

HU000025851T2

(19) **HU**

(11) Lajstromszám: **E 025 851**

(13) **T2**

MAGYARORSZÁG
Szellemi Tulajdon Nemzeti Hivatala

EURÓPAI SZABADALOM **SZÖVEGÉNEK FORDÍTÁSA**

(21) Magyar ügyszám: **E 08 760355** (51) Int. Cl.: **A61K 35/74** (2006.01)
(22) A bejelentés napja: **2008. 06. 02.** **A23C 9/12** (2006.01)
C12Q 1/24 (2006.01)
(96) Az európai bejelentés bejelentési száma: **EP 20080760355** **C12R 1/25** (2006.01)
(97) Az európai bejelentés közzétételi adatai: **EP 2162143 A1** **C12R 12/25** (2006.01)
2008. 12. 04. **A23L 1/03** (2006.01)
(97) Az európai szabadalom megadásának meghirdetési adatai: (86) A nemzetközi (PCT) bejelentési szám:
EP 2162143 B1 **2015. 09. 09.** **PCT/EP 08/056768**
(87) A nemzetközi közzétételi szám:
WO 08145756

(30) Elsőbbségi adatai:
07380158 2007. 05. 31. EP
(72) Feltaláló(k):
MARTÍN JIMÉNEZ, Rocío, 11202 Algeciras - Cádiz (ES)
OLIVARES MARTÍN, Mónica, 18198 Huétor Vega -
Granada (ES)
JIMÉNEZ QUINTANA, Esther Antonia, 28460 Los
Molinos - Madrid (ES)
MARÍN MARTÍNEZ, María Luisa, 28002 Madrid (ES)
SIERRA ÁVILA, Saleta, 18005 Granada (ES)
MALDONADO BARRAGÁN, Antonio, 41100 Coria Del
Río - Sevilla (ES)
MARTÍN MERINO, Virginia, 28028 Madrid (ES)
BLANCH MARELL, Francesc, 08017 Barcelona (ES)
TORRE LLOVERAS, Celina, 08195 Sant Cugat Del Vallés
- Barcelona (ES)
LARA VILLOSLADA, Federico, 18220 Albolote -
Granada (ES)
ARROYO RODRÍGUEZ, Rebeca, 28850 Torrejón De
Ardoz - Madrid (ES)
BOZA PUERTA, Julio, 18008 Granada (ES)
JIMÉNEZ LÓPEZ, Jesús, 18110 Granada (ES)
FERNÁNDEZ ÁLVAREZ, Leónides, 28049 Madrid (ES)
SOBRINO ABUJA, Odón Julián, 28224 Pozuelo De
Alarcón - Madrid (ES)

(73) Jogosult(ak):
Biosearch S.A., 18004 Granada (ES)
(74) Képviselő:
Lengyel Zsolt, DANUBIA Szabadalmi és Jogi
Iroda Kft., Budapest

Az európai szabadalom ellen, megadásának az Európai Szabadalmi Közlönyben való meghirdetésétől számított kilenc hónapon belül, felszólalást lehet benyújtani az Európai Szabadalmi Hivatalnál. (Európai Szabadalmi Egyezmény 99. cikk(1))

A fordítást a szabadalmas az 1995. évi XXXIII. törvény 84/H. §-a szerint nyújtotta be. A fordítás tartalmi helyességét a Szellemi Tulajdon Nemzeti Hivatala nem vizsgálta.

XAUS PEI, Jordi, 18008 Granada (ES)
RODRÍGUEZ GÓMEZ, Juan Miguel, 28770 Colmenar
Viejo - Madrid (ES)
DELGADO PALACIO, Susana, 33009 Oviedo - Asturias
(ES)

(54) Emlős tej mikroorganizmusok, az azokat tartalmazó készítmények, és alkalmazásuk tüdőgyulladás kezelésére

(11) EP 2 162 143 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
09.09.2015 Bulletin 2015/37

(51) Int Cl.:
A61K 35/74 (2015.01) **A23C 9/12 (2006.01)**
C12Q 1/24 (2006.01) **A23L 1/03 (2006.01)**
C12R 1/225 (2006.01) **C12R 1/25 (2006.01)**

(21) Application number: **08760355.1**(86) International application number:
PCT/EP2008/056768(22) Date of filing: **02.06.2008**(87) International publication number:
WO 2008/145756 (04.12.2008 Gazette 2008/49)

(54) **MAMMALIAN MILK MICROORGANISMS, COMPOSITIONS CONTAINING THEM AND THEIR USE FOR THE TREATMENT OF MASTITIS**

SÄUGETIER-MILCH-MIKROORGANISMEN, DIESE ENTHALTENDE ZUSAMMENSETZUNGEN UND IHRE VERWENDUNG ZUR BEHANDLUNG VON MASTITIS

MICRO-ORGANISMES DU LAIT DE MAMMIFÈRE, COMPOSITIONS CONTENANT CEUX-CI ET UTILISATION DE CEUX-CI DANS LE TRAITEMENT DE LA MASTITE

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT
RO SE SI SK TR

(30) Priority: **31.05.2007 EP 07380158**

(43) Date of publication of application:
17.03.2010 Bulletin 2010/11

(73) Proprietor: **Biosearch S.A.**
18004 Granada (ES)

(72) Inventors:

- **MARTÍN JIMÉNEZ, Rocío**
11202 Algeciras - Cádiz (ES)
- **OLIVARES MARTÍN, Mónica**
18198 Huétor Vega - Granada (ES)
- **JIMÉNEZ QUINTANA, Esther Antonia**
28460 Los Molinos - Madrid (ES)
- **MARÍN MARTÍNEZ, María Luisa**
28002 Madrid (ES)
- **SIERRA ÁVILA, Saleta**
18005 Granada (ES)
- **MALDONADO BARRAGÁN, Antonio**
41100 Coria Del Río - Sevilla (ES)
- **MARTÍN MERINO, Virginia**
28028 Madrid (ES)
- **BLANCH MARTELL, Francesc**
08017 Barcelona (ES)

- **TORRE LLOVERAS, Celina**
08195 Sant Cugat Del Vallés - Barcelona (ES)
- **LARA VILLOSLADA, Federico**
18220 Albolote - Granada (ES)
- **ARROYO RODRÍGUEZ, Rebeca**
28850 Torrejón De Ardoz - Madrid (ES)
- **BOZA PUERTA, Julio**
18008 Granada (ES)
- **JIMÉNEZ LÓPEZ, Jesús**
18110 Granada (ES)
- **FERNÁNDEZ ÁLVAREZ, Leónides**
28049 Madrid (ES)
- **SOBRINO ABUJA, Odón Julián**
28224 Pozuelo De Alarcón - Madrid (ES)
- **XAUS PEI, Jordi**
18008 Granada (ES)
- **RODRÍGUEZ GÓMEZ, Juan Miguel**
28770 Colmenar Viejo - Madrid (ES)
- **DELGADO PALACIO, Susana**
33009 Oviedo - Asturias (ES)

(74) Representative: **ABG Patentes, S.L.**
Avenida de Burgos, 16D
Edificio Euromor
28036 Madrid (ES)

(56) References cited:
EP-A- 0 577 904 **WO-A-97/46104**
WO-A-2004/003235 **WO-A-2005/034970**
WO-A-2005/117532

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- OLIVARES M ET AL: "Antimicrobial potential of four *Lactobacillus* strains isolated from breast milk" JOURNAL OF APPLIED MICROBIOLOGY, vol. 101, no. 1, July 2006 (2006-07), pages 72-79, XP002458357 ISSN: 1364-5072
- HEIKKILA M P ET AL: "Inhibition of *Staphylococcus aureus* by the commensal bacteria of human milk" JOURNAL OF APPLIED MICROBIOLOGY, OXFORD, GB, vol. 95, no. 3, 2003, pages 471-478, XP002312462 ISSN: 1364-5072
- KAUR I P ET AL: "Probiotics: Potential pharmaceutical applications" EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, ELSEVIER, AMSTERDAM, NL, vol. 15, no. 1, February 2002(2002-02), pages 1-9, XP002232457 ISSN: 0928-0987
- JACOBSEN C N ET AL: "Screening of probiotic activities of forty-seven strains of *Lactobacillus* spp. by *in vitro* techniques and evaluation of the colonization ability of five selected strains in humans" APPLIED AND ENVIRONMENTAL MICROBIOLOGY, WASHINGTON,DC, US, vol. 65, no. 11, November 1999 (1999-11), pages 4949-4956, XP002232455 ISSN: 0099-2240
- JIMÉNEZ E ET AL: "Oral administration of *Lactobacillus* strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 74, no. 15, 1 August 2008 (2008-08-01), pages 4650-4655, XP009106598, ISSN: 1098-5336, DOI: 10.1128/AEM.02599-07
- Rebeca Arroyo ET AL: "Treatment of Infectious Mastitis during Lactation: Antibiotics versus Oral Administration of *Lactobacilli* Isolated from Breast Milk", Clinical Infectious Diseases, vol. 50, no. 12, 15 June 2010 (2010-06-15) , pages 1551-1558, XP055078978, ISSN: 1058-4838, DOI: 10.1086/652763
- ABRAHAMSSON THOMAS R ET AL: "Probiotic *lactobacilli* in breast milk and infant stool in relation to oral intake during the first year of life.", JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION SEP 2009, vol. 49, no. 3, September 2009 (2009-09), pages 349-354, ISSN: 1536-4801
- MARTÍN R ET AL: "Probiotic potential of 3 *Lactobacilli* strains isolated from breast milk", JOURNAL OF HUMAN LACTATION, ASSOCIATION, CHARLOTTESVILLE, VA, US, vol. 21, no. 1, 1 February 2005 (2005-02-01), pages 8-17, XP002402793, ISSN: 0890-3344, DOI: 10.1177/0890334404272393

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

Description**FIELD OF THE INVENTION**

5 [0001] The present invention relates to a novel approach to prevent or treat mastitis both in humans and animals through the use of mammalian milk-derived microorganisms obtained from healthy hosts of the homologous species; to those new probiotic microorganisms obtained from milk able to reduce infectious mastitis; to the use of these probiotic bacteria for the prophylaxis or treatment against mastitis and other diseases; and finally, to compositions comprising these compounds.

10

BACKGROUND OF THE INVENTION

15 [0002] Mastitis is an inflammation and infection of the mammary gland that is particularly frequent in women and other mammal females during lactation. Mastitis is mainly caused by staphylococci and/or streptococci selection and over-growth in the mammary ducts and mammary areola glands. Human mastitis affects up to 30% of lactating women and often leads to a precocious and undesired weaning because it is a really painful condition.

20

20 [0003] Moreover, mastitis is not human-specific pathology but affects to all mammalian species. In this sense, infectious mastitis in animal species and breeds reared for milk production, such as cows, ewes or goats, is an important economic problem since milk produced during the infective process must be discarded due to the high bacterial and somatic cells counts. In addition, mastitis can be an important problem in those domestic species (pigs, rabbits...) and breeds (e.g., meat-producing bovine) not dedicated to milk production since a reduced milk supply of low bacteriological quality may notably increase the morbidity and mortality rates among the offspring.

25

25 [0004] In these cases, antibiotic-based therapy has emerged as the unique therapeutical option. However, current wide-spectrum or Gram positive-targeted antibiotics are poorly effective for the staphylococcal and streptococcal strains causing mastitis and, in fact, such treatments can be in some circumstances, detrimental because they usually eliminate the commensal flora that characterise mammal milk, which could exert some protective effects. Moreover, antibiotic therapy may result in the appearance of antibiotic residues in the milk, which is also detrimental if occurring during the lactating period. Alternatively, recombinant bovine GM-CSF has also been used for the treatment of subclinical mastitis caused by *S.aureus* (Takahashi,H. et al. 2004, Cad.J.Vet.Res. 68:182-187) but did not prove efficient in the treatment of late-stage *S.aureus* infection.

30

30 [0005] An alternative approach for the treatment of mastitis is the use of probiotics. For instance, Sytnik,S.I. et al. (Vrach Delo., 1990, 3:98-100) attempted to use *Bifidobacterium* for preventing mastitis but did not observe any inhibition in the residence time of the breast microflora. Greene,W.A. et al. (J.Dairy Sci., 1991, 74:2976-2981) described the use of a commercial *lactobacillus* preparation for the treatment of elevated somatic cell count (SSC) when administered by direct intramammary injection but conclude that the *Lactobacillus* product used in the assay was not effective as an intramammary treatment of subclinical mastitis based on SCC. The US patent US4591499 describes a method for treating mastitis using an intramammary injection of an oil in water emulsion containing a non-pathogenic *lactobacillus* strain or a mixture of strains. However, the strains described in this document appear to act by means of a non-specific decrease in the pH in the mammary gland and, due to their particular formulation as emulsions, need to be administered by direct intramammary injection. The Russian patent RU2134583 describes the use of topic composition containing *lactobacterin* (microbe mass of *lactobacteria* that have been live lyophilized/dried in culture medium) or *bifidumbacterin* (a lyophilised biopreparation immobilized on special activated charcoal) for the treatment of massive microbe dissemination of breast milk. However, this preparation is only suitable for the topic administration and forms part of a multi-step treatment that includes relaxation massage and application of a suspension of organisms derived from the normal microflora of the intestine additionally containing a protective film-forming medium. The international patent application WO05/34970 describes the treatment of mastitis by direct intramammary injection of a *Lactococcus lactis* strain.

35

40 [0006] Heikkilä et al. (J Applied Microbiol, 2003, 95:471-8) describes that lactic acid bacteria such as *Lactobacillus rhamnosus*, *Lactobacillus crispatus*, *Lactobacillus lactis*, and *Leuconostoc mesenteroides* inhibit the growth of *Staphylococcus aureus*, which is known to cause maternal breast infections. However, this document does not describe the possible administration route for the therapeutic use of these strains.

45

45 [0007] There have been a number of approaches to obtain probiotics with the capacity to be transferred to breast milk. The international application WO05/117532 describes a method for selecting a lactic acid bacterial strain for oral administration to a woman for improving the woman's breast milk, comprising selecting a strain of *Lactobacillus* which increases the level of anti-inflammatory IL-10 and decreases the level of TGF- β 2 in breast milk, thereby reducing the risk for the lactating mother to develop mastitis. However, the lactic acid strain is not shown to have an antibacterial effect on staphylococci and/or streptococci. The international application WO04/003235 describes a method for the selection of probiotic microbial strains from breast milk and/or amniotic fluid with the capacity to be transferred to breast milk and/or internal organs except mucosae. These probiotic microbial strains have antibacterial properties against

pathogenic bacteria, including *Salmonella choleraesuis* and *Staphylococcus aureus* (Olivares et al., J Applied Microbiol, 2006, 101:72-9, Martin R et al., J Hum Lact, 2005, 21(1):8-17).

[0008] Additionally, probiotics have been used for the treatment of gastrointestinal disorders. The international application WO97/461104 describes the treatment of rotavirus induced diarrhoea by oral administration of *Lactobacillus reuteri*. The European application EP 0577904 describes a Bifidobacterium strain for production of foods or pharmaceuticals for treating gastrointestinal disorders. However, this strain is not shown to transfer to the mammary gland after oral intake. Kaur et al. (Eur J Pharm Sci, 2002, 15:1-9) describe probiotics of *Lactobacillus* and *Bifidobacterium* strains as food supplements which can be used therapeutically to prevent diarrhea, improve lactose tolerance, modulate immunity, which beneficially affect the host by improving its intestinal microbial balance, and which may also have potential to prevent cancer and lower serum cholesterol levels.

[0009] Therefore, there is a desire in the art for additional approaches to allow the prevention and treatment of mastitis and other mammary gland pathologies, in women and in other mammal females, which can be more easily applied and by less invasive means.

15 SUMMARY OF THE INVENTION

[0010] The present invention is based on the unexpected and surprising finding that mammalian milk contains probiotic strains that are able to be transferred to the mammary gland after their oral intake, and exert a therapeutic effect locally against the pathogens that cause mastitis, thus helping to reduce the incidence of mastitis. Moreover, these strains have a number of additional unexpected advantageous properties which make them useful for the treatment of other diseases. The present invention is advantageous with respect to the methods known in the art in view of the valuable properties that lactation may provide, and due to the economic interest of milk productivity to farmers.

