fashion. One possible approach involves purifying an LSD protein and modifying it to incorporate a carbohydrate moiety with M6P. This modified material may be taken up by the cells more efficiently than unmodified LSD proteins due to interaction with M6P receptors on the cell surface.

[0004] A peptide-based targeting technology that allows more efficient delivery of therapeutic enzymes to the lysosomes has been previously developed. This proprietary technology is termed Glycosylation Independent Lysosomal Targeting (GILT) because a peptide tag that is linked to the therapeutic enzyme replaces M6P as the moiety that targets the protein to the lysosomes. Details of the GILT technology are described in U.S. Application Publication Nos. 2003-0082176, 2004-0006008, 2003-0072761, 2005-0281805, 2005-0244400, U.S. Patent Nos.
SUMMARY OF THE DISCLOSURE

[0005] The present disclosure provides further improved compositions, formulations and methods for efficient lysosomal targeting of therapeutic fusion proteins based on the GILT technology. Among other things, the present disclosure provides methods and compositions for targeting therapeutic lysosomal enzymes to lysosomes using lysosomal targeting peptides for the treatment of lysosomal storage disorders. The present disclosure also provides methods and compositions for targeting lysosomal enzymes to lysosomes using a lysosomal targeting peptide that has reduced or diminished binding affinity for the IGF-I receptor and/or reduced or diminished binding affinity for the insulin receptor, and/or is resistant to furin cleavage. The present disclosure also provides targeted lysosomal enzyme fusion proteins comprising a lysosomal enzyme and IGF-II and spacer peptides that provide for improved production and uptake into lysosomes of the lysosomal enzyme fusion protein. Exemplary lysosomal enzymes useful for incorporation into the therapeutic fusion proteins of the present disclosure and the associated diseases to be treated with those fusion proteins are set out in Table 1 below. In certain preferred embodiments, the lysosomal enzyme is a mature human alpha-N-acetylg glucosaminidase (Naglu) enzyme and the lysosomal storage disorder is Mucopolysaccharidosis Type MB (MPS IIIB; Sanfilippo B Syndrome).

[0006] In one aspect, the therapeutic fusion protein of the present disclosure comprises a functional a-N-acetylg glucosaminidase enzyme that exhibits detectable enzyme activity and has an amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence of the mature human Naglu protein shown in Figure 1 (SEQ ID NO:1). In another aspect, the disclosure is directed to a fragment of the mature human Naglu protein shown in Figure 1 (SEQ ID NO:1) that retains detectable Naglu enzyme activity.

[0007] In another aspect, the therapeutic fusion protein of the present disclosure comprises a peptide tag having an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%,
98%, 99% or 100% identical to the amino acid sequence of amino acids 8-67 of mature human IGF-II. In this regard, amino acids 8-67 of mature human IGF-II has the following amino acid sequence:

LCGELVDTLQF VCGDRGF YFSRPASRV SRRS RGV EEEEECFCRS DL ALLET YCATPAKSE (SEQ ID NO:2).

[0008] In various embodiments, the targeted therapeutic fusion protein of the present disclosure comprises a peptide tag having an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence of amino acids 8-67 of mature human IGF-II having an alanine for arginine substitution at amino acid position 37. In this particularly preferred embodiment, the peptide tag has the following amino acid sequence:

LCGELVDTLQFVCGDRGFYFSRPASRV SRRS RGV EEEEECFCRS DL ALLET YCATPAKSE (SEQ ID NO:3). The substitution of alanine for arginine at amino acid position 37 has previously been reported to abolish at least one furin protease cleavage site (see, e.g., U.S. Patent No. 8,563,691).

[0009] In another aspect, the therapeutic fusion protein of the present disclosure comprises a spacer peptide located between and linking the lysosomal enzyme and the peptide tag. In various embodiments, the spacer/linker peptide has an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence of a 31 amino acid rigid linker peptide having the following amino acid sequence:

GAPGGGS PAPAPT PAPAPT PAPAGGGS GAP (SEQ ID NO:4). In various embodiments, the spacer peptide is from about 25-37, 26-36, 27-35, 28-34, 29-33 or 30-32 amino acids in length and represents a variant of SEQ ID NO:4 wherein 1, 2, 3, 4, 5 or 6 specific amino acids of SEQ ID NO:4 are substituted, added or deleted.

[0010] In yet another aspect, the therapeutic fusion protein of the present disclosure comprises (i) a functional a-N-acetylgalactosaminidase enzyme having an amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence of the mature human Naglu protein shown in Figure 1 (SEQ ID NO:1), (ii) a peptide tag having an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence of SEQ ID NO:3, and (iii) a spacer/linker
peptide located between the enzyme and the peptide tag having an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% identical to the amino acid sequence of the 31 amino acid rigid linker peptide shown herein as SEQ ID NO:4. In one embodiment (herein referred to as BMN001), the therapeutic fusion protein of the present disclosure comprises (i) a functional mature human α-N-acetylglucosaminidase (Naglu) enzyme having the amino acid sequence shown in Figure 1 (SEQ ID NO:1), (ii) a spacer/linker peptide having the amino acid sequence shown herein as SEQ ID NO:4, and (iii) an IGF-II peptide tag having the amino acid sequence of SEQ ID NO:3. The complete amino acid sequence of the BMN001 therapeutic fusion protein is shown in Figure 2 (SEQ ID NO:5).

[0011] In yet another aspect, the disclosure provides pharmaceutical compositions useful for treating a lysosomal storage disorder in a mammal, wherein said compositions comprise a therapeutic fusion protein of the present disclosure. In various embodiments, the pharmaceutical composition is a formulation that comprises (a) a fusion protein comprising a lysosomal enzyme or functional fragment thereof, a peptide tag having at least 90% sequence identity to SEQ ID NO:2, and a spacer peptide located between said lysosomal enzyme or functional fragment thereof and said peptide tag, said spacer peptide having at least 90% sequence identity to SEQ ID NO:4; and (b) one or more components selected from the group consisting of a buffering agent, an isotonicity agent and an electrolyte agent. The formulations of the present disclosure may be liquid formulations, lyophilized formulations or liquid formulations that were reconstituted from previously lyophilized formulations. In various embodiments, the formulations of the present disclosure are stable.

[0012] In various embodiments, the formulations or compositions of matter of the present disclosure may comprise a lysosomal enzyme or functional fragment thereof that comprises the amino acid sequence of SEQ ID NO:1. The formulations of the present disclosure may comprise a fusion protein that comprises or consists of the amino acid sequence of SEQ ID NO:5.

[0013] The formulations of the present disclosure may comprise a fusion protein comprising the amino acid sequence of SEQ ID NO:5, a buffering agent, an isotonicity agent, an electrolyte agent, and an anti-adsorption agent. In various embodiments, the formulations of the present disclosure comprise a fusion protein comprising the amino acid sequence of SEQ ID NO:5, sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate, sodium
chloride, and trehalose. In one embodiment, the formulations of the present disclosure comprise a fusion protein comprising the amino acid sequence of SEQ ID NO:5 at a concentration of from about 25 mg/ml to about 35 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of from about 0.15 mg/ml to about 0.25 mg/ml, sodium phosphate monobasic monohydrate at a concentration of from about 0.03 mg/ml to about 0.05 mg/ml, sodium chloride at a concentration of from about 0.8 mg/ml to about 1 mg/ml, and trehalose is at a concentration of from about 7% to about 9%, said formulation having a pH in the range of about 6.5 to about 7.5. In various embodiments, a formulation of the present disclosure comprises a fusion protein comprising the amino acid sequence of SEQ ID NO:5 at a concentration of about 30 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of about 0.19 mg/ml, sodium phosphate monobasic monohydrate at a concentration of about 0.04 mg/ml, sodium chloride at a concentration of about 0.88 mg/ml, and the trehalose concentration at about 8%, said formulation having a pH of about 7.0. These formulations may be in either aqueous or dry/lyophilized form.

In other embodiments, the formulations of the present disclosure comprise a fusion protein comprising the amino acid sequence of SEQ ID NO:5, sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate, sodium chloride, trehalose, and polysorbate 20. In one embodiment, the formulations of the present disclosure comprise a fusion protein comprising the amino acid sequence of SEQ ID NO:5 at a concentration of from about 25 mg/ml to about 35 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of from about 0.15 mg/ml to about 0.25 mg/ml, sodium phosphate monobasic monohydrate at a concentration of from about 0.03 mg/ml to about 0.05 mg/ml, sodium chloride at a concentration of from about 4.5 mg/ml to about 5.5 mg/ml, trehalose is at a concentration of from about 3% to about 5%, and the polysorbate 20 is at a concentration from about 0.0025% to about 0.0075%, said formulation having a pH in the range of about 6.5 to about 7.5. In various embodiments, a formulation of the present disclosure comprises a fusion protein comprising the amino acid sequence of SEQ ID NO:5 at a concentration of about 30 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of about 0.19 mg/ml, sodium phosphate monobasic monohydrate at a concentration of about 0.04 mg/ml, sodium chloride at a concentration of about 5 mg/ml, the trehalose concentration at about 4%, and the polysorbate 20 concentration at about 0.005% said formulation having a pH of about 7.0. These formulations may be in either aqueous or dry/lyophilized form.
In various embodiments, the formulations of the disclosure comprise sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate, sodium chloride, potassium chloride, magnesium chloride hexahydrate and calcium chloride dehydrate, and wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5. In yet other embodiments, the formulations of the present disclosure comprise a fusion protein comprising the amino acid sequence of SEQ ID NO:5 at a concentration of from about 25 mg/ml to about 35 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of from about 0.15 mg/ml to about 0.25 mg/ml, sodium phosphate monobasic monohydrate at a concentration of from about 0.03 mg/ml to about 0.05 mg/ml, sodium chloride at a concentration of from about 8 mg/ml to about 9 mg/ml, potassium chloride at a concentration of from about 0.15 mg/ml to about 0.3 mg/ml, magnesium chloride hexahydrate at a concentration of from about 0.1 mg/ml to about 0.2 mg/ml and calcium chloride dihydrate at a concentration of from about 0.15 mg/ml to about 0.3 mg/ml, said formulation having a pH in the range of about 6.5 to about 7.5. In various embodiments, a formulation of the present disclosure comprises a fusion protein comprising the amino acid sequence of SEQ ID NO:5 at a concentration of about 30 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of about 0.19 mg/ml, sodium phosphate monobasic monohydrate at a concentration of about 0.04 mg/ml, sodium chloride at a concentration of about 8.66 mg/ml, potassium chloride at a concentration of about 0.22 mg/ml, magnesium chloride hexahydrate at a concentration of about 0.16 mg/ml and calcium chloride dihydrate at a concentration of about 0.21 mg/ml, said formulation having a pH of about 7.0. These formulations may be in either aqueous or dry/lyophilized form.

In yet other aspects, the present disclosure is directed to methods for treating lysosomal storage diseases in subjects suffering therefrom, wherein those methods comprise the step of administering a composition of matter or formulation described herein. In various embodiments, the present disclosure is directed to a method of treating MPS IIIB disease in a subject suffering therefrom, wherein the method comprises the step of administering a therapeutic fusion protein having Naglu enzyme activity, or a formulation comprising the same, as described herein. In certain embodiments, the formulation is administered intrathecally, intracerebroventricularly or directly to the CSF via lumbar puncture, which may be either non-volumetric or isovolumetric.
Administration of a therapeutic formulation of the present disclosure may occur over a period of from about 5 minutes to about 240 minutes or more, or from about 5 minutes to about 10 minutes. In certain embodiments, administration of a formulation for the treatment of MPS IIIB may occur weekly for a period of at least 24 weeks, preferably at least 48 weeks. In one embodiment, administration of a therapeutically effective amount of a therapeutic fusion protein or formulation of the present disclosure results in reduced severity, intensity or frequency, or delayed onset of at least one symptom or feature of MPS IIIB disease.

[0017] In yet other aspects, the present disclosure is directed to a method for slowing the rate of decline, or preventing decline, of at least one symptom of MPS IIIB disease in a subject suffering therefrom, wherein the method comprises the step of administering to the subject a therapeutic fusion protein having Naglu activity or a formulation comprising the same. In various embodiments, the formulation is administered intracerebroventricularly, wherein the intracerebroventricular administration is isovolumetric. Administration of a therapeutic formulation of the present disclosure may occur over a period of from about 5 minutes to about 240 minutes or more, or from about 5 minutes to about 10 minutes. In certain embodiments, administration of a formulation for the treatment of MPS IIIB may occur weekly for a period of at least 24 weeks, preferably at least 48 weeks. These methods may result in improvement of at least one symptom of MPS IIIB disease. In various embodiments, the at least one symptom of MPS IIIB disease can be selected from the group consisting of cognitive decline, decline in language function, decline in motor function, decline in social-emotional function, decline in adaptive function, decline in conceptual thinking, decline in facial recognition, decline in story completion capability, decline in hand function/dexterity, hearing loss, hyperactivity, aggressiveness, or sleep disturbances.

[0018] In various aspects, the reduction in the rate of decline, or prevention of decline, of said at least one symptom may be determined by: (a) determining the rate of decline of said symptom prior to said administration, and (b) determining the rate of decline of said symptom subsequent to said administration; wherein a lower rate of decline of said symptom subsequent to said administration as compared to prior to said administration is indicative of a reduction in said rate of decline. These methods may further comprise the steps of determining a development quotient (DQ) for said subject prior to said administration and determining a DQ for said subject
subsequent to said administration, wherein a higher DQ for said subject subsequent to said administration as compared to prior to said administration is indicative of a reduction in said rate of decline. In various embodiments, therefore, the present disclosure is directed to methods for stabilizing or reducing the decline of a DQ quotient in a subject suffering from MPS IIIB disease, wherein the methods comprise administering to the subject a therapeutic fusion protein or formulation comprising the same. Development quotients may be determined using the BSID-III or KABC-II tool as described herein and known in the art.

[0019] In yet other aspects, the present disclosure is directed to slowing the rate of decline of a cognitive function in a subject suffering from MPS IIIB disease, wherein the method comprises the step of administering to said subject a therapeutically effective amount of a therapeutic fusion protein of the present disclosure, or a formulation thereof, as described herein. In certain embodiments, the fusion protein or formulation thereof may be administered IT, ICV or via lumbar puncture, wherein the administration may be isovolumetric. Administration of a therapeutic formulation of the present disclosure may occur over a period of from about 5 minutes to about 240 minutes or more, or from about 5 minutes to about 10 minutes. In various embodiments, administration of a formulation for the treatment of MPS IIIB may occur weekly for a period of at least 24 weeks, or for at least 48 weeks.

[0020] In yet other aspects, the present disclosure is directed to methods for reducing or preventing GAG storage in one or more tissues of the CNS of a subject suffering from a lysosomal storage disorder, wherein the methods comprise administering a therapeutically effective amount of a therapeutic fusion protein or formulation described herein. In one embodiment, the GAG is heparan sulfate and the lysosomal storage disorder is MPS IIIB. As described herein, the administration may be intracerebroventricular, which may be isovolumetric. In various embodiments, GAG storage is reduced in the lysosomes of cells of one or more tissues of the CNS including, for example, gray matter, white matter, periventricular areas, meninges, pia-arachnoid, deep tissues in the cerebral cortex, neocortex, cerebellum, caudate/putamen region, molecular layer, deep regions of the pons or medulla, midbrain, or combinations of two or more of the above.

[0021] In various embodiments, the therapeutic fusion protein is delivered to neurons, glial cells, perivascular cells, meningeal cells, and/or neurons of the spinal cord. In certain
embodiments, administration of the therapeutic fusion protein or formulation comprising the same results in reduction of GAG storage in one or more of the brain target tissues or spinal cord neurons by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 1-fold, 1.5-fold or 2-fold or more as compared to an appropriate control (e.g., the pre-treatment GAG storage in the subject).

[0022] Other features, objects, and advantages of the present disclosure are apparent in the detailed description that follows. It should be understood, however, that the detailed description, while indicating embodiments of the present disclosure, is given by way of illustration only, not limitation. Various changes and modifications within the scope of the disclosure will become apparent to those skilled in the art from the detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] Figure 1 depicts the amino acid sequence (SEQ ID NO:1) of the mature human Naglu protein.

[0024] Figure 2 depicts the amino acid sequence (SEQ ID NO:5) of the BMNOOl therapeutic fusion protein.

[0025] Figure 3 is a set of graphs showing Heparan Sulfate (HS) levels in central nervous system tissue (CNS) (upper graph) and cerebrospinal fluid (CSF) (lower graph) in control heterozygous Naglu dogs and homozygous Naglu null affected MPS IIIB dogs treated with vehicle, 12 mg BMNOOl, or 48 mg BMNOOl. The data demonstrates that BMNOOl reduced HS levels in MPS IIIB dogs to those seen in unaffected heterozygous carrier dogs.

[0026] Figure 4 is a plot of CNS HS levels compared to CSF HS levels showing a strong correlation \((r^2 = 0.824)\) between HS levels in these two compartments.

