

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : F02B 37/10		A1	(11) International Publication Number: WO 97/15753
			(43) International Publication Date: 1 May 1997 (01.05.97)
(21) International Application Number: PCT/US96/17007		(74) Agents: BADGER, David, H. et al.; Brinks Hofer Gilson & Lione, Suite 2425, One Indiana Square, Indianapolis, IN 46204 (US).	
(22) International Filing Date: 25 October 1996 (25.10.96)		(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(30) Priority Data: 08/549,436 27 October 1995 (27.10.95) US		(60) Parent Application or Grant (63) Related by Continuation US 08/549,436 (CIP) Filed on 27 October 1995 (27.10.95)	
(71) Applicant (for all designated States except US): TURBO-DYNE SYSTEMS, INC. [US/US]; 6155 Carpenteria Avenue, Carpenteria, CA 93013 (US).		Published With international search report.	
(72) Inventors; and (75) Inventors/Applicants (for US only): HALIMI, Edward, M. [US/US]; 163 Hot Springs Road, Montecito, CA 93108 (US). MALOOF, Ralph, P. [US/US]; 4527 Park Monaco, Calabasas, CA 91302 (US). WOOLLENWEBER, William, E. [US/US]; 3169 Camino Del Arco, Carlsbad, CA 92009 (US).			

(54) Title: CHARGE AIR SYSTEMS FOR TWO-CYCLE INTERNAL COMBUSTION ENGINES

(57) Abstract

A two-cycle internal combustion engine (10, 46, 66, 75, 86) has a motor-assisted turbocharger (13) where the motor (17, 56, 65, 77, 95) is activated by an external power source (18) to operate the turbocharger (13) to apply scavenging and charging air for starting the engine (10, 46, 66, 75, 86). When sufficient exhaust gas energy is available to allow the turbocharger (13) to provide adequate scavenging and charging air, the motor (17, 56, 65, 77, 95) is de-energized to eliminate the need for external power. Thus, the charging system acts as a supercharger during start-up and as a turbocharger during normal running. A control system (19, 57, 68, 78, 88) is connected to the driving motor (17, 56, 65, 77, 95) that receives signals (25) so that power is supplied to the motor (17, 56, 65, 77, 95) during start-up and may also be supplied during low exhaust gas energy levels to maintain a sufficient supply of scavenging and charging air. These signals (25) may come from engine speed, turbocharger speed, intake manifold pressure, throttle position and the like.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

DescriptionCHARGE AIR SYSTEMS FOR TWO-CYCLE
INTERNAL COMBUSTION ENGINESTechnical Field

5 This invention is directed to apparatus and methods of supplying charge air for two-cycle internal combustion engines, including a motor-assisted turbocharger, a motor-driven compressor, or a motor-driven compressor connected in series with a turbocharger compressor.

Background Art

10 The most common internal combustion engine in use today is the four-cycle type, either spark ignited or diesel, wherein there is one power stroke for every two revolutions of the crankshaft. This type of engine has a suction stroke by which it can aspirate its own air, and thus it is able to start and run without the aid of an external or auxiliary air supply. In 15 contrast, the two-cycle internal combustion engine does not have a separate suction stroke since there is a power stroke for every revolution of the crankshaft. Consequently, the two-cycle engine must employ other means of exhausting and charging the cylinder with fresh air after each power 20 stroke has been completed.

25 Typically, two-cycle engines use either an engine-driven compressor or crankcase air compression to force air into the intake ports of the cylinders. Crankcase compression is undesirable due to the tendency to mix lubricant oil present in the crankcase with the air which can cause excessive lubricant oil consumption and increase the amount of pollutants in the exhaust gases. Thus, it is more desirable to use an air compressor driven separately than from the engine to provide the necessary air supply for starting and running the engine.

When engine-driven compressors are used, the fuel consumption of the engine is increased by virtue of the horsepower absorbed by the compressor. Adding an exhaust gas-driven turbocharger in series with the engine-driven compressor is a substantial improvement. However, there is still a residual power drain on the engine caused by the engine-driven compressor and its gear train. Clutches between the engine-driven compressor and the engine have been used to disconnect the compressor from the engine when the turbocharger is capable of scavenging and charging the cylinders by itself. However, the addition of a clutch in the compressor drive train adds a very significant amount of cost and complication to the mechanical configuration of the engine.

