03/029951 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

10 April 2003 (10.04.2003) PCT WO 03/029951 A2
(51) International Patent Classification’: GO6F 3/06 (74) Agents: BERESFORD, Keith, Denis, Lewis et al.; Beres-
ford & Co., 2-5 Warwick Court, High Holborn, London
(21) International Application Number: PCT/GB02/04393 WCIR 5DH (GB).

(22) International Filing Date:
27 September 2002 (27.09.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

0123416.0 28 September 2001 (28.09.2001) GB

(71) Applicant (for all designated States except US): LEXAR
MEDIA, INC. [US/US]; 47421 Bayside Parkway, Fre-
mont, CA 94538 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): GOROBETS, Sergey,
Anatolievich [GB/GB]; 1F1 16 East Mayfield, Edinburgh
EH9 1SE (GB).

81)

84

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: NON-VOLATILE MEMORY CONTROL

Host System

~12
10
\ Logical [_14
prTTTTTT Interface f=-===~=-"--"--~ -
i Control E
| ontroller |5 |
§ Physical | - i
| Interface 18 |
i Flosh M §
| ash Memory 0

Memory System

(57) Abstract: According to an embodiment of the present invention, there is provided a method and apparatus for use in a memory
system having a non-volatile memory and a controller for limiting the number of non-volatile memory arrays from a plurality of
available arrays accessed at one time, wherein the method comprises implementing a pipelining sequence for transferring data to and
from the non-volatile memory arrays and limiting the number of active arrays operating at one time, the arrangement being such that
the controller waits for the at least one of the arrays to complete before initiating the transfer to and from a further array.

w0 03/029951 A2 NN 00 0 0O O

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations"” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

WO 03/029951 PCT/GB02/04393
1

NON-VOLATILE MEMORY CONTROTL,

The present invention relates to a solid state
memory system.for data storage and retrieval, aﬁd to a
memory controller for controlling access to a non-
volatile memory of a solid state memory system. In
particular, the present invention relates to a method of
fast access of the data in the memory system with a
precise control of power consumption, and inclu&éng%he
control of flash memory accesses.

It is known to use solid state memory systems to try
to emulate magnetic disc storage deviées in computer
systems. It is an aim of the industry to try to increase
tﬁe speed of operation of solid state memory systems to
better émulate magnetic disc storage.

A typical mwmemory system comprises a non-volatile
(Flash) memory and a controller. The memory has
individually addressable sectors where a memory sector is
a group of flash memory locations which is allocated fgr
storage of one Logical Sector. A memory sector need not
be a physical partition within Flash memory, nor
contiguous Flash memory locations, so that the wmemory
sector address may be a virtual address conveniently used

by the qontroller. The controller writes data structures

to and reads data structures from the memory, and

WO 03/029951 ; PCT/GB02/04393
2

translates logical addresses received from the host to
physical (virtual) addresses of the memory sectors in the
memory.

An example of such a memory system is illustrated by
the Memory System of WO 00/%9488. In Figure 1 (prior art)
there is illustrated the timing of various operations
involved in a multiple sector write to interleaved flash
chips forming a flash array described for the memory
system of WO 00/49488. =

However in many systems, and in particular systems
such as portable computers, the maximum level of

electrical current is a very important parameter defining

the system design, efficiency and cost. For systems which

include memory storage devices the number of flash memory
chips active at the time is a major factor defining the
current level. It is therefore important to control the
maximum value of electrical current level to avoid high
peaks which can cause higher requirements to the host
system power supply. It is also importaﬁt to be able to
change the maximum current Ilevel and to compromise on
pérformance if reguired.
An object of the invention is to provide a method of -

controlling flash memory accesses in a memory system
configured to use concurrent operation in different flash

memory arrays, and allowing performance to be changed

WO 03/029951 PCT/GB02/04393

easily in systems supporting concurrent flash operations
in different Flash arrays.

According to the present invention there is provided
a method for use in a wemory system having a non—&olatile
memory and a controller for limiting the number of non-
volatile memory arrays from a plurality of available
arrays accessed at one time, wherein the method comprises
implementing a pipelining sequence for transferring data
to and from the non-volatile memory arrays and Eimiéing
the number of active arrays operating at one time, the
arrangement being .such that the controller waits for at
least one of the arrays to complete before initiating the
transfer to and from a further array.

The present invention also provides a memory system
having a non;volatile memory incorporating a plurality of
memory arrays and a controller which is arranéed to
implement the method of the immediately preceding
paragraph.

These and other aspects of the invention will becowme
apparent from the following description taken in
combination with the accompanying drawings in which:
Figure 1 shows a schematic representation of timing

operations of a prior art memory system;

WO 03/029951 PCT/GB02/04393
4

Figure 2 illustrates a memory system and associated host
system in which the present invention is
implemented;

Figure 3 shows a schematic representation " of the
hardware architecture of the controller of the
memory system of Figure 2;

Figure 4 shows a schematic representation of the
firmware executed in the microprocessor of the
controller of Figure 3;

Figure S5A shows a schematic representation of the data
Qrite operation used by the controller of
Figure 3;

Figure 5B illustrates read and write pointer operations;

Figure 6 is a schematic representation of the hierarchy
of mapping® structures . of the address
translation process used by the controller of
Figure 3;

Figure 7 1is a schematic representation of.za method of
scheduling the transfer of éector data

' according to a first embodiment of the present
invention;

Figure 8 is a schematic representation of a method of -
scheduling the transfer of sector data
according to second embodiment of the present

invention;

WO 03/029951 PCT/GB02/04393
5

Figure 9 1is a schematic representation of a method of
scheduling the transfer of sector data
according to third embodiment of the present
invention;

Figure 10 shows a schematic representation of a method of
scheduling the transfer of sector data
according to fourth embodiment of the present
invention;

Figure 11 is a schematic representation of a méthod of
schedﬁling the transfer of data whilst limiting
the number of active arrays according to the
present invention;

Figure 12 shows an alternative memory system arrangement
in which the present invéntion may be
implemented.

A Flash disk device, such as that shown iﬁ Figure 2,
is a memory system which presents the 1logical
characteristics of a disk storage device to a host gystem
12, and which uses Flash semiconductor memory 20 as its
physical data storage medium. A Flash disk memory system
10 requires a controller 12 to manage the physical
storage medium of the system 10 according to algorithms
which create the logical characteristics of a disk and,
in this case, it is the flash memory 20 and controller 16

which are connected by physical interface 16 which form

WO 03/029951 PCT/GB02/04393
6

the memory system 10. The controller 16 of the memory
system 10 connects the system 10 to the host 12 via
logical interface 14.