[0011] A process for the selection of probiotics is disclosed comprising the steps of:

- 25 (i) isolating lactic acid bacteria or bifidobacteria strains present in the fresh milk from a mammalian species by selection in lactic acid culture media,
- (ii) selecting those strains from step (i) that are capable of being transferred to the mammary gland after oral intake and/or colonise the mammary gland after its topical application,
- 30 (iii) selecting those strains from step (ii) which are able to reduce the rates of survival and/or the rates of adhesion to epithelial cells of *Staphylococcus aureus* and
- (iv) selecting those strains from step (iii) that are capable of protecting animals from mastitis.

[0012] In an aspect, the invention provides probiotic strains selected from the group of *Bifidobacterium breve* deposited in the CECT under Accession N° 7263, *Bifidobacterium breve* deposited in the CECT under Accession N° 7264, *Lactobacillus reuteri* deposited in the CECT under Accession N° 7260, *Lactobacillus plantarum* deposited in the CECT under Accession N° 7262, *Lactobacillus fermentum* in the CECT under Accession N° 7265 and *Lactobacillus reuteri* deposited in the CECT under Accession N° 7266.

[0013] In a further aspect, the invention provides a composition, a pharmaceutical product, a feed or a nutritional product comprising at least a probiotic strain of the invention.

[0014] In another aspect, the invention provides the use of the probiotic strains of the invention for the manufacture of a medicament for the treatment and/or prophylaxis of a chronic or acute infection or infestation, or of an undesirable microbial colonization, wherein the infection, infestation or colonization is caused by parasites, bacteria, yeast, fungi or viruses, affecting any body surface or mucosa in a subject or animal in need thereof.

[0015] In a further aspect, the invention provides the use of a probiotic strain or of a mixture of probiotic strains of the invention or the culture supernatant for the manufacture of a medicament for the treatment and/or prophylaxis of hypersensitivity reactions to food and metabolic intolerance; of constipation and other gastro-intestinal disorders; of inflammatory or auto-immune disorders selected from the group of IBD, ulcerative colitis, arthritis, atherosclerosis, multiple sclerosis, psoriasis or sarcoidosis; and of tumour growth, metastasis and cancer in subject or animal in need thereof.

[0016] In a further aspect, the invention provides the use of a probiotic strain or of a mixture of probiotic strains of the invention for the manufacture of a medicament for the treatment and/or prophylaxis of allergic disorders and asthma in a subject or animal in need thereof.

[0017] In a further aspect, the invention provides the use of a probiotic strain or of a mixture of probiotic strains of the invention for the manufacture of a medicament for the treatment and/or prophylaxis of temporally depressed immune levels in individuals or animals subjected to physiological and management-derived stress.

55

BRIEF DESCRIPTION OF THE FIGURES

[0018]

Figure 1 provides the sequences of the 16S rRNA sequences of the probiotic strains bacteria described herein, including those of this invention and their PCR-RAPD profile.

5 Figure 2 is a graph bar showing the transfer ability to the mammary gland of and the gut colonization by the strains described herein, including those of the present invention in mice. The number of lactobacilli (grey bars), bifidobacteria (black bars) and enterococcus (white bars) in expressed milk and fecal samples in lactating mice supplemented daily for 14 days with 10^8 cfu of the genetically-labeled strains was analyzed by bacterial colony plating. Milk and fecal samples were collected at day 0, 5 and 10 of probiotic supplementation. PCR-positive colonies in milk are indicated as %.

10 Figure 3 is a graph bar showing the inhibition of the staphylococcal survival and adhesion produced after co-culture of the staphylococci with the strains described herein, including those of this invention. A) The inhibitory effect of these probiotics on *Staphylococcus aureus* survival was assessed *in vitro* by an agar well diffusion assay in TSA plates. The diameter of the inhibition halo (in millimetres) caused by the bacterial supernatants determines the antimicrobial effect. B) The adhesion of the pathogenic *Staphylococcus aureus* strain to Caco-2 cells was assessed in the presence of the probiotic strains of this invention. Ten randomized fields were counted and the results expressed as the mean of the % of adhered gram-negative bacteria attached to the cells compared to the number of pathogenic bacteria adhered in absence of probiotics.

15 Figure 4 is a graph bar showing the protection from staphylococcal mastitis. Mastitis was induced in lactating mice 10 days post-parturition by injection of 10^6 cfu of *S. aureus* in the fourth mammary pair. Staphylococcal load in the expressed milk (A) and the inflammatory mammary score (B) was evaluated after 5 and 10 days of infection.

20 Figure 5 is a graph bar showing the adhesion of probiotic strains to intestinal cells. The adhesion of the probiotic strains described herein, including those of this invention was assessed using Caco-2 (grey bars) or HT-29 (black bars) intestinal cell lines. Twenty randomized fields were counted and the results expressed as the mean of the number of bacteria attached to the cells per field \pm SD.

25 Figure 6 is a graph bar showing the survival of probiotic strains to digestion-resembling conditions. The resistance of the probiotic strains described herein, including those of this invention to acidic (grey bars) and high bile salt content (black bars) was assessed *in vitro* by culture of the bacteria in MRS pH 3.0 or 0.15% bile salts for 90 minutes. The results are represented as the mean \pm SD of three independent experiments.

30 Figure 7 shows the effect of the probiotic strains on a model of orally-induced *Salmonella* infection. A) Graph bar showing the effect of probiotic treatment in the inhibition of *Salmonella* translocation to the spleen. The number of *Salmonella* colonies was measured in the spleens of mice treated with the probiotics, with (grey bars) or without vaccination (black bars) with 10^8 cfu of inactivated *Salmonella*, after 24 hour of an oral challenge with 10^{10} cfu *Salmonella*. B) Survival curves of the animals after *Salmonella* infection.

35 Figure 8 is a graph bar showing the effect of probiotic strains on cytokine and immunoglobulin G expression. The TNF- α (A) and IL-10 (B) cytokine production was analyzed in bone marrow-derived macrophages stimulated with LPS and the indicated probiotic strain for 12 hours while IgG expression (C) was analyzed in lymphocytes obtained from the spleen of Balb/c mice (6-8 weeks old) stimulated with LPS and the indicated probiotic strain for 6 days. Both cytokine and IgG production were detected by ELISA.

40 DETAILED DESCRIPTION OF THE INVENTION

45 [0019] The invention provides a new method for the prophylactic and therapeutic treatment of infectious mastitis both in women and other mammal females in need thereof. The method is based in the use of specific probiotic strains as disclosed in claim 1, specially selected for that particular application.

50 [0020] A process for the selection of probiotics is disclosed, comprising the steps of:

- 55 (i) isolating lactic acid bacteria or bifidobacteria strains present in the fresh milk from a mammalian species by selection in lactic acid culture media,
- (ii) selecting those strains from step (i) that are capable of being transferred to the mammary gland after oral intake and/or colonise the mammary gland after its topical application,
- (iii) selecting those strains from step (ii) which are able to reduce the rates of survival and/or the rates of adhesion to epithelial cells of *Staphylococcus aureus* and

(iv) selecting those strains from step (iii) that are capable of protecting animals from mastitis.

[0021] In step (i), any milk obtained from a mammalian organism can be used as starting material for the above process. It is preferred that the milk used is human, bovine, porcine, sheep, cat or canine milk. Moreover, any lactic acid culture media known in the art can be used for selecting the strains. Preferably, the lactic acid culture media is selected from MRS medium, APT medium, RCM medium, LM17 medium, GM17 medium and Elliker medium. Most preferably, the lactic acid culture media is MRS medium.

[0022] In step (ii), the strains isolated in step (i) are selected based on their ability to be transferred to the mammary gland after oral intake and/or colonise the mammary gland after topical application. For detecting the ability to be transferred to the mammary gland, an assay such as described in WO2004003235 for detecting transfer of a microorganism to the milk after oral intake can be used.

[0023] In step (iii), any assay known in the art for measuring survival rates of *Staphylococcus* and for measuring adhesion rates of *S.aureus* to epithelial cells can be used. It is preferred that the effect of the probiotics in the adhesion rates is measured using a confluent culture of an intestinal cell line to which the *S.aureus* cells and the probiotics of the invention are added and the number of attached *S.aureus* cells is measured by any suitable technique. Typically, the intestinal cell line is Caco-2 and the number of attached cells is measured by direct inspection of the cell monolayers under light microscopy. Moreover, the selection step (iii) may also or alternatively involve measuring the viability of *S.aureus* in the presence of the probiotic strains. Any assay suitable for measuring growth inhibition of bacterial strains may be used. Typically, the assessment of *S.aureus* viability is carried out by an agar well diffusion assay.

[0024] In step (iv), any assay to measure protection of mastitis can be used. Preferably, the assay involves using an animal model of mastitis wherein at least one of the pathogens known to be the causative agent of mastitis is injected into the mammary gland. More preferably, the animal model is a mouse and the pathogen that needs to be administered to cause mastitis is *S.aureus*.

[0025] In an aspect, the invention provides a probiotic strain selected from the group of *Bifidobacterium breve* deposited in the CECT under Accession N° 7263, *Bifidobacterium breve* deposited in the CECT under Accession N° 7264, *Lactobacillus reuteri* deposited in the CECT under Accession N° 7260, *Lactobacillus plantarum* deposited in the CECT under Accession N° 7262, *Lactobacillus fermentum* in the CECT under Accession N° 7265 and *Lactobacillus reuteri* deposited in the CECT under Accession N° 7266.

[0026] A supernatant of a culture of one or more of the strains according to the invention is further disclosed. The supernatant can be obtained from the culture by any means available to the skilled person, including centrifugation, filtration, flotation and the like.

[0027] In a further aspect, the invention provides a probiotic strain or a mixture of probiotic strains according to the invention for use as a medicament. A supernatant of a culture of one or more of the strains according to the invention for use as a medicament is also disclosed.

[0028] In another aspect, the invention provides a composition which comprises at least one of the bacterial strains of the invention. Preferably, the composition comprises at least 2, at least 3, at least 4, at least 5 or at least 6 of the strains of the invention, and wherein each of the strains is represented in the composition in a proportion from 0.1% to 99.9%, preferably from 1% to 99%, more preferably from 10% to 90%. In another embodiment, the composition comprises any of the bacterial strains of the invention together with another strain or mixture of strains and where each of the strains is represented in the composition in a proportion from 0.1% to 99.9%, preferably from 1% to 99%, more preferably from 10% to 90%. A composition which comprises a supernatant of a culture of one or more of the strains according to the invention is also described. Preferably, the supernatant is represented in the composition in a proportion from 0.1% to 99.9%, more preferably from 1% to 99% and even more preferably from 10% to 90%.

[0029] In another aspect, the invention provides a pharmaceutical composition comprising a therapeutically effective amount of at least one strain or a composition of the invention. The pharmaceutical preparation can take the form of tablets, capsules, liquid bacterial suspensions, dried oral supplements, wet oral supplements, dry tube feeding or a wet tube feeding. Preferably the probiotic, the probiotic-containing or supernatant-containing composition and pharmaceutical product is directed to the oral, gastric and/or to the intestinal mucosal surface; however, it could also be directed to nasopharyngeal, respiratory, reproductive or glandular mucosa, and/or to the mammary gland and it could be administered to women and animals by an oral, nasal, ocular, rectal, topical and/or vaginal route.

[0030] In another aspect, the invention provides a feed or a nutritional product comprising at least a probiotic strain according to the invention. A feed or a nutritional product comprising at least a supernatant of a culture of one or more of the strains according to the invention is also disclosed. Non-limiting examples of suitable foodstuffs which can be used in the present invention are milk, yoghurt, cheese, curd, fermented milks, milk based fermented products, fermented cereal based products, fermented meat products, other milk based or cereal based powders, clinical nutrition formula, ice-creams, juices, bread, cakes or candies, animal feed formulations, semi- or synthetic diet formulations, infant formulae, clinical nutrition formulae, ice-creams, juices, flours, bread, cakes, candies or chewing-gums.

[0031] The required dosage amount of the probiotic strains in the composition, food or pharmaceutical composition

described before will vary according to the nature of the disorder or the proposed use of the composition, whether used prophylactically or therapeutically and the type of organism involved.

[0032] Any suitable dosage of the probiotics or combinations thereof may be used in the present invention provided that the toxic effects do not exceed the therapeutic effects. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures with experimental animals, such as by calculating the ED, (the dose therapeutically effective in 50% of the population) or LD (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD/ED ratio. Nevertheless, the activity of the new microorganisms in the individual is naturally dose dependent. That is, the more the novel microorganisms are incorporated by means of ingesting or administration of the above food material or the pharmaceutical composition, the higher protective and/or therapeutic activity of the microorganisms. Since the microorganisms of this invention are not detrimental to mankind and animals and have eventually been isolated from healthy human breast milk, a high amount thereof may be incorporated so that essentially a high proportion of the individual's mucosa will be colonized by the novel microorganisms. Compositions which exhibit large therapeutic indices are preferred. The data obtained from animal studies are used to formulate a range of dosage for human or animal use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED, with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration. The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. For instance, for preparing a food composition according to the present invention at least one of the probiotic strains of the present invention is incorporated in a suitable support, in an amount of from 10^5 cfu/g to about 10^{12} cfu/g support material, preferably from about 10^6 cfu/g to about 10^{11} cfu/g support material, more preferably from about 10^6 cfu/g to about 10^{10} cfu/g support material.

[0033] In the case of a pharmaceutical composition, the dosage of the probiotic strain should be from about 10^5 cfu/g to about 10^{14} cfu/g support material, preferably from about 10^6 cfu/g to about 10^{13} cfu/g support material, more preferably from about 10^7 cfu/g to about 10^{12} cfu/g support material. For the purpose of the present invention the abbreviation cfu shall designate a "colony forming unit" that is defined as the number of bacterial cells as revealed by microbiological counts on agar plates.

[0034] Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

[0035] In a preferred embodiment, the invention also refers to compositions of the strains of this invention in a lyophilized, freeze dried or dried form, which can be obtained by any conventional method known in the art.

[0036] A composition, pharmaceutical product, feed or nutritional product wherein the probiotic strain or the mixture thereof is in a partially or totally inactivated form is also disclosed.

[0037] Many people have a disturbed intestinal microflora, that is, the balance between useful and harmful intestinal bacteria is disturbed. A number of factors, among others stress, the presence of bile salts, and specially diet, influence the bacterial flora. In these situations the fermentation process could be disturbed and the number of useful bacteria be reduced, with the consequence that the colon mucosa withers away and ceases to function at the same time as the potentially malignant bacteria rapidly grow in number. The probiotic strains of the invention are capable of preventing adhesion of *S. aureus* to epithelial cells, as well as of reducing survival rates of *S. aureus* cells and of many other pathogens. Thus, the probiotic strains of the invention are particularly useful for the treatment of said diseases since they contribute effectively to the killing of the pathogens while at the same time; they contribute to the repopulation of the mucosal surface with the physiological microflora.

[0038] For this reason, one aspect of this invention is the use of probiotics of the invention for the preparation of a pharmaceutical composition for the prophylactic or therapeutic treatment of chronic or acute infection, or infestation or of undesirable microbial colonization, of a mucosal surface or any other human location, wherein the infection, infestation or colonization is caused by parasites, bacteria, yeast, fungi or viruses, affecting any body surface or mucosa, said therapeutic treatment comprising the administration of an effective amount of a probiotic, or a probiotic-containing composition, to a subject in need thereof. In a preferred embodiment, the infection or colonization is caused by parasites, bacteria, yeast, fungi or viruses, of any body surface or mucosa in a subject or animal in need thereof.

[0039] The probiotics of the invention have been selected based on their ability to colonise the mammary gland after oral intake and to prevent adhesion to epithelial cells and to decrease survival of *S. aureus*. Thus, the strains are suitable for treatment of mastitis. Accordingly, in a further aspect, the invention provides the use of the probiotic strains of the inventions for the preparation of a pharmaceutical composition for the treatment or prophylaxis of human and animal infectious mastitis. This process consists in the use of probiotic strains selected from homologous fresh milk and in the ability of these strains to be transferred to the mammary gland and exert there their benefits, such as the inhibition of the staphylococcal infection.

5 [0040] Moreover, the probiotic strains of the invention have also been shown to possess some of the characteristics attributed to a potential probiotic strain, namely safety and good resistance to digestion process and the ability of gut colonization. Therefore, the strains are capable of reaching the intestinal tract after oral intake and exert their therapeutic properties there. Accordingly, in a preferred embodiment, the invention provides the use of the probiotic strains of the invention for the preparation of a pharmaceutical composition for the treatment of neonatal diarrhoea.

