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(57) Abstract: An algorithmic matching pipelined compiler
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ing a processor with a setup interface for programming any
of a plurality of operations as determined by setup data, a
logic decision processor for programming a look up table, a
loop counter and a constant register, and a block of
memory. This can be used to perform functions. A reconfig-
urable, programmable circuit routes data and results from
one core to another core and/or 10 controller and/or inter-
rupt generator, as required to complete an algorithm without
further intervention from a central or peripheral processor
during processing of an algorithm.
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PROCESSOR WITH RECONFIGURABLE ALGORITHMIC PIPELINED CORE AND
ALGORITHMIC MATCHING PIPELINED COMPILER

CROSS RELATED APPLICATIONS

[0001]  This application claims priority to U.S. Provisional Application 62/287,265 entitled
Processor With Reconfigurable Algorithmic Pipelined Core And Algorithmic Matching
Pipelined Compiler, which was filed on January 26, 2016, which is incorporated herein in its

entirety, by reference.
FIELD OF THE INVENTION

[0002] The field relates to computer programming and microprocessor design and programming,
especially reconfigurable, pipelined and parallel processing of general purpose software

instructions.
BACKGROUND

[0003] Figure 1A illustrates a conventional processor’s compiler. Conventional processors, such
as Intel micro-processors and ARM micro-processors are well known. For example, a conceptual
illustration of a conventional processor is shown in Figure 1B. These processors are the heart of
central processing units for modern computers and devices and are used to process algorithms. A
problem with conventional processors is that these types of processors are general purpose and
are not reconfigurable in any practical way that allows their performance to be enhanced for
specific applications. Another problem is that the program execution control adds substantial
overhead to processing of algorithmic functions, such as mathematical operations and logical
decisions that modify the flow of processing. A higher level programming language may be used
to program the conventional processor, and the compiler converts the instructions in the higher
level programming language into machine code for the particular processor architecture. This
machine code is provided to a memory location accessible by the processor and provides
instructions for operation of the processor hardware, together with any BIOS or other calls
provided by the system architecture. In most cases, mathematics and logical processing
directions are directed to an arithmetic logic unit (ALU), which returns a solution to a program
execution control portion of the processor, which manages overhead, such as guiding the

processor through the correct order of solving mathematical algorithms, logic decisions, handling
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of data and the like. Machine code instructions are continuously fetched from program storage in

order to control the processing of data. This overhead significantly limits machine performance.

[0004] For example, the following illustrates steps of a conventional compiler compiling a
mathematical operation in a "C" programming language, which is an example of a higher level
programming language that may be compiled to create machine code for a particular
conventional processor. A simple mathematical operation assigns "var il;" "var i2;" and "var s;"
to define a data storage location for variable il, i2 and result s. Then, an instruction "s =il + i2;"
may be used to sum the variables assigned in data locations il and i2. The compiler (a) first
assigns storage locations for data (e.g. i1, i2 and s) and (b) generates source code into machine
code. A conventional processor would retrieve all or a portion of the machine code from a
memory location in which the code is stored. Then, it would execute the machine code. For this
example, the central processing unit (CPU) would load i1 data in a memory location and send it
to the ALU, load i2 data in a memory location and send it to the ALU, and instruct the ALU to
add the data located in il and i2. Only then would the ALU perform an addition of the values
located in the data locations for il and i2. This is the useful work step, with the setup by the CPU
being overhead. Then, the CPU could get the ALU result from the data location for "s" and could
send it to the input and output controller. This is a necessary step to present the result, if the
result is not an intermediate step in the calculation. Conventional processors evolved out of a
desire to save time in the development of computer programs, allowing higher level
programming languages to be compiled for various architectures of central processing units and
peripheral facilities. Also, all processes executed by the CPU can share a common ALU, by time

sharing the ALU among various programs operating in the system environment.

[0005] Application specific integrated circuits (ASICs) are known that build into hardware
electronic circuits capable of rapidly performing calculations for specific functions. These reduce

overhead by hard wiring specific functions into the hardware.

[0006] Some field programmable gate arrays (FPGAs) are known that have a large number of
logic gates and random access memory (RAM) blocks. These FGPAs are used to implement
complex digital computations. Such FPGA designs may employ very fast input / output and

bidirectional data buses, but it is difficult to verify correct timing of valid data within setup time
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and hold time. Floor planning enables resource allocations within FPGAs to meet these time
constraints. FPGAs can be used to implement any logical function that an ASIC chip could
perform. An ability to update the functionality after shipping, partial re-configuration of a
portion of the design and a low non-recurring engineering cost relative to an ASIC design offers
an advantage for some applications, even when the generally higher unit cost is taken into

consideration.

[0007] However, the penetration of FPGA architectures has been limited to narrow niche
products. An FPGA virtual computer for executing a sequence of program instructions by
successively reconfiguring a group of FPGA in response to those instructions was patented in
U.S. Pat. No. 5,684,980. Figure 2 illustrates a structure for this FGPA architecture. This issued
patent includes an array of FPGAs that changes configurations successively during performance
of successive algorithms or instructions. The configuring of array of FPGAs allows an entire
algorithm or set of instructions to be performed without waiting for each instruction to be

downloaded in performing each computational step.

[0008] The developments in FGPAs and integration with processors gives the promise of the
ability to be reprogrammed at "run time", but in reality, reconfigurable computing or
reconfigurable systems to suit the task at hand are far from being implemented in practical

applications due to the difficulties in programming and configuring these architectures for this

purpose.

[0009] Figure 2 illustrates a block diagram of a virtual computer including an array of field
programmable gate arrays and field programmable interconnection devices (FPIN) or cross-bar
switches that relieve internal resources of the field programmable gate arrays from any external
connection tasks, as disclosed in U.S. Pat. No. 5,684,980, the disclosure and drawings of which
are hereby incorporated herein in their entirety for the purpose of disclosing the knowledge of a
skilled artisan, familiar with FPGAs.

[0010] Figure 2 illustrates an array of field programmable gate arrays and field programmable
interconnection devices that are arranged and employed as a co-processor to enhance the
performance of a host computer or within a virtual computer processor to perform successive

algorithms. The successive algorithms must be programmed to correspond with a series of
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conventional instructions that would normally be executed in a conventional microprocessor.
Then, the rate of performing the specific computational task of the successive algorithms by the
FPGA / FPIN array is much less than the rate of the corresponding instructions performed by a
conventional microprocessor. The virtual computer of Figure 2 must include a reconfigurable
control section that governs the reconfiguration of the FPGA / FPIN array. The configuration bit
files must be generated for the reconfigurable control section using a software package designed
for that purpose. Then, the configuration bit file must be transmitted to a corresponding FPGA /
FPIN array in the virtual computer. Figure 2 illustrates how the arrays and dual port random
access memory (RAM) are connected by pins to the reconfigurable control section, a bus

interface and computer main memory. The bus interface is connected to a system bus.

[0011] U.S. Pat. No. 5,684,980 shows how the pins provide a clock pin and a pin connecting the
reconfigurable control section to the FPGA / FPIN arrays, and shows an example of a

reconfigurable control section.

[0012] U.S. Pat. No. 4,291,372 discloses a microprocessor system with specialized instruction
formatting which works in conjunction with an external application dependent logic module
handling specific requirements for data transfer to and from a peripheral device. The
microprocessor provides a program memory having a specialized instruction format. The
instruction word format provides a single bit field for selecting either a program counter or a
memory reference register as the source of memory address, a function field which defines the
route of data transfers to be made, and a source and destination field for addressing source and
destination locations. Previously, peripheral controller units burdened the system with processor

and control circuits in the base module for handling the specific requirements.

[0013] Digital Signal Processing (DSP) units or arrays of DSP processors may be hardwired into
parallel arrays that optimize performance for some graphic intensive tasks, such as pixel
processing for generating images on output screens, such as monitors and televisions. These are
custom made and include a BIOS specific to the graphical acceleration environment created for

the digital signal processors to do their job.

[0014] Matrix bus switching (MBS) is known. For example, the user guide "AMBA® 4 AXI4™,
AXI4-Lite™, and AXI4-Stream™ Protocol Assertions, Revision: rOp1, User Guide," copyright
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2010, 2012, referenced as ARM DUI 0534B, ID072312, teaches a system for matrix bus
switching that is high speed and implementable by a person having ordinary skill in the art. The
user guide is written for system designers, system integrators, and verification engineers who
want to confirm that a design complies with a relevant AMBA 4 protocol. This can be AX14,
AXI4-Lite, or AXI4-Stream, for example. All of the trademarks are registered trademarks of
ARM in the EU and elsewhere. Where excepted, this reference is incorporated herein in its
entirety by reference. An MBS is a high speed bus for data input and output, and this reference
teaches the methods and hardware for a system engineer to integrate an example of an MBS in a

processor system architecture.