In this case the flash memory 20 comprises a
plurality of flash chips wh}ch are formed of a plurality
of flash blocks. The logical interface 14 to the memory
system 10 allows data to be written to and read from the
system 10 in fixed-size units called sectors, each
containing 512 bytes of data, which can be :}andﬁmly
accessed. Each sector is identified by a logical address
which in this case is a sequential Logical Block Address
(LBA) .

In the present arrangement data may be written to a

sector even 1f the sector already contains data. The
protocols at the logical interface 14 can, in this case,
support, read or wfite access to the system 10 in multi-
sector blocks of logically contiguous sector addresses,.
these protocols conform to industry standards such as
ATA, CompactFlash, or MultiMediaCard thus allowing the
memory system 10 to be interchangeable between different
host systems and not limited to use with host 12.

The physical interface 18 from controller 16 to

Flash Memory 20 allows data to be written to and read
from Flash memory 20 in fixed-size units which in this

case are called physical sectors and each of which can be

WO 03/029951 PCT/GB02/04393

accessed randomly with each typically having sufficient
capacity for 512 bytes of data from the host system plus
16 bytes of overhead data appended by the controller 16.
BEach physical sector is identified by a physicai sector
address, which normally hgs separate components which
respectively identify the Flash chip within the wmemory
subsystem, the Flash block within the Flash chip, and the
physical sector within the Flash block of the memory 20
to which the physical sector is written.

Within the system 10 shown, data may only be written
to a physical sector if the sector has previously been
erased. The Flash memory 20 is erased in response to a
command at the physical interface in units of a Flash
block, which typically contains 32 physical sectors. The
relative times for‘performing operations within the Flash
system 10 to read a physical sector, program a physical
sector, and erase a Flash block are typically in the
ratio 1 : 20 : 200.

In the arrangement of Figure 2 the controller 16 is
a Cyclic Storage controller which is a Flash media
management controller in which a method of ensuring
uniformity of distribution of use is implemented wherein
the media management algorithms which implement this
method are implemented as firmware by a processor within

the controller.

WO 03/029951 PCT/GB02/04393

8

With reference to Figure 3 there is shown optimized
hardware architecture which is defined for the Cyclic
Storage controller 16. In this case the controller
hardware 1is a dedicated architecture in a éeparate
integrated circuit.

The controller 16 comprises host interface control
block 22, microprocessor 24, flash interface control
block 26, ROM 28, SRAM 30 aﬁd é€xpansion port 32, each of
these being inter-connected by memory access congrolmbus
34.

Cyclic Storage Flash media management algorithms are
implemented by firmware running on microprocessor 24 and
the controller 16 is responsible for all Flash media
management functions and for the characteristics of the
logical interface 14 presented to host 12.

The host interface control block 22 provides the
path for data flow to and from host system 12 via logical
‘ interface 14.

As, in this case, the controller 16 is in the form

of a dedicated integrated circuit the host interface
control block 22 provides logical interface 14 which
conforms to an industry standard protocol as well as =a
command register and set of taskfile registers which
provide the route for the microprocessor 24 to control

the logical characteristics of the interface 14.

WO 03/029951 PCT/GB02/04393

The host interface control block 22 also allows for

a sector of data to be transferred in either direction
across the logical interface 14 between to the host
system 12 and the controller’s SRAM 30 by a direct memory
access (DMA) operation without intervention from the

microprocessor 24.

The Flash interface control block 26 provides the

path for data flow to and from Flash memory 20, and
controls all operations which take place in the Flash
memory 20. The operations taking place in Flash memory
20 are defined and initiated by the microprocessor 24,
which loads parameter and address information to the
flash interface control block 26.

The set of operations which typically take place are

the transfer of a physical sector to Flash memory 20, the

transfer of a physical sector from Flash memory 20, the
programming of a physical sector into flash memory 20,
the erasing of a Flash block, and the reading of the

status of flash memory 20.

Similarly a physical sector of data may Dbe
transferred in either direction across the physical
interface 16 between the Flash memory 20 and the
controllgr's SRAM 30 by DMA operations without

intervention from the microprocessor 24 . The

WO 03/029951 PCT/GB02/04393
10

organization of the 512 bytes of host data and 16 bytes
of overhead data within a physical sector which is
transferred to Flash memory 20 is determined within the
Flash interface control block 26, under the control of

parameters loaded by the microprocessor 24.

The Flash intefface control block 26 also generates
a 12-byte error correcting code (ECC) which is
transferred to Flash memory 20 and programmed as overhead
data within each physical sector, and which is also
verified when a physical sector is transferred from Flash
memory 20.

The microprocessor 24 controls the £flow of data
sectors through the memory access control bus, ox
datapath, 34 or of the controller 16, implements the
Flash media 'management algorithms which define the
sector, controls data storage organisation in the Flash
memory 20, and defines the Characteristics-of the logical.
interface 14 to host system 12. In this case: the

microprocessor 24 is a 32-bit RISC processor.

The‘memory access control bus 34 allows transfer of
information between the microprocessor 24, host interface
control block 22, and the Flash interface controi blocks
16, as well as between the host interface control block
22, the -‘flash interface control block 26 and a memory

block 30.

WO 03/029951 PCT/GB02/04393
11

The microprocessor 24, host interface control block
22, and Flash interface control block 26 may each be the
master for a transaction on the memory access control bus
34. Bus access is granted to requesting masters on a

cycle-by-cycle basis.

The SRAM block 30 stores all temporary information
within the controller 16, this storing function includes
the buffering of sector data and storage of control data

structures and variables, as well as firmware code.

The ROM 28 is included in the controller 16 for
storage of code for execution by‘the microprocessor 24,
or of information required by other hardware blocks
within the controller.

The inclusion in ﬁhe controller érchitecture of an
expansion port 32 gives access to external hardware

functions, RAM or ROM from the memory system 10.

During the operation of the controller all sector
daté being transferred between the logical interface 14
to host system 12, and the physical interface 18 to Flash
memory 20 is buffered in the SRAM 30. Sufficient
capacity in the SRAM 30 is allocated for buffering of two .
sectors of data to allow concurrent transfers of
successive sectors at the host and Flash interfaces. Data

transfer between the logical host interface 14 and SRAM

WO 03/029951 PCT/GB02/04393
12

30 is performed by DMA with the host interface control

block 22 acting as bus master.

