

HU000030564T2

(2006.01)

(2006.01)

(19) **HU**

(11) Laistromszám: **E 030 564**

(13) **T2**

MAGYARORSZÁG Szellemi Tulajdon Nemzeti Hivatala

EURÓPAI SZABADALOM

SZÖVEGÉNEK FORDÍTÁSA

(21) Magyar ügyszám: **E 07 252562** (51) Int. Cl.: **A01N 63/04** (22) A bejelentés napja: **2007. 06. 25. A01N 25/04**

(96) Az európai bejelentés bejelentési száma:

EP 20070252562

A01N 25/30
(2006.01)
A01P 7/04
(2006.01)
A01N 25/32
(2006.01)

(97) Az európai bejelentés közzétételi adatai: EP 1886570 A2 2008. 02. 13.

(97) Az európai szabadalom megadásának meghirdetési adatai:

EP 1886570 B1 2016. 07. 20.

(30)	Elsőbbségi adatok:		
	2006173686	2006. 06. 23.	JP
	2006173687	2006. 06. 23.	JP
	2006173688	2006. 06. 23.	JP
	2006292106	2006. 10. 27.	JP
	2006321454	2006. 11. 29.	JP

(73) Jogosult(ak):

Sumitomo Chemical Company, Limited, Tokyo 104-8260 (JP)

(72) Feltaláló(k):

Kimura, Shinya, Toyonaka-shi,Osaka (JP) Takashima, Yoshiki, Nishinomiya-shi,Hyogo (JP) Maruyama, Takeshi, Kobe-shi,Hyogo (JP) (74) Képviselő:

PINTZ ÉS TÁRSAI Szabadalmi, Védjegy és Jogi Iroda Kft., Budapest

(54)

Agrokémiailag aktív mikrobiológiai készítmény

(11) EP 1 886 570 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

20.07.2016 Bulletin 2016/29

A01N 63/04^(2006.01) A01N 25/30^(2006.01) A01P 7/04^(2006.01)

(51) Int Cl.:

A01N 25/04 (2006.01) A01N 25/32 (2006.01)

(21) Application number: 07252562.9

(22) Date of filing: 25.06.2007

(54) AGROCHEMICALLY ACTIVE MICROBIAL FORMULATION

AGROCHEMISCH AKTIVE MIKROBIELLE FORMULIERUNG FORMULE MICROBIENNE AGROCHIMIQUEMENT ACTIVE

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30) Priority: 23.06.2006 JP 2006173686

23.06.2006 JP 2006173688 23.06.2006 JP 2006173688 27.10.2006 JP 2006292106 29.11.2006 JP 2006321454

(43) Date of publication of application: 13.02.2008 Bulletin 2008/07

(83) Declaration under Rule 32(1) EPC (expert solution)

- (73) Proprietor: Sumitomo Chemical Company, Limited Tokyo 104-8260 (JP)
- (72) Inventors:
 - Kimura, Shinya Toyonaka-shi, Osaka (JP)
 - Takashima, Yoshiki Nishinomiya-shi, Hyogo (JP)

 Maruyama, Takeshi Kobe-shi, Hyogo (JP)

(74) Representative: Duckworth, Timothy John J A Kemp 14 South Square Gray's Inn London WC1R 5JJ (GB)

(56) References cited:

US-A- 5 512 280

 ALVES ROBERTO T ET AL: "Effects of different formulations on viability and medium-term storage of Metarhizium anisopliae Conidia" NEOTROPICAL ENTOMOLOGY, SOCIEDAD ENTOMOLOGICA DO BRASIL, SAO PAULO, BR, vol. 31, no. 1, 1 January 2002 (2002-01-01), pages 91-99, XP002333137 ISSN: 1519-566X

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

P 1 886 570 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

BACKGROUND OF THE INVENTION

5 Field of the Invention

10

30

35

[0001] The present invention relates to an agrochemically active microbial formulation and the like.

Background of the Invention

[0002] As a method for controlling insect pests avoiding use of a chemically synthesized compound as an active ingredient, the use of an agrochemically active microbe has drawn an attention, and there have been known agrochemically active microbial formulations comprising an agrochemically active microbe (specifically, for example, pest controllin filamentous fungus) is known (for example, see USP No.5730973, USP No. 6030924). As a method for increasing the pest control effect of such agrochemically active microbial formulations, for example, applying a mixture of an agrochemically active microbe (specifically, for example, pest controlling filamentous fungus) and an oil such as a vegetable oil and a mineral oil is known (for example, see WO 95/10597, J.Invert.Pathol. 52,66-72 (1988), Ann.Appl.Biol. 122,145-152 (1993), Pestic.Sci. 46,299-306 (1996), Phytoparasitica 25,93S-100S (1997). Japanese Journal of Applied Entomology and Zoology 44 4,241-243 (2000), and Biocontrol Science and Technology 12,337-348 (2002)).

[0003] However, some agrochemically active microbes (particularly, pest controlling filamentous fungus) alone exhibit not high-stable viability. When an agrochemically active microbe is used by applying a mixture of the agrochemically active microbe and an oil such as a vegetable oil and a mineral oil, it is not necessarily easy to select a combination of components and a combination ratio thereof. Further, since the formulation is prepared giving higher priority to stability of viability of the agrochemically active microbe (particularly pest controlling filamentous fungus), the formulation is sometime not emulsified well, resulting in a heterogeneous mixture, thereby the pest controlling effect is not stabilized, and the formulation may have harmful effects on plants (for example, see Year Heisei 12 Seibutsu-Nouyaku-Renraku-Shiken-Seiseki edited by Japan Plant Protection Association 93 (2000), and Year Heisei 13 Seibutsu-Nouyaku-Renraku-Shiken-Seiseki edited by Japan Plant Protection Association 198 (2001)).

[0004] Alves et al, Neotropical Entomology, 2002, vol. 31, pages 91-99 discloses the effect of different formulations on viability and medium term storage of Metarhizium anisopliae conidia.

[0005] EP-A-0 448 070 discloses insecticidal compositions based on Bacillus thuringiensis containing phospholipid. [0006] US-A-4 755 207 discloses synergistic mycoherbicidal compositions comprising a non-phytotoxic crop oil, a surfactant and a hydrophobic mycoherbicide spore.

[0007] WO-A-96/39844 discloses materials and methods for incubating plants with microbes. The material comprise live microbes, a hydrophobic oil in an amount effective to facilitate colonisation of plant surfaces by the microbes and water.

[0008] EP-A-0 180 743 discloses a liquid preparation containing living microorganisms suspended in a liquid oil phase and enveloped in at least one protective layer insoluble in the oil phase and which is soluble or swells in water.

[0009] US-A-5 512 280 discloses the maintenance and long term stabilisation of fungal Conidia using surfactants.

SUMMARY OF THE INVENTION

[0010] The present invention provides an agrochemically active microbial formulation comprising a combination of an agrochemically active microbe with a specified ester compound and a surfactant. The formulation exhibits a stable pest controlling effect with no harmful effect on a plant, and has highly stable viability of the agrochemically active microbe.

[0011] That is, the present invention provides:

- 1) An agrochemically active microbial formulation (hereinafter, referred to as a present formulation in some cases), comprising at least one kind of ester compound (hereinafter, referred to as a present ester compound in some cases), a surfactant suitable for emulsifying the ester compound (hereinafter, referred to as a present surfactant) and an agrochemically active microbe, wherein the ester compound is selected from the following group:
 - (1) an ester compound which is liquid at 25°C, of monovalent fatty acid and polyhydric alcohol represented by the formula (I):

55

HO ——
$$(CH_2)_m$$
 —— C —— $(CH_2)_n$ ——OH (I)

wherein R^1 and R^2 are the same or different, and represent a hydrogen atom, a methyl group, an ethyl group, a hydroxymethyl group or a 2-hydroxyethyl group, and m and n are the same or different, and represent 1 or 2, provided that R^1 and R^2 are not a hydrogen atom at the same time;

- (2) an ester compound which is liquid at 25°C, of diglycerin and monovalent fatty acid; and
- (3) a diester compound which is liquid at 25°C, of adipic acid and monohydric alcohol;
- 2) An agrochemically active microbial formulation according to the item 1, wherein the polyhydric alcohol represented by the formula (I) is pentaerythritol, trimethylolalkane or neopentyl glycol;
 - 3) The agrochemically active microbial formulation according to the item 1 or 2, wherein the monovalent fatty acid is 2-ethylhexanoic acid, isomer of n-octadecanoic acid, or capric acid;
 - 4) The agrochemically active microbial formulation according to the item 1, 2 or 3, wherein the monohydric alcohol is 2-heptylundecyl alcohol;
 - 5) The agrochemically active microbial formulation according to the item 1, wherein the ester compound is at least one kind of ester compound selected from:
 - (a) a tetraester compound which is liquid at 25°C, of pentaerythritol and 2-ethylhexanoic acid,
 - (b) a triester compound which is liquid at 25°C, of trimethylolpropane and isomer of n-octadecanoic acid,
 - (c) a diester compound which is liquid at 25°C, of neopentyl glycol and capric acid,
 - (d) a tetraester compound which is liquid at 25°C, of diglycerin and isomer of n-octadecanoic acid,
 - (e) a triester compound which is liquid at 25°C, of diglycerin and isomer of n-octadecanoic acid, and
 - (f) a diester compound which is liquid at 25°C, of adipic acid and 2-heptylundecyl alcohol;
 - 6) The agrochemically active microbial formulation according to any one of the items 1 to 5, wherein the surfactant is a nonionic surfactant;
 - 7) The agrochemically active microbial formulation according to any one of the items 1 to 5, wherein the surfactant is at least one kind of nonionic surfactant selected from the group consisting of polyoxyethylene fatty acid ester, sorbitan fatty acid ester and polyoxyalkylenealkyl ether;
 - 8) The agrochemically active microbial formulation according to item 7, wherein the surfactant has an HLB of 7 to 12;
 - 9) The agrochemically active microbial formulation according to any one of the items 1 to 8, wherein the agrochemically active microbe is at least one kind of microbe belonging to any one or more genera selected from the group consisting of Paecilomyces, Beauveria, Metarhizium, Nomuraea, Verticillium, Hirsutella, Culicinomyces, Sorosporella, Tolypocladium, Fusarium, Trichoderma and Exserohilum;
 - 10) The agrochemically active microbial formulation according to any one of the items 1 to 8, wherein the agrochemically active microbe is pest controlling filamentous fungus;
 - 11) The agrochemically active microbial formulation according to any one of the items 1 to 8, wherein the agrochemically active microbe is any one of the following pest controlling filamentous fungi:
 - (1) filamentous fungus of Paecilomyces,

5

10

20

25

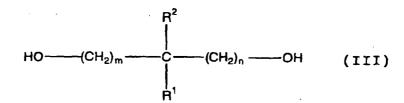
30

35

40

45

- (2) filamentous fungus in which DNA encoding a nuclear 5.8S ribosomal RNA comprises the nucleotide sequence of SEQ ID NO: 1 and DNA encoding a nuclear 28S ribosomal RNA comprises the nucleotide sequence of SEQ ID NO:2,
- (3) filamentous fungus belonging to Paecilomyces tenuipes, and
- (4) filamentous fungus which is Paecilomyces tenuipes T1 strain deposited at International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology as a deposition number FERM BP-7861:
- 55 12) A method of controlling a pest, comprising applying the agrochemically active microbial formulation as defined in any one of the items 1 to 11 to a pest, a habitat of a pest, or a plant to be protected from a pest (hereinafter, refereed to as a present control method in some cases);
 - 13) A method of controlling a pest, comprising applying the agrochemically active microbial formulation as defined


in any one of the items 1 to 11 to an agricultural or horticultural crop pest, a habitat of an agricultural or horticultural crop pest or an agricultural or horticultural crop to be protected from an agricultural or horticultural crop pest;

- 14) A process of producing an agrochemically active microbial formulation (hereinafter, referred to as a present process in some cases), comprising a step of mixing at least one kind of ester compound, a surfactant suitable for emulsifying the ester compound and an agrochemically active microbe, wherein the ester compound is selected from the following group:
 - (1) an ester compound which is liquid at 25°C, of monovalent fatty acid and polyhydric alcohol represented by the formula (II):

HO $(CH_2)_m$ C $(CH_2)_n$ C $(CH_2)_n$ C (II)

wherein R^1 and R^2 are the same or different, and represent a hydrogen atom, a methyl group, an ethyl group, a hydroxymethyl group or a 2-hydroxyethyl group, and m and n are the same or different, and represent 1 or 2, provided that R^1 and R^2 are not a hydrogen atom at the same time;

- (2) an ester compound which is liquid at 25°C, of diglycerin and monovalent fatty acid, and
- (3) a diester compound which is liquid at 25°C, of adipic acid and monohydric alcohol; and
- 25 15) Use of at least one kind of ester compound as a medium for producing an agrochemically active microbial formulation, wherein the ester compound is selected from the following group:
 - (1) an ester compound which is liquid at 25°C, of monovalent fatty acid and polyhydric alcohol represented by the formula (III):

wherein R^1 and R^2 are the same or different, and represent a hydrogen atom, a methyl group, an ethyl group, a hydroxymethyl group or a 2-hydroxyethyl group, and m and n are the same or different, and represent 1 or 2, provided that R^1 and R^2 are not a hydrogen atom at the same time;

- (2) an ester compound which is liquid at 25°C, of diglycerin and monovalent fatty acid, and
- (3) A diester compound which is liquid at 25°C, of adipic acid and monohydric alcohol.
- [0012] According to the present invention, an agrochemically active microbial formulation which exhibits a stable pest controlling effect with no harmful effect on a plant and has highly stable viability of the agrochemically active microbe can be provided.

