WO 2006/118767 A2 || 00000 0 000 IO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

// S
0 00000000 O A

(10) International Publication Number

WO 2006/118767 A2

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 November 2006 (09.11.2006)

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GOGF 17/00 (2006.01) kind of national protection available): AE, AG, AL, AM,
. L. AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(21) International Application Number: CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
PCT/US2006/013803 GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(22) International Filing Date: 12 April 2006 (12.04.2006) KG, KM, KN, KF, KR, KZ, LG, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
L. . SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,

(26) Publication Language: English UZ, VC, VN, YU, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (unless otherwise indicated, for every
11/120,275 2 May 2005 (02.05.2005) US kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: FARADAY, Peter; One Microsoft Way, Red- RO, SE, SI, SK, TR), OAPI (BE, BJ, CF, CG, CI, CM, GA,
mond, Washington 98052-6399 (US). STONER, Charles GN, GQ, GW, ML, MR, NE, SN, TD, TG).
Robert; One Microsoft Way, Redmond, WA 98052-6399 Declarations under Rule 4.17:
(US). MOTTER, DoRon; One Microsoft Way, Redmond, —  as to applicant’s entitlement to apply for and be granted a
WA 98052-6399 (US). patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: IN SITU USER INTERFACE TEMPLATE EDITING

(57) Abstract: Methods, systems and computer

@ products are provided for partitioning software
application components into separate domains

called concurrency domains. Computationally
expensive, slow or long-running methods may
RETRIEVE USER SELECTION OF /—210 be deployed int'o sgch domains, thu§ keeping the
TEMPLATE INSTANCE(S) associated application more responsive to the end

user. According to one aspect of the invention,
a given concurrency domain is a partition of

A runtime objects for providing synchronization
DETERMINE WHETHER TEMPLATE 290 and thread isolation within the partition and for
EDITING OR PROPERTY EDITING = providing concurrency with other such partitions

INDICATED

in a data-driven dynamically composed and
reconfigured application.

TEMPLATE EDITING?

230
PROVIDE TEMPLATE EDITING <

235
PROPERTY EDITING?

PROVIDE PROPERTY EDITING




WO 2006/118767 A2 I} NDVOH0 AT A0 000000 AR

— as 1o the applicant’s entitlement to claim the priority of the ~ For two-letter codes and other abbreviations, refer to the "Guid-
earlier application (Rule 4.17(iii)) ance Notes on Codes and Abbreviations" appearing at the begin-
Published: ning of each regular issue of the PCT Gazette.

—  without international search report and to be republished
upon receipt of that report



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

35

IN SITU USER INTERFACE TEMPLATE EDITING

FIELD OF THE INVENTION
[0001] The present invention relates generally to the field of software, and more
particularly, to the creation, editing and use of user interface specifications including

templates.

BACKGROUND OF THE INVENTION

[0002] Complex graphical user interfaces are used by applications and other
software programs in order to facilitate user interaction. In order to be useful, such user
interfaces are generally complex and include a variety of features and behaviors.

[0003] When such a complex user interface is created, the user interface (UD is
generally created by combining a number of user interface elements. These user interface
elements may include elements which display information to a user (e.g. labels, status
bars). User interface elements may also include elements which allow the user to control
aspects of the UT (e.g. sliders, scrollbars). Some user interface elements may be hybrid
elements, combining both display and control functionality (e.g. pulldown menus).

[0004] The creation of UI elements is time-intensive. A common and time-tested
mechanism for enabling reuse of elements in graphical applications is the specification
and use of templates. Those templates can be specified declaratively such as with a
markup language. A template is a reusable specification that corresponds to a user
interface element and describes, in general, the appearance and functionality of the user
interface elements. (Microsoft Corporation’s PowerPoint application calls such templates

“masters”; Microsoft Corporation’s Visio uses the term “stencil.”)

-1-



10

15

20

25

30

35

WO 2006/118767 PCT/US2006/013803

[0005] In order to allow customization of a template, the template may be
parameterized. The parameters (or “property values”) of a parameterized template can be
set independently on each element to which the template is applied in order to customize
the element. In this way, flexibility of a ré-usable element is enabled through a highly-
parameterized template, and the appearance of the template in any particular instance is
dictated to some degree by the particular properties set on that instance. For example,
where a button template defines the appearance of a button control, the button template
may include a property value which can be set to a text string. The property value allows
the designer to specify text to display on the button. As a further example, a status bar
template may be customized via properties on the template to display certain data to the
user (and to include specific font, font color, font size, background color, etc.).

[0006] Thus, UI templates can be used to describe the appearance of user
interface elements in a reusable and customizable manner and enable a clean separation
between the appearance of a Ul element and its behavior. As noted above, the appearance
of a particular element is typically specified in markup language through one or more
sharable templates and through some number of property values specific to that instance.

[0007] Templates may be used more than once within a given design. Each use
of a template within a design is known as an instance of the template. The user experience
when editing a template is a key factor in making effective use of templates. In many
applications, any change to a template is automatically reflected in each instance of the
template.

[0008] In the prior art, in building or editing a UI document within existing UI
design tools, a designer can create and edit a packaged piece of artwork called a symbol.
A symbol can be reused and each instance of a symbol can be edited. However, symbols
are less rich and flexible than control templates as described above. Specifically, symbols
do not provide a mechanism for declarative parameterization. While, as mentioned, in
existing graphics tools, the user has the ability to edit symbols, differentiating instances
requires editing each instance separately, and severing the link to the shared template.
This may be sufficient to edit even a complex graphic, however, the limitations on
symbols present problems for a UI designer. Because any differentiated instances are no
longer related to the original template, subsequent changes to the template will need to be
applied separately to each instance, and therefore a UI designer will waste time and effort
in attempting to create the UI design they require.