[0015] All of this is known in the art, but no example in the prior art eliminates almost all of the
overhead generated by conventional processing systems, while maintaining the flexibility of
processing a wide range of algorithms and using a standard higher level programming language,

such as "C", for software development for the processing system.
SUMMARY

[0016] A pipelined, parallel processor on a chip comprises a processing unit and an array of
reconfigurable, field programmable gates programmed by an algorithmic matching pipelined
compiler, which can be a precompiler, such that the algorithmic matching pipelined compiler
precompiles source code designed for operation on a standard processor without parallel
processing for processing by the processing unit, and the processing unit and algorithmic
matching pipelined compiler (referred to as AMPC or ASML) configures the field programmable
gates to operate as pipelined, parallel processors. For example, the processor may be referred to
as a reusabe algorithmic pipelined core (RAPC). The parallel processors are configured to
complete tasks without any further overhead from the processing unit, such as overhead for

controlling an arithmetic processing unit.

[0017] In one example, a reusable algorithmic pipelined processor comprises a pool of
computers configured to process algorithms in parallel using standard higher level software
languages, such as "C", "C++" or the like. For example, the pool of computers are reprogrammed
to run different algorithms as needed for a particular calculation, based on the output of the

AMPC, which is set up with the RAPC resources available to it.
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[0018] For example, a reusable algorithmic pipelined core (RAPC) may be comprised of three
modules: an intelligent bus controller or logical decision processor (LDP), a digital signal
processor (DSP), and a matrix bus switch. A logical decision processor (LDP) comprises
reconfigurable logic functions, reprogrammable depending on need, for controlling of a master
bus switch (MBS). A DSP comprises a reconfigurable mathematical processor for performing
mathematical operations. In one example, all of the mathematical operations processed by the
RAPC are processed by the DSP. In one example, all of the logic functions processed by the
RAPC are processed by the LDP. A matrix bus router or switch (MBR or MBS) is defined as a
reconfigurable, programmable circuit that routes data and results from one RAPC to another
RAPC and from/to an input/output controller, and/or interrupt generators, as required, to
complete an algorithm, without any further intervention from a central or peripheral processor
during the processing of the algorithm. Thus, overhead is much reduced by pipelining compared
to static, unreconfigurable hardware, which requires intervention by a central processor or
peripheral processor to direct data and results in and out of arithmetic processing units. In one
example, the LDP processes logical decisions and iterative loops and result memory is provided

by the LDP for learning algorithms.

[0019] In one example, all of the mathematical operations processed by the RAPC are processed
by the DSP, and all of the logic functions are processed by the LDP. In one example, a plurality
of RAPC's are configured as a pool of cores and each of the pool of cores are reconfigurable by
programming, alone, without any change to the hardware. For example, all of the RAPC's may
be configured to process algorithms in parallel. In one example, the LDP uses memory blocks as
Look Up Tables (LUT) and registers for constants or learned values. An n-bit LUT may be used
to encode any n-input Boolean logic function as truth tables using the LUT set up by the LDP.

[0020] In one example, an algorithmic matching pipelined compiler (AMPC) generates machine
code from a higher level, compilable software language, such as "C", "C++", Pascal, Basic or the
like. Standard source code, written for a conventional, non-reconfigurable and non-pipelined,
general purpose computer processor, may be processed by the AMPC to generate machine code
for configuring one or more of the RAPC's. For example, the AMPC generates machine code
from standard, preexisting code for a conventional ARM processor or a conventional Intel

processor, and the machine code generated by this AMPC precompiler uses an ARM processor
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or an Intel processor to configure the RAPC's. Thus, a new computer system comprises a
conventional processor, such as an existing ARM processor, Intel processor, AMD processor or
the like, and a plurality of RAPC's, each RAPC comprising a DSP, LDM and MBS, for example.
However, unlike existing co-processors or accelerators, the RAPC's are not merely peripheral co-
processors. Instead, the RAPC's are reconfigured to independently solve complex mathematical
and logic algorithms without further intervention by the conventional processor, after the
precompiler or AMPC configures the RAPC's to do their job. Values are input into the
configured RAPC and a solution is output to the MBS. In one example, a plurality of RAPC's are
disposed on a single chip, such as a reconfigurable ASIC. Reconfigurabe ASIC means a chip
designed to comprise RAPC's such that each of the RAPC's is reprogrammable for specific
operations by an AMPC and a general purpose, exisiting processor architecture, such as an ARM
processor, an AMD processor, and Intel processor or the like. In this way, such a reconfigurable
ASIC may contain 2000 RAPC's and may operate 360 trillion instructions per second with a 500
MHz clock speed. Thus, a single reconfigurable ASIC comprising 2000 RAPC's can operate 100
times faster than any conventional, general purpose processor today. All of the RAPC's may
operate in a pipelined configuration, in parallel, while data is available. A single RAPC may
execute instructions 100 times faster than a standard processor. A reconfigurable ASIC
comprising 20 RAPC's, operating at a clock speed of 500 MHz, can execute 30 billion
instructions per second. A single chip may comprise up to 2000 RAPC's in a conventionally
sized ASIC. Therefore, a conventionally sized ASIC comprising 2000 RAPC's may execute
instructions 200,000 times faster than a conventional processing system, without having to resort
to specialized programming languages. lnsiead, existing programs may be ported over to operate
with a reconfigurabe ASIC comprising a plurality of RAPC's and benefit from pipelined
execution of instructions, in parallel, without substantially rewriting existing high level
programming. In one example, the AMPC precompiles existing code for an ARM general
purpose processor architecture that is embedded on a reconfigurable ASIC comprising a plurality
of RAPC's. This new processor architecture (ICAT) achieves surprising and unexpected
performance by combining the ARM processor architecture and a plurality of RAPC's on a chip.
The embedded ARM processor on the ICAT chip executes machine code instructions generated

by the AMPC from preexisting programs written in a high level programming language, such as
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"C", which configure the plurality of RAPC's on the ICAT chip to perform surprisingly rapid
execution of instructions per second. The ARM processor also controls intelligent monitoring,
diagnostics and communications with peripherals external to the ICAT chip. Thus, to the outside
world, the ICAT chip appears to be a very fast ARM processor that does not require a

mathematical co-processor.

[0021] In an alternative example, the ICAT chip can embed an AMD processor and can appear

to the outside world to be an AMD processor.

[0022] In yet another example, the ICAT chip can embed an Intel processor and appears to the

outside world as an Intel processor.

[0023] Surprisingly, even though the ICAT chip appears to the outside world to be a standard,
non-reconfigurable and non-pipelined processor, capable of executing instructions at a rate
merely equivalent to the standard processor, the ICAT chip executes instructions at a surprising
and unexpected rate, 100 to 200,000 times faster than the standard processor that faces the world,
without rewriting programs written for the standard processor. This simplification over the
burdensome chore of rewriting code to function on FPGA'’s finally makes the use of FPGA's
accessible to ordinary programmers. The AMPC does not generate the run-time code for the
ICAT chip, in one example. Instead, it precompiles the program and separates out instructions
that are best suited to the RAPC's. Then, the AMPC generates code for setting up each of a
plurality of RAPC's on the ICAT chip (or elsewhere, in one example, using multiple ICAT chips
operating in parallel), which RAPC's then operate pipelined and in parallel. Alternatively, the
RAPC's may be reconfigured in real time, based on instructions received by the ICAT or on
historical instructions previously received by the ICAT chip. Thus, the ICAT chip can learn over
time to operate at faster and faster speeds, if the ICAT chip is consistently used for similar
purposes. This occurs, naturally, if the RAPC's are configured in real time to solve new logical
and mathematical equations, while keeping the old logical and mathematical configurations in
place on a first in first out or last used last reconfigured basis, for example. A set of RAPC's
reconfigured for a specific purpose, if used frequently, will not be reconfigured to another

purpose until there are no other RAPC's available for new algorithms requiring RAPCs, if a last
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used last reconfigured algorithm is adopted, for example. In this way, the most used algorithms

will not need to be configured but will be preconfigured, already, by previous use.

