发明名称
基于粘弹介质模型的极浅层吸收补偿方法

摘要
一种基于粘弹介质模型的极浅层频率补偿方法，其方案是对微测井资料利用相邻两炮直达波频率之比计算极浅层的品质因子ϕ（简称为频谱比法），利用相邻两炮直达波初至时间之差计算纵波速度V_S通过极浅层ϕ和V_S的关系分析，拟合出ϕ和V_S的经验公式，并对反射地震记录的折射波初至时间进行层析反演，得到极浅层的速度模型，结合微测井资料分析得到的极浅层ϕ和V_S的关系公式，进一步得到极浅层ϕ值模型。最后在极浅层符合Kjartansson粘弹介质模型这一条件下，利用相移加插值等算法通过波场延拓将地震波表接收的叠后或叠前地震记录延拓到高速层顶，以补偿极浅层对地震波能量的吸收。优点是反演的极浅层ϕ值准确可靠，补偿算法稳定高效。
1. 基于弹射介质模型的极浅层吸收补偿方法，其特征在于包括：
 1）对微测井数据进行分析，利用直达波初至时间与激发深度计算微测井处极浅层低速带速度结构；
 2）利用频谱比法获取单点极浅层低速带 Q 值，即对微测井相邻两炮的接收记录截断直达波，通过对两者直达波频谱的差进行拟合得到两个炮点之间地层的 Q 值，将所有炮点逐个计算即可得到该点极浅层低速带 Q 值；
 3）拟合由微测井计算的极浅层低速带速度 v 和 Q 值，得到 Q 与速度 v 的关系公式；
 4）拾取反射地震数据上的直达波初至时间，并利用微测井进行约束层析反演，得到极浅层低速带速度模型；
 5）将步骤 3 中的 Q 与速度 v 的关系公式应用到步骤 4 中的极浅层低速带速度模型，得到全区极浅层低速带 Q 体模型；
 6）利用粘弹波动方程数值解法，对叠前数据通过粘弹波动方程延拓将地表接收的地震记录延拓到高速层顶，实现叠前极浅层低速带吸收补偿；
 7）绘制出补偿后的地震剖面，进行频谱分析。

2. 根据权利要求 1 所述的基于粘弹介质模型的极浅层吸收补偿方法，其特征在于：重复步骤 6 和步骤 7，修改参数达到满意的效果。

3. 根据权利要求 2 所述的基于粘弹介质模型的极浅层吸收补偿方法，其特征在于：将叠前处理的地震数据进行粘弹波动方程延拓，实现叠后极浅层低速带吸收补偿。

4. 根据权利要求 1-3 任一所述的基于粘弹介质模型的极浅层吸收补偿方法，其特征在于：所述步骤 2 中对直达波信号的截断点选在第二周期的波谷处，即 1.25 个周期，而不是波谷前的零线处，同时采用流动窗长法，保证各个信号的截断形式一致，以避免波谱畸变和保证稳定 Q 估计；之后计算截取的两个直达波对数谱的差，并确定拟合区间进行直线拟合，计算出 Q 值。

5. 根据权利要求 1-3 任一所述的基于粘弹介质模型的极浅层吸收补偿方法，其特征在于：所述步骤 3 中 Q 和 v 的拟合采用的是多项式拟合。

6. 根据权利要求 1-3 任一所述的基于粘弹介质模型的极浅层吸收补偿方法，其特征在于：所述步骤 4 中层析反演采用的是微测井资料约束的层析反演。

7. 根据权利要求 1-3 所述的基于粘弹介质模型的极浅层吸收补偿方法，其特征在于所述步骤 6 中的粘弹波动方程数值解法包括：裂步傅里叶法、裂步傅里叶加插值法、相移法、相移加插值法，傅里叶有限差分法。

8. 根据权利要求 1-3 任一所述的基于粘弹介质模型的极浅层吸收补偿方法，其特征在于：所述步骤 6 中的延拓算法的实现是基于 MPI 消息传递机制、同构机模式的并行算法。
基于粘弹介质模型的极浅层吸收补偿方法