Data transfer between the physical Flash interface 18
and SRAM 30 is performed by DMA with the Flash interface
control block 26 acting as -bus master.Data to be written
to sectors in Flash memory 20 is stored in the SRAM
memory 30 and 1is transferred by direct memory access
under the control of the Flash interface control block 26
via the physical interface to Flash memory 18. 512 bytes
of user data to be written in a sector had previously
been supplied by host system 12 via the logical interface
14 and had been transferred by direct memory access under
the control of the host interface control block 22 to the
SRAM memory 30. Programming of data in a sector in
Flash memory 20 is accomplished by the controller 16 by
sending an address and command sequence at the physical
interface. 18, followed by 528 bytes of data plus ECC;
followed by a program command code.

The transfer of data for a secfor between a host
system and the controller’s SRAM 30, and between the SRAM
30 and Flash memory, is controlled by firmware running on
the microprocessor 24 with the controller 16 being
responsible for all Flash media management functions and
for the. characteristics of. the logical interface 14

present to host 12.

WO 03/029951 PCT/GB02/04393
13

As the controller 16 is in the form of a dedicated
integrated circuit, the host interface control block 22
provides a logical interface which conforms. to an
industry standard protocol, and a command register and
set of taskfile registers/ provide the route for the
microprocessor 24 to control the logical characteristics
of the interface 14. Command, address and parameter
information is written to these task file registers by
the host 12, and read by the microprocessor 24 for
execution of the command. Information is also be written
to the registers by the microprocessor 24 for return to

the host 12.

In Figure 4 there is illustrated the layered
structure of the firmware .which performs the Cyclic
Storage Flash media management operations. The firmware
has three layers, the first being the host interface
layer 40, the second layer 42 comprising the sector
transfér sequencer 42a and the media management layér 42b
and the third being the flash control‘layer 44 .

These three firmware layers 40,42 and 44 control the
transfer of data sectors between the logical interface 14
to host 12 and the physical interface 18 to Flash memory
20. However, the firmware layers do not directly pass

data, 4instead data sectors are transferred by the

WO 03/029951 PCT/GB02/04393
' 14

hardware blocks of the controller 16 and therefore do not

pass through the microprocessor 24.

The host interface layer 40 supports the full
command set for the host protocol. It interprets
commands at the host interface 14, controls the logical
behavior of the interface 14 according to host protocols,
executes host commands not associated with the transfer
of data, and passes host commands which relate to data in
Flash memory to be invoked in the layers below. Examples

of such commands are.
Read logical sector (single or multiple),
Write logical sector (single or multiple),

Erase logical sector (single or multiple), as well

as other disk formatting and identification commands.

The sector transfer sequencer 42a receives
interpreted commands relating to logical data sectors
from the host interface layer 40 and thus invokes the
Flash media management layer 42b for logical to physical
transformation operations, and invokes the Flash control
layer 44 for physical sector transfers to or from Flash
memory. The sector transfer sequencer 42a also performs .
sector buffer memory management. Another function of the
seguencer 42a is to create a sequence of gector

transfers, at the host interface 14 and Flash memory

WO 03/029951 PCT/GB02/04393
15

interface 18, and a sequence of operations in the media
management layer 42b, in accordance with the command
received from the host 12 and the level of concurrent

operations which is configured for the Flash memofy 20.

The media management layer 42b performs the logical
to physical transformation operations which are required
to support the write, read or erasure of a single logical
sector. This layer is responsible for the implementation
of Cyclic Storage media management algorithms.

The Flash control 1layer 44 configures the Flash
interface control block 26 hardware to execute operations
according to calls from the sector transfer sequencer 42a
or media management layer 42b.

The media management functions which are implemented
witﬁin the media management layer 42b of the controller
firmware create the logical characteristics of a disk
storage device in the memory system 10 which uses Flash
semiconductor memory 20 as the physical data storage

medium.

The effectiveness of the media management performed
by the media management functions of the media management
layer 42b is méasured by its speed for performing
sustained writing of data to the memory system 10, its
efficiency in maintaining its level of performance when

operating with different file systems, and in this case,

WO 03/029951 PCT/GB02/04393
16

in host 12, and the long-term reliability of the Flash

memory 20.

Data write speed is defined as the speed which can
be sustained when writing a large volume of contiguous
data to the memory system 10. In some cases, when the
sustained data write rate of a memory system is being
tested, the volume of data to be written may exceed the
capacity of the memory system 10 and therefore logical

addresses may be repeated.

Sustained write speed is determined by the sector
data transfer speed at the logical interface 14 to the
host 12, and the physical interface 18 to Flash memory
20, as well as the overhead percentage of accesses to
Flash memory 20 at the physical interface 18 for Flash
page read and write operations and. Flash block erase
operations which are not directly associated with storage
of data sectors written by the host 12 at the logical
interface 14. In this case the control data structures
and algorithms which are employed should ensure that
access to Flash memory 20 for control functions is
required at a much lower frequency than for host sector
write. The sustained write speed is also determined by
thé processing time within the controller 16 for media
manageme;t operations, and the page read and program

times, and block erase times within the Flash memory 20.

WO 03/029951 PCT/GB02/04393
17

In order for the memory system to operate efficiently
when having file systems with different characteristics,
the Media management algorithms for the organization of
host data and control data structures on Flash ﬁemory 20
are appropriately defined and data write performance is
maintained in each environment.

In a first embodiment, the file systems implementing
the MS-DQS standard are provided with at least one of the
following characteristics: the host 12 writing data
sectors in clusters using multiple sector write commands;
the host 12 writing data sectors using single sector
write - commands; the host 12 writing some sectors with
single sector write commands in an address space which is
shared with clustered file data; the host 12 writing non-
contiguous sectors for MS-DOS diréctory and FAT entries
with single sector write commands; the host 12 writing
non—contiguous sectors for MS-DOS directory and FAT
entries interspersed with contiguous sectors for file
data; and/or

the host may rewrite sectors for MS-DOS directory
and FAT entries on a frequent basis.

It is a feature of flash memory, and in this case
the Flash memory 20 of the memory system 10, that it has
a wear-out mechanism within the physical structure of its

cells whereby a block of flash memory may experience

WO 03/029951 PCT/GB02/04393
18

failure after a cunmulative number of operations.
Typically, this is in the range of 100,000 to 1,000,000
program/erase cycles. In light of this thg‘ cyclic
storage controller 16 of the present arrangement
implements a process of wéar—léveling to ensure that
“*hot-spots” do not occur in the physical address space of
the Flash memory 20 and that utilization of Flash blocks
is uniformly distributed over a prolonged period of
operation.

Cyclic Storage media management algorithms are
implemented within memory system 10 and perform the Media
management operation of the physical Flash memory 20
within the system 10. The cyclic storage media management
algorithms comprise four separate algorithms, namely the
Data Write algorithm which controls the 1location for
writing host information to, the Block Erase algorithnl
which controls erasure of areas -of Flash memory 20
containing obsolete information, the Block Sequencing
algorithm which controls the sequence of use of Flash
blocks for storing informaﬁion, and the Address
Translation algorithm which éontrols the mapping of host
logical addresses to physical memory addresses.