DESCRIPTION OF THE INVENTION

5

10

15

20

30

35

40

50

[0013] The present invention will be explained in detail below.

[0014] Usually, the present formulation is suitably a formulation form such as a form termed oil-based flowable formulation.

[0015] The agrochemically active microbe used in the present formulation is a microbe having the pest controlling effect (in the present invention, the pest controlling effect includes insect pest controlling effect and/or plant disease controlling effect), additionally, includes a microbe having the weed controlling effect and a microbe having the plant growth regulating effect, for example.

[0016] Examples include one or more kinds of microbes belonging to any one or more genera selected from the group

consisting of Paecilomyces, Beauveri, Metarhizium, Nomuraea, Verticillium, Hirsutella, Culicinomyces, Sorosporella, Tolypocladium, Fusarium, Trichoderma and Exserohilum.

[0017] As a preferable agrochemically active microbe, specifically, examples of an agrochemically active microbe belonging to Paecilomyces include microbes belonging to Paecilomyces tenuipes, Paecilomyces fumosoroseus and Paecilomyces farinosus. Specific examples include Paecilomyces tenuipes T1 strain deposited at International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology as a deposition number FERM BP-7861, Paecilomyces tenuipes ATCC44818, Paecilomyces fumosoroseus IFO8555, and Paecilomyces fumosoroseus IFO7072. Examples of an agrochemically active microbe belonging to Beauveria include microbes belonging to Beauveria bassiana and Beauveria brongniartii. Examples of an agrochemically active microbe belonging to Metarhizium anisopliae, Metarhizium flavoviride and Metarhizium cylindrosporae. Examples of an agrochemically active microbe belonging to Nomuraea include Nomuraea rileyi. Examples of an agrochemically active microbe belonging to Fusarium moniliforme, Fusarium oxysporum and Fusarium equiseti. Examples of an agrochemically active microbe belonging to Trichoderma include microbes belonging to Trichoderma aureoviride. Examples of an agrochemically active microbe belonging to Exserohilum include microbes belonging to Exserohilum monoceras.

[0018] Among these agrochemically active microbes, a pest controlling filamentous fungus is more preferable. Specifically, example of the pest controlling filamentous fungus includes any one of the following pest controlling filamentous fungi:

20

25

35

55

- (1) insect pest controlling filamentous fungus of Paecilomyces,
- (2) insect pest controlling filamentous fungus in which DNA encoding a nuclear 5.8S ribosomal RNA comprises the nucleotide sequence of SEQ ID NO:1 and DNA encoding a nuclear 28S ribosomal RNA comprises the nucleotide sequence of SEQ ID NO:2,
- (3) insect pest controlling filamentous fungus belonging to Paecilomyces tenuipes, and
- (4) pest controlling filamentous fungus which is Paecilomyces tenuipes T1 strain deposited at International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology as a deposition number FERM BP-7861.
- 30 [0019] These microbes may be separated from a nature, or may be purchased from a strain storage organization or the like.
 - **[0020]** When the agrochemically active microbe is a insect pest controlling filamentous fungus, for example, the fungus may be selected as follows.
 - [0021] When isolating from nature, first, a dead insect is taken in field, which has already stiffened and has a synnema growing from a body thereof. A conidium formed on said dead insect is touched with a platinum loop, and the platinum loop is rubbed on a solid culture medium such as SDY medium (composition: 1% (W/V) of peptone, 1% (W/V) of yeast extract, 2% (W/V) of glucose, 1.5% (W/V) of agar) and Czapek medium (composition: 0.3% (W/V) of NaNO₃, 0.1% (W/V) of K₂HPO₄, 0.05% (W/V) of MgSO₄ · 7H₂O, 0.05% (W/V) of KC1, 0.001% (W/V) of FeSO₄ · 7H₂O, 3% (W/V) of sucrose, 1.5% (W/V) of agar) in a line motion. The culture medium is cultured for few days at 25°C, and then an independent colony of a grown fungus is cut out and transferred to a new solid culture medium such as SDY medium and Czapek medium. The colony is further cultured at 25°C. A insect pest controlling filamentous fungus may be selected by identifying grown fungi (e.g., determining whether the filamentous fungus is categorized under the Paecilomyces) according to a method described in, for example, "Shokubutu Boeki (Plant Disease Protection)" a special issue No.2, Tenteki-Biseibutu-No-Kenkyu-Shuho, published by Japan Plant Protection Association.
- [0022] Next, the selected insect pest controlling filamentous fungus is determined whether it has an insecticidal activity. The selected insect pest controlling filamentous fungus (e.g., filamentous fungus of the genus Paecilomyces) is cultured on a solid culture medium such as SDY medium and Czapek medium at 25°C. A formed conidium is suspended in sterile water so that a concentration thereof is 1 × 10⁸ CFU/mL. Ten insects belonging to the same species as of the dead insect from which the fungus has been isolated are dipped in the resultant suspension for 30 seconds and then kept under conditions of 25°C and 100% humidity. If there is a dead insect 6 days after dipping, the fungus can be selected as an insect pest controlling filamentous fungus (e.g., insecticidal filamentous fungus of the genus Paecilomyces).
 - **[0023]** Paecilomyces tenuipes strain T1 was originally deposited under an accession number FERM P-18487 and has been deposited under the Budapest Treaty with the National Institute of Advanced Industrial Science and Technology International Patent Organism Depositary as an accession number FERM BP-7861 after transfer from the original deposition to the international deposition. Mycological properties thereof are as follows.
 - (1) the growth rate (25°C, 7 days) diameter of the colony: 25 to 30 mm (2% maltose extract agar medium plate), 25 to 30 mm (oatmeal agar medium

plate)

(2) color of the front surface of colony

white (2% maltose extract agar medium plate), white (oatmeal agar medium plate)

- (3) color of the under surface of colony
- white (2% maltose extract agar medium plate), white to light yellow (oatmeal agar medium plate)
 - (4) texture of the front surface of colony

wool-like to down-like

- (5) conidiophore
- smooth-surfaced branching and unstructured verticil
- 10 (6) conidium

15

30

35

- smooth-surfaced elliptical to circular shape linkage, about 4 μ m imes about 2 μ m
- (7) chlamydospore

none (25°C, 9 day period)

(8) nucleotide sequence of DNA encoding a nuclear 5.8S ribosomal RNA and nucleotide sequence of DNA encoding a nuclear 28S ribosomal RNA

the nucleotide sequence of DNA encoding a nuclear 5.8S ribosomal RNA is shown in SEQ ID NO: 1 and the nucleotide sequence of DNA encoding a nuclear 28S ribosomal RNA of is shown in SEQ ID NO: 2.

[0024] The agrochemically active microbe used in the present formulation can be prepared by culturing it in a liquid culture medium or a solid culture medium.

[0025] The culture medium used in culturing said fungus is not specifically limited as long as it allows said fungus to proliferate, and those can be used that are conventionally used for culturing microorganisms and contain appropriately a carbon source, a nitrogen source, an organic salt and an inorganic salt.

[0026] The liquid culture medium can be usually prepared by appropriately mixing water with a carbon source, a nitrogen source, an organic salt, an inorganic salt, vitamins and the like.

[0027] Examples of the carbon source used in the liquid culture medium include sugars such as glucose, dextrin and sucrose; sugar alcohols such as glycerol; organic acids such as fumaric acid, citric acid and pyruvic acid; animal oils; plant oils; molasses and the like. The amount of the carbon source contained in the culture medium is usually 0.1 to 20% (w/v).

[0028] Examples of the nitrogen source used in the liquid culture medium include natural organic nitrogen sources such as meat extract, peptone, yeast extract, malt extract, soybean powder, corn steep liquor, cotton seed powder, dried yeast and casamino acid; ammonium salts or nitrates of inorganic acids such as sodium nitrate, ammonium chloride, sodium sulfate and ammonium phosphate; ammonium salts of organic acids such as ammonium fumarate and ammonium citrate; urea; amino acids and the like. The amount of the nitrogen source contained in the culture medium is usually 0.1 to 30% (w/v).

[0029] Examples of the organic salt and the inorganic salt used in the liquid culture medium include chlorides, sulfates, acetates, carboxylates or phosphates of potassium, sodium, magnesium, iron, manganese, cobalt and zinc and the like, and more specifically, include sodium chloride, potassium chloride, magnesium sulfate, iron (I) sulfate, manganese sulfate, cobalt chloride, zinc sulfate, copper sulfate, sodium acetate, calcium carboxylate, sodium carboxylate, potassium phosphate monohydrate and potassium phosphate dihydrate and the like. The amount of the inorganic salt or organic salt contained in the culture medium is usually 0.0001 to 5% (w/v).

[0030] Examples of the vitamin include thiamine and the like.

[0031] Examples of the solid culture medium include main crops such as rice, wheat and the like and cereals such as maize, millet, barnyard grass, kaoliang, buckwheat and the like and sawdust, bagasse, rice hulls, wheat bran, seedpod, straw, corn cob, cotton seed lees, bean curd refuse, agar and gelatin and the like. Those may be used as a mixture of two or more of them. Also included are those which contain the carbon source, the nitrogen source, the organic salt, the inorganic salt and/or the vitamin and the like used in the liquid culture medium described above.

[0032] Specific examples of the culture medium used in culturing the agrochemically active microbe include liquid culture media such as 2% maltose extract liquid medium, oatmeal liquid medium, potato dextrose liquid medium, Sabouraud liquid medium and L-broth liquid medium and solid culture media such as rice, barley, wheat bran and an agar medium (2% maltose extract agar medium, oatmeal agar medium, potato dextrose agar medium, Sabouraud agar medium, L-broth agar medium and the like).

[0033] Cultivation of the microbe can be conducted according to methods conventionally utilized to culture microorganisms.

⁵⁵ [0034] That is, examples of a method for culturing in a liquid culture medium include test tube shake culture, reciprocal culture, jar fermenter and tank culture, and examples of a method for culturing in a solid culture medium include stationary culture, which may be turned according to need.

[0035] The culture temperature may appropriately change in the range which allows the Fungus to grow, but is usually

the range of 10°C to 35°C, and preferably 15°C to 35°C. The pH of the culture medium is usually the range of about 4 to 11, and preferably about 5 to 7. The culture period may change with the culturing conditions, but is usually in the range of about 1 day to about 2 months.

[0036] The microbe can be obtained by a method of centrifuging a culture fluid in which the microbe is cultured, a method of adding distilled water and the like to and scraping the microbefrom the surface of a solid culture medium on which the microbe is cultured or a method of drying and grinding the solid culture medium and then fractionating with sieve.

[0037] A preferable state of the agrochemically active microbe used in the present formulation includes a state of a dry powder from a viewpoint of stability of the microbe. It is suitable that a water content of the dry powder is not more

than 10% by weight, preferable not more than 7% by weight.

10

15

20

25

30

35

40

45

50

55

[0038] A preferable form of the agrochemically active microbe used in the present formulation is not particularly limited, but there is a preferable form for every kind of the agrochemically active microbe. Specifically, for example, in the case of Paecilomyces, Beauveri, Metarhizium, Nomuraea, Verticillium, Hirsutella, Culicinomyces, Sorosporella, Tolypocladium, Fusarium, Trichoderma and Exserohilum, generally, since their conidium has a hydrophobic surface, conidium is exemplified as a preferable form.

