

July 15, 1969

D. R. FORBUSH

3,455,549

FAN-PROPELLED MERRY-GO-ROUND

Filed Oct. 12, 1967

2 Sheets-Sheet 1

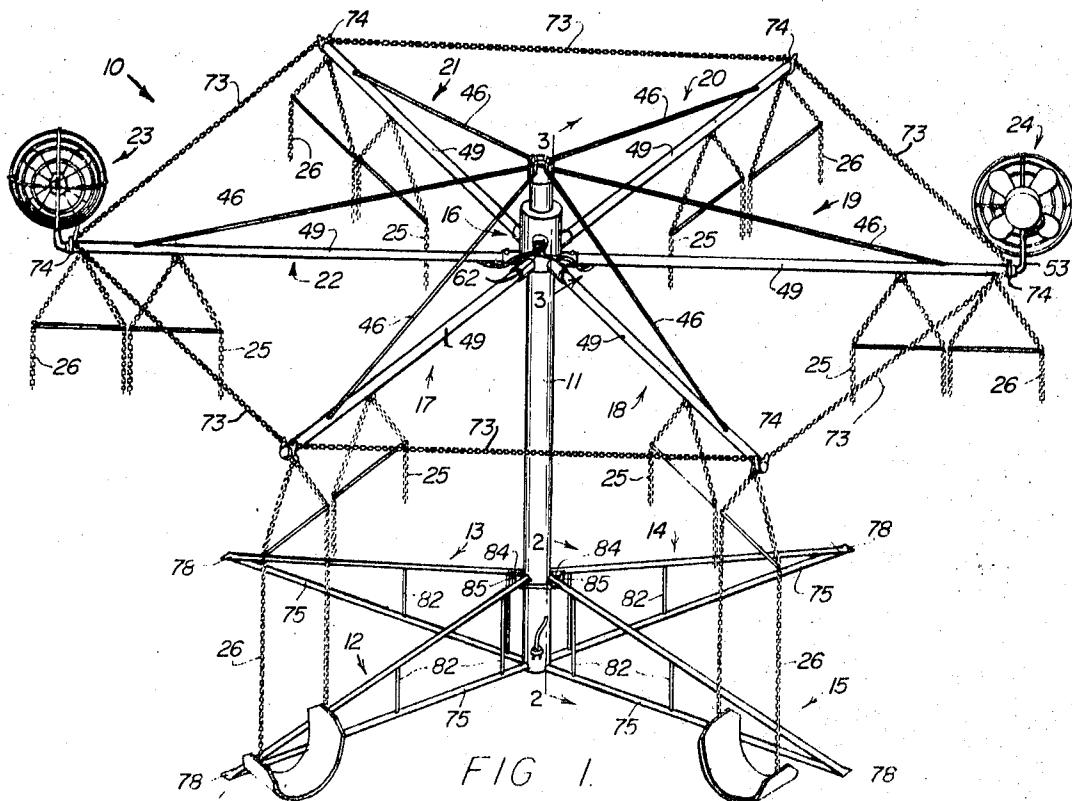


FIG. 2.

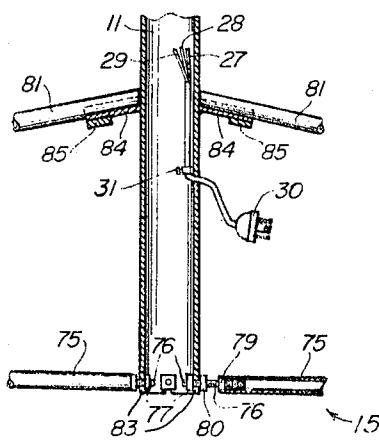


FIG. 3.

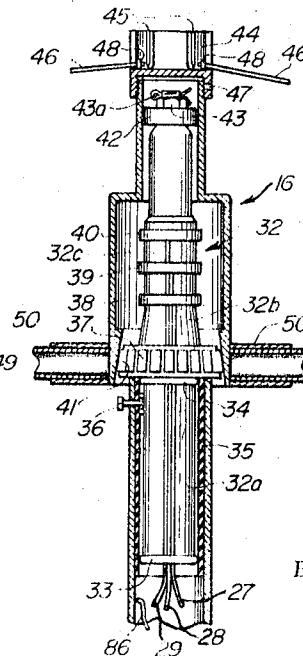
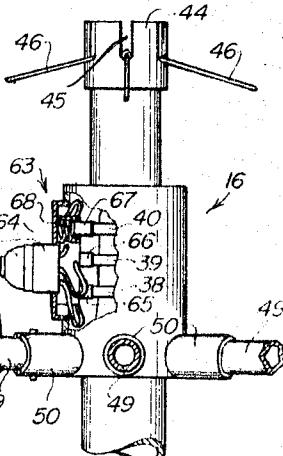



FIG. 4.

