TRI-SPECIFIC ANTIBODIES FOR HIV THERAPY

FIGURE 1

10-15 nm (-12 nm)

-16 nm (?)

GS linker

Abstract: Provided are tri-specific fusion antibodies created to target multiple epitopes of the Human Immunodeficiency Virus (HIV). The fusion antibodies provide improved potency and breadth against HIV as compared to monospecific and bispecific antibodies, and additionally provide a high barrier against viral resistance. Also disclosed are pharmaceutical formulations and therapeutic methods utilizing such fusion proteins.
Published:

- with international search report (Art. 21(3))
TRI-SPECIFIC ANTIBODIES FOR HIV THERAPY

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. patent application no. 62/169,808, filed June 2, 2015, the disclosure of which is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY FUNDED RESEARCH

This invention was made with government support under Grant No. DP1DA033263 awarded by the NIH. The government has certain rights in this invention.

FIELD OF THE DISCLOSURE

The disclosure provides tri-specific antibodies that target multiple epitopes of the Human Immunodeficiency Virus (HIV) virus. The tri-specific antibodies exhibit improved potency and breadth against HIV as compared to monospecific and bispecific antibodies, and additionally provide a high barrier against viral resistance that can be exhibited by HIV when targeted against one or a combination of monoclonal or bi-specific antibodies. Also disclosed are pharmaceutical formulations and therapeutic methods utilizing the tri-specific antibodies.

The formulations and methods are useful for treating HIV infection in a subject, decreasing the viral load of HIV in a patient, and/or preventing the transmission of HIV to subjects.

BACKGROUND

Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection. However, it has been reported that these antibodies exert selective pressure on the virus and escape variants emerge within a short period of time. Since HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies (bNAb) have been studied and shown to effectively control HIV-1 infection and suppress viral load to levels below detection (Nature. 2012 Dec. 6; 492(7427): 118-22). Although broadly neutralizing monoclonal antibodies (bNabs) are considered to be a potential therapeutic option for the prophylaxis and treatment of HIV infection, their lack of breadth against all HIV variants has been one of the limiting factors. Further studies have reported that combinations of different bNabs to generate bispecific HIV-1-neutralizing antibody (bibNab) can provide sufficient neutralization breadth and potency against diverse viruses, including neutralization escape mutants (J
Acquir Immune Defic Syndr. 2014 Aug; 66(5):473-83). However, it also has been previously demonstrated that at least three different HIV antiretroviral small molecules are needed to effectively suppress HIV. This suggests that at least three different HIV targeting monoclonal antibodies would be required for long-term suppression of HIV. The present invention addresses problems of HIV-1 immunotherapy.

SUMMARY OF THE DISCLOSURE

Disclosed herein are tri-specific antibodies created to provide antigen-binding sites that target three distinct epitopes on the HIV envelope. The tri-specific fusion antibodies disclosed herein provide improved potency and breadth against HIV as compared to monospecific and bispecific antibodies, and additionally provide high barrier against viral resistance.

In some embodiments, the tri-specific fusion proteins assume the configuration of an intact IgG molecule directed to a first and second antigen (which can be any isotype, i.e., IgGl, IgG2, IgG3, and IgG4), connected via the CrossMAb methodology, and an antigen-binding domain of a third antibody directed to a third antigen via linkers at the C termini of the CrossMAb's heavy chains. We determined that linking the antigen binding domain of a third antibody directed to a third antigen at the N-terminus did not function.

In specific embodiments, the tri-specific fusion protein comprises three antigen-binding sites that target three distinct epitopes on the HIV envelope.

In additional embodiments, the Fc region of a tri-specific fusion protein has been engineered to provide a better PK profile, including improved stability and improved recycling capability.

The described invention provides a tri-specific fusion antibody, comprising three antigen-binding sites which bind to three distinct epitopes on the HIV envelope. These epitopes can be in any combination of the CD4 binding site, CD4 induced binding site, V1/V2, V2, V3, gp41, gpl20/gp41 and gpl20 domains, in the HIV envelope. In some embodiments, the tri-specific fusion antibody is a tri-specific fusion antibody comprising an intact anti-HIV envelope CrossMAb antibody or a fragment thereof which provides said first and second antigen-binding sites, conjugated to an anti-HIV envelope antibody or a fragment thereof which provides said third antigen-binding site. In some embodiments, the tri-specific fusion antibody is a tri-specific fusion antibody wherein said anti-HIV antibody is humanized or...
monkeynized. In some embodiments, the tri-specific fusion antibody is a tri-specific fusion antibody wherein the tri-specific antibody is additionally modified in the FcRn region to include one or more mutations that improve recycling of the tri-specific antibody. In some embodiments, the tri-specific fusion antibody is a tri-specific fusion antibody wherein the HIV-envelope antibody or fragment thereof is selected from an antibody contained within the tri-specific antibodies listed in Table 1. The described invention further provides a tri-specific fusion antibody comprising a first antigen-binding site which binds to an epitope on the HIV envelope, conjugated to a second antigen-binding site which binds to a second epitope on the HIV envelope; and a third antigen-binding site which binds to a third epitope on the HIV envelope. In some embodiments, the tri-specific fusion antibody is a tri-specific fusion antibody wherein the first antigen-binding site is from an anti-HIV antibody of Table 1. In some embodiments, the tri-specific fusion antibody is a tri-specific fusion antibody wherein the second antigen-binding site is from an anti-HIV antibody of Table 1. In some embodiments, the tri-specific fusion antibody is a tri-specific fusion antibody wherein the third antigen-binding site is from an anti-HIV antibody of Table 1. The described invention further provides methods of treating a subject infected with HIV comprising administering to the subject a therapeutically effective amount of the tri-specific fusion protein according to any one of the fusion proteins described herein. The described invention further provides methods of inhibiting HIV infection in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the tri-specific protein according to any one of the proteins described herein. The described invention further provides methods of inhibiting a HIV-positive pregnant subject from transmitting HIV to the fetus and/or child, comprising administering to the subject and/or child a therapeutically effective amount of the tri-specific fusion protein according to any one of the fusion proteins described herein.

Pharmaceutical formulations and therapeutic methods utilizing the tri-specific proteins disclosed herein also are provided.

In certain and non-limiting embodiments, compositions and methods of this disclosure involve tri-specific antibodies selected from the group consisting of VRC07/PGT128-PGT145; VRC07/PGT128-10E8; VRC07/PGT128-PGT151; VRC07/PGT128-PGDM1400; PGT128/3BNC117-PGDM1400; PGT121/3BNC117-PGDM1400; PGT121/3BNC117-PGT151; 151/07-128, 0-1074/3BNC117-PGDM1400, and all combinations thereof.
BRIEF DESCRIPTION OF THE FIGURES

FIGURE 1 shows an illustrative diagram of a Tri-specific antibody.

FIGURE 2 shows a tri-specific antibody containing the PGT 128, VRC07 and 10E8 antibody domains, which target the V3, CD4 binding site and gp41 domains, respectively, on the HIV envelope and its activity.

FIGURE 3 shows two versions of tri-specific antibodies generated that contained the PGT 128, VRC07 and PGT151 antibody domains, which target the V3, CD4 binding site and gpl20/41 domains, respectively, on the HIV envelope and their activity.

FIGURE 4 shows the different HIV neutralization activities of tri-specific molecules containing the antibody domains PGT 128, VRC07 and PGT151 where, in one variation, the PGT151 domain is placed at the C-terminus of the trispecific molecule and, in another variation, the PGT128 domain is placed at the C-terminus of the trispecific molecule.

FIGURE 5 shows a tri-specific antibody containing the PGT 128, VRC07 and PGT 145 antibody domains, which target the V3, CD4 binding site and V1/V2 domains, respectively, on the HIV envelope, and their activity.

FIGURE 6 shows the neutralization activity of the PGT128, VRC07 and PGT145 trispecific antibody against additional HIV-envelope pseudotyped viruses.

FIGURE 7 shows SEC analysis of tri-specific antibodies.

FIGURE 8 shows Tri-specific fusion antibody vs Tri Mix neutralizing activity in vitro on a panel of 118 multi-clade viruses. TriSpel was tested up to 10ug/ml (57 nm, VRC07/PGT128-PGT151); TriMixl was tested up to 10ug/ml each, 30ug/ml total (200nM) (VRC07+PGT 128+PGT 151)

FIGURE 9 shows the neutralization activity of one trispecific antibody, VRC07/PGT128-PGT151 (TriSpec1) and a mixture of the three parental monoclonal antibodies of the trispecific antibody, VRC07, PGT128 and PGT 151 (TriMix1) against the same panel of 118 multi-clade viruses and normalized by their molar quantity tested.

FIGURE 10 shows TriSpec1 Ab IC80 and MPI analysis.
FIGURE 11 provides data obtained from analyzing the Mechanism of Action (MOA) of the trispecific antibody 128/07-151.

FIGURE 12 provides a summary of data obtained from analyzing MOA for trispecific antibody 128/07-1400.

FIGURE 13 depicts data obtained by analyzing the effect of including a 2x GS or 4x GS as alternatives to a 3x GS linker.

FIGURE 14 provides a summary of data obtained from an analysis of the neutralization activity of four distinct different trispecific antibodies.

FIGURE 15 provides a summary of data obtained by plotting the same data used to generate Figure 14.

FIGURE 16 provides a tabular summary of data presented in Figures 14 and 15 as a calculation of the potency and breadth of the four trispecific antibodies.

FIGURE 17 shows size-exclusion chromatography (SEC) and a summary of pharmacokinetic (PK) data for trispecifics 128/07-151 and 128/07-1400 (3x GS).

FIGURE 18 provides graphical depictions of data obtained from SEC analysis (top panel) and PK profiles (bottom panel).