[0039] An amount of the agrochemically active microbe contained in the present formulation is not particularly limited as far as the present formulation is prepared so that necessary efficacy is obtained when applied, but is usually around 0.1 to 30% by weight, preferably around 0.5 to 20 % by weight, more preferably around 1 to 15% by weight, particularly preferably around 1 to 10% by weight relative to a total weight of the present formulation. In addition, it is preferable that the agrochemically active microbe is usually contained at 10³ to 10¹³ CFU (CFU: colony forming unit) per gram of the present formulation.

[0040] The ester compound used in the present formulation (i.e., the present ester compound) refers to at least one kind of ester compound selected from the following group.

(1) An ester compound which is liquid at 25°C, of monovalent fatty acid and polyhydric alcohol represented by the formula (IV):

$$HO \longrightarrow (CH_2)_m \longrightarrow C \longrightarrow (CH_2)_n \longrightarrow OH$$
 (IV)

wherein R^1 and R^2 are the same or different, and represent a hydrogen atom, a methyl group, an ethyl group, a hydroxylmethyl group or a 2-hydroxy group, and m and n are the same or different, and represent 1 or 2, provided that R^1 and R^2 are not a hydrogen atom at the same time (incidentally, it is preferable that the number of free hydroxyl groups in the ester compound is smaller),

(2) An ester compound which is liquid at 25°C, of diglycerin $[O[CH_2CH(OH)CH_2OH]_2$ registered as CAS No.627-82-7, also known as another name of Diglycerol]

and monovalent fatty aid, and

(3) A diester compound which is liquid at 25°C, of adipic acid [HOOC(CH₂)₄COOH registered as CAS No.124-04-9]

$$HOOC - C - C - C - C - COOH$$
 $H_2 \quad H_2 \quad H_2 \quad H_2$

and monohydric alcohol.

[0041] The "polyhydric alcohol represented by the formula (I) (or the formula (II), (III) or (IV))" in the present invention may be unsaturated, and is preferably saturated. Preferable examples of the polyhydric alcohol include Pentaerythritol [C(CH₂OH)₄ registered as CAS No.115-77-5, also known as Pentaerythrit,2,2-Bis(hydroxymethyl)-1,3-propanediol, Tet-

rakis(hydroxymethyl)methane, Tetramethylolomethane as another name],

Trimethylolalkane [e.g. 2-alkyl-2-hydroxymethyl-1,3-propanediol, a representative of which is $C_5H_{12}O_3$ registered as CAS No.77-85-0, and $C_6H_{14}O_3$ registered as CAS No.77-99-6; wherein the "alkyl" includes, for example, lower alkyl (specifically, e.g. methyl, ethyl etc.)],

$$H_{2}C$$
—OH
$$H_{3}C$$
— CH_{2} — C — C —OH
$$H_{2}C$$
—OH

Neopentyl Glycol [HOCH $_2$ C(CH $_3$) $_2$ CH $_2$ OH registered as CAS No.126-30-7, also known as 2,2-dimethyl-1,3-propanediol as another name]

$$H_{2}$$
 H_{2} H_{2} H_{2} H_{3} H_{3} H_{3} H_{3} H_{4} H_{5} H_{5

[0042] The "monovalent fatty acid" in the present invention may not be branched, or may be branched. In addition, the monovalent fatty acid may be unsaturated, and is preferably saturated. Further, it is suitable that the monovalent fatty acid is fatty acid having the number of carbon atoms of not less than 7 and not more than 18. Examples of such a monovalent fatty acid include specifically n-heptanoic acid, an isomer of n-heptanoic acid, n-octanoic acid, an isomer of n-octanoic acid (e.g. 2-ethylhexanoic acid), n-nonanoic acid, an isomer of n-nonanoic acid, n-decanoic acid, an isomer of n-decanoic acid, n-undecanoic acid, an isomer of n-undecanoic acid, n-dodecanoic acid, an isomer of n-tridecanoic acid, n-tetradecanoic acid, an isomer of n-pentadecanoic acid, n-hexadecanoic acid, an isomer of n-hexadecanoic acid, n-heptadecanoic acid, an isomer of n-heptadecanoic acid, n-octadecanoic acid, and an isomer of n-octadecanoic acid. Inter alia, 2-ethylhexanoic acid which is an isomer of n-octanoic acid, an isomer of n-octadecanoic acid or n-decanoic acid (capric acid) is preferable.

[0043] The "monohydric alcohol" in the present invention may not be branched, or may be branched. In addition, the monohydric alcohol may be unsaturated, and is preferably saturated. Further, it is suitable that the monohydric alcohol is a monohydric alcohol having the number of carbon atoms of not less than 6 and not more than 18. Examples of such a monohydric alcohol include specifically n-hexyl alcohol, an isomer of n-hexyl alcohol, n-heptyl alcohol, an isomer of n-heptyl alcohol, n-cotyl alcohol, an isomer of n-octyl alcohol (e.g. 2-ethylhexyl alcohol), n-nonyl alcohol, an isomer of n-nonyl alcohol (e.g. 5-nonyl alcohol), n-decyl alcohol, an isomer of n-decyl alcohol, n-undecyl alcohol, an isomer of n-undecyl alcohol, n-dodecyl alcohol, an isomer of n-tetradecyl alcohol, n-tetradecyl alcohol, an isomer of n-tetradecyl alcohol, n-pentadecyl alcohol, an isomer of n-hexadecyl alcohol, n-heptadecyl alcohol, an isomer of n-hexadecyl alcohol, n-octadecyl alcohol, and an isomer of n-octadecyl alcohol (e.g. 2-heptylundecyl alcohol). Inter alia, preferable examples include 2-heptylundecyl alcohol.

[0044] Examples of a particularly preferable present ester compound include at least one king of ester compound selected from the following group.

- (a) A tetraester compound which is liquid at 25°C, of pentaerythritol and 2-ethylhexanoic acid,
- (b) A triester compound which is liquid at 25°C, of trimethylolpropane and isomer of n-octadecanoic acid,
- (c) A diester compound which is liquid at 25°C, of neopentyl glycol and capric acid,
- (d) A tetraester compound which is liquid at 25°C, of diglycerin and isomer of n-octadecanoic acid,
- (e) A triester compound which is liquid at 25°C, of diglycerin and isomer of m-octadecanoic acid, and
- (f) A diester compound which is liquid at 25°C, of adipic acid and 2-heptylundecyl alcohol.

[0045] The present ester compound can be chemically synthesized by binding an acid and an alcohol by an ester reaction and, for example, in the case of a tetraester compound obtained by reacting pentaerythritol and 2-ethylhexanoic acid, the compound can be also purchased as a commercially available product (e.g. SALACOS 5408 (registered trademark) etc.) from The Nisshin OilliO Group, Ltd. In the case of a trimester compound obtained by reacting trimethylolpropane and an isomer of n-octadecanoic acid, the compound can be also purchased as a commercial available product (e.g. SALACOS 6318V (registered trademark) etc.) from The Nisshin OilliO Group, Ltd.. In the case of a diester compound obtained by reacting neopentyl glycol and capric acid, the compound can be also purchased as a commercially available product (e.g. UNISTER H-210H (registered trademark) etc.) from NOF CORPORATION. In the case of a tetraester compound obtained by reacting diglycerin and an isomer of n-octadecanoic acid, the compound can be also purchased as a commercially available product (e.g. COSMOL 44V (registered trademark) etc.) from The Nisshin OilliO Group, Ltd. In the case of a triester compound obtained by reacting diglycerin and an isomer of n-octadecanoic acid, the compound can be also purchased as a commercially available product (e.g. COSMOL 43V (registered trademark) etc.) from The Nisshin OilliO Group, Ltd. In the case of a diester compound obtained by reacting adipic acid and isodecyl alcohol, the compound can be also purchased as a commercially available product (e.g. VINYCIZER 50 (registered trademark) etc.) from Kao Corporation. In the case of a diester compound obtained by reacting adipic acid and 2heptylundecyl alcohol, the compound can be also purchased as a commercially available product (e.g. SALASCO 618 (registered trademark) etc.) from The Nisshin OilliO Group, Ltd.

[0046] An amount of the present ester compound contained in the present formulation is, for example, usually around 40 to 99.8% by weight, preferably around 60 to 98.5% by weight, more preferably around 75 to 98% by weight, particularly around 80 to 96% by weight relative to a total weight of the present formulation.

[0047] A viscosity of the present ester compound at 25°C is usually not higher than 2000mPa·s, preferably not higher than 1000mPa·s, more preferably not higher than 500mPa·s, particularly preferably not higher than 400mPa·s. A method of measuring a viscosity may be any method as far as it is a method suitable for measuring a viscosity of an ester compound which is liquid at 25°C.

30

35

50

[0048] The present ester compound may be used alone, or by mixing two or more kinds. When used by mixing two or more kinds, each compound may be mixed arbitrarily.

[0049] When the present ester compound is used by mixing two or more kinds, an amount of the mixture of the present ester compounds contained in the present formulation is, for example, usually around 40 to 99.8% by weight, preferably around 60 to 98.5% by weight, more preferably around 75 to 98% by weight, particularly preferably around 80 to 96% by weight relative to a total weight of the present formulation.

[0050] The surfactant used in the present formulation is a surfactant suitable for emulsifying the present ester compound (i.e. present surfactant), and the surfactant dose not include the present ester compound, and is not particularly limited as far as it dose not adversely influence on the agrochemically active microbe contained in the present formulation, and a plant to be applied. The present surfactant may be used alone, or may be used by mixing two or more kinds of surfactants. [0051] Examples of the surfactant suitable for emulsifying the present ester compound (i.e. present surfactant) include preferably a nonionic surfactant. Specific examples include nonionic surfactants such as dialkylsulfosuccinate, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, sorbit fatty acid ester, polyoxyalkylenealkyl ether (e.g. polyoxyethylenealkyl ether), polyoxyethylene hardened castor oil, polyoxyethylene fatty acid amide, sugar alcohol derivative, and silicone-based surfactant.

[0052] More preferably, examples include polyoxyethylene fatty acid ester and polyoxyethylenealkyl ether. Specifically, examples of polyoxyethylene fatty aid ester include Pegnol 14-0 (registered trademark) (manufactured by TOHO Chemical Industry Co., Ltd.), and examples of polyoxyethylenealkyl ether include Pegnol O-4 (registered trademark) (manufactured by TOHO Chemical Industry Co., Ltd.), and Pegnol 0-6A (registered trademark) (manufactured by TOHO Chemical Industry Co., Ltd.).

[0053] Among the HLB of the nonionic surfactant used in the present formulation, the HLB which is more suitable in the present invention is determined by a kind and a content of the ester compound used in combination, and generally includes a range of 7 to 12.

[0054] A preferable range of the HLB possessed by at least one kind of nonionic surfactant selected from the group consisting of polyoxyethylene fatty acid ester, sorbitan fatty acid ester and polyoxyalkylenealkyl ether which are the nonionic surfactant used in a combination with the present ester compound is 7 to 10, more preferably 7 to 9. The HLB is calculated by the following calculating equation and, when as the present surfactant, two or more kinds of surfactants

are used by mixing them, the HLB of each surfactant is obtained and, thereafter, the HLB of the surfactant mixture may be obtained as a sum of values that is obtained by multiplying the HLB obtained for each surfactant with an existing ratio.

HLB=(molecular weight of hydrophilic part/molecular

weight of surfactant) \times 20

5

10

20

30

35

55

[0055] An amount of the present surfactant contained in the present formulation is, for example, usually around 0.1 to 30% by weight, preferably around 1 to 20% by weight, more preferably around 1 to 10% by weight, particularly preferably around 3 to 10% by weight.

[0056] A ratio by weight (part by weight) of each component contained in the present formulation to be blended in the formulation is, for example, such that present ester compound: present surfactant: agrochemically active microbe is usually 40 to 99.8 parts by weight: 0.1 to 30 parts by weight: 0.1 to 30 parts by weight, preferably 60 to 98.5 parts by weight: 1 to 20 parts by weight: 0.5 to 20 parts by weight, more preferably 75 to 98 parts by weight: 1 to 10 parts by weight: 1 to 15 parts by weight, particularly preferably 80 to 96 parts by weight:

3 to 10 parts by weight: 1 to 10 parts by weight.