[0027] Figure 5 is a western blot of canine cerebellum from wild-type dogs, untreated MPS IIIB dogs, and BMNOOl treated MPS IIIB dogs probed with an antibody specific for canine LAMP2 protein, showing that LAMP2 levels are elevated in untreated MPS IIIB dogs relative to wild-type and that treatment with BMNOOl reduces LAMP2 to wild-type levels in treated MPS IIIB dogs.
[0028] Figure 6 is a graph showing Heparan Sulfate (HS) levels in cerebellum in control heterozygous Naglu dogs and homozygous Naglu null affected MPS IIIB dogs treated with vehicle, 12 mg BMNOOl, or 48 mg BMNOOl. The data demonstrates that BMNOOl reduced HS levels in MPS IIIB dog cerebellum to those seen in unaffected heterozygous carrier dogs.

[0029] Figure 7 is a graph showing cerebellar mean diffusivity in control heterozygous Naglu dogs and homozygous Naglu null affected MPS IIIB dogs treated with vehicle, 12 mg BMNOOl, or 48 mg BMNOOl.

[0030] Figure 8 is a set of MRI images of the cerebellum of wild type vehicle treated dogs and MPS IIIB dogs treated with vehicle or BMNOOl.

[0031] Figure 9 is a bar graph showing that untreated MPS IIIB patients have elevated Heparan Sulfate (HS) and MPS IIIB-specific HS non-reducing end (NRE) in the cerebrospinal fluid (CSF). The dashed vertical lines show the average normal CSF levels of HS and NRE (0.05 mg/L and 0.0025 mg/L respectively). This data was collected over a period of at least 24 weeks to understand the natural history of the disease. Where available data from early and late time-points in the natural history are shown.

[0032] Figure 10 is a set of graphs showing the reduction of HS and NRE in the CSF of two subjects treated with BMNOOl.

[0033] Figures 11A and 11B are graphs showing the effects of trehalose and trehalose - polysorbate 20 combination on aggregate particle formation following pumping stress of BMNOOl containing formulations.

[0034] Figure 12 is a graph showing the effects of trehalose and trehalose - polysorbate 20 combination on aggregate particle formation following freeze thaw stress of BMNOOl containing formulations. Artificial cerebrospinal fluid (aCSF) is BMNOOl formulated without trehalose or polysorbate 20.

DEFINITIONS

[0035] As used herein, "lysosomal storage diseases" refer to a group of genetic disorders that result from deficiency in at least one of the enzymes (e.g., acid hydrolases) that are required to break macromolecules down to peptides, amino acids, monosaccharides, nucleic acids and fatty
acids in lysosomes. As a result, individuals suffering from a lysosomal storage disease have accumulated materials in lysosomes. Exemplary lysosomal storage diseases are listed in Table 1.

[0036] As used herein, the term "lysosomal enzyme" refers to any enzyme that is capable of reducing accumulated materials in mammalian lysosomes or that can rescue or ameliorate one or more lysosomal storage disease symptoms. Lysosomal enzymes suitable for the disclosure include both wild-type or modified lysosomal enzymes and can be produced using recombinant and synthetic methods or purified from nature sources. Exemplary lysosomal enzymes are listed in Table 1, wherein such lysosomal enzymes may be incorporated into the therapeutic fusion proteins described herein.

[0037] As used herein, the term "human alpha-N-acetylglucosaminidase" refers to precursor (i.e., containing the native signal peptide sequence) or processed (i.e., lacking the native signal peptide sequence) wild-type form of human alpha-N-acetylglucosaminidase, or a functional fragment or variant thereof, that is capable of reducing glycosaminoglycan (GAG) levels in mammalian lysosomes or that can rescue or ameliorate one or more MPS IIIB (Sanfilippo B Syndrome) symptoms. In one embodiment, a human Naglu enzyme that finds use herein comprises or consists of the amino acid sequence shown in Figure 1 (SEQ ID NO:1).

[0038] As used herein, the term "functional" as it relates to a lysosomal enzyme, a fusion protein comprising a lysosomal enzyme or fragment of either refers to a polypeptide having the capability of being taken up by mammalian lysosomes and having sufficient enzymatic activity to reduce storage material, i.e., glycosaminoglycan (GAG), in the mammalian lysosome.

[0039] As used herein, the term "spacer" (also referred to as "linker") refers to a peptide sequence located between two protein moieties in a fusion protein. A spacer is generally designed to be flexible or to interpose a structure, such as an alpha-helix, between the two protein moieties. A spacer can be of variable length, such as, for example, 10-50, 20-40, or 25-35 amino acids in length. Exemplary spacer sequences are disclosed in greater detail in this specification.

[0040] As used herein, the terms "improve," "increase" or "reduce," or grammatical equivalents, indicate values that are relative to a baseline measurement, such as a measurement in the same individual prior to initiation of the treatment described herein, or a measurement in a
control individual (or multiple control individuals) in the absence of the treatment described herein. A "control individual" is an individual afflicted with the same form of lysosomal storage disease (e.g., MPS IIIB (Sanfilippo B Syndrome)) as the individual being treated, who is about the same age as the individual being treated (to ensure that the stages of the disease in the treated individual and the control individual(s) are comparable).

[0041] As used herein, the terms "ameliorate", "amelioration", and grammatical equivalents thereof are meant the prevention, reduction or palliation of a state or disease symptom, the stabilization from decline of a state or disease symptom, or the improvement of a state or disease symptom of/in a subject. Amelioration includes, but does not require complete recovery or complete prevention of a disease condition. In some embodiments, amelioration includes reduction of accumulated materials inside lysosomes of relevant lysosomal storage disease tissues.

[0042] As used herein, the terms "subject," "individual" or "patient" refer to a human or a non-human mammalian subject. The individual (also referred to as "patient" or "subject") being treated is an individual (fetus, infant, child, adolescent, or adult human) suffering from a lysosomal storage disease, e.g., MPS IIIB (Sanfilippo B Syndrome) (i.e., either infantile-, juvenile-, or adult-onset or severe/classical type or attenuated type MPS MB (Sanfilippo B Syndrome)) or having the potential to develop a lysosomal storage disease (e.g., MPS MB (Sanfilippo B Syndrome)).

[0043] As used herein, the term "therapeutically effective amount" or "effective amount" refers to an amount of a targeted therapeutic fusion protein (or formulation comprising it) which confers a therapeutic effect on the treated subject, at a reasonable benefit/risk ratio applicable to any medical treatment. The therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect). In particular, the "therapeutically effective amount" refers to an amount of a therapeutic fusion protein or associated pharmaceutical composition effective to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect, such as by ameliorating symptoms associated with the disease, preventing or delaying the onset of the disease, and/or also lessening the severity or frequency of symptoms of the disease. A therapeutically effective amount is commonly administered in a dosing regimen that may comprise multiple unit doses.
For any particular therapeutic fusion protein, a therapeutically effective amount (and/or an appropriate unit dose within an effective dosing regimen) may vary, for example, depending on route of administration, on combination with other pharmaceutical agents. Also, the specific therapeutically effective amount (and/or unit dose) for any particular patient may depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific pharmaceutical agent employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and/or rate of excretion or metabolism of the specific fusion protein employed; the duration of the treatment; and like factors as is well known in the medical arts.

As used herein, the term "treatment" (also "treat" or "treating") refers to any administration of a therapeutic fusion protein or pharmaceutical composition comprising said therapeutic fusion protein that partially or completely alleviates, ameliorates, relieves, inhibits, delays onset of, reduces severity of and/or reduces incidence of one or more symptoms or features of a particular disease, disorder, and/or condition. Such treatment may be of a subject who does not exhibit signs of the relevant disease, disorder and/or condition and/or of a subject who exhibits only early signs of the disease, disorder, and/or condition.

Alternatively or additionally, such treatment may be of a subject who exhibits one or more established signs of the relevant disease, disorder and/or condition. For example, treatment can refer to improvement of cardiac status (e.g., increase of end-diastolic and/or end-systolic volumes, or reduction, amelioration or prevention of the progressive cardiomyopathy that is typically found in, e.g., Pompe disease) or of pulmonary function (e.g., increase in crying vital capacity over baseline capacity, and/or normalization of oxygen desaturation during crying); improvement in neurodevelopment and/or motor skills (e.g., increase in AIMS score); reduction of storage (e.g., glycosaminoglycan (GAG)) levels in tissue of the individual affected by the disease; or any combination of these effects. In some embodiments, treatment includes improvement of GAG clearance, particularly in reduction or prevention of MPS IIIB (Sanfilippo B Syndrome)-associated neuronal symptoms.

A "stable" or "stabilized" protein-containing formulation is one in which the protein component therein essentially retains its physical, functional and/or chemical stability upon storage over time. Stability can be measured at a selected temperature for a selected time period.
Preferably, the formulation is stable at room temperature (about 30°C) or at 40°C for at least 1, 3, 6 or 12 months or more, stable at about 2-8°C for at least 1, 3, 6, 12, 18, 24, 30, 36, 42 or 48 months or more, or stable at either -30°C, -40°C or -60°C for at least 1, 3, 6, 12, 18, 24, 30, 36, 42 or 48 months or more. In one aspect, the extent of protein degradation or aggregation during storage can be used as an indicator of protein stability. Thus, a "stable" formulation may be one wherein less than about 20%, more preferably less than about 10%, and most preferably less than about 5%, 4%, 3%, 2% or 1% of the protein component is present in a non-degraded or non-aggregated form in the formulation. "Stable" formulations retain essentially the same functional or therapeutic characteristics, or same physical and/or chemical integrity of the newly prepared formulation. Various analytical techniques for measuring protein stability are available in the art and are reviewed, for example, in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991) and Jones, A. Adv. Drug Delivery Rev. 10: 29-90 (1993).

[0047] By "isovolumetric" in relation to intrathecal administration of a pharmaceutical composition to the CSF of a subject is meant that prior to administration of a specified volume of the pharmaceutical composition, approximately the same volume of CSF is removed from the subject, thereby maintaining approximately the same volume of fluid in the CSF compartment of the subject being treated.

[0048] As used in this application, the terms "about" and "approximately" are used as equivalents. Any numerals used in this application with or without about/approximately are meant to cover any normal fluctuations appreciated by one of ordinary skill in the relevant art.

DETAILED DESCRIPTION OF THE DISCLOSURE

[0049] The present disclosure provides compositions, formulations and methods for efficient lysosomal targeting of therapeutic fusion proteins based on the GILT technology. Among other things, the present disclosure provides methods and compositions for targeting therapeutic lysosomal enzymes to lysosomes using lysosomal targeting peptides for the treatment of lysosomal storage disorders. The present disclosure also provides methods and compositions for targeting lysosomal enzymes to lysosomes using a lysosomal targeting peptide that has reduced or diminished binding affinity for the IGF-I receptor and/or reduced or diminished binding
affinity for the insulin receptor, and/or is resistant to furin cleavage. The present disclosure also provides targeted lysosomal enzyme fusion proteins comprising a lysosomal enzyme and IGF-II and spacer peptides that provide for improved production and uptake into lysosomes of the lysosomal enzyme fusion protein. The present disclosure also provides formulations that comprise a targeted lysosomal enzyme fusion protein and use thereof for the treatment or prevention of a lysosomal storage disease.

[0050] Various aspects of the disclosure are described in detail in the following sections. The use of sections is not meant to limit the disclosure. Each section can apply to any aspect of the disclosure. In this application, the use of "or" means "and/or" unless stated otherwise.

Lysosomal Enzymes

[0051] A lysosomal enzyme suitable for incorporation into the therapeutic fusion proteins or formulations of the disclosure includes any enzyme that is capable of reducing accumulated materials in mammalian lysosomes or that can rescue or ameliorate one or more lysosomal storage disease symptoms. Suitable lysosomal enzymes include both wild-type or modified lysosomal enzymes (and functional fragments thereof) and can be produced using recombinant or synthetic methods or purified from natural sources. Exemplary lysosomal enzymes are listed in Table 1.

Table 1. Lysosomal Storage Diseases and Associated Lysosomal Storage Diseases

<table>
<thead>
<tr>
<th>A. Glycogenosis Disorders</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Name</td>
<td>Enzyme Defect</td>
<td>Substance Stored</td>
</tr>
<tr>
<td>Pompe Disease</td>
<td>Acid-αl, 4-Glucosidase</td>
<td>Glycogen αl-4 linked oligosaccharides</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Glycolipidosis Disorders</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Name</td>
<td>Enzyme Defect</td>
<td>Substance Stored</td>
</tr>
<tr>
<td>GM1 Gangliosidosis</td>
<td>β-Galactosidase</td>
<td>GM1 gangliosides</td>
</tr>
<tr>
<td>Tay-Sachs Disease</td>
<td>β-Hexosaminidase A</td>
<td>GM2 ganglioside</td>
</tr>
<tr>
<td>GM2 Gangliosidosis: AB Variant</td>
<td>GM2 Activator Protein</td>
<td>GM2 ganglioside</td>
</tr>
<tr>
<td>Sandhoff Disease</td>
<td>β-Hexosaminidase A&B</td>
<td>GM2 ganglioside</td>
</tr>
<tr>
<td>Fabry Disease</td>
<td>α-Galactosidase A</td>
<td>Globosides</td>
</tr>
<tr>
<td>Disease Name</td>
<td>Enzyme Defect</td>
<td>Substance Stored</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Gaucher Disease</td>
<td>Glucocerebrosidase</td>
<td>Glucosylceramide</td>
</tr>
<tr>
<td>Metachromatic Leukodystrophy</td>
<td>Arylsulfatase A</td>
<td>Sulphatides</td>
</tr>
<tr>
<td>Krabbe Disease</td>
<td>Galactosylceramidase</td>
<td>Galactocerebroside</td>
</tr>
<tr>
<td>Niemann-Pick, Types A & B</td>
<td>Acid Sphingomyelinase</td>
<td>Sphingomyelin (SM)</td>
</tr>
<tr>
<td>Niemann-Pick, Type C</td>
<td>Cholesterol Esterification Defect</td>
<td>SM</td>
</tr>
<tr>
<td>Niemann-Pick, Type D</td>
<td>Unknown</td>
<td>SM</td>
</tr>
<tr>
<td>Farber Disease</td>
<td>Acid Ceramidase</td>
<td>Ceramide</td>
</tr>
<tr>
<td>Wolman Disease</td>
<td>Acid Lipase</td>
<td>Cholesteryl esters</td>
</tr>
</tbody>
</table>

C. Mucopolysaccharide Disorders

<table>
<thead>
<tr>
<th>Disease Name</th>
<th>Enzyme Defect</th>
<th>Substance Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hurler Syndrome (MPS IH)</td>
<td>a-L-Iduronidase</td>
<td>Heparan sulfate (HS) & Dermatan sulfate (DS)</td>
</tr>
<tr>
<td>Scheie Syndrome (MPS IS)</td>
<td>a-L-Iduronidase</td>
<td>HS & DS</td>
</tr>
<tr>
<td>Hurler-Scheie (MPS IH/S)</td>
<td>a-L-Iduronidase</td>
<td>HS & DS</td>
</tr>
<tr>
<td>Hunter Syndrome (MPS II)</td>
<td>Iduronate Sulfatase</td>
<td>HS & DS</td>
</tr>
<tr>
<td>Sanfilippo A (MPS IIIA)</td>
<td>Heparan N-Sulfatase</td>
<td>HS</td>
</tr>
<tr>
<td>Sanfilippo B (MPS IIIB)</td>
<td>a-N-Acetylglcosaminidase</td>
<td>HS</td>
</tr>
<tr>
<td>Sanfilippo C (MPS IIIC)</td>
<td>Acetyl-CoA-Glucosaminide Acetyltransferase</td>
<td>HS</td>
</tr>
<tr>
<td>Sanfilippo D (MPS HID)</td>
<td>N-Acetylglcosamine-6-</td>
<td>HS</td>
</tr>
<tr>
<td>Morquio A (MPS IVA)</td>
<td>Galactosamine-6-Sulfatase</td>
<td>Keratan sulfate (KS)</td>
</tr>
<tr>
<td>Morquio B (MPS IVB)</td>
<td>β-Galactosidase</td>
<td>KS</td>
</tr>
<tr>
<td>Maroteaux-Lamy (MPS VI)</td>
<td>Arylsulfatase B</td>
<td>DS</td>
</tr>
<tr>
<td>Sly Syndrome (MPS VII)</td>
<td>β-Glucuronidase</td>
<td>DS, HS & chondroitin sulfate</td>
</tr>
</tbody>
</table>

D. Oligosaccharide/Glycoprotein Disorders

<table>
<thead>
<tr>
<th>Disease Name</th>
<th>Enzyme Defect</th>
<th>Substance Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-Mannosidosis</td>
<td>a-Mannosidase</td>
<td>Mannose/ Oligosaccharides</td>
</tr>
<tr>
<td>Disease Name</td>
<td>Enzyme Defect</td>
<td>Substance Stored</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>β-Mannosidosis</td>
<td>β-Mannosidase</td>
<td>Mannose/ Oligosaccharides</td>
</tr>
<tr>
<td>Fucosidosis</td>
<td>α-L-Fucosidase</td>
<td>Fucosyl Oligosaccharides</td>
</tr>
<tr>
<td>Aspartylglucosaminuria</td>
<td>N-Aspartyl-β-Glucosaminidase</td>
<td>Aspartylglucosamine</td>
</tr>
<tr>
<td>Sialidosis (Mucolipidosis I)</td>
<td>α-Neuraminidase</td>
<td>Sialyloligosaccharides</td>
</tr>
<tr>
<td>Galactosialidosis (Goldberg</td>
<td>Lysosomal Protective Protein</td>
<td>Sialyloligosaccharides</td>
</tr>
<tr>
<td>Syndrome)</td>
<td>Deficiency</td>
<td></td>
</tr>
<tr>
<td>Schindler Disease</td>
<td>α-N-Acetyl-Galactosaminidase</td>
<td>Various</td>
</tr>
</tbody>
</table>