10 [0041] The probiotic strains are known to reduce the production of pro-inflammatory cytokines by activated macrophages during chronic inflammatory disorders. Accordingly, in another aspect, the invention provides the use of the bacterial strains and compositions of the invention for the preparation of a pharmaceutical composition for the manufacture of a medicament for the treatment of inflammatory or auto-immune disorders. Non-limiting examples of such inflammatory and auto-immune diseases include IBD, ulcerative colitis, arthritis, atherosclerosis, multiple sclerosis, psoriasis or sarcoidosis.

15 [0042] The probiotic strains according to the invention are capable of repopulating the immune gut barrier after oral intake and thus, they are also particularly suitable for the improvement of the immune gut barrier in a subject or animal in need thereof. Accordingly, in another aspect, the invention provides the use of one or more probiotic strains of the invention for the preparation of a pharmaceutical composition for the preparation of a medicament for the treatment and/or prophylaxis of hypersensitivity reactions to food and metabolic intolerance such as lactose intolerance; of constipation and other gastro-intestinal disorders.

20 [0043] Probiotics are known to be useful for counteracting cancer due to their effects in the inhibition of carcinogenic toxins in the intestines such as nitrosamines but also for the effect of this probiotics in the modulation of the natural immune response. Accordingly, in a further aspect, the invention provides the use of the strains stated in this invention for the preparation of a pharmaceutical composition for the prophylactic or therapeutic treatment of some cancer types and for inhibiting tumor growth, metastasis and cancer in subject or animal in need thereof.

25 [0044] The strains of the invention are capable of modulating the immune response and the balance between Th1 and Th2 cytokines. Accordingly, in a further aspect, the invention provides the use of the strain and compositions of the invention in the manufacture of a medicament for the treatment and/or prophylaxis of allergic disorders, asthma and disorders related with the development of tolerance against ingested proteins.

30 [0045] In a further aspect, the invention provides the use of the strains and compositions of the invention in the manufacture of a medicament for the treatment and/or prophylaxis of temporally depressed immune levels in individuals such as produced during aging or in healthy individuals who are subject to intense exertion or in general to a great physiological strain or stress.

35 [0046] In another aspect, the invention provides for the therapeutic use of the probiotic strain and of the combinations of strains wherein the strain or strains are administered via oral, topical, nasal, enteral, ocular, urogenital, rectal or vaginal.

40 [0047] Moreover, due to the presence of the selected strains in breast milk, the subjects in need of treatment could be not only those who intake directly the selected strains but also the fetus or breast feeding babies. Accordingly, in still a further aspect, the invention provides the use of the strains and compositions of the invention in the manufacture of a medicament designed to be administered to lactating woman for the therapeutic or prophylactic treatment of their fetus and/or their breastfed babies.

[0048] The following methods and examples illustrate the invention.

40 EXAMPLES

Example 1: Isolation of probiotics from mammal milk

45 [0049] Fresh milk samples (2 ml except in the case of the bitches where only 0.5 ml were collected) were obtained from 23 healthy women at day 6-14 after labour; 8 sows at day 5 after labour, 9 bitches at day 2-10 after labour and 4 cows at day 2 after labour. Neither the women nor the animals had complications during labour and no antibiotic therapy was administered in the last two weeks prior milk sample collection. All milk samples were immediately frozen at -80°C.

50 [0050] In order to isolate bacterial strains from these samples, serial dilutions of 0.1 ml in peptone water were plated on MRS, APT, RCM, LM17, GM 17 and Elliker agar plates at 37°C in both aerobic and anaerobic conditions for 24-48 hours. Among the approx. 1200 colonies initially obtained, 120 (10%; include representatives of the different morphologies observed on the plates) were selected and subcultured in MRS agar at 37°C in anaerobic conditions. Among them, we further selected 68 isolates with the following characteristics: non-spore-forming, catalase- and oxidase-negative Gram positive rods.

55 [0051] These 68 selected isolates were further characterized both phenotypically (API CH50, APIZYM and antibiotic resistance evaluation) and genetically (16S rRNA sequencing and RAPD-PCR profile). This characterization resulted in 59 different bacterial strains which were further evaluated through the screening process described in this invention in order to obtain potential probiotic candidates to be able to protect against mastitis.

[0052] After this screening process, only 6 strains (2 from women, 2 from bitches and 2 from sows) fulfilled all the

defined criteria. Other lactic acid bacteria strains were obtained from other mammal species, such as goat, ewe, cat, rat and mice, but they were not successful to fulfil all the screening criteria and for this reason they are not included in this invention.

- 5 • *Bifidobacterium breve* said bacteria being obtained from human milk
- *Bifidobacterium breve* said bacteria being obtained from human milk
- *Lactobacillus reuteri* said bacteria being obtained from porcine milk
- *Lactobacillus plantarum* said bacteria being obtained from porcine milk
- *Lactobacillus reuteri* said bacteria being obtained from canine milk
- 10 • *Lactobacillus fermentum* said bacteria being obtained from canine milk
- *Lactobacillus salivarius* said bacteria being obtained from porcine milk
- *Enterococcus hirae* said bacteria being obtained from feline milk
- *Enterococcus faecalis* said bacteria being obtained from feline milk
- *Lactobacillus plantarum* said bacteria being obtained from feline milk
- 15 • *Lactobacillus reuteri* said bacteria being obtained from canine milk

Example 2: Physiologic and genetic characterization

20 [0053] All these isolates were physiological and genetically characterized. For the identification of each probiotic strain, we performed a fermentation API 50CH (BioMerieux) analysis of the strains at 37°C in anaerobic conditions for 24 and 48 hours, following the manufacturer instructions. The 24 hours results were summarized in Table I. A positive fermentable substrate is that with a value higher than 3.

25 [0054] Due to the low specificity of the API characterization, we also performed the analysis of the 16S rRNA sequences of the selected bacterial strains. The 16S RNA sequence of the selected bacteria and their RAPD-PCR profile are shown in Figure 1. The results obtained led to the classification of the bacterial strains as indicated above. With this classification the bacterial strains of the invention were deposited according to the Budapest Agreement at the CECT -Colección Española de Cultivos Tipo-, Valencia (Spain) on April 17Th 2007 and accorded the following accession numbers:

- 30 • *Bifidobacterium breve* CECT7263
- *Bifidobacterium breve* CECT7264
- *Lactobacillus reuteri* CECT7260
- *Lactobacillus plantarum* CECT7262
- *Lactobacillus reuteri* CECT7265
- *Lactobacillus fermentum* CECT7266

35 [0055] The following bacterial strains described herein were deposited according to the Budapest Agreement at the CECT -Colección Española de Cultivos Tipo-, Valencia (Spain) on May 30th, 2008

- 40 • *Lactobacillus salivarius* CELA200
- *Enterococcus faecalis* EFG1
- *Lactobacillus plantarum* LG14
- *Lactobacillus reuteri* PDA3

45

50

55

Table I: Fermentation pattern of the different probiotic strains described herein including those of the invention Positive fermentable substrates are indicated in grey.

5

Comparative Examples

TEST	7263	7264	7260	7262	7265	7266	PDA3	LG14	CELA200	EFG1	EHG11
Glycerol	0	0	0	0	0	0	0	0	0	0	0
Erythritol	0	0	0	0	0	0	1	0	0	0	0
D-Arabinose	0	0	0	0	0	0	1/25/2	0	0	0	0
L-Arabinose	0	0	0	1/25/2	0	1/25/2	1/25/2	1/25/2	0	1	0
Ribose	1/25/2	0	0	1/25/2	1/25/2	1/25/2	1/25/2	1/25/2	1/25/2	0	0
D-Xylose	0	0	0	0	5	0	0	0	0	0	0
L-Xylose	0	0	0	0	0	0	0	0	0	1/25/2	1/25/2
Adonitol	0	0	0	0	0	0	1/25/2	0	0	1/25/2	1/25/2
□ Methyl-xyloside	0	0	0	0	0	5	1/25/2	0	0	1/25/2	1/25/2
Galactose	1/25/2	1/25/2	0	1/25/2	1/25/2	1/25/2	1/25/2	1/25/2	1/25/2	1/25/2	1/25/2
D-Glucose	1/25/2	1/25/2	1/25/2	1/25/2	1/25/2	1/25/2	1/25/2	0	1/25/2	1/25/2	0
D-Fructose	1/25/2	1/25/2	0	1/25/2	1/25/2	0	1/25/2	1/25/2	1/25/2	0	0
D-Mannose	1	0	0	1/25/2	1/25/2	0	0	1/25/2	1/25/2	0	0
L-Sorbitose	0	0	0	0	0	0	0	0	0	1/25/2	0
Rhamnose	0	0	0	0	0	0	0	0	0	1/25/2	0
Dulcitol	0	0	0	0	0	0	0	0	0	0	0
Inositol	0	0	0	0	0	0	0	0	0	0	0
Mannitol	4	0	0	5	5	0	4	5	5	5	5
Sorbitol	5	0	0	5	0	0	0	5	5	5	5
□ Methyl-D-mannoside	0	0	0	0	0	0	0	0	0	0	5
□ Methyl-D-glucoside	2	0	0	0	5	0	5	0	0	5	5
N Acetyl glucosamine	2	1	0	5	5	0	5	5	5	5	5
Amygdaline	0	1	0	5	0	0	5	5	0	5	5
Arbutine	0	0	0	5	0	0	5	5	4	5	6
Esculetine	5	5	0	5	0	0	5	5	5	5	5
Salicine	1	0	0	5	0	0	5	5	0	0	5
Cellobiose	5	1	0	5	0	0	5	5	4	5	5
Maltose	5	5	5	5	5	5	5	5	5	5	5
Lactose	5	0	5	5	5	5	5	5	0	0	0
Melibiose	5	5	5	5	5	5	5	5	5	5	0
Saccharose	5	0	5	0	5	5	5	0	5	0	0
Trehalose	0	0	0	5	0	0	0	5	5	1	5
Inuline	0	0	0	0	0	0	0	0	0	0	0
Melezitose	0	0	0	0	0	0	1/25/2	0	0	0	0
D-Raffinose	1/25/2	0	1/25/2	1/25/2	1/25/2	1/25/2	0	1/25/2	1/25/2	0	0
Amidon	1/25/2	0	0	0	0	0	0	0	0	0	0
Glycogene	1/25/2	0	0	0	0	0	0	0	0	1/25/2	0
Xylitol	0	0	0	0	0	0	1/25/2	0	0	0	0
□ Gentibiose	0	2	0	1/25/2	0	0	0	1/25/2	0	0	0
D-Turanose	1/25/2	0	1/25/2	0	0	0	1/25/2	0	0	0	0
D-Lyxose	0	0	0	0	0	0	1/25/2	0	0	0	0
D-Tagatose	0	0	0	0	0	0	0	0	0	1/25/2	0
D-Fucose	0	0	0	0	0	0	0	0	0	0	1
L-Fucose	0	0	0	0	0	0	0	0	0	0	0
D-Arabinol	0	0	0	0	0	0	0	0	0	0	0
L-Arabinol	0	0	0	0	0	0	0	0	0	0	0
Gluconate	0	0	0	0	0	0	0	0	0	0	0
2 ceto-gluconate	0	0	0	0	0	0	0	0	0	0	0
5 ceto-gluconate	0	0	0	0	0	0	0	0	0	0	0

Example 3: Selective screening of the strains

45 Example 3a: Transfer to the mammary gland after oral intake

[0056] Once the different candidate strains were obtained from mammal milk as indicated in the first selection criteria, the following step in the selection process described in the present invention is that bacteria should be able to be transferred to milk after oral intake or topical application. In order to test this capability, the putative strains were genetically labelled as described previously (WO 2004/003235) and orally administered to pregnant rats as animal model. Total lactobacilli, bifidobacteria and enterococcus were measured in milk and neonatal fecal samples. Moreover, specific transfer of bacteria was analyzed by PCR screening of the colonies obtained from the milk of lactating rats and from the neonatal faeces.

[0057] Four pregnant Wistar rats were orally inoculated with 10^8 cfu of genetically-labelled strains vehiculated in 0.5 ml of milk every two days from two weeks before labor. After labor, the transfer of genetically labelled bacteria to breast milk was analyzed by comparison of the bacteria isolated from the neonatal faeces at day 0, 5 and 10 after labor. All the plates were incubated for 24 hours at 37°C under anaerobic conditions. For each sample obtained, total bifidobacteria, lactobacilli and enterococcus counts were measured. Among the colonies that grew on MRS plates, 50 were randomly

selected from each sample and subcultured on Cm-MRS plates. Finally, the Cm-resistant colonies were used as templates to detect the specific genetic label colonies (Figure 2). Transfer was considered positive when at least 1% of the colonies obtained were PCR-positive.

5 **Example 3b: Inhibition of *Staphylococcus aureus* survival**

[0058] The probiotic strains of this invention were assessed for their capability to produce bactericidal metabolites able to reduce the survival of *Staphylococcus aureus* using an agar well diffusion assay. TSA agar plates containing 10⁶ cfu/ml of *S. aureus* were prepared. Wells with a diameter of 5 mm were cut in the agar using a sterile cork-borer. 10 Then, 50 µl of a 2-fold concentrated supernatant of each probiotic strain solution were added to the wells and allowed to diffuse into the agar during a 2 hours preincubation period at 4°C, followed by aerobic incubation of the plates at 37°C for 16-18 hours. After the incubation period, an inhibitory halo was observed and measured (in millimetres) to evaluate the bactericide effect of the probiotic candidates (Figure 3A).

15 **Example 3c: Inhibition of *Staphylococcus aureus* adhesion to epithelial cells**

[0059] Caco-2 intestinal cell lines were cultured to confluence in 35 mm plastic dishes containing 2 ml medium without antibiotics. On day 10-14 post-confluence, 1 ml of media was replaced with 1 ml of a suspension of 10⁸ probiotic bacteria in DMEM. The cultures were incubated 1 hour at 37°C. After that, 1 ml of a suspension of 10⁸ pathogenic bacteria (*S. aureus*) in DMEM was added to the cultures and incubated 1 hour more at 37°C. The cells were washed twice with PBS and fixed with ice-cold 70% methanol for 30 minutes. Plates were air dried and Gram stained. The attached bacteria were visualized using an optical Axiovert 200 (Zeiss) microscope at 1000x magnification in oil-immersion. The number of gram-negative bacteria in 10 randomized fields was counted and the results expressed as the mean of % of pathogenic bacteria attached to the cells compared to control cultures without probiotic strains (Figure 3B).

25 **Example 3d: Protection of mastitis**

[0060] To evaluate the efficacy of the probiotic candidates to protect against mastitis, we used a mice model of this pathology. In brief, 10 Wistar pregnant rats per group were daily supplemented by oral gavage with 10⁸ cfu/day of each probiotic strain vehiculated in 200 µl of milk during two weeks after labour. One week after labour, mastitis infection was induced in the animals by injection of 10⁶ cfu of *S. aureus* in the fourth mammary gland pair. Expressed milk was collected at days 0, 5 and 10 post-infection to measure bacterial load (Figure 4A); and 5 animals of each group were sacrificed at days 5 and 10 post infection in order to obtain mammary gland biopsies to evaluate the inflammatory process by histological examination.

[0061] Whole glands were fixed in 5% formalin and dehydrated with alcohol, and finally embeded in paraffin. Tissue sections were stained with haematoxylin-eosin and examined in a blinded fashion (Figure 4B). To qualitatively evaluate alterations of mammary gland histology, an inflammatory index value (IIV) was determined as follow:

- 40 - Score 0: No infiltration
- Score 1: Mild PMN cell interstitial infiltration in isolated areas of tissue sections, undamaged tubular epithelium
- Score 2: Interstitial infiltration covering most fields, dispersed areas of tissue damage with loss of tissue structure, and scant images of abscess formation
- Score 3: Severe infiltration covering most fields, frequent areas of tissue damage with loss of tissue architecture, and frequent images of abscess formation.

45 **Example 4: Probiotic potential of the strains**

[0062] The selected strains were further analyzed for different characteristics that could enhance their capabilities to act as a probiotic strains. The results obtained are described in the indicated examples.

50 **Example 4a: Adhesion to Caco-2 and HT-29 cells**

[0063] For the adhesion assays the cell lines Caco-2 (ATCC HTB-37) and HT-29 (ATCC HTB-38) were utilized as a model of the intestine cells. Both cell lines presented features characteristic for intestinal cells such as polarization, expression of intestinal enzymes, production of particular structural polypeptides and mucins.