FIGURE 19 provides results obtained from an in vivo analysis performed with trispecific 121/117-1400.

FIGURE 20 provides results from analysis of an additional trispecific antibody comprised of the PGT121, 3BNC117 and PGT151 antibody moieties in a single molecule.

FIGURE 21 provides an analysis of two additional trispecifics comprising 1) the PGT128, 3BNC117 and PGDM1400 antibody moieties in a single molecule, and 2) the 10-1074, 3BNC117, PGDM1400 antibody moieties in a single molecule.

FIGURE 22 provides CDR sequences for trispecific antibodies 1) VRC07/PGT128-PGT145; 2) VRC07/PGT128-10E8; 3) VRC07/PGT128-PGT151; 4) VRC07/PGT128-PGDM1400; 5) PGT128/3BNC117-PGDM1400; 6) PGT121/3BNC117-PGDM1400; 7) PGT121/3BNC117-PGT151; 8) 151/07-128; and 9) 10-1074/3BNC117-PGDM1400. Figure
also provides alternative names for these trispecific antibodies that are used from time to time in this disclosure. The CDR sequences in FIGURE 22 are also provided in the accompanying sequence listing that forms a part of this disclosure.

DETAILED DESCRIPTION

The present invention provides fusion antibodies created to include three different HIV epitopes into one antibody-like molecule (a "tri-specific fusion antibody"). These different HIV epitopes can include, but are not limited to, the CD4 binding site, CD4 induced binding site, V1/V2 region, V2 region, V3 region, gp41, gpl20/gp41 interface and gpl20 domain, or fragments thereof. The tri-specific fusion antibodies provide improved potency and breadth against HIV as compared to monospecific and bispecific antibodies. Such fusion antibodies also provide a high barrier against development of viral resistance. For example, it is demonstrated in the present disclosure that certain of the instant trispecific antibodies can neutralize up to 100% of 118 pseudotyped viruses that are present in an HIV panel that is used to test neutralization efficacy. Thus, it is considered that trispecific antibodies of this disclosure can be used to overcome, for example, preexisting resistance of HIV to monospecific and bispecific anti-HIV antibodies that are directed to the same epitopes as the trispecific antibodies described herein. It is accordingly expected that trispecific antibodies of this disclosure will be effective in overcoming resistance that may develop by mutations in any one of the three particular epitopes that are targeted by the trispecific antibodies.

The basic structure of the fusion proteins disclosed herein is typically a whole IgG-like molecule containing a first and second antigen-binding site directed to a first and second antigen via the CrossMAb methodology, and third antigen-binding site created through the dimerization of a variable heavy chain domain and a variable light chain domain that are each genetically linked to the C-termini of the heavy chains of the first and second antigen binding domains (see Figure 1). Tri-specific antibodies display an HIV neutralization activity with good potency and breadth against HIV, and at a similar potency and breadth to that of the three parental monoclonal antibodies administered as a mixture. However, the trispecific antibody allows for this neutralization activity in one molecule, instead of three, and at a lower molar quantity of total antibody. Data indicates that the pharmacokinetics of this trispecific antibody in mice can be similar to that of traditional monoclonal antibodies, and the HIV envelope targeting tri-specific antibody is expected to allow for FcR binding and antibody-dependent cellular cytotoxicity (ADCC) in vitro and in vivo.
The features and applications of these trispecific fusion antibodies are described further below.

Definitions

An "antigen" refers to a molecule which contains one or more epitopes and which is capable of eliciting an immunological response. "Antigenic molecules" are also used in a general sense to refer to molecules that are binding targets of the fusion proteins disclosed herein.

An "epitope", also known as antigenic determinant, is the portion of an antigenic molecule or molecules that is recognized by the immune system, i.e., B cells, T cells or antibodies. An epitope can be a conformational epitope or a linear epitope. A conformational epitope is formed by discontinuous sections of an antigenic molecule, or formed by multiple molecules. In the case where the antigen is a protein, a conformational epitope can be formed by discontinuous amino acid residues of the same protein molecule, or by amino acid residues on different molecules of the protein (e.g., a quaternary epitope formed by a multimer of the protein). A linear epitope is formed by continuous sections of an antigen, e.g., a continuous sequence of amino acids of a protein antigen.

The term "antibody" is used herein broadly and encompasses intact antibody molecules, which include intact polyclonal, monoclonal, monospecific, polyspecific, chimeric, humanized, human, primatized, single-chain, single-domain, synthetic and recombinant antibodies, and antibody fragments that have a desired activity or function.

The term "chimeric antibody" refers to antibodies containing polypeptides from different sources, e.g., different species or different antibody class or subclass. Examples of chimeric antibodies include an antigen-binding portion of a murine monoclonal antibody fused an Fc fragment of a human immunoglobulin. Methods for making chimeric antibodies are known in the art.

The term "humanized antibody" refers to antibodies that contain non-human sequence elements in a human immunoglobulin backbone or framework. Generally, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region (CDRs) of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having a desired specificity, affinity and capacity. In some instances, framework
region (FR) residues of the human immunoglobulin are also replaced by non-human residues. Humanized antibodies may also, in some instances, contain residues that are not found in either the recipient antibody or the donor antibody and introduced to further refine antibody performance. In general, a humanized antibody contains substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin sequence. A humanized antibody optionally also contains at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. Methods for making humanized antibodies are documented in the art.

The term "primatized antibody" refers to antibodies that contain non-primate sequence elements in a primate immunoglobulin backbone or framework. For example, primatized antibodies can be made from a primate immunoglobulin (recipient antibody) by replacing residues in a hypervariable region (CDRs) of the recipient antibody with residues from a hypervariable region of a donor antibody from a non-primate species such as mouse, rat, rabbit or nonhuman primate having a desired specificity, affinity and capacity. Alternatively, primatized antibodies can be made suitable for administration to a desirable primate species by using a recipient immunoglobulin having non-primate sequences or sequences from a different primate species and introducing the Fc fragment, and/or residues, including particularly framework region residues, from the desirable primate, into the recipient immunoglobulin. Examples of primatized antibodies include "monkeynized" antibodies disclosed herein in the Examples section.

The term "monospecific antibody" refers to antibodies that recognize and bind to one epitope.

The term "polyspecific antibody" refers to antibodies formed from at least two separate antibodies and binding to multiple (i.e., two or more) separate epitopes.

As described above, the term "antibody" also includes fragments of an intact antibody, or "antibody fragments", including particularly antigen-binding fragments of an intact antibody. Examples of antigen-binding fragments include, but are not limited to, Fab fragments (consisting of the VL, VH, CL and CHI domains), Fab' fragments (which differs from Fab fragments by having an additional few residues at the C-terminus of the CHI domain including one or more cysteines from the antibody hinge region), (Fab').sub.2 fragments
(formed by two Fab' fragments linked by a disulphide bridge at the hinge region), Fd
fragments (consisting of the VH and CHI domains), Fv fragments (referring to a dimer of
one heavy and one light chain variable domain in tight, non-covalent association which
contains a complete antigen recognition and binding site), dAb fragments (consisting of a VH
domain), single domain fragments (VH domain, VL domain, VHH domain, or VNAR
domain), isolated CDR regions, scFv (or "single chain Fv", referring to a fusion of the VL
and VH domains, linked together via a linker), and other antibody fragments that retain
antigen-binding function.

The term "CDR" or "complementarity determining region" refers to the hypervariable regions
within the variable domain of an antibody. There are 3 CDRs in each of the heavy chain and
light chain variable domains, and are composed of amino acid residues responsible for
antigen-binding. The term "framework region" or "FR" refers to the more conserved portions
of the variable domains and is composed of residues other than the hypervariable region
residues.

The term "antigen-binding site" of an antibody means a conformation and/or configuration
formed by amino acids of the antibody to which an antigen binds. For example, the three
CDRs of each of the VH and VL domains interact to define an antigen-binding site on the
surface of the VH-VL dimer. Together, the six CDRs confer antigen-binding specificity to
the antibody. It should be noted, however, a single variable domain (i.e., VH or VL) can also
recognize and bind antigen, albeit often less effectively than the whole binding site with all
six CDRs.

The term "neutralizing antibody" refers to an antibody that inhibits, reduces or completely
prevents HIV-1 infection. Whether an antibody is a neutralizing antibody can be determined
by in vitro assays described in the Examples section below.

The term "potent neutralizing antibody" refers to an antibody which, when used at a low
concentration, reduces HIV-1 infection by at least 50%, 60%, 70%, 80%, 90%, 95%, 99% or
greater. Concentrations below 50 ug/ml, between 1 and 50 ug/ml, or even below 1 ug/ml, are
considered "low concentrations". In some embodiments, low concentrations are
concentrations in the picomolar range, such as 10-900 ng/ml, and include any concentration
in that range, such as 800, 700, 600, 500, 400, 300, 200, 100, 75, 50, 25, 10 ng/ml, or even
less than 10 ng/ml.
The term "broad neutralizing antibody" refers to an antibody which inhibits HIV-1 infection, as defined by a 50% inhibition of infection in vitro, in more than 50%, 60%, 70%, 80%, 90%, 95%, 99% or greater, of a large panel of (greater than 100) HIV-1 envelope pseudotyped viruses and viral isolates.

The term "fragment" as used herein refers to a physically contiguous portion of the primary structure of a biomolecule. In the case of proteins, a fragment may be defined by a contiguous portion of the amino acid sequence of a protein and may be at least 3-5 amino acids, at least 6-10 amino acids, at least 11-15 amino acids, at least 16-24 amino acids, at least 25-30 amino acids, at least 30-45 amino acids and up to the full length of the protein minus a few amino acids. In the case of polynucleotides, a fragment is defined by a contiguous portion of the nucleic acid sequence of a polynucleotide and may be at least 9-15 nucleotides, at least 15-30 nucleotides, at least 31-45 nucleotides, at least 46-74 nucleotides, at least 75-90 nucleotides, and at least 90-130 nucleotides. In some embodiments, fragments of biomolecules are immunogenic fragments.