The wethod of Cyclic Storage media management

implemeﬁﬁed. by these algorithms embodies the principle

that data 1is written at physical sector locations in

WO 03/029951 PCT/GB02/04393
19

Flash memory 20 which follow the same order as the
sequence in which the data is written. This is achieved
by writing each logical data sector at a physical sector
position defined by a cyclic write pointer.

A schematic representation of the write operation of
the cyclic storage media management method is shown in
Figure B5A. The write pointer, in this case data write
pointer (DWP) 46 moves sequéntially through the sector
positions of Flash block X in Flash memory 20, “and
continues through the chain of blocks Y and Z in a wmanner
defined by the block sequencing algorithm. Each block X,
Y and Z is a physical structure in Flash memory 20 which,
in this case, comprises 32 sector locations which can be
erased in a single operation.

As is illustrated in Figure 5B logical data sectors
are generally written in £files by a file system in the
host 12, and the Cyclic Storage Data Write Algorithm
locates the first sector of a file at the next available
physical sector poéition following the last sector of the
preceding file. When a file is written by host 12 using
logical sectors for which valid data already exists in
the device, the previous versions of the sectors become
obsolete and the blocks containing them are erased
according' to the Block Erase Algorithm. In order to

erase a block containing obsolete file sectors it is, in

WO 03/029951 PCT/GB02/04393
20

some cases necessary to relocate some valid sectors of
another file. This generally occurs when a block
contains sectors of the head of a file, as well as
sectors with unrelated logical addresses from the tail of

a different file.

A second write pointer in this case data relocate
pointer DRP 47 is used for writing relocated sectors in
order to avoid sectors of one file fragmenting a block
containing sectors of another file. The use of a separate
relocation - pointer significantly reduces the
fragmentation of blocks containing a file, leading to
minimum requirement for sector relocation and consequent

maximum file write performance.

A host file system is used which also writes sectors
containing system information, such as directory or FAT
sectors in the DOS file system, and these are generally
written immediately before and after a group of sectors
forming a file. A separate system pointer, system.write
pointer SWP 48 is used for this host file system in order
to define the physical write location for system sectors,
which are identified by their logical address, in order
to separate system sectors from £file data sectors and
avoid them being treated in the same way. This avoids a
small gréup of system sectors being “sandwiched” between

the tail of one file and the head of another. These

WO 03/029951 PCT/GB02/04393
21

system sectors contain information about many files, and
are generally re-written much more frequently than data
for a file. “Sandwiched” system sectors would cause
frequent relocation of file data sectors and thus the use
of system pointer SWP 48 minimises the requirement for
data sector relocation and maximises file write
performance.

A fourth pointer, system relocate pointer SRP 49 is

used for relocation of system sectors, analogous to the
relocation pointer DRP 47 for file data sectors.

To summarise, the four write pointers are:

Data write pointex, DWP 46 which is used to define

the physical location for writing file data sectors

transmitted by a host system;

System write pointer, SWP 48 which is used to define

the physical 1location for writing system sectors
transmitted by a host system wherein system sectors are
identified by their 1logical address, in accordance with
the characteristics of the host file system in use;

Data relocation pointer, DRP 47 which is used to

define the physical location for writing file data
sectors which must occasionally be relocated prior to a
block erasure for recovery of capacity occupied by

obsolete file data sectors; and

WO 03/029951 PCT/GB02/04393
22

System relocation pointer, SRP 49 which is used to

define the physical location for writing system sectors
which are being relocated prior to a block erasure for
recovery of capacity occupied by obsolete system sectors.

A block must contain data associated with only a

single write pointer and this results in four separate
chains of blocks existing, one for each write pointer.
However, the same write and relocation algorithms. of the
cyclic storage algorithms appl? to each write pointer 46,
47, 48 and 49.

This scheme for locating a sector to be written at

the first available location following the preceding
sector, combined with usage of multiple write pointers,
is fully flexible, and provides high performance and
total compatibility for all host write configﬁrations,
including single sector data and data in clusters of any
size.

However, the Cyclic Storage media management method
is defined not to allow the existence of a large number
of obsolete data sectors and nor to implement background
operations for functions such as garbage collection.
Typically only two blocks containing obsolete sectors is
allowed to exist for each of the Data Write Pointer DWP

46 and System Write Pointer SWP 48, and block erasure is

WO 03/029951 PCT/GB02/04393
23

performed as a foreground operation during sector write

sequences.

This method of management means that the logical

capacity of the flash memory does not have to be reduced
to allow for the existence of a large volume of obsolete
data, the data integrity is significantly improved by the
absence of background operations, which are susceptible
to interruption by power-down initiated by the host; and
the pauses in data write sequences are short because
erase operations are required for only a single block at
a time.‘

If an obsolete data sector is created in a new block

associated with either of the write pointers, then the
existing “obsolete block” is eliminated by . erasure,
following sector relocation within the Dblocks if
required.

Erase sector commands sent from a host 12 are

supported by marking the target sector as obsolete, and
allowing its erasure to follow according to the Block

Erasure algorithm.

The Cyclic Storage block sequencing algorithm
determines the sequence in which blocks within the flash
memory 20 are used for the writing of new or relocated

data, and is therefore responsible for ensuring that no

WO 03/029951 PCT/GB02/04393
24

block experiences a number of write/erase cycles which
exceeds the endurance limit gspecified for the Flash

memory system 10 which is being used.

When a logical sector is written by the host, any
previous version which exists in thezn@morys system is
treated as obsolete data. The block erase algorithm
ensures that blocks which contain obsolete data sectors
are erased immediately, to allow recovery of the capacity
occupied by these sectors. The physical memory capacity
of the system 10 is therefore occupied by valid data for
logical sectors written by the host, plus a small number
of proprietary Cyclic Storage control data structures and
a number of erased blocks. Immediately after initial
formatting, of the flash memory 20 the capacity of the
memory 20 consists almost entirely of erased blocks.
When the host 12 has written at least once to all sectors
in its logical address space, the device is considered to.
be logically full and its physical capacity is occupied
almost entirely by valid data sectors, with a small
number of erased blocks maintained for correct device
operation. An increased number of eraséd blocks will be
created only if the host 12 executes commands to erase

logical sectors.

Erased blocks which are allocated for use by one of

the write pointers, or for storage of control data

WO 03/029951 PCT/GB02/04393
25

structures are taken from a pool of . available erased
blocks. A block is never erased in response to a need to
perform a write operation to that specific block, the
block sequencing algorithm determines the ofder of
allocation for data write operations of blocks in the
erased pool. The next available block according to the
algorithm is allocated, independent of whether the
requirement is for use by one of the write pointers or
for a control data structure.