[0064] The cells were grown in plastic flasks (75 cm², Nunc) in DMEM as culture medium supplemented with 10% inactivated FCS, non essential amino acids, 100 U/ml penicillin/streptomycin, 1 µg/ml amphotericine. Culturing was performed at 37°C in an atmosphere comprising 95% air and 5% CO₂. Media was changed on a two daily basis and the

cells were split every week.

[0065] Caco-2 and HT-29 intestinal cell lines were split in 35 mm plastic dishes in 2 ml medium without antibiotics to confluence. 10-14 days post-confluence, 1 ml of media was replaced with 1 ml of a suspension of 10^8 bacteria in DMEM (PAA). The cultures were incubated 1 hour at 37°C. After that, cells were washed twice with PBS and fixed with ice-cold 5 70% methanol for 30 minutes. Plates were air dried and Gram stained. The attached bacteria were visualized using an optical Axiovert 200 (Zeiss) microscope at 1000x magnification in oil-immersion. Twenty randomized fields were counted and the results expressed as the mean of the number of bacteria attached to the cells per field \pm SD (Figure 5)

Example 4b: Resistance to acid and bile salts

[0066] To analyze the resistance of the probiotic strains of this invention to acidic and high bile salt content, conditions that these bacteria will encounter during the digestive transit, bacteria were cultured in MRS broth medium pH 3.0 or with 2 % bile salts (Sigma) for 90 minutes. The survival was calculated by MRS agar plating of serial dilutions and compared to the number of colonies obtained in control conditions (MRS broth pH 5.8). Plates were cultured 24 hours 10 15 at 36°C in extreme anaerobic conditions. The experiment was repeated three times (Figure 6).

Example 4c: Resistance to antibiotics

[0067] The use of modern antibiotics leads to a reduction of the comensal gut microflora which sometimes relates to 20 diarrhoea and other gut disorders. Moreover, this reduction in the amount of gut bacteria could be the consequence of opportunistic pathogenic bacteria and viruses to infect the host. The use of antibiotics to block the infection does not resolve this disorder but complicates it. In other situations like intestinal inflammation where probiotics could exert a 25 beneficial role, this potential effect is sometimes limited for the simultaneous therapy with antibiotics. For all these reasons, the selection of potential probiotic strains which were able to resist common antibiotics should be clearly interesting.

[0068] To analyze the resistance of the probiotic strains of this invention we used a agar well diffusion assay. Müller-Hinton agar plates containing 10^6 cfu/ml of each probiotic strain were prepared. Then, antibiotic commercial discs were 30 added to the wells and allowed to diffuse into the agar during 10 minutes preincubation period at room temperature, followed by extreme anaerobic incubation of the plates at 36°C for 16-18 hours.

[0069] The antibiotic resistance of the probiotic strains of this invention is summarized in Table II.

Table II: Antibiotic resistance of the different probiotic strains of the invention

	7263	7264	7260	7262	7265	7266	7413	7412	7409	7411	7410	Comparative Examples
Penicillin	S	S	R	S	S	R	R	S	S	S	S	
Ampicilin	S	S	R	S	S	R	R	S	S	S	S	
Ciprofloxacin	S	S	S	S	R	S	S	S	S	S	S	
Erythromycin	S	S	S	S	S	S	S	S	S	S	S	
Clindamycin	S	S	S	S	S	S	S	S	S	R	R	
Tetracycline	S	S	S	S	S	S	S	S	S	S	R	
Vancomycin	S	S	R	R	R	R	R	R	R	S	S	
Gentamicin	R	R	S	S	R	S	S	S	S	S	S	
Cloramphenicol	S	S	S	S	S	S	S	S	S	S	S	
Rifampicine	S	S	S	S	S	S	S	S	S	S	R	

Example 4d: Production of antimicrobial metabolites

[0070] It has been suggested that the main mechanism used by probiotics is controlling the balance between useful 55 and harmful intestinal bacteria is the gut. When the number of useful bacteria is reduced, opportunistic bacteria could over-grow and disturb the well-being of the host or even induce an infection. Most bacterial organisms have acquired characteristics or mechanisms that reduce the growth capabilities of other microorganisms that cohabit with them and thus, enabling their selective growth. The reduction of pH through acid production by lactic acid bacteria is one of

such mechanisms. Moreover, some lactic acid bacteria also produce bioactive peptides components and other metabolites that selective inhibit the growth of other bacteria, yeast or fungi. This is the case of reuterin (an aldehyde) or bacteriocins (peptides, such as nisin or pediocin PA-1).

5 [0071] The probiotic strains of this invention were assessed for their capability to produce bactericidal metabolites using an agar well diffusion assay. TSA agar plates containing 10^6 cfu/ml of different pathogenic bacteria strain were prepared and assayed as previously indicated in Example 3b for *S. aureus*. Results obtained were described in Table III.

10

15

20

25

30

35

40

45

50

55

Table III: pathogen inhibitory potential of the different probiotic strains described herein including those of the invention

	Comparative Examples										
	PDA3	LG14	CELA200	EGF1	EG11	7263	7264	7260	7262	7265	7266
<i>E. faecium</i> P21	+	+	-	-	+++	+	+	+	+++	+++	+++
<i>E. faecalis</i> TAB28	+++	+++	-	-	+++	+++	+++	+++	+++	+++	+/-
<i>L. monocytogenes</i> Scott A	++	+/-	+	+/-	+++	++	++	+/-	+	+++	+++
<i>L. innocua</i> RdC	+	+/-	+	+/-	++	++	++	+/-	+	+/-	+/-
<i>E. coli</i> CECT 4076	+++	+++	+++	+	+++	+	+++	+++	+++	+++	+++
<i>E. coli</i> RIM1	+++	+++	+++	+	+	+++	++	+++	+++	+++	+/-
<i>S. enteritidis</i> 4396	+++	+++	+++	++	++	+/-	++	++	+++	+++	++
<i>K. pneumoniae</i> CECT142	++	++	++	+++	+++	+++	++	++	++	++	++
<i>K. oxytoca</i> CECT860T	+/-	+	+++	++	+++	+++	+/-	+/-	+/-	+/-	++
<i>P. vulgaris</i> CECT484	++	++	++	+	+	+/-	+	+++	+++	+++	+/-
<i>S. aureus</i> CECT5191	+++	+++	++	++	+++	+++	+++	++	+++	+++	+++
<i>S. epidermidis</i> CECT231	++	++	+++	++	++	+++	+++	++	++	++	++

Example 5: Effect of probiotic strains on translocation of *Salmonella typhimurium* in mice following immunization with inactivated *Salmonella* vaccine

5 [0072] Translocation of gram-negative bacteria across the gut epithelium can occur especially in subjects following gastrointestinal infection, disease or surgery. Left untreated it can lead to endotoxemia. In this example, the effect of feeding the probiotic strains of this invention on the translocation of the gut pathogen *Salmonella typhimurium* was examined.

10 [0073] Male Balb/c mice (6-8 weeks old) were daily fasted with 1×10^8 cfu in 0.2 ml of milk or milk alone for two weeks. After that, mice were either orally immunized or not with an inactivated *Salmonella* vaccine (10^8 cfu inactivated with 15 paraphormaldehyde in 0.2 ml milk). After immunization, mice were fasted two weeks more with the probiotic preparations in alternate days for two weeks more. Two weeks after oral immunization, all mice were orally challenged with live *S. typhimurium* (10^{10} cfu in 0.2 ml milk). Then, after 24-48 hours, the level of colonization of *S. typhimurium* in the spleen was determined in half of the animals. The rest of the animals were followed during two additional weeks in order to evaluate the survival of the animals after *Salmonella* infection.

15 [0074] The results obtained demonstrate that most of the probiotics tested potentiates the beneficial effect of the vaccination of mice with the inactivated *Salmonella* vaccine as shown in Figure 7.

Example 6: Effect of *L. plantarum* CECT7262 or *L. reuteri* CECT7260 on the prevention of neonatal diarrhoea in neonatal piglets.

20 [0075] The weaning of piglets at 3-4 weeks of age correlates with a high mortality rate in those animals mainly due to an increase in the incidence of diarrhoeal infections. Probably, this high mortality relates to a down-regulation of their defences due to the stressing modification of their nutritional and management status and to important changes in the composition of their gut microbiota.

25 [0076] For this reason, farmers have tried to solve this problem with the use of several approaches such as the use of antibiotics, immune-stimulant or mucosal protector components, such as colistine or ZnO. However, the EU ban of the use of antibiotics for animal production in 2006 has aggravated the situation. For this reason, the use of probiotics able to modulate the gut microbiota and the immune response appears as a potential alternative.

30 [0077] We compared the protective effect of the administration of 3×10^9 cfu/day of *L. reuteri* CECT7260 and *L. plantarum* CECT7262 versus the administration of an animal feed formulation containing 3000 ppm of ZnO and 40 ppm colistine in two groups of 48 and 45, respectively, weaned pigs for a period of 34 days.

35 [0078] In both groups, none of the animals suffered from diarrhoea nor died during the study, and the evolution of the body weight was also similar between both treatments, suggesting that an animal feed formulation supplemented with these probiotics is, at least, as good as those containing conventional antibiotics and immune modulators.

Example 7: Effect of probiotic bacteria on inflammatory cytokines and IgG production

40 [0079] Besides the reduction of the risk of infection, many clinical effects associated to probiotic treatments are due to immunomodulatory capabilities of selected probiotic strains. The regulation of the immune response is usually mediated through a change in the balance between pro-inflammatory cytokines (Th1) such as TNF- α , humoral cytokines (Th2) such as IL-4 or IL-13, and regulatory cytokines (Th3) such as IL-10 and TGF- β . Moreover, the bias in the immune response will also modulate the secretion of immunoglobulins during the subsequent humoral response. For this reason, we have also tested the effect of some of the probiotic strains of this invention in regulating the expression of some of these clue cytokines and IgG.

45 [0080] We have used bone marrow-derived macrophages stimulated with 100 ng/ml of LPS (Sigma) as a cellular model. 10^5 macrophages/well were cultured in 24-well plastic plates (Nunc) with 1 ml of DMEM. Once attached, macrophages were stimulated or not with 100 ng/ml LPS and with 10^7 cfu/ml of the indicated probiotic strains for 12 hours at 37°C in a 5% CO₂ atmosphere. Supernatants were collected and the production of cytokines was analyzed using a mouse TNF- α or mouse IL-10 ELISA (Biosource). The results obtained are summarized in Figure 8A and B.

50 [0081] The analysis of the effect of the probiotic strains of this invention on immunoglobulin production was performed using lymphocyte cultures obtained from the spleen of male Balb/c mice (6-8 weeks old). 2×10^6 lymphocytes were cultured in 1 ml DMEM in 24 well plastic plates and stimulated with inactivated probiotic cultures (10^8 cfu/ml) in presence or absence of 25 μ g/ml LPS for 6 days. The production of IgG by lymphocytes was assessed using a mouse IgG ELISA from Bethyl (Figure 8C).

55 **SEQUENCE LISTING**

[0082]

<110> PULEVA BIOTECH S.A.

<120> MAMMALIAN MILK MICROORGANISMS, COMPOSITIONS CONTAINING THEM AND THEIR USE FOR THE TREATMENT OF MASTITIS

5

<130> P2922ES00

<160> 11

10 <170> PatentIn version 3.3

<210> 1

<211> 481

<212> DNA

15 <213> B.breve CECT 7263

<220>

<221> misc_feature

<222> (4) .. (4)

20 <223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (7) .. (8)

25 <223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (13)..(13)

30 <223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (25)..(25)

35 <223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (131)..(131)

40 <223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (147)..(147)

45 <223> n is a, c, g, or t

<400> 1

50

55

	tcgngtnnga agnacaataa acacntaagt gccttgctcc ctaacaaaag aggtttacaa	60
5	cccgcaaggc ctccatccct cacgcggcgt cgctgcatca ggcttgcgcc cattgatca	120
	atattccccca ntgctgcctc ccgatangag tctggccgt atctcagtcc caatgtggcc	180
10	ggtcgcctc tcaggccggc taccgtcga agccatggtg ggccgttacc cgcgcataa	240
	gctgatagga cgcgacccca tcccatgccc caaaggctt cccaacacac catgcggtgt	300
15	gatggagcat ccggcattac caccgtttc caggagctat tccggtgcat ggggcaggtc	360
	ggtcacgcat tactcacccg ttgcgcactc tcaccaccag gcaaagcccg atggatcccg	420
20	ttcgacttgc atgtgttaag cacgcccaca gcgttcatcc tgagccagga tcaaactcta	480
	a	481
25	<210> 2	
	<211> 476	
	<212> DNA	
	<213> B.breve CECT 7264	
30	<220>	
	<221> misc_feature	
	<222> (2)..(2)	
	<223> n is a, c, g, or t	
35	<220>	
	<221> misc_feature	
	<222> (8) .. (8)	
	<223> n is a, c, g, or t	
40	<220>	
	<221> misc_feature	
	<222> (63)..(63)	
	<223> n is a, c, g, or t	
45	<220>	
	<221> misc_feature	
	<222> (72)..(72)	
	<223> n is a, c, g, or t	
50	<220>	
	<221> misc_feature	
	<222> (80)..(80)	
	<223> n is a, c, g, or t	
55	<220>	
	<221> misc_feature	
	<222> (83)..(83)	

<223> n is a, c, g, or t

5 <220>
 <221> misc_feature
 <222> (87) .. (87)
 <223> n is a, c, g, or t

10 <220>
 <221> misc_feature
 <222> (114)..(114)
 <223> n is a, c, g, or t

15 <220>
 <221> misc_feature
 <222> (141)..(141)
 <223> n is a, c, g, or t

20 <220>
 <221> misc_feature
 <222> (159) .. (159)
 <223> n is a, c, g, or t

25 <220>
 <221> misc_feature
 <222> (161)..(161)
 <223> n is a, c, g, or t

30 <220>
 <221> misc_feature
 <222> (355)..(355)
 <223> n is a, c, g, or t

35 <220>
 <221> misc_feature
 <222> (358)..(358)
 <223> n is a, c, g, or t

40 <220>
 <221> misc_feature
 <222> (369)..(369)
 <223> n is a, c, g, or t

45 <220>
 <221> misc_feature
 <222> (444) .. (444)
 <223> n is a, c, g, or t

50 <220>
 <221> misc_feature
 <222> (455) .. (456)
 <223> n is a, c, g, or t

 <400> 2

	tncgcganga agaaataaaa caaagtgcct tgctccctaa caaaagaggt ttacaacccg	60
5	aangcctcca tncctcacgn ggnngtcncat gcatcaggct tgcgcccatt gtgnaatatt	120
	ccccactgct gcctcccgta ngagtctggg ccgtatctna ntcccaatgt ggccggtcgc	180
10	cctctcaggc cggctacccg tcgaagccat ggtgggccgt taccggccca tcaagctgat	240
	aggacgcgac cccatcccat gccgcaaagg ctttcccaac acaccatgcg gtgtgatgga	300
15	gcatccggca ttaccacccg ttccaggag ctattccggt gcatggggca ggtcngtnac	360
	gcattactna cccgttcgcc actctcacca ccaggcaaag cccgatggat cccgttcgac	420
20	ttgcatgtgt taagcacgcc gcngcgttc atccnnnaaac aggatcaaac tctaaa	476
	<210> 3	
25	<211> 515	
	<212> DNA	
	<213> L.fermentum CECT 7265	
	<220>	
30	<221> misc_feature	
	<222> (17)..(17)	
	<223> n is a, c, g, or t	
	<220>	
35	<221> misc_feature	
	<222> (35)..(35)	
	<223> n is a, c, g, or t	
	<220>	
40	<221> misc_feature	
	<222> (313)..(313)	
	<223> n is a, c, g, or t	
	<220>	
45	<221> misc_feature	
	<222> (510)..(510)	
	<223> n is a, c, g, or t	
	<400> 3	
50		

	tacacgatat gaacagnnta cctctcatac ggtgnnttctt cttaacaac agagcttac	60
5	gagccgaaac ctttcttcac tcacgcgtg ttgctccatc aggcttgcgc ccattgtgga	120
	agattcccta ctgctgcctc ccgtaggagt atggccgtg tctcagtccc attgtggccg	180
10	atcagtctct caactcggtc atgcatcatc gccttggtag gccgttaccc caccaacaag	240
	ctaatgcacc gcaggtccat ccagaagtga tagcgagaag ccattttta agcgttttc	300
15	atgcgaacaa cgntgttagt cggtttagtc atctgtttcc aaatgttgc ccccgcttct	360
	ggcaggtta cctacgtgtt actcaccgtt ccgcactcg ttggcgacca aaatcaatca	420
20	ggtgcaagca ccatcaatca attggccaa cgcgttcgac ttgcatgtat taggcacacc	480
	gccggcggttc atcctgagcc aggtcaan tctaa	515
25	<210> 4 <211> 526 <212> DNA <213> L.reuteri CECT 7266	
30	<220> <221> misc_feature <222> (5)..(5) <223> n is a, c, g, or t	
35	<220> <221> misc_feature <222> (9) .. (10) <223> n is a, c, g, or t	
40	<220> <221> misc_feature <222> (23)..(23) <223> n is a, c, g, or t	
45	<220> <221> misc_feature <222> (25)..(25) <223> n is a, c, g, or t	
50	<220> <221> misc_feature <222> (30)..(30) <223> n is a, c, g, or t	
55	<220> <221> misc_feature <222> (46)..(46)	