A "fusion protein" refers to two or more peptides of different origins connected to each other via a linker or linkers. For example, a fusion protein can include a protein conjugated to an antibody. Other examples include, an antibody conjugated to a different antibody or an antibody conjugated to a Fab fragment. The Fab fragment can be conjugated to the N terminus or C terminus of the heavy or light chain of the antibody, or other regions within the antibody. The term fusion protein and fusion construct are used herein interchangeably.

A "peptide" is any compound formed by the linkage of two or more amino acids by amide (peptide) bonds, usually a polymer of alpha-amino acids in which the alpha-amino group of each amino acid residue (except the NH2 terminus) is linked to the alpha-carboxyl group of the next residue in a linear chain. The terms peptide, polypeptide and poly(amino acid) are used synonymously herein to refer to this class of compounds without restriction as to size, unless indicated to the contrary. Members of this class having a large size are also referred to as proteins and include antibodies.

The term "linker" refers to a chemical moiety that connects one peptide to another, e.g., one antibody to another. Linkers can also be used to attach antibodies to labels or solid substrates. A linker can include amino acids. Linkers can be straight or branched, saturated or unsaturated carbon chains. They can also include one or more heteroatoms within the chain.
or at the termini of the chains. By "heteroatoms" is meant atoms other than carbon which are chosen from the group comprising of oxygen, nitrogen, sulfur, phosphorus, boron and halogen. In specific embodiments, linkers are peptides. The use of a linker may or may not be advantageous or needed, depending on the specific antibody pairs. Methods and techniques for the attachment of a linker to an antibody are known in the art.

Fusion Antibody Targeting Multiple HIV Epitopes

The described invention is directed to tri-specific fusion antibodies that contain three different HIV antigen-binding sites in one antibody-like molecule (a "trispecific fusion antibody"). The epitopes typically include the CD4 binding site, CD4 induced binding site, V1/V2 region, V2 region, V3 region, gp41, gpl20/gp41 interface or gpl20 domain that target the HIV envelope. Fusion antibodies having specificities towards simply three different antigens are also referred to herein as "tri-specific antibodies." Tri-specific fusion antibodies can be modified to include additional antigen binding sites to provide other polyspecific antibodies. For example, a tri-specific fusion antibody includes different HIV targeting epitopes such as the CD4 binding site, CD4 induced binding site, V1/V2 region, V2 region, V3 region, gp41, gpl20/gp41 interface or gpl20 domain.

To make the tri-specific fusion antibodies, we synthesized multiple codon optimized variable heavy chain and variable light chain genes that each targeted a unique epitope on the HIV envelope. The first and second antigen binding sites can be engineered using the CrossMab methodology (see, for example, Proc Natl Acad Sci USA. 2011 Jul 5; 108(27): 11187-92, incorporated herein by reference in its entirety). For the CrossMab portion of the molecules, one heavy chain targeting epitope A with the hole and cross mutation was synthesized. A second heavy chain targeting epitope B with the knob mutation also was synthesized to ensure efficient heterodimerization of these two distinct heavy chains via the knob-in-hole pairing. To ensure efficient light chain pairings with the appropriate heavy chain partners, one light chain targeting epitope A with the cross mutation was synthesized and one light chain targeting epitope B was synthesized. To create trispecificity in these molecules, a variable light chain gene targeting epitope C was genetically linked to the C-terminus of the heavy chain hole gene with a 3x GS linker, and a variable heavy chain gene targeting epitope C was genetically linked to the C-terminus of the heavy chain knob gene with a 3x GS linker. Additionally, linkers of different lengths can be used such as, but not limited to, 2x GS linkers and 4xGS linkers, to 50xGS linkers. Thus, when the two distinct heavy chains of the
CrossMab form a heterodimer, it brings together the variable heavy and light chain domains of the epitope C-targeting moiety that functions as a third HIV neutralizing moiety.

Each codon optimized gene mentioned above was synthesized and cloned into a plasmid vector to generate a total of four plasmids per trispecific antibody. To produce the antibody, the four plasmids were transfected into 293 cells, and the resulting trispecific antibody produced was purified on a Protein A column for use in functional characterization experiments.

Generally speaking, the structure of the fusion proteins disclosed herein is composed of an intact IgG-like molecule containing a first and second antigen-binding site directed to a first and second antigen via the CrossMab methodology, and a third antigen-binding site created through the dimerization of a variable heavy chain domain and a variable light chain domain that are each genetically linked to the C-termini of the variable heavy chains of the first and second antigen binding domains. For example, a fusion antibody having tri-specificities towards HIV can be formed by conjugating an intact CrossMab antibody with two antigen-binding fragments of two separate anti-HIV antibodies, and a third antigen-binding site created through the dimerization of a variable heavy chain domain and a variable light chain domain that are each genetically linked to the C-termini of the heavy chains of the first and second antigen binding domains. Alternately, a fusion antibody having tri-specificities can be formed by conjugating 3 antigen-binding fragments of 3 separate anti-HIV antibodies. In each of these scenarios, a tri-specific fusion antibody contain antigen-binding sites that bind to any combination of epitopes on the HIV envelope or any combination thereof (see Example 1, Example 2 for non-limiting illustrations).

Anti-HIV Env antibodies have been described in the art and can also be readily generated by those skilled in the art. The env gene encodes a precursor protein, gpl60. During HIV reproduction, the endogenous enzymes of the host cell cleave gpl60 into gpl20 and gp41. Illustrative and specific examples of tri-specific anti-HIV Env antibodies are shown in Table 1.

In some embodiments, anti-HIV antibodies used herein in forming a tri-specific fusion antibody are directed to an epitope on an envelope protein of HIV, e.g., gpl20 monomer or trimer, or gp41. Examples of anti-HIV antibodies suitable for use herein include, but are not limited to, VRC07, PGT128, 10E8, PGT151, PGT145, PGDM1400, 3BNC117, and PGT121.
In some embodiments, a fusion antibody having tri-specificities towards the HIV envelope is composed of a CrossMAb antibody, conjugated with (i.e., covalently linked to) an antigen-binding fragment of a third distinct anti-HIV antibody or fragments thereof. As defined above, an antigen-binding fragment of anti-HIV antibody including Fab fragments, Fab’ fragments, (Fab’)$_2$ fragments, Fd fragments, Fv fragments, dAb fragments, single domain fragments, isolated CDR regions, scFvs, and other antibody fragments that retain HIV-binding function of an anti-HIV antibody. The antigen-binding fragments are fused to the C-termini of the heavy chains of the CrossMAb antibody. In some embodiments, the antigen-binding fragment is a single chain of the VH domain linked to the C-terminus of the heavy chain domain of a relevant anti-HIV antibody; while in other embodiments, the antigen-binding fragment is a single chain of the VL domain linked to the C-terminus of the heavy chain domain of a relevant anti-HIV antibody. Alternately, the tri-specific fusion antibody can contain three antigen-binding fragments of an anti-HIV antibody.

The linkage between the three antibody components, i.e., between the three distinct anti-HIV antibody portions, and/or between the VH and/or VL domains of an antigen-binding fragment, may be achieved by a peptide linker. The length of a linker is generally in the range of 5 to 50 amino acids, and in specific embodiments, in the range of 9-25 amino acids, such as 9, 12, 16, 20 or 24 amino acids. The linkers can be synthetic or native human antibody-derived sequences, or a combination of both. Generally speaking, the linkers are principally composed of relatively small, neutral amino acids, such as Glycine, Serine, Alanine, and can include multiple copies of a sequence enriched in Glycine and Serine, such as multiple copies of GGGGS (SEQ ID NO:54).

The tri-specific fusion antibodies disclosed herein can be produced by utilizing techniques available to those skilled in the art. For example, DNA molecules encoding a desirable tri-specific fusion antibody can be constructed based on the coding sequence of the three antibody components of the fusion using molecular cloning techniques. The resulting DNAs can be placed into expression vectors which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, human embryonic kidney 293 cells, or myeloma cells including murine myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
As discussed above, trispecific antibodies of this disclosure can include CDR segments from the variable heavy (VH) and variable light (VL) chains from anti-HIV antibodies VRC07, PGT128, 10E8, PGT151, PGT145, PGDM1400, 3BNC117, PGT121 and 10-1074. The disclosure accordingly includes trispecific antibodies that each comprise six variable segments, three of which comprise VH chains, and three of which are VL chains. The three VH chains in each trispecific antibody of this disclosure comprise sets of three CDR1, CDR2 and CDR3 sequences selected from the VH CDR1, CDR2 and CDR3 sequences of the VRC07, PGT128, 10E8, PGT151, PGT145, PGDM1400, 3BNC117, PGT121 and 10-1074 antibodies. Likewise, the three VL chains in each trispecific antibody comprise sets of three CDR1, CDR2 and CDR3 sequences selected from the VL CDR1, CDR2 and CDR3 sequences of the VRC07, PGT128, 10E8, PGT151, PGT145, PGDM1400, 3BNC117, PGT121 and 10-1074 antibodies. The CDR sequences are provided in Figure 22, which also provides in the "Trispecific Antibody Name(s)" column alternative nomenclature for the aforementioned antibodies that are used from time to time in the instant specification and figures. In non-limiting embodiments the present disclosure provides demonstrations of nine distinct trispecific antibodies described herein, sequences for which are described herein and presented in Figure 22, as:

1) VRC07/PGT128-PGT145, also referred to as 128/07-145 (see, Figures 5, 6, 14, 15, 20, 22) or PGT128/PGT07-PGT145 (see Figure 7);

2) VRC07/PGT128-10E8 (see, Figure 2), also referred to as 07/128-10E8 (see, Figure 2, upper right panel);

3) VRC07/PGT128-PGT151 (see, Figure 8), also referred to as 128/07-151 (see, Figures 3, 4, 11, 13-16), also referred to as PGT128/PGT07-PGT151 (see, Figures 7 and 17) or TriSpel (see, Figures 8-10);

4) VRC07/PGT128-PGDM1400, also referred to as PGTM1400 (see, Figures 17 and 21), also referred to as 128/07-1400 (see, Figures 12, 14, 15, 16, and 18);

5) PGT12B/3BNC117-PGDM1400 (see, Figure 21);

6) PGT121/3BNC117-PGDM1400 (see, Figure 19), also referred to as 121/17-1400 (see, Figures 14-16);
7) PGT121/3BNC1 17-PGT151 (see, Figure 20);

8) 151/07-128 (see, Figures 3 and 4); and

9) 10-1074/3BNC1 17-PGDM1400 (see, Figure 21).