The implementation of these algorithms which perform
the c¢yclic storage media management allows increased
system flexibility by operating on individual sectors of
the flash memory 20 and separately tracking the logical
to physical address mapping of every sector in its
logical address space. A sector address table is
maintained. in the Flash memory. 20 which contains the
physical address for every 1o§ical sector. In addition,
every sector is written with a header containing its
logical address, providing a means of verifying sector
identity and ensuring maximum data integrity.

The data write algorithm, with its use of cyclic
write pointers, provides the capability for tracking the
sequence of sector writing using the logical addresses in
the headers of sectors in sequential physical positions.

This feature provides total data security even when the

WO 03/029951 PCT/GB02/04393
26

logical to physical address mapping records for recently
written sectors are temporarily held in volatile
controller memory SRAM 30 and not in Flash memory 20.
Such temporary records can be reconstructed from Ehe data
sectors in Flash memory 20 when a system 10 in which the
Cyclic Storage algorithms are implemented is initialised.
It is therefore possible for the sector address table in
Flash memory 20 to be updated on an infrequent basis,
leading to a low percentage of overhead write operations

for control data and a high sustained data. write rate.

In Figure 6 there is shown a schematic
representation of the address translation process which
uses a three level hierarchy of mapping structures 50
which is performed in the memory system 10.

The three levels of the hierarqhy' are the sgsector
address table 52, the temporary sector address table 54
and the sector address recofd 56.

The top 1level of the hierarchy of' the mdpping
structures is the sector address table 52, which is a
master table containing a physical address for every
logical sector stored in the system 1OA and which is
stored in Flash ﬁemory 20. Structures in the two lower
levels of the hierarchy 54 and 56 provide the means for
reducing the frequency at which write operations must

occur to the sector address table.

WO 03/029951 PCT/GB02/04393
27 .

The sector address record 56 is a list stored in the
controller’s volatile "~ memory SRAM 30 of logically
contiguous sectors which have been written to system 10.
This list allows the physical address of any-‘logical
sector which it contains to be determined without need
for access to Flash memory 20. It may also be
reconstructed during device initialisation from the
sequence of recently-written sectors which may be traced
in the Flash memory 20. The intermediate temporary
sector address table 54 is contained in Flash memory 20
and 1s updated with the contents of the sector address
record 56 when the list becomes full. The intermediate
temporary sector address table 54 is in the same format
as the sector address .table 52, and allows physical
address data updates to specific blocks of the séctor
address table 52 to be accumulated to allow a more
efficient table write process to be performed. The
temporary table 54 allows the physical address of any
logical sector contained in it to be determined without
need for access to the sector address table 52.

This hierarchy of mapping structures 50 is

maintained with an infrequent requirement for write
operations to Flash memory and efficiently supports
logical ‘to physical address translation in such a way

that total security of sector address information is

WO 03/029951 PCT/GB02/04393
28

provided, even 1f electrical power 1is unpredictably
removed from the system 10.

The data structures required to support the Cyclic

Storage mgdia managemgnt algorithms are stored
principally in Flash memory 20 together with the host
data sectors, with only a very limited amount of control
data being held temporarily in the control processor’s
volatile RAM 30. Information held in the volatile memory
30 is non-critical, and can be reconstructed from Flash
meﬁory 20 if the power supply is interrupted.

The controller 16 in Flash memory system 10 as
described above, may operate on only one array within the
Flash memory 20 at a time. Each array is a group of
Flgsh memory storage cells within which only a single
sector program operation or block erase operation may be-
performed at any one time. In this case the array is a
complete Flash chip. The controller is designed to be.
capable of performing program operations concurrently on
sectors within different arrays oxr erase operations
concurrently on blocks within different arrays. The
controller 16 can address, program and check current

€=

status of any array within the Flash wmemory 20
independently from others.

Each sector is a unit of physical storage in PFlash

memory 20 which is programmed in a single operation. In

WO 03/029951 PCT/GB02/04393
29

the present arrangement, which comprises NAND Flash
memory chips, a sector equivalent to a page within the
Flash array and has a capacity of 528 bytes. In this
case, the each Flash chip is considered to compriée four
arrays, each of which can be programmed with one sector
at any time.

The scheduling of transfer ie the ordering of sector
data is controlled by the sector transfer sequencer block
42a shown in Figure 4 and is explained in greater detail
with reference to Figures 7 to 11. The transfer of data
at the host interface 14 is independent of transfer of
data at the physical interface to Flash memory 18 of
memory system 10, and the burst transfer rate at the host
interface is determined by the host 12. Several
different methods of scheduling the transfer of éecﬁor
data may be implemented by sector transfer sequencer
firmware, depending on the way in which blocks and pages
in the Flash memory 20 are addressed by the controller
16. The methods described assuﬁe that sector data is
supplied by the host and stored in SRAM 30 at a rate
which is sufficient to supply sector data for transfer to
FPlash memory 20 as described.

With reference to Figure 7, there is shown a first
embodimgpt of a method of scheduling the transfer of

sector data which the controller may use to address

WO 03/029951 PCT/GB02/04393
30

blocks and pages within memory system 10 wherein Flash
memory 20 comprises four Flash arrays 0, 1, 2 and 3,
where the <controller 16 1s required to initiate
concurrent page program or block erase operationé.in two
arrays simultaneously. The arrays are linked in pairs,
and the corresponding blocks 0 with the same addresses
within the linked arrays are treated as a single virtual
biock 0. As shown, block 0 in Flash array 0 is 1linked
with block 0 in Flash array 1 to form virtual block 0.
The N blocks in each of Flash arrays 0 and 1 are linked
to form N wvirtual blocks, labelled 0 to N-1, and the N
blocks in each of Flash arrays 3 and 2 are linked to form
a further N wvirtual blocks, labelled N to 2N-1. The
order of writing sectors within each virtual block is
deteﬁined by the movement of the write pointer, which
alﬁernates between the constituent blocks(as it mwmoves
sequentially through the sectors in the virtual block.

In Figure 8 there is shown a second embodiment. of a
method which the controller may use to address blocks and
pages within memory system 10 wherein Flash memory 20
comprises four Flash arrays, where it is neceésary for
the controller 16 to initiate concurrent page program or
block erase operations in four arrays. All four arrays
are linked, and the corresponding blocks with the same

addresses within each of the linked arrays are treated as

WO 03/029951 PCT/GB02/04393
31

a single virtual block. As can be seen, blocks 0 in
Flash arrays 0 to 3 are linked to form virtual block 0.
The N blocks in each _of Flash arrays 0 to 3 are linked to
form N virtual blocks, labelled 0 to N-1. The order of
writing sectors within a virtual block is determined by
the movement of the write pointer, which moves through
the corresponding sectors in blocks 0 to 3 and then
increments to the next sector in block 0, as it movesg
sequentially through the sectors in the virtual block.