<223> n is a, c, g, or t
 <220>
 <221> misc_feature
 5 <222> (521)..(521)
 <223> n is a, c, g, or t
 <400> 4

10 accgngggnn aacgacactg cgngnacagn ttactctcac gcacgnttct tctccaacaa 60
 cagagcttta cgagccgaaa cccttcttca ctcacgcggt gttgctccat caggcttgcg 120
 15 cccattgtgg aagattccct actgctgcct cccgtaggag tatggaccgt gtctcagttc 180
 cattgtggcc gatcagtctc tcaactcggc tatgcatcat cgccttggta agccgttacc 240
 20 ttaccaacta gctaattgcac cgcaggcca tcccagagtg atagccaaag ccatcttca 300
 aacaaaagcc atgtggcttt tgggttatg cggattttgc atctgtttcc aaatgttatac 360
 25 ccccgctccg gggcagggtta cctacgtgtt actcaccgtt ccggccactca ctggtgatcc 420
 atcgtcaatc aggtgcaagc accatcaatc agttggccca gtgcgtacga cttgcatgt 480
 ttaggcacac cgccggcggtt catcctgagc caggatcaaa ntctaa 526

35 <210> 5
 <211> 524
 <212> DNA
 <213> L.reuteri CECT 7260

40 <220>
 <221> misc_feature
 <222> (3)..(3)
 <223> n is a, c, g, or t

45 <220>
 <221> misc_feature
 <222> (8) .. (8)
 <223> n is a, c, g, or t

50 <220>
 <221> misc_feature
 <222> (507) .. (507)
 <223> n is a, c, g, or t

55 <220>
 <221> misc_feature
 <222> (515)..(515)
 <223> n is a, c, g, or t

<400> 5

5	gcntgggnga acggtcactg cggaacagtt actctcacgc acgttcttct ccaacaacag	60
	agctttacga gccgaaaccc ttcttcactc acgcggtggtt gctccatcag gcttgcgcc	120
10	attgtggaag attccctact gctgcctccc gtaggagtat ggaccgtgtc tcagttccat	180
	tgtggccgat cagtctctca actcggctat gcatcatcgc ctggtaagc cgttaccta	240
15	ccaaactagct aatgcaccgc aggtccatcc cagagtgata gccaaagcca tctttcaaac	300
	aaaagccatg tggctttgt ttttatgcgg tattagcatc ttttccaaa ttatcccc	360
20	cgctccgggg caggttacct acgtgttact cacccgtccg ccactcactg gtgatccatc	420
	gtcaatcagg tgcaaggcacc atcaatcagt tggccagtg cgtacgactt gcatgtatta	480
25	ggcacaccgc cggcggtcat cctgagnncag gatcnaaact ctaa	524

<210> 6

<211> 519

30 <212> DNA

<213> L. plantarum CECT 7262

<220>

35 <221> misc_feature

<222> (11)..(11)

<223> n is a, c, g, or t

<400> 6

40

45

50

55

EP 2 162 143 B1

	ggcctggaa nccggtcata cctggAACAG gttacctctc agatatggtt cttcttaac	60
5	aacagAGTT tacgagccga aacccttctt cactcacgCG gcgttgcTCC atcagacttt	120
	cgtccattgt ggaagattcc ctactgctgc ctcccgtagg agtttggcc gtgtctcagt	180
10	cccaatgtgg ccgattaccc tctcaggTCG gctacgtatc attGCCatgg tgagccgtta	240
	cctcaccatc tagctaatac gccgcggac catccaaaAG tgatagccga agccatctt	300
15	caaactcgga ccatgcggTC caagttgtta tgcgttatta gcataCTTT ccaggtgtta	360
	tcccccgctt ctgggcaggt ttcccacgtg ttactcacca gttcgccact cactcaaATG	420
20	taattcatga tgcaaggcacc aatcattacc agagttcgTT cgacttgcAT gtattaggca	480
	cgccGCCAGC gttcgtcCTG agacaggATC aaaactctA	519
25	<210> 7 <211> 474 <212> DNA <213> Enterococcus hirae EHG11	
30	<400> 7	
	gacagttact ctcatccttg ttcttctcta acaacAGAGT tttacgatcc gaaaaccttc	60
35	ttcactcACG cggcgTTGCT cggTCAGACT ttCGTCCATT gCCGAAGATT CCCTACTGCT	120
	gcctcccgta ggagTTGGG ccgtgtCTCA gtcccaATGT ggCCGATCAC CCTCTCAGGT	180
40	cggCTATGCA tcgtcgccTT ggtgagCCGT tacTCACCA actAGCTAAT gcaccgcgg	240
	tccatccATC agcgacacCC gaaAGCGCCT ttcaAAATCAA aaccatgcgg tttcgATTGT	300
45	tatacggat tagcacCTGT ttccaAGTGT tatccccTTc tgaTggcAG gttacccACG	360
	tgttactcac ccgttcGCCA ctccTCTTT tccggTggAG caagctccgg tggaaaaAGA	420
	agcgttgcAC ttgcATGTAT taggcACGCC gCcAGCGTC gtcctgAGCC aggt	474
55	<210> 8 <211> 469 <212> DNA <213> Lactobacillus plantarum LG14:	

<400> 8

5	ttactctcag atatgttctt ctttaacaac agagtttac gagccgaaac ctttcttcac	60
10	tcacgcggcg ttgctccatc agacttcgt ccattgtgga agattcccta ctgctgcctc	120
15	ccgttagagt ttggccgtg tctcagtccc aatgtggccg attaccctct caggtcggtc	180
20	acgtatcatt gccatggtga gccgttaccc caccatctag ctaatacgcc gcgggaccat	240
25	ccaaaagtga tagccgaagc catcttcaa gctcggacca tgccgtccaa gttgttatgc	300
30	ggtatttagca tctgtttcca ggtgttatcc cccgcttctg ggcaggtttc ccacgtgtta	360
35	ctcaccagtt cgccactcac tcaaatgtaa atcatgatgc aagcaccaat caataccaga	420
40	gttcgttcga cttgcgttgc ttaggcacgc cgccagcggtt cgtccctgag	469
45	<210> 9 <211> 493 <212> DNA <213> Enterococcus faecalis EFG1:	
50	<400> 9	
55	ctatcatgca agtcgaacgc ttcttcctc ccgagtgttt gcactcaatt ggaaagagga	60
60	gtggcggacg ggtgagtaac acgtggtaa cctaccatc agagggggat aacacttgga	120
65	aacaggtgct aataccgcatt aacagtttat gccgcattttc ataagagtga aaggcgctt	180
70	cgggtgtcgc tggatggatgg acccgccgtg cattagctttt ttgggtggat aacggctcac	240
75	caaggccacg atgcatacgcc gacctgagag ggtgatccgc cacactggga ctgagacacg	300
80	gcccgactc ctacgggagg cagcgttggg gaatcttcgg caatggacga aagtctgacc	360
85	gagcaacgccc gcgtgagttttaa agaagggtttt cggatcgtaa aactctgttgc ttagagaaga	420
90	acaaggacgt tagtaacttgc acgtcccctg acggatctta accagaaagc cacggctaac	480
95	tacgtgccca gca	493
100	<210> 10	

5 <211> 524
 <212> DNA
 <213> Lactobacillus salivarius CELA200:

 10 <220>
 <221> misc_feature
 <222> (9)..(9)
 <223> n is a, c, g, or t

 15 <220>
 <221> misc_feature
 <222> (12)..(12)
 <223> n is a, c, g, or t

 20 <220>
 <221> misc_feature
 <222> (113)..(113)
 <223> n is a, c, g, or t

 25 <220>
 <221> misc_feature
 <222> (297)..(297)
 <223> n is a, c, g, or t

 30 <220>
 <221> misc_feature
 <222> (345)..(345)
 <223> n is a, c, g, or t

 35 <220>
 <221> misc_feature
 <222> (503)..(503)
 <223> n is a, c, g, or t

 40 <400> 10

60

gggtggggng ancagaacat gaaatgaaca gtttacatct cacctcgctg nttcttcctc
 45 taacaacaga gctttacga ctccgaagga ctttcttcac atcacgcggc gtntgctcca
 tcagacttgc gtccattgtg gaagattccc tactgctgcc tcccgtagga gtttggcccg
 50 tgcgtcagtc ccaatgtggc cgatcaacct ctcagattcg gctacgtatc atcaccttgg
 taggccgtta ccccaccaac tagttaatac gccgcgggtc catctaaaag cgatagnaga
 55

120

180

240

300

	accatcttcc atctaaggat catgcgatcc ttagagatata acggnattac cacctgttcc	360
5	caagtgttat ccccttcctt taggcaggtt acccacgtgt tactcaccgg tccggccactc	420
	aacttcttac ggtgaatgca agcattcggt gtaagaaagt ttgcgttcgac ttgcgttat	480
10	taggcacgccc gccagcggtt cgtatgagcc aggtcaaac tcta	524
	<210> 11	
	<211> 524	
	<212> DNA	
15	<213> Lactobacillus reuteri PDA3:	
	<220>	
	<221> misc_feature	
	<222> (3) .. (3)	
20	<223> n is a, c, g, or t	
	<220>	
	<221> misc_feature	
	<222> (8) .. (8)	
25	<223> n is a, c, g, or t	
	<220>	
	<221> misc_feature	
	<222> (507)..(507)	
30	<223> n is a, c, g, or t	
	<220>	
	<221> misc_feature	
	<222> (515)..(515)	
35	<223> n is a, c, g, or t	
	<400> 11	
40	gcntggngaa acggtcactg cgaaacagtt actctcacgc acgttcttct ccaacaacag	60
	agctttacga gccgaaaccc ttcttcactc acgcgggtgtt gctccatcag gcttgcggcc	120
45		
50		
55		

	attgtggaag attccctact gctgcctccc gtaggagtat ggaccgtgtc tcagttccat	180
5	tgtggccgat cagtctctca actcggttat gcatcatcgc ctggtaagc cgttaccta	240
	ccaactagct aatgcaccgc aggtccatcc cagagtgata gccaaagcca tctttcaaac	300
10	aaaagccatg tggctttgt tgttatgcgg tattagcatc tgttccaaa tgttatcccc	360
	cgctccgggg caggttacct acgtgttact caccgtccg ccactcactg gtgatccatc	420
15	gtcaatcagg tgcaagcacc atcaatcagt tggccagtg cgtacgactt gcatgttatta	480
	ggcacaccgc cggcggtcat cctgagnca gatcnaaact ctaa	524
20		

Claims

1. A probiotic strain selected from the group of *Bifidobacterium breve* deposited in the CECT under Accession N° 7263, *Bifidobacterium breve* deposited in the CECT under Accession N° 7264, *Lactobacillus reuteri* deposited in the CECT under Accession N° 7260, *Lactobacillus plantarum* deposited in the CECT under Accession N° 7262, *Lactobacillus fermentum* in the CECT under Accession N° 7265 and *Lactobacillus reuteri* deposited in the CECT under Accession N° 7266.
2. A probiotic strain according to claim 1 or a mixture of strains according to claim 1 for use as a medicament.
3. A composition, a pharmaceutical product, a feed or a nutritional product comprising at least a probiotic strain according to claim 1.
35. 4. A composition, pharmaceutical product, feed or nutritional product as defined in claim 3 which is in a frozen, lyophilized or dried form.
5. Use of a probiotic strain according to claim 1 or a mixture thereof for the manufacture of a medicament for the treatment and/or prophylaxis of a chronic or acute infection or infestation, or of an undesirable microbial colonization, wherein the infection, infestation or colonization is caused by parasites, bacteria, yeast, fungi or viruses, affecting any body surface or mucosa in a subject or animal in need thereof.
40. 6. Use according to claim 5 wherein the infection is mastitis.
7. Use according to claim 5 wherein the infection is neonatal diarrhoea.
8. Use of a probiotic strain according to claim 1 or a mixture thereof for the manufacture of a medicament for the treatment and/or prophylaxis of hypersensitivity reactions to food and metabolic intolerance; of constipation and other gastro-intestinal disorders; of inflammatory or auto-immune disorders selected from the group of IBD, ulcerative colitis, arthritis, atherosclerosis, multiple sclerosis, psoriasis or sarcoidosis; and of tumour growth, metastasis and cancer in subject or animal in need thereof.
50. 9. Use of a probiotic strain according to claim 1 or a mixture thereof for the manufacture of a medicament for the treatment and/or prophylaxis of allergic disorders and asthma in a subject or animal in need thereof.
55. 10. Use according to claims 5 to 9 wherein the strain or composition is administered via oral, topical, nasal, enteral, ocular, urogenital, rectal or vaginal.

11. Use according to claims 5 and 7 wherein the strain, composition, pharmaceutical product, feed or nutritional product is designed to be administered to lactating woman or animal for the therapeutic or prophylactic treatment of the foetus and/or their breastfed babies or pups.

5

Patentansprüche

1. Ein probiotischer Stamm, ausgewählt aus der Gruppe von *Bifidobacterium breve* in der CECT hinterlegt unter Akzession N° 7263, *Bifidobacterium breve* in der CECT hinterlegt unter Akzession N° 7264, *Lactobacillus reuteri* in der CECT hinterlegt unter Akzession N° 7260, *Lactobacillus plantarum* in der CECT hinterlegt unter Akzession N° 7262, *Lactobacillus fermentum* in der CECT hinterlegt unter Akzession N° 7265 und *Lactobacillus reuteri* in der CECT hinterlegt unter Akzession N° 7266.

10

2. Ein probiotischer Stamm nach Anspruch 1 oder eine Mischung von Stämmen nach Anspruch 1 zur Verwendung als Medikament.

15

3. Eine Zusammensetzung, ein pharmazeutisches Produkt, ein Futtermittel oder ein Ernährungsprodukt, bestehend aus mindestens einem probiotischen Stamm nach Anspruch 1.

20

4. Eine Zusammensetzung, ein pharmazeutisches Produkt, ein Futtermittel oder ein Ernährungsprodukt wie in Anspruch 3 definiert, das in gefrorener, lyophilisierter oder getrockneter Form vorliegt.

25

5. Verwendung eines probiotischen Stamms nach Anspruch 1 oder einer Mischung davon zur Herstellung eines Medikaments zur Behandlung und / oder Prophylaxe einer chronischen oder akuten Infektionen oder eines Befalls, oder einer unerwünschten mikrobiellen Besiedelung, wobei die Infektion, der Befall oder die Besiedelung verursacht ist durch Parasiten, Bakterien, Hefen, Pilzen oder Viren, die jede Körperoberfläche oder Schleimhaut befallen, in einem Individuum oder Tier mit Bedarf dafür.

30

6. Verwendung nach Anspruch 5, wobei die Infektion Mastitis ist.

35

7. Verwendung nach Anspruch 5, wobei die Infektion neonatale Diarrhö ist.

35

8. Verwendung eines probiotischen Stamms nach Anspruch 1 oder einer Mischung davon zur Herstellung eines Medikaments zur Behandlung und / oder Prophylaxe von Überempfindlichkeitsreaktionen auf Nahrung und metabolische Intoleranz; von Verstopfung und anderen gastrointestinalen Störungen; von Entzündungs- oder Autoimmunerkrankungen ausgewählt aus der Gruppe von IBD, Colitis ulcerosa, Arthritis, Arteriosklerose, multiple Sklerose, Psoriasis oder Sarkoidose; und von Tumorwachstum, Metastasen und Krebs in einem Individuum oder Tier mit Bedarf dafür.