As discussed above, the trispecific antibodies of this disclosure include a CrossMab portion comprising one heavy chain targeting epitope A with so-called hole mutation and a second heavy chain targeting epitope B with a so-called knob mutation. To facilitate efficient light chain pairings with the appropriate heavy chain partners, one light chain targeting epitope A with the cross mutation was synthesized and one light chain targeting epitope B was synthesized. To create tri-specificity, a variable light chain gene targeting epitope C was genetically linked to the C-terminus of the heavy chain hole gene with a GS linker, and a variable heavy chain gene targeting epitope C was genetically linked to the C-terminus of the heavy chain knob gene with a GS linker. In another embodiment, a variable heavy chain gene targeting epitope C can be genetically linked to the C-terminus of the heavy chain hole gene with a GS linker, and a variable light chain gene targeting epitope C can be genetically linked to the C-terminus of the heavy chain knob gene with a GS linker.

CDR sequences of the representative nine trispecific antibodies discussed above are provided in Figure 22, and below. Figure 22 provides in the leftmost column indications of Figures where the particular trispecific antibody names are used. Sequence identifiers for unique antibody subunit CDRs as provided in Figure 22 are as follows (there is no significance as between upper and lower case in the amino acid sequences of Figure 22 or in this detailed description):

SEQ ID NO: 1 - NSFWGWVR
SEQ ID NO:2 - SYWNRGWT
SEQ ID NO:3 - FGGEVLRYTDWPKPAWVDL
SEQ ID NO:4 - GNSFSNHD
SEQ ID NO:5 - MSHEGDKT
SEQ ID NO:6 - GSKHRLRDFLYNEYGPNYEEWGDYLATLDV
SEQ ID NO:7 - GTSNNF
SEQ ID NO:8 - DVN
SEQ ID NO:9 - NCPIN
SEQ ID NCvI0 - WMKPRGAIVSYARQLQG
SEQ ID NCvII - GKYCTARDYYNWDFEH
SEQ ID NO:12 - HSLQHSTGANY
SEQ ID NO:13 - LAT
SEQ ID NO:14 - MQGLHSPWT
SEQ ID NO:15 - GFDFDNAW
SEQ ID NO:16 - ITGPGEWGV
SEQ ID NO:17 - TGYYDFWSSGYPGEYFQD
SEQ ID NO:18 - RGDLSRHSHYAS
SEQ ID NO:19 - GKNRPS
SEQ ID NO:20 - SSRDKGSRLSV
SEQ ID NO:21 - DFPFSKYP
SEQ ID NO:22 - ISGDAWHV
SEQ ID NO:23 - ARMFQEGPPRLDRWSGRNYYYYYSGMDV
SEQ ID NO:24 - ESLRQSNGKTS
SEQ ID NO:25 - EVS
SEQ ID NO:26 - MQSKDFPLT
SEQ ID NO:27 - QYGS
SEQ ID NO:28 - SGST
SEQ ID NO:29 - QQYEF
SEQ ID NO:30 - GNTLKTYD
SEQ ID NO:31 - ISHEGDKK
SEQ ID NO:32 - CAGSKKHRLRD YALYDDGALNW AVDVLYL SNLEFW
SEQ ID NO:33 - GASISDSY
SEQ ID NO:34 - VHKSCTT
SEQ ID NO:35 - TLHGRRHGYIVAFNEWFTYFYMDV
By way of non-limiting illustration, one embodiment of this disclosure is exemplified by the trispecific antibody termed "VRC07/PGT128-10E8" which is illustrated in Figure 2 as:

![Diagram of trispecific antibody](image-url)
The CDR sequences for the VH and VL chains are given in the row of Figure 22 having the VRC07/PGT128-10E8 term in the Trispecific Antibody Name(s) column, and is the second trispecific from the top. The sequences are provided starting at the top of the arms of the antibody and are accordingly shown in the N->C terminal orientation. As can be seen from Figure 22 the "PGT128 Heavy Chain Knob 10E8 VH" CDR sequences start at the left arm of the heavy chain variable region segment (VH) and are from the PGT128 antibody and are: SEQ ID NO: 1 - NSFWGWVR (CDR1), SEQ ID NO: 2 - SYWNRGWT (CDR2) and SEQ ID NO: 3 - FGGEVLRYTDWPKPAWVDL (CDR3). Continuing in the N->C terminal orientation in the heavy chain segment of the left arm in the illustration, and as shown in the VRC07/PGT128-10E8 sequence in Figure 22, the second set of VH CDRs are from the 10E8 antibody, and have the 10E8 VH CDR sequences SEQ ID NO: 15 gfdfdaw (CDR1), SEQ ID NO: 16 - itgpgegwsv (CDR2) and SEQ ID NO: 17 - tgyydfwsgypgeeyfqd (CDR3).

Turning to the light chain VL sequences of the left arm of the VRC07/PGT128-10E8 construct, they are comprised of the CDR VL sequences from the PGT128 antibody (PGT128 Light Chain) and as shown in Figure 22 are: SEQ ID NO: 7 - GTSNNF (CDR1), SEQ ID NO: 8 - DVN (CDR2) and SEQ ID NO: 53 - GSLVGNWDVI (CDR3).

Turning to the "right arm" of the VRC07/PGT128-10E8 construct, the heavy chain (VH) VRC07 sequences beginning at the top of the right heavy chain arm (Heavy Chain HoleCross 10E8VL) are: SEQ ID NO: 9 - ncpin (CDR1), SEQ ID NO: 10 - wmkprggavsvyarqog (CDR2), and SEQ ID NO: 11 - gkycyardynwdfeh (CDR3). Continuing in the N->C terminal orientation, which in the case of the VRC07/PGT128-10E8 construct comprises a set of VL CDRs from the 10E8 antibody, which comprise: SEQ ID NO: 18 - rgdsrlrhyas (CDR1), SEQ ID NO: 19 - gknrps (CDR2) and SEQ ID NO: 20 - ssrdkgsrslsv (CDR3). Finally, the light chain (VLCH1) of the VRC07/PGT128-10E8 right arm (top) comprises the VRC07 Light Chain VL and IgG CHI sequences, which are SEQ ID NO: 27 - qygs (CDR1), SEQ ID NO: 28 - sgst (CDR2), and SEQ ID NO: 29 qqyef (CDR3).

In another non-limiting embodiment, the disclosure comprises the trispecific antibody termed PGT121/3BNC1 17-PGDM1400. As can be seen from Figure 22, PGT121/3BNC1 17-PGDM1400 comprises a contiguous polypeptide that is the PGT121 Heavy Chain Knob PGDM1400VH sequence, which comprises these VH CDRs in the N->C orientation: SEQ ID NO: 33 - GASISDSY (CDR1); SEQ ID NO: 34 - VHKSdT (CDR2), and SEQ ID NO: 35 - TLHGRRIYGIVAFNEWFTYFYM D (CDR3) from PGT121 VH, followed by VH CDR
sequences from the PGDM1400 antibody, and have the PGDM1400 VH CDR sequences
SEQ ID NO:30 - GNTLKTYD (CDR1), SEQ ID NO:31 - ISHEGDKK (CDR2), and SEQ ID
NO:32 - CAKGSKHRLRDYALYDDDGALNWAVDVYLSNLEFW (CDR3). This is
paired with the PGT121 Light Chain comprising SEQ ID NO:36 - SLGSRA (CDR1), SEQ
ID NO:37 NNQ (CDR2) and SEQ ID NO:38 - HIWDSRVPVKWV (CDR3). The other half
of PGT121/3BNC1 17-PGDM1400 that pairs with the foregoing PGT121 Heavy Chain Knob
PGDM1400 VH sequence is 3BNC1 17 Heavy Chain HoleCross PGDM1400 VL and
comprises from the N->C orientation a contiguous polypeptide that comprises the
3BNC1 17 VH CDR sequences SEQ ID NO:39 - DYFIH (CDR1), SEQ ID NO:40 -
WINPKTGQPNNPRQFQG (CDR2) and SEQ ID NO:41 - QRSDDYWD (CDR3), followed by
the PGDM1400 VL sequences SEQ ID NO:42 - HSLIHGDRNNY (CDR1), SEQ ID NO:43
- LAS (CDR2) and SEQ ID NO:44 - CMQGRESPWTF (CDR3). This is paired with the
3BNC1 17 Light Chain VLCHI sequences, which comprises the CDR sequences SEQ ID
NO:45 - QANGYLN (CDR1), SEQ ID NO:46 - DGSQLER (CDR2) and SEQ ID NO:47 -
QVYEF (CDR3).