【0001】方法领域
【0002】本发明涉及地震资料处理方法领域，特别是涉及到一种基于粘弹介质模型的极浅层吸收补偿方法。

背景技术
【0003】现有的地震资料处理方法中对地震波进行吸收能量补偿主要应用反 Q 滤波、反 Q 滤波。反 Q 滤波目前的手段和精度仍然存在一定的局限性。首先要求地层精确的 Q 值，这一点是难以做到的；其次，反 Q 滤波所补偿的高频成份信噪比可能降低，因而只能做部分补偿；另外，由于缺少地层对地震波的吸收机制的研究，反 Q 滤波的数学方法不够严密。近年来，研究人员利用 VSP 资料得到井附近比较准确的地层 Q 值，通过反 Q 滤波使地震资料的分辨率得到提高，取得令人鼓舞的成果，使人们看到了地震资料频率和振幅补偿的重要性，但是这种方法有两方面的不足：其一是，只能对井附近的地震资料有效，其应用范围有限；其二是，由于极浅层低频带结构疏松，具有低极的 Q 值，因此在地震波传播的过程中，低频带对地震波能量的吸收占整个吸收的主要部分，而反 Q 滤波无法针对低频带地层的吸收进行补偿。
【0004】针对极浅层低频带的吸收问题，我们对极浅层低频带的吸收机制进行了深入研究，确定了低频带的介质类型，利用微测井资料反演低频带的 Q 值，根据 Q 与 ν 相对稳定的统计关系，结合成熟的低频带速度反演方法，求取了较为准确的低频带 Q 值分布，创新性地提出了利用粘弹波动方程波场延拓实现极浅层吸收衰减补偿的方法，经过理论模型的验证和实际资料的应用，均取得了理想的效果和效率。这种新的极浅层吸收补偿方法是提高地震资料分辨率的有效手段，将成为处理极浅层低频带对地震资料影响的新方向。

发明内容
【0005】本发明的目的是提供一种有效的补偿被极浅层吸收的特别是高频成分的地震波能量，同时拓宽地震资料有效频带，提高地震资料分辨率的基于粘弹介质模型的极浅层吸收补偿方法。
【0006】本发明可通过如下方法来实现：
【0007】1）对微测井数据进行分析，利用直达波初至时间与激发深度计算微测井处极浅层低频带速度结构；
【0008】2）利用频谱法获取单点极浅层低频带 Q 值，即对微测井相隔两炮的接收记录截断直达波，通过对两者直达波频谱的差进行拟合得到两炮点之间地层的 Q 值，将所有炮点逐个计算即可得到该点极浅层低频带 Q 值；
【0009】3）拟合由微测井计算的极浅层低频带速度 ν 和 Q 值，得到 Q 与速度 ν 的关系公式，该公式具体形式与所应用的地区有关；
【0010】4）拾取反射地震数据上的直达波初至时间，并利用微测井进行约束层析反演，得
到极浅层低降速带速度模型；
[0011] 5) 将步骤 3 中的 Q 与速度 v 的关系公式应用到步骤 4 中的极浅层低降速带速度模型，得到全区极浅层低降速带 Q 体模型；
[0012] 6) 利用粘弹波动方程数值解法，对叠前数据通过粘弹波动方程延拓将地表接收的地震记录延拓到高程层顶，实现叠前极浅层低降速带吸收补偿；
[0013] 7) 采用通常的方法绘制出补偿后的地震剖面，进行频谱分析。
[0014] 上述方案进一步包括：
[0015] 8) 重复步骤 6 和步骤 7，修改参数达到满意的效果；
[0016] 9) 可视需要，再对经叠后处理的地震数据进行粘弹波动方程延拓，实现叠后极浅层低降速带吸收补偿。
[0017] 本发明还通过以下技术手段实现：
[0018] 所述步骤 2) 中频谱比法的具体流程为：对直达波信号的截断点选在第二周期的波谷处，即 1.25 个周期，而不是波谷前的零线处，同时采用流动窗长法，保证各个信号的截断方式一致，以避免波谱畸变。保证稳定 Q 估算，之后计算截取的两个直达波的对数谱的差，确定拟合区间进行线性拟合，计算出 Q 值。这里用到的拟合公式为
\[
\ln \frac{S_1(f)}{S_2(f)} = C + \frac{\pi f_{df}}{Q}, \quad \text{其中 } S_1(f), S_2(f) \text{ 分别为 } M_1, M_2 \text{ 的频谱 } , C \text{ 为一常数 } , f \text{ 为频率 } ,
\]
\[
\Delta t = t_2 - t_1.
\]
[0019] 所述步骤 3 中 Q 和 v 的拟合采用的是多项式拟合，得出的 Q 值与速度 v 的关系公式。
[0020] 所述步骤 4 中微测井资料约束层析反演方法主要是以基于微测井数据建立的低降速带速度模型作为约束条件，与旅行时残差一起构成目标函数，通过求解朗格朗日约束的目标函数最小二乘解。
[0021] 所述步骤 6 中的粘弹波动方程数值解法有以下几种：裂步傅里叶法、裂步傅里叶加插值法、相移法、相移加插值法、傅里叶有限差分法等，可以根据实际需要进行选择。
[0022] 所述步骤 6 中的粘弹波动方程延拓算法的实现是基于 MPI 消息传递机制，同构机模式的并行算法。
[0023] 本发明中的粘弹性波动方程极浅层低降速带吸收补偿方法与常规的 F 周波相比，建立的极浅层低降速带 Q 模型更加精确可靠，所采用的补偿方法对极浅层低降速带更有针对性，且给出了新的补偿算子稳定性条件，对补偿过程中出现的不稳定性给予了很好的解决，同时程序实现中应用了并行化思想，提高了计算效率，具有很强的实用性，所得到的地震剖面有频带明显拓宽，分辨率明显得到提高。