[0009] Also, existing tools only allow the designer to edit within the context of a
single symbol. Having the ability to edit only one symbol at a time fundamentally prevents

editing operations that might span multiple symbols. Thus, for example, when designing
-2



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

35

the template for a scrollbar, it is often desirable that different arrow indicators are aligned
with each other. If each arrow indicator is part of a separate button symbol, then they
must be edited separately. There is no way to select the arrow indicators within both
symbol instances and perform an alignment. The designer has to manually specify the
properties for each element, and ensure that they are the same. Thus no operation which
would be useful to apply to sets of arbitrary elements in the UI, within multiple symbols,
can be performed. Alignment/positioning, editing of properties, and copying an element’s
appearance via an eyedropper tool are all simple examples of operations a designer could
find useful in creating a control template or symbol. Because multiple symbols can not be
edited simultaneously, these types of operations are more difficult.

[0010] Ul elements are often placed within layout containers. A layout container
is a certain type of Ul element which specifies how its children should be arranged and
sized. Constraints such as minimum and maximum size, space between elements, and how
to position additional elements which are generated dynamically are all taken into account
at runtime by a layout algorithm which calculates the locations and sizes of all elements in
a page or application. As such, a design for a control template containing layout
containers may have a different appearance when subjected to different sets of layout
constraints. Since the template may be used for a container control, such as a menu or list,
the appearance may vary when subjected to different content. The final goal for such a
template is often to have a consistent appearance when subjected to a variety of content
and constraints. Existing tools, as in the prior art, do not support symbols with content.
Editing a template or symbol without instance specific content, as in the prior art, hampers
the workflow by removing the direct feedback of seeing the effect of content on changes
to the template.

[0011] In modern user interface systems, it is possible for a portion of a display
page or underlying application to provide values for properties which override the
defaults. For example on many web pages, similar regions may have a slightly varying
appearance. In the design of such a feature, it is not necessary to provide a different
template or symbol for these slight variations in appearance. Properties, such as
background color, can be set or overridden for that portion of the document. A properly
designed control template will be able to consume these locally set properties or resources.
In the design of such a control template, the ability to see the impact of a variety of sets of
locally set properties would be useful.

[0012] Thus, for the above reasons, among others, there is a need for an
improved way to create, edit, and use UI elements which are rich and flexible, while

allowing for increased flexibility in editing.
-3-



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

SUMMARY OF THE INVENTION

[0013] In order to provide improved user interface creation and editing,
according to some embodiments of the invention an improved workflow for editing
templates within the context of one or more actual instances of the template is enabled.
Template instance property values and content may be edited, or templates themselves
may be edited. A template may be created from scratch within an instance of the template,
and multiple distinct templates may be edited simultaneously. Editing operations can be
done to sets of elements spanning multiple template instances. Selective locking of
templates can limit the context of the selection.

[0014] According to some embodiments of the invention, views of a user
interface document are presented for a user. A tree view shows instances, properties, and
templates interleaved in a single view for ease of understanding. An artboard view shows
a preview of the user interface described by the document.

[0015] Other features and advantages of the invention may become apparent

from the following detailed description of the invention and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The foregoing summary, as well as the following detailed description of
preferred embodiments, is better understood when read in conjunction with the appended
drawings. For the purpose of illustrating the invention, there is shown in the drawings
exemplary constructions of the invention; however, the invention is not limited to the
specific methods and instrumentalities disclosed. In the drawings:

[0017] Figure 1 is a block diagram of an exemplary computing environment in
which aspects of the invention may be implemented,;

[0018] Figure 2 is a flow diagram of a method for editing a user interface
according to an embodiment of the invention;

[0019] Figure 3 is a flow diagram of a method for editing templated properties of
elements in a user interface according to an embodiment of the invention; and

[0020] Figure 4 is a block diagram showing a model and a tree view and their

relationship according to one embodiment of the invention.



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

35

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Exemplary Computing Environment

[0021] Figure 1 shows an exemplary computing environment in which aspects of
the invention may be implemented. The computing system environment 100 is only one
example of a suitable computing environment and is not intended to suggest any limitation
as to the scope of use or functionality of the invention. Neither should the computing
environment 100 be interpreted as having any dependency or requirement relating to any
one or combination of components illustrated in the exemplary computing environment
100.

[0022] The invention is operational with numerous other general purpose or
special purpose computing system environments or configurations. Examples of well
known computing systems, environments, and/or configurations that may be suitable for
use with the invention include, but are not limited to, personal computers, server
computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based
systems, set top boxes, programmable consumer electronics, network PCs, minicomputers,
mainframe computers, embedded systems, distributed computing environments that
include any of the above systems or devices, and the like.

[0023] The invention may be described in the general context of computer-
executable instructions, such as program modules, being executed by a computer.
Generally, program modules include routines, programs, objects, components, data
structures, etc. that perform particular tasks or implement particular abstract data types.
The invention may also be practiced in distributed computing environments where tasks
are performed by remote processing devices that are linked through a communications
network or other data transmission medium. In a distributed computing environment,
program modules and other data may be located in both local and remote computer storage
media including memory storage devices.