40

9. Verwendung eines probiotischen Stamms nach Anspruch 1 oder einer Mischung davon zur Herstellung eines Medikaments zur Behandlung und / oder Prophylaxe von allergischen Erkrankungen und Asthma in einem Individuum oder Tier mit Bedarf dafür.

45

10. Verwendung nach den Ansprüchen 5 bis 9, wobei der Stamm oder die Zusammensetzung auf oralem, topischem, nasalem, enteralem, okularem, urogenitalem, rektalem oder vaginalen Wege verabreicht wird.

50

11. Verwendung nach den Ansprüchen 5 und 7, wobei der Stamm, die Zusammensetzung, das pharmazeutische Produkt, das Futtermittel oder Ernährungsprodukt entworfen ist, um an eine laktierende Frau oder ein Tier für die therapeutische oder prophylaktische Behandlung des Fötus und / oder ihrer gestillten Babys oder Jungtieren verabreicht zu werden.

Revendications

55

1. Souche probiotique sélectionnée dans le groupe de *Bifidobacterium breve* déposée auprès de la CECT sous le N° d'accès 7263, *Bifidobacterium breve* déposée auprès de la CECT sous le N° d'accès 7264, *Lactobacillus reuteri* déposée auprès de la CECT sous le N° d'accès 7260, *Lactobacillus plantarum* déposée auprès de la CECT sous le N° d'accès 7262, *Lactobacillus fermentum* auprès de la CECT sous le N° d'accès 7265 et *Lactobacillus reuteri*

déposée auprès de la CECT sous le N° d'accès 7266.

2. Souche probiotique selon la revendication 1 ou mélange de souches selon la revendication 1 destiné(e) à être utilisé(e) en tant que médicament.

5 3. Composition, produit pharmaceutique, aliment ou produit nutritionnel comprenant au moins une souche probiotique selon la revendication 1.

10 4. Composition, produit pharmaceutique, aliment ou produit nutritionnel tel que défini dans la revendication 3 qui est sous une forme congélée, lyophilisée ou séchée.

15 5. Utilisation d'une souche probiotique selon la revendication 1 ou d'un mélange de celle-ci pour la fabrication d'un médicament destiné au traitement et/ou à la prophylaxie d'une infection ou infestation chronique ou aiguë, ou d'une colonisation microbienne indésirable, où l'infection, l'infestation ou la colonisation est provoquée par des parasites, des bactéries, une levure, des champignons ou des virus, en affectant une quelconque surface corporelle ou muqueuse chez un sujet ou un animal en ayant besoin.

6. Utilisation selon la revendication 5 dans laquelle l'infection est la mastite.

20 7. Utilisation selon la revendication 5 dans laquelle l'infection est la diarrhée néonatale.

25 8. Utilisation d'une souche probiotique selon la revendication 1 ou d'un mélange de celle-ci pour la fabrication d'un médicament destiné au traitement et/ou à la prophylaxie de réactions d'hypersensibilité à un aliment et d'une intolérance métabolique ; de la constipation et d'autres troubles gastro-intestinaux ; de troubles inflammatoires ou auto-immuns sélectionnés dans le groupe de la MII, la colite ulcéreuse, l'arthrite, l'athérosclérose, la sclérose en plaques, le psoriasis ou la sarcoïdose ; et de la croissance tumorale, des métastases et du cancer chez un sujet ou un animal en ayant besoin.

30 9. Utilisation d'une souche probiotique selon la revendication 1 ou d'un mélange de celle-ci pour la fabrication d'un médicament destiné au traitement et/ou à la prophylaxie de troubles allergiques et de l'asthme chez un sujet ou un animal en ayant besoin.

10. Utilisation selon les revendications 5 à 9 dans laquelle la souche ou la composition est administrée par voie orale, topique, nasale, entérale, oculaire, urogénitale, rectale ou vaginale.

35 11. Utilisation selon les revendications 5 et 7 dans laquelle la souche, la composition, le produit pharmaceutique, l'aliment ou le produit nutritionnel est conçu(e) pour être administré(e) à une femme ou à un animal qui allaite pour le traitement thérapeutique ou prophylactique du foetus et/ou de leurs bébés ou jeunes animaux allaités.

40

45

50

55

Bifidobacterium breve (CECT under Accession N° 7263)

```
TCGNGTNNGAAGNACAATAAACACNTAAGTGCCTTGCTCCCTAACAAAAGA
GGTTACAAACCGCAAGGCCTCCATCCCTCACGCAGCGTGCATCAG
GCTTGCGCCATTGATGCAATATTCCCCANTGCTGCCCTCCGATANGAGT
CTGGGCGTATCTCAGTCCCAATGTGGCCGGTCGCCCTCAGGCCGGC
TACCCGTCGAAGCCATGGTGGCCGGTACCCGCCATCAAGCTGATAGGA
CGCGACCCCATTCCATGCCGAAAGGCTTCCCAACACACCATGCGGTGT
GATGGAGCATCCGGCATTACCAACCCGTTCCAGGAGCTATTCCGGTGCAT
GGGCAGGTCGGTCACGCATTACTCACCGTTGCCACTCTCACCACAG
GCAAAGCCCAGTGGATCCCCTGACTTGCATGTGTTAAGCACGCCGCCA
GCGTTCATCCTGAGCCAGGATCAAACCTCAA
```

Bifidobacterium breve (CECT under Accession N° 7264)

```
TNCGCGANGAAGAATAAAACAAAGTGCCTTGCTCCTAACAAAAGAGGTT
TACAACCCGAANGCCTCCATNCTCACGNNGNGTNCATGCATCAGGCTT
GCGCCCATTGTGNAATATTCCCCACTGCTGCCCTCCGTANGAGTCTGGGC
CGTATCTNANTCCCAATGTGGCCGGTCGCCCTCAGGCCGGTACCCGT
CGAAGCCATGGTGGCCGGTACCCGCCATCAAGCTGATAGGACGCCAC
CCCATCCCATGCCGAAAGGCTTCCCAACACACCATGCGGTGTGATGGA
GCATCCGGCATTACCACCCGTTGCAGGAGCTATTCCGGTGCATGGGCA
GGTCNGTNACGCATTACTNACCGTTGCCACTCTCACCACCAGGCAAAG
CCCGATGGATCCCCTGACTTGCATGTGTTAAGCACGCCGCCNGCGTTC
ATCCNNAAACAGGATCAAACCTCTAA
```

Lactobacillus reuteri (CECT under Accession N° 7260)

```
GCNTGGGNGAACGGTCACTGCGAACAGTTACTCTCACGCACGTTCTTCCAACAACA
GAGCTTACGAGCCGAAACCTCTTCACTCACGCCGTGGCTCCATCAGGCTTGCAC
CCATTGTGGAAGATTCCCTACTGCTGCCCTCCGTAGGAGTATGGACCGTGTCTCAGTTC
CATTGTGGCCGATCAGTCTCTCAACTCGGCTATGCATCATGCCCTGGTAAGCCGTTAC
CTTACCAACTAGCTAATGCACCGCAGGTCCATCCCAGAGTGTAGCCAAAGCCATCTT
CAAACAAAAGCCATGTGGCTTGTGTTATGCGGTATTAGCATCTGTTCCAAATGTT
ATCCCCCGCTCCGGGCAGGTTACCTACGTGTTACTCACCGTCCGCACTCACTGGTG
ATCCATCGTCAATCAGGTGCAAGCACCATACTCAGTTGGGCCAGTGCCTACGACTTGC
ATGTATTAGGCACACCGCCGGCTTCATCCTGAGNCAGGATCNAACACTCTAA
```

Lactobacillus plantarum (CECT under Accession N° 7262)

```
GGCCTGGGAANCCGGTCACTTGGAACAGGTTACCTCTCAGATATGGTTCTTCTTAA
CAACAGAGTTTACGAGCCGAAACCTCTTCACTCACGCCGTGGCTCCATCAGACT
TTCTGTCATGTGGAAGATTCCCTACTGCTGCCCTCCGTAGGAGTTGGCCGTGTCTC
AGTCCCAATGTGGCCGATTACCTCTCAGGTGGCTACGTATCATGCCATGGTGAGCC
GTACCTCACCATCTAGCTAATACGCCGGGACCATCCAAAGTGTAGCCGAAGCCA
TCCTTCAAACCTCGGACCATGCGTCCAAGTTGTTATGCGGTATTAGCATCTGTTCCAG
GTGTTATCCCCGCTTCTGGCAGGTTCCACGTGTTACTCACCAAGTTCGCCACTCAC
TCAAATGTAATTGATGCAAGCACCATACTCAGAGTTCGTTGACTGCATGT
ATTAGGCACGCCGCCAGCGTCTGAGACAGGATCNAACACTCTAA
```

Figure 1A

Lactobacillus fermentum (CECT under Accession N° 7265)

```
TACACGATATGAACAGNTTACCTCTCATACGGTGNNTCTTAAACAACAGAGCTTA  
CGAGCCGAAACCCTTCACTCAGCGGTGTTGCTCCATCAGGCTTGCGCCATTGTG  
GAAGATTCCCTACTGTCGCTCCGTAGGAGTATGGGCCGTGCTCAGTCCCATTGTGG  
CCGATCAGTCTCTCAACTCGGTATGCATCATCGCCTGGTAGGCCGTACCCCACCAA  
CAAGCTAATGCACCGCAGGTCCATCCAGAAGTGTAGCGAGAAGCCATCTTTAACGCGT  
TGGTATGCGAACACGNITATGCGGTATTAGCATCTGTTCCAAATGTTGTCCCCC  
GCTCTGGCAGGTTACCTACGTGTTACTCACCCGTCGCCACTCGTGGCGACCAAAA  
TCAATCAGGTGCAAGCACCATCAATCAATTGGCCAACGCGTGCAGTGCATGTATT  
GGCACACCGCCGGCGTTCATCCTGAGCCAGGATCAAANTCTAA
```

Lactobacillus reuteri (CECT under Accession N° 7266)

```
ACCGNGGNNAACGACACTGCGGNACAGNTTACTCTCACGCACGNNTCTTCTCCAACA  
ACAGAGCTTACGAGCCGAAACCCTTCACTCAGCGGTGTTGCTCCATCAGGCTTG  
CGCCCATTTGGAAGATTCCCTACTGTCGCTCCGTAGGAGTATGGACCGTGTCTAG  
TTCCATTGTCGCGATCAGTCTCTCAACTCGGTATGCATCATCGCCTGGTAAGCCGT  
TACCTTACCAACTAGCTAATGCACCGCAGGTCCATCCCAGAGTGTAGCCAAAGCCATC  
TTTCAAACAAAAGCCATGTCGCTTTGTTATGCGGTATTAGCATCTGTTCCAAAT  
GTTATCCCCCGCTCCGGGCAGGTTACCTACGTGTTACTCACCCGTCGCCACTCACTG  
GTGATCCATCGTCAATCAGGTGCAAGCACCATCAATCAGTTGGCCAGTGCCTACGACT  
TGCATGTATTAGGCACACCGCCGGCGTTCATCCTGAGCCAGGATCAAANTCTAA
```

Enterococcus hirae EHG11:

```
GACAGTTACTCTCATCCTTGTCTTCTAACAACAGAGTTACGATCCGAAAACCTT  
CTTCACTCACCGCGGTGCTCGGTAGACTTGTCCATTGCCGAAGATTCCCTACTG  
CTGCCTCCGTAGGAGTTGGCCGTGTCAGTCCAATGTGGCGATCACCCCTCTCA  
GGTCGGCTATGCATCGTCGCCTGGTGAGCCGTACCTCACCAACTAGCTAATGCACCG  
CGGGTCCATCCATCAGCGACACCGAAGCGCCTTCAAATCAAACCATGCGGTTCG  
ATTGTTATACGGTATTAGCACCTGTTCCAAGTGTATCCCTCTGATGGCAGGTTA  
CCACGTGTTACTCACCGTCCACTCCTCTTTCCGGTGGAGCAAGCTCCGGTGG  
AAAAAGAAGCGTTGACTTGCATGTATTAGGCACGCCAGCGTCTGAGCCAG  
GT
```

Lactobacillus plantarum LG14:

```
TTACTCTCAGATATGTTCTTCTTAACAACAGAGTTACGAGCCGAAACCCTTCTCA  
CTCACCGCGGTGCTCCATCAGACTTGTCCATTGTGGAAAGATTCCCTACTGCTGCC  
TCCCGTAGGAGTTGGCCGTGTCAGTCCAATGTGGCGATTACCCCTCTCAGGTGCG  
GCTACGTATCATGCCATGGTGAGCCGTACCCACCATCTAGCTAATACGCCCGGG  
CCATCCAAAAGTGTAGCCGAAGCCATCTTCAAGCTCGGACCATGCGGTCCAAGTTGT  
TATGCGGTATTAGCATCTGTTCCAGGTGTTATCCCCGCTCTGGCAGGTTCCAC  
GTGTTACTCACCAGTTCGCCACTCAAAATGTAATCATGATGCAAGCACCAATCAA  
TACCAAGAGTTGCTCGACTTGCATGTATTAGGCACGCCAGCGTCTGCTGAGCCAG
```

Figure 1B

***Enterococcus faecalis* EFG1:**

CTATCATGCAAGTCGAACGCTCTTCCTCCGAGTGCTGCACTCAATTGGAAAGAGGAGTGGCGGACGGTGAGTAACACGTGGTAACCTACCCATCAGAGGGGATAACACTTGAAACAGGTGCTAATACCGATAACAGTTATGCCGATGGCATAAGAGTGAAAGGCCTTCCGGTGCTGATGGATGGACCCCGCGGTGCATTAGCTAGTTGGTGAGGTAAACGGCTCACCAAGGCCACGATGCATAAGCCGACCTGAGAGGGTATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTCGGCAATGGACGAAAGTCTGACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTCGGATCGTAAAACCTGTTGTTAGAAGAACAAGGACGTTAGTAACGTCCCCTGACGGTATCTAACCAAGGCA CGGCTAACTACGTGCCAGCA

***Lactobacillus salivarius* CELA200:**

GGGTGGGGNGANCAGAACATGAAATGAACAGTTACATCTCACCTCGCTGNTTCTCCTCTAACAAACAGAGCTTTACGACTCCGAAGGACCTCTTCACATCACGCCGCGTNTGCTCCTCAGACTTGCGTCCATTGTGGAAGATTCCCTACTGCTGCCCTCCGTAGGAGTTGGGCCGTCTCAGATTGGCTACGTATCATCACC TTGGTAGGCCGTTACCCCACCAACTAGTTAATACGCCGCGGTCCATCTAAAAGCGATAGNAGAACCATCTTCATCTAACGGATCATGCGATCTTAGAGATATACGGNATTAGCACC TGTTCCAAGTGTATCCCTCTTTAGGCAGGTTACCCACGTGTTACTCACCGTCCGCCACTCAACTTCTACGGTGAATGCAAGCATTGGTAAAGAAAGTTCGTTGACTTGCATGTATTAGGCACGCCAGCGTGTNATGAGCCAGGATCAAACCTCTA

***Lactobacillus reuteri* PDA3:**

GCNTGGGNAGACGGTCACTGCCAACAGTTACTCTCACGCACGTTCTCTCCAACAACAAGAGCTTACGAGCGAACCCCTCTTCACTCACGCCGTTGCTCCATCAGGCTTGCGCCATTGTGGAAGATTCCCTACTGCTGCCCTCCGTAGGAGTATGGACCGTGTCTCAGTTTCATTGTGCCGATCAGTCTCTCAACTCGGCTATGCATCATGCCCTGGTAAGCCGTTACCTAACCAACTAGCTAATGCACCGCAGGTCCATCCAGAGTGATAGCCAAAGCCATCTTCAAACAAAAGCCATGTGGTTTGTGTTATGCGGTATTAGCATCTGTTCCAAATGTTATCCCCCGCTCCGGGGCAGGTTACCTACGTGTTACTCACCGTCCGCCACTCACTGGTGATCCATCGTCAATCAGGTGCAAGCACCATAATCAGTTGGGCCAGTGGTACGACTTGCATGTATTAGGCACACCGCCGGCGTTCATCTGAGNCAGGATCNAACACTCTAA