[0057] In addition to the above components, further if necessary, as other component or a balance, a supplemental material which is usually used in agriculture, for example, a solid carrier, a liquid carrier, a liquid nature regulating agent (pH regulating agent etc.), a spreader, an extender, a wetting agent, a stabilizer, (antiseptic, drying agent, lyophilization preventing agent, coagulation preventing agent, antioxidant, ultraviolet absorbing agent, thickener), drift preventing agent and the like can be added to the present formulation in such a range that the pest controlling effect and the formulation property possessed by the agrochemically active microbe are not lost.

[0058] When these supplemental materials are added, a total of addition amounts thereof is usually not less than 0.1% by weight and not more than 50% by weight, preferably not less than 0.5% by weight and not more than 20% by weight relative to a total weight of the present formulation.

[0059] A conventional process for producing an agrochemical formulation can be applied to a process for producing the present formulation. For example, the present formulation can be produced by mixing fungal cells of the agrochemical microbe obtained by the aforementioned method, the present ester compound and the present surfactant and, further if necessary, other components or a supplemental material as a balance. Upon mixing, components may be mixed using a stirring machine such as a small magnetic stirrer, or may be mixed using a large stirring tank provided with various stirring wings which are generally utilized. The stirring tank may be provided with a baffle, if necessary.

[0060] Examples of a pest for which the present formulation has the pest controlling effect include pests such as the following agricultural or horticultural crop pests based on the pest controlling effect of the agrochemically active microbe used in the present formulation.

[0061] Hemiptera: planthoppers (Delphacidae) such as small brown planthopper (Laodelphax striatellus), brown rice planthopper (Nilaparvata lugens) and whitebacked rice planthopper (Sogatella furcifera); leafhoppers (Deltocephalidae) such as green rice leafhopper (Nephotettix cincticeps) and tea green leafhopper (Empoasca onukii); aphids (Aphididae) such as cotton aphid (Aphis gossypii), green peach aphid (Myzus persicae) and turnip aphid (Lipaphis pseudobrassicae); shield bugs (Pentatomidae); whiteflies (Aleyrodidae) such as greenhouse whitefly (Trialeurodes vaporariorum), sweetpotato whitefly (Bemisia tabaci) and silverleaf whitefly (Bemisia argentifolii); scales; lace bugs (Tingidae); psyllids (Psyllidae) and the like.

[0062] Lepidoptera: pyralid moths (Pyralidae) such as rice stem borer (Chilo suppressalis), rice leaf roller (Cnaphalocrocis medinalis), European corn borer (Ostrinia nubilalis) and Parapediasia teterrella; owlet moths (Noctuidae) such as common cutworm (Spodoptera litura), beet armyworm (Spodoptera exigua), oriental armyworm (Pseudaletia separata), cabbage armyworm (Mamestra brassicae), black cutworm (Agrotis ipsilon), Trichoplusia spp., Heliothis spp., Helicoverpa spp. (e.g., corn earworm (Helicoverpa armigera)), Earias spp. and Autographa spp. (e.g., beet semi-looper (Autographa nigrisigna)); whites (Pieridae) such as common cabbageworm (Pieris rapae crucivora); yponomeutids (Yponomeutidae) such as diamondback moth (Plutella xylostella); tussock moths (Lymantriidae) such as oriental tussock moth (Euproctis taiwana), gypsy moth (Lymantria dispar), browntail moth (Euproctis similis); slug caterpillar moths (Limacodidae) such as Scopelodes contracus; tent caterpillar moths (Lasiocampidae) such as pine caterpillar (Dendrolimus spectabilis); leafroller moths (Tortricidae) such as summer fruit tortrix (Adoxophyesorana fasciata), oriental fruit moth (Grapholita molesta) and Codling moth (Cydia pomonella); Carposinidae such as peach fruit moth (Carposina niponensis); Lyonetiidae such as Apple leaf miner (Lyonetia clerkella); Gracillariidae such as Apple leafminer (Phyllonorycter ringoniella); Phyllocnistidae such as citrus leafminer (Phyllocnistis citrella); Yponomeuta evonymella such as cabbage moth (Plutella xylostella); gelechiid moths (Gelechii) such as Pink Bollworm (Pectinophora gossypiella); tiger

moths (Arctiidae); Tineidae and the like.

[0063] Coleoptera: leaf beetles (Chrysomelidae), chafers (Scarabaeidae), snout beetles (Curculionidae), leaf-rolling weevils (Attelabidae), Lady Beetles (Coccinelidae), Longhorn Beetles (Cerambycidae), Darkling Beetles (tenebrionidae) and the like.

[0064] Thysanoptera: thrips (Thripidae) such as the genus Thrips (e.g., melon thrips (Thrips palmi)), the genus Frankliniella (e.g., Western Flower Thrips (Frankliniella occidentalis)) and the genus Sciltothrips (e.g., yellow tea thrips (Sciltothrips dorsalis)); Tube-tailed Thrips (Phlaeothripidae) and the like.

[0065] Orthoptera: grasshoppers (ACRIDIDAE), mole crickets (Gryllotalpidae).

[0066] Rice plant disease: such as Thanatephorus cucumeris, Pyricularia oryzae and Cochliovolus miyabeanus of Rice plant.

[0067] Disease of wheat, barley, rye and oats: such as Erysiphe graminis, Ustillago nuda, Septoria tritisi, Leptospharia nudorum, Pseudocercosporella herpotrichoides, Puccinia recondita, Puccinia graminis and Rhynchosporium secalis of wheat, barley, rye and oats.

[0068] Pulse disease: such as Cercospora arachidicola of peanut, Cercospora kikuchii of soybean, Ascochyta pisi of pea, Botrytis fabae of broad bean, Botrytis cinerea and Sclerotinia sclerotiorum of pulse.

[0069] Disease of potato and crops for special use: such as Phytophthora infestans and Alternaria salani of potato, Cercopora beticola of sugar beet, Pseudomonas solanacearum of potato.

[0070] Vegetable disease: such as Botrytis cinerea and Sclerotinia sclerotiorum of vegetables such as solanaceous vegetable, cucurbitaceous vegetable, strawberry, lettuce and onion; Cladosporium fulvum, Alternaria salani, Fusarium oxysporum and Pyrenochaeta lycopersici of tomato; Phytophthora infestans, Verticillium dahliae and Pseudomonas solanacearum of tomato and eggplant; Phytophthora capsici of bell pepper; Colletotrichum lagenarium, Mycosphaerella melonis, Sphaerotheca fuliginea, Fusarium oxysporum and Pseudoperonospora cubensis of cucurbitaceous vegetable; Puccinia allii and Sclerotinia allii of leek; Alternaria brassicae of Chinese cabbage; Alternaria dauci of carrot; Sphaerotheca humuli and Colletotrichum fragariae of strawberry; Alternaria brassicicola of cabbage; Peronospora brassicae of vegetables and radish; Peronospora spinaciae of spinach; Peronospora tabacina of tobacco; and Plasmopala nivea of umbelliferous plant.

[0071] Flowers disease: such as Botrytis cinerea of flowers such as cyclamen, chrysanthemum, rose and notch-leaf sea lavender; Spaerotheca pannosa of rose; and Puccinia horiana of chrysanthemum.

[0072] Fruit tree disease: such as Penicillium italicum, Diaporthe citri, Penicillium digitatum, Penicillium italicum of citrus; Gymnosporangium asiaticum, Alternaria kikuchiana, Venturia nashicola, Venturia inaequalis, Alternaria mali of pear; Monilinia fructicola of peach; and Botrytis cinerea and Glomerella cingulata of grape.

[0073] Turf disease: such as Rhizoctonia solani, Curvularia sp, Helminthosporium sp, Puccinia zoysiae, Sclerotinia homoeocarpa, Fusarium, Rhizoctonia, Pythium and Typhula incarnata of turf.

[0074] The present formulation can be usually used by applying to a pest such as an agricultural or horticultural crop pest, a habitat of a pest such as an agricultural or horticultural crop pest, or a plant such as an agricultural or horticultural crop (specifically, e.g. tomato, cabbage, cucumber, pumpkin, common bean, egg plant, bell pepper, radish, water melon, strawberry etc.) to be protected from a pest such as an agricultural or horticultural crop pest. When applied to a plant which should be protected from a pest, usually, the present formulation may be used by diluting with water to a concentration of 10³ to 10¹² CFU/ml as an amount of cells of an agrochemically active microbe, and applying the diluted solution to a foliage of the plant.

[0075] The diluted solution may be used by applying to soil where the plant is growing. This application may be used when the agrochemically active microbe is a plant disease controlling filamentous fungus (specifically, soil-borne plant disease controlling filamentous fungus).

[0076] When the present formulation is applied to a pest, a habitat of a pest, or a plant to be protected from a pest, an application amount is usually 10⁵ to 10¹⁹ CFU, preferably 10⁷ to 10¹⁷ CFU as an amount of cells of the agrochemically active microbe used in the present formulation per 1000 m².

Examples

30

35

[0077] The following examples illustrate specifically the present invention, but the present invention is not limited to these examples.

Example 1 (Production of the present formulation: 1)

[0078] In a glass bottle, 93.0% by weight of SALACOS 5408 (manufactured by The Nisshin OilliO Group, Ltd.) and 5.0% by weight of Pegnol 24-O (manufactured by TOHO Chemical Industry Co., Ltd.) were charged and mixed well, and then added 2.0% by weight of a fungus powder obtained in Reference Example 3 and mixed to obtain the present formulation (1).

Example 2 (Production of the present formulation: 2)

[0079] In a glass bottle, 93.0% by weight of SALACOS 6318V (manufactured by The Nisshin OilliO Group, Ltd.) and 5.0% by weight of Pegnol 24-0 (manufactured by TOHO Chemical Industry Co., Ltd.) were charged and mixed well, and then added 2.0% by weight of a fungus powder obtained in Reference Example 3 and mixed to obtain the present formulation (2).

Example 3 (Production of the present formulation: 3)

- [0080] In a glass bottle, 93.0% by weight of COSMOL 44V (manufactured by The Nisshin OilliO Group, Ltd.) and 5.0% by weight of Pegnol 24-0 (manufactured by TOHO Chemical Industry Co., Ltd.) were charged and mixed well, and then added 2.0% by weight of a fungus powder obtained in Reference Example 3 and mixed to obtain the present formulation (3).
- Example 4 (Production of the present formulation: 4)

20

30

35

45

50

55

[0081] In a glass bottle, 93.0% by weight of COSMOL 43V (manufactured by The Nisshin OilliO Group, Ltd.) and 5.0% by weight of Pegnol 24-0 (manufactured by TOHO Chemical Industry Co., Ltd.) were charged and mixed well, and then added 2.0% by weight of a fungus powder obtained in Reference Example 3 and mixed to obtain the present formulation (4).

Example 5 (Production of the present formulation: 5)

[0082] In a glass bottle, 93.0% by weight of SALACOS 618 (manufactured by The Nisshin OilliO Group, Ltd.) and 5.0% by weight of Pegnol 24-O (manufactured by TOHO Chemical Industry Co., Ltd.) were charged and mixed well, and then added 2.0% by weight of a fungal cell powder obtained in Reference Example 3 and mixed to obtain the present formulation (5).

Example 6 (Production of the present formulation: 6)

[0083] In a glass bottle, 85.0% by weight of UNISTER H-210R (manufactured by NOH CORPORATION) and 10.0% by weight of Pegnol 24-0 (manufactured by TOHO Chemical Industry Co., Ltd.) were charged and mixed well, and then added 5.0% by weight of a fungus powder obtained in Reference Example 3 and mixed to obtain the present formulation (6).

Example 7 (Production of the present formulation: 7)

[0084] In a glass bottle, 30.0% by weight of SALACOS 5408 (manufactured by The Nisshin OilliO Group, Ltd.), 25.0 % by weight of COSMOL 44V(manufactured by The Nisshin OilliO Group, Ltd.), 30.0% by weight of UNISTER H-210R (manufactured by NOH CORPORATION) and 10.0% by weight of Pegnol 24-O (manufactured by TOHO Chemical Industry Co., Ltd.) were charged and mixed well, and then added 5.0% by weight of a fungus powder obtained in Reference Example 3 and mixed to obtain the present formulation (7).

Example 8 (Production of the present formulation: 8)

[0085] In a glass bottle, 94.7% by weight of SALACOS 5408 (manufactured by The Nisshin OilliO Group, Ltd.) and 5.0% by weight of Pegnol 24-O (manufactured by TOHO Chemical Industry Co., Ltd.) were charged and mixed well, and then added 0.3% by weight of a fungus powder obtained in Reference Example 3 and mixed to obtain the present formulation (8).