[0024] With reference to Figure 1, an exemplary system for implementing the
invention includes a general purpose computing device in the form of a computer 110.
Components of computer 110 may include, but are not limited to, a processing unit 120, a
system memory 130, and a system bus 121 that couples various system components
including the system memory to the processing unit 120. The processing unit 120 may
represent multiple logical processing units such as those supported on a multi-threaded
processor. The system bus 121 may be any of several types of bus structures including a

memory bus or memory controller, a peripheral bus, and a local bus using any of a variety

-5-



10

15

20

25

30

35

WO 2006/118767 PCT/US2006/013803

of bus architectures. By way of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus,
and Peripheral Component Interconnect (PCI) bus (also known as Mezzanine bus). The
system bus 121 may also be implemented as a point-to-point connection, switching fabric,
or the like, among the communicating devices.

[0025] Computer 110 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer
110 and includes both volatile and nonvolatile media, removable and non-removable
media. By way of example, and not limitation, computer readable media may comprise
computer storage media and communication media. Computer storage media includes both
volatile and nonvolatile, removable and non-removable media implemented in any method
or technology for storage of information such as computer readable instructions, data
structures, program modules or other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CDROM,
digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium which
can be used to store the desired information and which can accessed by computer 110.
Communication media typically embodies computer readable instructions, data structures,
program modules or other data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery media. The term “modulated
data signal” means a signal that has one or more of its characteristics set or changed in
such a manner as to encode information in the signal. By way of example, and not
limitation, communication media includes wired media such as a wired network or direct-
wired connection, and wireless media such as acoustic, RF, infrared and other wireless
media. Combinations of any of the above should also be included within the scope of
computer readable media.

[0026] The system memory 130 includes computer storage media in the form of
volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random
access memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic
routines that help to transfer information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or
program modules that are immediately accessible to and/or presently being operated on by
processing unit 120. By way of example, and not limitation, Figure 1 illustrates operating

system 134, application programs 135, other program modules 136, and program data 137.

-6-



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

35

[0027] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, Figure 1 illustrates
a hard disk drive 140 that reads from or writes to non-removable, nonvolatile magnetic
media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile
magnetic disk 152, and an optical disk drive 155 that reads from or writes to a removable,
nonvolatile optical disk 156, such as a CD ROM or other optical media. Other
removable/non-removable, volatile/nonvolatile computer storage media that can be used in
the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 is typically connected to the system
bus 121 through a non-removable memory interface such as interface 140, and magnetic
disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by
a removable memory interface, such as interface 150.

[0028] The drives and their associated computer storage media discussed above
and illustrated in Figure 1, provide storage of computer readable instructions, data
structures, program modules and other data for the computer 110. In Figure 1, for
example, hard disk drive 141 is illustrated as storing operating system 144, application
programs 145, other program modules 146, and program data 147. Note that these
components can either be the same as or different from operating system 134, application
programs 135, other program modules 136, and program data 137. Operating system 144,
application programs 145, other program modules 146, and program data 147 are given
different numbers here to illustrate that, at a minimum, they are different copies. A user
may enter commands and information into the computer 20 through input devices such as
a keyboard 162 and pointing device 161, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a microphone, joystick, game
pad, satellite dish, scanner, or the like. These and other input devices are often connected
to the processing unit 120 through a user input interface 160 that is coupled to the system
bus, but may be connected by other interface and bus structures, such as a parallel port,
game port or a universal serial bus (USB). A monitor 191 or other type of display device is
also connected to the system bus 121 via an interface, such as a video interface 190. In
addition to the monitor, computers may also include other peripheral output devices such
as speakers 197 and printer 196, which may be connected through an output peripheral
interface 195.

[0029] The computer 110 may operate in a networked environment using logical
connections to one or more remote computets, such as a remote computer 180. The remote

computer 180 may be a personal computer, a server, a router, a network PC, a peer device
-7 -



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

35

40

45

or other common network node, and typically includes many or all of the elements
described above relative to the computer 110, although only a memory storage device 181
has been illustrated in Figure 1. The logical connections depicted in Figure 1 include a
local area network (LAN) 171 and a wide area network (WAN) 173, but may also include
other networks. Such networking environments are commonplace in offices, enterprise-
wide computer networks, intranets and the Internet.

[0030] When used in a LAN networking environment, the computer 110 is
connected to the LAN 171 through a network interface or adapter 170. When used in a
WAN networking environment, the computer 110 typically includes a modem 172 or other
means for establishing communications over the WAN 173, such as the Internet. The
modem 172, which may be internal or external, may be connected to the system bus 121
via the user input interface 160, or other appropriate mechanism. In a networked
environment, program modules depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way of example, and not
limitation, Figure 1 illustrates remote application programs 185 as residing on memory
device 181. It will be appreciated that the network connections shown are exemplary and

other means of establishing a communications link between the computers may be used.

Using Templates for UI Elements

[0031] As described above, templates can be used to allow the designer of a Ul
to include UI elements without needing to recreate them for each instance. Generally, a
template defines the appearance of an element. This may be done by means of a markup
language. As an example, a slider control “HorizontalColorSlider” may have the

following template definition, defined in eXtensible Markup Language (XML):

<Template x:Name="HorizontalColorSlider">
<Slider SliderOrientation="Horizontal"
Minimum="0.0"
Maximum="1.0"/>
<Template.VisualTree>
<Border Width="100%" Height="100%"
Background="*Alias (Target=Background)"
BorderBrush="*Alias (Target=BorderBrush)"
BorderThickness="*Alias (Target=BorderThickness)">
<Canvas Width="100%" Height="100%">
<Path ID="thumb"
Fill="White" Stroke="Black"
Canvas.Left="*Alias (Target=vValue)"
Canvas.Top="50%"
Data="M -5 5.5 L. 0 0 L 5 5.5
L57.5L -57.52a"/>
</Canvas>
</Border>
</Template.VisualTree>
</Template>



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

35

[0032] This template definition defines a horizontal slider control with a color
gradient. As seen in the second through fourth lines above, the template may be
associated with a particular control type, where the control is responsible for behavior. In
this case the behavior is defined by the “Slider” control class. In lines five through
nineteen above, the template refers to Template. VisualTree which specifies the visual
appearance of the control. Certain properties of the associated Slider control are bound to
properties on elements within the HorizontalColorSilder template visual tree (by
specifying the property value of the visual tree element as an “*Alias()” of one of the
control properties rather than an explicit value). Those properties are then parameters of
the template. The values of those parameters are specific to each instance of the Slider to
which this template is applied, and the values affect the appearance of each instance. For
example, Background and BorderBrush are colors which are set for each instance of the
Slider, and therefore the template. BorderThickness and Value are other examples of
Slider properties that are bound to properties of visual elements within the template in this
example.