[0024] The RAPC's, when configured by the central processing unit, operate without overhead,
executing instructions until the math, logic and iterative instructions for which the RAPC have

been configured are completed.

[0025] In one example, the ICAT chip comprises setup registers, and the AMPC generates
instructions for setting up the setup registers of the ICAT chip, which configures the RAPC's to
complete particular instructions. The RAPC's operate continuously, without further oversight by
the central processing unit, when initialized. In one example, the AMPC receives RAPC
hardware data from a hardware compiler, such as a Verilog or Vivado hardware compiler.
Hardware files may be generated by the hardware compiler and may be used by the AMPC to
generate code that writes configuration data for the setup registers of the ICAT chip (or the setup

registers of a plurality of ICAT chips, in one example).

[0026] In one example, the AMPC extracts configuration data for the setup registers of an ICAT
chip from a program written for a standard processing architecture in a high level programming
language, such as "C". For example, the AMPC ignores overhead instructions and generates code
for the setup registers of the ICAT chip from the program for 1) arithmetic instructions and data;
2) logic decisions and data; and 3) branch or call/return instructions and destinations; 4) iterative
loops, decisions and data; 5) DSP setup routines and data; and 6) code entry point labels for
loops and branches. For example, the AMPC uses these instructions to configure the setup
registers of the ICAT, configuring the DSP for completion of mathematical algorithms, the LDP
for logical decisions and values for lookup tables of the LDP, and the MBS for branch, call and
return destination label mapping to entry points in the various processing algorithms and
assigned addresses in the ICAT hardware. For example, RAPC hardware tables are built for each
RAPC and contain the DSP, LDP and MBS configuration tables. For example, DSP, LDP and
MBS are configured as frequently used in RAPC's, but when DSP or LDP are not needed, then
an RAPC may be reconfigured even to omit this common structure by the AMPC and ICAT
architecture. So, while DSP, LDP and MBS are present in some of the RAPC's, other RAPC's

may have a different structure, specific to the code to be run on the ICAT processor.
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[0027] In one example, an ICAT architecture and AMPC are dependent one on the other for the
hardware capable of being reconfigured by the AMPC. For example, the AMPC may implement
a branch or call of a destination within the ICAT architecture by directly connecting results or
data to the destination, if the destination RAPC is nearby, or data is being routed from a DSP to a
LDP or vice versa, for example, making the results or data immediately available for execution
of instructions, without any overhead. Alternatively, the AMPC may implement a branch or call
of a destination using the MBS, and results and data are transported on a high speed streaming
interface to the destination, which may be another RAPC or other destination, making the data
available for further execution of instructions via the high speed streaming interface to the

destination.

[0028] In one example, the AMPC is aware of the RAPC resources, which are assigned by the
AMPC while precompiling code written in the high level programming language. Thus, the
ICAT architecture may be configured by the AMPC to optimize usage of the RAPC resources,
such as by minimizing interconnect length between instructions executed by the plurality of
RAPC's. This optimization may be completed by an interative approach or a trial and error
approach. In one example, the AMPC comprises a learning algorithm that improves the
optimizations based on historical patterns of usage of certain instructions, whether mathematical
algorithms, logical algorithms or a combination of mathematical and logical algorithms, such as
by minimizing the use of the MBS for branch or call of a destination for common instruction

sets. For an example of an MBS implementation, see the ARM MBS example in the background.

[0029] In one example, an RAPC is integrated into a chip with a conventional processor for
configuring the RAPC and an AMPC for compiling conventional high level source code into
instructions for the conventional processor to set up the RAPC. The RAPC comprises a DSP, an
LDP and an MBS. In this example, each DSP has a setup interface for programming any of a
plurality of operations, such as integer and floating point math, such as multiply, divide, add,
subtract and other mathematical functions. A DSP may have for inputs for operand data that can
be concatenated or operated on with various combinations of mathematic functions as
determined by the setup data. In this example, each DSP has a 48 bit accumulator which is
output as result data along with the status data. Status data includes, carry out, equal, greater

than, and less than, for example. In this example, each LDP has a setup interface for

10
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programming a lookup table, a loop counter, and a constant register. Each LDP has a “Loop
Counter” for detecting when iterative algorithms are completed. Each LDP has a register that can
hold constant data for input to the lookup table. Each LDP has a block of memory, which can be
used to perform functions. Lookup table functions may include a lookup table that can be
implemented and sequentially accessed using the loop counter; a lookup table that can be
implemented and accessed by the DSP status, the constant register, or the DSP result data for
control purposes; and a logic lookup table that can be implemented and output miscellaneous
logic signals for control purposes, for example. The LDP may pass result data from its input to
its output. The LDP may have one pipeline register for result data at its output, for example.
Alternatively, the LDP may have two pipeline registers with synchronous clear enables for result
data at its output. For example, the chip may be an ICAT chip comprising a plurality of the
RAPC’s, each comprising a DSP, an LDP and an MBS and each being setup by code provided

by the AMPC to a conventional processor.

[0030] In one example, an AMPC comprises a compiler having an input architecture for defining
the number of a plurality of RAPC’s and locations of the plurality of RAPC’s. The AMPC filters
high level source code and identifies mathematical and logical algorithms capable of being
optimized by configuration of one or more of the plurality of RAPC’s. For example, if a video
processing, mathematical or logical algorithm is identified, the AMPC sets up the DSP, LDP and
MBS of one or more of the RAPC’s to perform the video processing, mathematical and/or
logical algorithm. For example, the AMPC creates machine code from a “C” language source
code for operation of a conventional processor, such as an ARM processor, and the ARM
processor sets up each of the DSP, LDP and MBS portions of each of the RAPC’s that will be

used in processing data input to the processor and outputting data from the processor.

[0031] To systems outside of the processor, an ICAT processor will appear to be an unusually
fast conventional processor. Within the processor, the DSP’s, LDP’s and MBS’s of the RAPC’s
will be processing data at a rate tens, hundreds, even thousands of times faster than a
conventional, single core processor. For each RPAC, the DSP will perform its operation on a
first clock, the LDP will test the result and output a control decision and result data on a second

clock, and the MBS will route result data to one of two destinations based on the control data on

11
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a third clock. Thus, each RAPC will have a latency of 3 clocks from DSP to MBS. For streaming

data, once initiated, the MBS may output data on each subsequent clock after the latency period.

[0032] In one example, a system for configuring a reconfigurable processor comprises a non-
reconfigurable processor, a plurality of reconfigurable cores, and an Algorithmic Matching
Pipelined Compiler capable of accepting code written in a high level programming language for
the non-reconfigurable processor, wherein the Compiler identifies code written in the high level
programming language that could benefit from pipelining available on one or more of the
plurality of reconfigurable cores and outputs code for the non-reconfigurable processor to set up

the one or more of the plurality of non-reconfigurable processors.

[0033] In one example, a processor comprises a non-reconfigurable processor core and a
plurality of Reusable Algorithmic Pipelined Cores coupled to the non-reconfigurable processor
core such that the non-reconfigurable processor core is capable of configuring and reconfiguring
each of the plurality of Reusable Algorithmic Pipelined Cores as a result of instructions received
from an Algorithmic Matching Pipelined Compiler. For example, the processor is contained in a
single chip. In one example, each Reusable Algorithmic Pipelined Core comprises a DSP, an
LDP and an MBS, and the DSP is pipelined to the LDP, and the LDP is pipelined to the MBS,
such that the non-reconfigurable processor does not control any of the processing that occurs

within each Reusable Algorithmic Pipelined Core.

[0034] DEFINITIONS. An Algorithmic Matching Pipelined Compiler or AMPC is a compiler
capable of accepting code written in a high level programming language for a conventional non-
reconfigurable processor, wherein the AMPC identifies code written in the high level
programming language that could benefit from pipelining available on a reconfigurable core or
processor, such as an RAPC or Filed Programmable Gate Array, and outputs code for a non-
reconfigurable processor, which instructs the non-reconfigurable processor to configure the
reconfigurable core or processor, prior to providing instructions for using the reconfigurable core
or processor. A Reusable (or reconfigurable) Algorithmic Pipelined Core (or computer) or RAPC
is defined as a reconfigurable processing core with a pipelined structure comprising a DSP
including a setup interface for programming any of a plurality of operations, such as integer and

floating point math, with four inputs for operand data that can be concatenated or operated on
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with various combinations of mathematic functions as determined by the setup data, and a 48 bit
accumulator which is output as result data along with the status data; an LDP having a setup
interface for programming a lookup table, a loop counter and a constant register and a block of
memory, which can be used to perform functions; and an MBS. An MBS is defined as a
reconfigurable, programmable circuit that routes data and results from one RAPC to another
RAPC and from/to an input/output controller, and/or interrupt generators, as required, to
complete an algorithm, without any further intervention from a central or peripheral processor

during the processing of the algorithm.
BRIEF DESCRIPTION OF THE DRAWINGS

[0035] The following drawings are illustrative examples and do not further limit any claims that

may eventually issue.