E. Lysosomal Enzyme Transport Disorders

<table>
<thead>
<tr>
<th>Disease Name</th>
<th>Enzyme Defect</th>
<th>Substance Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucolipidosis II (I-Cell Disease)</td>
<td>N-Acetylglucosamine-1-Phosphotransferase</td>
<td>HS</td>
</tr>
<tr>
<td>Mucolipidosis III (Pseudo-</td>
<td>Same as ML II</td>
<td>HS</td>
</tr>
<tr>
<td>Hurler Polydystrophy)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F. Lysosomal Membrane Transport Disorders

<table>
<thead>
<tr>
<th>Disease Name</th>
<th>Enzyme Defect</th>
<th>Substance Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystinosis</td>
<td>Cystine Transport Protein</td>
<td>Free cystine</td>
</tr>
<tr>
<td>Salla Disease</td>
<td>Sialic Acid Transport Protein</td>
<td>Free sialic acid and glucuronic acid</td>
</tr>
<tr>
<td>Infantile Sialic Acid Storage</td>
<td>Sialic Acid Transport Protein</td>
<td>Free sialic acid and glucuronic acid</td>
</tr>
</tbody>
</table>

G. Other

<table>
<thead>
<tr>
<th>Disease Name</th>
<th>Enzyme Defect</th>
<th>Substance Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batten Disease</td>
<td>Unknown</td>
<td>Lipofuscin</td>
</tr>
<tr>
<td>Infantile Neuronal Ceroid Lipofuscinosis</td>
<td>Palmitoyl-Protein Thioesterase</td>
<td>Lipofuscin</td>
</tr>
<tr>
<td>Late Infantile Neuronal Ceroid</td>
<td>Tripeptidyl Peptidase I</td>
<td>Lipofuscin</td>
</tr>
<tr>
<td>Lipofuscinosis</td>
<td>Unknown</td>
<td>Gangliosides & Hyaluronic Acid</td>
</tr>
<tr>
<td>Mucolipidosis IV</td>
<td>Unknown</td>
<td>Gangliosides & Hyaluronic Acid</td>
</tr>
<tr>
<td>Prosaposin</td>
<td>Saposins A, B, C or D</td>
<td></td>
</tr>
</tbody>
</table>
In some embodiments, a lysosomal enzyme contemplated herein has an amino acid sequence having from about 90% to about 100%, including 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% and 100%, sequence identity to the naturally-occurring amino acid sequence of a human enzyme shown in Table 1, or the mature form thereof, while still encoding a protein that is functional, i.e., capable of reducing accumulated materials, e.g., GAG, in mammalian lysosomes or that can rescue or ameliorate one or more lysosomal storage disease symptoms. Sequences of the above enzymes are known to those of skill in the art and are available through public databases, such as the National Center for Biotechnology Information maintained by the U.S. National Library of Medicine.

"Percent (%) amino acid sequence identity" with respect to subject and reference amino acid sequences is defined as the percentage of amino acid residues in a subject sequence that are identical with the amino acid residues in the associated reference sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, ALIGN or Megalin (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. Preferably, the WU-BLAST-2 software is used to determine amino acid sequence identity (Altschul et al., Methods in Enzymology 266, 460–480 (1996). WU-BLAST-2 uses several search parameters, most of which are set to the default values. The adjustable parameters are set with the following values: overlap span=1, overlap fraction=0.125, world threshold (T)=ll. HSP score (S) and HSP S2 parameters are dynamic values and are established by the program itself, depending upon the composition of the particular sequence, however, the minimum values may be adjusted and are set as indicated above. In other embodiments, % sequence identity between two nucleic acid or amino acid sequences can be determined using the Needle (EMBOSS) or Stretcher (EMBOSS) global sequence alignment tools available at http://www.ebi.ac.uk/Tools/psa/ using the default parameters incorporated therein (incorporated in their entirety by reference herein).

alpha-N-acetylglucosaminidase
Alpha-N-acetylglucosaminidase, Naglu, is produced as a precursor molecule that is processed to a mature form. This process generally occurs by removing the 23 amino acid signal peptide as the protein enters the endoplasmic reticulum. Typically, the precursor form is also referred to as full-length precursor or full-length Naglu protein, which contains 743 amino acids. The N-terminal 23 amino acids are cleaved as the precursor protein enters the endoplasmic reticulum, resulting in a processed or mature form. Thus, it is contemplated that the N-terminal 23 amino acids of the native full-length human Naglu protein are generally not required for the Naglu protein activity. The amino acid sequence of the mature form of the human Naglu protein is shown in Figure 1 and set out in SEQ ID NO:1. The mRNA sequence of human Naglu is described in Genbank Accession number NM_000263. In various embodiments of the present disclosure, the Naglu is human Naglu, with (amino acids 1-743) or without (amino acids 24-743) the associated signal sequence. In a preferred embodiment, the Naglu lysosomal enzyme incorporated in a therapeutic fusion protein has the amino acid sequence shown in Figure 1 (SEQ ID NO:1). In a particularly preferred embodiment, the Naglu-containing fusion protein has the amino acid sequence shown in Figure 2 (SEQ ID NO:5). In other embodiments, the fusion protein contains a functional fragment of the mature human Naglu protein, wherein the fragment is generally at least 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650 or 700 or more amino acids in length.

Mucopolysaccharidosis III B (Sanfilippo B Syndrome)

One exemplary lysosomal storage disease is Mucopolysaccharidosis III B (MPS IIIB) disease, also known as Sanfilippo Type B Syndrome. MPS IIIB, Sanfilippo B Syndrome, is a rare autosomal recessive genetic disorder that is characterized by a deficiency of the enzyme alpha-N-acetyl-glucosaminidase (Naglu). In the absence of this enzyme, glycosaminoglycans (GAG), for example the GAG heparan sulfate, and partially degraded GAG molecules cannot be cleared from the body and accumulate in lysosomes of various tissues, resulting in progressive widespread somatic dysfunction (Kakkis et al., N Engl J Med. 344(3):182-8 (2001)). It has been shown that GAGs accumulate in lysosomes of neurons and glial cells, with lesser accumulation outside the brain.

Four distinct forms of MPS III, designated MPS IIIA, B, C, and D, have been identified. Each represents a deficiency in one of four enzymes involved in the degradation of
the GAG heparan sulfate. All forms include varying degrees of the same clinical symptoms, including coarse facial features, hepatosplenomegaly, corneal clouding and skeletal deformities. Most notably, however, is the severe and progressive loss of cognitive ability, which is tied not only to the accumulation of heparan sulfate in neurons, but also the subsequent elevation of the gangliosides GM2, GM3 and GD2 caused by primary GAG accumulation (Walkley et al., *Ann NYAcad Sci.* 845:188-99 (1998)).

[0057] A characteristic clinical feature of Sanfilippo B Syndrome is central nervous system (CNS) degeneration, which results in loss of, or failure to attain, major developmental milestones. The progressive cognitive decline culminates in dementia and premature mortality. The disease typically manifests itself in young children, and the lifespan of an affected individual generally does not extend beyond late teens to early twenties.

[0058] MPS III diseases all have similar symptoms that typically manifest in young children. Affected infants are apparently normal, although some mild facial dysmorphism may be noticeable. The stiff joints, hirsuteness and coarse hair typical of other mucopolysaccharidoses are usually not present until late in the disease. After an initial symptom-free interval, patients usually present with a slowing of development and/or behavioral problems, followed by progressive intellectual decline resulting in severe dementia and progressive motor disease. Acquisition of speech is often slow and incomplete. The disease progresses to increasing behavioral disturbance including temper tantrums, hyperactivity, destructiveness, aggressive behavior, pica and sleep disturbance. As affected children have normal muscle strength and mobility, the behavioral disturbances are very difficult to manage. In the final phase of the illness, children become increasingly immobile and unresponsive, often require wheelchairs, and develop swallowing difficulties and seizures. The life-span of an affected child does not usually extend beyond late teens to early twenties.

[0059] An alpha-N-acetylgalcosaminidase enzyme suitable for treating MPS MB (Sanfilippo B Syndrome) includes a wild-type human alpha-N-acetylgalcosaminidase, a functional fragment or sequence variant thereof which retains the ability to be taken up into mammalian lysosomes and to hydrolyze alpha, 1,4 linkages at the terminal N-acetyl-D-glucosamine residue in linear oligosaccharides or a targeted therapeutic fusion protein that comprises the wild-type human Naglu enzyme or functional fragment thereof. In particular embodiments, proteins comprising or
consisting of the amino acid sequences of SEQ ID NO:1 or SEQ ID NO:5 will find use for the
treatment of MPS IIIB.

[0060] Efficacy of treatment of MPS IIIB using targeted therapeutic fusion proteins as
described herein can be measured using techniques known in the art, as well as by analysis of
lysosomal and neuronal biomarkers. Initial experiments are conducted on Naglu knock-out
animals (see Li et al., Proc Natl Acad Sci USA 96:14505-510 (1999)). Naglu knockouts present
with large amounts of heparan sulfate in the liver and kidney and elevation of gangliosides in the
brain.

[0061] Assays include analysis of the activity of and biodistribution of the exogenous enzyme,
reduction of GAG storage in the lysosomes, particularly in brain cells, and activation of
astrocytes and microglia. Levels of various lysosomal or neuronal biomarkers include, but are
not limited to, Lysosomal-associated membrane protein 1 (LAMP1), glypican, gangliosides,
cholesterol, Subunit c of Mitochondrial ATP Synthase (SCMAS), ubiquitin, P- GSK3b, beta
amyloid and P-tau. Survival and behavioral analysis is also performed using techniques known
in the field.

[0062] In various embodiments, treatment of a lysosomal storage disease refers to decreased
lysosomal storage (e.g., of GAG) in various tissues. In various embodiments, treatment refers to
decreased lysosomal storage in brain target tissues, spinal cord neurons, and/or peripheral target
tissues. In certain embodiments, lysosomal storage is decreased by about 5%, 10%, 15%, 20%,
25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100% or
more as compared to an untreated control subject. In various embodiments, lysosomal storage is
decreased by at least 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold
or more as compared to a control subject.

[0063] In various embodiments, treatment refers to increased enzyme activity in various
tissues. In various embodiments, treatment refers to increased enzyme activity in brain target
tissues, spinal cord neurons and/or peripheral target tissues. In various embodiments, enzyme
activity is increased by about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%,
60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 200%, 300%, 400%, 500%, 600%, 700%,
800%, 900%, 1000% or more as compared to a control. In various embodiments, enzyme
activity is increased by at least 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8- fold, 9-fold,
10-fold or more as compared to a control. In various embodiments, increased enzymatic activity is at least approximately 10 nmol/hr/mg, 20 nmol/hr/mg, 40 nmol/hr/mg, 50 nmol/hr/mg, 60 nmol/hr/mg, 70 nmol/hr/mg, 80 nmol/hr/mg, 90 nmol/hr/mg, 100 nmol/hr/mg, 150 nmol/hr/mg, 200 nmol/hr/mg, 250 nmol/hr/mg, 300 nmol/hr/mg, 350 nmol/hr/mg, 400 nmol/hr/mg, 450 nmol/hr/mg, 500 nmol/hr/mg, 550 nmol/hr/mg, 600 nmol/hr/mg or more. In various embodiments, the lysosomal enzyme is Naglu.

Enzyme Replacement Therapy

[0064] Enzyme replacement therapy (ERT) is a therapeutic strategy to correct an enzyme deficiency by infusing the missing enzyme into the bloodstream or other body tissue of the patient. As the blood perfuses patient tissues, enzyme is taken up by cells and transported to the lysosome, where the enzyme acts to eliminate material that has accumulated in the lysosomes due to the enzyme deficiency. For lysosomal enzyme replacement therapy to be effective, the therapeutic enzyme must be delivered to lysosomes in the appropriate cells in tissues where the storage defect is manifest. Conventional lysosomal enzyme replacement therapeutics are delivered using carbohydrates naturally attached to the protein to engage specific receptors on the surface of the target cells. One receptor, the cation-independent M6P receptor (CI-MPR), is particularly useful for targeting replacement lysosomal enzymes because the CI-MPR is present on the surface of most cell types.

[0065] The terms "cation-independent mannose-6-phosphate receptor (CI-MPR)," "M6P/IGF-II receptor," "CI-MPR/IGF-II receptor," "IGF-II receptor" or "IGF2 Receptor," or abbreviations thereof, are used interchangeably herein, referring to the cellular receptor which binds both M6P and IGF-II.

Glycosylation Independent Lysosomal Targeting

[0066] Glycosylation Independent Lysosomal Targeting (GILT) technology was developed to target therapeutic enzymes to lysosomes. Specifically, the GILT technology uses a peptide tag instead of M6P to engage the CI-MPR for lysosomal targeting. Typically, a GILT tag is a protein, peptide, or other moiety that binds the CI-MPR in a mannose-6-phosphate-independent manner. Advantageously, this technology mimics the normal biological mechanism for uptake of lysosomal enzymes, yet does so in a manner independent of mannose-6-phosphate.
A preferred GILT tag is derived from human insulin-like growth factor II (IGF-II). Human IGF-II is a high affinity ligand for the CI-MPR, which is also referred to as IGF-II receptor. Binding of GILT-tagged therapeutic enzymes to the M6P/IGF-II receptor targets the protein to the lysosome via the endocytic pathway. This method has numerous advantages over methods involving glycosylation including simplicity and cost effectiveness, because once the protein is isolated, no further modifications need be made.

In various embodiments, the GILT tag is a furin-resistant GILT tag having the amino acid sequence shown herein as SEQ ID NO:3 (see, e.g., U.S. Patent No. 8,563,691).

Binding Affinity for the Insulin Receptor

Many IGF-II muteins, including furin-resistant IGF-II muteins, have reduced or diminished binding affinity for the insulin receptor. Thus, in some embodiments, a peptide tag suitable for the disclosure has reduced or diminished binding affinity for the insulin receptor relative to the affinity of naturally-occurring human IGF-II for the insulin receptor. In some embodiments, peptide tags with reduced or diminished binding affinity for the insulin receptor suitable for the disclosure include peptide tags having a binding affinity for the insulin receptor that is more than 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 12-fold, 14-fold, 16-fold, 18-fold, 20-fold, 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, or 100-fold less than that of the wild-type mature human IGF-II. The binding affinity for the insulin receptor can be measured using various in vitro and in vivo assays known in the art.

Administration of Therapeutic Proteins and Formulations

In accordance of the disclosure, a therapeutic fusion protein of the disclosure is typically administered to the individual alone, or in compositions or medicaments comprising the therapeutic protein (e.g., in the manufacture of a medicament for the treatment of the disease), as
described herein. The compositions can be formulated with one or more physiologically acceptable carriers or excipients to prepare a pharmaceutical composition. The carriers and compositions can be sterile. The formulation should suit the mode of administration.

[0072] Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions (e.g., NaCl), saline, buffered saline, alcohols, glycerol, ethanol, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelatin, carbohydrates such as lactose, amylose or starch, sugars such as mannitol, sucrose, or others, dextrose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid esters, hydroxymethylcellulose, polyvinyl pyrolidone, etc., as well as combinations thereof. The pharmaceutical preparations can, if desired, be mixed with auxiliary agents (e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances and the like) which do not deleteriously react with the active compounds or interference with their activity.

[0073] The composition or medicament, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. The composition can also be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, polyvinyl pyrrolidone, sodium saccharine, cellulose, magnesium carbonate, etc.

[0074] Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water, saline or dextrose/water. Where the composition is administered by injection, an ampule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

[0075] The therapeutic protein can be formulated as neutral or salt forms. pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl
groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

[0076] A therapeutic protein (or a composition or medicament containing a therapeutic protein) is administered by any appropriate route. In various embodiments, a therapeutic protein is administered intravenously. In other embodiments, a therapeutic protein is administered by direct administration to a target tissue, such as heart or muscle (e.g., intramuscular), or nervous system (e.g., direct injection into the brain, CNS, CSF; intracerebroventricularly; intrathecally). In various embodiments, a therapeutic protein is administered intrathecally. Methods for the intrathecal administration of therapeutic fusion proteins are known in the art (see, e.g., U.S. Patent Nos. 7,442,372 and 9,044,473). Alternatively, a therapeutic protein (or a composition or medicament containing a therapeutic protein) can be administered parenterally, transdermally, or transmucosally (e.g., orally or nasally). More than one route can be used concurrently, if desired, e.g., a therapeutic protein is administered intravenously and intrathecally. Concurrent intravenous and intrathecal administration need not be simultaneous, but can be sequential.