[0033] Most UI controls are tied to some application state — either business
objects or business logic — with the appearance of the control reflecting that state. In the
case of a Slider, the control typically represents a single scalar value. The properties
exposed by a control are typically either properties representing appearance such as
Background and BorderThickness, or properties exposing the underlying business object
such as Value. The template may be bound to both types of properties. Those properties
for appearance are typically controlled by the designer and represent the parameters of the
template. As part of the appearance, the control template may include a set of visual states
and animations which might be associated with particular values of properties on the
control, such as Button.IsPressed==true or Slider.IsMouseOver==true. The control logic
may set certain properties based on events received through the UL Some may be
appearance properties, such as setting IsMouseOver when the cursor enters or leaves the
control; other properties may be tied to control logic. For example, the Slider control sets
its Value property as the user clicks and drags within the Slider region. In the
HorizontalColorSlider template, the Slider Value property is bound to the “Canvas.Left”
property on one of its internal elements (a Path element which represents the slider
indicator). The Canvas layout container parent of the Path uses this property to position its
child element to reflect the relative value of the Slider Value property. Since the Slider is
responsible for setting the Value property in response to mouse drags within the control,

and the slider indicator is bound to that value, the slider indicator element tracks the

-9.



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

35

mouse movement and presents the illusion of a direct interaction between the indicator and
the mouse.

[0034] The bound properties in the HorizontalColorSlider template were all
bound to properties on the associated Slider instance. In addition to being bound to
properties on the associated control though, properties on elements in a template’s visual
tree may also be bound to properties exposed on other UI elements or to properties on
other application business objects available to the UL

[0035] An instance of the HorizontalColorSlider template may be created using
the following example XML code:

<Slider Template="{HorizontalColorSlider}" Width="200px" Height="20px"
Background="{MyGradient}" Value="*Bind(Path=Red)"/>

[0036] In this example, the instance has explicit instance specific values for the
Width, Height and Background properties. The Value property for this instance is bound
to the Red property on a business object defined in the Slider’s context. If this Slider is
used within a larger Color Dialog for instance, there may be a single Color business object
tied to the entire Dialog instance, with this Slider tied to the Red component of that Color.
Since the Slider is bound to some property on a business object, that property will be

updated automatically when the Slider’s value changes, and vice versa.

In Situ Template Editing

[0037] As described above, a user interface is created via a user interface
“document” which is a representation of a tree of elements, as further described below.
No specific format, type or language is specifically necessary for this document. In the
tree of elements, some of the elements are primitives, which are simply responsible for
rendering. Others are layout elements, which are responsible for sizing and arranging their
immediate children. The majority of elements, in some cases, are higher-level behavioral
elements called controls, responsible for responding to user events. When templates are
reused, they may be used for multiple elements in the tree.

[0038] If multiple instances of a template exist, according to some embodiments
of the invention, a user interface designer can decide which instances of a template should
be edited, and then edit those instances (and no other instances of that template) in one
action. As described below, either the template or properties may be edited for selected
instances. ~Additionally, where properties are being edited, a user interface designer can
decide whether the designer desires editing of the locally set properties of the template or

editing of the locally set properties on the selected instance(s). In addition, a designer can

-10 -



10

15

20

25

30

35

WO 2006/118767 PCT/US2006/013803

view a combined view of the element tree, interleaving instance and template elements. In
the following sections, we describe various embodiments of the invention, including those
dealing with workflow for editing and the operations supported, and views presented, as

well as describing the underlying architecture which supports these operations.

User Experience

[0039] A user interface document, according to one embodiment of the present
mvention, consists of elements in a hierarchy, with some elements being instances of a
template. Since a template consists of elements which in turn may be instances of other
templates, the system supports editing arbitrarily deep nesting of templates. An element,
thus, may be created through the application of several different templates. The context of
an element in the hierarchy may affect the element through layout behavior, inherited
property values, property values bound from the containing template instance, and
instance-specific content. A single template may be instantiated multiple times, but
because of the context of each instance, may appear somewhat or significantly different in
each instance.

[0040] In some embodiments of the invention, the user is presented with a view
of the hierarchy, and allowed to select elements or templates for editing. A user may edit
one or more template instances or a template itself.

[0041] When a user edits a template, the user selects a template instance in the
view or otherwise indicates a template selection. If template editing is desired, any edits
the user applies to an individual template instance are automatically reflected in other
instances of that template. In embodiments where a view of the document is presented to
the user, visual cues can be used to indicate the association between separate instances of a
single template. For example, selecting one instance of a template in one embodiment
causes other instances of that template to be highlighted in a distinct color.

[0042] When editing a template, according to some embodiments of the
invention, the user has several alternatives: the user can change the template reference to
point to another existing template; the user can create a new template from scratch; or the
user can edit the existing template.

