wO 2019/043622 A1 | NI 0000 0000000 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
07 March 2019 (07.03.2019)

(10) International Publication Number

WO 2019/043622 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 9/50 (2006.01)

(21) International Application Number:
PCT/IB2018/056641

(22) International Filing Date:
30 August 2018 (30.08.2018)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

62/553,311 01 September 2017 (01.09.2017) US

(71) Applicant: TELEFONAKTIEBOLAGET LM
ERICSSON (PUBL) [SE/SE]; 164 83 Stockholm (SE).

(72) Inventors: DUPONT, Guillaume; 12 Avenue Victor
Hugo, 88000 Epinal (FR). MUSTAFIZ, Sadaf, 4914 Cote
des Neiges, Montreal, Québec H3V 1H2 (CA). KHEN-
DEK, Ferhat; 3460 Rosedale, Montreal, Québec H4B 2G6
(CA). TOEROE, Maria; #1803-1212 Ave. des Pins O.,
Montreal, Québec H3G 1A9 (CA).

Agent: DUFORT, Julie et al.; Ericsson Canada Inc., 8275
Route Transcanadienne, Saint-Laurent, Québec H4S 0B6
(CA).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ, LA, LC,LK,LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: MEGAMODEL DRIVEN PROCESS ENACTMENT

Resources
{e.g. Models,
Meta-models/

FIG. 1

Profiles)
Y
ot Fransformation - -)

Constriet '] Qc»\wmtc‘ Chain L;ﬂxecufe (esxa-ut) Miodels

megamode] Megamodel Transformation iy Transtormation i 0
- gamode S {uka. - (including
Process Chain Schedule) Chain N
Muodel . \\ -) artifacts)

1o 120 130

(57) Abstract: Automation of the design and management of network services is achieved by automating the enactment of a process
model. The process model models activities and ordering among actions in a process for the network services. Each activity includes
a set of actions and each action is associated with a model-based transformation which transforms one or more input models into one
or more output models. A megamodel is constructed. The megamodel incorporates the process model and describes relations among
resources to be used by model- based transformations of the process model. The resources include models and meta-models. Based
on the megamodel, a transformation chain is generated. The transformation chain contains coordinated sequences of the model-based
transformations. The transformation chain is enacted to thereby enact the process model for the network services.

10

15

20

25

WO 2019/043622 PCT/IB2018/056641

MEGAMODEL DRIVEN PROCESS ENACTMENT

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. 62/553,311
filed on September 1, 2017.

TECHNICAL FIELD
[0002] Embodiments of the invention relate to the enactment of a process model using

model-driven techniques.

BACKGROUND

[0003] Cloud computing is a major breakthrough in recent years in computer science, and is
a very efflorescent domain, being more and more used by everyone (from individual customers to
IT companies). In essence, cloud computing is the domain of virtual machines, which are entities
that only exist in the memory of other machines. A main goal of cloud computing is to provide
infrastructure, platform and software as a service, shielding users from most of the technicalities
that come when building and maintaining physical machines by providing virtual computing,
storage and network. Indeed, a network node, or more generally a network function can be
virtualized, leading to what is called a Virtual Network Function (VNF), in an overall process
called Network Function Virtualization (NFV). NFV enables the design of an entire service
(including servers, router, firewall and so on) that can be hosted on a machine, virtual or physical.
[0004] The NFV paradigm is making way for the rapid provisioning of network services (NS).
Defining a process for the design, deployment, and management of network services and
automating the process is therefore highly desirable and beneficial for NFV systems. Automating
the end-to-end management of network services, that is, enacting the workflow or process for
network service management without manual intervention remains a major challenge for network
operators and service providers. The European Telecom Standards Institute (ETSI) has recently
launched a zero-touch network and service management group. The challenges of 5G also trigger

the need for a radical change in the way networks and services are managed and orchestrated.

10

WO 2019/043622 PCT/IB2018/056641

[0005] The wide variety of technologies, needs, users and designers makes it difficult to create
a proper network service, especially with respect to requirements such as availability.

[0006] The use of model-driven orchestration means has been recently advocated in the
context of NFV systems. Model management approaches sometimes use megamodels which
provide structures to avoid the so-called “mega-muddle,” that is, a complicated set of relations
between resources leading to an occultation of their semantics, their origins, where they are
involved, etc. A megamodel contains artifacts (which include models), relations between them
(which include transformations), and other relevant metadata. Megamodels have already been used
in various domains, especially in software engineering. Megamodels can be tailored to fit specific

needs; however, their high level of abstraction makes them difficult to use as they are.

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

SUMMARY

[0007] In one embodiment, a method is provided for automating design and management of
network services. The method comprises obtaining a process model which models activities and
ordering among actions in a process for the network services. Each activity includes a set of
actions and each action is associated with a model-based transformation which transforms one or
more input models into one or more output models. The method further comprises: constructing
a megamodel which incorporates the process model and describes relations among resources to
be used by model-based transformations of the process model, wherein the resources include
models and meta-models; generating, based on the megamodel, a transformation chain
containing coordinated sequences of the model-based transformations; and enacting the
transformation chain to thereby enact the process model for the network services.

[0008] In another embodiment, there is provided a network node comprising processing
circuitry and memory. The memory stores instructions executable by the processing circuitry to
automate design and management of network services. The network node is operative to obtain a
process model which models activities and ordering among actions in a process for the network
services. Each activity includes a set of actions and each action is associated with a model-based
transformation which transforms one or more input models into one or more output models. The
network node is further operative to: construct a megamodel which incorporates the process
model and describes relations among resources to be used by model-based transformations of the
process model, wherein the resources include models and meta-models; generate, based on the
megamodel, a transformation chain containing coordinated sequences of the model-based
transformations; and enact the transformation chain to thereby enact the process model for the
network services.

[0009] In yet another embodiment, there is provided a network node operable to automate
design and management of network services. The network node includes an input module
operative to obtain a process model which models activities and ordering among actions in a
process for the network services. Each activity includes a set of actions and each action is
associated with a model-based transformation which transforms one or more input models into
one or more output models. The network node further includes a megamodel construction

module operative to construct a megamodel which incorporates the process model and describes

10

WO 2019/043622 PCT/IB2018/056641

relations among resources to be used by model-based transformations of the process model,
wherein the resources include models and meta-models. The network node further includes a
transformation chain generation module operative to generate, based on the megamodel, a
transformation chain containing coordinated sequences of the model-based transformations; and
an enactment module operative to enact the transformation chain to thereby enact the process
model for the network services.

[0010] Other aspects and features will become apparent to those ordinarily skilled in the art
upon review of the following description of specific embodiments in conjunction with the

accompanying figures.

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

BRIEF DESCRIPTION OF THE DRAWINGS
[0011] Embodiments will now be described, by way of example only, with reference to the

attached figures.

[0012] Figure 1 illustrates an overview of an enactment approach according to one
embodiment.

[0013] Figure 2 illustrates an example of a process model according to one embodiment.
[0014] Figure 3 illustrates the core part of a meta-megamodel according to one embodiment.
[0015] Figure 4A and Figure 4B illustrate an extended meta-megamodel according to one
embodiment.

[0016] Figure 5 illustrates a high-level concept of a weaving model according to one
embodiment.

[0017] Figure 6 illustrates a weaving meta-model according to one embodiment.

[0018] Figure 7 illustrates a meta-model of a schedule according to one embodiment.

[0019] Figure 8 illustrates the backend architecture of an enactment system according to one
embodiment.

[0020] Figure 9 illustrates an example process model according to one embodiment.

[0021] Figure 10 illustrates a megamodel built from the process model of Figure 9
according to one embodiment.

[0022] Figure 11 illustrates a schedule generated from the process model of Figure 9
according to one embodiment.

[0023] Figure 12 illustrates an example of a process model for network service design
according to one embodiment.

[0024] Figure 13 illustrates a transformation chain generated from the process model of
Figure 12 according to one embodiment.

[0025] Figure 14 illustrates an initial megamodel for network service design according to
one embodiment.

[0026] Figure 15 illustrates a megamodel built from the initial megamodel of Figure 14 and
the process model of Figure 12 according to one embodiment.

[0027] Figures 16A, 16B, 16C, 16D, 16E and 16F illustrate examples of a user interface of a

process enactment tool according to one embodiment.

WO 2019/043622 PCT/IB2018/056641

[0028] Figure 17 is a flowchart illustrating a method for automating design and management

of network services according to one embodiment.

[0029] Figure 18 is a block diagram of a network node according to one embodiment.
[0030] Figure 19 is a block diagram of a network node according to another embodiment.
[0031] Figure 20 is a block diagram illustrating a virtualization environment according to

one embodiment.