[0036] Figure 1A illustrates a prior art flow chart for a conventional compiler.
[0037] Figure 1B illustrates a prior art processor for a conventional computer.
[0038] Figure 2 illustrates a block diagram from U.S. Pat. No. 5,684,980.

[0039] Figure 3 is a flow chart illustrating an example of an AMPC compiler for comparison
with the flow chart in Figure 1A.

[0040] Figure 4 is an example of an ICAT architecture.
[0041] Figure 5 shows a flow diagram of an example of how a programmer may use an AMPC.
[0042] Figure 6 is a schematic example of a reusable algorithmic pipelined computer.

[0043] Figure 7 shows a schematic illustration of a diagram of a hardware configuration

resulting from a compilation of Code Example 1 with an AMPC compiler.

[0044] Figure 8 illustrates a dramatic benefit from the raw processing power of the example of

Figure 7 by real time lossless data compression in a consumer electronic device.

[0045] When the same reference characters are used, these labels refer to similar parts in the

examples illustrated in the drawings.
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DETAILED DESCRIPTION

[0046] For example, an ICAT architecture mimics any standard microprocessor unit architecture.
Its architecture takes advantage of pipelining and a much richer gate density in an integrated
circuit designed to be configured by a customer or a designer after manufacturing, such as one or
more field programmable gate arrays (FPGA’s) to achieve a 100:1 advantage in MIPS when a

1:1 comparison is made with a single standard microprocessor architecture with the same clock
speed. FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable
interconnects that allow the blocks to be "wired together", like many logic gates that can be inter-
wired in different configurations. Logic blocks can be configured to perform complex
combinational functions, or merely simple logic gates like AND and XOR. In most FPGAs, logic
blocks also include memory elements, which may be simple flip-flops or more complete blocks

of memory.

[0047] The very large jump in performance allows the processor to be used for data intensive
applications, such as machine vision, video processing, audio processing, robotics control
systems, multi-axis control systems, mobile communications, virtual reality, artificial
intelligence, livestreaming, biometric monitoring, the Internet of Things, supercomputing,
quantum computing, aerospace control systems, simulation and modeling of complex systems,

and signal processing applications, for example.

[0048] In one example, less power is used for computationally intensive processing of
algorithms. For example, the ICAT architecture provides a 100 to 1 reduction in energy usage for
the same calculation implemented on a standard micro-processing unit, more preferably a 1000:1

advantage, reducing heat and power consumption.

[0049] In one example, the ICAT may be run in a configuration of as many parallel processors
as needed for an application, increasing performance even further compared to standard
microprocessors. For example, a plurality of processor architectures may be run simultaneously.
For instance, legacy code may be run on a virtual machine compatible with the legacy code,
while a new virtual machine runs code written specifically for the new architecture. In one
example, this reduces the need for extensive regression testing, such as would be required for

adapting legacy code to the new system architecture.
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[0050] In one application, the speed and expandability of the ICAT architecture is applied to
legacy systems incapable of processing the volume of data required for raw speed and

expandability for customers whose code and/or hardware has run into limitations.

[0051] In one example, reconfiguration is compiled at or before power up, greatly simplifying
planning with little impact on final product performance. For example, an FPGA is a host
hardware for this architecture. Millions of instructions per second (MIPS) may be added, easily,
without major rewrites to existing code. Existing code may be run almost unmodified, except for
recompilation of the existing code. For example, algorithms requiring parallel processing of a

large number of common inputs are ideal candidates for this ICAT architecture.

[0052] In one example, old and new processors run in parallel. Existing code may be recompiled
and run nearly untouched, with a minimum of regression testing to ensure changes have not
occurred. Exceptions will be where timing affects operations of the architecture and where
hardware peripherals are altered. For example, an ICAT architecture may be used to increase raw
computational speed, and acceleration of code may be implemented by converting hardware

when needed.

[0053] In one example, the ICAT architecture comprises a front end pre-compiler that catches
any potential code incompatibility issues. This front end pre-compiler automatically resolves
these potential code incompatibility issues. For example, the ICAT architecture may emulate a
variety of processor architectures familiar to different developers. For example, the ICAT
architecture may emulate more than one processor, allowing a project to be coded for a plurality
of developers’ favored processors and to run code on a plurality of different virtual processors at
the same time. In one example, a plurality of different processors would run different code sets in
a multi-processing. environment, and program developers compile code for one of the plurality of

the domains compatible with the code.

[0054] In one example, the pre-compiler is an algorithmic matching pipelined compiler, which
generates hardware configuration code needed for various processing algorithms. Firmware for
configuring the ICAT architecture may be generated from logical and mathematical equations for
a plurality of processing tasks. For example, a plurality of processors may be configured in a

matrix array for running a mixture of low and high performance tasks.
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[0055] The ICAT architecture includes processing code developed using a higher level language,
because the ICAT architecture provides a raw speed advantage that overwhelms any speed
advantage gained by programming in machine language applicable only to one specific multi-

processing environment, substantially reducing the time to complete a development project.

[0056) The ICAT architecture includes a compiler or pre-compiler, which checks legacy code
for hardware specific commands, which is optimized for use with a high level programming
language, such as C or C++. A comparison of Figure 1 and Figure 3 illustrates the additional

steps included in an Algorithmic Matching Pipelining Compiler (AMPC), for example.

[0057] In one example, a set of standard multi-processing / multitasking peripherals, with in-
built coordination, is provided by the ICAT architecture. A real time operating system (RTOS)
may be adopted. For example, a multi-tasking, real time operating system is incorporated into the
ICAT architecture. For example, Micro-Controller Operating Systems (MicroC/OS) is a real-
time operating system designed by embedded software developer, Jean J. Labrosse in 1991. It is
a priority-based pre-emptive real-time operating system for microprocessors, written mainly in
the C programming language, a higher level programming language. The raw speed of the ICAT
architecture allows use of such a RTOS, for example. MicroC/OS allows definition of several
functions in the C language, each of which can execute as an independent thread or task. Each
task runs at a different priority, and each task thinks that it owns a virtual processor of the ICAT
architecture. Lower priority tasks may be preempted by higher priority tasks, at any time. Higher
priority tasks may use operating system services, such as a delay or event, to allow lower priority
tasks to execute. There are operating system services provided for task management, inter-task
communication, memory management, and for timing MicroC/OS. MicroC/OS is open source

and adaptable to several different processor architectures.

[0058] PCBA layout software and engineering tools are provided for the ICAT architecture in

order to allow existing designs to be converted to the ICAT architecture.

[0059] In one example, a pipelined architecture is achieved using standard Verilog or VHDL
code. For example, a 1024 word instruction cache, a data cache, and multi-level memory cache
architectures may be provided in the ICAT architecture. Pipelining of the ICAT architecture may

include a learning algorithm that detects which way branching on decision processing tends to
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occur, making that path the default path on future passes through the learning algorithm. In
another example, interrupt code is isolated, and an interrupt handler is dedicated to specific
inputs, with a private code location. In one example, the ICAT architecture includes a multi-
processor debugger. For example, existing code may be processed by a pre-processing debugger
to ensure that the existing code is well partitioned, so that the functions are separated. Then, a

single debugger may be run on each independent thread of an operation.

[0060] For example, a reconfigurable algorithmic pipelined core (RAPC) may be provided in a 2
inch chip package that provides MIPS and Mega FLOPS equivalent to more than 1000 Intel i7

micro-processors, more preferably more than 10,000 Intel i7 micro-processors.

[0061] In one example, the ICAT architecture is compatible with existing debug tools. In another
example, the ICAT architecture is implemented to run existing, legacy code that does not contain
interprocessor communications. ICAT specific hardware is unified as a single, well debugged
block common to all legacy code. For example, peripherals that exactly mimic the main
functions of common multi-processing units are cloned for the ICAT architecture. For example,

superset peripherals allow hardware arrangements easily arranged by customers.