INVENTOR:
DELLIS R. FORBUSH.

BY.

B. Deon Middle

ATTORNEY.

July 15, 1969

D. R. FORBUSH

3,455,549

FAN-PROPELLED MERRY-GO-ROUND

Filed Oct. 12, 1967

2 Sheets-Sheet 2

FIG. 5.

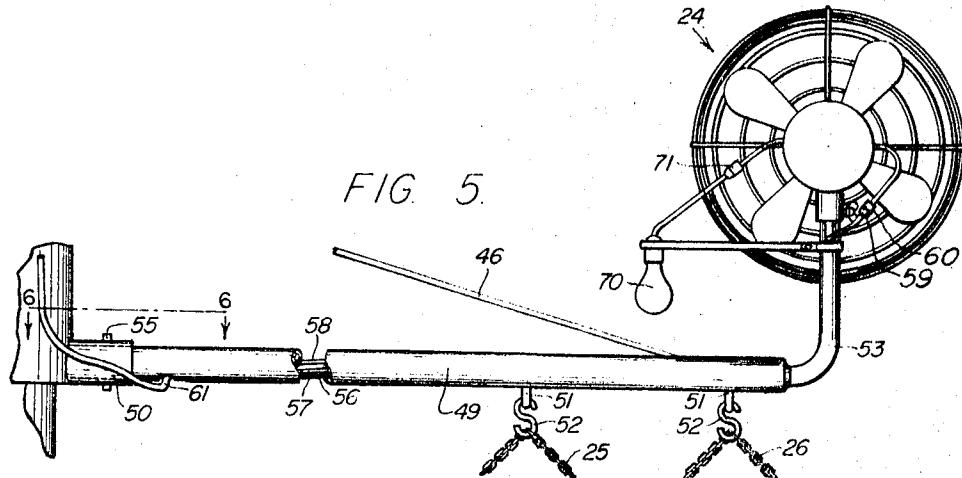


FIG. 6.

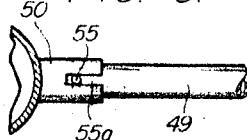
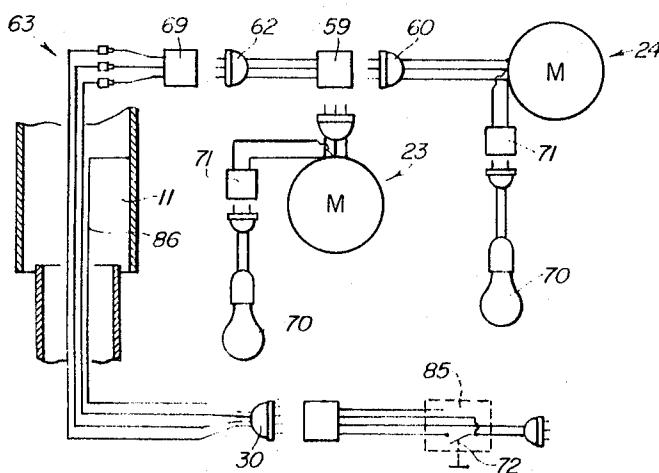



FIG. 7

INVENTOR:
DELLIS R. FORBUSH.

BY:

B. Dean Coddle

ATTORNEY

1

3,455,549

FAN-PROPELLED MERRY-GO-ROUND
Dellis R. Forbush, 1395 E. Creek Road,
Salt Lake City, Utah 84070
Filed Oct. 12, 1967, Ser. No. 674,803
Int. Cl. A63g 1/08, 1/28

U.S. CL. 272—41

8 Claims

ABSTRACT OF THE DISCLOSURE

An improved fan-propelled merry-go-round unit having a center post that is adapted to be held stationary, and rotating arms for carrying suspended, swinging seats. The arms are rotated by at least one fan, removably fixed to one of the arms. The improvements include a simplified, safe, weather-tight, sealed power connection at the junction of the stationary center post and the rotating arms, and a resiliently mounted hub for the radiating swing arms that serves as housing for the power connection and that enables the unit, when disassembled, to be compactly packed for shipping. In addition, the arms and the legs of the base are made to be assembled and disassembled easily, without tools, and the legs are made easily adjustable to hold the unit level on uneven terrain.