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

DETAILED DESCRIPTION

[0032] In the following description, numerous specific details are set forth. However, it is
understood that embodiments of the invention may be practiced without these specific details. In
other instances, well-known circuits, structures and techniques have not been shown in detail in
order not to obscure the understanding of this description. It will be appreciated, however, by one
skilled in the art, that the invention may be practiced without such specific details. Those of
ordinary skill in the art, with the included descriptions, will be able to implement appropriate
functionality without undue experimentation.

[0033] Embodiments of the invention provide a model-driven approach for automated
process enactment. The approach combines the orchestration of model transformation chains
with model management means. To begin with, a process is modeled as a process model (PM)
which is obtained as input. The process model includes activities and actions. The activities in
the process model include actions and may embed other activities, and an activity may be
unfolded recursively into actions. Actions are associated with model-based transformations.
Model-based transformations include transformations that are themselves models or executable
programs (e.g. in machine code). Input and output objects of the model-based transformation are
model instances of existing domain-specific language(s).

[0034] A megamodel (MgM) is built for model management. The megamodel contains
information of all resources used by the model-based transformations of the process model, as
well as the link(s) (representing the relations) between these resources. The resources include
models and meta-models. The process model itself is also a resource which is registered in the
megamodel. To enact the process model, the megamodel is used to build a transformation chain.
Token-based enactment means may be implemented to orchestrate the transformation chain.
[0035] An enactment tool has been created with NFV systems as the target domain. The
model-driven approach and the tool support are not restricted to NFV, and can be used in various
other domains for process enactment.

[0036] In the disclosed approach, transformation chaining is used for modeling the
orchestration of different model-based transformations. A transformation chain includes
coordinated sequences of model-based transformations. Orchestration languages may be used for

the composition of the transformations. A transformation chain may include sequential steps of

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

transformations. A transformation chain may also include a complex chain which incorporates
conditional branches and loops; alternatively or additionally, a transformation chain may include
a composite chain, which is a chain including other transformation chains.

[0037] Figure 1 illustrates an overview of the disclosed enactment approach according to
one embodiment. At step 110, a megamodel is constructed based on a process model and
resources such as models and meta-models (which are referred to as profiles in some instances).
The process model is also a resource. The megamodel incorporates the process model and
describes relations among resources to be used by model-based transformations of the process
model. The megamodel may be built by an enactment system (described with reference to Figure
8). At step 120, a transformation chain is generated. The process model is translated to the
transformation chain. The transformation chain is formed by chaining the model-based
transformations of the process model, and contains information such as one or more sequences of
actions, transformations used, inputs and outputs of the transformations, etc. At step 130, the
transformation chain is executed (i.e. enacted). The transformation chain is executed by an
enacter in order to enact the processor model. The enacter is a program that can execute the
correct actions in the right order, based on a schedule, namely the transformation chain.

[0038] The enacter described herein is a generic enacter that can adapt to different kinds of
process models. Having a generic enacter enables the integration of different formalisms for
modeling the process model, instead of having an enacter for each kind of process model.

[0039] In classical engineering, and especially computer and software engineering, software
designers are often focused on low-level considerations or implementation details, e.g. specific
behaviors, algorithms or data structures. However, most of the time, this focus occults the real
difficulties of the studied problem, and brings the risk of creating a solution that is highly
specific and hardly adaptable, which is a major flaw when it comes to the real world filled with a
broad diversity of machines, systems and technologies. In this regard, creating an abstract
representation (e.g. model) of the subject of the studied problem can greatly help to master the
problem and to design a solution, which can then be implemented with low-level constraints.
This methodology is called Model-Driven Engineering (MDE).

[0040] The following provides some definitions of MDE terminologies.

[0041] Definition 1 (Models). A model is a set of objects and relations between them.

10

15

20

25

WO 2019/043622 PCT/IB2018/056641

[0042] Definition 2 (Meta-models and Conformance Relationship). A model abides by
specific rules, which form a meta-model. That is, the model conforms to the meta-model. In
other words, there is a conformance relationship between the model and the meta-model.

[0043] It is noted that a meta-model can also be represented as a model, and therefore can
conform to another meta-model, which is called a meta-meta-model. Also, a model can conform
to itself (e.g. Ecore).

[0044] Definition 3 (Transformations). A transformation represents a process on models,
with associated inputs and outputs specifications (i.e. constraints on the input/output models,
typically in the form of meta-models to which those input/output models conform).

[0045] Definition 4 (Megamodels). A megamodel is a structure containing models as well as
relations between the models. More precisely, a megamodel is a model which has other models
as objects.

[0046] The basic idea of megamodels is that everything is a model: models, meta-models,
transformations and even other resources; and models can be linked together through relations,
typically, conformance (as in Definition 2), and also derivation (when a model is the result of a
transformation) and cross-referencing (when an object in a model is used in another model). A
megamodel is a map for finding and linking together all involved models. A megamodel can be
used to enforce conformance and compatibility checks between the various models and
transformations. A megamodel is also useful for reusing and composing transformations in
transformation chains.

[0047] The above definition of megamodels expresses a general idea of megamodels,
leaving to users a choice of what, how, and to what extent to put into the megamodels. For
example, a user may add a specific type of relation or remove a cross-reference relationship in
the megamodel. In other words, a megamodel is a structure that contains models. What gets to
put inside the megamodel is entirely up to the user.

[0048] The megamodels described herein have a high level of traceability. Every mutation
(e.g. as a result of a transformation or induced by a user) that can happen to a resource can be
registered with the megamodels. A megamodel with such a traceability support can be used as a

repository, and enables a user to trace the version of every resource, the origin of the resources

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

(e.g. as a result of a transformation or provided by the user), the location of the resources,
whether a resource exists, etc.

[0049] Definition 5 (Process Model). A process model is a model which contains: (a)
Actions: representing a task or a set of tasks, inputs and outputs, where the inputs and outputs
are, in general, models; (b) Control flows: directed links between those actions that establish the
order in which the actions are to be executed; and (c) Object flows: links between the inputs and
outputs of actions, allowing for using the output of an action as the input of another.

[0050] A process model is used to model a process. A process model describes the ordering
of various actions as well as how to interface the actions. A process model can be extended in
numerous ways, thus enabling its users to define more refined structures. For example, some of
the following additional concepts may be used in process models: (a) Initial and final nodes:
special actions specifying respectively the beginning and the end of a process model. (b)
Parallelization: actions that do not depend on each other can be executed in parallel. (c)
Decision: depending on various criteria (a condition), the execution of a process model can omit
some branches. (d) Parameters and Outputs: (also referred as object nodes) a way to express
what can be fed in the process model or its actions and what can be retrieved from them. (e)
Nested behaviors: a process model can be used to express the actual behavior of an action,
leading to the definition of specific actions that actually refers to other process models.

[0051] The semantics of the process model includes: (a) Two actions that are linked with a
control flow (which, being directed, has a beginning and an end), the action at the beginning is
executed just before the action at the end. In this case, the actions are said to be sequential. (b)
When having two sequential actions, the second one is executed only when the first one has
finished. (c) Object nodes that are linked share the exact same data.

[0052] As an example, Unified Modeling Language (UML) 2.0 Activity Diagrams may be
used to represent and visualize a process model. It is also possible for processes to be modeled
with some other workflow modeling language, for instance, BPMN. A person skilled in the art
would understand that a process model could be based on another language or technology.
[0053] Activity diagrams are typically used to model software and business processes.
These diagrams allow the modeling of concurrent processes and their synchronization with the

use of forks and joins. Both control flow and object flow can be depicted in the model. An

10

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

activity node can be either a simple action (representing a single step within an activity) or an
activity (representing a decomposable activity which embeds actions or other activities). An
activity specifies a behavior that may be reused, i.e. an activity can be included in other activity
diagrams to invoke a behavior. Along with the activities, the input and output models associated
with each activity are also clearly identified via input and output parameter nodes (denoted by
the rectangles on the activity border). Since UML 2.0 Activity Diagrams are given semantics in
terms of Petri Nets, the precise formal semantics allow the activity diagrams to be simulated and
analyzed.

[0054] In one embodiment, the Eclipse Papyrus Activity Diagram environment may be used
to create a process model. The process model instance conforms to the activity diagram
language. Each process model includes one or more activities, which are decomposable into
actions. The behavior of each action is implemented with a model-based transformation. The
attributes of activity nodes in the activity diagram provide information about the associated
transformations. Each action in the process model is also associated with a set of input and
output models. With Papyrus, all meta-models are mapped to profiles to allow model instances to
be created and to be used as source or target models of the transformations.