The produced fusion antibodies can be evaluated in in vitro assays to assess their
functionality, e.g., binding to the HIV envelope and anti-HIV potency and breadth. In specific
embodiments, this disclosure provides potent and broad tri-specific fusion antibodies, with
potency and breadth being defined as hereinabove. These antibodies are described in more
details in the Examples section.

In certain embodiments, the disclosure comprises a tri-specific antibody of this disclosure in a
complex with one or more HIV particles, wherein the complex comprises a non-covalent
interaction between an HIV antigenic molecule and the tri-specific antibody, i.e., a non-
covalent interaction between at least one epitope recognition portion of a tri-specific antibody
(VH, and VL segments, i.e., the tri-specific antibody CDR-containing segments, for example)
and an epitope present on the HIV particle, such as on the HIV envelope.

Modifications to Antibodies

Humanization and Primatization

In cases where the tri-specific fusion antibody or the three antibodies forming the tri-specific
fusion antibody are non-human antibodies, the antibody can be "humanized" to reduce
immunogenicity to a human recipient. Methods for humanizing non-human antibodies have
been described in the art. See, e.g., Jones et al., Nature 321:522-525 (1986); Riechmann et al,
No. 4,816,567. Generally, residues from the variable domain of a non-human antibody are
"imported" into a human immunoglobulin molecule, resulting in antibodies in which some
hypervariable region residues and possibly some FR residues of a human antibody are
substituted by residues from analogous sites of non-human antibodies. It is important to
humanize a non-human antibody while retaining high affinity for the antigen. To this end,
three dimensional immunoglobulin models are commonly available and suitable for use in
analyzing proposed humanized sequences in comparison to the parental non-human
antibodies. Such analysis permits identification of residues likely involved in recognition and
binding of the antigen, and therefore rational design of humanized sequences that retain the
specificity and affinity for the antigen.

In specific embodiments, tri-specific fusion antibodies are formed from anti-HIV human or
humanized antibodies.

Similarly, a tri-specific fusion antibody or the three antibodies forming the fusion can be
"primatized" to reduce immunogenicity to another primate, non-human recipient, e.g., a
rhesus recipient. Residues from the variable domain of a donor antibody (such as a non-
primate antibody or an antibody of a primate species different from the recipient primate) are
"imported" into a nonhuman primate recipient immunoglobulin molecule, resulting in
antibodies in which some hypervariable region residues and possibly some FR residues of a
nonhuman primate antibody are substituted by residues from analogous sites of donor
antibodies. Alternatively, primatized antibodies can be made for use in a desirable primate
species by using a recipient immunoglobulin having non-primate sequences or sequences
from a different primate species by introducing the Fc fragment, and/or residues, including
particularly framework region residues, from the desirable primate, into the recipient
immunoglobulin.

Affinity Maturation

One or more hypervariable region residues of an antibody can be substituted to select for
variants that have improved biological properties relative to the parent antibody by
employing, e.g., affinity maturation using phage or yeast display. For example, the Fab
region of an anti-HIV antibody can be mutated at several sites selected based on available
structural information to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from phage particles or on the surface of yeast cells. The displayed variants are then screened for their biological activity (e.g. binding affinity).

5 Modifications to the Fc Region

The fusion antibody or the intact antibody used in forming the fusion, which can be of any IgG isotype from any primate species including human, can be modified to improve certain biological properties of the antibody, e.g., to improve stability, to enhance or reduce effector functions such as antigen-dependent cell-mediated cytotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody, improved or decreased internalization and/or recycling, among others.

For example, the Fc fragment of some antibodies (derived from human Ig4) can be replaced with human IgG1 that increases effector function mediated through FcRs (except FcRn). Such modification may improve the stability of the resulting antibody by about 5 fold. In another example, the IgG1 Fc fragment can be modified to improve the recycling of the antibody via the antibody salvage pathway.

Still another type of modification involves alteration of the glycosylation pattern of a parent antibody, including deletions of one or more carbohydrate moieties found in the parent antibody, or addition of one or more carbohydrates (via addition of one or more glycosylation sites) that are not present in the parent antibody.

Pharmaceutical Formulations

Pharmaceutical formulations of the fusion antibody proteins disclosed can be prepared by mixing a fusion protein with optional pharmaceutically acceptable carriers. Pharmaceutically acceptable carriers include solvents, dispersion media, isotonic agents and the like. The carrier can be liquid, semi-solid, e.g. pastes, or solid carriers. Examples of carriers include water, saline solutions or other buffers (such as phosphate, citrate buffers), oil, alcohol, proteins (such as serum albumin, gelatin), carbohydrates (such as monosaccharides, disaccharides, and other carbohydrates including glucose, sucrose, trehalose, mannose, mannitol, sorbitol or dextrins), gel, lipids, liposomes, resins, porous matrices, binders, fillers, coatings, stabilizers, preservatives, antioxidants including ascorbic acid and methionine,
chelating agents such as EDTA; salt forming counter-ions such as sodium; non-ionic surfactants such as TWEEN.TM, PLURONICS.TM, or polyethylene glycol (PEG), or combinations thereof.

The formulation can contain more than one active compound, e.g., one or more fusion antibodies, in combination with one or more additional beneficial compound for preventing and treating HIV infections.

The active ingredients can be combined with the carrier in any convenient and practical manner, e.g., by admixture, solution, suspension, emulsification, encapsulation, absorption and the like, and can be made in formulations such as tablets, capsules, powder (including lyophilized powder), syrup, suspensions that are suitable for injections, ingestions, infusion, or the like. Sustained-release preparations can also be prepared.

Methods of Treatment and Prevention

In a further aspect, the tri-specific fusion antibodies disclosed herein, optionally provided in pharmaceutically acceptable carrier, are employed for the treatment and prevention of HIV infection in a subject, as well as prevention of HIV transmission.

The term "treatment" of HIV infection refers to effective inhibition of the HIV infection so as to delay the onset, slow down the progression, reduce viral load, and/or ameliorate the symptoms caused by HIV infection.

The term "prevention" of HIV infection means the onset of HIV infection is delayed, and/or the incidence or likelihood of HIV infection is reduced or eliminated.

The term "prevention" of HIV transmission means the incidence or likelihood of HIV being transmitted from one individual to another (e.g., from an HIV-positive woman to the child during pregnancy, labor or delivery, or breastfeeding) is reduced or eliminated.

The term "subject" refers to any primate subject, including human and rhesus subjects.

To treat and/or prevent HIV infection, a therapeutic amount of a fusion antibody disclosed herein is administered to a subject in need.

The term "therapeutically effective amount" means the dose required to effect an inhibition of HIV infection so as to treat and/or prevent HIV infection. The dosage of a fusion antibody
depends on the disease state and other clinical factors, such as weight and condition of the subject, the subject's response to the therapy, the type of formulations and the route of administration. The precise dosage to be therapeutically effective and non-detrimental can be determined by those skilled in the art. As a general rule, a suitable dose of a fusion antibody for the administration to adult humans parenterally is in the range of about 0.1 to 20 mg/kg of patient body weight per day, once a week, or even once a month, with the typical initial range used being in the range of about 2 to 10 mg/kg. Since the antibodies will eventually be cleared from the bloodstream, re-administration may be required. Alternatively, implantation or injection of the fusion antibodies provided in a controlled release matrix can be employed.

The fusion antibodies can be administered to the subject by standard routes, including the oral, transdermal, parenteral (e.g., intravenous, intraperitoneal, intradermal, subcutaneous or intramuscular). In addition, the antibodies can be introduced into the body, by injection or by surgical implantation or attachment such that a significant amount of a desirable antibody is able to enter blood stream in a controlled release fashion.

The description of some specific embodiments provides sufficient information that others can, by applying current knowledge, readily modify or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. In the drawings and the description, there have been disclosed exemplary embodiments and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the claims therefore not being so limited. Moreover, one skilled in the art will appreciate that certain steps of the methods discussed herein may be sequenced in alternative order or steps may be combined. Therefore, it is intended that the appended claims not be limited to the particular embodiment disclosed herein.

The present description is further illustrated by the following examples, which should not be construed as limiting in any way. The contents of all cited references (including literature references, issued patents, and published patent applications as cited throughout this application) are hereby expressly incorporated by reference.
A number of trispecific antibodies targeting different epitopes on the HIV envelope were generated and tested and are listed in Table 1.

Table 1. Tri-specific fusion antibodies and their HIV epitope targets.