附图说明
[0024] 图 1 为实际微测井资料中截取的相邻两炮的直达波波形；
[0025] 图 2 为图 1 两道数据的直达波频谱之差的对数；
[0026] 图 3 为对图 1 所示数据在选择的拟合区间内进行多项式拟合的结果；
[0027] 图 4 为某一口微测井极浅层低降速带 Q 值与 v 的拟合结果；
[0028] 图 5 为微测井约束层析反演的低降速带速度模型；
具体实施方式
[0033] 本发明总体技术方案是：
[0034] 1) 对微测并数据进行分析，利用直达波初至时间与激发深度计算微测井处极浅层低降速带速度结构；
[0035] 2) 利用频谱比法获取单点极浅层低速带 Q 值，即对微测井相邻两炮的接收记录高波段的直达波，通过对两者直达波频谱的差进行主拟合得到两个炮点之间地层的 Q 值，将所有炮点逐个计算即可得到该点极浅层低速带 Q 值；
[0036] 3) 主拟合结果测井计算的极浅层低速带速度与 Q 值，得到 Q 与速度 v 的关系公式，该公式具体形式与所应用的地区有关；
[0037] 4) 抓取反射地震数据上的直达波初至时间，并利用微测井进行约束层析反演，得到极浅层低速带速度模型；
[0038] 5) 将步骤 3 中的 Q 与速度 v 的关系公式应用到步骤 4 中的极浅层低速带速度模型，得到全区极浅层低速带 Q 值模型；
[0039] 6) 利用波阻抗波动方程数值解法，对叠前数据通过粘弹波动方程延拓将地表接收的地震记录延伸到高速层顶，实现叠前极浅层低速带吸收补偿；
[0040] 7) 采用通常的方法绘制出补偿后的地震剖面，进行频谱分析；
[0041] 8) 重复步骤 6 和步骤 7，修改参数达到满意的效果；
[0042] 9) 可视需要，对经叠后处理的地震数据进行粘弹波动方程延拓，实现叠后极浅层低速带速度模型；
[0043] 下面通过典型实施例，并结合附图 1-9，作具体说明如下。
[0044] (1) 采用通常的手段野外勘探采集微测井数据和地震数据，利用微测井记录中相邻两个炮点的直达波初至时间之差和激发深度之差，根据 v=h/t (v；两个炮点之间的速度；h；两个炮点之间的激发深度之差；t：两个炮点的直达波初至时间之差) 得到极浅层低速带的速度。
[0045] (2) 对相邻两炮的直达波波形进行直达波截取，截断点选在第二周期的波谷处，即 1.25 个周期，而不是波谷前的零线处，由此得到相邻两炮的直达波（图 1）。计算两个直达波的振幅谱的对数之差。最后对图 2 中的振幅谱的对数之差进行线性拟合，可以确定两个炮点之间地层的 Q 值为 60.8901 (图 3)。将该井所有炮点逐个计算就可以得到单点极浅层低速带 Q 值。
[0046] (3) 对每口微测井反演的 v 与 Q 值进行多项式拟合，得出某一口井的分析结果(图 4)，根据分析结果确定出该并 Q 值 v 的关系公式为 Q = 0.00004v² + 0.1097v + 21.598。
[0047] (4) 抓取反射地震资料中的直达波初至时间，将微测井资料解释的极浅层低速带速度结构作为约束条件，进行约束层析反演，得到整个区的极浅层低速带速度模型(图 5)。
（5）根据之前得到的Q-v关系模拟公式和极浅层低降速带速度模型，可以得到全身的极浅层低降速带Q体模型（图6）。

之前的一切工作都可以看作是为实施补偿的所做的准备。

（6）将根据已建立的工区极浅层低降速带速度模型和Q体模型实施极浅层低降速带吸收补偿。补偿的过程是基于粘弹性波动方程的波场延拓，根据需要可以对算法进行选择，已经实现的算法包括移相、相移加插值、裂步傅里叶、傅里叶有限差分等，具体选择时应该综合考虑实际的降速带情况和计算效率。

最后采用通常的方法绘制出补偿后的地震剖面，进行频谱分析。

图7为未补偿前的叠加剖面，图8为补偿后的叠加剖面，图9为补偿前和补偿后的振幅谱。可以发现，叠加剖面的分辨率明显提高，特别是复波被分开，弱相位得以加强，有效频带明显拓宽。

在上述实施例的基础上，重复步骤6和步骤7，修改参数，达到满意的效果。

此外，可视需要，再对经叠后处理的地震数据进行粘弹性波动方程延拓，实现叠后极浅层低降速带吸收补偿。
图 3

$\text{f}=9-60\text{kHz}$
$\text{Q}=60.8901$
$\text{R*E}=0.991456$
$\text{dt}=0.007\text{s}$

图 4

$Q=0.00004v^2 + 0.1097v + 21.598$
图8
图 9