[0055] Figure 2 illustrates an example of a process model 200 in the form of a standard
UML activity diagram. The notations employed in the process model 200 include the following:
[0056] Actions are represented as rounded rectangles. Object nodes are represented as (not
rounded) rectangles. Some object nodes are "attached"” to the action, which means they represent
an input or an output of that action. The other nodes correspond to general parameters and
outputs of the process model. The initial node is represented as a dark circle, the final node as a
double circle. Control flows are represented by filled arrows. Object flows are represented by
dash arrows. Decision is represented as the "D" diamond. A tiny black diamond represents the
end of the branches of the decision (often called merge). Parallelization is represented in between
two elongated rectangles (the first rectangle is called fork and the second one is called join).
[0057] The following is a description of megamodels. One main issue in resource
management is how to centralize information about resources for easy access. This issue may be
resolved by devising a transformation which is expressed using heterogeneous technologies. A

transformation may be an executable program (e.g. in machine code) or a model conforming to a

11

10

15

20

25

WO 2019/043622 PCT/IB2018/056641

specific meta-model, for instance, ATL, QVT, Epsilon, Java, etc.). Transformations define a
precise configuration as to what to be fed in and pulled out from. This disclosure describes the
use of megamodels for model management. The megamodel can be built incrementally in two
steps: 1) by registering the resources, and then 2) by registering the process model.

[0058] Registering the resources: To begin with, the resources (i.e., models and meta-
models/profiles) which are part of the target project are registered in the megamodel. This is
carried out automatically by going through the project workspace (referred to as workspace
discovery), and an initial megamodel is derived at this stage.

[0059] Registering the process model: Following the workspace discovery, the initial
megamodel is incrementally built by carrying out a process model discovery. This step includes
registering the process model and the associated transformations in the megamodel. Thus, the
process model is incorporated into the megamodel. The process model is linked with the
elements of the rest of megamodel (i.e., the parts of the megamodel outside the process model)
using externalized links delegated to another system called a weaving model, which is not the
process model nor the megamodel. Thus, users can reach all relevant information to enact the
process model, and no constraint is imposed on the structure of the process model, effectively
decoupling its meta-model from the megamodel. That is, there is no reference to the megamodel
in the process model. The weaving model binds every relevant element of the process model to
their corresponding resources in the megamodel, without touching the structure of either of them.
The links between the process model and the rest of the megamodel are created by weaving the
process model and the megamodel and storing the details in a weaving model, as will be defined
below in Definition 6.

[0060] Definition 6 (Weaving model) A weaving model is a special kind of model that
defines relations between the objects and relations of other distinct models (at least two). These
relations are the objects of a weaving model, which is based entirely on cross-referencing.
[0061] The weaving model is dependent on the process model. In other words, the weave
meta-model is specific to the process model language that it weaves. Thus, if a designer adapts
the environment for another process model language (e.g., expressed with BPMN), it would be

necessary to create a new weaving model to bind the new type of process model with the

12

10

15

20

25

WO 2019/043622 PCT/IB2018/056641

megamodel. Further details about the weaving model will be provided with reference to Figure 5
and Figure 6.

[0062] The meta-model of a megamodel (also referred to as the meta-megamodel) includes
two parts: a core part, which only stores the basic information about the architecture, and the
traceability part, which is a useful extension. This disclosure uses Ecore-based megamodeling.
However, a person skilled in the art would understand that megamodeling could be based on
another language or technology.

[0063] Figure 3 illustrates the core part of a meta-megamodel according to one embodiment.
A megamodel is a container for gathering resources. A resource is identified by its name. Two
resources that have the same name are considered as being equal. A resource can be specialized
into a model. A model can be specialized further into three categories: (a) A meta-model: such as
what has been defined in Definition 2, with the conformance relation being expressed via the
“conformsTo’ attribute of the Model meta-class. (b) A transformation: such as what has been
defined in Definition 3. (c¢) Any special kind of model among the types UML, weaving (such as
in Definition 6) and process model (such as in Definition 5).

[0064] A specific UMLModel meta-class is provided because UML models can have one or
more profiles applied to them. A UML model is thus a model conforming to UML and that can
have profiles, which is unique to this case.

[0065] The Transformation meta-class: in addition to storing standard data (e.g. name and
conformance), the Transformation meta-class also stores its full configuration; that is, the
specification of what goes in and comes out of it, under the form of "in-outs" represented by the
TransformationInOut meta-class. The TransformationInOut meta-class describes the in-out
resources of a transformation. It stores the meta-model, profiles and direction of the specification
(either IN or OUT; that is, each in-out resource is either an input resource or an output resource
for a transformation), but also presents two attributes, reference and metamodelReference, which
are the names by which the model and meta-model are referred to inside the transformation.
[0066] Typically, in a transformation (e.g. an ATL transformation), the meta-models and in-
outs are referred to using their aliases. The use of aliases allows, among other things, to avoid

specifying the model directly inside the transformation, thus making the transformation reusable.

13

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

[0067] An analogy may be drawn on defining the prototype of the transformation in a
programmatic point of view. The meta-model reference is the name of the type (which will
correspond later to an actual implementation) and the model reference is the name of the
parameter (which will be filled in when executing the transformation).

[0068] The megamodel further includes two special models: WeavingModel and
ProcessModel. These two models allow a user to easily map a process model to its weave.
[0069] Figure 4A and Figure 4B illustrate a meta-megamodel extended to provide support
for traceability according to one embodiment. This extension has the following features:

[0070] Every resource is given a history that traces everything that happened to it.

[0071] Every resource is given metadata, which can be of any form (e.g. a version, an
author, an encoding, etc.) and includes a timestamp to express how recent the resource is. This
timestamp is used to sort the history.

[0072] Every resource is given an origin to express from where the resource comes from.
For example, a resource provided by the user is labeled as [UserProvided], or a resource created
as a result of a process is labeled as [Derived].

[0073] Every resource is given a uniform resource identifier (URI), that is, a way to access
the actual content it represents. There is also a flag called “exists” that states whether or not the
resource exists. For example, the result of a transformation that has not been launched does not
yet exist.

[0074] Transformations hold a trace, that is, a list of every execution that happened. A
resource can then be specified as being the result of a transformation, with the corresponding
configuration (e.g. actual parameters that were being fed in the transformation).

[0075] The megamodels described above are generic. A megamodel conforms to the
structure provided in Figure 3 or Figures 4A and 4B does not enforce what the user will be
doing; it is flexible and adapts to whatever the project it is used in. For example, there is no
reference to a specific meta-model (except for UML) or transformation language.

[0076] Figure 5 illustrates a high-level concept of a weaving model, using an example of
two models, the one on the left (conforming to meta-model MM1) and the one on the right
(conforming to MM2). From these two meta-models, a weaving meta-model can be devised.

From this weaving meta-model, a weaving model (referred to as Weaving) is generated to store

14

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

the links between the model on the left and the one on the right, such as the links between the
process model and the megamodel.

[0077] The weaving model maps each element of the process model to a corresponding
resource. Some elements of the process model do not have to be mapped (e.g. control flows do
not represent any resource), so in the end, the weaving model may not be "complete", in that it
may not contain every element of the process model.

[0078] Figure 6 illustrates a weaving meta-model for a process model expressed as a UML
activity diagram according to one embodiment. The resources in a process model are of two
natures: the transformations (that are linked to some actions) and the data that is circulating in-
between them (that are mapped to object nodes and object flows). The former can be expressed
in the weaving meta-model using the meta-class ActionMapping.

[0079] Regarding the object nodes and object flows, it is noted that object nodes linked with
one or several object flow(s) represent the same data, meaning that this data can be mapped to
this object flow instead of being mapped to each element it links.

[0080] Moreover, object flows are one-to-many, meaning that an output can present several
outgoing object flows but an input can only have one incoming. Thus, a set of object flows
emanating from the same source and going to various targets can be mapped to the same data
(model, meta-model and profiles). Basically, those considerations translate to the
ObjectNodeMapping meta-class.

[0081] However, it is noted that this kind of mapping only links object flows to data; what
still needs to be determined is which pin is mapped to which transformation configuration, so
that in the end, an execution can be built to run the transformation. For that, an additional meta-
class, InOutMapping, is used to link an input-output to a full object flow, providing information
as to what goes in and comes out of the transformation it is linked to.

[0082] A process model is given translational semantics by mapping it to a transformation
chain. The translation from a process model to a transformation chain takes the megamodel as
input, which includes information of the process model, the weaving model, and, if applicable,
additional environment information, and generates the corresponding transformation chain.
[0083] A transformation chain (also referred to as a schedule) is standalone (i.e. self-

contained), meaning that it is sufficient in itself to be executed without the process model and the

15

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

megamodel. A schedule is generic. Some transformations that are not directly dependent on each
other may be executed in parallel.

[0084] Figure 7 illustrates a meta-model of a generic schedule expressed as an Ecore model
according to one embodiment. Globally, a schedule is a chain of actions which have parameters
that are fixed. Parallelization may be expressed through forks and joins, which represent
respectively the beginning of a parallel section and the ending of it.