<table>
<thead>
<tr>
<th>Trispecific Antibodies</th>
<th>HIV Epitope Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRC07/PGT128-10E8</td>
<td>CD4bs, V3, gp41</td>
</tr>
<tr>
<td>VRC07/10E8-PGT128</td>
<td>CD4bs, gp41, V3</td>
</tr>
<tr>
<td>VRC07/PGT128-PGT151</td>
<td>CD4bs, V3, gp120/41</td>
</tr>
<tr>
<td>VRC07/PGT151-PGT128</td>
<td>CD4bs, gp120/41, V3</td>
</tr>
<tr>
<td>VRC07/PGT128-PGT145</td>
<td>CD4bs, V3, V1/V2</td>
</tr>
<tr>
<td>VRC07/PGT128-PGD1M1400</td>
<td>CD4bs, V3, V1/V2</td>
</tr>
<tr>
<td>3BNC117/PGT145-PGT128</td>
<td>CD4bs, V1/V2, V3</td>
</tr>
<tr>
<td>3BNC117/PGT145-10E8</td>
<td>CD4bs, V1/V2, gp41</td>
</tr>
<tr>
<td>3BNC117/10E8-PGT128</td>
<td>CD4bs, gp41, V3</td>
</tr>
<tr>
<td>PGT128/PGT151-VRC07</td>
<td>V3, gp120/41, CD4bs</td>
</tr>
<tr>
<td>PGT145/10E8-PGT128</td>
<td>V1/V2, gp41, V3</td>
</tr>
<tr>
<td>PGT140/PGT121-PGT151</td>
<td>V1/V2, V3, gp120/41</td>
</tr>
<tr>
<td>VRC07/PGT121-PGT151</td>
<td>CD4bs, V3, gp120/41</td>
</tr>
<tr>
<td>VRC07/PGT151-PGD1M1400</td>
<td>CD4bs, gp120/41, V1/V2</td>
</tr>
<tr>
<td>PGT121/PGT151-PGD1M1400</td>
<td>V3, gp120/41, V1/V2</td>
</tr>
<tr>
<td>VRC07/PGT121-PGD1M1400</td>
<td>CD4bs, V3, V1/V2</td>
</tr>
<tr>
<td>PGT121/PGD1M1400-PGT151</td>
<td>V3, V1/V2, gp120/41</td>
</tr>
<tr>
<td>PGT121/3BNC117-PGT151</td>
<td>V3, CD4bs, gp120/41</td>
</tr>
<tr>
<td>PGT128/3BNC117-PGD1M1400</td>
<td>V3, CD4bs, V1/V2</td>
</tr>
<tr>
<td>10-1074/3BNC117-PGD1M1400</td>
<td>V3, CD4bs, V1/V2</td>
</tr>
</tbody>
</table>
EXAMPLE 2. Tri-specific fusion antibody: VRC07/PGT128-10E8 activity

A tri-specific fusion antibody was generated, containing the PGT128, VRC07 and 10E8 antibody domains, which target the V3, CD4 binding site and gp41 domains, respectively, on the HIV envelope. See Figure 2. The graphs indicate the HIV neutralization activity of the trispecific antibody (07/128-10E8) against a number of different HIV-envelope pseudotyped viruses. For comparison, the neutralization activities of two of the parental mAbs used to derive this trispecific antibody were tested alone and in combination (VRC07, PGT128 and 07+128), and a bispecific antibody comprised of these two parental antibodies (VRC07/128) also was tested.

EXAMPLE 3: Tri-specific fusion antibody: VRC07, PGT128 and PCT151 combination.

Two versions of tri-specific antibodies were generated that contained the PGT128, VRC07 and PGT151 antibody domains, which target the V3, CD4 binding site and gp120/41 domains, respectively, on the HIV envelope. In one variation, the C-terminal domain of the trispecific antibody contained the PGT151 antibody moiety and, in a second variation, the C-terminal domain of the trispecific antibody contained the PGT128 antibody. The graphs indicate the HIV neutralization activity of the trispecific antibodies (128/07-151 and 151/07-128) against a number of different HIV-envelope pseudotyped viruses. For comparison, the neutralization activities of the three parental mAbs used to derive this trispecific antibody were tested alone and in combination (VRC07, PGT128, PGT151, 128+07+151), and a bispecific antibody comprised of two of the parental antibodies (128/07 (XM)) was also tested (see Figure 3).

EXAMPLE 4: Tri-specific fusion antibody: VRC07, PGT128 and PGT151 combination.

Even though two different tri-specific antibodies contain the same three antibody domains, the orientation and placement of these antibody domains along the molecule affect the neutralization activity of the tri-specific antibody. Figure 4 demonstrates the different HIV neutralization activities of tri-specific molecules containing the antibody domains PGT128, VRC07 and PGT151 where, in one variation, the PGT151 domain is placed at the C-terminus of the trispecific molecule and, in another variation, the PGT128 domain is placed at the C-terminus of the trispecific molecule. Orientation of the three antibody domains matters: PGT128/VRC07-PGT151 is more active than PGT151/VRC07-PGT128.
EXAMPLE 5: Tri-specific fusion antibody: VRC07, PGT 128 and PGT 145 combination.

A tri-specific antibody, the PGT 128, VRC07 and PGT 145 antibody domains, which target the V3, CD4 binding site and V1/V2 domains, respectively, on the HIV envelope, was generated (See Figure 5). The graphs show the HIV neutralization activity of the trispecific antibody (128/07-145) against a number of different HIV-envelope pseudotyped viruses. For comparison, the neutralization activities of the three parental mAbs used to derive this trispecific antibody were tested alone and in combination (VRC07, PGT128, PGT145 and 128 + 07 + 145), and a bispecific antibody comprised of two of the parental antibodies (128/07 (XM)) was also tested.

EXAMPLE 6: Tri-specific fusion antibody: VRC07, PGT 128 and PGT 145 combination activity against HIV-envelope pseudotyped viruses.

The neutralization activity of the PGT128, VRC07 and PGT145 trispecific antibody and respective controls of Example 5 also were tested against additional HIV-envelope pseudotyped viruses (see Figure 6).

EXAMPLE 7: SEC analysis of tri-specific antibodies

The biophysical properties of trispecific antibodies were assessed by size exclusion chromatography (SEC). The sharp, single peaks exhibited by each of the trispecific antibodies indicate that these trispecific antibodies display similar monomer and aggregation profiles to traditional monoclonal antibodies (see Figure 7).

EXAMPLE 8: Tri-specific fusion antibody vs TriMix neutralizing activity in vitro

The neutralization activity of one trispecific antibody, VRC07/PGT128-PGT151 (TriSpel), was tested for its potency and breadth against a large panel of HIV envelope-pseudotyped viruses representing envelope diversity by geography and clade (see Figure 8). As a control, the three parental monoclonal antibodies of the trispecific antibody, VRC07, PGT128 and PGT 151 (TriMixl) were mixed together and tested for their combined neutralization activity against the same panel of viruses. The inhibitory concentration 50% (IC50) of TriMixl was slightly better than that of TriSpel, and the inhibitory concentration 80% (IC80) and maximum percent inhibition (MPI) were comparable between TriSpel and TriMixl.
EXAMPLE 9: Antiviral coverage of tri-specific antibody vs. tri-mixture (against 118 viruses).

The neutralization activity of one trispecific antibody, VRC07/PGT128-PGT151 (TriSpecl) and a mixture of the three parental monoclonal antibodies of the trispecific antibody, VRC07, PGT128 and PGT 151 (TriMixl) against the same panel of pseudotyped viruses and normalized by their molar quantity were tested (see Figure 9). These data demonstrate that a lower molar quantity of TriSpecl can achieve the same level of viral inhibitory concentration 50% (IC50) coverage as TriMixl.

EXAMPLE 10: TriSpecl Ab IC80 and MPI analysis

TriSpecl also neutralizes almost every virus in the 118 pseudotyped virus panel as indicated by the maximum percent inhibition (MPI) of TriSpecl against each virus in the panel (see Figure 10). The corresponding inhibitory concentration 80% (IC80) of TriSpecl against each virus in the panel is also presented, and indicates a mean IC80 of 0.0592 ug/mL across the entire virus panel.

EXAMPLE 11: Mechanism of Action (MOA) analysis.

Additional analysis of the MOA of the trispecific antibodies shown in Figure 11 were performed. The analysis was initiated with 128/07-151 and systematically knocked out one of the HIV epitope targeting antibody moieties by replacing it with a nonspecific antibody referred to as 2G4. The activity of the trispecific mutants against two different HIV envelope pseudotyped viruses (278-50 and 458) was then tested in vitro. In this way, the relative contribution of each of the three antibody moieties that comprise this trispecific was determined. From this approach it can be concluded that each arm of the trispecific contributes to the overall trispecific’s HIV neutralization activity.

EXAMPLE 12

In a similar approach to that taken Figure 11, a knockout experiment was performed with a second trispecific antibody (128/07-1400) and led to the same determination, i.e that each arm of the trispecific contributes to the overall trispecific’s HIV neutralization activity, as demonstrated by the data shown in Figure 12.
EXAMPLE 13

As described above, certain trispecific constructs of this disclosure comprise a 3x GS linker in order to fuse the C-terminal antibody moiety to the rest of the molecule. Figure 13 depicts data obtained by analyzing the effect of including a 2x GS or 4x GS as alternatives to the 3x GS linker. In particular, using trispecific 128/07-151, we tested 2x GS, 3x GS, and 4x GS linker length variants and the activity of these different trispecific variants in connection with neutralizing two different HIV strains (278-50 and 458). The results indicate that fusing the C-terminal antibody moiety with a 4x GS linker provided the highest HIV neutralization activity. 128/07-151 with a 4x GS linker also displayed suitable physicochemical homogeneity and minimal aggregation when evaluated by size exclusion chromatography (bottom right graph), which is similar to the size exclusion chromatography data for trispecifics discussed above.

EXAMPLE 14

Figure 14 provides a summary of data obtained from an analysis of the neutralization activity of 4 different trispecific antibodies (with either a 3x GS linker or a 4x GS linker fused to the C-terminal moiety) against a large panel of 118 HIV enveloped pseudotyped viruses. All 4 constructs performed well in this assay, thus indicating favorable potency and breadth against HIV.

EXAMPLE 15

Data summarized in Figure 15 were obtained by plotting the same data used to generate Figure 14, and graphically illustrate that all four trispecific antibodies tested neutralize up to or nearly 100% of the 118 pseudovirus panel tested with favorable potency.

EXAMPLE 16

Figure 16 provides a tabular summary of data presented in Figures 14 and 15 as a calculation of the potency and breadth of the same four trispecific antibodies. The data demonstrate a median 80% inhibitory concentration (IC_{80}) ranging from 0.041 ug/mL to 0.172 ug/mL and, at these concentrations, could neutralize between 95.0 and 98.3% of the 118 pseudovirus panel.
EXAMPLE 17

Size-exclusion chromatography (SEC) and pharmacokinetics (PK) are provided in Figure 17 for trispecifics 128/07-151 and 128/07-1400. SEC is shown in the top panels, while data summarized in the bottom panels represent in vivo PK profiles after administration to wild-type mice. Data summarized in the bottom panels demonstrate that 128/07-1400 has distinctly superior in vivo bioavailability and PK profile relative to that of 128/07-151.