The blocks within the individual Flash arrays which
are linked to form a virtual block may themselves
comprise multiple smaller adjacent physical blocks which
are stacked together.

Program operations may be performed substantially
concurrently on one sector from each of the constituent
blocks forming a virtual block.

With reference to Figure 9, there is shown a third
embodiment of a wmethod of concurrently programming
sectors 0, 1, 2, and 3 which are showﬁ in Flash arrays 0,
1, 2 and 3 of Figure 8. Data for sector 0 is
transferred byte serially to Flash array 0 across the
physical interface to Flash memory 20, and then a program °
command is sent by the controller 12 to Flash array 0 to
initiate the program operation. Whilst sector 0 is being

programmed, the controller 12 transfers data for sector 1

WO 03/029951 PCT/GB02/04393
32

to Flash array 1 and initiates a program operation for
it. The same is done for sectors 2 and 3. Sectors 0 to
3 are programmed in Flash arrays 0 to 3 substantially
concurrently with each other, and the spéed of
transferring and programming data to sectors in the Flash
memory is much higher than can be achieved by programming
only one Flash array at a time. When the program
operations in Flash arrays 0 to 3 have all completed, the
process is repeated for sectors 4 to 7.° A shared
busy/ready 1line from the Flash arrays can be used to
signal when all arrays have completed programming sectors
0 to 3 and when there is no Flash array active. However,
the status of all the arrays can alternatively be polled
independently.

In Figﬁre 10 there is shown a fourth embodiment of a
sequence for transferring sector data to and iﬁitiating
programming operations in Flash arrays 0 to 3. The
sequence described for sectors 0 to 3 with reference to
Figure 9 is performed, but upon the completion of the
programming operation in a Flash array, sector data is
immedidtely transferred for the following programming
operation in that array. The status of each array is
polled independently to find when an operation in the
array has completed. Alternatively, independent

ready/busy signals from every array can be used This

WO 03/029951 PCT/GB02/04393
33

increased pipelining of the sector data transfer and
sector programming provides further increased speed for
writing sector data in the Flash memory.

Each of these methods detailed in the above described
embodiment may be used forlwriting sector data which is
being relocated from another sector in Flash memory, as
well as sector data which has begn supplied by a host
system.

The order of sectors being concurrently progridmmed in
different Flash arrays need not follow the order shown in
Figure 8, that is, sequential order need not be used. It
is possible to program any sector from a Flash array
concurrently with any other sector from another array,
provided that no two' sectors from the same array are
used. For example, it would be possible to transfer and
then program a group of four sectors in Figure 8 in the
order sector 10, sector 3, sector 1, then sector 4.
However, the use of a cyclic write pointer which wmoves
sequentially through the addresses of é virtual block
means that it 'is most common for sector addresses to be
in'sequential order. The first sector of a group of four
for which data is beilng concurrently transferred and -
programmed need not be located in Flash array 0. The
sectors may, for example, be transferred in the order

sector 2, sector 3, sector 4, and sector 5.

WO 03/029951 PCT/GB02/04393
34

The write time for a cluster of sectors can be
expressed as a function of the transfer time to Flash
‘memory 20 for sector data and programming time for a
sector in Flash wmemoxry 20. The programming gime is
typically 200 microseconds, and is much longer than
transfer time, which is typically about 30 microseconds.
The time associated with flash chip addressing and
initiation of data transfer and programming by the
controller is usually not significant. For the example

shown in Figure 9, cluster write time is given by

Cluster Write Time = 8*Sector data transfer time
+ 2*Programming time.
For the example shown in Figure 10, cluster write time is
given by
Cluster Write Time = 5*Sector data transfer time
+ 2*Programming time.

As detailed above, all 4 flash memory arrays are
being accessed, however this results in the elecﬁrical
current level being high (= 4*array current) as well as
performance is on the maximum.

With reference to Figure 11, there 1is illustrated a
first embodiment of a method of allowing the limiting of
the number of flash memory arrays accessed at a time in
order to control the current. As can be seen, Figure 11

illustrates a pipelined sequence for transferring sector

WO 03/029951 PCT/GB02/04393

35

data to and initiating programming operations in flash
arrays 0 to 3 but the maximum number of active flash
memory arrays is limited to, three. The sequence described
for sectors 0 to 2 with reference to Figures 9 aﬁd 10 is
performed, but then the numpér of active arrays is three
and therefore the controller 16 waits for at least one of
the arrays to be completed,.in this case chip 0. Whenever
the number of active arrays is lower than three, sector
data 1s immediately transferred for the following
programming operation in the next chip. In other words,
before accessing any flash array the number of currently
active arrays is always checked against the allowed limit
which in this case is three. Thus, the electrical current
level is regulated.

For the example illustrated by Figure 11 the cluster time
will be

Cluster Write Time = 4*Sector data transfer time +
3*Programming time.

Similarly, the number of active arrays can be limited
to two or one. For the same case of a 4-way interleaved
memory system where the active array limit is two (not
shown) the cluster time will be

Cluster Write Time = 5*Sector data transfer time +

4*Programming time.

WO 03/029951 PCT/GB02/04393
36

A more complex method of performing the control of
current can be used when the flash memory 20 of the
system 10 has different electrical parameters for
different flash operations, ie the electrical pa%ameters
for read, transfer, programming and erase operations are
all different. For simplicity the arrays are as before,
programmed in numerical order 0 to 3. The status of every
array is polled independently to find a time when the
chip completed. Otherwise, independent ready/busy signals
from every array can be used. This method uses the same
method of pipelining but creates extra on-purpose delay
in order to limit the electrical level.

The flash access control combined with the pipelining
provides a very efficient usage of flash memory
performance and étill gives a high speed for writing
gsector data. in the flash memory while 1limiting the
electrical power. The method allows a defined number of
active arrays, in this case three, most of the time. The
same method can be applied to any other £flash operation
like read and erase.

The maximum number of active memory arrays can be
flexibly changed/programmed by the host to define the
ratio between write performance and electrical current
level. Some hosts could implement this by enabling

standard-defined power management features and defining a

WO 03/029951 PCT/GB02/04393
37

level of compromise between power consumption and
performance. However, some host systems may prefer slow
memory devices with low electrical current levels, and in
some cases even the same host system may prefer different
combinations of performance and power consumption in
different operating modes. Each of these arrangements can
be catered for using the method described above.