Example 9 (Production of the present formulation: 9)

[0086] In a glass bottle, 40.0% by weight of SALACOS 5408 (manufactured by The Nisshin OilliO Group, Ltd.), 45.0% by weight of COSMOL 44V (manufactured by The Nisshin OilliO Group, Ltd.) and 10.0% by weight of Pegnol 24-O (manufactured by TOHO Chemical Industry Co., Ltd.) were charged and mixed well, and then added 5.0% by weight of a fungus powder obtained in Reference Example 3 and mixed to obtain the present formulation (9).

Test Example 1 (Stability of agrochemically active microbe viability in the present formulation)

[0087] Each 20 mg of a sample was taken from each of the present formulations (1) to (7), and added with 20 mL of sterile diluted water to prepare a suspension. The suspension was diluted to an appropriate concentration with the sterile diluted water. 100 μ L of the resultant diluted suspension was dropped and spread on a potato dextrose agar medium, and cultured for 3 days at 25°C. After cultivation, a viable count of the agrochemically active microbe in the formulation was determined by counting grown colonies. At the same time, each of the present formulations (1) to (7) was placed in a glass screw cap bottle and closed, and then stored in dark for 2, 4 or 8 weeks at 40°C. 20 mg of a sample was taken from each of the stored present formulations (1) to (7), and added with 20 mL of sterile diluted water to prepare a suspension. The suspension was diluted to an appropriate concentration with the sterile diluted water. 100 μ L of the resultant diluted suspension was dropped and spread on a potato dextrose agar medium, and cultured for 3 days at 25°C. After cultivation, a viable count of the agrochemically active microbe in the formulation was determined by counting grown colonies. The sterile diluted water used was prepared by adding Shin Lino (Nihon Nohyaku Co. , Ltd.) and Silwet L-77 (Nippon Unica Co.) in a concentration of 0.1% (w/v) each to an aqueous solution of 0.85% (w/v) of sodium chloride, and sterilizing. Time course of the viable count of the agrochemically active microbe of each of the present formulations (1) to (7) from storage initiation to storage 8 weeks is shown in Table 1.

Table 1

2	20)	

10

25

30

35

40

	Viable count (CFU/g)			
Storage term	Preparation day	2 weeks	4 weeks	8 weeks
Present formulation (1)	1.5 × 10 ⁹	8.3 × 10 ⁸	5.8 × 10 ⁸	2.7×10^{8}
Present formulation (2)	1.5 × 10 ⁹	1.5×10^{9}	4.1 × 10 ⁸	2.1×10^{8}
Present formulation (3)	$1.7 imes 10^9$	1.7×10^{9}	4.3×10^{8}	1.8 × 10 ⁸
Present formulation (4)	1.4 × 10 ⁹	5.7 × 10 ⁸	2.6×10^{8}	8.2×10^{7}
Present formulation (5)	1.6 × 10 ⁹	1.6 × 10 ⁹	3.7×10^{8}	2.4 × 10 ⁸
Present formulation (6)	5.1 × 10 ⁹	3.4×10^{9}	2.8×10^{9}	1.7×10^{9}
Present formulation (7)	5.0 × 10 ⁹	3.5×10^{9}	3.6×10^{9}	1.9 × 10 ⁹

Test Example 2 (Emulsification test of present formulation)

[0088] 230 mL of water of hardness 3 was charged into a 250 mL cylinder with a fitted stopper. The cylinder was stopped up with the stopper, and then allowed to stand for 30 minutes or longer at 20°C in a thermostat bath. 500 mg each of the present formulations (1) to (7) was added to individual cylinders, and then each of these cylinders was adjusted to 250 mL by adding water of hardness 3 at 20°C. The cylinder was stopped up with the stopper, and then turned upside down ten times for 20 seconds, and then allowed to stand at 20°C in a thermostat bath. After 30 minutes, the cylinder was taken out from the thermostat bath, and the emulsified state was observed. Results are shown in Table 2.

Table 2

50	

45

50

	Emulsified state
Present formulation (1)	Uniformly emulsified
Present formulation (2)	Uniformly emulsified
Present formulation (3)	Uniformly emulsified
Present formulation (4)	Uniformly emulsified
Present formulation (5)	Uniformly emulsified
Present formulation (6)	Uniformly emulsified
Present formulation (7)	Uniformly emulsified

Test Example 3 (Phytotoxicity test of present formulation)

[0089] In a 100 ml glass beaker, 1g of each of the present formulations (1) to (7) was charged and added 100ml of distilled water, and then stirred for 3 minutes using a magnetic stirrer to obtain a test solution.

[0090] Cucumber, Cucumis sativus (variety: Sagamihanpaku) from which fourth true leaf or more had been excised, and tomato, Lycopersicon esculentum (variety: Patio) with 3 to 4 of true leaves were used as test plants, and a sufficient amount of the test solution was applied to a surface and a back of the plant leaves. The test plants after treatment were transferred into a greenhouse, and pots of the plants were soaked in an aqueous fertilizer during a test term. After treatment, growth and injury of the plants were observed periodically and, seven days after treatment (cucumber) or fourteen days after treatment (tomato), the plant injury was recorded at four levels (-: no injury, ±: injury, or symptom regarded as injury is recognized, but not practically problematic, +: injury is recognized, and practically problematic, ++: died). Average temperature and humidity during the test term were 24°C and 30 to 40% Rh. Results are shown in Table 3.

Table 3

	Table 3			
15		Injury on cucumber (7 days after treatment)	Injury on tomato (14 days after treatment)	
	Present formulation (1)	- :No injury	- :No injury	
20	Present formulation (2)	- :No injury	- :No injury	
	Present formulation (3)	- :No injury	- :No injury	
	Present formulation (4)	- :No injury	- :No injury	
	Present formulation (5)	- :No injury	- :No injury	
	Present formulation (6)	- :No injury	- :No injury	
25	Present formulation (7)	- :No injury	- :No injury	

Test Example 4 (Pest controlling activity test of present formulation)

[0091] Adult sweetpotato whiteflies (Bemisia tabaci (Biotype B)) were released on cabbage, Brassica oleracea (variety: Green Ball) with 3 to 4 of true leaves. One day after the release, adults were removed and eggs were obtained on cabbage leaves. Cultivation was performed for 2 weeks under the condition of a temperature of 25°C and a humidity of around 50% Rh to alow eggs of Bemisia tabaci to hatch on cabbage leaves. The number of Bemisia tabaci larvae hatched on cabbage leaves was counted, and this was used as the number of larvae before test solution applying. Then, in a 100ml of a glass beaker, each 200mg of each of the present formulations (1) to (7) was taken and added 100ml of distilled water, and then stirred for 3 minutes using a magnetic stirrer to obtain a test solution. A sufficient amount of the test solution was applied on a surface and a back of cabbage leaves on which Bemisia tabaci had been hatched. After the application, cabbage was air-dried and cultivated for 1 week under the condition of a temperature of 25°C and a humidity of not less than 95% Rh. The number of Bemisia tabaci larvae alive on the cabbage leaves was counted, and used as the number of alive larvae one week after test solution application. The mortality one week after test solution application was calculated from the following calculation equation, and the pest controlling effect was assessed at 4 levels (A: stably effective (mortality is 80% or more), B: effective (mortality is not less than 60% and less than 80%), C: insufficiently effective (mortality is not less than 40% and less than 60%), D: not effective (mortality is less than 40%)) based on the calculated mortality. Results are shown in Table 4.

Mortality one week after test solution application

(%) = (number of larvae before test solution application - number

of larvae alive one week after test solution application) ÷

(number of larvae before test solution application) × 100

55

30

35

45

Table 4

	pest controlling effect one week after test solution application
Present formulation (1)	A: Stably effective
Present formulation (2)	A: Stably effective
Present formulation (3)	A: Stably effective
Present formulation (4)	A: Stably effective
Present formulation (5)	A: Stably effective
Present formulation (6)	A: Stably effective
Present formulation (7)	A: Stably effective

15 Reference Example 1 (Isolation of an agrochemically active microbe of the genus Paecilomyces)

[0092] A dead insect is taken in field, which has already stiffened and has a synnema growing from a body thereof. A conidium formed on said dead insect is touched with a platinum loop, and the platinum loop is rubbed on a SDY medium so as to draw a line. The culture medium is cultured for few days at 25°C, and then an independent colony of a grown fungus is cut out and transferred to a new SDY medium. The colony is further cultured at 25°C.

[0093] Among the resultant fungi, a fungus having the following properties a) to h) is selected as a filamentous fungus of the genus Paecilomyces.

- a) A vegetative hyphae has a septum.
- b) There is no sexual reproduction.

10

25

30

35

40

50

55

- c) A conidium is not formed in a picnidium, a pot-like apparatus, but is an exoconidium.
- d) A conidium is a phiaoconidium formed from a phialide apex, dry and catenulate.
- e) A conidiophore has no microcystis on the top thereof.
- f) A phialide is not arranged in a palisade form on a coremium.
- g) catenulate conida do not form a bundle.
- h) the phialide has a clear, deformed or lax verticillate neck.

[0094] Next, the selected filamentous fungus of the genus Paecilomyces is cultured in a SDY medium at 25° C. A formed conidium is suspended in sterile water so that a concentration thereof is 1×10^{8} CFU/mL. Ten insects belonging to the same species as of the dead insect from which the fungus has been isolated are dipped in the resultant suspension for 30 seconds, and then reared under conditions of 25° C and 100% humidity. If there is a dead insect 6 days after dipping, the fungus can be selected as an agrochemically active microbe of the genus Paecilomyces.

Reference Example 2 (Preparation of an agrochemically active microbe 1)

[0095] In a 500 mL flask, a fungus body of Paecilomyces tenuipes T1 strain, which was previously cultured in potato dextrose agar medium (Difco Laboratories), was inoculated to 100 mL of potato dextrose medium (Difco Laboratories), and then cultured with shaking for 3 days at 25°C to obtain a culture. Next, 80 g of sterilized bran was mixed with 160 ml of sterilized water and inoculated with 20 ml of the above culture, and then cultured for 14 days with intermittent irradiating (light condition: 14 hours in a row/day; dark condition: 10 hours in a row/day) with a light (at an illuminance of 2,000 to 3,000 lux), under the condition of a temperature of 25°C and a humidity of 90% RH. After the cultivation, the bran on which fungus bodies (containing many conidia) were formed was dried. The dried bran and 5 agate balls of 20 mm diameter were placed in a standard sieve according to JIS (JIS Z 8801: a 60-mesh sieve was used), stacked on a standard sieve according to JIS (JIS Z 8801: 100- and 200-mesh sieves were used), and then shaken for 10 minutes on an automated sieve shaker (Fritsch GmbH) to obtain 2.0 g of fungus powder in a fraction not more than 200-mesh.

Reference Example 3 (Preparation of an agrochemically active microbe 2)

[0096] In a 500 mL flask, a fungus body of Paecilomyces tenuipes T1 strain, which was previously cultured in potato dextrose agar medium (Difco Laboratories), was inoculated to 100 mL of potato dextrose medium (Difco Laboratories), and then cultured with shaking for 3 days at 25°C to obtain a culture. Next, 80 g of flaked barley with the seed coat (Matsukage Seibaku Co., ltd.) was pre-crushed to particles having a diameter of 1 to 5 mm by a hand crusher HC-1 (Osaka Chemical Co., Ltd.), and then sterilized in an autoclave. The product was placed in a sterilized PET transparent

tray (length: 310 mm, width: 220 mm, height: 80 mm), and then added and mixed with 20 g of the culture and 100 g of sterile water. The tray was covered with a piece of sterile cloth, and cultured for 17 days with continuously irradiating with a light at an illuminance of 6,000 lux, in an environmental control room of a temperature 25°C and a humidity 90% RH. After cultivation, the flaked barley with the seed coat on which fungus bodies (containing many conidia) was dried. The dried flaked barley with the seed coat and 5 agate balls of 20 mm diameter were placed in a standard sieve according to JIS (JIS Z 8801: a 60-mesh sieve was used), stacked on a standard sieve according to JIS (JIS Z 8801: 100- and 200-mesh sieves were used), and then shaken for 10 minutes on an automated sieve shaker (Fritsch GmbH) to obtain 2 g of fungus powder in a fraction not more than 200-mesh, which contained 1 x 10¹¹ CFU/g of the fungus body of T1 strain.