[0062] In one example, the ICAT architectures compiler or pre-compiler detects low level code
timing loops that count clock cycles, delays that allow instruction fetching, and other
incompatible timing code, and flags these for repair or replacement, either manually or

automatically, with compatible higher level programming provided within the ICAT architecture.

[0063] In one example, the ICAT architecture provides a 4:1 MIPS advantage over traditional

architectures. In another example, the advantage is at least 100:1.

[0064] In one example, the ICAT architecture comprises an algorithmic matching pipeline
compiler (AMPC), which is a compiler accepting processing algorithms in standard source code
formats. The AMPC generates firmware for a conventional processing system operable with the
ICAT architecture. The compiler generates instructions that configure the ICAT hardware, such
that the architecture processes algorithms with improved performance compared to traditional
micro-processors that are not reconfigurable by the AMPC. Specifically, the AMPC uses
pipelining to optimize processor performance for applications requiring algorithmic intensive

computational processing. For example, this firmware may be run on a conventional processing
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system to configure ICAT(s) hardware architectures that process algorithms with optimal

performance.

[0065] In one example, the AMPC provides a compiler that compiles conventional compiler
source code capable of generating code for operating the ICAT hardware configuring the ICAT
architecture’s processor resources to directly process algorithms. For example, the AMPC
utilizes source code that is compatible with conventional compilers, such as C, C#, C++, Matlab

or other conventional compilers.

[0066] In one example, firmware generated by the AMPC runs on a main processing system of
the ICAT architecture. For example, the main processing system is a conventional processor on
the same chip as the remainder of the ICAT architecture and operates seamlessly with the ICAT
architecture. In this example, the AMPC accepts code written in high level programming
languages for source code, such as C, C#, C++, and the AMPC outputs firmware for the ICAT
architecture that runs on the main processing system. This simplifies the coding for operation of
the ICAT architecture by allowing the firmware for the ICAT architecture to be programmed in a
higher level programming language familiar to the developer. The raw speed of the ICAT
architecture eliminates the penalty and reduces any need to program machine level code for
optimizing speed. Instead, the higher level programming language optimizes the firmware for
optimizing performance based on the algorithms to be solved for a particular application. For
example, the ICAT architecture is reconfigurable to allow optimal performance, on at least one

virtual machine defined in the firmware, for robotic vision systems, as an example.

[0067] Unlike traditional micro-processors, in one example, the AMPC of the ICAT architecture
may compile software syntax, such as an if-then-else process, into firmware that reconfigures the
ICAT architecture’s hardware to optimally execute the process in fewer clock cycles, using
pipelining, for example. By running the firmware, the ICAT architecture is configured. In
contrast, conventional compilers build firmware that all conventional processors use, but the
conventional processors are not reconfigured by the firmware. The AMPC builds firmware for
the ICAT architecture, configuring the ICAT architecture for optimal operation in a particular

application, for example. In one example, the AMPC selects and structures the configuration of
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the ICAT hardware using the algorithms as input structure for the ICAT architecture’s processor

hardware.

[0068] For example, the hardware architecture of the ICAT architecture is optimized by the
AMPC for processing speed performance for a particular application, when configured by the
AMPC generated firmware. The AMPC can reconfigure the hardware of the ICAT architecture,

where a conventional compiler cannot reconfigure the ICAT or any micro-processor’s hardware.

[0069] A standard system compiler cannot change architecture of the hardware in conventional
processor systems. However, in one example, the AMPC generates firmware that configures the
ICAT architectures processors to directly perform pipelined processing and routing of data based
on prior results in hardware. For example, the if-then-else logic statement input into the AMPC
would structure the hardware of the ICAT architecture to route data results to the next ICAT. In
this example, the AMPC generates hardware configurations eliminating overhead of
conventional processing systems, such as code fetching, data loading, data storing, branching,

and subroutines for the same if-then-else logic.

[0070] Figure 4 illustrates an example of an ICAT architecture. In one example, a conventional
compiler, such as Visual Studio, may be used to generate an ICAT configuration program that
runs on the main processing system 101. This provides a method for configuring and
reconfiguring reprogrammable pools of hardware which are reconfigurable to run and process
various type processing Algorithms in a chip. A conventional processing system (e.g. Intel,
ARM, IBM, AMD microprocessors) cannot be reconfigured to run various algorithms, because
only the software, not the hardware, can change in a conventional processing system. By using
an ICAT architecture, all of the fetch and execute code instruction overhead of a conventional
processing system is eliminated. The ICAT architecture of Figure 4 provides a re-configurable
hardware configurable for performing efficient processing of data utilizing a pool of parallel

processer resources implemented in a system on chip (SOC) device 100.

[0071] For example, a pool of mathematic processors 107, followed by logic processers 108 and
configurable matrix routing 109 implements a pool of parallel processing resources 102. This
architecture is capable of pipeline processing resources to optimize processing performance for

particular applications. In one example, the pool of processors 102 perform multiple processing
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tasks, independently of the main processor 101, without receiving further instructions from the
main processor. Each ICAT may be configured to process an entire algorithm as a standalone
processor system. Thus, an ICAT can be considered a system within itself, requiring no
overhead to complete processing of an algorithm, once configured to perform the algorithm. For
example, an ICAT may be configured to perform an if-then-else instruction set and may be
reconfigured, later, to perform a completely different instruction set, such as a fast Fourier

transform or other mathematical algorithm solution.

[0072] By reducing unnecessary cycles of activity, the ICAT architecture reduces power
consumption, generates less heat, and increases the speed of processing data, when compared to
a conventional processor. The ICAT resources 102 are idle until they get configured, when data
is ready to be processed at their inputs. All of the processors are kept in an idle state when not
needed, reducing heat generated from any unnecessary overhead. Each processor in the pool of
ICAT resources have less overhead than conventional processors, because the ICAT does not
fetch and execute code. Instead, the hardware is configure to perform a specific operation and is
only active when data is provided that needs to be processed with the configured algorithm
provided by the ICAT architecture. In one example, a single ICAT processor uses a pool of
mathematic processors 107, logic processors 108, and output steered by configurable matrix

routing 109.

[0073] This same ICAT processor may be used for a simple processing task, such as an if-then-
else, or for a very advanced complex algorithm, such as an algorithm used in facial recognition.
By using a plurality of groups or pools of ICAT resources 102, a pool of mathematic processors
107, logic processors 108, and output steered by configurable matrix routing 109, the ICAT

architecture may be used for processing tasks requiring a plurality of calculations in a pipelined

architecture, such as motion, shape, or identity detection, for example.

[0074] In one example, the algorithm controls the interconnect bus structure of the ICAT
processors, and the ICAT architecture processes input data streams from output devices 112,
such as video, sensors or data from a previous process step. For example, prior results may be

streamed from data memory buffers, live input data or any data from other processed steps 110,
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111. Processing results may be output directly to devices 113, such as control output or video

output, for example.

[0075] A programmer may utilize the AMPC to configure a plurality of RAPC’s as illustrated in
the example of Figure 5. Alternatively, the use of the AMPC may be automated and controlled
onboard by a system on a chip, for example. Figure 5 illustrates a 6 step flow diagram for a
programmer, who initially inserts an original high level programming language source code into
first compiler (the AMPC is referred to a ASML). The ASML pre-compiler extracts code from
the original source in step 2, which occurs automatically. Then, the pre-compiler outputs new
source code to a second compiler. This step can be done either automatically or as a separate step
by the programmer, after the programmer is satisfied that the new source is debugged and
optimized. This second compiler compiles a firmware build for the ICAT architecture. Then, the
firmware is loaded into the ICAT architecture, and the firmware configures the RAPC’s of the
ICAT architecture. The programmer may upload this firmware into the ICAT architecture after

the programmer is satisfied that the firmware is debugged and optimized, for example.

[0076] Alternatively, each of the steps may be automated and may occur without human
intervention, except for loading the original source code into the ICAT architecture. By
combining a conventional processor with a plurality of RAPC’s and an AMPC, the entire process
may be automated, such that the conventional processor runs the AMPC to recompile the
original source code to generate firmware that is used by the conventional processor to set up the

RAPC’s, based on the instructions contained in the original source code.