[0077] A therapeutic protein (or a composition or medicament containing a therapeutic protein) can be administered alone, or in conjunction with other agents, such as antihistamines (e.g., diphenhydramine) or immunosuppressants or other immunotherapeutic agents which counteract anti-GILT-tagged lysosomal enzyme antibodies. The term, "in conjunction with," indicates that the agent is administered prior to, at about the same time as, or following the therapeutic protein (or a composition or medicament containing the therapeutic protein). For example, the agent can be mixed into a composition containing the therapeutic protein, and thereby administered contemporaneously with the therapeutic protein; alternatively, the agent can be administered contemporaneously, without mixing (e.g., by "piggybacking" delivery of the agent on the intravenous line by which the therapeutic protein is also administered, or vice versa). In another example, the agent can be administered separately (e.g., not admixed), but within a short time frame (e.g., within 24 hours) of administration of the therapeutic protein.

[0078] The therapeutic protein (or composition or medicament containing the therapeutic protein) is administered in a therapeutically effective amount (i.e., a dosage amount that, when administered at regular intervals, is sufficient to treat the disease, such as by ameliorating symptoms associated with the disease, preventing or delaying the onset of the disease, and/or
also lessening the severity or frequency of symptoms of the disease, as described above). The
dose which will be therapeutically effective for the treatment of the disease will depend on the
nature and extent of the disease's effects, and can be determined by standard clinical techniques.
In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges using methods known in the art. The precise dose to be employed will also depend on the route of administration, and the seriousness of the disease, and should be decided according to the judgment of a practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems. In various embodiments, the therapeutically effective dosage amount can be, for example, about 0.1-1 mg/kg, about 1-5 mg/kg, about 2.5-20 mg/kg, about 5-20 mg/kg, about 20-50 mg/kg, or about 20-100 mg/kg or about 50-200 mg/kg, or about 2.5 to 20 mg/kg of body weight. The effective dose for a particular individual can be varied (e.g., increased or decreased) over time, depending on the needs of the individual. For example, in times of physical illness or stress, or if disease symptoms worsen, the dosage amount can be increased.

[0079] The therapeutically effective amount of the therapeutic protein (or composition or medicament containing the therapeutic protein) is administered at regular intervals, depending on the nature and extent of the disease's effects, and on an ongoing basis.

[0080] Administration at an "interval," as used herein, indicates that the therapeutically effective amount is administered periodically (as distinguished from a one-time dose). The interval can be determined by standard clinical techniques. In some embodiments, the therapeutic protein is administered bimonthly, monthly, twice monthly, triweekly, biweekly, weekly, twice weekly, thrice weekly, or daily. The administration interval for a single individual need not be a fixed interval, but can be varied over time, depending on the needs of the individual. For example, in times of physical illness or stress, or if disease symptoms worsen, the interval between doses can be decreased.

[0081] As used herein, the term "bimonthly" means administration once per two months (i.e., once every two months); the term "monthly" means administration once per month; the term "triweekly" means administration once per three weeks (i.e., once every three weeks); the term "biweekly" means administration once per two weeks (i.e., once every two weeks); the term
"weekly" means administration once per week; and the term "daily" means administration once per day.

[0082] The disclosure additionally pertains to a pharmaceutical composition comprising a therapeutic protein, as described herein, in a container (e.g., a vial, bottle, bag for intravenous administration, syringe, etc.) with a label containing instructions for administration of the composition for treatment of Mucopolysaccharidosis Type IIIB (Sanfilippo B Syndrome), such as by the methods described herein.

[0083] In certain embodiments, the present disclosure is directed to formulations comprising a lysosomal enzyme, a targeted therapeutic lysosomal enzyme fusion protein or a functional fragment thereof. In some embodiments, such formulations are liquid formulations, preferably liquid formulations appropriate for intrathecal administration. In other embodiments, the formulation may be a lyophilized formulation or may be a liquid formulation that was reconstituted from a previously lyophilized formulation.

[0084] In various embodiments, the formulations of the present disclosure comprise a lysosomal enzyme, a targeted therapeutic lysosomal enzyme fusion protein or a functional fragment thereof in a concentration range of from about 0.1 mg/ml to about 300 mg/ml, or from about 1 mg/ml to about 75 mg/ml, or from about 5 mg/ml to about 50 mg/ml, or from about 10 mg/ml to about 40 mg/ml, or from about 20 mg/ml to about 40 mg/ml, or from about 25 mg/ml to about 35 mg/ml. In certain embodiments, the lysosomal enzyme, fusion protein or fragment thereof may be present at or up to a concentration of about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250 or 300 mg/ml or greater. In various embodiments, the formulations of the present disclosure comprise a lysosomal enzyme, a targeted therapeutic lysosomal enzyme fusion protein or a functional fragment thereof at a concentration of about 30 mg/ml. In various embodiments, the lysosomal enzyme, targeted therapeutic lysosomal enzyme fusion protein or functional fragment thereof has at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater sequence identity to the amino acid sequence shown in Figure 2 (SEQ ID NO:5). More preferably, the lysosomal enzyme, targeted therapeutic lysosomal enzyme fusion protein or functional fragment thereof is BMN001 having the amino acid sequence shown in Figure 2 (SEQ ID NO:5).
In further embodiments, the formulations of the present disclosure comprise one or more buffering agents useful for maintaining the pH of the formulation within a desired range. In preferred embodiments, the pH of the liquid formulations of the present disclosure is within the range of from about 5.0 to about 9.0, or from about 5.5 to about 8.5, or from about 6.0 to about 8.0, or from about 6.5 to about 7.5, or from about 6.8 to about 7.2. More preferably, the pH of the liquid formulations of the present disclosure is about 7.0. Various buffering agents and their use in protein-containing formulations are well known in the art and non-limiting examples of buffering agents that find use in the liquid formulations of the present disclosure include, for example, sodium acetate, citric acid monohydrate, sodium citrate dihydrate, sodium phosphate monobasic monohydrate and sodium phosphate dibasic heptahydrate, and the like.

When employed in the formulations of the present disclosure, the concentration of sodium phosphate monobasic monohydrate preferably ranges from about 0.005 mg/ml to about 0.1 mg/ml, or from about 0.01 mg/ml to about 0.1 mg/ml, or from about 0.02 mg/ml to about 0.08 mg/ml, or from about 0.03 mg/ml to about 0.05 mg/ml. In a particularly preferred embodiment, the concentration of sodium phosphate monobasic monohydrate is about 0.04 mg/ml.

When employed in the formulations of the present disclosure, the concentration of sodium phosphate dibasic heptahydrate preferably ranges from about 0.005 mg/ml to about 0.5 mg/ml, or from about 0.01 mg/ml to about 0.5 mg/ml, or from about 0.05 mg/ml to about 0.4 mg/ml, or from about 0.1 mg/ml to about 0.4 mg/ml, or from about 0.15 mg/ml to about 0.25 mg/ml. In a particularly preferred embodiment, the concentration of sodium phosphate dibasic heptahydrate is about 0.19 mg/ml.

In further embodiments, the formulations of the present disclosure comprise one or more isotonicity agents useful for maintaining a desired tonicity and rendering the formulation more compatible for administration, particularly intrathecal administration, to a subject. Various isotonicity agents and their use in protein-containing formulations are well known in the art and non-limiting examples of isotonicity agents that find use in the liquid formulations of the present disclosure include, for example, sodium chloride, trehalose, mannitol, dextrose, glucose, glycerin, sorbitol, xylitol, ethanol, and the like. In particular embodiments, trehalose is used in ranges from about 3% (w/v) to about 10% (w/v), or from about 3% (w/v) to about 5% (w/v) or
from about 7% (w/v) to about 9% (w/v). In a preferred embodiment, trehalose is used at about 8% (w/v). In yet another preferred embodiment, trehalose is used at about 4% (w/v).

In various embodiments, the formulations contain an anti-adsorbent agent (e.g., to mitigate adsorption of a protein component to glass or plastic and to reduce the formation of aggregates and multimers). Anti-adsorbent agents include without limitation benzyl alcohol, Polysorbate 20, and Polysorbate 80. In certain embodiments, the anti-adsorbent is in a concentration from about 0.001% to about 0.5%, or from about 0.01% to about 0.5%, or from about 0.1% to about 1%, or from about 0.5% to about 1%, or from about 0.5% to about 1.5%, or from about 0.5% to about 2%, or from about 1% to about 2%. In some embodiments the anti-adsorbent agent is Polysorbate 20 in a range from about 0.004% to about 0.006%. In a preferred embodiment, Polysorbate 20 is used at 0.005%.

When employed in the formulations of the present disclosure, the concentration of sodium chloride preferably ranges from about 0.5 mg/ml to about 20 mg/ml, or from about 2 mg/ml to about 15 mg/ml, or from about 5 mg/ml to about 10 mg/ml, or from about 7 mg/ml to about 10 mg/ml, or from about 8 mg/ml to about 9 mg/ml. In a preferred embodiment, the concentration of sodium chloride is about 0.88 mg/ml. In another preferred embodiment, the concentration of sodium chloride is about 5 mg/ml.

In further embodiments, the formulations of the present disclosure comprise one or more electrolyte agents useful for maintaining the level of key electrolyte(s) in the cerebrospinal fluid (CSF) of the subject or for mimicking the natural composition of human CSF. Various electrolyte agents and their use in protein-containing formulations are well known in the art and non-limiting examples of electrolyte agents that find use in the liquid formulations of the present disclosure include, for example, potassium chloride, magnesium chloride, magnesium chloride hexahydrate, calcium chloride, calcium chloride dihydrate, and the like.

When employed in the formulations of the present disclosure, the concentration of potassium chloride preferably ranges from about 0.01 mg/ml to about 1 mg/ml, or from about 0.1 mg/ml to about 0.5 mg/ml, or from about 0.2 mg/ml to about 0.8 mg/ml, or from about 0.15 mg/ml to about 0.4 mg/ml, or from about 0.15 mg/ml to about 0.3 mg/ml. In a preferred embodiment, the concentration of potassium chloride is about 0.22 mg/ml.
When employed in the formulations of the present disclosure, the concentration of magnesium chloride hexahydrate preferably ranges from about 0.01 mg/ml to about 1 mg/ml, or from about 0.1 mg/ml to about 0.8 mg/ml, or from about 0.1 mg/ml to about 0.5 mg/ml, or from about 0.1 mg/ml to about 0.3 mg/ml, or from about 0.1 mg/ml to about 0.2 mg/ml. In a preferred embodiment, the concentration of magnesium chloride hexahydrate is about 0.16 mg/ml.

When employed in the formulations of the present disclosure, the concentration of calcium chloride dihydrate preferably ranges from about 0.01 mg/ml to about 1 mg/ml, or from about 0.1 mg/ml to about 0.8 mg/ml, or from about 0.1 mg/ml to about 0.5 mg/ml, or from about 0.15 mg/ml to about 0.4 mg/ml, or from about 0.15 mg/ml to about 0.3 mg/ml. In a preferred embodiment, the concentration of calcium chloride dihydrate is about 0.21 mg/ml.

In a preferred embodiment, the formulation of the present disclosure is a liquid formulation that comprises the BMN001 targeted therapeutic fusion protein, one or more buffering agents, one or more isotonicity agents and one or more electrolyte agents. More preferably, the liquid formulation comprises BMN001, sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate, sodium chloride, and trehalose. In one embodiment, the liquid formulation comprises BMN001 at a concentration of from about 25 mg/ml to about 35 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of from about 0.15 to about 0.25 mg/ml, sodium phosphate monobasic monohydrate at a concentration of from about 0.02 mg/ml to about 0.06 mg/ml, sodium chloride at a concentration of from about 0.8 mg/ml to about 1 mg/ml, and trehalose at about 7% (w/v) to about 9% (w/v). In one preferred embodiment, the liquid formulation comprises BMN001 at a concentration of about 30 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of about 0.19 mg/ml, sodium phosphate monobasic monohydrate at a concentration of about 0.04 mg/ml, sodium chloride at a concentration of about 0.88 mg/ml, and trehalose at about 8% (w/v). Preferably, the liquid formulation is at about pH 7.0.

In another preferred embodiment, the formulation of the present disclosure is a liquid formulation that comprises the BMN001 targeted therapeutic fusion protein, one or more buffering agents, one or more isotonicity agents and one or more electrolyte agents. More preferably, the liquid formulation comprises BMN001, sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate, sodium chloride, trehalose, and polysorbate 20. In
one embodiment, the liquid formulation comprises BMN001 at a concentration of from about 25 mg/ml to about 35 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of from about 0.15 to about 0.25 mg/ml, sodium phosphate monobasic monohydrate at a concentration of from about 0.02 mg/ml to about 0.06 mg/ml, sodium chloride at a concentration of from about 4.5 mg/ml to about 5.5 mg/ml, trehalose at about 3% (w/v) to about 5% (w/v), and polysorbate 20 at about 0.004% to about 0.006%. In one preferred embodiment, the liquid formulation comprises BMN001 at a concentration of about 30 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of about 0.19 mg/ml, sodium phosphate monobasic monohydrate at a concentration of about 0.04 mg/ml, sodium chloride at a concentration of about 5 mg/ml, trehalose at about 4% (w/v), and polysorbate 20 at about 0.005%. Preferably, the liquid formulation is at about pH 7.0.

[0097] In various embodiments, the formulations may comprise a preservative. Preservatives include, but are not limited to, m-cresol and benzyl alcohol. In certain embodiments, the preservative is in a concentration of about 0.4% ± 0.2%, or about 1% ± 0.5%, or about 1.5% ± 0.5%, or about 2.0% ± 0.5%. In certain embodiments of the disclosure, the formulation does not contain a preservative.

[0098] In various embodiments, the formulations comprise a stabilizer. Non-limiting examples of stabilizers include glycerin, glycerol, thioglycerol, methionine, and ascorbic acid and salts thereof. In some embodiments, when the stabilizer is thioglycerol or ascorbic acid or a salt thereof, the stabilizer is in a concentration from about 0.1% to about 1%. In other embodiments, when the stabilizer is methionine, the stabilizer is in a concentration from about 0.01% to about 0.5%, or from about 0.01% to about 0.2%. In still other embodiments, when the stabilizer is glycerin, the stabilizer is in a concentration from about 5% to about 100% (neat).

[0099] In various embodiments, the compositions contain an antioxidant. Exemplary antioxidants include without limitation methionine and ascorbic acid. In certain embodiments, the molar ratio of antioxidant to protein is from about 0.1:1 to about 15:1, or from about 1:1 to about 15:1, or from about 0.5:1 to about 10:1, or from about 1:1 to about 10:1 or from about 3:1 to about 10:1.

[0100] Pharmaceutically acceptable salts can be used in the formulations, including without limitation mineral acid salts (e.g., hydrochloride, hydrobromide, phosphate, sulfate), salts of
organic acids (e.g., acetate, propionate, malonate, benzoate, mesylate, tosylate), and salts of amines (e.g., isopropylamine, trimethylamine, dicyclohexylamine, diethanolamine). A thorough discussion of pharmaceutically acceptable salts is found in Remington's Pharmaceutical Sciences, 18th Edition, Mack Publishing Company, (Easton, Pennsylvania (1990)).

[0101] Examples of other formulary additives and compositions useful for intrathecal or ICV delivery are described in WO20 13/096899, which is herein incorporated by reference.

[0102] The formulations of the present disclosure are stable and can be stored for extended periods of time without an unacceptable change in quality, potency, or purity. In one aspect, the formulation is stable at a temperature of about 5°C (e.g., 2°C to 8°C) for at least 1 month, for example, at least 1 month, at least 3 months, at least 6 months, at least 12 months, at least 18 months, at least 24 months, or more. In another aspect, the formulation is stable at a temperature of less than or equal to about -20°C for at least 6 months, for example, at least 6 months, at least 12 months, at least 18 months, at least 24 months, at least 36 months, or more. In another aspect, the formulation is stable at a temperature of less than or equal to about -40°C for at least 6 months, for example, at least 6 months, at least 12 months, at least 18 months, at least 24 months, at least 36 months, or more. In another aspect, the formulation is stable at a temperature of less than or equal to about -60°C for at least 6 months, for example, at least 6 months, at least 12 months, at least 18 months, at least 24 months, at least 36 months, or more.

[0103] Suitable formulations of the present disclosure include, liquid, lyophilized or reconstituted lyophilized formulations. In various aspects, the formulations of the present disclosure are contained within a container, which in one aspect, may comprise a single dosage form of the formulation. Exemplary containers include, for example, ampules, vials, bottles, cartridges, reservoirs and pre-filled syringes.

Intrathecal Administration of the Pharmaceutically Acceptable Formulations

[0104] In various embodiments, the enzyme, enzyme fusion protein or formulation comprising the same is administered by direct introduction into the central nervous system of the subject, e.g., into the cerebrospinal fluid of the subject. In certain aspects of the disclosure, the enzyme is introduced intrathecally, e.g., into the lumbar area, or the cisterna magna or intraventricularly (or intracerebroventricularly (ICV)) into a cerebral ventricle space. Methods of administering a lysosomal enzyme or fusion protein comprising a functional lysosomal enzyme intrathecally or
intracerebroventricularly are described in U.S. Patent Nos. 7,442,372, 9,044,473 and 9,089,566, incorporated herein by reference in their entirety.