EXAMPLE 18

Figure 18 provides graphical depictions of data obtained from SEC analysis (top panel) and PK profiles (bottom panel). The SEC data represent the stability, physicochemical homogeneity, and monomeric quality of trispecifics 128/07-145 (3GS) and 128/07-1400 (4GS). 128/07-145 (3GS) has suitable biophysical characteristics, as does 128/07-1400 (4GS) (which also had a minor fraction of aggregation). The bottom panels show in vivo PK profiles after administration to wild-type mice. 128/07-145 (3G) had suitable bioavailability and overall pharmacokinetics; 128/07-1400 (4GS) had improved bioavailability relative to 3GS; 4GS may clear from animals at a faster rate relative to 3G.

EXAMPLE 19

An in vivo efficacy analysis with was performed with trispecific 121/117-1400 and data resulting from it are summarized in Figure 19. To obtain these data, humanized mice received repeated injections with the trispecific antibody, and then were challenged with human HIVJRCSF while the antibody was present in vivo. While all the control animals that did not receive antibody became infected with HIV-1 after viral challenge (blue line/diamonds), 100% of those animals that received the trispecific antibody remained protected and HIV negative (red line/squares).

EXAMPLE 20

As shown in Figure 20, an additional trispecific antibody relative to those discussed above, comprised of the PGT121, 3BNC117 and PGT151 antibody moieties in a single molecule, neutralizes two different transmitted-founder pseudotyped viruses (TF4 and TF6) just as well as a combination of the 3 mAb mixtures of PGT121, 3BNC117 and PGT151.
EXAMPLE 2

As shown in Figure 21, two additional trispecific antibodies relative to those discussed above, comprising 1) the PGT128, 3BNC117 and PDGM1400 antibody moieties in a single molecule, and 2) the 10-1074, 3BNC117, PDGM1400 antibody moieties in a single molecule, neutralize two different pseudotyped viruses (1006 and 246F) with efficacy similar to another trispecific antibody discussed above, PGT128/VRC07-PGDM1400.
What is claimed is:

1. A tri-specific antibody, comprising first, second and third antigen-binding sites which are capable of binding with specificity to first, second and third distinct epitopes that are comprised by a Human Immunodeficiency Virus (HIV).

2. The tri-specific antibody of Claim 1, comprising an intact anti-HIV envelope antibody or a fragment thereof which provides said first antigen-binding site, conjugated to an anti-HIV envelope antibody or a fragment thereof which provides said second antigen-binding site, conjugated to an anti-HIV envelope antibody or a fragment thereof which provides said third antigen-binding site.

3. The tri-specific antibody of Claim 1, wherein the first, second and third HIV epitopes are selected from the group consisting of a CD4 binding site, CD4 induced binding site, V1/V2 region, V2 region, V3 region, gp41 domain, gpl20/gp41 interface, gpl20 domain of the HIV envelope monomer or trimer, and combinations thereof.

4. The tri-specific antibody of Claim 2, wherein said anti-HIV antibody is humanized or monkeynized.

5. The tri-specific antibody of Claim 1 wherein the anti-HIV envelope antibody is selected from an antibody of Table 1.

6. The tri-specific antibody of Claim 5 selected from the group consisting of VRC07/PGT128-PGT145; VRC07/PGT128-10E8; VRC07/PGT128-PGT151; VRC07/PGT128-PGDM1400; PGT128/3BNC117-PGDM1400; PGT121/3BNC117-PGDM1400; PGT121/3BNC117-PGDM1400; 151/07-128, and 10-1074/3BNC117-PGDM1400.

7. The tri-specific antibody of any one of Claims 1-6, wherein the tri-specific antibody is PGT121/3BNC117-PGDM1400.

8. A tri-specific antibody comprising a first antigen-binding site which binds to an epitope on Human Immunodeficiency Virus (HIV) Env, conjugated to a second antigen-binding site which binds to a second epitope on HIV Env; and a third antigen-binding site which binds to a third epitope on HIV Env.
9. The tri-specific antibody of Claim 8 wherein at least the first antigen-binding site, the second antigen-binding site, or the third antigen-binding site comprises an HIV Env binding antibody or HIV Env binding fragment thereof from an antibody of Table 1.

10. The tri-specific antibody of Claim 9, selected from the group consisting of VRC07/PGT128-PGT145; VRC07/PGT128-10E8; VRC07/PGT128-PGT151; VRC07/PGT128-PGDM1400; PGT128/3BNC117-PGDM1400; PGT121/3BNC117-PGDM1400; PGT121/3BNC117-PGT151; 151/07-128, and 10-1074/3BNC117-PGDM1400.

11. The tri-specific antibody of any one of Claims 8-10, wherein the tri-specific antibody is PGT121/3BNC117-PGDM1400.

12. A method of treating a subject infected with Human Immunodeficiency Virus (HIV) comprising administering to the subject a therapeutically effective amount of a tri-specific antibody of any one of Claims 1-6 or any one of Claims 8-10.

13. The method of claim 12, wherein the tri-specific is an antibody of Table 1.

14. The method of claim 12, wherein tri-specific antibody is selected from the group consisting of VRC07/PGT128-PGT145; VRC07/PGT128-10E8; VRC07/PGT128-PGT151; VRC07/PGT128-PGDM1400; PGT128/3BNC117-PGDM1400; PGT121/3BNC117-PGDM1400; PGT121/3BNC117-PGT151; 151/07-128, and 10-1074/3BNC117-PGDM1400.

15. The method of Claim 14, wherein the tri-specific antibody is PGT121/3BNC117-PGDM1400.

16. A method of inhibiting Human Immunodeficiency Virus (HIV)-positive pregnant subject from transmitting the HIV to the fetus or newborn, comprising administering to the subject and/or newborn a therapeutically effective amount of the tri-specific antibody according to any one of Claims 1-6 or any one of Claims 8-10.

17. The method of claim 16, wherein the tri-specific is an antibody of Table 1.

18. The method of claim 16, wherein tri-specific antibody is selected from the group consisting of VRC07/PGT128-PGT145; VRC07/PGT128-10E8; VRC07/PGT128-PGT151; VRC07/PGT128-PGDM1400; PGT128/3BNC117-PGDM1400; PGT121/3BNC117-PGDM1400; PGT121/3BNC117-PGT151; 151/07-128, and 10-1074/3BNC117-PGDM1400.
19. The method of Claim 18, wherein the tri-specific antibody is PGT121/3BNC1 17-PGDM1400.

20. A pharmaceutical composition comprising a tri-specific antibody of any one of Claims 1-6 or any one of Claims 8-10.
FIGURE 1

10-15 nm (~12 nm)

~16 nm (?)

GS linker
FIGURE 7

PGT128/VRC07-PGT151

PGT128/VRC07-PGT145

PGT128/VRC07-PGDM1400
FIGURE 8

<table>
<thead>
<tr>
<th></th>
<th>TriSpe1</th>
<th>TriMix1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>0.0125</td>
<td>0.0080</td>
</tr>
<tr>
<td>Geo. Mean</td>
<td>0.0155</td>
<td>0.0114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>TriSpe1</th>
<th>TriMix1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0405</td>
<td>0.0310</td>
<td></td>
</tr>
<tr>
<td>0.0592</td>
<td>0.0461</td>
<td></td>
</tr>
</tbody>
</table>

| MPI=100 | 110 | 110 |
| MPI>50 | 117 | 115 |
FIGURE 9

IC$_{50}$ Viral Coverage (%) vs Ab Concentration (nM)

- TriSpec1
- TriMix1
Figure 11

MOA study

278-50

- VRC07
- PGT128
- PGT151

Inhibition (%)

100
75
50
25
0
-25
-10^1
-10^2
-10^3
-10^4
μg/mL

458

- VRC07
- PGT128
- PGT151

Inhibition (%)

100
75
50
25
0
-25
-10^1
-10^2
-10^3
-10^4
μg/mL

- 128/07-151
- 128/07-2G4

- 128/07-151
- 128/07-2G4

- 128/07-151
- 128/2G4-151

- 128/07-151
- 128/2G4-151

- 128/07-151
- 2G4/07-151

- 128/07-151
- 2G4/07-151
Figure 12

MOA study
Figure 13

Link length study

- **278-50**
 - Inhibition (%)
 - Log molar concentration

- **458**
 - Inhibition (%)
 - Log molar concentration
 - 128/07-151 2GS
 - 128/07-151 3GS
 - 128/07-151 4GS

- **TF3**
 - Inhibition (%)
 - Log molar concentration

- **TF4**
 - Inhibition (%)
 - Log molar concentration

- **TF6**
 - Inhibition (%)
 - Log molar concentration

- **TF7**
 - Inhibition (%)
 - Log molar concentration

- **128/07-151 (4GS)**
 - 100µg loading
 - Miu/mL

- **Immunoglobulin VH VL**
 - GS linker
 - 2GS
 - 3GS
 - 4GS
Figure 14

Other TriSpec combinations

Tri1: 128/07-151 (3GS)
Tri2: 128/07-1400 (3GS)
Tri3: 128/07-145 (3GS)
Tri4: 121/117-1400 (4GS)
Figure 15

[Graph showing the percentage of viruses neutralized against different concentrations of IC50 (µg/ml). The graph includes data for different samples labeled as 128/07-151, 128/07-1400, 128/07-145, and 121/117-1400.]
Figure 16