[0077) A pool of ICAT resources may contain three types of processor modules, for example,
such as mathematic modules, logical modules, and result routing modules. Mathematics modules
perform math functions. Logic modules performs logic functions. Result routing modules
perform branching and data routing functions. For example, in Figure 6, A Reusable Algorithmic
Pipelined Computer (RAPC) is illustrated schematically. A setup bus 109 is established by
configuration of the setup registers of the ICAT architecture by the AMPC. Operands are
directed to memory locations A, B, C and D on a digital signal processor (DSP) 110. The DSP is
configured to execute an mathematical algorithm. Results of the algorithm are directed to a

logical decision processor (LDP) 111. The LDP executes logical instructions. Results of the
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logical instructions are delivered to the next RAPC, directly or via the matrix bus switch (MBS).
The MBS directs results to the next RAPC or controls inputs and outputs and interrupts for

delivery of the results on a high speed streaming interface.

[0078] Hardware resources may be configured into ICAT co-processor systems that are
interconnected in a pipelined structure for optimal performance. In one example, a method for
designing reprogrammable pools of hardware resources, which are reconfigurable, run and
process a plurality of processing algorithms in a chip. Hardware resources for configuring ICAT
processors may be designed into the chip, and the hardware resources in the chip are re-
configurable via AMPC. The architecture of an ICAT processing system is configured from the
source code for processing algorithms, for example. Thus, code generated for a conventional
processor may be run much more efficiently on an ICAT architecture, because the hardware of
the ICAT processors is configured by the source code to perform algorithms independently of the
processor using AMPC, for example. Thus, the ICAT architecture is capable of configuring the
ICAT hardware architecture from source code created for a conventional microprocessor, which
has not been known in the art. In one example, a pool of hardware resources are created that are
configurable and reconfigurable into algorithmic matrix structures by a processor, and the pool
of hardware resources then actually process a plurality of processing algorithms in a chip. In one
example, the hardware resources process data through an plurality of commands independently

of other processors using pipelining.

[0079] In one example, the ICAT architecture and algorithmic matching pipelining compiler
combine to achieve results unknown in the art, achieving both speed of calculations and
efficiency. For example, an AMPC configures hardware resources for running a plurality of
processing algorithms. AMPC generates the configuration setup firmware used to configure
processing algorithms from the pool of ICAT resources in an ICAT chip. This provides a
programmer with a tool that accepts existing application source code, designed for a
conventional processor and new source code designed for matching and assigning ICAT
hardware resources to create individual hardware processing algorithms within the ICAT
architecture. AMPC generates the firmware that runs the main processor to configure the ICAT
hardware to perform a plurality of algorithms independent of the main processor, during

operation of the SOC for a particular purpose.
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[0080] Conventional processors use a similar architecture comprising program memory, fetch
and execution hardware which is used for step by step execution of program instructions; data
memory which is needed for storage of bulk (heap) data and program stack structures; and

instruction fetch & execution cycles, management of program stack, and management of data

heap storage which all create considerable overhead in a conventional processer architecture.

[0081] In contrast, in one example, an ICAT architecture eliminates almost all of the overhead of
conventional processor systems. The ICAT hardware pool is configured by the AMPC and is
used to processes algorithms using the ICAT co-processor architecture with pipelined streaming
data structures. Thus, in one example, a method using the ICAT architecture comprises AMPC
accessing ICAT hardware compiler tables defining the resources available in the chip; a
hardware design language, such as Verilog, is used to compile the pool of ICAT hardware 102,
for a given processor; hardware compilation outputs tables that define the structure of the ICAT
resource pools within the chip; the AMPC uses these tables of data generated by the hardware
compiler to determine the locations and quantities of ICAT resources in the chip; AMPC assigns
hardware resources, configures math and logic operations, and creates interconnections for the
various algorithms, wherein the source input syntax for the AMPC may be comprises of C#
syntax or standard mathematic syntax, such as Matlab; the AMPC configures a pipelined
structure for each algorithm from the pool of ICAT hardware resources that are available 103 ...
111; and these pipelined structures form ICAT co-processors for each algorithm, for example.
For example, the AMPC outputs code that runs on the main processing system 101 that
configures the control registers 103, 104, 105, 106 of the resources that run algorithms on the
parallel ICAT(s) co-processors 102.

[0082] A co-processor system structure may be configured from a pool of ICAT resources 102,
which respond to input from a main processor 101, for example. Alternatively, a pool of ICAT
resources 102 may generate interrupts and output data to the main processor 101 or input / output
devices of the main processor 101, if the main processor architecture includes input / output
devices separate from the main processor. In one example, a pool of ICAT resources 102 may be
configured by a conventional processor 101, then the ICAT resources 102 run on their own until

re-configured.

23



WO 2017/132385 PCT/US2017/015143

[0083] The ICAT architecture’s processors will continuously process data streams in parallel, on
their own, once the ICAT processors are configured by the firmware. In contrast, a conventional
system requires endlessly going to memory and fetching instructions to determine the process
flow at each processing step. The AMPC may assign a hardware group of resources, such as
math logic and routing, for example, to a particular ICAT processor structure of the ICAT
architecture in order to execute processing steps for the processing of a particular algorithm, for
example. No conventional compiler selects and configures hardware structures of a micro-
processor. For example, when the AMPC builds the hardware structure of the ICAT architecture
it may configure the hardware resources for an ICAT architecture in a pipelined architecture that

speeds processing performance. A conventional complier cannot do this.

[0084] In the example of Figure 4, ICAT Control Registers 104 are a set of registers for
controlling processing functions. For example, a digital signal processor (DSP) Input Mode
Register may include Split Input Words, Pre-Adder Control, Input Register Bank Select and
other DSP Input functions, DSP ALU Mode Register may control add, subtract, multiply, divide,
shift right, shift left, rotate, and, or, xor, nor nand, and other logic processes, and DSP
Multiplexor Selects may control Shifts and Input Selects. The DSP may utilize one DSP48E1 for
each ICAT. For example, the DSP48E1 devices may be provided in a Xilinx 7 series of field
programmable gate arrays. For example, an ICAT memory and logic operations 105 may be used

to control memory and memory logic operations.

[0085] In one example, a motion detection algorithm is written in the C language for use on a

general purpose computer.

[0086] Code example 1: motion detection algorithm written in the C language (a high level

programming language)

int noise_threshold = 3;

int live_video pixel =0;

int black_video_pixel = 0;
boolean motion_detected = false;
int live_red_pixel = 0;

int live_green_pixel =0;
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int live_blue_pixel = 0;

int frame_delayed_pixel;

int frame_delayed_red_pixel = 0;

int frame_delayed_green_pixel = 0;

int frame_delayed_blue_pixel = 0;

int red_mask = 255; // 0000FF hex, 000000000000000011111111 binary, extracts bits 0 thru 7

int green_mask = 65,2280; // 00FFO00 hex, 000000001111111100000000 binary, extracts bits
8 thrul$

int green_divisor = 256

int blue_mask = 16,711,680; // FF0000 hex, 111111110000000000000000 binary, extracts bits
23 thru 16

int blue_divisor = 65,536
// Procedure to extract red, green, and blue pixels from live _video_pixel
void extract_live_red_green_blue (int live_video_pixel)
{
live_red_pixel = (live_video_pixel) ; // extract red pixel from live video
live_red_pixel = live_red_pixel & red_mask
live_red_pixel = (live_red_pixel / red_divisor)
live green pixel = (live_video_pixel) ; // extract green pixel from live video
live_green_pixel = live_ green_pixel & green_mask
live_green_pixel = (live_green_pixel / green_divisor)
live blue pixel = (live_video_pixel) ; // extract blue pixel from live video
live_blue_pixel = live_ blue pixel & blue_mask
live_blue_pixel = (live_blue_pixel / blue_divisor)
}
//Procedure to extract red, green, and blue pixels from delayed frame_video_pixel
void extract_delayed_red_green_blue (int frame_delayed_video_pixel) ;
{
frame_delayed_red_pixel = (live_video_pixel) ; // extract red pixel;
frame_delayed_red_pixel = (frame_delayed_red_pixel & red_mask) ;
frame_delayed_red_pixel = (frame_delayed_red_pixel / red_divisor);

frame_delayed green_pixel = (live_video_pixel) ; // extract green pixel
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frame_delayed_green_pixel = (frame_delayed_green_pixel & green_mask) ;
frame_delayed_green_pixel = (frame_delayed_green_pixel / green_divisor);
frame_delayed_blue_pixel = (frame_delayed_video_pixel) ; // extract blue pixel
frame delayed_blue_pixel = (frame_delayed_ blue_pixel & blue_mask)

frame delayed_blue_pixel = (frame_delayed_blue_pixel / blue_divisor)
}

// Procedure for motion detection algorithm
boolean motion_detected detect_motion () ;
{

motion_detect = false; //get ready to detect motion

result_red_pixel = (frame_delayed_red_pixel — live_red_pixel) ; // subtract red pixels

if (result_red_pixel > noise_threshold) // test if red_result is greater than noise threshold