Various modifications may be made to the arrangements
as hereinbefore described without depérting from the
scope of the invention. For example, a system which
incorporates a flash disk device may be physically
partitioned in several ways, according to the system
architecture, however, all systems generally conform to
the structure described herein before. For example the
flash memory 20 is shown in Figure 2 as being part of a
memory system 10 , however, it may alternatively be on a
removable card and may connect to a host system via a
logical interface 14 which as before conforms to industry
standard protocols. Examples of such industry s£andards.
being PCMCIA ATA, CompactFlash and MultiMediaCard. In
such an arfangement the controller may be on a removable
card in which case the controller is typically a single
integrated circuit. The Flash memory 10 may consist of

one OY more integrated circuits and the controller may

WO 03/029951 PCT/GB02/04393

38
be integrated on the same integrated circuit as the Flash
memory .

It could also be the case that the host and the flash
system may be physically partitioned such that éﬁly the
Flash memory is on a removable card, which has a physical
interface to the host system. A hierarchy of this
arrangement is shown in Figure 12. An example of such a
removable Flash memory card is SmartMedia. The controller
is located withing the host system 11 and may take to
form of an integrated circuit, or of firmware which is
executed by a processor within the host system.

Alternatively the method of the present invention may
be implemented in an embedded memory system which is not
physically removable from a host system. Such a system
may have the same pértitioning as is used for a memory
system on a removable card, with the controller being in
the form of an integrated circuit and with a logical
interface conforming to industry standard protocols.
However, the controller may also be integrated with other
functions withing the host systemn.

In the arrangement described, each sector is
identified by a LBA, however, it may also be identified
by an address in the Cylinder/Head/Sector (CHS) format
originally used with magnetic disk devices. Also in the

described arrangement the controller hardware is

WO 03/029951 PCT/GB02/04393
39

dedicated architecture in a separate integrated circuit,
however, elements of the controller hardware, such as the
microprocessor, may be shared with other functions within
the host system. Additionally the cyclic storage
management algoxrithm may be implemented in a
microprocessor within the host system or the process may
be performed via standard microprocessor input/output
ports without any dedicated controller hardware. If the
controller is part of an embedded memory system and
shares its microprocessor with other functions of a host
system, the logical interface for the control of the
memory system may be implemented directly within firmware
executed by the processor, this means that hardware
registers may be eliminated and variables may be passed
directly to a controller function which maybe called a
host funcfion withing the firmware code.

In the flash memory system described previously, data
transfer between the host or flash interfaces and the
SRAM are performed by DMA however in an alternétive
empbodiment a separate memory block could be used
exclusively for buffering sector data. Typically this
memory block could be a dual port RAM, with ports
allocated independent access by the host interface

control block and the flash interface control block.

vl

WO 03/029951 PCT/GB02/04393
40

In the described arrangement the memory blocks into
which the memory sectors were arranged were described as
being a physical structure withing the flash memory
comprising 16 sector locations, however ~ it is also
possible that these memory blocks comprise 32 flash
locations. Also the memory blocks can alternatively be
virtual blocks comprising physical blocks distributed
across multiple flash chips or multiple independent
arrays within the same chip which are erased in a single
operation by the controller. Where a virtual block
comprises M physical blocks, each with capacity for N
sectors, the virtual block has capacity for M*N sectors.
A virtual block is treated in exactly the same way as a
physical block by the cyclic storage media management
algorithms.

It should also be noted that the ROM and expansion
port of the controller of the memory system are optional
fegtures and need not be included.

Furthermore, each array in the flash wmemory 1is
described previously as being a complete flash chip,
however, it is also the case that each array may be a
constituent part of a chip, as some Flash chips such as
some 512Mbit NAND flash designs incorporate multiple
arrays within a chip and separate' sector program

operations may be independently started in different

WO 03/029951 PCT/GB02/04393
41

arrays within the chip. Also in the description, pages
within the flash array have been described as being
equivalent to a sector, however in some AND flash memory
chips a page may comprise four sectors and "have a
capacity of 2112 bytes, in each case the page 1is
programmed in a single operation. Additionally each group
of sector data has been déscribed as being the first four
sector data of a file, however it may alternatively be a
file fragment. Also the host system can write data to
the memory system in units of a cluster wherein each
cluster will be treated as the controller as an integral
number of groups, as opposed to the data being written to
the memory system as single sectors.

The present inventioncan be implemented by a computer program
operating on a microprocessor of a memory system. An aspect of the
present inventionthus provides a storage medium storing processor
implementable instructions for controlling a processor to carry

out the method as hereinabove described.

WO 03/029951 PCT/GB02/04393
42

CLAIMS

1. A method for use in a memory system having a non-volatile memory and a controller
for limiting the number of non-volatile memory arrays, within the non-volatile
memory, from a plurality of available arrays accessed at one time, the method
comprising:
implementing a pipelining sequence for transferring data to and from the non-volatile

memory arrays; and
limiting the number of active arrays operating at one time, the arrangemeqt being such
that the controller waits for the at least one of the arrays to complete before initiating the
transfer to and from a further array,
thereby controlling flash memory accesses in a memory system configured to use
concurrent operation in different flash memory arrays and allowing performance to be changed
easily in systems supporting concurrent flash operations in different Flash arrays.

2. A non-volatile memory system comprising:

a non-volatile memory incorporating a plurality of memory arrays; and
a controller including,

means for implementing a pipelining sequence for transferring data to‘and from the
non-volatile memory arrays; and

means for limiting the number of active arrays operating at one time, the
arrangement being such that the controller waits for the at least one of the arrays to
complete before initiating the transfer to and from a further array,
thereby controlling flash memory accesses in a memory system configured to use

concurrent operation in different flash memory arrays and allowing performance to be

changed easily in systems supporting concurrent flash operations in different Flash arrays.

WO 03/029951 PCT/GB02/04393
43

3. A storage medium storing processor implementable
instructions for controlling a processor to carry out the

method of claim 1.

4. A method substantially as hereinbefore described
with reference to and as shown in any of Figures 2 to 12

of the accompanying drawings.

5. A system substantially as hereinbefore described
with reference to and as shown in any of the accompanying

drawings.