[0105] Those of skill in the art are aware of devices that may be used to effect intrathecal administration of a therapeutic composition. For example, the therapy may be given using an Ommaya reservoir which is in common use for intrathecally administering drugs for meningeal carcinomatosis (Ommaya et al., Lancet 2: 983-84 (1963)). More specifically, in this method, a ventricular tube is inserted through a hole formed in the anterior horn and is connected to an Ommaya reservoir installed under the scalp, and the reservoir is subcutaneously punctured to intrathecally deliver the particular enzyme being replaced, which is injected into the reservoir. Other devices for intrathecal administration of therapeutic compositions to an individual are described in U.S. Pat. No. 6,217,552, incorporated herein by reference. Alternatively, the composition may be intrathecally given, for example, by a single injection, or continuous infusion. It should be understood that the dosage treatment may be in the form of a single dose administration or multiple doses.

[0106] As used herein, the term "intrathecal administration" is intended to include delivering a pharmaceutical composition directly into the cerebrospinal fluid of a subject, by techniques including lateral cerebroventricular injection (i.e., intracerebroventricularly) through a burr hole or cisternal or lumbar puncture, or the like (described in Lazorthes et al. Advances in Drug Delivery Systems and Applications in Neurosurgery, 143-192 (1991) and Ommaya et al., Cancer Drug Delivery 1:169-179 (1984), the contents of which are incorporated herein by reference). The term "lumbar region" is intended to include the area between the third and fourth lumbar (lower back) vertebrae and, more inclusively, the L2-S1 region of the spine.

[0107] The term "cisterna magna" is intended to include access to the space around and below the cerebellum via the opening between the skull and the top of the spine. The term "cerebral ventricle" is intended to include the cavities in the brain that are continuous with the central canal of the spinal cord. Administration of a pharmaceutical composition in accordance with the present disclosure to any of the above mentioned sites can be achieved by direct injection of the composition or by the use of infusion pumps. For injection, the composition of the disclosure can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution, Ringer's solution or phosphate buffer. In addition, the enzyme may be
formulated in solid form and re-dissolved or suspended immediately prior to use. Lyophilized forms are also included. The injection can be, for example, in the form of a bolus injection or continuous infusion (e.g., using infusion pumps) of the enzyme.

[0108] In various embodiments of the disclosure, the enzyme is administered by lateral cerebroventricular injection into the brain of a subject. The injection can be made, for example, through a burr hole made in the subject's skull. In another embodiment, the enzyme fusion protein and/or other pharmaceutical formulation is administered through a surgically inserted shunt into the cerebral ventricle of a subject. For example, the injection can be made into the lateral ventricles, which are larger, even though injection into the third and fourth smaller ventricles can also be made.

[0109] In various embodiments, the pharmaceutical compositions used in the present disclosure are administered by injection into the cisterna magna, or lumbar area of a subject. In another embodiment of the method of the disclosure, the pharmaceutically acceptable formulation provides sustained delivery, e.g., "slow release" of the enzyme or other pharmaceutical composition used in the present disclosure, to a subject for at least one, two, three, four weeks or longer periods of time after the pharmaceutically acceptable formulation is administered to the subject.

[0110] In various embodiments, a therapeutic fusion protein is delivered to one or more surface or shallow tissues of the brain or spinal cord. For example, in various embodiments, a therapeutic fusion protein is delivered to one or more surface or shallow tissues of the cerebrum or spinal cord. In some embodiments, the targeted surface or shallow tissues of the cerebrum or spinal cord are located within 4 mm from the surface of the cerebrum. In some embodiments, the targeted surface or shallow tissues of the cerebrum are selected from pia mater tissues, cerebral cortical ribbon tissues, hippocampus, Virchow Robin space, blood vessels within the VR space, the hippocampus, portions of the hypothalamus on the inferior surface of the brain, the optic nerves and tracts, the olfactory bulb and projections, and combinations thereof.

[0111] In some embodiments, a therapeutic fusion protein is delivered to one or more deep tissues of the cerebrum or spinal cord. In some embodiments, the targeted surface or shallow tissues of the cerebrum or spinal cord are located 4 mm (e.g., 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, or 10 mm) below (or internal to) the surface of the cerebrum. In some embodiments, targeted
deep tissues of the cerebrum include the cerebral cortical ribbon. In some embodiments, targeted deep tissues of the cerebrum include one or more of the diencephalon (e.g., the hypothalamus, thalamus, prethalamus, subthalamus, etc.), metencephalon, lentiform nuclei, the basal ganglia, caudate, putamen, amygdala, globus pallidus, and combinations thereof.

[0112] In various embodiments, a targeted surface or shallow tissue of the spinal cord contains pia matter and/or the tracts of white matter. In various embodiments, a targeted deep tissue of the spinal cord contains spinal cord grey matter and/or ependymal cells. In some embodiments, a therapeutic fusion protein is delivered to neurons of the spinal cord.

[0113] In various embodiments, a therapeutic fusion protein is delivered to one or more tissues of the cerebellum. In certain embodiments, the targeted one or more tissues of the cerebellum are selected from the group consisting of tissues of the molecular layer, tissues of the Purkinje cell layer, tissues of the Granular cell layer, cerebellar peduncles, and combination thereof. In some embodiments, therapeutic agents (e.g., enzymes) are delivered to one or more deep tissues of the cerebellum including, but not limited to, tissues of the Purkinje cell layer, tissues of the Granular cell layer, deep cerebellar white matter tissue (e.g., deep relative to the Granular cell layer), and deep cerebellar nuclei tissue.

[0114] In various embodiments, a therapeutic fusion protein is delivered to one or more tissues of the brainstem. In some embodiments, the targeted one or more tissues of the brainstem include brain stem white matter tissue and/or brain stem nuclei tissue.

[0115] In various embodiments, a therapeutic fusion protein is delivered to various brain tissues including, but not limited to, gray matter, white matter, periventricular areas, pia-arachnoid, meninges, neocortex, cerebellum, deep tissues in cerebral cortex, molecular layer, caudate/putamen region, midbrain, deep regions of the pons or medulla, and combinations thereof.

[0116] In various embodiments, a therapeutic fusion protein is delivered to various cells in the brain including, but not limited to, neurons, glial cells, perivascular cells and/or meningeal cells. In some embodiments, a therapeutic protein is delivered to oligodendrocytes of deep white matter.
In certain preferred embodiments, in order to treat MPS IIIB disease in a human subject, reduce the rate of decline of at least one symptom (including cognitive decline) of MPS IIIB in a human subject, or to reduce or prevent GAG storage in one or more tissues of the CNS of a subject suffering from MPS IIIB disease, about 30 mg, 100 mg or 300 mg of therapeutic fusion protein, or from about 30 mg-300 mg, 30 mg-200 mg or 30 mg-100 mg of therapeutic fusion protein, is administered once weekly ICV (isovolumetric) for a time period of at least about 24, preferably 48 weeks.

Kits for Use in the Methods of the Disclosure

The agents utilized in the methods of the disclosure may be provided in a kit, which kit may further include instructions for use. Such a kit will comprise a lysosomal enzyme or fusion protein as described herein comprising an enzyme for use in the treatment of a lysosomal storage disease and a lysosomal targeting moiety, usually in a dose and formulation suitable for administration to the host. In various embodiments, the kit may comprise one or more device(s) for delivering the enzyme intrathecally.

A kit of the present disclosure may comprise instructions for the intrathecal administration of the therapeutic compositions of the present disclosure, in addition to the therapeutic compositions. In certain embodiments, the kits of the disclosure may comprise catheter(s), pump(s), or other devices for the intrathecal administration of the enzyme replacement therapy that are preloaded with the therapeutic compositions of the present disclosure. For example, catheters preloaded with 0.001-0.01 mg, 0.01-0.1 mg, 0.1-1.0 mg, 1.0-10 mg, 10-100 mg, or more of a therapeutic fusion protein comprising a lysosomal enzyme and lysosomal targeting moiety, such as Naglu and an IGF-II peptide tag, in a pharmaceutically acceptable formulation are specifically contemplated. Exemplary catheters may include single use catheters that can be discarded after use.

In certain embodiments, the kits of the present disclosure may comprise one or more of the following components, an extension line (e.g., Smiths Medical PN:536040), an in-line filter (e.g., Smiths Medical PN:FS116), a port needle (e.g., Smiths Medical PN:21-2737-24), a syringe (e.g., Becton Dickinson PN:309604) or a syringe needle (e.g., Becton Dickinson PN:305196).

Methods for Treating Sanfilippo B Syndrome
Intrathecal (e.g., ICV or lumbar) administration of a Naglu enzyme or fusion protein thereof (including BMN001) into the CSF of the patient can be used for the prevention or treatment of one or more symptom or adverse consequence of MPS MB disease in humans. In this regard, it is expected that intrathecal administration of a therapeutically effective amount of a Naglu enzyme or fusion protein thereof (including BMN001) will result in improvement of at least one symptom or adverse consequence of MPS IIIB disease, a slowing or reduction of the progression of at least one symptom or adverse consequence of MPS IIIB or a stabilization of decline of at least one symptom or adverse consequence of MPS IIIB. In this regard, known symptoms or adverse consequences of MPS MB disease in humans include, for example, detectable decline in one or more of the following: cognitive function, language function, motor function, social-emotional function, adaptive function, conceptual thinking, facial recognition, story completion, pattern reasoning and hand function/dexterity.

In order to quantify the therapeutic effect of an administered enzyme or fusion protein thereof, any of a variety of well-known and routinely employed neurocognitive tests can be employed to derive a developmental quotient (DQ) score. In one embodiment, the DQ score is a cognitive function DQ score.

In one embodiment of the present disclosure, a DQ score for a human subject may be obtained through use of the Bayley Scales of Infant Development, 3rd Edition (BSID-III) (Bayley, Bayley Scales of Infant and Toddler Development (Bayley-III). Technical Manual. Third ed. San Antonio: Psychological Corp., 2006, incorporated herein by reference). The BSID-III is a tool comprised of 5 domains (cognitive, language, motor, social-emotional and adaptive functioning) intended to assess developmental function in children ages 1 to 42 months. In certain embodiments, neither the social-emotional nor adaptive functioning domains of the BSID-III test are used. In one embodiment, only the cognitive domain is used to determine a DQ score.

In certain embodiments, the BSID-M's cognitive domain may be the primary focus of the study. The cognitive scale is administered individually by a qualified examiner and captures the development of critical skills such as processing speed, problem solving and play. Importantly, the cognitive assessments do not require the subject to respond verbally; as a result, this test is particularly useful for assessing cognitive function in conditions such as MPS MB.
where there are problems with expressive language. Raw scores within one domain may be converted to a scaled score, which may then be converted to composite scores encompassing several domains. Mean raw scores associated with different ages also allow for the generation of age-equivalent scores and a DQ.

[0125] In certain embodiments, the language and motor domains of the BSID-III may also be administered. The language domain consists of 2 subtests (receptive communication and expressive communication) and the motor domain consists of 2 subtests (fine motor and gross motor).

[0126] In another embodiment of the present disclosure, a DQ score for a human subject may be obtained through use of the Kaufman Assessment Battery for Children, 2nd Edition (KABC-II) (Kaufman et al., *Kaufman Assessment Battery for Children.* Second Edition ed. Pearson Assessment, Inc. 2004, incorporated herein by reference). The KABC-II is a clinical instrument (psychological diagnostic test) for assessing cognitive development. Like the BSID, the KABC can be used to generate age-equivalent scores and hence a DQ. Since many parts of the test are non-verbal it is particularly suited for assessing function in children who may have difficulties in both hearing and in verbal communication, both of which are conditions relevant to the MPS IIIB patient population. In addition, the test has been translated into a number of different languages across the world. The subtests that comprise the Kaufman nonverbal index include the following: conceptual thinking, face recognition, story completion, triangles, pattern reasoning, and hand movements. In addition to the nonverbal index subtests, the knowledge cluster subtests (riddles, expressive vocabulary and verbal knowledge) may be administered to subjects who have language.

[0127] In certain embodiments, the algorithm employed for determining whether to employ the BSID-III or KABC-II test for determining a DQ quotient is described by Delaney et al., *JIMD Rep.* 13:129-137 (2014).

[0128] Results from either the BSID-III tool (or cognitive subtest thereof) or the KABC-II nonverbal index are used to determine the DQ score for subjects either prior to treatment, or during or after treatment, with a therapeutic enzyme or fusion protein thereof. More specifically, using the BSID-III or KABC-II tools described above, the subject is assigned an "age-equivalent rating" (in months) based upon their performance in the tool employed. The DQ score is then
calculated by dividing that "age-equivalent rating" by the actual age of the subject (in months), and then multiplying by 100. To illustrate, an MPS IIIB subject having an actual age of 60 months that is assigned an "age-equivalent rating" of 48 months based upon his/her performance in the tool employed, would have a DQ calculated as follows: (48 divided by 60) X 100 = 80. On the other hand, a fully-functioning 60 month old who is assigned an "age-equivalent rating" of 60 months would have a DQ of (60 divided by 60) X 100 = 100. As cognitive function, language function, motor function, social-emotional function, adaptive function, conceptual thinking, facial recognition, story completion, pattern reasoning and/or hand function/dexterity tend to decline over time in human MPS IIIB patients, it is expected that DQ scores for untreated MPS IIIB subjects will decline over time. It is the intention of the present disclosure to reduce the observed decline in DQ, stabilize DQ over time or improve DQ over time through administration of a therapeutic protein described herein. The beneficial effect of administration of a therapeutic fusion protein of the present disclosure, or formulation comprising the same, can be detected by determining a DQ score for a subject prior to treatment and comparing to a DQ score for a subject after treatment.

[0129] The disclosure will be further and more specifically described by the following examples. Examples, however, are included for illustration purposes, not for limitation.

EXAMPLE 1 - FORMULATION DEVELOPMENT

[0131] In one particularly preferred embodiment (referred to herein as BMN001), a Naglu/IGF-II fusion protein comprising a functional mature human Naglu enzyme fused through a rigid linker to a furin-resistant IFG-II peptide consisting of amino acids 8-67 of the mature human IGF-II and having an alanine for arginine substitution at amino acid position 37 thereof
was prepared and formulated for use in *in vivo* safety and efficacy studies. The peptide linker employed in BMNOOl has the amino acid sequence shown herein as SEQ ID NO:4. The complete amino acid sequence of the BMNOOl therapeutic fusion protein is shown in Figure 2 (SEQ ID NO:5).

[0132] In order to identify excipients and associated formulary conditions that would be amenable for a BMNOOl liquid formulation appropriate for human clinical use via intrathecal administration, various experiments were conducted. First, the propensity of BMNOOl to aggregate in liquid formulation at various pH's was tested as follows. Initially, BMNOOl was introduced into a liquid formulation comprising a citrate buffer at pH 5.0 or 6.5, or an artificial human CSF liquid formulation at pH 6.0, 6.5, 7.0 and 8.0, and static light scattering analyses were conducted to measure the propensity of BMNOOl to aggregate at different pH and increasing temperature. The results of these analyses demonstrated that BMNOOl tends to aggregate more readily with increasing temperature at lower pH (pH 5.0 to 6.0), than it does at higher, more neutral pH (about pH 7.0). Moreover, SEC analyses performed on BMNOOl liquid formulations at 25°C and varying pH demonstrated a significantly higher percentage of aggregated, multimeric BMNOOl at pH's below 6.5, as compared to less acidic, more neutral pH's in the range of from about 6.5 to about pH 7.5. Finally, SEC analyses performed on BMNOOl liquid formulations at varying pH subjected to 10 cycles of freeze/thaw demonstrated a significantly higher percentage of aggregated, multimeric BMNOOl at pH's below 6.5, as compared to less acidic, more neutral pH's in the range of about 7.0. These combined data suggest the use of a pH in the range of from about 6.5 to about 7.5, preferably about 7.0, would be beneficial for a clinical BMNOOl liquid formulation.

[0133] Next, liquid formulations comprising varying concentrations of BMNOOl were tested to determine the effect of fusion protein concentration on aggregate/multimer formation during 5 cycles of freeze/thaw. In these experiments, liquid formulations containing 1, 5, 15 or 24 mg/ml of BMNOOl were prepared at pH 5.0, 6.0, 7.0 and 8.0. After five cycles of freeze/thaw, the relative percentage of aggregate/multimer to monomer tended to be larger in the lower protein concentration formulations than in the formulations comprising a larger concentration of fusion protein. Moreover, aggregate/multimer formation tended to occur more frequently at more acidic pH than at a neutral pH. Addition of 2% trehalose prevented fusion protein aggregation
when compared to the same formulation in the absence of trehalose. These results suggest that liquid formulations comprising at least about 24 mg/ml of BMNOOl fusion protein are preferable to formulations comprising a lower fusion protein concentration. These surprising results demonstrating that liquid formulations having higher protein concentration (i.e., approximately 30 mg/ml) tend to have lower relative percentage of aggregate/multimer formation provides significant benefit for intrathecal administration to humans, where such administration is quite sensitive to the total volume of fluid being administered. As such, the formulations of the present disclosure, including BMNOOl-containing formulations, having a protein concentration of at least 24 mg/ml, including those formulations having a protein concentration of about 30 mg/ml, are quite useful for intrathecal administration to human subjects.