BRIEF DESCRIPTION

This invention relates to fan-propelled merry-go-round units of the kind shown by my U.S. Patent No. 2,950,109.

Fan-propelled merry-go-round units of the kind shown by my aforesaid patent have, for the most part, been very successful. However, I have found that the power connection heretofore used at the junction of the stationary center post and the rotating arms has been subject to adverse effects of weather and, since the electrical contacts therein have been exposed, they can be damaged by vandals or mischievous children, or they can easily shock such persons. I have also found that the large hub heretofore used to house the power connection and to support the radiating arms, makes the unit rather difficult to market, since the package required for shipping is entirely too bulky.

In addition, while it has been possible to disassemble the units previously constructed, by removing nuts from the threaded ends of the arms and legs that are inserted through holes in the inverted hub and center post of the merry-go-round, this has not proven as fast and easy as is desired. Since the units are frequently leased for temporary use by church groups, businesses, etc., they must be capable of easy assembly and disassembly, and must be compact for travel.

Principal objects of the present invention are to provide an improved, fan-propelled merry-go-round wherein the electrical circuit connection at the junction of the stationary center post and the rotating arms is enclosed to be completely safe and fully protected against the effects of weather and vandalism, and to utilize a small hub as a housing for such electrical circuit connection so that the unit can be easily packaged, but with the swing arms still being adequately supported by the hub.

Another object is to provide an improved, fan-propelled merry-go-round that can be easily assembled and disassembled in a very short time.

Still another object is to provide such an improved, fan-propelled merry-go-round wherein a more exciting ride is obtained.

2

A principal feature of my invention is a spindle that is surrounded by electrical rings and a conical bearing. The spindle is fixed to a hollow, non-rotating center post, such that lead wires coming up through the post pass inside the conical bearing and inside the electrical rings before being affixed thereto. A closed, sleeve-like hub member, having socket members and spaced slots for holding swing arms is journaled over the spindle and rests on and skirts the conical bearing. A brush unit is removably inserted into a cut-out section of the sleeve, so that electrical brushes carried thereby will engage the electrical rings to electrically connect them to an outlet capable of receiving a conventional plug that is electrically attached to the lead wires of an electric fan. The fan is removably fixed to the remote end of one of the swing arms.

The spindle extends downwardly into the stationary center post, and is resiliently mounted so that persons sitting in swings suspended from the ends of opposite ones of the swing arms will also rock up and down as they swing and are turned by the propelling fan.

The legs for the improved merry-go-round are of triangular truss construction, with a ground engaging member fixed at one end to a strut and with the member and the strut connected along their lengths by short braces.

The ground engaging members have projections at the ends thereof, terminating in large heads, and at least one of the projections is adjustable into and out of its longitudinal member to provide for leveling of the merry-go-round. The leg struts are adapted to rest in cradles provided therefor, that project outwardly from the center post above the bottom thereof. The bottom of the center post is slotted to receive the projections on the end of the ground engaging members, the large heads thereof being held against being pulled through the slots.

Additional objects and features of the invention will become apparent from the following detailed description and drawings, disclosing what is presently contemplated as being the best mode of the invention.

THE DRAWINGS

FIG. 1 is a perspective view of the improved fan-propelled merry-go-round of the invention;

FIG. 2, an enlarged, vertical section, taken on the line 2—2 of FIG. 1;

FIG. 3, an enlarged, vertical section taken on the line 3—3 of FIG. 1;

FIG. 4, an enlarged, fragmentary view of the hub, broken away to show how the brush unit is fitted;

FIG. 5, an enlarged vertical section through a swing arm on which a fan is mounted;

FIG. 6, a view from above, taken on the line 6—6 of FIG. 5; and

FIG. 7, a schematic diagram of the electrical circuit of the merry-go-round unit.