10 Reference Example 4 (Preparation of an agrochemically active microbe 3)

[0097] In a 500 mL flask, a fungus body of plant disease controlling filamentous fungus of the genus Fusarium, which was previously cultured in potato dextrose agar medium (Difco Laboratories), is inoculated to 100 mL of potato dextrose medium (Difco Laboratories), and then cultured with shaking for 3 days at 25°C to obtain a culture. Next, 80 g of sterilized bran (Masuda Flour Milling Co., ltd.) is placed in a sterilized PET transparent tray (length: 310 mm, width: 220 mm, height: 80 mm), and then added and mixed with 20 g of the culture and 100 g of sterile water. The tray is covered with a piece of sterile cloth, and cultured for 14 days with continuously irradiating with a light at an illuminance of 6,000 lux, in an environmental control room of a temperature 25°C and a humidity 90% RH. After cultivation, the bran on which fungus bodies (containing many conidia) is formed is dried. The dried bran and 5 agate balls of 20 mm diameter are placed in a standard sieve according to JIS (JIS Z 8801: a 60-mesh sieve was used), stacked on a standard sieve according to JIS (JIS Z 8801: 100- and 200-mesh sieves were used), and then shaken for 10 minutes on an automated sieve shaker (Fritsch GmbH) to obtain 2 g of fungus powder in a fraction not more than 200-mesh, which contained 1 x 10¹¹ CFU/g of the fungus body of the above plant disease controlling filamentous fungus.

SEQUENCE LISTING

[0098]

```
<110> Sumitomo Chemical Co., Ltd.
30
         <120> AGROCHEMICALLY ACTIVE MICROBIAL FORMULATION
         <130> S16046EP01
35
         <150> JP 2006-173686
         <151> 2006-06-23
         <150> JP 2006-173687
         <151> 2006-06-23
40
         <150> JP 2006-173688
         <151> 2006-06-23
         <150> JP 2006-292106
         <151> 2006-10-27
         <150> JP 2006-321454
         <151> 2006-11-29
50
         <160>2
         <170> PatentIn Ver. 2.1
         <210> 1
55
         <211> 156
         <212> DNA
         <213> Paecilomyces tenuipes
```

<400> 1

aactitcaac aacggatete tiggitetgg categatgaa gaacgcageg aaatgegata 60 cgtaatgtga attgcagaat teegtgaate ategaatett tgaacgcaca tigegeeege 120 cagcattetg gegggeatge etgitegage gicati 156

10 <210> 2

5

20

25

30

35

40

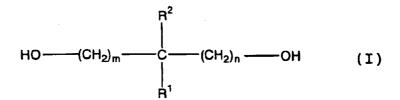
45

50

55

<211> 561

<212> DNA


<213> Paecilomyces tenuipes

15 <400> 2

aaaccaacag ggattgcccc agtaacggcg agtgaagcgg caacagctca aatttgaaat 60 ciggcccccg ggtccgagit gtaatttgca gaggatgctt cgggcgaggt gccttccgag 120 ticcctggaa cgggacgcca cagagggtga gagccccgtc tggtcggaca ccgagcccgt 180 gtgaagctcc ttcgaagagt cgagtagitt gggaatgctg ctcaaaacgg gaggtatatg 240 tcitctaaag ctaaatattg gccagagacc gatagcgcac aagtagagtg atcgaaagat 300 gaaaagcact ttgaaaagag ggttaaaaag tacgtgaaat tgttgaaagg gaagcgccca 360 tgaccagact tgggcccggt gaatcacccg gcgttctcgc cggtgcactt tgccgggcac 420 aggccagcat cagtitggcg cgggggagaa aggcticggg aacgtggctc cctcgggagt 480 gttatagccc gctgcgcaat accctgcgcc ggactgaggt acgcgcaicg caaggatgct 540 ggcgtaatgg tcatcagcga c

Claims

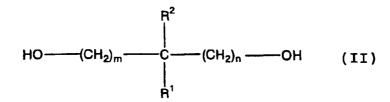
- 1. An agrochemically active microbial formulation, comprising at least one kind of ester compound, a surfactant suitable for emulsifying the ester compound and an agrochemically active microbe, wherein the ester compound is selected from the following group:
 - (1) an ester compound which is liquid at 25°C, of monovalent fatty acid and polyhydric alcohol represented by the formula (I):

wherein R¹ and R² are the same or different, and represent a hydrogen atom, a methyl group, an ethyl group, a hydroxymethyl group or a 2-hydroxyethyl group, and m and n are the same or different, and represent 1 or 2, provided that R¹ and R² are not a hydrogen atom at the same time;

- (2) an ester compound which is liquid at 25°C, of diglycerin and monovalent fatty acid; and
- (3) a diester compound which is liquid at 25°C, of adipic acid and monohydric alcohol.
- 2. An agrochemically active microbial formulation according to claim 1, wherein the polyhydric alcohol represented by the formula (I) is pentaerythritol, trimethylolalkane or neopentyl glycol.
- 10 3. The agrochemically active microbial formulation according to claim 1 or 2, wherein the monovalent fatty acid is 2ethylhexanoic acid, isomer of n-octadecanoic acid, or capric acid.
 - 4. The agrochemically active microbial formulation according to claim 1, 2 or 3, wherein the monohydric alcohol is 2heptylundecyl alcohol.
 - 5. The agrochemically active microbial formulation according to claim 1, wherein the ester compound is at least one kind of ester compound selected from:
 - (a) a tetraester compound which is liquid at 25°C, of pentaerythritol and 2-ethylhexanoic acid,
 - (b) a triester compound which is liquid at 25°C, of trimethylolpropane and isomer of n-octadecanoic acid,
 - (c) a diester compound which is liquid at 25°C, of neopentyl glycol and capric acid,
 - (d) a tetraester compound which is liquid at 25°C, of diglycerin and isomer of n-octadecanoic acid,
 - (e) a triester compound which is liquid at 25°C, of diglycerin and isomer of n-octadecanoic acid, and
 - (f) a diester compound which is liquid at 25°C, of adipic acid and 2-heptylundecyl alcohol.
 - 6. The agrochemically active microbial formulation according to any one of claims 1 to 5, wherein the surfactant is a nonionic surfactant.
- 7. The agrochemically active microbial formulation according to any one of claims 1 to 5, wherein the surfactant is at 30 least one kind of nonionic surfactant selected from the group consisting of polyoxyethylene fatty acid ester, sorbitan fatty acid ester and polyoxyalkylenealkyl ether.
 - 8. The agrochemically active microbial formulation according to claim 7, wherein the surfactant has an HLB of 7 to 12.
- 35 9. The agrochemically active microbial formulation according to any one of claims 1 to 8, wherein the agrochemically active microbe is at least one kind of microbe belonging to any one or more genera selected from the group consisting of Paecilomyces, Beauveria, Metarhizium, Nomuraea, Verticillium, Hirsutella, Culicinomyces, Sorosporella, Tolypocladlum, Fusarium, Trichoderma and Exserohilum.
- 40 10. The agrochemically active microbial formulation according to any one of claims 1 to 8, wherein the agrochemically active microbe is pest controlling filamentous fungus.
 - 11. The agrochemically active microbial formulation according to any one of claims 1 to 8, wherein the agrochemically active microbe is any one of the following pest controlling filamentous fungi:
 - (1) filamentous fungus of Paecilomyces,
 - (2) filamentous fungus in which DNA encoding a nuclear 5.8S ribosomal RNA comprises the nucleotide sequence of SEQ ID NO:1 and DNA encoding a nuclear 28S ribosomal RNA comprises the nucleotide sequence of SEQ ID NO:2,
 - (3) filamentous fungus belonging to Paecilomyces tenuipes, and
 - (4) filamentous fungus which is Paecilomyces tenuipes T1 strain deposited at International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology as a deposition number FERM BP-7861.
- 55 12. A method of controlling a pest, comprising applying the agrochemically active microbial formulation as defined in any one of claims 1 to 11 to a pest, a habitat of a pest, or a plant to be protected from a pest.
 - 13. A method of controlling a pest, comprising applying the agrochemically active microbial formulation as defined in

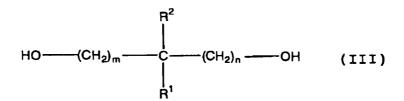
20

15


5

25

50


any one of claims 1 to 11 to an agricultural or horticultural crop pest, a habitat of an agricultural or horticultural crop pest or an agricultural or horticultural crop to be protected from an agricultural or horticultural crop pest.

- **14.** A process of producing an agrochemically active microbial formulation, comprising a step of mixing at least one kind of ester compound, a surfactant suitable for emulsifying the ester compound and an agrochemically active microbe, wherein the ester compound is selected from the following group:
 - (1) an ester compound which is liquid at 25°C, of monovalent fatty acid and polyhydric alcohol represented by the formula (II):

wherein R^1 and R^2 are the same or different, and represent a hydrogen atom, a methyl group, an ethyl group, a hydroxymethyl group or a 2-hydroxyethyl group, and m and n are the same or different, and represent 1 or 2, provided that R^1 and R^2 are not a hydrogen atom at the same time;

- (2) an ester compound which is liquid at 25°C, of diglycerin and monovalent fatty acid, and
- (3) a diester compound which is liquid at 25°C, of adipic acid and monohydric alcohol.
- 15. Use of at least one kind of ester compound as a medium for producing an agrochemically active microbial formulation, wherein the ester compound is selected from the following group:
 - (1) an ester compound which is liquid at 25°C, of monovalent fatty acid and polyhydric alcohol represented by the formula (III):

wherein R^1 and R^2 are the same or different, and represent a hydrogen atom, a methyl group, an ethyl group, a hydroxymethyl group or a 2-hydroxyethyl group, and m and n are the same or different, and represent 1 or 2, provided that R^1 and R^2 are not a hydrogen atom at the same time;

- (2) an ester compound which is liquid at 25°C, of diglycerin and monovalent fatty acid, and
- (3) A diester compound which is liquid at 25°C, of adipic acid and monohydric alcohol.

Patentansprüche

- 1. Eine agrochemisch aktive mikrobielle Formulierung, umfassend mindestens eine Art von Esterverbindung, ein grenzflächenaktives Mittel, welches zum Emulgieren der Esterverbindung geeignet ist, und eine agrochemisch aktive Mikrobe, wobei die Esterverbindung aus der folgenden Gruppe ausgewählt ist:
 - (1) einer Esterverbindung, welche bei 25°C flüssig ist, von einwertiger Fettsäure und mehrwertigem Alkohol, dargestellt durch die Formel (I):

5

10

15

20

30

35

40

45

$$HO$$
—— $(CH2)m—— C —— $(CH2)n ——OH (I)$$

5

10

15

20

30

35

40

50

55

wobei R^1 und R^2 gleich oder verschieden sind und ein Wasserstoffatom, eine Methylgruppe, eine Ethylgruppe, eine Hydroxymethylgruppe oder eine 2-Hydroxyethylgruppe darstellen, und m und n gleich oder verschieden sind und 1 oder 2 darstellen, vorausgesetzt, dass R^1 und R^2 nicht gleichzeitig ein Wasserstoffatom darstellen;