Figure 1C

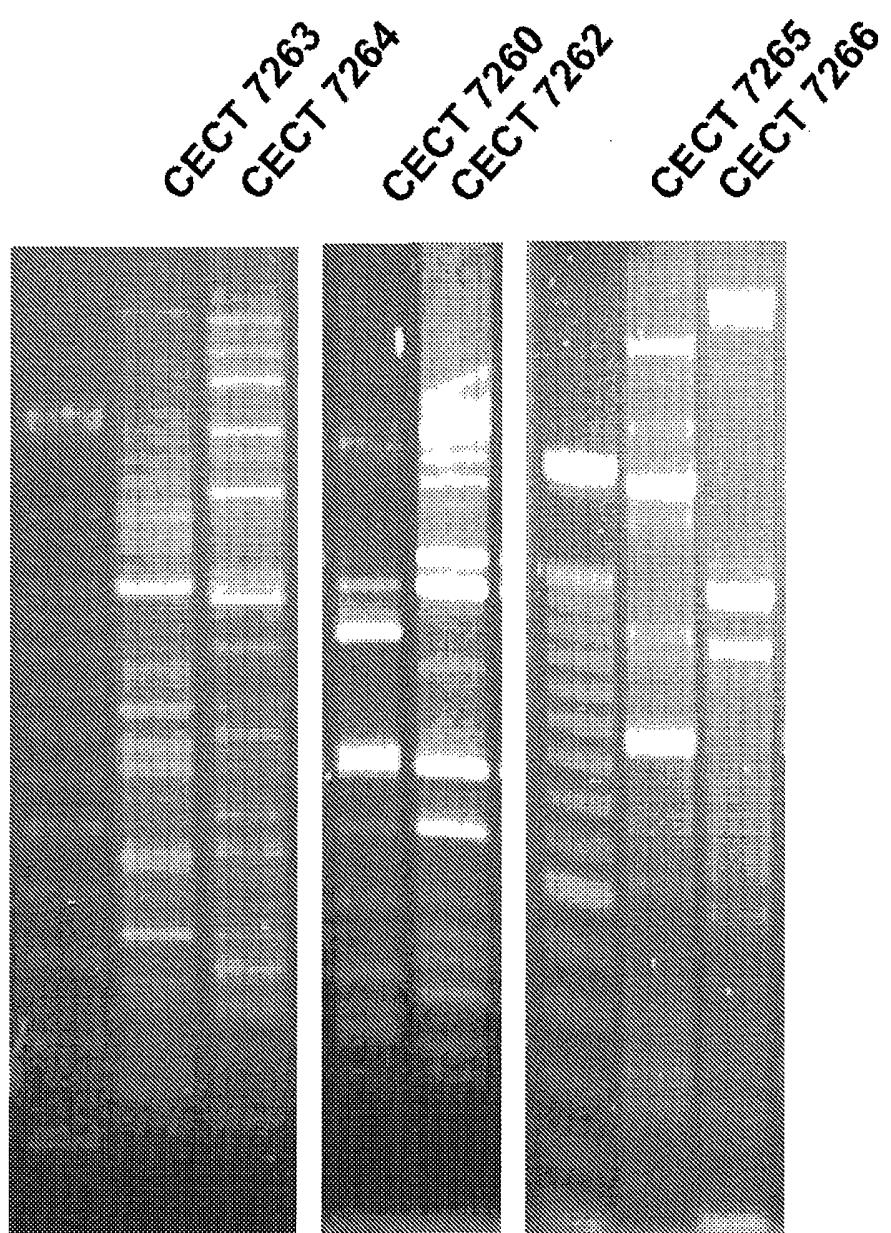


Figure 1D

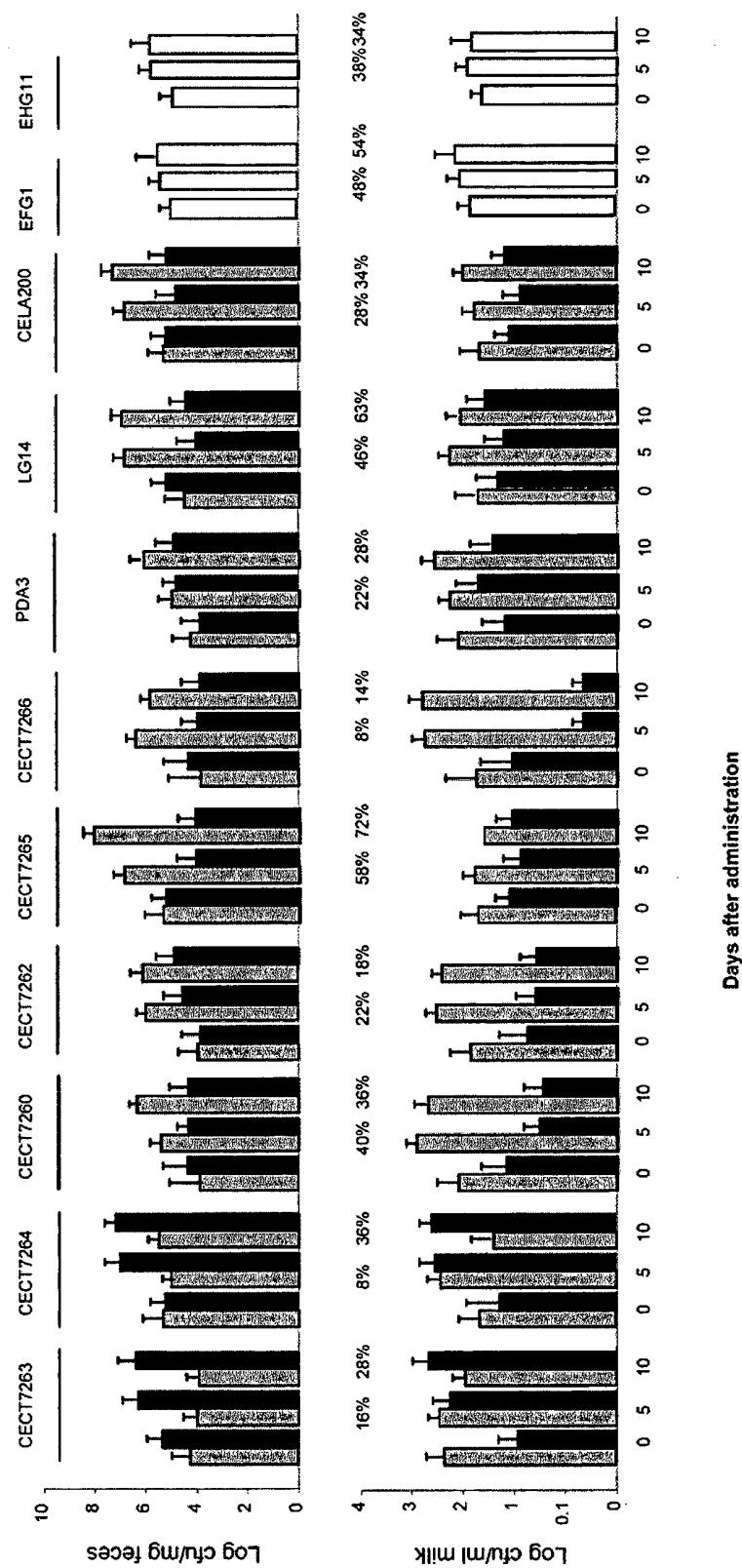


Figure 2

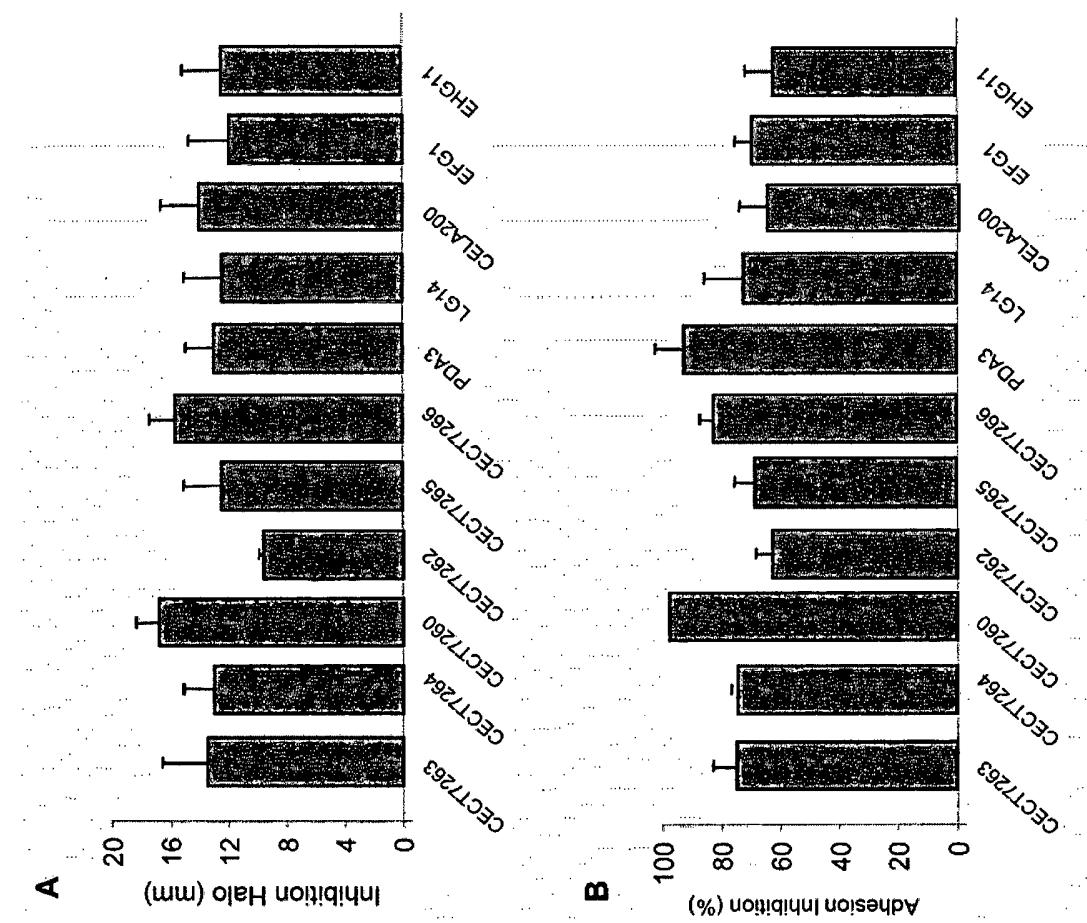


Figure 3

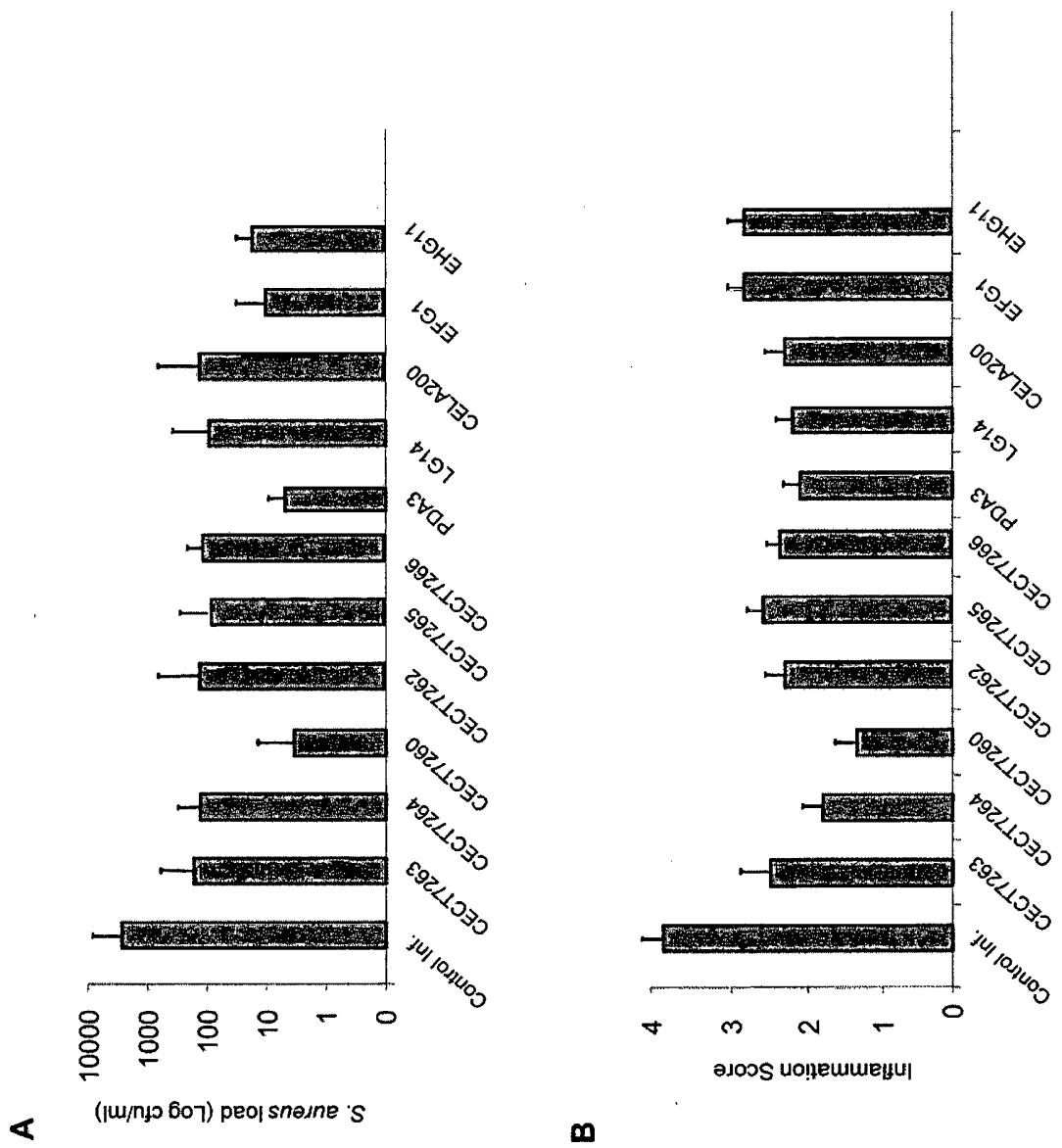


Figure 4

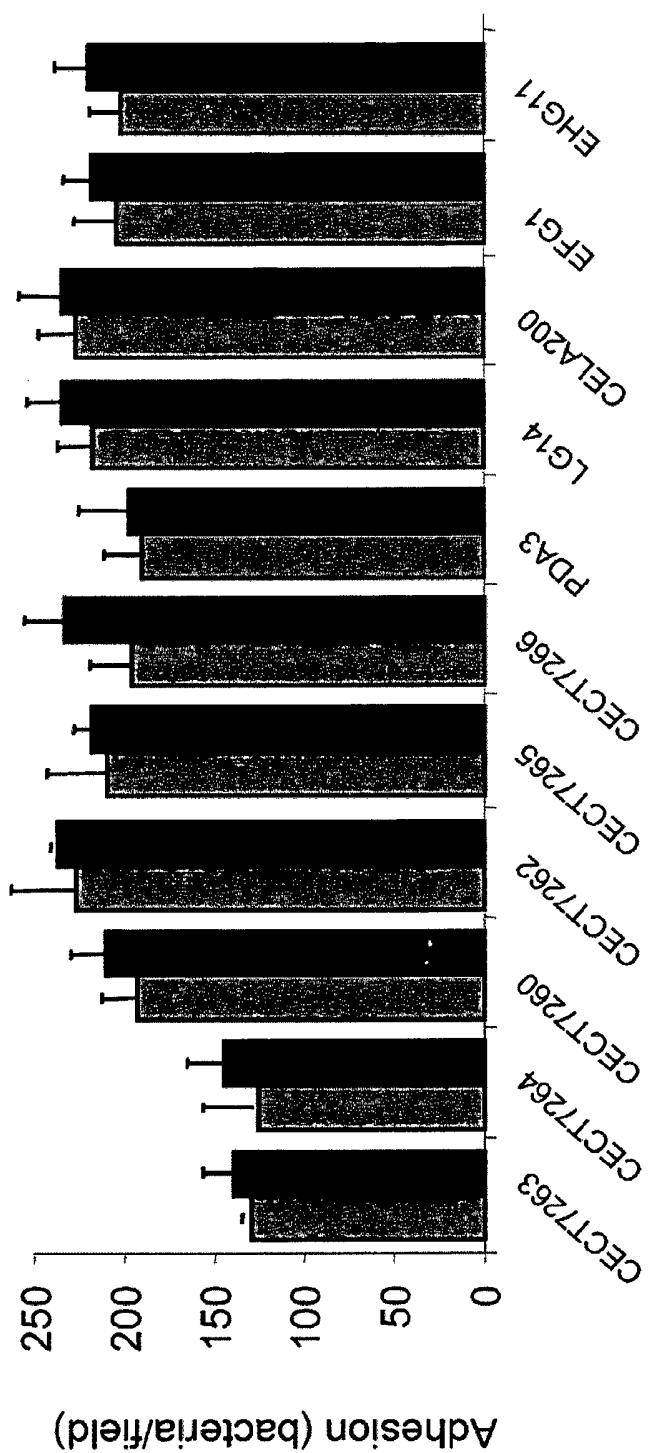


Figure 5

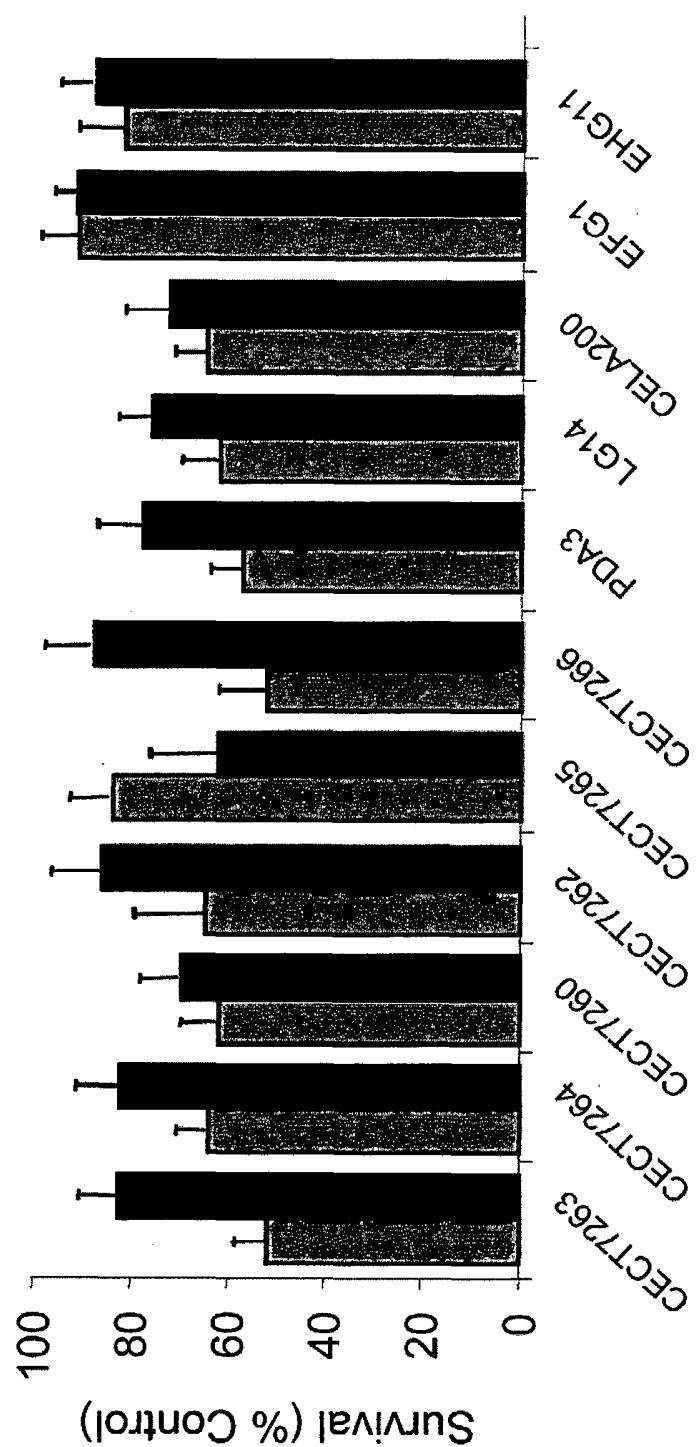


Figure 6

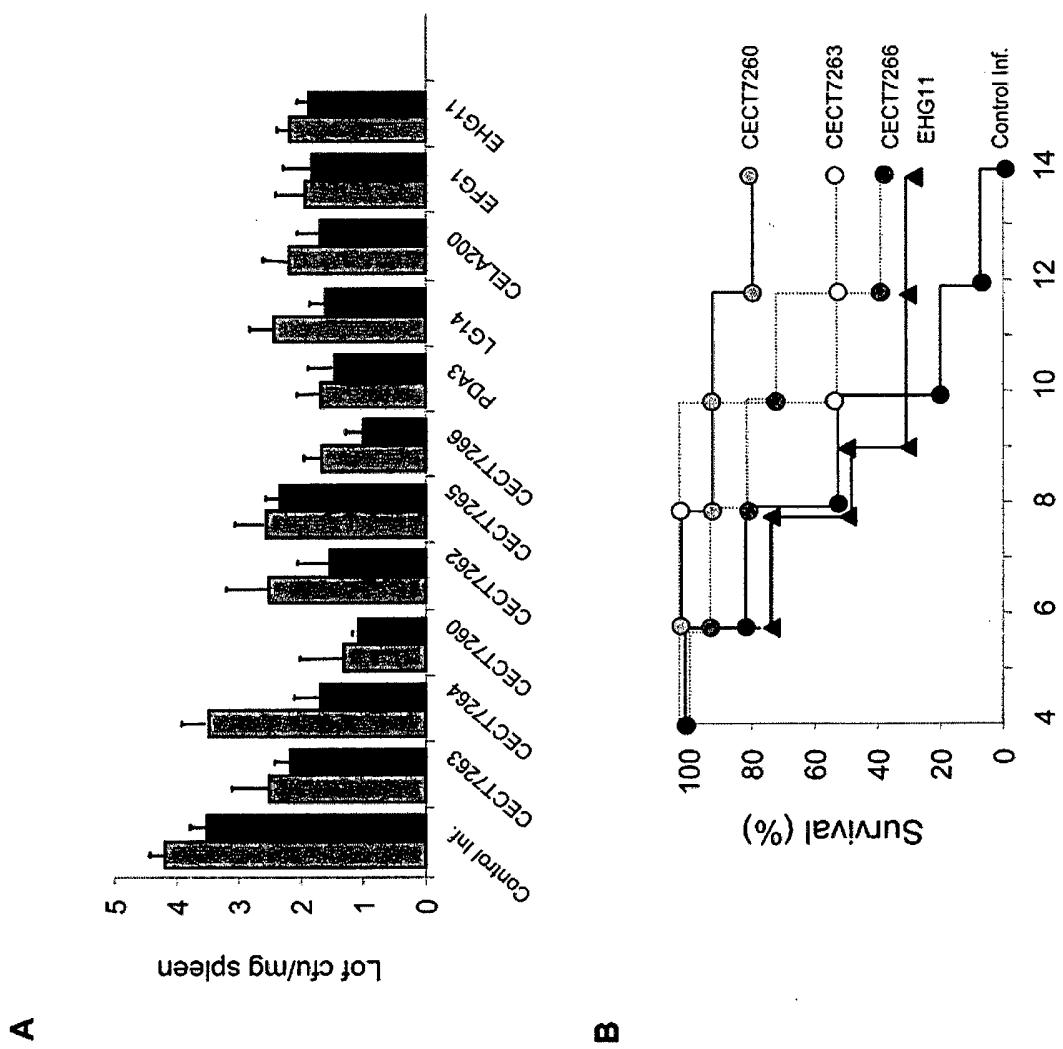


Figure 7

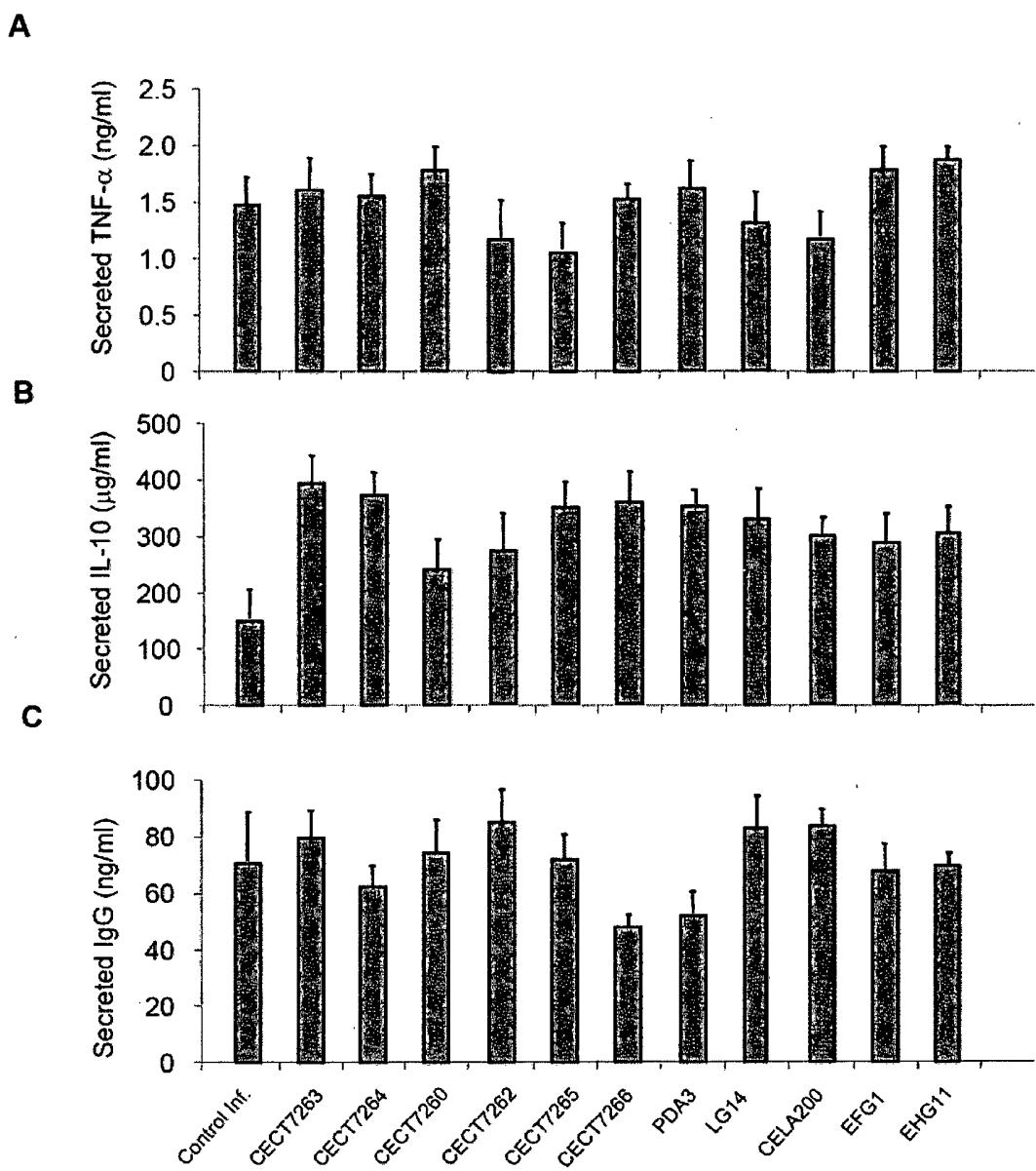


Figure 8

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4591499 A [0005]
- RU 2134583 [0005]
- WO 0534970 A [0005]
- WO 05117532 A [0007]
- WO 04003235 A [0007]
- WO 97461104 A [0008]
- EP 0577904 A [0008]
- WO 2004003235 A [0022] [0056]

Non-patent literature cited in the description

- TAKAHASHI,H. et al. *Cad.J.Vet.Res.*, 2004, vol. 68, 182-187 [0004]
- SYTNIK,S.I. et al. *Vrach Delo.*, 1990, vol. 3, 98-100 [0005]
- GREENE,W.A. et al. *J.Dairy Sci.*, 1991, vol. 74, 2976-2981 [0005]
- HEIKKILÄ et al. *J Applied Microbiol*, vol. 95, 471-8 [0006]
- OLIVARES et al. *J Applied Microbiol*, 2006, vol. 101, 72-9 [0007]
- MARTIN R et al. *J Hum Lact*, 2005, vol. 21 (1), 8-17 [0007]
- KAUR et al. *Eur J Pharm Sci*, 2002, vol. 15, 1-9 [0008]
- *Budapest Agreement at the CECT -Colección Española de Cultivos Tipo-, Valencia (Spain)*, 17 April 2007 [0054]
- *CECT -Colección Española de Cultivos Tipo-, Valencia (Spain)*, 30 May 2008 [0055]

Szabadalmi igénypontok

1. A következők által alkotott csoporthol kiválasztott probiotikus törzs: *Bifidobacterium breve*, amely a CECT-nél lett letétbe helyezve 7263 elérési szám alatt, *Bifidobacterium breve*, amely a CECT-nél lett letétbe helyezve 7264 elérési szám alatt, *Lactobacillus reuteri*, amely a CECT-nél lett letétbe helyezve 7260 elérési szám alatt, *Lactobacillus plantarum*, amely a CECT-nél lett letétbe helyezve 7262 elérési szám alatt, *Lactobacillus fermentum*, amely a CECT-nél lett letétbe helyezve 7265 elérési szám alatt és *Lactobacillus reuteri*, amely a CECT-nél lett letétbe helyezve 7266 elérési szám alatt.
2. Az 1. igénypont szerinti probiotikus törzs, vagy az 1. igénypont szerinti törzsek keveréke, gyógyszerként történő alkalmazásra.