[0043] In order to change the template reference, according to one embodiment,
the user is provided with a list of available templates for that element type. Templates can
be defined by the system locally at the instance to which it is applied or at any ancestor
“scope” of that instance in the document, and the system exposes the set of all templates of

the appropriate type defined at any containing scope.

-11 -



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

35

[0044] To create a new template for the element, several changes to the
underlying document are necessary. A new template is created and attached at an ancestor
element; the template reference on the element is changed to refer to the newly created
template; and the new, empty template is “unlocked”. This occurs for each element which
uses the newly created template. In one embodiment of the invention, these steps are
combined into a single user operation.

[0045] According to one embodiment of the invention, to edit the existing
template, the user can either edit the original (potentially shared) template or clone the
template before editing. In the latter case, the system again combines several steps —
copying a template, changing the template reference on the element(s), and unlocking the
copy — into a single user operation.

[0046] In one embodiment, when an element is added to the document, by
default the user is editing the properties of that element, not of any associated template. In
one embodiment, multiple templates can be edited at once (concurrently) by selecting
instances of those templates and requesting template edit. The edit then performed by the
user through each editing instruction will be performed on all templates indicated by the

template instance selection.

Locking
[0047] In some embodiments of the invention, templates can be locked with

respect to editing, in order to provide security against accidental changes which might
occur if a user intending to edit an instance is permitted to edit the underlying template
instead. This locking serves to limit the context of a selection since the selection operation
may be implemented to select within the deepest parts of the tree that are unlocked. If a
template is locked and the selection operation is performed by clicking on the desired
element, then clicking on an instance of the template will select the instance. If instead the
template is unlocked, clicking on an instance of the template might select the deepest part
of the template visual tree that the cursor is over.

[0048] Locking also provides for an improved user experience by preventing a
certain change to the document (the editing of a template) when intuitively a user might
expect that user actions would result in a different change (the editing of one or more
selected instance(s)).

[0049] In one embodiment, existing templates are locked by default. Locking an
element (or template) prevents selecting and editing the element (or template) or any of its
descendents. Locking simplifies the user experience by limiting the scope of the user’s

operations. Where a tree view of the document is presented to the user, since locking an
-12-



10

15

20

25

30

WO 2006/118767 PCT/US2006/013803

element or template implicitly locks all descendents, the user can prevent selection for
editing within a certain subtree of the tree using a single lock.

[0050] As indicated above, locked state is inherited. An element is only editable
if the element and all of its ancestors within the same template are unlocked and the
template itself is unlocked. In this implementation, template lock state is associated with
the template definition, not the template reference. This means that if a template is locked
in one instance, it is locked in all instances. Since a template is defined in one location in
the tree but potentially referenced elsewhere, the template definition would be unlocked if
all the ancestors of the template definition are unlocked, but an instance of the template
might only be unlocked if both the definition and the instance where the template is

reference are unlocked.

In-Situ User Editing

[0051] Figure 2 is a flow diagram of a method for editing a user interface made
up of at least one user interface element which is specified by a template instance
according to an embodiment of the invention. As shown in Figure 2, step 210, a user
selection of one or more template instances is received. The user selection may be done,
for example, by clicking (or other user input means) on areas on a graphical view of the
hierarchy. The user selection may also be done in other ways. For example, the view may
be a list of template instances, a list of user interface elements, or any other presentation of
some or all of the information about the items making up the user interface. In some
embodiments, a user selection is implicit via a default specific to the implementation of
the user interface editor. For example, in one embodiment a default selection of all
template instances in a user interface occurs when the user interface document is opened
for editing. In such a case, when the user requests editing before making any explicit
selection of template instances to edit, the selection of all template instances is made,
based on the default. In other cases, other defaults may apply to create a selection of
template instances.

[0052] Instep 220, it is determined whether template editing relating to the
selected template instances is desired, or whether property editing related to those
instances is desired. As discussed above, in some embodiments of the invention, in the
absence of a positive (explicit) specification by the user that template editing is desired, an
implicit determination that property editing of the template instances selected will be

assumed.

-13 -



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

35

[0053] If template editing is desired, decision box 225, then template editing
functionality will be provided to the user, step 230. If property editing is desired, step
235, then property editing functionality will be provided to the user, step 240.

[0054] Where template editing is provided, if all template instances correspond
to a single template, according to some embodiments, that template is edited. In one such
embodiment, the edited template is saved as a new template and applied to the selected
template instances. Otherwise, in some embodiments, the template itself can be edited,
and the change in the template will be applied to any other template instances.

[0055] As discussed above, in some embodiments, locking is provided for
templates. If the template is locked, then no changes can be made to that template.

[0056] Insome embodiments, template editing is accomplished by selecting an
existing template, and applying that template to all the selected template instances.

[0057] Property editing functionality, in some embodiments, allows the user to
specify a new value for a property on the template instances. The property may not be
valid in each selected template instance, but it is set to the new value for any template
instances in which it is valid. More than one property may be given new values in this
way.

[0058] Figure 3 is a flow diagram of a method for editing templated properties of
elements in a user interface according to an embodiment of the invention. Steps above
step 350 in Figure 3 show how an element may be created and associated with a template.
Steps 350, 360, 370, 380, and decision box 375 show how properties of elements
associated with a template can be edited.

[0059] As shown in figure 3, the element is created in step 300. To apply a
template instance to the element created, first, it must be determined whether a new
template is to be applied, decision box 315. It is common for UI elements to include a
default template. If a new template is to be applied, an empty template is created, step
320. The template is then stored in step 330. In some embodiments of the invention, a
scope for the new template is defined in order to allow sharing. In one embodiment the
scope is the outermost (“page”) scope. The template reference in the element is then
changed to reflect the stored template, step 340.