[0085] The actual behavior of an action is expressed through a handlerClass attribute. When
the handlerClass attribute is associated with an enacter the action becomes meaningful and may
represent a Java class, an ATL class, or a path to an executable program, etc. The children
classes of ParameterValue specify the way parameters are expressed.

[0086] In addition to this meta-model, the following constraints are imposed on a schedule
to control the flow of actions: (a) An action has at most one previous node and at most one next
node. (b) An action with no previous node is called initial and an action with no next node is
called final. (c) A fork node has at most one previous node and has at least one next node. (d) A
join node has at most one next node and has at least one previous node.

[0087] In one embodiment, the schedule is associated with token-based semantics, which
includes: (a) Tokens are circulating in the schedule. At every moment, one or several nodes
(actions, fork or join) have a token, in which case it is said it has the control. (b) When an action
receives a token, it is executed. When the action is done, it passes its token to its next node. (c)
When a fork node receives a token, it passes a token to each of its next nodes, at the same time.
(d) When a join node receives as many tokens as it has previous nodes, it passes one token to its
next node.

[0088] Initially, a token is given to every initial node. The execution ends whenever every
token circulating cannot be passed further (typically: the only nodes having a token are the final
ones). Therefore, the enacter is based on controlling the tokens and activating the actions when
needed.

[0089] After generating the transformation chain of actions, this chain is executed by an
enacter. An enacter is a program that can execute the correct actions in the right order, based on a
schedule model. An enacter does not order the actions; an enacter reads the schedule model and

acts accordingly.

16

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

[0090] Figure 8 illustrates the backend architecture of an enactment system 800 according to
one embodiment. The backend architecture is an example of an extension developed for Papyrus.
A person skilled in the art would understand that similar architecture could be based on another
language, technology, or development tool. In Figure 8, the core functionalities are represented
using rountangles (rounded-corner rectangles). The rectangles are extensions, which can be
recognized by the system for added new functionalities; but unlike the core functionalities, the
system can still function without the extensions.

[0091] The enactment system 800 includes support for enacting a chain of transformations
in ATL, Java, other transformation languages, or executable programs. The enactment system
800 allows for the enactment of activities in process models which include executable actions.
This extension allows transformations to be written in any general purpose programming
language (e.g. Java, C, Python) or executable code. It also supports other types of input and
output models to be associated with activities besides UML models, such as Ecore or XMI. This
feature allows integration and reuse of legacy code in the process model.

[0092] A loader subsystem 810 is centered around a loading engine 811 and also includes
Resources 812 (e.g. models and meta-models), EncoreLoader, UMLLoader, ATLLoader and
QVTLoader. Loaders for other languages (e.g., Java) or executable code may also be included.
[0093] The loader subsystem 810 provides a high-level interface with the actual resources of
a system (i.e. a file system). The loader subsystem 810 is able to recognize the correct way of
loading a file and to extract relevant data from the file into the megamodel, for example.
Typically, when attempting to register a file in the megamodel, a discovery engine 821 requests
the loading engine 811 to load the file so that data can be extracted from the file. Defining
loaders allows different technologies to be incorporated into the enactment system 800, making
the enactment system 800 capable of understanding new formats.

[0094] A registration subsystem 820 is centered around the discovery engine 821. The
"discovery" is the process by which a resource is added to the megamodel. It includes the
recognition of the resource (determining that it is a meta-model, a transformation, a profile, etc.)
as well as the extraction of its data (Uniform Resource Identifier (URI), name, inputs and
outputs, etc.). As in the case of the loaders, a custom discoverer may be developed. For instance,

as shown in Figure 8, WorkspaceDiscoverer and PMDiscoverer are examples of custom

17

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

discoverers. This allows the tool to be extended with discoverers for other kinds of workflow
modeling languages.

[0095] The registration subsystem 820 is also the place that weaves the process model to the
megamodel, with the help of a weave engine 822. As the weave is entirely dependent on the
process model language, it is noted that the weaving process is completely devolved to the
discoverer, which provides both a specific weaver (an implementation) as well as filling it.
[0096] A management subsystem 830 is centered around a megamodel manager 831 and
also includes the megamodel and a user interface. The subsystem 830 allows a user to access the
megamodel, such as: request to register a resource, create or delete a megamodel, etc. The
subsystem 830 also includes an extensive API for manipulating the megamodel, ensuring its
validity throughout the process.

[0097] A translation subsystem 840 revolves around a translation engine 841 and also
includes a PMtranslator. The translation subsystem 840 provides the translation of a process
model to a schedule (i.e. a transformation chain) that can be enacted. The translation subsystem
840 exposes an extension point that allows users to plug their own translation means (e.g. a
translation algorithm or other types of translators) if ever the users want to use another type of
process model.

[0098] A scheduling and enactment subsystem 850 includes two subparts: a generic enacter
(enacter 851) and an interface between the enacter 851 and the remaining part of the project,
through a ProcessModelEnacter. The enacter 851 is independent of the project, and is shown
inside the dashed box labeled "Enactment core" which also includes the Chain and Handlers. The
interface allows to include language handlers such as QVTHandler and ATLHandler. Other
language handlers, such as JavaHandler and/or ProcessHandler (which handles executable code),
may also be included, for example, for interacting with a managed system.

[0099] A Launcher 861 orchestrates everything needed to execute the process model, which
includes translating the process model into a transformation chain and enacting the chain. The
launcher 861 also manages enactment configurations (i.e. data associated with the process model
to translate and enact it), which may be stored as a standard Eclipse launch configuration.

[0100] A simple example of process model enactment is presented in the following with

reference to Figures 9-11. First, a set of resources are defined. The resources include: (a) two

18

10

15

20

25

WO 2019/043622 PCT/IB2018/056641

Ecore meta-models (FirstMM and SecondMM); (b) one UML profile (Profilel); and (c) two
ATL transformations (Transformation and Transformation2)

[0101] Figure 9 illustrates an example process model 900 according to one embodiment. In
the process model 900, the label for parameters is of the form <left>:<right>. By convention, the
<left> part corresponds to the name of the model mapped with this parameter, and the <right>
part is that model meta-model’s name. Thus, Inputl: FirstMM means that the parameter is being
mapped to a model named Inputl of meta-model FirstMM. Note that the <right> part cannot be
empty, but the <left> part can. If the <left> part is empty, the system will request the user to fill
in the model name when needed.

[0102] Figure 10 illustrates a diagram of a megamodel 1000 built from the process model
900 and the other resources. Meta-models (including UML, FirstMM, SecondMM, ATL, Weave
and Ecore) are shown in white rectangles, profiles (including Profilel) are shown in
parallelograms, transformations (including Transformation and Transformation2) are shown in
rectangles filled with dots, special models (including the process model MainActivity and the
weaving model MyPM::MainActivity::Weave), are shown in rounded rectangles.

[0103] Figure 11 illustrates a schedule (i.e. a transformation chain) generated from the
process model 900 (and upon requesting the actual models to be fed in) according to one
embodiment. It is noted that the frames on the right expose the configurations of each action, in
the form "parameter: value <meta-model>". This schedule can be enacted.

[0104] NFV Case Study. Automating network service design and management is one of the
challenges in the NFV domain. The following example demonstrates the enactment of the
network service (NS) design process, which is one of the activities of the NS management
process.

[0105] An NS, such as VoIP, is a composition of Network Function(s) (NF) and/or other
NSs, interconnected with one or more Forwarding Graphs (FG). These graphs interconnect the
NFs and describe the traffic flow between them. Virtualized Network Functions (VNF) are the
building blocks of an NS in NFV. VNFs are software pieces that have the same functionality as
their corresponding Physical Network Functions (PNF), e.g., a virtual firewall (VFW) vs. a
traditional firewall device. The design of an NS consists of defining an NS Descriptor (NSD),

19

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

which is a deployment template capturing all this information. This template is provided to the
NFV Orchestrator for the NS lifecycle management.

[0106] Coming up with the deployment template for an NS is not an easy task for an
inexperienced tenant who has limited knowledge regarding the details of the target NS. Instead
of these details, the tenant may request at some level of abstraction the functional and non-
functional characteristics of the targeted NS. The gap between these NS requirements (NSReq)
and the NS deployment template is filled with an automated NS design method. With the help of
a network function ontology (NFOntology), it is indeed possible to fill this gap and design
automatically NSDs from NSReqs. The NF ontology captures the known NF/service
decompositions and their (standard) architectures. In the NS design method, the NSReq
decomposition is guided by the NFOntology to a level where proper network functions can be
selected from an existing VNF catalog. After the selection of the VNFs, the method continues
with the design of the forwarding graphs given the characteristics of the selected VNFs and their
dependencies. This generates a set of forwarding graphs, which are refined further based on the
non-functional requirements in the NSReq, resulting in the target NSD. As a final step, the NF
ontology is enriched with the new decompositions. It is also possible to enrich the NF ontology
with new standards and new services. Please note that the goal of this disclosure is not to
describe the details of the N'S design method but to show how the process is enacted using the
disclosed method and tool. Figure 12 illustrates an example of a process model 1200 for NS
design according to one embodiment. The process model is later translated to a transformation
chain 1300 illustrated in Figure 13.