DETAILED DESCRIPTION

Referring now to the drawings:

In the illustrated preferred embodiment, the improved, fan-propelled, merry-go-round is shown at 10 and comprises a center post 11, legs 12—15 for supporting the center post in an upright position, a hub 16 at the top of the center post, a plurality of swing arms 17—22 radiating from the hub; a pair of fans 23 and 24, each fixed to one of the swing arms; and a pair of swings 25 and 26 suspended from each swing arm. As with the merry-go-round disclosed in my aforementioned patent, Patent No. 2,950,109, the arms 17—22, swings 25 and 26, and per-

sons sitting therein are rotated around center post 11 by operation of one or both fans 23 and 24, which are mounted to provide a tangential thrust to the ends of the arms. As they are rotated, occupants of the articulated swings can swing in any direction, i.e. in toward the center post and out away from the post, or back and forth in line with the direction of travel, for example, thus obtaining a combined rotating and swinging ride. As will be explained further, with the present arrangement another aspect is added to the ride to make it even more exciting and occupants of the swings will additionally achieve a rocking or teeter-totter action as they swing and are rotated.

Center post 11 is hollow and has a hole through its side wall, adjacent to the bottom thereof, through which electrical wires 27-29 are passed to be connected to a four pronged electrical plug 30. A clamp 31 is secured to the wires 27-29, inside center post 11 to keep them from being pulled out. Power is supplied to plug 30 from any available source, using an extension cord, not shown, that extends out from the merry-go-round unit on the ground.

Wires 27-29 are passed upwardly through the center post and alongside a spindle 32 that has a portion 32a extending downwardly into the post. A pair of collars 33 and 34 fit tightly around portion 32a at the top and bottom thereof and hold the wires 27-29 tightly against the spindle at the bottom and top of the portion 32a respectively.

Collars 33 and 34 are fitted tightly within a resilient sleeve member 35, preferably made of neoprene rubber or other long lasting resilient material, and the sleeve is secured to the interior of post 11, at its upper end. A set screw 36, threaded through post 11 and extending loosely into a cup provided therefor on spindle 32 at the top of portion 32a holds the spindle in the post, while allowing it to compress sleeve member 35 and to rock.

A conical bearing 37 is mounted to surround a conical portion 32b of spindle 32, just above collar 34 and the wires 27-29 are passed upwardly inside the bearing to spaced commutator rings 38-40 that are mounted, one above the other, on an insulated, straight portion 32c of spindle 32. The wire 27 is electrically connected to the inside of commutator ring 38 and wires 28 and 29 are passed upwardly, inside thereof. Wire 28 is then electrically connected to the inside of commutator ring 39 and wire 29 is passed upwardly inside thereof to be electrically connected to the interior of commutator ring 40.

Hub 16 extends downwardly over spindle 32 and a flared inner surface 41 of the hub fits over bearing 37 so that the hub is supported by the bearing and is freely rotatable. The hub thus skirts the bearing to prevent any material getting into the bearing and damaging it.

Another bearing 42 is mounted on the top of spindle 32 and is held in place by a nut 43, threaded thereon and a cotter key 43a inserted through the spindle, above nut 43. Bearing 42 engages the interior wall of hub 16 and maintains the hub aligned in its upright position.

A cap 44 is screwed on the upper end of hub 16 to close the top of the hub and to provide peripherally spaced slots 45 through which arm struts 46 of the swing arms 17-22 are inserted. On internal set-screw 47 is threaded into the skirt of cap 44 and is adapted to be screwed therethrough to engage the hub and to hold cap 44 in its fixed position.

The arm struts each have an enlarged end 48 that can not be pulled through the slots 45 and their other ends are welded, or otherwise affixed, to longitudinal members 49 at a point close to a free end of the longitudinal members. The other end of each longitudinal member 49 is adapted to be inserted into a close-fitting socket member 50 that radiates outwardly from the lower end of hub 16.

An eye 51 is affixed to each longitudinal member at each point from which a swing is to be hung and is adapted to receive an S-hook 52 at the top of each of the swings 25 and 26.

5 A fan, adapted to propel the swings and their occupants, can be located on any desired arm. Each arm, on which a fan is to be mounted, is provided with a tubular elbow 53, inserted into the free end of the longitudinal member 49 and welded or otherwise affixed thereto, and extending upright therefrom. Pin 55, fixed to the ends of the longitudinal members 49 of those arms on which a fan is to be mounted, extend through slots 55a in their receiving socket members 50 to keep the longitudinal members from turning and the fan, which has a bracket telescoped onto the elbow and secured thereto by a set screw 51, is held in fixed position above the arm. The speed of rotation of the arms can be controlled by changing the direction of thrust of the fan exhaust with maximum effectiveness and speed being obtained when the direction of thrust is tangential to the turning free ends of the arms.