- (2) einer Esterverbindung, welche bei 25°C flüssig ist, von Diglycerin und einwertiger Fettsäure; und
- (3) einer Diesterverbindung, welche bei 25°C flüssig ist, von Adipinsäure und einwertigem Alkohol.
- 2. Eine agrochemisch aktive mikrobielle Formulierung gemäß Anspruch 1, wobei der mehrwertige Alkohol, welcher durch die Formel (I) dargestellt ist, Pentaerythrit, Trimethylolalkan oder Neopentylglykol ist.
 - 3. Die agrochemisch aktive mikrobielle Formulierung gemäß Anspruch 1 oder 2, wobei die einwertige Fettsäure 2-Ethylhexansäure, ein Isomer der n-Octadecansäure oder Caprinsäure ist.
- ²⁵ **4.** Die agrochemisch aktive mikrobielle Formulierung gemäß Anspruch 1, 2 oder 3, wobei der einwertige Alkohol 2-Heptylundecylalkohol ist.
 - **5.** Die agrochemisch aktive mikrobielle Formulierung gemäß Anspruch 1, wobei die Esterverbindung mindestens eine Art von Esterverbindung darstellt, ausgewählt aus:
 - (a) einer Tetraesterverbindung, welche bei 25°C flüssig ist, von Pentaerythrit und 2-Ethylhexansäure,
 - (b) einer Triesterverbindung, welche bei 25°C flüssig ist, von Trimethylolpropan und einem Isomer der n-Octadecansäure.
 - (c) einer Diesterverbindung, welche bei 25°C flüssig ist, von Neopentylglykol und Caprinsäure,
 - (d) einer Tetraesterverbindung, welche bei 25°C flüssig ist, von Diglycerin und einem Isomer der n-Octadecansäure.
 - (e) einer Triesterverbindung, welche bei 25°C flüssig ist, von Diglycerin und einem Isomer der n-Octadecansäure, und
 - (f) einer Diesterverbindung, welche bei 25°C flüssig ist, von Adipinsäure und 2-Heptylundecylalkohol.
 - **6.** Die agrochemisch aktive mikrobielle Formulierung gemäß einem der Ansprüche 1 bis 5, wobei das grenzflächenaktive Mittel ein nichtionisches grenzflächenaktives Mittel ist.
- 7. Die agrochemisch aktive mikrobielle Formulierung gemäß einem der Ansprüche 1 bis 5, wobei das grenzflächen-45 aktive Mittel mindestens eine Art von nichtionischem grenzflächenaktivem Mittel, ausgewählt aus der Gruppe bestehend aus Polyoxyethylen-Fettsäureester, Sorbitan-Fettsäureester und Polyoxyalkylenalkylether, ist.
 - **8.** Die agrochemisch aktive mikrobielle Formulierung gemäß Anspruch 7, wobei das grenzflächenaktive Mittel einen HLB-Wert von 7 bis 12 aufweist.
 - 9. Die agrochemisch aktive mikrobielle Formulierung gemäß einem der Ansprüche 1 bis 8, wobei die agrochemisch aktive Mikrobe mindestens eine Art von Mikrobe, welche einer beliebigen oder mehreren Gattungen, ausgewählt aus der Gruppe bestehend aus Paecilomyces, Beauveria, Metarhizium, Nomuraea, Verticillium, Hirsutella, Culicinomyces, Sorosporella, Tolypocladium, Fusarium, Trichoderma und Exserohilum, zugehörig ist.
 - **10.** Die agrochemisch aktive mikrobielle Formulierung gemäß einem der Ansprüche 1 bis 8, wobei die agrochemisch aktive Mikrobe ein schädlingsbekämpfender Fadenpilz ist.

- **11.** Die agrochemisch aktive mikrobielle Formulierung gemäß einem der Ansprüche 1 bis 8, wobei die agrochemisch aktive Mikrobe ein beliebiger der folgenden schädlingsbekämpfenden Fadenpilze ist:
 - (1) Fadenpilz des Paecilomyces,

5

10

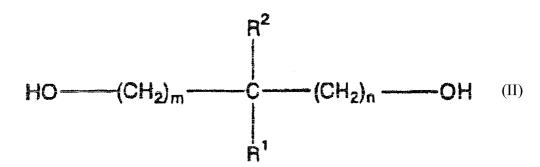
15

20

25

30

35


40

45

50

55

- (2) Fadenpilz, bei welchem die DNA, welche eine nukleare 5,8S ribosomale RNA kodiert, die Nukleotidsequenz von SEQ ID Nr. 1 umfasst, und die DNA, welche eine nukleare 28S ribosomale RNA kodiert, die Nukleotidsequenz von SEQ ID Nr. 2 umfasst,
- (3) Fadenpilz, zugehörig zu Paecilomyces tenuipes, und
- (4) Fadenpilz, welcher ein Paecilomyces tenuipes T1 Stamm, hinterlegt bei der International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology mit der Hinterlegungsnummer FERM BP-7861, ist.
- 12. Ein Verfahren zur Schädlingsbekämpfung, umfassend Aufbringen der agrochemisch aktiven mikrobiellen Formulierung, wie in einem der Ansprüche 1 bis 11 definiert, auf einen Schädling, einen Lebensraum eines Schädlings oder einer Pflanze, welche vor einem Schädling geschützt werden soll.
- 13. Ein Verfahren zur Schädlingsbekämpfung, umfassend Aufbringen der agrochemisch aktiven mikrobiellen Formulierung, wie in einem der Ansprüche 1 bis 11 definiert, auf einen Schädling für Pflanzen im landwirtschaftlichen Bereich oder im Gartenbaubereich, einen Lebensraum eines Schädlings für Pflanzen im landwirtschaftlichen Bereich oder im Gartenbaubereich oder eine Pflanze im landwirtschaftlichen Bereich oder im Gartenbaubereich, welche vor einem Schädling für Pflanzen im landwirtschaftlichen Bereich oder im Gartenbaubereich geschützt werden soll.
- 14. Ein Verfahren zur Herstellung einer agrochemisch aktiven mikrobiellen Formulierung, umfassend einen Schritt des Mischens von mindestens einer Art von Esterverbindung, einem grenzflächenaktiven Mittel, welches zum Emulgieren der Esterverbindung geeignet ist, und einer agrochemisch aktiven Mikrobe, wobei die Esterverbindung aus der folgenden Gruppe ausgewählt ist:
 - (1) einer Esterverbindung, welche bei 25°C flüssig ist, von einwertiger Fettsäure und mehrwertigem Alkohol, dargestellt durch die Formel (II):

wobei R¹ und R² gleich oder verschieden sind und ein Wasserstoffatom, eine Methylgruppe, eine Ethylgruppe, eine Hydroxymethylgruppe oder eine 2-Hydroxyethylgruppe darstellen, und m und n gleich oder verschieden sind und 1 oder 2 darstellen, vorausgesetzt, dass R¹ und R² nicht gleichzeitig ein Wasserstoffatom darstellen;

- (2) einer Esterverbindung, welche bei 25°C flüssig ist, von Diglycerin und einwertiger Fettsäure und
- (3) einer Diesterverbindung, welche bei 25°C flüssig ist, von Adipinsäure und einwertigem Alkohol.
- **15.** Verwendung von mindestens einer Art von Esterverbindung als ein Mittel zur Herstellung einer agrochemisch aktiven mikrobiellen Formulierung, wobei die Esterverbindung aus der folgenden Gruppe ausgewählt ist:
 - (1) einer Esterverbindung, welche bei 25°C flüssig ist, von einwertiger Fettsäure und mehrwertigem Alkohol, dargestellt durch die Formel (III):

$$H^2$$
 HO ——(CH_2)_m—— C ——(CH_2)_n—— OH (III)
 H^1

wobei R^1 und R^2 gleich oder verschieden sind und ein Wasserstoffatom, eine Methylgruppe, eine Ethylgruppe, eine Hydroxymethylgruppe oder eine 2-Hydroxyethylgruppe darstellen, und m und n gleich oder verschieden sind und 1 oder 2 darstellen, vorausgesetzt, dass R^1 und R^2 nicht gleichzeitig ein Wasserstoffatom darstellen;

- (2) einer Esterverbindung, welche bei 25°C flüssig ist, von Diglycerin und einwertiger Fettsäure und
- (3) einer Diesterverbindung, welche bei 25°C flüssig ist, von Adipinsäure und einwertigem Alkohol.

Revendications

5

10

15

20

25

30

35

40

50

55

- 1. Formulation microbienne active au plan agrochimique, comprenant au moins un type de composé ester, un tensioactif approprié pour émulsionner le composé ester et un microbe actif au plan agrochimique, dans laquelle le composé ester est choisi dans le groupe suivant :
- (1) un composé ester qui est liquide à 25 °C, d'acide gras monovalent et de polyalcool représenté par la formule (I) :

HO —
$$(CH_2)_m$$
 — C — $(CH_2)_n$ — OH (I)

dans laquelle R¹ et R² sont identiques ou différents, et représentent un atome d'hydrogène, un groupe méthyle, un groupe éthyle, un groupe hydroxyméthyle ou un groupe 2-hydroxyéthyle, et m et n sont identiques ou différents, et représentent 1 ou 2, à condition que R¹ et R² ne soient pas un atome d'hydrogène en même temps;

- (2) un composé ester qui est liquide à 25 °C, de diglycérine et d'acide gras monovalent ; et
- (3) un composé diester qui est liquide à 25 °C, d'acide adipique et d'alcool monohydrique.
- 2. Formulation microbienne active au plan agrochimique selon la revendication 1, dans laquelle le polyalcool représenté par la formule (I) est le pentaérythritol, le triméthylolalcane ou le néopentylglycol.
- **3.** Formulation microbienne active au plan agrochimique selon la revendication 1 ou 2, dans laquelle l'acide gras monovalent est l'acide 2-éthylhexanoïque, un isomère de l'acide n-octadécanoïque ou l'acide caprique.
 - **4.** Formulation microbienne active au plan agrochimique selon la revendication 1, 2 ou 3, dans laquelle l'alcool monohydrique est l'alcool 2-heptylundécylique.
 - 5. Formulation microbienne active au plan agrochimique selon la revendication 1, dans laquelle le composé ester est au moins un type de composé ester, choisi parmi :
 - (a) un composé tétra-ester qui est liquide à 25 °C, de pentaérythritol et d'acide 2-éthylhexanoïque,
 - (b) un composé triester qui est liquide à 25 °C, de triméthylolpropane et d'un isomère de l'acide n-octadécanoïque,
 - (c) un composé diester qui est liquide à 25 °C, de néopentylglycol et d'acide caprique,
 - (d) un composé tétra-ester qui est liquide à 25 °C, de diglycérine et d'un isomère de l'acide n-octadécanoïque,

- (e) un composé triester qui est liquide à 25 °C, de diglycérine et d'un isomère de l'acide n-octadécanoïque, et (f) un composé diester qui est liquide à 25 °C, d'acide adipique et d'alcool 2-heptylundécylique.
- **6.** Formulation microbienne active au plan agrochimique selon l'une quelconque des revendications 1 à 5, dans laquelle le tensioactif est un tensioactif non ionique.
 - 7. Formulation microbienne active au plan agrochimique selon l'une quelconque des revendications 1 à 5, dans laquelle le tensioactif est au moins un type de tensioactif non ionique choisi dans le groupe constitué par un ester d'acide gras polyoxyéthyléné, un ester d'acide gras de sorbitan et un éther de polyoxyalkylènealkyle.
 - **8.** Formulation microbienne active au plan agrochimique selon la revendication 7, dans laquelle le tensioactif a un HLB de 7 à 12.
- 9. Formulation microbienne active au plan agrochimique selon l'une quelconque des revendications 1 à 8, dans laquelle le microbe actif au plan agrochimique est au moins un type de microbe appartenant à un ou plusieurs genres choisis dans le groupe constitué par Paecilomyces, Beauveria, Metarhizium, Nomuraea, Verticillium, Hirsutella, Culicinomyces, Sorosporella, Tolypocladium, Fusarium, Trichoderma et Exserohilum.
 - **10.** Formulation microbienne active au plan agrochimique selon l'une quelconque des revendications 1 à 8, dans laquelle le microbe actif au plan agrochimique est un champignon filamenteux de lutte contre un organisme nuisible.
 - **11.** Formulation microbienne active au plan agrochimique selon l'une quelconque des revendications 1 à 8, dans laquelle le microbe actif au plan agrochimique est l'un quelconque des champignons filamenteux de lutte contre un organisme nuisible :
 - (1) un champignon filamenteux de Paecilomyces,

10

20

25

30

40

50

55

- (2) un champignon filamenteux dans lequel un ADN codant pour un ARN ribosomique 5,8S nucléaire comprend la séquence nucléotidique de SEQ ID NO: 1, et un ADN codant pour un ARN ribosomique 28S nucléaire comprend la séquence nucléotidique de SEQ ID NO: 2,
- (3) un champignon filamenteux appartenant à Paecilomyces tenuipes, et
- (4) un champignon filamenteux qui est la souche Paecilomyces tenuipes TI déposée à l'International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology sous le numéro de dépôt FERM BP-7861.
- 12. Procédé de lutte contre un organisme nuisible, comprenant l'application de la formulation microbienne active au plan agrochimique telle que définie selon l'une quelconque des revendications 1 à 11 à un organisme nuisible, un habitat d'un organisme nuisible ou une plante à protéger d'un organisme nuisible.
 - 13. Procédé de lutte contre un organisme nuisible, comprenant l'application de la formulation microbienne active au plan agrochimique telle que définie selon l'une quelconque des revendications 1 à 11 à un organisme nuisible pour des cultures agricoles ou horticoles, un habitat d'un organisme nuisible pour des cultures agricoles ou horticoles ou une culture agricole ou horticole à protéger d'un organisme nuisible pour des cultures agricoles ou horticoles.
- 14. Procédé de production d'une formulation microbienne active au plan agrochimique, comprenant une étape de mélange d'au moins un type de composé ester, un tensioactif approprié pour émulsionner le composé ester et un microbe actif au plan agrochimique, dans lequel le composé ester est choisi dans le groupe suivant :
 - (1) un composé ester qui est liquide à 25 °C, d'acide gras monovalent et de polyalcool représenté par la formule (II) :

HO —— $(CH_2)_m$ ——C —— $(CH_2)_n$ ——OH (II)

dans laquelle R^1 et R^2 sont identiques ou différents, et représentent un atome d'hydrogène, un groupe méthyle, un groupe éthyle, un groupe hydroxyméthyle ou un groupe 2-hydroxyéthyle, et m et n sont identiques ou différents, et représentent 1 ou 2, à condition que R^1 et R^2 ne soient pas un atome d'hydrogène en même temps ;

- (2) un composé ester qui est liquide à 25 °C, de diglycérine et d'acide gras monovalent ; et
- (3) un composé diester qui est liquide à 25 °C, d'acide adipique et d'alcool monohydrique.