PCT/GB02/04393

WO 03/029951

(zav xorza) | IIA

A s B [suonosedo 1joxjuod Joj QiR | y diy) ysol4
L £ 10395 M ______ [oS | | suoioiado Jo]jo1ju0d 10} BIGOIDAY] ¢ diy) ysol4
rl-t--,-.m._wmwwm-w.:z L X 1ouag | | suonosado Jajjopu0d Joj 3\qojoAY | 7 diyy ysoy
| llopas ey X Jouag| suonjpiado Ja|josju0d 1o} 2|qojDAY | | diyy ysojy
[y Joyas] g Jojes| [7 010a5 | || 10005 | suoosado Jajoyuod Joj 2[qooRy | 104 UsojJ
= [y Jojoag]e Jojoes|z _Boww__ 10}985 | WMM_MS%O
_ p 0josg | | 7 10)3 | 7 10y285 | suonoJado JajjoJ}u0d Joj BJgDIDAY | 7 Ja)ing
| cwops || | 10)23G _ | Jayng
K éome | ¢ J0josg | | 7 s0p00g | | 10)935 Jod V1V
NS T o N I I
[| T [I LT o
| I L LI | L fg

SUBSTITUTE SHEET (RULE 26)

WO 03/029951

PCT/GB02/04393
2/9
Host Syst
ost System y
10
\ Logical [_14
T Interface === g
i Controller 15 §
§ Physical | - E
| interface [10 i
; Flash Memory 20 %
§ Memory System i
16 Expansion
\ Port
28 30 AN
{ {
ROM SRAM 19
T
Memory Access Control s
Logical @ @ @ Physical
Interface _ Interface
o Host Micro Flash to
Host Interface Control Processor Interface Control <__]:‘> Flash
System 14 (((18 Memory
22 24 26

FIG. 3

SUBSTITUTE SHEET (RULE 26)

PCT/GB02/04393

WO 03/029951

3/9

9y
IO —— =

VG IId

3\

-— e f—

[T N S
LT N -
—t e

———
———

[oojg

o —

———

A 108 X 10ig

9JDMPJDH [043U0) 9IDJ3)U[YSD|4 v old

)

Joko7 j043u0) ysoj4

{ {

4y~ 1eho7 yuswabouop Jduanbag Jojsunl] 07§
DIPSR @ 10}035

\\ 1307 300)18U] ~0F

4

2

Wo)shS 1SoH

SUBSTITUTE SHEET (RULE 26)

WO 03/029951 PCT/GB02/04393

4/9

Flash Memory

Erased Block
Data Block -
Relocated Data Block .
System Data Block
Data Block
Data Block B
SWP - -
(System Data Block
48
ORP : _ Relocated Data Block =
41 Erased Block
Erased Block
SRP] =~ Relocated System Data Block
49 -
Data Block
o — _ Data Block B
46 -
System Data Block
Data Block -

FIG. 5B

SUBSTITUTE SHEET (RULE 26)

WO 03/029951 PCT/GB02/04393
5/9

90

/

Sector Address Table
~ 52

ﬁ lable Write — 53

Temporary Sector Address Table

—~ 54

ﬁ /'empofary Table Write ~ 55

Sector Address Record
~56

FIG. 6

Host System

—_—
—_

/

Host Subsystem

| 2]
i Logical [_14 i
| Interface i
§ Controll E
| ontroller NP
L Physical | _______________ |

Interfoce [~18

Flash
ash Memory |90

FIG. 12

SUBSTITUTE SHEET (RULE 26)

PCT/GB02/04393

/9

SUBSTITUTE SHEET (RULE 26)

WO 03/029951

1| |/ I 1/ I —— I
R | | S I S—] Lm
|-N ¥0jg/¢ s;Lr : | 1N pojg/z é;L I=N ooig/| 3:1 |-N %°0/g/0 QEH

I=NC 00[g [onJIA — L=N %00Ig [DN}IA—]
| ¥ T ey ¥
w m m g 10)085 m
M m m G 10)235 b 10)08S w
M m M | ¢ l0pag | | 7 opsg _ w
w m m | 103035 0 J0)0ag _ M
- SRS i e =] |

0 xoo_m\m fouly v 0 v_oo_m\m \AEEL 0 xoo_m_ \Ao.:<L v_oo_m\o \Aot,qp
¢ Aoiry yso| z fouy ysoj4 | Aoy ysoyy 0 Aoy ysoj4
N %30[g [ONLIA 0 490/ [ONYAA

PCT/GB02/04393

7/9

WO 03/029951

.. :
=N %001g/¢ Aoy | 1=N ¥p05/7 ?,L |-N %0ig/| é;L 1N %00(g/0 ?a%
|=N %20Ig [DNYIA—
0] 101935 6 10}985 g 10)035 !
_ / 10)98G _ — 9 10083 _ | G 10yeg _ _ 4 10}985 _ _m
_ ¢ 101995 “ 7 10995 | 103035 0 403095 _
..................... e e ECEr ot RO B et
0 ¥olg/¢ ?EL 0 %018/7 ?Egv L 0 %oig/| ?EL 0 0ig/0 ?SL /
¢ Aodwy uso| 7 fody yso4 | Kouiy ysoyy 0 Aoy yso)

0 *o0ig [onjAA

SUBSTITUTE SHEET (RULE 26)

PCT/GB02/04393

WO 03/029951

8/9

/s buiwwpoJboud LS

¢s buiwwo.bosd ¢S

gs buiwwo.boid 9S

zs buiwwolboid ¢S

awil ALy sesnp)

¢ Aoy ysoy4

0 9l

z Kouy yso4

| Kouy yso|4

0 Aouy yso|

s4x 0)0Q
99D}J3}U] YsD|4

¢ Aoy ysoj 6 94

7 Koany ysoyy

| Aoury ysoj4

0S | 0 Aoay ysoy

Gs buiwwoiboud | ¢S 1S buiwwinsboud N
S bulwwoiboid ¥S 0s buiwwoiboid 0S
LS| 9S| GS| #S S¢S IS |0S
awl| 3N Jaysnp -
/S buiwwioibo.d JAS ¢s bujwwouboud ¢S
9s buiwwoibo.d 9S 7S buiwuwpo.boud S
s buiwwo.boid GS |s buiwwo.boud 1S
s buiwwoJboud S 0S buiwwpiboud
LS9S| GS|+S S¢S IS]S

SlIX D}0(]

90D}J2)U| YsD|4

SUBSTITUTE SHEET (RULE 26)

PCT/GB02/04393

WO 03/029951

9/9

ol

/s buwwolboid

LS

9s buwwoiboid

LS

¢s buiwwoiboud ¢S
9S e buiwwniboud VA
Gs bulwwo.boud GS 1S bulwwo.boid 1S
S bulwn.boud S 0s buiwwoibo.d 0S
9S GS | #S | €S ¢S 1S] 0S

awi] S 1SN

¢ Aoy ysojy
¢ foay ysoy4

| Aouy yso|4

0 Aoy yso|4

SJJY 0)0(
90DJJ9)U} USD|4

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