[0107] Figure 14 and Figure 15 illustrate the construction of a megamodel incrementally.
The dashed links represent conformance relationship, and the solid black links represent object
flow. To begin with, the NS design resources 1420 (e.g. profiles or meta-models for NSReq,
NFOntology, etc.) in the workspace of NS design are registered with an initial megamodel 1400
(Figure 14). This initial megamodel 1400 also includes the meta-metamodels (UML and Ecore
pre-loaded) and conformance links.

[0108] Figure 15 illustrates a megamodel 1500 after process model registration according to
one embodiment. The process model registration automatically refines the initial megamodel

1400 with additional resources (e.g. PM resources 1520) in the process model to generate the

20

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

megamodel 1500. Each transformation (which is associated with an action in the process model)
is stored as an attribute of a corresponding activity node (e.g. six such activity nodes 1530 are
shown). The process model itself is also added as a resource (shown as PM 1540). A weaving
model 1550 is also added into the megamodel 1500. While discovering and registering the
process model, whenever an object flow links two pins and that flow and pins do not have any
assigned name, the system can detect it and create an intermediate model. This step resulted in
creating a repository of models, NFV-specific languages, and tools along with the relationships
between the artifacts.

[0109] When a request is received to enact the process model, the NS design process model
1200 is mapped to the transformation chain 1300 (Figure 13). The system enacts the NS design
process model 1200 by executing the transformation chain 1300. The process model enactment
begins by taking NSReq models as inputs and creating an intermediate model, SolutionMap,
which is incrementally refined. Once the initial NSD is created, the system enables NSD
refinement and ontology enrichment to be carried out concurrently since they are independent of
each other, hence optimizing deployment time. The enactment ends with the generation of the
target models, NSD and NFOntology. With this environment, NFV users with limited modeling
expertise and minimal knowledge about the underlying transformations can generate a target
NSD with basically a few clicks. The configurations for ATL, making sure that the correct
models are passed into each transformation, do not need to be handled by the user. The same
process model 1200 can be enacted again with different inputs if desired, and it can also be
reused as part of another process model as needed.

[0110] The process model enactment approach described above has been applied to the
enactment of the entire NS design and management process. NS lifecycle management includes,
among others, the activities such as onboarding, instantiation, configuration, scaling, update, and
termination of network services. Each activity in the NS lifecycle management involves a
complex chain of tasks (i.e. actions), which may be modeled by a process model. The process
model can then be mapped on to a composite chain of transformations along with a megamodel
to allow for automated deployment and management of network services.

[0111] A tool has been implemented in the form of an extension of Papyrus/Eclipse.

However, a person skilled in the art would understand that a similar tool could be based on

21

10

15

20

25

WO 2019/043622 PCT/IB2018/056641

another language, technology, or development tool(s). In one embodiment, the resulting tool
targets network service designers.

[0112] The tool hides megamodels from users to prevent users from damaging the
megamodels inadvertently with incorrect addition. The megamodel is manipulated through an
interface (a user interface for the user and an API for the developer). A user may have several
megamodels at the same time. The tool is extensible. The tool adapts to any technology, any
transformation type/engine, and any structure of the process model. In the following, an
overview of the user interface of the tool is provided.

[0113] The user interface provides two types of menu: a global menu which allows the user
to access the global operations on megamodel (Figure 16A), and a contextual menu which allows
for adding the selected resource to a megamodel (Figure 16B).

[0114] Figure 16C illustrates a simple component for managing megamodels. This
component is based on a "list" widget, that is, a component that holds a list of elements and with
which a user can select one of the elements. Next to this widget, there are two buttons: add (+)
and remove (—). The latter simply remove the selected megamodel (if any) after confirmation. As
for the former, it pops up the dialog laid out in Figure 16D, which allows to create a new
megamodel and add it to the list.

[0115] A megamodel is specified by its name. The system will deny the creation of a
megamodel with the same name as an already existing one, unless the "Overwrite existing"
checkbox has been checked. Additionally, the validity of the megamodel’s name is verified. In
case the name is not valid, the "OK" button is disabled, preventing the user to accept an invalid
name, and an error message is printed in the dialog (e.g. below the title).

[0116] When selecting the menu entry "Register to Megamodel..." (Figure 16B), a user can
access a dialog for the registration of a megamodel (Figure 16E). This menu entry allows the
user to select the megamodel in which to register the selected resource, and to select the
discoverer for doing so through a widget for selecting from a list of options. When selecting the
"..." button on the right side of the area next to "Megamodel", a dialog pops up with the
megamodel selection component in it (as defined in Figure 16C), asking the user to select a

megamodel.

22

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

[0117] As an example, Eclipse’s launch configuration system (accessible via the "Run"
menu) may be used for the enactment of a process model. A process model launch configuration
is characterized by a megamodel, a process model and a specific translator (provided through an
extension point). Eclipse enables a user to define a custom Ul to manage the configuration, an
example of which is presented in Figure 16F.

[0118] Figure 17 is a flow diagram of a method 1700 for automating the design and
management of network services, such as NSD generation and NS network service lifecycle
management. In one embodiment, the method 1700 may be performed by a system such as the
enactment system 800 of Figure 8. The method 1700 may also be performed by any of the
systems, network nodes, and environments described in connection with Figures 18-21.

[0119] The method 1700 begins with the system at step 1710 obtaining a process model
which models activities and ordering among actions in a process for the network services. Each
activity includes a set of actions and each action is associated with a model-based transformation
which transforms one or more input models into one or more output models. The system at step
1720 constructs a megamodel which incorporates the process model and describes relations
among resources to be used by model-based transformations of the process model. The resources
include models and meta-models. The system at step 1730 generates, based on the megamodel, a
transformation chain containing coordinated sequences of the model-based transformations. The
system at step 1740 enacts the transformation chain to thereby enact the process model for the
network services.

[0120] Figure 18 a block diagram illustrating a network node 1800 according to an
embodiment. In one embodiment, the network node 1800 may be a server in an operator network
or in a data center. The network node 1800 includes circuitry which further includes processing
circuitry 1802, a memory 1804 or instruction repository and interface circuitry 1806. The
interface circuitry 1806 can include at least one input port and at least one output port. The
memory 1804 contains instructions executable by the processing circuitry 1802 whereby the
network node 1800 is operable to perform the various embodiments described herein.

[0121] Figure 19 is a block diagram of an example network node 1900 according to another
embodiment. The network node 1900 may be adapted for automating design and management of

network services. The network node 1900 includes an input module 1910, a megamodel

23

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

construction module 1920, a transformation chain generation module 1930 and an enactment
module 1940 adapted to perform, respectively, steps 1710, 1720, 1730 and 1740 of the method
1700 of Figure 17. The network node 1900 can be configured to perform the various
embodiments as have been described herein.

[0122] Figure 20 is a schematic block diagram illustrating a virtualization environment 2000
in which functions implemented by some embodiments may be virtualized/implemented. In the
present context, virtualizing means creating virtual versions of apparatuses or devices which may
include virtualizing hardware platforms, storage devices and networking resources. As used
herein, virtualization can be applied to a node (e.g., a virtualized base station, a virtualized radio
access node, or any other node) or to a device (e.g., a user equipment (UE), a wireless device or
any other type of communication device) or components thereof and relates to an
implementation in which at least a portion of the functionality is implemented as one or more
virtual components (e.g., via one or more applications, services, components, functions, virtual
machines or containers executing on one or more physical processing nodes in one or more
networks).

[0123] In some embodiments, some or all of the functions described herein may be
implemented as virtual components executed by one or more virtual machines implemented in
one or more virtual environments 2000 hosted by one or more of hardware nodes 2030. Further,
in embodiments in which the virtual node is not a radio access node or does not require radio
connectivity (e.g., a core network node), then the network node may be entirely virtualized.
[0124] The functions may be implemented by one or more applications 2020 (which may
alternatively be called software instances, virtual appliances, network functions, virtual nodes,
virtual network functions, etc.) operative to implement some of the features, functions, and/or
benefits of some of the embodiments disclosed herein. Applications 2020 are run in
virtualization environment 2000 which provides hardware 2030 comprising processing circuitry
2060 and memory 2090. Memory 2090 contains instructions 2095 executable by processing
circuitry 2060 whereby application 2020 is operative to provide one or more of the features,
benefits, and/or functions disclosed herein.