Next, a variety of formulary excipients were screened for their ability to prevent agitation- or freeze/thaw-induced aggregate formation of BMNOOl as measured by static light scattering analysis. Liquid formulations comprising identical amounts of BMNOOl were prepared that comprised either (i) 180 mM N-acetylglucosamine, (ii) 222 mM glucose, (iii) 234 mM sucrose, (iv) 212 mM trehalose, (v) 220 mM sorbitol, (vi) 200 mM glutamic acid, (vii) 200 mM glutamine, (viii) 200 mM arginine, (ix) 200 mM histidine, (x) 200 mM glycine, (xi) 0.1% w/v polysorbate 20, or (xii) 0.1% w/v poloxamer 188. The results of these analyses demonstrated that addition of one or more amino acids tended to destabilize the liquid formulation as evidenced by increased aggregate/multimer formation as induced by either agitation or freeze/thaw. On the other hand, addition of one or more sugar/polyol tended to reduce the relative amount of aggregate/multimer formed as induced by either agitation or freeze/thaw.

Based upon the formulation development work described above and additional experimentation not described herein, a final BMNOOl liquid formulation was developed for use in further human clinical development as described below. The BMNOOl clinical formulation employed in the human clinical studies described in Example 3 below consisted of the following components: (i) 30 mg/ml BMNOOl fusion protein, (ii) 0.19 mg/ml sodium phosphate dibasic, heptahydrate, (iii) 0.04 mg/ml sodium phosphate monobasic monohydrate, (iv) 8.66 mg/ml sodium chloride, (v) 0.22 mg/ml potassium chloride, (vi) 0.16 mg/ml magnesium chloride, hexahydrate, and (vi) 0.21 mg/ml calcium chloride dihydrate. This BMNOOl clinical
formulation was formulated at a final pH of 7.0. The BMNOOl clinical formulation may be packaged in a clear borosilicate glass vial closed with a fluoropolymer-coated bromobutyl rubber stopper, capped with an aluminum seal and stored frozen at about -40°C until thawed for use.

EXAMPLE 2 - BMNOOl FOR THE TREATMENT OF SANFILIPPO B SYNDROME (PRE-CLINICAL STUDIES)

[0136] Nonclinical studies were conducted as described herein and indicate likely therapeutic benefit without significant risk of BMNOOl-related toxicity for human patients with MPS IIIB disease.

[0137] The nonclinical studies described herein were designed to support chronic ICV infusion of BMNOOl for the treatment of MPS IIIB in human patients. The primary pharmacodynamics (PD), cardiovascular (CV) and CNS safety pharmacology, PK, CNS distribution and toxicity of BMNOOl administered by the ICV route have been characterized in one single dose study in normal animals (cynomolgus monkey) and four repeat dose studies in normal and disease models of MPS IIIB (Naglu-knockout [KO] mouse, WT and NAGLU-null dog (Ellinwood et al., J. Inherit. Metab. Dis. 26(5):489-504 (2003) and cynomolgus monkey). These species were selected due to the high degree of NAGLU amino acid sequence homology, CI-MPR expression and amino acid sequence identity. The animal models of disease also display some of the key features of the human MPS IIIB disease, including accumulation of lysosomal storage material, neuron death, decline in function and reduced lifespan with similar relative timing of disease progression. They also display certain neurologic signs, including tremors and ataxia, which can be used to functionally track the underlying CNS pathology and potentially be used to monitor response to treatment. Therefore, these models provide valuable insight as to pharmacological attenuation of disease progression using clinically translatable endpoints.

[0138] Primary PD assessments for BMNOOl were conducted in IGF2 receptor binding assays, MPS IIIB human fibroblasts and the two available animal models of MPS IIIB, the NAGLU knockout (KO) mouse and juvenile NAGLU-null dog and demonstrate the robust pharmacological activity of BMNOOl. Analysis of IGF2 receptor binding of BMNOOl lots used in these studies resulted in a calculated average IC$_{50}$ of 0.28 nM. The in vitro cellular uptake of
BMN001 and cellular half-life was determined in MPS IIIB human fibroblasts. The lysosomal
uptake of BMN001 was defined as the concentration at which uptake into the lysosome is at half
the maximal rate and was 3.7 - 6.4 nM (5.3 nM average) with a lysosomal half-life of
approximately 9.5 days.

[0139] In the MPS IIIB mouse disease model, ICV administration of BMN001 reversed the
pathology of the disease. Repeat-dose studies in these mice show consistent tissue distribution
of BMN001 across the CNS. The primary PD assessment demonstrated the effects of BMN001
on both biochemical and histological endpoints. ICV administration of BMN001 to Naglu-KO
mice resulted in reduction of lysosomal storage material accumulation (i.e., GAG/heparan sulfate
accumulation) with accompanying improvement in histological and immune-histological indices
of lysosomal function. More specifically, when evaluated 24 hours after the final dose of
BMN001, treatment resulted in a marked increase of Naglu enzyme activity and a concomitant
decrease in beta-hexosaminidase activity and levels of total heparan sulfate and LAMP-2. Naglu
activity was detectable in brain tissues, not only in cortex, hippocampus, dentate gyrus and
thalamus, but also in remote distal geographic locations including amygdyla, perirhinal cortex
and hypothalamus. Significant decreases in the levels of CD68, SCMAS, beta-amyloid, p-Tau,
P-GSK3beta and glypican 5 were also observed. Levels of heparan sulfate, Naglu-specific NREs
and beta-hexosaminidase activity continued to decrease over the 7, 14 and 28 day post-last-dose
time points.

[0140] In NAGLU-null dogs, the PD effects of BMN001 observed after 6 months of ICV
administration included reduction of cerebrospinal fluid (CSF) lysosomal storage material and
maintenance of motor function. Additional pharmacodynamics endpoints, including cognition
and delay in disease progression, are currently being assessed as follows. Six independent
groups having 4 previously immunotolerized dogs per group were treated biweekly by ICV
infusion between ages 4 and 18 months as follows:

Group 1 (normal NAGLU+ dogs) - ICV vehicle only (10 ml/kg);
Group 2 (normal NAGLU+ dogs) - BMN001 (12 mg/kg);
Group 3 (normal NAGLU+ dogs) - BMN001 (12 mg/kg, escalated to 48 mg/kg at dose 3);
Group 4 (NAGLU-null dogs) - ICV vehicle only (10 ml/kg);
Group 5 (NAGLU-null dogs) - BMNOOl (12 mg/kg);
Group 6 (NAGLU-null dogs) - BMNOOl (12 mg/kg, escalated to 48 mg/kg at dose 3).

[0141] Heparan Sulfate (HS) levels were measured in the CNS tissue, CSF, and cerebellum tissue in the dogs from groups 1, 4, 5, and 6. As shown in Figure 3, BMNOOl reduced HS levels in both CNS tissue and in the CSF in MPS MB dogs in a dose dependent fashion, with the 48 mg/kg dose reducing HS to wild-type levels. The levels of HS in the CNS and CSF in each group of dogs was evaluated and compared. As shown in Figure 4, there is a strong correlation in the HS levels in these two brain compartments, demonstrating BMNOOl’s ability to reduce HS uniformly throughout the brain.

[0142] The effect of BMNOOl treatment on LAMP2 levels was also investigated. Cerebellum tissue homogenate samples (18 µg protein/lane) from wild-type, untreated MPSIIIB-affected dogs, and MPSIIIB-affected dogs treated with BMNOOl were electrophoresed and blotted under non-reducing conditions, then probed with unlabeled AC17 and detected with an HRP-conjugated anti-mouse IgG secondary antibody. LAMP2-expressing or control CHO-K1 cell lysates were included in the blots as controls (5 µg protein/lane). To assess the total amount of protein loaded into each lane, cerebellum homogenate blots were stripped and re-probed for β-actin. As shown in Figure 5, untreated MPSIIIB-affected dogs had high levels of LAMP2 relative to wild-type dogs. However, treatment with BMNOOl reduced the LAMP2 levels in MPSIIIB-affected dogs to levels seen in wild-type dogs.

[0143] The effect of BMNOOl on cerebellar atrophy was also investigated. As seen in Figure 6, BMNOOl caused a significant reduction in cerebellar HS at both doses. Further, both doses of BMNOOl attenuated cerebellar white matter decline as measured by diffusion tensor imaging (DTI) (Figure 7). The attenuation of cerebellar atrophy by BMNOOl was also clearly seen in MRI images of wild-type and BMNOOl treated MPS IIIB dogs (Figure 8).

[0144] In a separate study, healthy juvenile cynomolgus monkeys weighing approximately 1-2 kg were randomly assigned to one of five dosage groups as follows:

- Group 1 - ICV vehicle only (5 minutes, 2.5 ml isovolumetric ICV, 0.5 ml/min);
- Group 2 - 30 mg BMNOOl (5 minutes, 2.5 ml isovolumetric ICV, 0.5 ml/min);
- Group 3 - 73 mg BMNOOl (5 minutes, 2.5 ml isovolumetric ICV, 0.5 ml/min);
Group 4 - 73 mg BMN001 (240 minutes, 2.5 ml non-isovolumetric ICV, 0.88 ml/hr); and
Group 5 - 200 mg/kg BMN001 (5 minutes, non-isovolumetric IV, 3 ml/min).

[0145] At 48 hours post-dosing, animals were euthanized and specific tissues of the CNS were harvested. Specimens of superficial and deep tissue, relative to the ventricle, for seven brain and three spinal cord regions were collected for biodistribution analyses. These analyses demonstrated that the ICV delivery route enabled direct CNS enzyme replacement with superior biodistribution in the CNS than is achieved via IV administration and that rapid administration of BMN001 following isovolumetric CSF removal is safe and well tolerated in vivo. Finally, comparable and widespread distribution of BMN001 to both superficial and deep CNS tissues was observed from both rapid (i.e., about 5 minutes) isovolumetric administration or slow (i.e., about 240 minutes) non-isovolumetric administration.

[0146] Cardiovascular, respiratory and CNS safety pharmacology parameters were assessed in the single and weekly repeat dose monkey toxicity studies. CNS and cardiovascular safety pharmacology parameters were assessed in the biweekly repeat dose studies in WT and NAGLU-null dogs. There were no findings in these studies to indicate there were BMN001-related adverse effects on the CNS, cardiovascular or respiratory systems. No BMN001-related CNS or systemic organ toxicity or toxicity due to exaggerated pharmacology, such as rapid clearance of accumulated lysosomal storage material, has been observed following ICV administration. Furthermore, there was no systemic toxicity, including hypoglycemia, observed after repeat IV administration of BMN001.

[0147] For clinical studies conducted in humans, human-equivalent doses were calculated based on scaling of brain mass. The human brain achieves about 75% of adult mass by age 2 and 100% of adult mass by age 5. Given an adult human brain mass of 1400 g and progressive brain atrophy in MPS MB patients, an average mass of 1000 g was assumed for the intended patient population. This yields a scaling factor of 10-fold based on an average cynomolgus brain mass of 100 g. Therefore, the safety and efficacy profile of BMN001, as assessed in the current nonclinical program, supports the chronic ICV administration of BMN001 at doses up to 730 mg (as scaled by brain weight) when administered as either a 4-hour infusion or an isovolumetric bolus every week in the intended pediatric patient population.
EXAMPLE 3 - BMNOOI FOR THE TREATMENT OF SANFILIPPO B SYNDROME
(HUMAN CLINICAL STUDIES)

[0148] This is a phase 1/2, first-in-human, multicenter, multinational, open-label, dose-escalation study in human patients diagnosed with MPS IIIB. BMNOOI, formulated as described in Example 1 above, is administered weekly by ICV infusion and subjects are evaluated in terms of neurocognitive function, behavior, sleep, quality of life (both of the subject and of the family/caregiver), imaging characteristics and biochemical markers of disease burden. The study's primary objectives are to evaluate the safety and tolerability of BMNOOI administered to subjects with MPS IIIB via an ICV reservoir and catheter and to evaluate the impact of BMNOOI on cognitive function in human patients with MPS IIIB as assessed by an applicable development quotient (DQ). To assess the impact of treatment on cognitive function, data from human subjects under treatment in this study is compared with data from a related observational study of progressive MPS IIIB symptomatology conducted earlier in the same set of human subjects (i.e., the "natural history study").

[0149] The current phase 1/2 human clinical study consists of 2 parts. In Part 1, the dose escalation period, 3 human subjects (not previously enrolled in natural history study) each receive at least 4 weekly doses of BMNOOI at up to 3 escalating dose levels (30 mg, 100 mg and 300 mg) until the maximum tolerated tested dose (MTTD) is established. In Part 2, the stable dose period, up to 30 human subjects previously enrolled in the natural history study begin a treatment course of weekly BMNOOI at the MTTD that continues for 48 weeks. The 3 subjects from Part 1 also move into Part 2, perform the Part 2 Baseline assessments and continue weekly dosing for an additional 48 weeks at the MTTD established in Part 1.

[0150] The infusion regimen involves isovolumetric removal of 10 ml of CSF followed by ICV delivery of 10 ml total volume of BMNOOI over a time period of from about 5 minutes to about 10 minutes. A rapid infusion rate was chosen for this study to address the specific needs of the MPS IIIB patient population; in particular, these patients often have pronounced behavior problems which would make longer infusion periods logistically challenging. Rapid intraventricular delivery of large volumes (e.g., 10-12 ml) of therapeutics following the removal of isovolumetric amounts of CSF is part of routine practice in the pediatric oncology setting.
ICV delivery of a longer period of time, however, may also be employed. In this regard a single ICV administration of BMNOOl (which may or may not be isovolumetric) may occur over a time period of at least 5, 10, 15, 20, 25, 30, 45, 60, 90, 120, 150, 180, 210 or 240 minutes, or more.

[0151] Study procedures performed at Baseline in Part 1 and at Baseline and Weeks 12, 24, 36 and 48 in Part 2 include the Vineland Adaptive Behavior Scales, 2nd Edition (VABS-II), either the Bayley Scales of Infant Development, 3rd Edition (BSID-III) or the Kaufman Assessment Battery for Children, 2nd Edition (KABC-II) and the Sanfilippo Behavior Rating Scale (SBRS). Additional study procedures to be performed during both Part 1 and Part 2 Baseline visits and at Weeks 24 and 48 in Part 2 include the Infant Toddler Quality of Life questionnaire (ITQOL) or Child Health Questionnaire Parent Form (CHQ-PF50), the Children's Sleep Habits Questionnaire (CSHQ), the Parenting Stress Index, the PEDIATRIC QUALITY OF LIFE INVENTORY™ (PEDSQL™) Family Impact Module, MRI (under anesthesia) of the brain and abdomen and a brainstem auditory evoked response (BAER) assessment.

[0152] A total of three subjects received at least 8 doses of 30 mg QW BMNOOl and at least 3 doses of 100 mg QW. As part of this study, the subjects were monitored over the course of at least 24 weeks prior treatment initiation to understand the natural history of disease progression. The baseline levels of Heparan Sulfate (HS) and MPS IIIB-specific HS non-reducing end (NRE) were measured in the cerebrospinal fluid (CSF) for each patient before and after treatment. As shown in Figure 9, prior to treatment three subjects (A, B, and C) had extremely elevated HS and NRE compared to non-disease (normal) controls. However, treatment with BMNOOl induced marked and sustained decreases in both HS and NRE in both subject A and B (Figure 10) (subject C enrolled later in the study and data was not yet available). BMNOOl was well tolerated with no serious adverse events related to treatment.

[0153] These findings demonstrate that BMNOOl can be administered safely into the ventricular space via isovolumetric bolus infusion and that this treatment approach leads to a marked pharmacodynamic response in the CNS of MPS MB patients.

EXAMPLE 4 - REFORMULATION OF BMNOOl

[0154] Physical stress of formulations containing BMNOOl were found to cause the formation of aggregates and/or multimers of the active fusion protein. Aggregates and/or multimers are undesirable in drug products because they likely lower the effective concentration of drug, may
cause clogging of in-line filters during administration, and may elicit unwanted immune response to the drug product. Accordingly, additional work was done to identify formulations that were resistant to aggregation and/or multimer formation in response to physical stress. To this end, various excipients were screened for their effect on aggregate/multimer formation (see Table 2). Formulations containing each of these excipients was subjected to physical stress - recirculation pumping - and aggregation was measured by differential scanning calorimetry (DSC) and static light scattering (SLS).