10 Electrical wires 56-58 are passed through the longitudinal member and the elbow and terminate at one end in a jack 59, adapted to receive an electrical plug 60 from the fan and then come out an opening 61 provided therefor in the underside of the longitudinal member 49 to terminate in a plug 62 that is adapted to be inserted into a jack 20 of a brush unit 63.

15 Brush unit 63 includes a housing 64, having guideways therein to receive sliding brushes 65-67 that are adapted to engage the commutator rings 38-40. Springs 68 bias the brushes outwardly from the housing and against the rings so that, even as the brushes and rings become worn, good electrical contact is maintained.

20 The brushes are electrically connected to one or more jacks 69 at the face of the housing 64 so that when one or more plugs 62 are inserted therein a circuit is completed from plug 30 and the extension cord (not shown) connected thereto, to the fan or fans on the swing arms. Also, if desired, lights or other electrically powered devices can be mounted on the merry-go-round and can be plugged into the jacks 69. One or more lights 70, FIGS. 5 and 7 can also be plugged into a socket 71 provided therefor and connected through the motor M of the fan. A switch 40 72, FIG. 7, is provided to cut off power to the motor M, without breaking the circuit to socket 71. Thus, the lights 70, plugged into socket 71 can operate continuously, even though the motor may be turned off.

25 Chains 73 are tautly connected between hooks 74 on the free ends of each of the longitudinal members 49 so that the free ends of the swing arms are mutually supporting.

30 In practice the unit can be easily packaged. The arm struts 46 lay flat against the longitudinal members 49 and they are laid alongside the center post 11 to be boxed. The fans and swings are separately boxed and the legs are compactly wired together.

35 The center post 11 is held upright by legs 12-15 that are attached to and radiate outwardly from the bottom of the post.

40 Each leg includes a ground engaging member 75, having projections 76, terminating in an enlarged head 77 at one end and a flat pad 78 at the other end.

45 Projection 76, of leg 15, is threaded through a nut 79, into and out of the leg, and includes a collar 80 spaced from its head 77.

50 The legs also each include a reinforcement strut 81 that is welded or otherwise affixed at one of its ends to the end of the ground engaging member having the flat pad 78 on the bottom thereof. Cross-braces 82 then interconnect the ground engaging members and the struts so that the legs are of generally triangular, truss construction.

55 Spaced, peripheral slots 83, extend upwardly in the wall of post 11, at the bottom thereof and the projections 76 will pass through the slots, but the enlarged heads 77 and the collar 80 will not.

60 Cradles 84, corresponding to the four legs, and fixed thereto by braces 85, project outwardly from center post 11 to receive the unattached ends of the struts 81 and to hold them against lateral movement.

65 The entire merry-go-round unit can be assembled in

five minutes since it is only necessary to position projections 76 of the ground engaging members 75 of the legs in slots 83 and to pivot the leg trusses to rest in their cradles 84. If the center post is not vertical, after the legs have been attached, the collar 80 can be turned to move its leg in or out, with respect to its projection member 76, until the center post is vertical. The swing arms are connected by positioning the struts 46 in slots 45 and swinging the ends of longitudinal members 49 into socket members 50. The chains 73 are positioned, the fans are placed, tightened and electrically connected, and the swings 25 and 26 are hung from the eyes 51.

All that is required to make the electrical connections is that plug 60 of the fan be inserted into jack 59, plug 62 be inserted into jack 69, and plug 30 be connected to an extension cord that is in turn connected to a suitable power source, through a control housing 85, containing the switch 72. A ground wire 86, fixed to center post 11, can also be connected through plug 30 to the extension cord and the control box to meet local safety codes, if necessary.

Disassembly of the merry-go-round is also a simple matter, and requires only a reversal of the assembly procedure.

While a three wire and three commutator ring electrical system has been here illustrated, it should be obvious that more or less wires and commutator rings could be used, so long as complete electrical circuits are established that are adequate to power the fans, lights, and any other desired pieces of equipment added to the merry-go-round.

Persons sitting in seats suspended from opposite arms will receive a teeter-totter ride since the spindle 32 will move slightly back and forth inside center post 11, compressing resilient sleeve member 35. This action, coupled with the rotation created by the fan or fans and the swinging created by the individual, results in a more exciting ride than has been heretofore obtained.

Although a preferred form of my invention has been herein disclosed, it is to be understood that the present disclosure is made by way of example and that variations are possible without departing from the subject matter coming within the scope of the following claims, which subject matter I regard as my invention.