[0125] Virtualization environment 2000, comprises general-purpose or special-purpose

network hardware devices 2030 comprising a set of one or more processors or processing

24

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

circuitry 2060, which may be commercial off-the-shelf (COTS) processors, dedicated
Application Specific Integrated Circuits (ASICs), or any other type of processing circuitry
including digital or analog hardware components or special purpose processors. Each hardware
device may comprise memory 2090-1 which may be non-persistent memory for temporarily
storing instructions 2095 or software executed by processing circuitry 2060. Each hardware
device may comprise one or more network interface controllers (NICs) 2070, also known as
network interface cards, which include a physical network interface 2080. Each hardware device
may also include non-transitory, persistent, machine-readable storage media 2090-2 having
stored therein software 2095 and/or instructions executable by processing circuitry 2060.
Software 2095 may include any type of software including software for instantiating one or more
virtualization layers 2050 (also referred to as hypervisors), software to execute virtual machines
2040 as well as software allowing it to execute functions, features and/or benefits described in
relation with some embodiments described herein.

[0126] Virtual machines 2040, comprise virtual processing, virtual memory, virtual
networking or interface and virtual storage, and may be run by a corresponding virtualization
layer 2050 or hypervisor. Different embodiments of the instance of virtual appliance 2020 may
be implemented on one or more of virtual machines 2040, and the implementations may be made
in different ways.

[0127] During operation, processing circuitry 2060 executes software 2095 to instantiate the
hypervisor or virtualization layer 2050, which may sometimes be referred to as a virtual machine
monitor (VMM). Virtualization layer 2050 may present a virtual operating platform that appears
like networking hardware to virtual machine 2040.

[0128] As shown in Figure 20, hardware 2030 may be a standalone network node with
generic or specific components. Hardware 2030 may comprise antenna 2025 and may implement
some functions via virtualization. Alternatively, hardware 2030 may be part of a larger cluster of
hardware (e.g. such as in a data center or customer premise equipment (CPE)) where many
hardware nodes work together and are managed via management and orchestration (MANO)
2010, which, among others, oversees lifecycle management of applications 2020.

[0129] Virtualization of the hardware is in some contexts referred to as network function

virtualization (NFV). NFV may be used to consolidate many network equipment types onto

25

10

15

20

WO 2019/043622 PCT/IB2018/056641

industry standard high volume server hardware, physical switches, and physical storage, which
can be located in data centers, and customer premise equipment.

[0130] In the context of NFV, virtual machine 2040 may be a software implementation of a
physical machine that runs programs as if they were executing on a physical, non-virtualized
machine. Each of virtual machines 2040, and that part of hardware 2030 that executes that virtual
machine, be it hardware dedicated to that virtual machine and/or hardware shared by that virtual
machine with others of the virtual machines 2040, forms a separate virtual network element
(VNE).

[0131] Still, in the context of NFV, Virtual Network Function (VNF) is responsible for
handling specific network functions that run in one or more virtual machines 2040 on top of
hardware networking infrastructure 2030 and corresponds to application 2020 in Figure 20.
[0132] In some embodiments, one or more radio units 2026 that each includes one or more
transmitters 2022 and one or more receivers 2021 may be coupled to one or more antennas 20235.
Radio units 2026 may communicate directly with hardware nodes 2030 via one or more
appropriate network interfaces and may be used in combination with the virtual components to
provide a virtual node with radio capabilities, such as a radio access node or a base station.
[0133] In some embodiments, some signaling can be effected with the use of control system
2023 which may alternatively be used for communication between the hardware nodes 2030 and
radio units 2026.

[0134] The above-described embodiments are intended to be examples only. Alterations,
modifications and variations may be effected to the particular embodiments by those of skill in

the art.

26

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

CLAIM
What is claimed is:

L. A method for automating design and management of network services, comprising:

obtaining a process model which models activities and ordering among actions in a
process for the network services, wherein each activity includes a set of actions and each action
is associated with a model-based transformation which transforms one or more input models into
one or more output models;

constructing a megamodel which incorporates the process model and describes relations
among resources to be used by model-based transformations of the process model, wherein the
resources include models and meta-models;

generating, based on the megamodel, a transformation chain containing coordinated
sequences of the model-based transformations; and

enacting the transformation chain to thereby enact the process model for the network

services.

2. The method of claim 1, wherein enacting the transformation chain further comprises:

invoking one or more language handlers to execute the transformation chain.

3. The method of claim 2, wherein the one or more language handlers include pluggable

handlers for model transformation languages and other executable code.

4. The method of claim 1, wherein constructing the megamodel further comprises:
building a weaving model which maps every element in the process model to a
corresponding resource in the megamodel; and

incorporating the weaving model into the megamodel.

5. The method of claim 1, wherein constructing the megamodel further comprises:
incorporating the model-based transformations into the megamodel;
linking the model-based transformations with one or more language handlers in the

megamodel; and

27

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

linking the model-based transformations with respective in-out resources in the

megamodel.

6. The method of claim 1, wherein constructing the megamodel further comprises:
registering with an initial megamodel the resources discovered in a workspace for the
network services; and
incrementing the initial megamodel by further registering the process model and the

model-based transformations of the process model.

7. The method of claim 1, wherein the coordinated sequences of the model-based

transformations are coordinated through forks and joins.

8. The method of claim 1, wherein each resource in the megamodel is provided with

traceability attributes.

9. The method of claim 1, wherein the traceability attributes include one or more of: a

history that traces past events of the resource, a timestamp and an origin.

10. The method of claim 1, wherein the model-based transformations include models and

executable programs.

11. A network node comprising:
processing circuitry; and
memory to store instructions executable by the processing circuitry to automate design
and management of network services,
the network node operative to:
obtain a process model which models activities and ordering among actions in a

process for the network services, wherein each activity includes a set of actions and each action

is associated with a model-based transformation which transforms one or more input models into

one or more output models;

28

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

construct a megamodel which incorporates the process model and describes relations
among resources to be used by model-based transformations of the process model, wherein the
resources include models and meta-models;

generate, based on the megamodel, a transformation chain containing coordinated
sequences of the model-based transformations; and

enact the transformation chain to thereby enact the process model for the network

services.

12. The network node of claim 11, wherein the network node when enacting the
transformation chain is further operative to:

invoke one or more language handlers to execute the transformation chain.

13. The network node of claim 12, wherein the one or more language handlers include

pluggable handlers for model transformation languages and other executable code.

14. The network node of claim 11, wherein the network node when constructing the
megamodel is further operative to:

build a weaving model which maps every element in the process model to a
corresponding resource in the megamodel; and

incorporate the weaving model into the megamodel.

15. The method of claim 1, wherein the network node when constructing the megamodel is
further operative to:

incorporate the model-based transformations into the megamodel;

link the model-based transformations with one or more language handlers in the
megamodel; and

link the model-based transformations with respective in-out resources in the megamodel.

16. The network node of claim 11, wherein the network node when constructing the

megamodel is further operative to:

29

10

15

20

25

30

WO 2019/043622 PCT/IB2018/056641

register with an initial megamodel the resources discovered in a workspace for the
network services; and
increment the initial megamodel by further registering the process model and the model-

based transformations of the process model.

17. The network node of claim 11, wherein the coordinated sequences of the model-based

transformations are coordinated through forks and joins.

18. The network node of claim 11, wherein each resource in the megamodel is provided with

traceability attributes.

19. The network node of claim 11, wherein the traceability attributes include one or more of:

a history that traces past events of the resource, a timestamp and an origin.

20. The network node of claim 11, wherein the model-based transformations include models

and executable programs.

21. A network node operative to automate design and management of network services,
comprising:

an input module operative to obtain a process model which models activities and ordering
among actions in a process for the network services, wherein each activity includes a set of
actions and each action is associated with a model-based transformation which transforms one or
more input models into one or more output models;

a megamodel construction module operative to construct a megamodel which
incorporates the process model and describes relations among resources to be used by model-
based transformations of the process model, wherein the resources include models and meta-
models;

a transformation chain generation module operative to generate, based on the
megamodel, a transformation chain containing coordinated sequences of the model-based

transformations; and

30

WO 2019/043622 PCT/IB2018/056641

an enactment module operative to enact the transformation chain to thereby enact the

process model for the network services.