5

10

15

20

25

30

35

40

45

50

55

- **15.** Utilisation d'au moins un type de composé ester comme milieu pour produire une formulation microbienne active au plan agrochimique, dans laquelle le composé ester est choisi dans le groupe suivant :
 - (1) un composé ester qui est liquide à 25 °C, d'acide gras monovalent et de polyalcool représenté par la formule (III) :

$$HO - (CH_2)_m - C - (CH_2)_n - OH$$
 (III)

dans laquelle R^1 et R^2 sont identiques ou différents, et représentent un atome d'hydrogène, un groupe méthyle, un groupe éthyle, un groupe hydroxyméthyle ou un groupe 2-hydroxyéthyle, et m et n sont identiques ou différents, et représentent 1 ou 2, à condition que R^1 et R^2 ne soient pas un atome d'hydrogène en même temps ;

- (2) un composé ester qui est liquide à 25 °C, de diglycérine et d'acide gras monovalent ; et
- (3) un composé diester qui est liquide à 25 °C, d'acide adipique et d'alcool monohydrique.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5730973 A [0002]
- US 6030924 A [0002]
- WO 9510597 A [0002]
- EP 0448070 A [0005]
- US 4755207 A [0006]
- WO 9639844 A [0007]
- EP 0180743 A [0008]

- US 5512280 A [0009]
- JP 2006173686 A [0098]
- JP 2006173687 A [0098]
- JP 2006173688 A [0098]
- JP 2006292106 A [0098]
- JP 2006321454 A [0098]

Non-patent literature cited in the description

- *J.Invert.Pathol.,* 1988, vol. 52, 66-72 **[0002]**
- Ann.Appl.Biol., 1993, vol. 122, 145-152 [0002]
- Pestic.Sci., 1996, vol. 46, 299-306 [0002]
- Phytoparasitica, 1997, vol. 25, 93S-100S [0002]
- Japanese Journal of Applied Entomology and Zoology, 2000, vol. 44 (4), 241-243 [0002]
- Biocontrol Science and Technology, 2002, vol. 12, 337-348 [0002]
- ALVES et al. Neotropical Entomology, 2002, vol. 31, 91-99 [0004]
- CHEMICAL ABSTRACTS, 627-82-7 [0040]
- CHEMICAL ABSTRACTS, 124-04-9 [0040]
- CHEMICAL ABSTRACTS, 115-77-5 [0041]
- CHEMICAL ABSTRACTS, 77-85-0 [0041]
- CHEMICAL ABSTRACTS, 77-99-6 [0041]
- CHEMICAL ABSTRACTS, 126-30-7 [0041]

AGROKÉMIAILAG AKTÍV MIKROBIOLÓGIAI KÉSZÍTMÉNY

SZABADALMI IGÉNYPONTOK

- Agrokémiailag aktív mikrobiológiai készítmény, amely tartalmaz legalább egyfajta észter vegyületet, egy felületaktív anyagot (surfactant), amely alkalmas az észter vegyület és egy agrokémiailag aktív mikróba (mikroorganizmus) smulzióba viteléhez, ahol az észter vegyület a következők közül választható ki:
 - (1) egy egyérlékű zsirsav és egy polihidrált (vagyis kettőnél több hidroxil-csoportot tartalmazó) alkohol észter vegyűlete, amely folyékony 25°C hőmérsékleten, és amelyet az (I) általános képlet mutat be:

ahol a képletben R¹ és R² jelentése lehet azonos vagy különböző, és jelentésük lehet hidrogénatom, metil-csoport, etil-csoport, hidroxi-metil-csoport és 2-hidroxi-etil-csoport,

m és n értéke lehet azonos vagy különböző, és értékük 1 vagy 2, azzal a feltétellel, hogy R1 és R2 nem lehet hidrogénatom egyszerre;

- (2) diglicerin és egyértékű zsirsav észter vegyülete, amely folyékony 25°C hőmérsékleten; és
- (3) adipinsav és egy 1 hidroxil-csoportot tartalmazó (monohydric) alkohol diészter-vegyülete, amely folyékony 25°C hőmérsékleten.
- Az 1. igénypont szerinti agrokémiailag aktiv mikrobiológiai készítmény, ahol az (i) képletben megjelenített polihidrált aikohol pentaeritrit, trimetilol-alkán vagy neopentánglikol.
- Az 1. vagy 2. igénypont szerinti agrokémiailag aktív mikrobiológiai készítmény, ahol az egyértékű zaírsav 2-etil-hexánsav, n-oktadekánsav izomerje, vagy kaprinsav.
- Az 1-3. igénypontok bármelyike szerinti agrokémialiag aktív mikrobiológiai készítmény, ahol az egy hidroxil-csoportot tartalmazó alkohol 2-heptil-undecilaikohol.
- 5. Az 1. igénypont szerinti agrokémiallag aktív mikrobiológiai készitmény, ahol az észter vegyűlet az alább felsoroltak közül kiválasztható észter vegyűletek legalább egyike:
- (3) pentaeritritnek és 2-etil-hexánsavnak tetraészter vegyűlete, amely folyékony 25°C hőmérsékleten,
- (b) trimetilol-propánnak és n-oktadekánsav izomerjének triészter vegyűlete, amely folyékony 25°C hőmérsékleten,
- (c) neopentilglikolnak és kaprinsavnak diészter vegyűlete, amely folyékony 25°C hőmérsékleten,
- (d) diglicerinnek és n-oktadekánsav izomerjének tetraészter vegyülete, amely folyékony 25°C hőmérsékleten,
- (e) diglicerinnek és n-oktadekánsav izomerjének triészter vegyülete, amely folyékony 25°C hőmérsékleten, és
- (f) adipinsavnak és 2-heptil-undecilalkoholnak diészter vegyülete, diglicerinnek és n-oktadekánsav izomerjének tetraészter vegyülete, amely folyékony 25°C hőmérsékleten.
- Az 1-5. Igényporitok bármelyike szerínti agrokémiailag aktív mikrobiológiai készílmény, ahol a felületaktív anyag nem-ionos felületaktív anyag.
- 7. Az 1-5. igénypontok bármelyike szerinti agrokémiailag aktiv mikrobiológiai készitmény, ahol a felületaktiv anyag legalább egyike azoknak a nem-ionos felületaktív anyagoknak, amelyeket a következők közül lehet kiválasztani: polioxietilén

zsírsavészterek, szorbítán zsírsavészterek és polioxialkilén-alkil éterek.

- 8. A 7. igényportt szerinti agrokémiailag aktív mikrobiológiai készítmény, ahol a felületaktív anyagnak 7 és 12 közötti HLB értéke van [hidrofli-lipofli egyensúly (Hydophylic-Lipophylic-Balance)].
- 9 Az 1-8. igénypontok bármelyike szerinti agrokémiailag aktív mikrobiológiai készítmény, ahol az agrokémiailag aktív mikróba legalább egyike azoknak a mikrobáknak, amelyek egy vagy több nemzetséghez (genera) tartoznak, ahol a nemzetségek a következők közül választhatók ki: Paecilomyces, Beauveria, Metarhizium, Nomuraea, Verticilium, Hirsutella, Culicinomyces, Sorosporella, Tolypocladium, Trichoderma és Exserohilum.
- 10. Az 1-8. igénypontok bármelyike szerinti agrokémiallag aktív mikrobiológiai készítmény, ahol az agrokémiallag aktív mikróba egy kártevőt (pest) szabályozó szálas (filamenious) gomba.
- 11. Az 1-8. igénypontok bármelyike szerinti agrokémiailag aktív mikrobiológiai készítmény, ahol az agrokémiailag aktív mikroba az alább felsorott, kártevőt szabályozó szálas gombák valamelyike;
- Paecilomyces szálas gombál,
- (2) szálas gomba, amelyben egy nukleáris 5.8S riboszomális RNS-t kódoló DNS tartalmazza a SEQ ID NO:1 nukleotid szekvenciát, és egy nukleáris 28S riboszomális RNS-t kódoló DNS tartalmazza a SEQ ID NO:2 nukleotid szekvenciát,
- (3) a Paecilomyces tenuipes-hez tartozó szálas gomba, és
- (4) szálas gomba, ahol ez egy olyan Paecilomyces tenuipes T1 törze, amely letétbe van helyezve (deponálva van) FERM BP-7861 letéti (deponálási) számon a következő törzegyűjteményben: International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (Nemzetközi Szabadalmi Organizmus Letéti Szerv, a Fejlett Ipari Tudomány és Technológia Nemzeti Intézete).
- 12. Eljárás kártevők szabályozására, amely eljárás tartalmazza az 1-11. igénypontok bármelyike szerint meghatározott agrokémiailag aktiv mikrobiológiai készítmény felvitelét egy kártevőre, egy kártevő életterébe (habitat) vagy egy, a kártevőtől megvédendő növényre.
- 13. Eljárás kártevők szabályozására, amely tartalmazza az 1-11. igénypontok bármelyike szerint meghatározott agrokémiallag aktiv mikrobiológiai készítmény felvítelét egy mezőgazdasági vagy kertészeti kártevőre, egy mezőgazdasági vagy kertészeti kártevőtől megvéderidő növényre.
- 14. Eljárás agrokémiailag aktív mikrobiológiai készítmény előállítására, amely tartalmazza legalább egyféle észter vegyület és egy felületaktív anyag, amely alkalmas az észter vegyület és egy agrokémiailag aktív mikróba (mikroorganizmus) emulzióba viteléhez, összekeverésének lépését, ahol az észter vegyület a következők közül választható ki:
- (1) egy egyértékű zsírsav és egy polihidrált (vagyis kettőnél több hidroxil-csoportot tartalmazó) alkohol észter vegyülete, amely folyékony 25°C hőmérsékleten, és amelyet a (II) általános képlet mutat be:

ahol a képletben R1 és R2 jelentése lehet azoncs vagy különböző, és jelentésük lehet hidrogénatom, metil-csoport, etil-csoport, hidroxi-metil-csoport és 2-hidroxi-etil-csoport.

m és n értéke lehet azonos vagy különböző, és értékük 1 vagy 2, azzai a fellétellel, hogy R1 és R2 nem lehet hidrogénatom egyszerre;

(2) diglicerin és egyértékű zsírsav észter vegyülete, amely folyékony 25°C hőmérsékleten, és

- (3) adipinsav és egy 1 hidroxil-csoportot tartalmazó (monohydric) alkohol diészter-vegyülete, amely folyékony 25°C hőmérsékleten.
- 15. Alkalmazása legalább egyféle észter vegyületnek, mint közegnek (medium) egy agrokémiailag aktiv mikrobiológiai készílmény előállítására, ahol az észter vegyület a következők közúl választható ki:
- (1) egy egyértékű zsírsav és egy polihidrált (vagyis kettőnél több hidroxii-csoportot tartalmazó) alkohol észter vegyűlete, amely folyékony 25°C hőmérsékleten, és amelyet a (III) általános képlet mutat be:

ahol a képletben R1 és R2 jelentése lehet azonos vagy különböző, és jelentésük lehet hidrogénatom, metil-csoport, etil-csoport, hidroxí-metil-csoport és 2-hidroxí-etil-csoport,

m és n értéke lehet azonos vagy különböző, és értékük 1 vagy 2, azzal a feltétellel, hogy R1 és R2 nem lehet hidrogénatom egyszerre;

- (2) diglicerin és egyértékű zsírsav észter vegyülete, amely folyékony 25°C hőmérsékleten, és
- (3) adipinsav és egy 1 hidroxil-csoportot tartalmazó (monohydric) sikohol diészter-vegyűlete, amely folyékony 25°C hőméreákleten.