[0060] If the template to be applied is not new, decision box 315, then either the
template is to be directly edited or a copy of the template is to be edited. If a copy is to be
edited (decision box 385) the template is cloned at step 390, and the template is stored,
step 330, and the process continues from there. If the template to be applied is not new
and the template itself and not a copy is to be edited, then there is no need to create an

empty template (at step 320) as would be the case for a new template, or to create a clone
-14 -



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

35

(at step 390) and store the template. This option is only available to the user if the
template is not a default template.

[0061] Elements which are associated with templates can be edited as shown
starting from step 350 of Figure 3. The template is unlocked, step 350. Then the
properties of an element within the template can be edited. An element within the
unlocked template is selected, step 360, and a property on this element is set to a new
value, step 370. These steps of selecting and editing properties for elements occur until all
editing is complete, as indicated by decision box 375. After editing, the template can be
locked 380.

UI Document Representations
[0062] In order to support the operations outlined above, the implementation

maintains multiple representations of the UI document. A primary representation or
“document model” serves as the authority on the state of the UI document. In one
embodiment, from this primary representation one or more “views” of the document can
be derived for a user. These views are responsible for presenting the document state to the
user in a meaningful way.

[0063] The primary representation (the “model”) is a collection of independent
templates. (The top level element tree in the document can be considered a template for
which there is a single instance in the editor.) Templates may be named, and elements
within each template may refer to one or more of the templates by name. (For hierarchical
user interface elements, it is valid to have circular template references where elements
within a template refer directly or indirectly to the containing template.)

[0064] In some secondary representations of the document (“views” on to the
model), the template trees of the model are expanded and inserted at the point where they
are referenced. The view trees are used for editing, but are not necessarily persisted. Each
node in the view tree maintains a link back to the corresponding node within the
appropriate template. The view node also contains the unique “path” to that particular
instantiation from the document root.

[0065] To illustrate this, consider a document which presents the user interface
of a dialog box containing a combobox and “OK” and “Cancel” buttons, where custom
templates exist for each of the combobox and button, and where the combobox includes an
open/close button using the same template as the “OK” and “Cancel” buttons.

[0066] For such an example, one possible model and one possible tree view
representation are shown in Figure 4. Figure 4 shows a model 400 and a tree view 450,

and the connection between them. In the model 400, there are three distinct trees. One
-15 -



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

35

has the root node Window 410, one has the root node Template 420 and one has the root
note Template 430. Template 420 is the template for a combobox. Template 430 is the
template for a button. The three distinct trees in model 400 are linked by template
references. These referential relationships between template instance and template, in tree
view 400, are shown as dashed-line arrows. The two buttons included in Button 424,
Button 435 and Button 437 each reference the button Template 430. Button 435 includes
property 443 which provides a label for one button, and Button 437 includes property 445
which provides a label for the other button. The button Template 430 includes a Border
434 for the button and a content presenter 436 which provides a display mechanism for
any instance specific content such as a button label. The ComboBox 433 is an element
which references combobox Template 420. That includes a Grid 422, which may include
other children, but which does include a Button 424. Button 424 also references Button
template 430. Button 424 includes a different label 426. Thus button Template 430 is
referenced in three places, including within the combobox template. Button 435, Button
437, Button 424 and ComboBox 433 are all instances of their respective templates.

[0067] In the tree view 450 corresponding to model 400, there is a single tree.
Each Button instance in the tree view 450 contains a separate expansion of the Button
template tree. Thus Window 460, Grid 470, ComboBox element 471, Buttons 473 and
475, properties 477 and 479 appear similar to the corresponding parts of the model 400.
However, combobox template 480 is shown as a direct descendant of ComboBox element
471. The button Template 430 is shown three times, as Template 490a, 490b, and 490c,
corresponding to the three references to it in model 400. These three instances are direct
descendants of the button elements 473, 475 and 484 which are instances of the button
Template 430. Each referential relationship between a button element and a template
element is shown as an arrow. Border 494a, 494b, and 494¢ and Content Presenter 496a,
496b, and 496¢ are similarly repeated in the tree view 450. Thus, paths within the model
may not have a one-to-one mapping with paths in the tree view.

[0068] Shared templates are defined outside of any particular instance — either at
an ancestor common to all instances or in an external document. The system merges the
trees defined in different scopes and potentially different files, and provides a single
editing experience. The system handles pushing the changes to the appropriate scopes
and/or files.

[0069] Another tree view may be provided by means of a list. For example, the

model presented in Figure 4 may be presented in a list view as shown in Table 1:

-16 -



WO 2006/118767 PCT/US2006/013803

10

15

20

Window
Grid
ComboBox
ComboBox Template
Grid

Button
“Arrow”
Button Template
Border
Content Presenter
Button
¢¢0K’9
Button Template
Border
Content Presenter
Button :
“Cancel”
Button Template
Border
Content Presenter

Table 1: List View

[0070] The list view may be used along with a tree view or instead of one. Ina
list view, each item in the model is displayed, and indentation is used in order to show the
hierarchy. In some embodiments, a list view may provide a user with the ability to show
or hide descendents below a specific item. This expansion of the tree view or list view can
be limited by the user. In embodiments in which locking is provided, until the user
explicitly expands or unlocks an element or template, it cannot be edited, and thus it is not
necessary to build out the corresponding part of the view. This is known as lazy expansion
of templates, where the sub tree representing the template is not added to the template
instance in the view tree until the template at that instance is visible in the view. (In the
example depicted in Figure 4, the sub trees corresponding to the button template 430
beneath button instances 473, 475 and 484 would not need to be constructed and attached
in a tree or list view until the corresponding button instances in the view are expanded.)
Lazy expansion is necessary to support editing cyclical template references, and also
provides a potential performance improvement.