<table>
<thead>
<tr>
<th>Antibody</th>
<th>IC\textsubscript{80} Median</th>
<th>IC\textsubscript{80} Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>128/07-151 (3GS)</td>
<td>0.041</td>
<td>98.3</td>
</tr>
<tr>
<td>128/07-1400 (3GS)</td>
<td>0.069</td>
<td>98.3</td>
</tr>
<tr>
<td>128/07-145 (3GS)</td>
<td>0.172</td>
<td>95.0</td>
</tr>
<tr>
<td>121/117-1400 (4GS)</td>
<td>0.138</td>
<td>97.5</td>
</tr>
</tbody>
</table>
Figure 17

SEC and PK analysis

PGT128/VRC07-PGT151 (50 µg)

PGT128/VRC07-PGDM1400 (50 µg)

Cmax & clearance

PGT128/VRC07-PGT151 (3/4GS) 100µg IP infusion

PGT128/VRC07-PGDM1400 (3GS) 100µg IP infusion
Figure 18

SEC: 100µg loading

128/07 145 3GS

128/07 1400 4GS

Aggregation

PGT128/VRC07-PGT145 (3GS)
100µg IP infusion

PGT128/VRC07-PGDM1400 (4GS)
100µg IP infusion

Cmax & clearance
Figure 19

PGT121/3BNC117-PGDM1400: Prevention Study

- JR-CSF challenge
- 0.5 mg injection of 121/117-1400 Bi-weekly IP
- Blood collection

Weeks vs. % aviremic
Figure 20

TF4

- PGT121/3BNC117-PGT151
- PGT121+3BNC117+PGT151

TF6

- PGT121/3BNC117-PGT151
- PGT121+3BNC117+PGT151
Figure 21

1006

- PGT128/VRC07-PGDM1400
- PGT128/3BNC117-PGDM1400
- 10-1074/3BNC117-PGDM1400

246F

- PGT128/VRC07-PGDM1400
- PGT128/3BNC117-PGDM1400
- 10-1074/3BNC117-PGDM1400
<table>
<thead>
<tr>
<th>Trispecific Antibody Name(s)</th>
<th>Antibody Subunit Name</th>
<th>CDR1</th>
<th>CDR2</th>
<th>CDR3</th>
<th>CDR1</th>
<th>CDR2</th>
<th>CDR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRC07/PGT128-PGT145 OR 128/07-145 (Figures 5, 6, 14, 15, 16, 18) OR PGT128/PVR07-PGT145 (Figure 7)</td>
<td>PGT128 Heavy Chain Knob PGT145VL</td>
<td>NSFGWGVVR</td>
<td>SYWRGWT</td>
<td>FGGEVRYTDWPKPFAWVDL</td>
<td>GNSSVNHD</td>
<td>MSQEGDTX</td>
<td>GSQHVRLETFYEVYNLYELYNHYEWMGSDYLATLDDV</td>
</tr>
<tr>
<td></td>
<td>PGT128 Light Chain</td>
<td>GTSNNF</td>
<td>DVN</td>
<td>GSLVGNWLDV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VRC07 Heavy Chain HoleCross PGT145VL</td>
<td>ncpin</td>
<td>wmkpgrggawysargq</td>
<td>gkycatalydynwldfeh</td>
<td>HSLQHSTGANY</td>
<td>LAT</td>
<td>MQGQHSPWVT</td>
</tr>
<tr>
<td></td>
<td>VRC07 Light Chain VLCH1</td>
<td>qyp</td>
<td>stg</td>
<td>eqv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRC07/PGT128-10EB (Figure 2) OR 07/128-10EB (Figure 3)</td>
<td>PGT128 Heavy Chain Knob 10EBVL</td>
<td>NSFGWGVVR</td>
<td>SYWRGWT</td>
<td>FGGEVRYTDWPKPFAWVDL</td>
<td>gfdvfnaw</td>
<td>fggptgevsv</td>
<td>fhkyrdwsghpplpgyeyfupd</td>
</tr>
<tr>
<td></td>
<td>PGT128 Light Chain</td>
<td>GTSNNF</td>
<td>DVN</td>
<td>GSLVGNWLDV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VRC07 Heavy Chain HoleCross 10EBVL</td>
<td>ncpin</td>
<td>wmkpgrggawysargq</td>
<td>gkycatalydynwldfeh</td>
<td>npghsrhys</td>
<td>gknmp</td>
<td>sordkgsrlv</td>
</tr>
<tr>
<td></td>
<td>VRC07 Light Chain VLCH1</td>
<td>qyp</td>
<td>stg</td>
<td>eqv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRC07/PGT128-PGT151 (Figure 8) OR 128/07-151 (Figures 3, 4, 11, 13-16) OR PGT128/PVR07-PGT151 (Figure 7, 17) OR Trispes (Figures 8-10)</td>
<td>PGT128 Heavy Chain Knob PGT151VL</td>
<td>NSFGWGVVR</td>
<td>SYWRGWT</td>
<td>FGGEVRYTDWPKPFAWVDL</td>
<td>DFPFSKYP</td>
<td>ISDAWVHY</td>
<td>ARMQIESGPPPLRWGSRNYYSGMVD</td>
</tr>
<tr>
<td></td>
<td>PGT128 Light Chain</td>
<td>GTSNNF</td>
<td>DVN</td>
<td>GSLVGNWLDV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VRC07 Heavy Chain HoleCross PGT151VL</td>
<td>ncpin</td>
<td>wmkpgrggawysargq</td>
<td>gkycatalydynwldfeh</td>
<td>ESLRQENGKTS</td>
<td>EVS</td>
<td>MQSKQPDQPT</td>
</tr>
<tr>
<td></td>
<td>VRC07 Light Chain VLCH1</td>
<td>qyp</td>
<td>stg</td>
<td>eqv</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 22, continued
| Figure 22, continued |
|
| PGT221/38NC117-PGT151 (Figure 20) |
| PGT221 Heavy Chain Knob PGT151VH | GASISDSSY | VKMSSQDD | TUSHRYYDIAFNEWFTYYMDV | DFPFSKYP | ISGDAWYH | ARMFQESGPPRLRWSGRNYYYYSGMDV |
| PGT221 Light Chain | SLOIARA | NNQ | HWG58R57TKNW | |
| 38NC117 Heavy Chain HoleCross PGT151VL | DVFH | WINPITGQPNNPAPFQGQ | GRSDYWD | |
| 38NC117 Light Chain VCH1 | QANGYLN | DQSKLER | GVYEF | |

| 151/07-128 (Figures 3-4) |
PGT151 Heavy Chain Knob PGT128VH	DFPFSKYP	ISGDAWYH	ARMFQESGPPRLRWSGRNYYYYSGMDV	NSIFWGWVR	SYWNRGWT	PGGEVLYTIDWPKAPAUMDFL
PGT151 Light Chain	ESLMQSGNTS	EVS	MSDKDFPLT			
VRC07 Heavy Chain HoleCross PGT128VL	npin	winapyggavvayyqo	@yterterywutsef	GTSNF	DVN	GSLUGNWODV
VRC07 Light Chain VCH1	ogsg	spt	qvylef			

| 10-1074/38NC117-PGDM1400 (Figure 21) |
10-1074 Heavy Chain Knob PGDM1400VH	GDSMNNYY	ISOQESA	ATARRGQR1YDSFGLFYYYSGMDV	GNTLTYD	ISHEGDKK	CAXGSMHRHDDIDYDGSNGAISAVODVSVLNSNIW
1074 Light Chain	AGSPFA	NNQ	HW5SMRSGFSWS			
38NC117 Heavy Chain HoleCross 1400VL	DVFH	WINPITGQPNNPAPFQGQ	GRSDYWD			
38NC117 Light Chain VCH1	QANGYLN	DQSKLER	GVYEF			
Box No. 1 Nucleotide and/or amino acid sequence(s) (Continuation of item 1c of the first sheet)

1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing:
 a. ☒ forming part of the international application as filed:
 ☒ in the form of an Annex C/ST.25 text file.
 ☐ on paper or in the form of an image file.
 b. ☐ furnished together with the international application under PCT Rule 13ter.1(a) for the purposes of international search only in the form of an Annex C/ST.25 text file.
 c. ☐ furnished subsequent to the international filing date for the purposes of international search only:
 ☐ in the form of an Annex C/ST.25 text file (Rule 13ter.1(a)).
 ☒ on paper or in the form of an image file (Rule 13ter.1(b) and Administrative Instructions, Section 713).

2. ☒ In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that forming part of the application as filed or does not go beyond the application as filed, as appropriate, were furnished.

3. Additional comments:

Form PCT/ISA/2 10 (continuation of first sheet (1)) (January 2015)
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2016/03539

A. CLASSIFICATION OF SUBJECT MATTER

IPC(B) - A61P 31/18; C07K 16/28; C07K 16/46; C07K 19/00 (2016.01)
CPC - A61K 2039/505; C07K 16/1063; C07K 2317/31; C07K 2317/76 (2016.08)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC - A61 P 31/18; C07K 16/28; C07K 16/46; C07K 19/00
CPC - A61K 2039/505; C07K 16/1063; C07K 2317/31; C07K 2317/76

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC - 424/133.1; 424/13 6.1; 424/160.1; 530/387.3 (keyword delimited)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatBase, Google Patents, Google Scholar, PubMed

Search terms used: tri-specific trispecific tribody antibody HIV Env

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2014/089152 A1 (UNIVERSITY OF MARYLAND, BALTIMORE) 12 June 2014 (12.06.2014)</td>
<td>1-4, 8, 12, 20</td>
</tr>
<tr>
<td>A</td>
<td>US 2012/0121597 A1 (HO et al) 17 May 2012 (17.05.2012) entire document</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referred to in an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
11 August 2016

Date of mailing of the international search report
13 SEP 2016

Name and mailing address of the ISA/
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, VA 22313-1450
Facsimile No. 571-273-8300

Authorized officer
Blaine R. Copenheaver
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)