{

motion_detected = true; // motion was detected on red pixel

} // end if (result_red_pixel > noise_threshold)

result_green_pixel = frame_delayed_green_pixel — live_green_pixel; // subtract green pixels
if (result_green_pixel > noise_threshold) // test if green_result is greater than noise threshold

{

motion_detected = true; // motion was detected on green pixel
} // end if (result_green_pixel > noise_threshold)

result_blue_pixel = frame_delayed_green_pixel — live_green_pixel; // subtract green pixels
if (result_blue_pixel > noise_threshold) // test if blue_result is greater than noise threshold

{
motion_detected = true;
} // end if (result_blue_pixel > noise_threshold)
return motion_detected; // motion was detected on blue pixel

} // end of motion detection algorithm

/I Procedure for one frame of video, (Executed for each frame of video)
do // process all pixels for each frame (hd = 777,600 pixels per frame)
// (31 instructions executed for each pixel)

{

if (pixel_clock = true) ; // pixel_clock is from the live video stream, hd = 46.656 MHz,
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{ // extract red, green, and blue pixels from live video and delayed video pixels
frame_delayed_pixel = delay buffer_output pixel; // get a frame delayed video pixel
live_video_pixel = live_video_input_pixel; // get a live video pixel

extract_live_red_green_blue (int live_video_pixel) ; // extract live color pixels, (9
instructions/pixel)

extract_delayed_red green_blue (int frame_delayed_pixel); // extract delayed color
pixels, (9 instructions/pixel)

} //end if (pixel_clock = true)
motion_detect = detect_motion(); // call function to detect motion (11 instructions/pixel)
if (motion_detect = true); // motion_detect swaps the processing of video outputs 1 and 2
{
outputl; // Only moving video is displayed. Non-moving video is black.
output2; // Only non-moving video is displayed. Moving video is black.
} // end if (motion_detect = true)
if (motion_detect = false); // motion_detect swaps the processing of video outputs 1 and 2
{
outputl; // Only non-moving video is displayed. Moving video is black.
output2; // Only moving video is displayed. Non-moving video is black.
} // end if motion_detect = false)

until (end_of_frame = true) ; // end_of frame is a signal in the video stream

[0087] Figure 7 shows a schematic illustration of a diagram of a hardware configuration
resulting from a compilation of Code Example 1 with an AMPC compiler. A video device 111
has two outputs: a stream of live video pixels 113 and a frame delay buffer stream 112. For RGB
output, each pixel comprises red, green and blue. The DSP 115 performs a comparison of the
live feed and the delayed feed, and the result is pipelined 117 to the LDP 116, which determines
if motion is detected. The result is output by the MBS of the RAPC 114. A single RPAC is
configured to implement the 3 processing blocks that execute in parallel every clock cycle. In
comparison, a conventional processing system requires execution of 37 instructions to process
each pixel of video to detect motion. Most of these instructions take more than 3 clock cycles
when executed on a conventional, non-reconfigurable and non-pipelined, processor. Even if an

average instruction executed in 3 clock cycles, which is being generous for non-optimized,
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general purpose processors, nevertheless, it would take 111 CPU clock cycles to process each
pixel. As the number of pixels increases on modern cameras, it is clear that the cycle times

available from modern single and multi-core processors are inadequate for the job.

[0088] In contrast, the example configuration of the single RAPC processor configured by an
AMPC compiler from Code Example 1 processes a continuous stream of pixels using the video’s
pixel clock. Three processing blocks (DSP, LDP, and MBS) are implemented in a pipelined,
streaming configuration of FPGA’s with three clock cycles of latency, but each clock cycle after
the pipeline is filled (after the first three clock cycles of the video's pixel clock) processes output
of a pixel, which is one pixel per clock cycle compared to one pixel per 111 clock cycles. As a
result, a single RAPC performs at least 111 times faster than a single core of a conventional
processing system, i.e. a pixel is process each clock cycle on the ICAT compared to 37
instructions x 3 clock cycles per instruction or 111 clock cycles per pixel for the conventional
processor. Since two thousand (or more) RAPC processors may be implemented on a single
ICAT chip, the combined processing power could be at least 222,000 faster than a single core
conventional processor. Current conventional processors are limited to quad core or the like, but
adding cores to a conventional processor is not without additional overhead. Many more RAPC’s
can be added than conventional processing cores, and each can be reconfigured as a pipeline

alone or together with other RAPC’s.

[0089] The point of Code Example 1 and Figure 7 is that adding RAPC's is simply a matter of
density and size of a chip and thousands may be added to an ASIC without adding overhead.
Each RAPC is a piplined, parallel processor. Therefore, adding cores, adding cache memories,
and overclocking of conventional processors could never get a conventional processor anywhere
near the performance of a single ICAT chip with a couple dozen RAPC's. Plus, all of the effort to
push conventional processors results in excessive heat, cost, and size for a conventional, non-
reconfigurable and non-pipelined, processor. Not to mention, that these same methods could be
used to increase performance of the RAPC’s of the ICAT architecture, also. Regardless, adding
RAPC’s to the ICAT architecture will always improve performance, dramatically, over a
comparable conventional processor architecture, without the need for programmers to program
specifically for the ICAT architecture. This is a surprising and unexpected result. All of the

attention is focused on getting more out of conventional processors, while little attention has
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been given to adding programmable, reconfigurable architectures to conventional processors for

enhancing performance of general purpose processors.

[0090] Also, implementing the same solution for Code Example 1 on standard FPGA's would
require more than merely recompiling a standard high level programming language, as provided
in this example. To successfully develop a matrix multiplier, PID or any complex algorithm, in a
Xilinx FPGA, for example, requires the following skills: a working knowledge in designing
circuitry with RTL and Verilog languages; advanced architecture skills (parallel processing,
pipelining, data streaming, resource/performance tradeoffs, etc.); design experience with a wide
variety of hardware building blocks, such as arithmetic, logical decision making, memory
devices, controller devices, peripheral interfaces, etc.; software design; a working knowledge
with various versions of higher level programming languages; a working knowledge with
mathematic algorithms used in monitoring and control applications; and a knowledge of how to
use Xilinx software tools, such as compiling “C” code to Xilinx hardware; verifying hardware
design and making architecture modifications if needed to meet performance goals; building “C”
code test bench; verifying hardware simulation results against test bench results; and
implementing design in hardware and testing it. All of this makes a typical FPGA project both
timely and costly, well beyond the ability of a person having ordinary high level language
programming skills. Current state of the art reserves FPGA’s for niche processing where
performance is paramount and the delays and costs of custom design and programming are

acceptable.

[0091] In contrast, any good high level language programmer can program ICAT technology,
because the front end, the microprocessor architecture is a familiar, general purpose architecture.
The RAPC's are configured by the general purpose processor and the AMPC, which uses the
standard structure of each RAPC to reconfigure one or more RAPC's, based on standard code for
the front end processor, as illustrated in the diagram of Figure 7, for example. Thus, the ICAT
technology, including a plurality of the RAPC's and an AMPC for configuring and reconfiguring
the RAPC's using a standard processor architecture facing the world, is a surprising and

unexpected advance over conventional processors and any known FPGA processors.
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[0092] Figure 8 illustrates an application of a microprocessor combining a reusable algorithmic
pipelined core with an algorithmic matching pipelined compiler. The lack of video processing
speed of conventional microprocessors requires either specialized and expensive chip sets or post
processing. As shown in the drawing, a general purpose processor with RAPC and AMPC yields
a solution that processes millions of pixels in real time, providing motion sensing, video
compression and faster upload and download speeds for video from a general purpose ICAT chip

onboard a consumer electronic device, for example.

[0093] Each RAPC may comprise a DSP, an LDP and an MBS. A DSP may have a setup
interface for programming the types of operations required, (i.e. integer and floating point,
multiply, divide, add, subtract, etc.). A DSP may have four inputs for operand data that can be
concatenated or operated on with various combinations of mathematic functions as determined
by the setup data, such as illustrated in Figure 8. The DSP may have a 48-bit accumulator which
is output as result data along with the status data. Status data includes, carry out, equal, greater

than, and less than, for example.