TABLE 2: Excipients Tested for Aggregate Reduction

<table>
<thead>
<tr>
<th>EXCIPIENT</th>
<th>CONCENTRATION</th>
<th>CATEGORY</th>
<th>ENDOGENOUS</th>
<th>REDUCED AGGREGATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-acetylglucosamine (GlcNAc)</td>
<td>4% w/v (180mM)</td>
<td>NAGLU product</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Glucose</td>
<td>4% w/v (222M)</td>
<td>Sugar</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sucrose</td>
<td>8% w/v (234M)</td>
<td>Sugar</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Trehalose</td>
<td>8% w/v (212M)</td>
<td>Sugar</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>4% w/v (220M)</td>
<td>Sugar Alcohol</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Arginine</td>
<td>150mM</td>
<td>Amino Acid</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Histidine</td>
<td>150mM</td>
<td>Amino Acid</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Glycine</td>
<td>150mM</td>
<td>Amino Acid</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Glutamic Acid</td>
<td>25mM</td>
<td>Amino Acid</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Glutamine</td>
<td>150mM</td>
<td>Amino Acid</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Polysorbate 20</td>
<td>0.1% w/v</td>
<td>Detergent</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Poloaxamer 188</td>
<td>0.1% w/v</td>
<td>Detergent</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Lecithin</td>
<td>0.0001% w/v</td>
<td>Phospholipid</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

[0155] As shown in Table 2, N-acetylglucosamine, glucose, sucrose, trehalose, sorbitol, polysorbate 20, and poloxamer 188 were found to reduce aggregate/multimer formation. Of these, trehalose and polysorbate 20, were selected as lead candidate excipients for further work.
Formulations containing various concentrations of trehalose and/or polysorbate 20 were generated in a base containing sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate, and sodium chloride. These were then tested for their ability to reduce aggregates/multimers created by recirculation pumping, four passes of pumping, and freeze/thaw cycling (-40°C/25°C for 20 cycles). In addition, each formulation was tested for stability at accelerated temperatures of 40°C and 25°C. For each condition, aggregation was measured by visible and sub-visible particle count, solution turbidity (OD550), particle size homogeneity, and percent multimers. As shown in Figures 11A and 11B, trehalose reduced particle formation in a dose dependent manner. In addition, the combination of trehalose and polysorbate 20 had the strongest effect on particle formation reduction. Similar results were observed measuring particle formation after each of four passes through a pump, with the combination of both trehalose and polysorbate 20 showing the greatest reduction in particle count (Tables 3 and 4).

TABLE 3: Particles per ml after each stage of pump stress, Trehalose or Polysorbate 20.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Before</th>
<th>Pass 1</th>
<th>Pass 2</th>
<th>Pass 3</th>
<th>Pass 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Trehalose No PS20*</td>
<td>50,520</td>
<td>49,853</td>
<td>138,709</td>
<td>239,257</td>
<td>385,098</td>
</tr>
<tr>
<td>0.005% PS20</td>
<td>55,128</td>
<td>51,523</td>
<td>74,063</td>
<td>88,344</td>
<td>118,344</td>
</tr>
<tr>
<td>8% Trehalose</td>
<td>43,643</td>
<td>25,034</td>
<td>76,281</td>
<td>172,005</td>
<td>269,737</td>
</tr>
<tr>
<td>4% Trehalose</td>
<td>28,511</td>
<td>15,703</td>
<td>87,551</td>
<td>190,998</td>
<td>387,826</td>
</tr>
</tbody>
</table>

*PS20 is polysorbate 20.

TABLE 4: Particles per ml after each stage of pump stress, Trehalose and Polysorbate 20.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Before</th>
<th>Pass 1</th>
<th>Pass 2</th>
<th>Pass 3</th>
<th>Pass 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Trehalose No PS20*</td>
<td>2188</td>
<td>9207</td>
<td>151,514</td>
<td>353,469</td>
<td>528,347</td>
</tr>
<tr>
<td>0.005% PS20</td>
<td>3549</td>
<td>3558</td>
<td>125,017</td>
<td>212,017</td>
<td>276,984</td>
</tr>
<tr>
<td>8% Trehalose 0.005% PS20</td>
<td>2961</td>
<td>2669</td>
<td>40,200</td>
<td>88,129</td>
<td>122,931</td>
</tr>
</tbody>
</table>

*PS20 is polysorbate 20.

After finding an additive or synergistic effect of the combination of trehalose and polysorbate 20 on inhibiting particle formation in response to pumping stress, a number of
trehalose/polysorbate 20 combinations were tested. As shown in Table 5, increasing the amount of either trehalose or polysorbate 20 in the combination decreased the amount of particles formed, with the greatest reduction seen in the combination with the highest trehalose and polysorbate 20 (8% trehalose and 0.005% polysorbate 20). The combination of trehalose and polysorbate 20 was also more effective in the reduction of aggregates formed by twenty freeze/thaw cycles than trehalose or polysorbate 20 alone (Figure 12). As summarized in Table 6, the excipients trehalose and trehalose in combination with polysorbate 20 effectively reduced BMN001 aggregate and multimer formation relative to the original formulation.

TABLE 5: Effect of varying trehalose/polysorbate 20 combinations on particle formation (particles per ml).

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Before</th>
<th>Pass 1</th>
<th>Pass 2</th>
<th>Pass 3</th>
<th>Pass 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Trehalose</td>
<td>5,214</td>
<td>2,871</td>
<td>30,688</td>
<td>94,475</td>
<td>185,233</td>
</tr>
<tr>
<td>No PS20</td>
<td>3,701</td>
<td>2,369</td>
<td>17,674</td>
<td>40,193</td>
<td>80,759</td>
</tr>
<tr>
<td>4% Trehalose 0.0025% PS20</td>
<td>7,610</td>
<td>1,238</td>
<td>7,032</td>
<td>16,271</td>
<td>28,738</td>
</tr>
<tr>
<td>8% Trehalose 0.00125% PS20</td>
<td>8,105</td>
<td>4,357</td>
<td>46,255</td>
<td>81,841</td>
<td>116,240</td>
</tr>
<tr>
<td>8% Trehalose 0.0025% PS20</td>
<td>7,420</td>
<td>9,788</td>
<td>14,931</td>
<td>33,415</td>
<td>51,841</td>
</tr>
<tr>
<td>8% Trehalose 0.005% PS20</td>
<td>3,281</td>
<td>1,426</td>
<td>11,109</td>
<td>11,109</td>
<td>20,386</td>
</tr>
</tbody>
</table>

* PS20 is polysorbate 20.

TABLE 6: Summary of Excipient Effects on Aggregate and Multimer Reduction (percent reduction)

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Pumping Model Aggregate Reduction</th>
<th>Freeze/Thaw Aggregate Reduction</th>
<th>Freeze/Thaw Multimer Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>8% Trehalose</td>
<td>32%</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>8% Trehalose and</td>
<td>90%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

50
From these excipient studies, two additional formulations were identified for use in clinical trials. A formulation containing BMNOO1 at a concentration of about 30 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of about 0.19 mg/ml, sodium phosphate monobasic monohydrate at a concentration of about 0.04 mg/ml, sodium chloride at a concentration of about 0.88 mg/ml, and trehalose at a concentration of about 8% (w/v), at a pH of about 7.0. And a formulation containing BMNOO1 at a concentration of about 30 mg/ml, sodium phosphate dibasic heptahydrate at a concentration of about 0.19 mg/ml, sodium phosphate monobasic monohydrate at a concentration of about 0.04 mg/ml, sodium chloride at a concentration of about 5 mg/ml, trehalose at a concentration of about 4% (w/v), and polysorbate 20 at a concentration of about 0.005%, at a pH of about 7.0.

EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the disclosure described herein. The scope of the present disclosure is not intended to be limited to the above Description, but rather as set forth in the appended claims. The articles "a", "an", and "the" as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to include the plural referents. Claims or descriptions that include "or" between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The disclosure includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The disclosure also includes embodiments in which more
than one, or all, of the group members are present in, employed in, or otherwise relevant to a
given product or process. Furthermore, it is to be understood that the disclosure encompasses
variations, combinations, and permutations in which one or more limitations, elements, clauses,
descriptive terms, etc., from one or more of the claims is introduced into another claim
dependent on the same base claim (or, as relevant, any other claim) unless otherwise indicated or
unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency
would arise. Where elements are presented as lists, e.g., in Markush group or similar format, it is
to be understood that each subgroup of the elements is also disclosed, and any element(s) can be
removed from the group. It should be understood that, in general, where the disclosure, or
aspects of the disclosure, is/are referred to as comprising particular elements, features, etc.,
certain embodiments of the disclosure or aspects of the disclosure consist, or consist essentially
of, such elements, features, etc. For purposes of simplicity those embodiments have not in every
case been specifically set forth herein. It should also be understood that any embodiment of the
disclosure, e.g., any embodiment found within the prior art, can be explicitly excluded from the
claims, regardless of whether the specific exclusion is recited in the specification.

[0160] It should also be understood that, unless clearly indicated to the contrary, in any
methods claimed herein that include more than one act, the order of the acts of the method is not
necessarily limited to the order in which the acts of the method are recited, but the disclosure
includes embodiments in which the order is so limited. Furthermore, where the claims recite a
composition, the disclosure encompasses methods of using the composition and methods of
making the composition. Where the claims recite a composition, it should be understood that the
disclosure encompasses methods of using the composition and methods of making the
composition.

[0161] All publications and patent documents cited in this application are incorporated by
reference in their entirety to the same extent as if the contents of each individual publication or
patent document were incorporated herein.
WHAT IS CLAIMED:

1. A formulation comprising:

 (a) a fusion protein comprising a lysosomal enzyme or functional fragment thereof, a peptide tag having at least 90% sequence identity to SEQ ID NO:2, and a spacer peptide located between the lysosomal enzyme or functional fragment thereof and the peptide tag, the spacer peptide having at least 90% sequence identity to SEQ ID NO:4; and

 (b) one or more components selected from the group consisting of a buffering agent, an isotonicity agent, an electrolyte agent, and an anti-adsorbent agent.

2. The formulation of claim 1 which is aqueous.

3. The formulation of claim 1, wherein the lysosomal enzyme or functional fragment thereof comprises the amino acid sequence of SEQ ID NO:1.

4. The formulation of claim 1, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5.

5. The formulation of claim 1, wherein the fusion protein consists of the amino acid sequence of SEQ ID NO:5.

6. The formulation of claim 1 comprising a buffering agent, an isotonicity agent and an electrolyte agent, and wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5.

7. The formulation of claim 6 comprising sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate, sodium chloride, and trehalose, and wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5.

8. The formulation of claim 7, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5 at a concentration of from about 25 mg/ml to about 35 mg/ml, the sodium phosphate dibasic heptahydrate is at a concentration of from about 0.15 mg/ml to about 0.25 mg/ml, the sodium phosphate monobasic monohydrate is at a concentration of from about 0.03 mg/ml to about 0.05 mg/ml, the sodium chloride is at a concentration of from about 0.8 mg/ml to about 1.0 mg/ml, and the trehalose is at a concentration of from about 7% (w/v) to about 9% (w/v), the formulation having a pH in the range of about 6.5 to about 7.5.
9. The formulation of claim 7, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5 at a concentration of about 30 mg/ml, the sodium phosphate dibasic heptahydrate is at a concentration of about 0.19 mg/ml, the sodium phosphate monobasic monohydrate is at a concentration of about 0.04 mg/ml, the sodium chloride is at a concentration of about 0.88 mg/ml, and the trehalose is at a concentration of about 8% (w/v), the formulation having a pH of about 7.0.

10. The formulation of claim 6 further comprising an anti-adsorbent agent.

11. The formulation of claim 10 comprising sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate, sodium chloride, trehalose, and polysorbate 20, and wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5.

12. The formulation of claim 11, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5 at a concentration of from about 25 mg/ml to about 35 mg/ml, the sodium phosphate dibasic heptahydrate is at a concentration of from about 0.15 mg/ml to about 0.25 mg/ml, the sodium phosphate monobasic monohydrate is at a concentration of from about 0.03 mg/ml to about 0.05 mg/ml, the sodium chloride is at a concentration of from about 4.5 mg/ml to about 5.5 mg/ml, the trehalose is at a concentration of from about 3% (w/v) to about 5% (w/v), and the polysorbate 20 is at a concentration of from 0.0025 % (w/v) to about 0.0075% (w/v), the formulation having a pH in the range of about 6.5 to about 7.5.

13. The formulation of claim 11, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5 at a concentration of about 30 mg/ml, the sodium phosphate dibasic heptahydrate is at a concentration of about 0.19 mg/ml, the sodium phosphate monobasic monohydrate is at a concentration of about 0.04 mg/ml, the sodium chloride is at a concentration of about 5 mg/ml, the trehalose is at a concentration of about 4% (w/v), and the polysorbate 20 is at a concentration of about 0.005% (w/v), the formulation having a pH of about 7.0.

14. The formulation of claim 6 comprising sodium phosphate dibasic heptahydrate, sodium phosphate monobasic monohydrate, sodium chloride, potassium chloride, magnesium chloride hexahydrate and calcium chloride dehydrate, and wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5.
15. The formulation of claim 14, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5 at a concentration of from about 25 mg/ml to about 35 mg/ml, the sodium phosphate dibasic heptahydrate is at a concentration of from about 0.15 mg/ml to about 0.25 mg/ml, the sodium phosphate monobasic monohydrate is at a concentration of from about 0.03 mg/ml to about 0.05 mg/ml, the sodium chloride is at a concentration of from about 8 mg/ml to about 9 mg/ml, the potassium chloride is at a concentration of from about 0.15 mg/ml to about 0.3 mg/ml, the magnesium chloride hexahydrate is at a concentration of from about 0.1 mg/ml to about 0.2 mg/ml, and the calcium chloride dihydrate is at a concentration of from about 0.15 mg/ml to about 0.3 mg/ml, the formulation having a pH in the range of about 6.5 to about 7.5.

16. The formulation of claim 14, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5 at a concentration of about 30 mg/ml, the sodium phosphate dibasic heptahydrate is at a concentration of about 0.19 mg/ml, the sodium phosphate monobasic monohydrate is at a concentration of about 0.04 mg/ml, the sodium chloride is at a concentration of about 8.66 mg/ml, the potassium chloride is at a concentration of about 0.22 mg/ml, the magnesium chloride hexahydrate is at a concentration of about 0.16 mg/ml, and the calcium chloride dihydrate is at a concentration of about 0.21 mg/ml, the formulation having a pH of about 7.0.

17. The formulation of claim 1, which is a lyophilized dry powder.

18. The formulation of claim 1, which is suitable for intrathecal administration to a human subject.

19. A container comprising the formulation of claim 1.

20. The container of claim 19, which is a glass vial.

21. A method of treating MPS IIIB disease in a subject suffering therefrom comprising administering to the subject a therapeutically effective amount of the formulation of any one of claims 1-18.

22. The method of claim 21 comprising administering to the subject the formulation of claim 9.
23. The method of claim 21 comprising administering to the subject the formulation of claim 13.

24. The method of claim 21 that comprising administering to the subject the formulation of claim 16.

25. The method of any one of claims 21-24, wherein the formulation is administered intrathecally.

26. The method of any one of claims 21-24, wherein the formulation is administered intracerebroventricularly.

27. The method of claim 26, wherein the intracerebroventricular administration is isovolumetric.

28. The method of claim 26, wherein the intracerebroventricular administration is performed over a time period of from about 5 minutes to about 240 minutes.

29. The method of claim 26, wherein the intracerebroventricular administration is performed over a time period of from about 5 minutes to about 10 minutes.

30. The method of any one of claims 21-29, wherein the formulation is administered weekly.

31. The method of claim 30, wherein the formulation is administered weekly for at least 24 weeks.

32. The method of claim 30, wherein the formulation is administered weekly for at least 48 weeks.

33. The method of any one of claims 21-32 comprising administering at least about 30 mg/ml of a fusion protein comprising a lysosomal enzyme or functional fragment thereof.

34. The method of claim 33, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5.

35. A method for slowing the rate of decline of at least one symptom of MPS MB disease in a subject suffering therefrom comprising administering to the subject the formulation of any one of claims 1-18.
36. The method of claim 35 comprising administering to the subject the formulation of claim 9.

37. The method of claim 35 comprising administering to the subject the formulation of claim 13.

38. The method of claim 35 comprising administering to the subject the formulation of claim 16.

39. The method of any one of claims 35-38, wherein the formulation is administered intracerebroventricularly.

40. The method of claim 39, wherein the intracerebroventricular administration is isovolumetric.

41. The method of claim 39, wherein the intracerebroventricular administration is performed over a time period of from about 5 minutes to about 240 minutes.

42. The method of claim 39, wherein the intracerebroventricular administration is performed over a time period of from about 5 minutes to about 10 minutes.

43. The method of any one of claims 35-42, wherein the formulation is administered weekly.

44. The method of claim 43, wherein the formulation is administered weekly for at least 24 weeks.

45. The method of claim 43, wherein the formulation is administered weekly for at least 48 weeks.

46. The method of any one of claims 35-45 that results in improvement of at least one symptom of MPS IIIB disease in the subject.

47. The method of any one of claims 35-46, wherein the at least one symptom is selected from the group consisting of cognitive decline, decline in language function, decline in motor function, decline in social-emotional function, decline in adaptive function, decline in conceptual thinking, decline in facial recognition, decline in story completion capability, decline in hand function/dexterity, hearing loss, hyperactivity, aggressiveness, and sleep disturbances.
48. The method of any one of claims 35-47, wherein the reduction in the rate of
decline of the at least one symptom is determined by:

(a) determining the rate of decline of the symptom prior to the administration, and

(b) determining the rate of decline of the symptom subsequent to the administration;

wherein a lower rate of decline of the symptom subsequent to the administration as compared to
prior to the administration is indicative of a reduction in the rate of decline.

49. The method of any one of claims 35-48 further comprising determining a
development quotient (DQ) for the subject prior to the administration and determining a DQ for
the subject subsequent to the administration, wherein a higher DQ for the subject subsequent to
the administration as compared to prior to the administration is indicative of a reduction in the
rate of decline.