3. Készítmény, gyógyászati termék, takarmány vagy tápszer, amely legalább egy 1. igénypont szerinti probiotikus törzset tartalmaz.
4. A 3. igénypontban definiált készítmény, gyógyászati termék, takarmány vagy tápszer, amely fagyasztott, liofilizált vagy szárított formában van.
5. Az 1. igénypont szerinti probiotikus törzs vagy azok keverékének alkalmazása az ezt igénylő alanyban vagy állatban krónikus vagy akut fertőzés vagy élösdifertőzés, vagy nemkívánatos kolonizáció kezelésére és/vagy profilaxisára szolgáló gyógyszer gyártására, ahol a fertőzést, élösdifertőzést vagy kolonizációt paraziták, baktériumok, élesziök, gombák vagy vírusok okozzák, amelyek a testfelszínre vagy nyálkahártyára hatnak.
6. Az 5. igénypont szerinti alkalmazás, ahol a fertőzés tőgygyulladás.
7. Az 5. igénypont szerinti alkalmazás, ahol a fertőzés újszülöttkori hasmenés.
8. Az 1. igénypont szerinti probiotikus törzs vagy azok keverékének alkalmazása az ezt igénylő alanyban vagy állatban a következők kezelésére és/vagy profilaxisára szolgáló gyógyszer gyártására: élelmiszer-hiperszenzitivitási reakciók és metabolikus intolerancia; szérekedés és más gasztro-intesztinális rendellenességek; gyulladásos vagy autoimmun rendellenességek a következők által alkotott csoportból kiválasztva: IBD, ulceratív kolitisz, artritisz, atheroszklerózis, szklerózis multiplex, pszoriázis vagy szarkoidózis; és daganat növekedés, metasztázis és rák.

9. Az 1. igénypont szerinti probiotikus törzs vagy azok keveréknél alkalmazása az ezt igénylő alanyban vagy állatban allergiás rendellenességek és asztma kezelésére és/vagy profilaxisára szolgáló gyógyszer gyártására.

10. Az 5-9. igénypontok bármelyike szerinti alkalmazás, ahol a törzs vagy készítmény orális, topikális, nazális, enterális, okuláris, urogenitális, rektális vagy vaginális úton van beadva.

11. Az 5. vagy 7. igénypont szerinti alkalmazás, ahol a törzs, készítmény, gyógyászati termék, takarmány vagy tápszer szoptató nőnek vagy állatnak történő beadásra van tervezve a magzat és/vagy a szoptatott babájuk vagy kölykük terápiás vagy profilaktikus kezelésére.