[0071] In one embodiment an artboard view is presented the user. The artboard
view displays the UI described by the document as it will appear in its current form. Items
in the artboard view may be selected for editing as well. Where a tree view is also being
displayed for a user, in one embodiment the selection is shown on the tree view. The
selection may be shown in the tree view or artboard view, e.g., by color, indicators (such
as arrows), or by any other graphical indication. The artboard allows the user to view

results of actions performed on the model.
-17 -




10

15

20

25

30

WO 2006/118767 PCT/US2006/013803

[0072] In one embodiment, the artboard view provides the user with the ability to
perform editing functions. For example, an artboard view may provide editing tools which
can be used in conjunction with the selection of items on the artboard view. Where, for
example, several elements are selected on the artboard view, a paintbrush tool is provided
for the user. When the user selects the paintbrush tool, all elements on the artboard view
are edited to conform to a specific coloring scheme. This may be performed by editing a
template or editing properties on the selected elements. Defaults as described above may
control whether a template or properties on the elements are edited; in one embodiment
the artboard allows the user to make a selection of whether template editing or property
editing is desired. Other editing tools such as (without limitation) resizing, moving,
synchronizing location, synchronizing animations, etc., are also contemplated.

[0073] In one embodiment, the artboard view uses a template instantiation
mechanism for display. The associated tree view is used as an internal data structure to
represent the expanded tree the user sees and to maintain an association between the actual
display elements and the underlying model which serves as their specification. The
template instantiation handles property value resolution when there is overlap between
instance specific values, inherited values and template specific values. The system
described here is responsible for supporting edits of the property values at the appropriate
part of the tree.

Conclusion

[0074] It is noted that the foregoing examples have been provided merely for the
purpose of explanation and are in no way to be construed as limiting of the present
invention. While the invention has been described with reference to various embodiments,
it is understood that the words which have been used herein are words of description and
illustration, rather than words of limitations. Further, although the invention has been
described herein with reference to particular means, materials and embodiments, the
invention is not intended to be limited to the particulars disclosed herein; rather, the
invention extends to all functionally equivalent structures, methods and uses, such as are
within the scope of the appended claims. Those skilled in the art, having the benefit of the
teachings of this specification, may effect numerous modifications thereto and changes

may be made without departing from the scope and spirit of the invention in its aspects.

-18 -



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

What is Claimed:

1. A method for editing a user interface comprising at least one user interface
element specified at least in part by a template instance, each of said template instances
specified at least in part by at least one template, said method comprising;

receiving a user selection of one or more selected template instances from among
said template instances;

determining whether template editing relating to said user selection is desired or
whether property editing related to said user selection is desired;

if template editing relating to said user selection is desired, providing functionality
for user editing of a template corresponding to said selected instances; and

if property editing related to said user selection is desired, providing functionality

for user editing of at least one property of said selected instances.

2. The method of claim 1, where said step of determining whether template
editing relating to said user selection is desired or whether property editing related to said
user selection is desired comprises:

determining whether an indication has been made that template editing is desired,;

and

if no such indication has been made, determining that property editing related to

said user selection is desired.

3. The method of claim 1, where said step of providing functionality for user
editing of a template corresponding to said selected instances comprises:

determining whether said selected template instances correspond to a single
specific template; and

if so, editing said single specific template.

4. The method of claim 3, where said step of providing functionality for user
editing of a template corresponding to said selected instances further comprises:

saving said edited single specific template as a new template.

5. The method of claim 3, where said step of providing functionality for user
editing of a template corresponding to said selected instances further comprises:
determining if said template corresponding to said selected instances is indicated to
be locked; and
-19-



10

15

20

25

30

WO 2006/118767 PCT/US2006/013803

allowing changes to said template only if said template is not indicated to be
locked.

6. The method of claim 5, where said template is part of a hierarchy of
templates, and where said step of allowing changes to said template only if said template
is not indicated to be locked comprises:

allowing changes to said template only if said template and any template which

said template descends from in said hierarchy are not indicated to be locked.

7. The method of claim 1, where said step of providing functionality for user
editing of a template corresponding to said selected instances comprises:

determining two or more target templates corresponding to said selected instances;
and

providing functionality for performing an edit to said target templates, said

functionality allowing a user to edit all of said target templates concurrently.

8. The method of claim 1, where said step of providing functionality for user
editing of a template corresponding to said selected instances comprises:
selecting an existing template; and

using said existing template to specify, at least in part, said selected instances.

9. The method of claim 1, where said step of providing functionality for user
editing of at least one property of said selected instances comprises:

receiving a new value for said at least one property;

setting a value for said at least one property to said new value in each of said

selected instances in which said property is valid.

10.  The method of claim 1, further comprising:
providing functionality for accepting user indication that a template is indicated to

be locked; and

providing functionality for accepting user indication that a template is not indicated
to be locked.

11. A system for editing a user interface comprising at least one user interface
element specified at least in part by a template instance, each of said template instances

specified at least in part by at least one template, said system comprising:

-20 -



WO 2006/118767 PCT/US2006/013803

10

15

20

25

30

a user input for receiving a user selection of one or more selected template
instances from among said template instances;

an editing type determiner for determining whether template editing relating to said
user selection is desired or whether property editing related to said user selection is
desired;

a template editor for, if template editing relating to said user selection is desired,
providing functionality for user editing of a template corresponding to said selected
instances; and

a property editor for, if property editing related to said user selection is desired,

providing functionality for user editing of at least one property of said selected instances.