[0094] An LDP may have a setup interface for programming the lookup table, the loop counter,
and the constant register, for example. The LDP may have a Loop Counter for detecting when
iterative algorithms are completed. The LDP may have a register that can hold constant data for
input to the lookup table. The LDP may have a block of memory that can be used to perform
functions. LUT functions may include a lookup table that can be implemented and sequentially
accessed using the loop counter; a lookup table that can be implemented and accessed by the
DSP status, the constant register, or the DSP result data for control purposes; and a logic lookup
table that can be implemented and output miscellaneous logic signals for control purposes. The
LDP may pass result data from its input to its output. The LDP may have one pipeline register
for result data at its output, for example. Alternatively, the LDP may have two pipeline registers

with synchronous clear enables for result data at its output.

[0095] This detailed description provides examples including features and elements of the claims
for the purpose of enabling a person having ordinary skill in the art to make and use the
inventions recited in the claims. However, these examples are not intended to limit the scope of

the claims, directly. Instead, the examples provide features and elements of the claims that,
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having been disclosed in these descriptions, claims and drawings, may be altered and combined

in ways that are known in the art.

[0096] For example, without being limiting in any way, 3325 RAPC’s may be configured on a
single Xilinx® Zynq® FPGA chip, where Xilinx® and Zync® are trademarks of Xilinx, Inc.,
running at a modest clock rate of 100 MHz. On each clock, each of the RAPC’s can process 1 or
2 logic operations and a mathematic operation. Thus, this configuration produces 332
GigaFLOPS. For example, this configuration uses look up tables (LUT) for each of four
mathematical operations (e.g. add, subtract, multiply, divide) and four logic operations (e.g.
greater than, less than, equal, not equal). The standard LUT memory size is 512 bytes. In
addition, a “greater than a configurable constant value” LUT may be provided, in addition to the
other logic operation LUT’s. In one example, the output signals of the LUT’s are used to control
the bus multiplexor switches for steering results between RAPC’s. The AMPC compiler
precompiles source code of a higher level program language written for a von Neuman
architecture, and the AMPC compiler selects LUT’s for each operation being performed by a
RAPC, generating a non-von-Neumann processor from source code written for the von Neumann

architecture.

[0097] As compared to any conventional, von Neumann processor, the 332 GigaFLOPS, where a
GigaFLOPS is defined as 1 billion floating point operations per second, is respectable, especially
when it is understood that this is obtained without any special cooling requirements for the chip.
In comparison, a conventional von Neumann processing system requires separate fetch and
execute cycles for each math, logic and branch operation, while RAPC’s do not require separate

fetch and execute cycles for each math, logic and branch operation.

[0098] In one example, calculations show that a Xilinx® Virtex ZU13 chip, where Xilinx and
Virtex are trademarks of Xilinx, Inc., with a 741 MHz clock speed, can be configured with
236,250 RAPC’s, giving this chip the capability of performing at greater than 175,000
gigaFLOPS, which is an extraordinary result, both unexpected and surprising to those skilled in
the art. This result is possible, because the RAPC does not require a separate fetch and execute
cycle for each math, logic and branch operation performed. This and other problems raised by

the von Neumann architecture of general purpose computer processors are solved using RAPC’s
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and the architectures described herein. Programs written for processors with a von Neumann
architecture (i.e. all known, modern general purpose processors) do not need to be rewritten to
run on the described architecture, a very surprising and unexpected result to those of ordinary
skill in the art and even experts in this art.
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WHAT IS CLAIMED IS:
1. A reusable algorithmic pipelined core, comprising:
a processing unit;

an array of reconfigurable, field programmable gates, wherein the field programmable gates
are programmed by an algorithmic matching pipelined compiler, such that the algorithmic
matching pipelined compiler precompiles source code designed for operation on a standard
processor without parallel processing for processing by the processing unit, and the processing
unit and the algorithmic matching pipelined compiler configures the field programmable gates to

operate as pipelined, parallel processors.
2. The core of claim 1, wherein the algorithmic matching pipelined compiler is a precompiler.

3. The core of claim 2, wherein the precompiler is configured to precompile a standard higher
level software language written not for the core but for a type of conventional non-reconfigurable
processor, and the precompiler generates machine code for the core by utilizing the type of
conventional non-reconfigurable processor for which the standard higher level software language
was written to generate machine code to configure the array of reconfigurable, field

programmable gates.
4. The core of claim 3, wherein the standard higher level software language is C or C++.

5. The core of claim 2, wherein the core comprises a pool of computers configured to process

algorithms as needed for a particular calculation, based on output from the precompiler.

5. The core of claim 1, wherein the field programmable gates are configured to complete tasks

without any further overhead from the processing unit.

6. The core of claim 5, further comprising an intelligent bus controller or logical processor,
wherein the intelligent bus controller or logical processor performs all of the logical functions

processed by the core.

7. The core of claim 5, further comprising a logical processor and a master bus switch, and the
logical processor comprises reconfigurable logic functions for controlling of the master bus

switch.
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8. The core of claim 7, further comprising a digital signal processor, wherein the digital signal
processor comprises a reconfigurable mathematical processor for performing mathematical

calculations.

9. The core of claim 8, wherein the master bus switch is a matrix bus router or switch comprising
a circuit reconfigurably programmable by the precompiler and the processing unit, such that data
and results are routed from the core to another core to complete an algorithm, without any further
intervention from a central or peripheral processor during the processing of the algorithm,
reducing overhead by pipelining compared to static, unreconfigurable hardware, which requires
intervention by a central processor or peripheral processor to direct data and results in and out of

arithmetic processing units.

10. The core of claim 9, wherein the logical processor processes logical decisions and interative

loops and result memory is provided by the logical processor for learning algorithms.
11. A system comprising a plurality of the cores according to claim 1, comprising the steps of:

processing all of the mathematical operations using digital signal processors of one or more of

the plurality of cores; and

processing all of the logic functions using one or more of the logic processors of one or more

of the plurality of cores.

12. The system of claim 11, further comprising the step of configuring the plurality of cores as a
pool of cores and each of the pool of cores are reconfigurable by programming, alone, without

any change to the hardware.

13. The system of claim 12, wherein the step of configuring configures all of the plurality of
cores to process algorithms in parallel without any further intervention from a central or

peripheral processor to direct data and results in an out of arithmetic processing units.

14. The system of claim 13, wherein the algorithmic matching pipelined compiler is a
precompiler, and the logic processor of each of the plurality of cores uses memory blocks

configured by the precompiler, as look up tables and registers for constants or learned values.
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15. The system of claim 14, further comprising setting up the look up table by the logic
processor, wherein the look up table is an n-bit look up table, and the n-bit look up table is used

to encode an n-bit Boolean logic function as truth tables.

16. The system of claim 11, further comprising: generating machine code from a standard higher
level software language written for a conventional, non-reconfigurable and non-pipelined,
general purpose computer processor, using the algorithmic matching pipelined compiler for one

or more of the plurality of cores.

17. The system of claim 16, wherein the standard higher level software language is written for a
type of conventional, non-reconfigurable processor, and the step of generating machine code
comprises the algorithmic matching pipelined compiler, as a precompiler, utilizing the type of
conventional, non-reconfigurable processor to generate machine code for configuring the array

of reconfigurable, field programmable gates of each of the plurality of cores.

18. The system of claim 17, wherein the system comprises at least one processor of the type of
conventional, non-reconfigurable processor for which the standard higher level software
language is written, and the at least one processor of the type of conventional, non-
reconfigurable processor for which the standard higher level software language is written is
generates the machine code for configuring the array of reconfigurable, field programmable

gates of each of the plurality of cores.

19. The system of claim 18, wherein each of the plurality of cores is configured to independently
solve complex mathematical and logic algorithms without further intervention by the at least one
processor of the type of conventional, non-reconfigurable processor for which the standard

higher level software language is written.

20. The system of claim 19, further comprising inputting values into the system, and the system

outputs a solution to a master bus switch of the system, without further intervention.
21. The system of claim 20, wherein the plurality of cores comprises 2000 cores.

22. The system of claim 21, wherein the system operates 360 trillion instructions per second with
a 500 MHz clock speed.
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23. The system of claim 22, wherein the system has a latency for input of data, but pipelining
reduces overhead such that the system is configured to execute a calculation and output a result

on each clock from each core after the latency is initiated.
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