50. The method of claim 49, wherein the development quotients are determined using
the Bayley Scales of Infant Development, 3rd Edition (BSID-III) or the Kaufman Assessment
Battery for Children, 2nd Edition (KABC-II) tool.

51. A method for reducing the rate of decline of cognitive function in a subject
suffering from MPS IIIB disease comprising administering to the subject the formulation of any
one of claims 1-18.

52. The method of claim 51 comprising administering to the subject the formulation
of claim 9.

53. The method of claim 51 comprising administering to the subject the formulation
of claim 13.

54. The method of claim 51 comprising administering to the subject the formulation
of claim 16.

55. The method of any one of claims 51 - 54, wherein the formulation is administered
intracerebroventricularly.

56. The method of claim 55, wherein the intracerebroventricular administration is
isovolumetric.
57. The method of claim 55, wherein the intracerebroventricular administration is performed over a time period of from about 5 minutes to about 240 minutes.

58. The method of claim 55, wherein the intracerebroventricular administration is performed over a time period of from about 5 minutes to about 10 minutes.

59. The method of any one of claims 51-57, wherein the formulation is administered weekly.

60. The method of claim 59, wherein the formulation is administered weekly for at least 24 weeks.

61. The method of claim 59, wherein the formulation is administered weekly for at least 48 weeks.

62. The method of any one of claims 51-61 that results in improvement of cognitive function in the subject.

63. The method of any one of claims 51-61, wherein the reduction in the rate of decline of cognitive function in the subject is determined by:

 (a) determining the rate of decline of cognitive function prior to the administration, and

 (b) determining the rate of decline of cognitive function subsequent to the administration;

wherein a lower rate of decline of cognitive function subsequent to the administration as compared to prior to the administration is indicative of a reduction in the rate of decline.

64. The method of any one of claims 51-63 further comprising determining a development quotient (DQ) for the subject prior to the administration and determining a DQ for the subject subsequent to the administration, wherein a higher DQ for the subject subsequent to the administration as compared to prior to the administration is indicative of a reduction in the rate of decline.

65. A method for reducing or preventing glycosaminoglycan (GAG) storage in one or more tissues of the CNS of a subject suffering from a lysosomal storage disorder, comprising administering a therapeutically effective amount of the formulation of any one of claims 1-18.
66. The method of claim 65, wherein the GAG is heparan sulfate and the lysosomal storage disorder is MPS IIIB.

67. The method of claim 66 comprising administering to the subject the formulation of claim 9.

68. The method of claim 66 comprising administering to the subject the formulation of claim 13.

69. The method of claim 66 comprising administering to the subject the formulation of claim 16.

70. The method of any one of claims 65-69, wherein the formulation is administered intracerebroventricularly.

71. The method of claim 70, wherein the intracerebroventricular administration is isovolumetric.

72. The method of claim 70, wherein the intracerebroventricular administration is performed over a time period of from about 5 minutes to about 240 minutes.

73. The method of claim 70, wherein the intracerebroventricular administration is performed over a time period of from about 5 minutes to about 10 minutes.

74. The method of any one of claims 65-73, wherein the formulation is administered weekly.

75. The method of claim 74, wherein the formulation is administered weekly for at least 24 weeks.

76. The method of claim 74, wherein the formulation is administered weekly for at least 48 weeks.

77. The method of any one of claims 65-76 that results in improvement of at least one symptom of MPS IIIB disease in the subject.

78. The method of any one of claims 65-77, wherein GAG storage is reduced in the lysosomes of cells of one or more tissues of the CNS selected from the group consisting of gray matter, white matter, periventricular areas, meninges, pia-arachnoid, deep tissues in the cerebral
cortex, neocortex, cerebellum, caudate/putamen region, molecular layer, deep regions of the pons or medulla, midbrain, and spinal cord neurons.

79. Use of the formulation of any one of claims 1-18 in the preparation of a medicament useful for treating MPS IIIB in a subject suffering therefrom.

80. Use of the formulation of any one of claims 1-18 in the preparation of a medicament useful for reducing the rate of decline of at least one symptom of MPS IIIB disease in a subject suffering therefrom.

81. Use of the formulation of any one of claims 1-18 in the preparation of a medicament useful for reducing the rate of cognitive decline in a subject suffering from MPS IIIB disease.

82. Use of the formulation of any one of claims 1-18 in the preparation of a medicament useful for reducing or preventing GAG storage in one or more tissues of the CNS of a subject suffering from a lysosomal storage disorder.
DEAREAAVRALVARLLGPAPAADFSVSVERALAALKPGLDTYSLGGGGAARVRVRGST
GVAAAAAGLHRYLRDFCGCHVAWSGSQLRLPRPLPAVPGELEATPNNRYRYQNYNVCTQS
YSFVWWWDWARWEREIDWMALNGINLALAWSGQEAIWQRVYLALGLTQAEINEFFTG
PAFLAWGRMGNLHTWDGPLPSPWHIKQLQYHRVLDQMRSFGMTPVLPAPAFAGHVPE
AVTRVPQVNVTNGMWSWHFNCSSYCSFSLAPEDPFIPIIGSLFLRELKEFGTGDHIYGAD
TFNEMQPSSAESPSYLAAATTAVYEAMTAVIDTEAVWLLLQGWLFLQHPQFQFWGAQIRA
VLAGAVPRGRLLVLDFAESQPVYTRTASFQGQPFIWCMLHNFGGNHGLFGALEAVNAG
PEAARLFPNGTMVGTGMAPEGISQNEVYSLMAELGWRKDVPDIALAWVTSAARRY
GVSHPDAGAAWRLLLRSVNCIGEACRGRHNSPLVRPSVLQRPSLQMNTSWYNRSDVFEA
RLLLTSAPSLATSPAFLRLDLTRQAVQELVSYEARSAYLSKELASSLLRAGGVLAYELLP
ALDEVLASDSRFLLSWLEQARAAAVSEAEDFYEQNSRQLTQLWPEGNIILDYANKQL
AGLVANYYTPRWRFLxEALVDSVAQGIPFQHQFDKNVFQLEQAFVLSKQRYPSQPRG
DTVDLAKKFLKYYPRWVAGSW (SEQ ID NO:1)
Figure 2

DEAREAAAAVRLVARLLGPAGPAADFSVSVERALAAKPGLDTYSLLGGGAARVRVGST
GVAAAAGLHRYRDFCGCHVAWSGSQLRLPRPLPAVPGELTEATPNRYRYQNYQVCTQYS
YSFVVWDWARWEREIDWMLONGINLALAWSGQEAIWQRVYALGLTQAIEINEFFTG
PAFLAWGCRMGLHTWDGPLPPSWHIIKQLYQHLRDQLMRSRFGMPVLPAPFHGVPE
AVTRVFPQVNVKMGSWGHFNCSYSCSFLAPEDPIFPIIGSLFLRELIKEFGTDHIYGAD
TFNEMQPPSSPSESVALAAATTAVYEAAMTDTEAVAVLLQQQWLFWHQPQFWGPAQIRA
VLGAVPRGRLLVLSDLFAESQPVYTRTASFQGQPFIWCMMLHNGGNHGLFGALEAVNGG
PEAARLFPNSTMVGTGMAPEGISQNEVYVSLMAELGWRKDPVPDLAAMWTSFAARRY
GVSHPDAGAAWRLLRSSYVYNCSGEACRGHNRSPLVRRPSLQMNTSWYNRSDVFEAW
RLLLTSAPSLATPSAFRYDLDLTRLQAVQELVSLYEEARSAYLSKELASLRRAGGVLAYELLP
ALDEVLASBSFLGCSSLQWLEQARAAAVSEAADFYEQNSRYQLTLWGPEGNILDYANKQL
AGLVANYTTPWRLFLELVDSVAQGIPFQHQFDKNVFQLEAQFLSKQRYPSQPRG
DTVDLAKKIFLKYYPRWVAGSWGAPGGGSPAPAPTPPAAPTPAPAGGGPSGAPLCCGGE
LVDLQFVCGRGFYFSRPASRVSARSGVEECCFRSDLALLETCATPAKSE (SEQ ID
NO:5)
Figure 3
Figure 4

![Graph showing a linear relationship between CNS Tissue HS (pmol/mg protein) and CSF HS (ug/mL) with an r^2 value of 0.824.](image-url)
Western Blot of MPS IIIB Dog Study Cerebellum Homogenates

Thermo AC17 LAMP2

\[\approx 110 \text{ kDa} \]

β-actin

\[45 \text{ kDa} \]

<table>
<thead>
<tr>
<th>Sample</th>
<th>LAMP2 Cell Lysate</th>
<th>CHO-K1 Cell Lysate</th>
<th>Dog 1</th>
<th>Dog 2</th>
<th>Dog 3</th>
<th>Dog 4</th>
<th>Dog 5</th>
<th>Dog 6</th>
<th>Dog 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canine LAMP2 Transfected</td>
<td>+</td>
<td>-</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>MPS IIIB Affected</td>
<td>N/A</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>BMN 250 Treatment</td>
<td>N/A</td>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Figure 7

Cerebellar Mean Diffusivity

- WT + Vehicle
- NAGLU-null + Vehicle
- NAGLU-null + 12 mg BMN01
- NAGLU-null + 48 mg BMN01

Visit 1, Visit 2, Visit 3, Visit 4, Visit 5, Visit 6
Figure 8
Figure 9

The figure shows bar graphs comparing HS (Total HS and MPS IIIB NRE) levels across different subjects and weeks. The x-axis represents different subjects and time points: Normal Controls, Subject C Week 1, Subject C Week 24, Subject A Week 1, and Subject B Week 1. The y-axis represents the HS or NRE levels in mg/L, ranging from 0.00 to 0.70. The graph indicates a comparison of HS and MPS IIIB NRE levels across these conditions.
Figure 10

The figure shows two graphs with data points indicating the levels of Total HS (MG/L) and MPS IIIb NE (MG/L) over the study visit weeks. The graphs compare the data for Subject A and Subject B.
Figure 11B

Different conditions are depicted on the graph:
- ▲ aCSF
- × 0.5% Trehalose
- ○ 4% Trehalose
- ▼ 8% Trehalose
- ▲ aCSF 0.005% PS20
- ○ 8% Trehalose 0.005% PS20

The x-axis represents time in minutes, and the y-axis represents absorbance at 550nm.
Figure 12
Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claims Nos.:
 - because they relate to subject matter not required to be searched by this Authority, namely:

2. [] Claims Nos.:
 - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. [] Claims Nos.:
 - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

- see additional sheet

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

 - 7-16, 22-24, 36-38, 52-54, 67-69(completely) ; 1-6, 17-21, 25-35, 39-51 55-66, 70-82(partially)

4. [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- [] The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
- [] The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- [X] No protest accompanied the payment of additional search fees.
INTERNATIONAL SEARCH REPORT

International application No
PCT/US2017/019343

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K38/47 C07K14/65

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>figures 1-3; examples 1-6; sequences 51,566</td>
<td>7-13, 15, 16, 22-24, 36-38, 52-54, 67-69</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.
* See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the International filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "Z" document member of the same patent family

Date of the actual completion of the international search: 12 July 2017
Date of mailing of the international search report: 28/07/2017

Name and mailing address of the ISA/Authorised officer:
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016
Hars, Jesko
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2013/295077 AI (CONCINO MICHAEL F [US] ET AL) 7 November 2013 (2013-11-07) paragraphs [0152], [0155], [0157], [0246]; claims 1,57; sequence 5</td>
<td>1-13, 22, 23, 36, 37, 52</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>A</td>
<td>page 2</td>
<td>1-13, 17-23, 25-37, 39-53, 55-68, 70-82</td>
</tr>
<tr>
<td>Y</td>
<td>RYUZ0 SHI0BARA TAKAYUKI OHI RA: "Devel opment of Artif icial Cerebrospi nal Fl uid: Basi c Experiments , and Phase II and III Cl ini cal Trial s", JOURNAL OF NEUROLOGY & NEUROPHYSIOLOGY, vol. 04. no. 05, 1 January 2013 (2013-01-01), XP055369098, DOI: 10.4172/2155-9562.1000173</td>
<td>15, 16, 24, 38, 54, 69</td>
</tr>
<tr>
<td>A</td>
<td>page 2</td>
<td>1-13, 17-23, 25-37, 39-53, 55-68, 70-82</td>
</tr>
<tr>
<td>Y</td>
<td>wo 2010/148253 A2 (ZYSTOR THERAPEUTICS INC [US]; LEB0WITZ JONATHAN H [US]; CHANG BYE0NG []) 23 December 2010 (2010-12-23) paragraphs [0004], [0089], [0099], [0104], [0108]</td>
<td>15, 16, 24, 38, 54, 69</td>
</tr>
<tr>
<td>A</td>
<td>paragraph</td>
<td>1-6, 17-21, 25-35, 39-51, 55-66, 70-82</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2013295077</td>
<td>07-11-2013</td>
<td>AR 081677 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 081678 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 081679 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 081680 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 081681 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 082025 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL 2012003654 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL 2012003655 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL 2012003656 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL 2012003657 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104857504 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 105233277 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 105664142 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 106139133 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1214419 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1218719 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 031036 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016037504 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016040335 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016040337 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016041755 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016094451 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 702800 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 702803 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 05782013 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 05792013 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 05892013 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 06372013 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 06482013 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2558130 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM T201600385 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201206465 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201212936 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201701899 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013295077 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014271598 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2016158324 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017042977 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017042978 Al</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2011163649 A2</td>
<td>29-12-2011</td>
<td>AU 2011270669 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2017202219 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2805448 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103179980 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2593131 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6045492 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013530989 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130043165 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 605863 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 702808 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2012154575 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201206463 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011318323 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011163649 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 3075386 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2569514 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012148556 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010148253 A2</td>
</tr>
</tbody>
</table>
This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 7-13, 22, 23, 36, 37, 52, 53, 67, 68 (completely); 1-6, 17-21, 25-35, 39-51, 55-66, 70-82 (partially)

A formula on comprising:
(a) a fusion protein comprising a lysosomal enzyme or functional fragment thereof, a peptide having at least 90% sequence identity to SEQ ID NO:2, and a spacer peptide located between the lysosomal enzyme or functional fragment thereof and the peptide having at least 90% sequence identity to SEQ ID NO:4; and
(b) one or more components selected from the group consisting of a buffering agent, an isotonicity agent, an electrolyte agent, and an anti-adsorbent agent, wherein the formula comprises sodi um phosphate di basic heptahydrate, sodi um phosphate monobasic monohydrate, sodi um chloride, and trehalose, and wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5, encompassing human Naglu enzyme.
Therapeutics: used in MPS 111B treatment.

2. claims: 14-16, 24, 38, 54, 69 (completely); 1-6, 17-21, 25-35, 39-51, 55-66, 70-82 (partially)

As invention 1, yet the formula comprises sodi um phosphate di basic heptahydrate, sodi um phosphate monobasic monohydrate, sodi um chloride, potassium sodi um chloride, magnesium sodi um chloride, hexahydrate, and calcium sodi um chloride, and wherein the fusion protein comprises the amino acid sequence of SEQ ID NO:5, encompassing human Naglu enzyme.
Therapeutics: used in MPS 111B treatment.

3-36. claims: 1, 2, 17-21, 25-35, 39-51, 55-66, 70-82 (all partially)

A formula on comprising:
(a) a fusion protein comprising a lysosomal enzyme or functional fragment thereof, a peptide having at least 90% sequence identity to SEQ ID NO:2, and a spacer peptide located between the lysosomal enzyme or functional fragment thereof and the peptide having at least 90% sequence identity to SEQ ID NO:4; and
(b) one or more components selected from the group consisting of a buffering agent, an isotonicity agent, an electrolyte agent, and an anti-adsorbent agent, wherein the lysosomal enzyme (compare table 1 on p15-17) comprises within the fusion protein is selected from (inventors on number in brackets): Aci-d-al phal, 4-Gl ucosi dase (3), beta-gal actosidase (4), beta-hexosaminidase A (5), GM2 activator protein (6), beta-hexosaminidase B (7),
al pha-gal actosi dase (8), aryl sul fatase A (9),
gal actosyl cerami dase (10), aci d sph ngomyel i nase (11), aci d cerami dase (12), aci d li pase (13), al pha-L-i duroni dase (14),
i duronate sul fatase (15), heparan N-sul fatase (16),
acetyl -CoA-gl ucosami ni de acetyl transferase (17),
N-acetyl gl ucosami ne-6-sul fatase (18),
gal actosami ne-6-sul fatase (19), aryl sul fatase B (20),
beta-gl ucoroni dase (21), al pha-mannosi dase (22),
beta-mannosi dase (23), al pha-L-fucosi dase (24),
N-aspartyl -beta-gl ucosami ni dase (25), al pha-neurami ni dase (26), al pha-N-acetyl -gal actosami ni dase (27),
N-acetyl gl ucosami ne-l-phosphotransferase (28), cysti ne transport protei n (29), si al i c aci d transport protei n (30),
palmi toyl -protei n thi oesterase (31), tri pepti dyl pepti dase I (32), saposi n A (33), saposi n B (34), saposi n C (35),
saposi n D (36).
Therapeuti c use i n the treatment of the di sease caused by a
dysfuncti on i n sai d lysosomal enzyme.