31

PCT/IB2018/056641

WO 2019/043622

1/19

Eral it
suipnpuL)
S{apoy

ot

\

ey’
LIOIFBLUIO) STBT |

(1oBU3} MIN03XY]

(Anpayag
!@ﬂuwtﬂ w
HIBL)

HOHBHIIOISURT §

wds

1'O1d

0t J
wey’
GO BUIIOSURT |,

MBI

4

[epounITBay

{111

[ppowedaig |
TORIISHOD)

PO
882004

¢
i

($2{1OL]
/BPpow-vion
‘sppop)

SRINOSIY

WO 2019/043622 PCT/IB2018/056641
2/19

200

g R
§ t prsssssssssaaiassssssasan,
]

s

NTRE

o Sciondt
N3

v aves TR

'

: Sy L

% SRR Y I

.............. « R

b
;

H SRRSRNNRA
{ 3
i R
> H

asssrip s,

§
o3
3

~
Tavasoavenssvas s

~a R
SN

s g

5 3
TaaananaasaseyEaasa e el
by

WO 2019/043622 PCT/IB2018/056641
3/19

g

FI1G. 3

%% protiieingtenge

10..1]} weave
B WeavingModel I. IQ Processidodsl l
) 4

¥
& =
% fres
o)
e AT A AERRREEeRS 9 T
= RS
3o 3
S N
N iy
0 3
\ i g &
ey - e
RN 3 Q\\\\\\\\\\\\\\
2 g
3
o
PNy £
: .
N

1R 8=
o3
R
3 o o WX
8 E; R ~
S 8 8 18 X
t}g :ﬁ A N S
o R] :
=3 8 8
w2 B g eg“‘j . ¥
‘§ ‘s’.‘; S 3 ss‘ EQ\ AN
gig% 3 & = =
S e § a3 "]
RiNE « RiE -
Dias P FI8 § 'g,
Figy 3 3 S & <
N IED i RN § 3
k ::3 § N % & -\ ,g\\% Qg"""""""""" k »f‘}m
MWMIGN R 3 ® X o
Tle e iR ITniE 5 &
¥F¥ie iWig g
] IS i BN
S3is 3 N
%;:“&'R §\§ § 3 &} A

3 ¥ b
2 S §
S &
X

#
Gttt sty ot

7,
44
o I
s 3
L Trarvibormetioniniut

=
@ o
ol JoX ‘% -
Pl oo S
iy Ty e
8 mals 1R € F 8
. WY o1 E X e %
8 x B %
¥ e T I8 W
oy o3) N .
D R
R $ S

LS

PCT/IB2018/056641

»

4/19

JH0 R vouIos je asde o
[N =

o=
Ni=
UoKosIQ =

duiisaiu] Wy euoeuRssaonil Hbei es

WO 2019/043622

dweisow]
m {]
}InSaYuojeuLojSueL | B | | PRIBA0OSIO B |
* {)
oA B, umowun e | PapIAOIdIeSN B
_ubigs
Vv Ol

PCT/IB2018/056641

am?..gv TR R mvervmrer
T T ka0

Ysuoneindion] o

L4

ol | (R B e
ool
N = Ui ojesp =
1T« SRR BpLIE =
fusa: smmpl =

.

5/19

WO 2019/043622

s, TOAOPLEL 6]
%@M_é s N ot el H.. ST oppungiey
M oAy Oyt |
PgE - Eoiieey | | FPOWINAE | | FOONEl m_mww@_& ol | - mmwa&owamh I oS TR
|
so] NS
EATERE NN TR I
o] b= uesngg. S50 i)
| comosay: ooz Spasnusep s " - .
| g . .t anosa ey =
o]y M0 By 1= el g,,._ R =
| e L e m_ et |
| ERge B
e G00SEY: (UBsog JSKIL
gy ‘Ol et ‘TeqeIoN ynads ‘Buigg sweuel @

iepojyeBaly |

PCT/IB2018/056641

6/19

K |

\§§§§§§§§

F3
7
7
/

il LT
§ﬁ
%
g w
o
Ry 4 ! ¥
g § syl 2 TP P
A e e e K 4
g e e S o AT “n, v
Z o A s, o
i
R s

,

s, a

5, g

% \
g A AT

E ?. Z
e . $§%
v y
2 * %
e E&\.\ e %,
2 s, it %,

e

e
Z

%,

Al

o

R
M

iy ff

. “, A
A ay, LI
ety

APEOIIC ﬁ
"

\\\ , f A,
8 2 ",

%,
P 3
(-4 :

iy, \\.\

Ceiprrr st

s 7

4 ¢ . 2w
”.:\Qxwi§¥f$$$§§§
o i s kR e

%
%
A

Vi A S AR R P L B 2 e

WO 2019/043622

PCT/IB2018/056641

WO 2019/043622

7/19

YOI e
AR @

OB,

sy Ll

RN

buteu iy

ONPIIG SR 2

i AR
sig it 3
POORERH . PRSI
B RIS

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ K

Sudtemaporsin &

ko 2

9Ol

ppowelan L8

z
z
z
z
z
z
z
z
z
z
z
1

Z

§§ 2 v B
B ahoueisy

Buddepnbn

WO 2019/043622 PCT/IB2018/056641
8/19

sousiget {10 &

Naaaaae {3_

Y25
7
,
; 7

#
7
o

¥

o
3.
%

. L
sing b
£
3
Wk gpe

8 i
DR

2 3 NN,
3 ~ E

3 ERN
CERRRRS >
w0

e
Z

Es.
7

%
5

%
w4
%

£ 3 = %‘:}C

need SR

R K o A
Bavavivivivv g p 3 : \ S
X 3 3 3 3

ANw N -
RS
4%

: S Y
N 3 s .

¥ : &
LR
SRR AR NN

&8 : gy

anaaas

AERERE e

e

R

&

SN

3 N
Nassassasasisnasaans? oy

X 3%

St RN

I
B ‘\§

FI1G. 7

i

54034
S

A o)

£
(223

“.
%

PRI

R

Do N

O e

PCT/IB2018/056641

WO 2019/043622

9/19

018 wasAsgng 1Bpeo’ 8 'OIA
mmuw.zw%mm | 08 washsgng)
| 1BPBOTIAD — , a3 [uonejsuell
Iojejsuel] e
JOPROTILY sx i
- 118 i
12peCTING | — I ,
| Miw sufiug Buipeon BIPUBHTLY
1 .3
{/ L¥8 A
18peCT9I003 | 2uibuz voneisuel | w h 068 Wwashsang
" P S , usuoeuy
P m N * pue Bunpseyog
1810A00SI G }fw« YL TN r—
> 108 , U EDOINSS
. A sLiBu3 A1oA00SIG L0g JByoune JORBUZPPONSSEN0Id
| A
irerasicRoRds oM : :
079 weshsgng uonessday (£ memgmﬁ A
L suifiuzg oAeoA epowebon m
\ s ;
ocg waishsqng ||
Wswebeuep (i WeyD
; LG8 10j0eUg :
jopousebopy m
008 N 2407 JUBLOBYY
fr \ ,...r ;\ fwa&pae»a.r»e;»ee»ee»eepaerb\:basbe\»eepa\:_

PCT/IB2018/056641
900

10/19

P
£

s
eeere,

7
7
;

7
e %,

ZURINARVRVIVEUIR VIV VIV PRI

%,
Veapoosereqerrgrcrsiris?
Y 7

g
N

H
2
3
5
2
4
%
z
4
7
2
4
4
%
4

3

WO 2019/043622

FiG. 11

RS

>

Action 1
Action 2

PCT/IB2018/056641

WO 2019/043622

11/19

SREARA ABAIOYUBIN A

01 "Ol1d

T mImEg e e e

HofjeuLIOsUR)

.-

WIS

£

® AN BTN SEARE LS

SR E) 55

0004 \\

W MM MO AN VA WY AR W MY W MY AR M AN WA M AN W AN WA W AR R

Rnnayumpg

18140Id

WO 2019/043622 PCT/IB2018/056641

12/19
NS Design
Process Model
/ 1200
NSRey
RequirementNSReq Create Solution M
reate Solutian Map
j. S

Nf:()ntﬂ

Omtodogy: | ;_)
NFOniology : Map Ontology

'}, oM

gt o
'0
YnfCatalogue 1
Cataloy: :

YrfCataiog {TrTTTTTTTTTTT 4 S
o “A] Select VNF and Generale FG | gy
Pilacc 4. ... e ee———— {

u.--~

*
*
¥
¥
L
#
¥
+
*
E
»
L]
*
1
X
=
L
¥
+
L
¥
¥
>
*
¥
L2
*
*
¥
3 L4
*
¥
L
+
L
¥
*
#
¥
L
+
*
ks
.
#
Ed
»
L]
L)
¥
L
+
¥
L
Ll
*
¥
L
+
*
¥
L)

l
3 ")
ProfocalStack : ; !
¢ ProfocolSiack Vo
) ¥ N
D ¢
*
Il ¥ . F
t P, NN | ~ 2 :
L ¥
L] 3 X)
I *-{. :
%
P 3] Creste NSD :
& R H
' Yot
¥
T
: ProfocoiStack NsD
¥ ¥
H # ?
: P L LT L A L »]
A]
¥ [i ;] §
&]
: [
* “‘-n‘c-“u-ﬁf‘&n‘.a“-no"
t r
M HETE
¢ LR
: Avh
[1
L
]
L]
¥
¥
it
t
5
&
L]