12.  The system of claim 11, where said editing type determiner comprises:

template editing indication determiner for determining whether an indication has
been made that template editing is desired; and

property editing determiner for, if no such indication has been made, determining

that property editing related to said user selection is desired.

13.  The system of claim 11, where said template editor comprises:

template determiner for determining whether said selected template instances
correspond to a single specific template; and

single template editor for, if said selected template instances correspond to a single

specific template, editing said single specific template.

14.  The system of claim 13, where said single template editor saves said edited

single specific template as a new template.

15.  The system of claim 13, where said single template editor:

determines if said template corresponding to said selected instances is indicated to
be locked; and

allowing changes to said template only if said template is not indicated to be
locked.

16.  The system of claim 15, where said template is part of a hierarchy of
templates, and where said single template editor allows changes to said template only if
said template and any template which said template descends from in said hierarchy are

not indicated to be locked.

-21-



WO 2006/118767 PCT/US2006/013803

17.  The system of claim 11, where template editor further:

determines two or more target templates corresponding to said selected instances;
and
provides functionality for performing an edit to said target templates, said functionality

5  allowing a user to edit all of said target templates concurrently.

18.  The system of claim 11, where said template editor further:
selects an existing template; and uses said existing template to specify, at least in

part, said selected instances.

19.  The system of claim 11, where said property editor further:
10 receives a new value for said at least one property;
sets a value for said at least one property to said new value in each of said selected

instances in which said property is valid.

20.  The system of claim 11, further comprising:
lock acceptor for accepting user indication that a template is indicated to be locked;
15 and
unlock acceptor for accepting user indication that a template is not indicated to be
locked.

-2 .



g8l SINVIO0Yd

PCT/US2006/013803

WO 2006/118767

1/4

[oo] [000000] _m <> NOLLVOITddY
= 7 3LOWIY Lol
08t 9dneq iZ3 ovl- 578 2
NELOAIOD Z91 pieoqhey Buguiod vIva | | SWvao0ud | WALSAS
S LONEY e WYHD0¥d | TyoiioC | NOLLYOIddY | ONILYY3dO
A A \rm n <L) rLrLM .......
HOMPN Beiv op L oPoN [ | 4 N el o T
| [oo] | oo0000] o "
“ 7T - __ [
bt ! ! o IET eeq i
1 — eibou
| |0ZF 091 05} aoepayu| 071 aoeua)u| - d I
syiomjonN | aoeLIR)U] aoeHa)U] Aows Aowapy Sl so “
> POl
By [BO07] | }IOMION nduj Jesn 9[lje|]OA-UON 9]1}e]OA-UON weibou _
d 13yjo _
| IlqeAowiay OJJEeAOWIDY-UON
1 \ A A A — "
“ Stl swesboug i
Lolsioyeads ] 4 } verend weisAs ! > uopeoyddy !
Y. N — I
“ N oo 8l aoepau o0zt $E1 wolsk |
_ ERIE ] aoeua)U| 9oeLIaU] el ISAS _
961 1ojunid < > jessyduod 09pIA soydein aun Buniesado _
_ indino A A Buissedoid zer (nvy) “
| A 4 A\ 4 l..“ ||||||||| |
161 J0)UOW _ 58t oT el solg IR
oLl 781 !
 — ! Kiowo <> —
= | W Ndo 4 ISP (wow) | |
< i _
_ |




WO 2006/118767 PCT/US2006/013803
2/4

RETRIEVE USER SELECTION OF 210
TEMPLATE INSTANCE(S)

l

DETERMINE WHETHER TEMPLATE 220
EDITING OR PROPERTY EDITING &
INDICATED

TEMPLATE EDITING?

230
PROVIDE TEMPLATE EDITING -

235
PROPERTY EDITING?

PROVIDE PROPERTY EDITING

FIG. 2



WO 2006/118767 PCT/US2006/013803
3/4

( Start )
A 4 300
Create /_

Element

390
s

h 4

2
Create Empty /— 320 Clone

Template Template

<
<«

\ 4

330
Store Template /_

At Page

y 340

Replace Template
Reference

)

-
\ 4

350
Unlock /—

Template

<

<
Y

360
Select
Eloment -

SelectElement |/~ 370
Within
Unlocked Template

375

Continue
Editing?

380
Lock /_

Template

End

FiG. 3



PCT/US2006/013803

WO 2006/118767

4/4

I9luesald

mwm.vl\

jusjuon \

ﬁ

v Old

0S¥

Cseprog |\
mvmvl\ % , N ./.
/| eredwsy . . Jnouy,
€06 - N /.. mN.vl\ 7'y
JIsjuesaid lojussald N\ Joussald <
~ jusuod | Jusuoy Camony, | /1 wieoep | - tomng
A 93 = 9er— — A -/
ommT\ ‘ o_mmT\ 1 diu / N , eww\ ./
hwEom - hmu‘_om.ﬂ xcot:mm v& “h)mmkomh /) vl\ Cpu
y'y Y Y S Y
over—" ayer—" s O ve
‘ ajg|dwe | opeidwiel Copue ojeidway - srejdwa]
B : Y - omvl\ 2 02— —=x
ocmvn\ Q_ST\ NmT\ ] CoN "
Jeouen, MO, “opeidway Jeouen, ! \ MO, aoualsey
6L % VA ' ep—" spejdwa ]
[ Jogr" w—" N/ "
uopng uoyng xogoquio) uonng uoyng xogoquion
A A
SL G.\ \AET\ L ert” N@\
PUD i »  pUD
A
o—" si—" 1
MOPUIAN - i o e e | mopuipp
0op—" o—"
— N

00v




	Abstract
	Bibliographic
	Description
	Claims
	Drawings