I claim:

1. An improved, fan-propelled, merry-go-round unit, 45 comprising
 - a hollow center post;
 - a spindle tightly fitted into the upper end of said post and extending upwardly thereabove and including a bearing receiving portion;
 - a conical bearing extending around the bearing receiving portion of the spindle at the top of the center post; a hub, closed at its top and extending downwardly over the spindle and including an interior wall at the bottom thereof adapted to rest on the conical bearing;
 - a bearing fixed to the upper end of the spindle and arranged to engage the inner wall of the hub to hold the hub in alignment on the spindle;
 - a plurality of spaced commutator rings, surrounding, 60 but insulated from the spindle between the said bearings;
 - a plurality of conductors wires extending upwardly through the center post and inside the conical bearing and the commutator rings, with one wire electrically connected to each said commutator ring;
 - an electrical connector member outside the center post at the bottom thereof and electrically connected to the said conductor wires;
 - a plurality of swing arms extending outwardly from the hub, each of said arms having swing supporting means affixed thereto;
 - means interconnecting the free ends of the swing arms to make them mutually supporting;

at least one swing, suspended from each arm by swing supporting means;

at least one fan;

means fixedly, but removably, mounting the fan to the free end of one of the arms;

electric wires interconnecting an electrical connector member at the free end of the arm on which the fan is mounted, and another electrical connector member at the other end;

means, including a mating electrical connector member, interconnecting the fan and the electrical connector member at the free end of the arm;

a brush unit, including a brush for each of the commutator rings and an electrical connector member electrically connected to the said brushes and adapted to matingly receive the electrical connector member connected to the electric wires;

means fixing the brush unit to the hub, whereby the brushes extend into the hub to each engage a commutator ring; and

a plurality of legs, removably fixed to and radiating outwardly from the bottom of the center post.

2. An improved fan-propelled, merry-go-round according to claim 1, wherein

the hub is closed at its top by a cap having vertically extending, circumferentially spaced, slots therein and has a plurality of short socket members radiating outwardly from the bottom thereof; and

the arms each include a longitudinal member, having one end adapted to fit into a socket member, and at least one eye affixed thereto, and a strut having one of its ends fixed to the longitudinal member adjacent to the other end of the longitudinal member and an enlargement at its other end, whereby said strut will rest in one of said slots and the enlargement will not pass through the said slot.

3. An improved fan-propelled merry-go-round according to claim 2, wherein

the center post has vertically extending, circumferentially spaced slots in the bottom thereof; and downwardly sloping cradles radiating outwardly therefrom at a point above the bottom of the center post; and wherein

the legs each include a ground engaging member with a protrusion culminating in an enlargement at one end thereof, a leg strut member angularly fixed to the ground engaging member at the end opposite the protrusion and braces interconnecting the ground engaging member and the leg strut, whereby the protrusions will pass through and the enlargements will not pass through the slots in the bottom of the center post such that when the protrusions are passed through the said slots the leg struts will rest in the said cradle.

4. An improved, fan-propelled merry-go-round according to claim 3, wherein

at least one of the projections on the end of the ground engaging member is threaded into the ground engaging member and wherein a collar is fixed to the projection a spaced distance from the enlargement, whereby the collar can be turned to move the ground engaging member with respect to the projection.

5. An improved, fan-propelled merry-go-round, according to claim 4, wherein

a resilient sleeve member is provided between the center post and the portion of the spindle extending downwardly thereinto.

6. An improved, fan-propelled merry-go-round according to claim 1, wherein

resilient means are provided between the center post and the portion of the spindle extending downwardly thereinto.

7. An improved, fan-propelled merry-go-round according to claim 6, wherein

the resilient means comprises a resilient sleeve.

8. An improved, fan-propelled merry-go-round according to claim 7, wherein the resilient sleeve is of neoprene rubber.

2,206,750 7/1940 Nove ----- 272—31
2,950,109 8/1960 Forbush ----- 272—41
3,015,488 1/1962 Keith et al. ----- 272—39 X

References Cited

UNITED STATES PATENTS

1,120,733 12/1914 Mirano et al. ----- 272—34
1,201,839 10/1916 McCoole ----- 272—34
1,945,697 2/1934 Mallon. -----

5 ANTON O. OECHSLE, Primary Examiner

A. W. KRAMER, Assistant Examiner

U.S. CL. X.R.

272—34