- O e A

......... - _;N.S@.f Update Orsology NewOnlolagy:
(S SO .1 .. 1., NFOntology
SN NFQntology
L whaen -i
L i iy NSDeseriptor:
NED NSD

FI1G. 12

WO 2019/043622 PCT/IB2018/056641
13/19

/ 1300

NSReqiSM

FIG. 13

PCT/IB2018/056641

WO 2019/043622

14/19

P1O1d4

o

PR

e o L, e T
e ey A

-

.,

5a0IN0SEYAREYOBAA

Bojegeoup

OJURINIIBHYONEA

YIRIGIO00I0)

-]

ABojoRIO 4N

o0%) \\

.

e 0701 $8011058Y ubise SN

PCT/IB2018/056641

WO 2019/043622

15/19

S1°O1A

i

spop Buneass

SN

FOULDA |
Tk
#

3

£

4 T
z % K
IR0 2ilsdatifn, S,
T, T ey, “ % : i,
NEGL Y, g, i, n,
24 Pt ey
ey, s, A
ot g o i
\\\\\\Q\\xwv\\\

P A
P
Py

Wd

\ .
% %z
%

R
<

>
RS
-
»
+
N
e

ERECN

NN

v % ks

~{rGi (2G] saunosay Nd

0054

WO 2019/043622 PCT/IB2018/056641
16/19

. R - -
§ Mewa Mewe Meaw Megewedst Manu Blaew > FIG, ‘(} A

RN

F1G. 16B FI1G. 16C

N Magemoded

§ Heme:

FIG. 16D

et 3

Register

Wegamuset i
Disgoverars § 3 S

FIG. 16K

Y
2
2

o8 i

Dorigueatinn

§ el W

{ Process model i

FIG. 16F

PRI

| Trssslatens g

WO 2019/043622 PCT/IB2018/056641
17/19

FHIG

Create a process mode! which models activities and ordering
among actions in a process for the network services, wherein
each activity includes a set of actions and each action s
associated with a model-based transformation which transforms
one or more inpat models into one or more output models
1710

Y

Construct a megamodel which incorporates the process model
and describes relations among resources to be used by model-
based transformations of the process model, wherein the
resovrces include models and meta-models
1730

'

Generate, based on the megamodel, a transformation chain
confaining coordinated sequences of the model-based
transformations

1738

Y

Enact the transformation chain to thereby enact the process
madel for the network services
740

FI1G. 17

WO 2019/043622 PCT/IB2018/056641
18/19

PROCESSING
CIRCUITRY
1802

MEMORY
1304

INTERFACE
CIRCUITRY 1806

l FIG. 18

. v _— MEGAMODEL
INPUT MODULE CONSTRUCTION

— MODULE 1920

TRANSFORMATION CHAIN ENACTMENT MODULE
SENERATION MODULE 1940 1950

1800

PCT/IB2018/056641

WO 2019/043622

19/19

|
__ WIRISAS JUBUNT .
_ TEH

o ——

DT oupasies

HBIAGARE] “ -

i

- |

3l v e e

il]

g3t Ereste _

SRty AKGISURIL G0N TO607

i ERsALG DR0Y

b 240E

k4

Ay 1-0a0e

Axpvions Bsestiy DoOT

FesteRtiid

YERE T UGIETHETLIA 1507

A GYOE m PN OPOE

foe coieie wwnie oo

Vs, i, iy

[

4 JNLAA
\ wmiendiiy

“an

B FEHBALY DIRIT .m

I DN 0402 §

naaiit

:ﬁm Ainaapd 10807 m

r§§§§§§u§

P T
_ m Anwvnas Buissennig oune

| m =
e e o e o e o
et |
3R UOTIRZHENIRA G
g oy o o g
WA B b e ovor |
_iiumiiuﬁéién
dedy _ gy
RS uw GRa u GEOT |
b Lr B L

67 "DOld

——— o~ — ——— — — e o N~ o o
o
o3
e
e
ks
v
Rl
Y
&
-~
1 b
&
4 W
R T R W O WO RN R R R i e et et e e e ek

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2018/056641

A. CLASSIFICATION OF SUBJECT MATTER
I

NV. GO6F9/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X SADAF MUSTAFIZ ET AL: "A network service 1-21
design and deployment process for NFV
systems",
2016 TEEE 15TH INTERNATIONAL SYMPOSIUM ON
NETWORK COMPUTING AND APPLICATIONS (NCA),
1 October 2016 (2016-10-01), pages
131-139, XP055534256,
DOI: 10.1109/NCA.2016.7778607
ISBN: 978-1-5090-3216-7
abstract
page 131, right-hand column, paragraph 1
page 133, left-hand column, paragraph
Section B - page 138, right-hand column,
paragraph VI. Related Work
A US 2017/185383 Al (SARKAR JAIDEEP [US] ET 1-21
AL) 29 June 2017 (2017-06-29)
the whole document
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

17 December 2018

Date of mailing of the international search report

02/01/2019

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Beltran-Escavy, José

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2018/056641

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2017/141944 A1 (LEE SEUNG-IK [KR] ET
AL) 18 May 2017 (2017-05-18)

the whole document

WO 2015/173706 Al (ERICSSON TELEFON AB L M
[SE]; JAHANBANIFAR AZADEH [CA]; TOEROE
MARIA [) 19 November 2015 (2015-11-19)

the whole document

US 20057198244 Al (EILAM TAMAR [US] ET AL)
8 September 2005 (2005-09-08)

the whole document

WO 01/18641 Al (FASTFORWARD NETWORKS INC
[US]) 15 March 2001 (2001-03-15)

the whole document

MECHTRI MAROUEN ET AL: "NFV Orchestration
Framework Addressing SFC Challenges",

IEEE COMMUNICATIONS MAGAZINE,

vol. 55, no. 6, 30 June 2017 (2017-06-30),
pages 16-23, XP011652238,

ISSN: 0163-6804, DOI:
10.1109/MCOM.2017.1601055

[retrieved on 2017-06-09]

the whole document

DEVLIC ALISA ET AL: "NESMO: Network
slicing management and orchestration
framework",

2017 TEEE INTERNATIONAL CONFERENCE ON
COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS),
IEEE,

21 May 2017 (2017-05-21), pages 1202-1208,
XP033111657,

DOI: 10.1109/ICCW.2017.7962822

[retrieved on 2017-06-29]

the whole document

LOPES M ET AL: "Improving network
services resilience through automatic
service node configuration generation",
2012 TEEE NETWORK OPERATIONS AND
MANAGEMENT SYMPOSIUM (NOMS 2012) : MAUI,
HAWAII, USA, 16 - 20 APRIL 2012, IEEE,
PISCATAWAY, NJ,

16 April 2012 (2012-04-16), pages 919-925,
XP032448761,

DOI: 10.1109/NOMS.2012.6212009

ISBN: 978-1-4673-0267-8

the whole document

1-21

1-21

1-21

1-21

1-21

1-21

1-21

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2018/056641

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A Th Reiter ET AL: "Model Integration
Through Mega Operations",

Workshop on Model-driven Web Engineering,
1 January 2005 (2005-01-01), XP55204986,
Retrieved from the Internet:
URL:http://www.lcc.uma.es/ av/mdwe2005/cam
era-ready/3-MDWE2005 MegaOperations_Camera
Ready.pdf

[retrieved on 2015-07-28]

the whole document

1-21

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/1B2018/056641
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2017185383 Al 29-06-2017 CN 108431765 A 21-08-2018
EP 3398062 Al 07-11-2018
US 2017185383 Al 29-06-2017
US 2018275968 Al 27-09-2018
WO 2017116876 Al 06-07-2017
US 2017141944 Al 18-05-2017 KR 20170056350 A 23-05-2017
US 2017141944 Al 18-05-2017
WO 2015173706 Al 19-11-2015 NONE
US 2005198244 Al 08-09-2005 NONE
WO 0118641 Al 15-03-2001 AU 771353 B2 18-03-2004
EP 1242870 Al 25-09-2002
JP 3807981 B2 09-08-2006
JP 2003508996 A 04-03-2003
US 6415323 B1 02-07-2002
US 2003105865 Al 05-06-2003
WO 0118641 Al 15-03-2001

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - wo-search-report
	Page 53 - wo-search-report
	Page 54 - wo-search-report
	Page 55 - wo-search-report