Disclosure of the Invention

One very important objective of this invention is to eliminate the need for an engine-driven compressor on a two-cycle engine by employing a turbocharger with an internal, integral motor that can be energized from an external power supply, such as a battery system. The motor can be supplied with power during cranking of the engine thereby rotating the turbocharger compressor to a speed necessary to force air into the engine intake system to start the engine and permit it to run at idle. The motor remains active as long as the energy level in the exhaust gas is insufficient to allow the turbocharger to scavenge and charge the engine on its own. When the turbocharger is capable of providing an intake manifold pressure higher than the exhaust back pressure on the cylinder, the motor is de-energized and the power drain on the electrical system is eliminated. By suitable control means, the motor can be energized at any time the exhaust gas energy is insufficient to drive the turbocharger at a high enough speed to sustain proper engine operation.

One method of control of the motor power supply is to sense the pressure in the engine intake manifold and turn the power on to the motor when the level falls below a predetermined level and vice versa. Other

-3-

means of control can also be employed where the motor remains energized at a low power level at all times to maintain the turbocharger rotor speed at a predetermined minimum level. In this manner, the inertia of the 5 turbocharger rotor is counteracted by the motor torque and the time to accelerate the turbocharger rotor where the engine throttle is opened is shortened significantly. By substantially reducing this so-called "turbocharger lag," the engine accelerates faster, the vehicle driven becomes more responsive, and undesirable pollutants in the exhaust gases are markedly reduced.

10 In order to aid in the understanding of this invention, it can be stated in essentially summary form that it is directed to a motor-assisted turbocharger and/or a motor-driven compressor for use on two-cycle internal combustion engines. The motor drive, which is separate from the 15 operation of the two-cycle internal combustion engine, permits the starting of the two-cycle internal combustion engine by supplying scavenging and charging air.

20 Thus, it is a purpose and advantage of this invention to provide a motor-assisted turbocharger where the compressor of the turbocharger is driven mainly by the motor at low speeds and by exhaust gas energy at high speeds.

It is a further purpose and advantage of this invention to supply a 25 motor-assisted turbocharger which aids in the acceleration of the engine from low to high speed in a manner which produces less undesirable products of combustion.

The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The present invention, both as to its organization and manner of operation, together with further objects and advantages thereof, may be best understood by reference to the following description, taken in conjunction with the 30 accompanying drawings.

-4-

Brief Description of the Drawings

5 FIGURE 1 is a diagrammatic cross-sectional illustration of a uniflow-scavenged, two-cycle engine employing a motor-assisted turbocharger for supplying charge air for starting the engine and operating the engine at low loads and speeds;

10 FIGURE 2 is a diagrammatic cross-sectional view of a crankcase-scavenged, two-cycle engine using a motor-driven compressor to supplement the crankcase air supply for faster acceleration and higher horsepower output;

15 FIGURE 3 is a diagrammatic cross-sectional view of a crankcase-scavenged, two-cycle engine with a motor-assisted turbocharger used to augment the crankcase compression for higher power output and faster acceleration;

20 FIGURE 4 shows a diagrammatic cross-section of a uniflow-scavenged, two-cycle engine using a conventional turbocharger and motor-driven compressor with their compressors arranged in series for charging and starting of the engine;

25 FIGURE 5 shows a diagrammatic cross-section of a uniflow-scavenged, two-cycle engine using a motor-assisted turbocharger and a motor-driven compressor with their compressors arranged in series for starting and charging the engine;

FIGURE 6 shows a diagrammatic cross-section of a crankcase-scavenged, two-cycle engine using a conventional turbocharger and a motor-driven compressor with their compressors arranged in series for charging and starting of the engine;

30 FIGURE 7 shows a diagrammatic cross-section of a crankcase-scavenged, two-cycle engine using a motor-assisted turbocharger and a motor-driven compressor with their compressors arranged in series for starting and charging the engine;

FIGURE 8 shows a diagrammatic cross-section of a uniflow-scavenged, two-cycle engine using a conventional turbocharger and a

-5-

motor-driven compressor, with their compressors arranged in parallel, and check valves in each compressor outlet duct to prevent backflow of air through the compressor having inferior output pressure; and

5 FIGURE 9 shows a diagrammatic cross-section of a uniflow-scavenged, two-cycle engine using a motor-assisted turbocharger and a motor-driven compressor with their compressors arranged in parallel and check valves in each compressor outlet duct to prevent back flow of air through the compressor having inferior outlet pressure.

10 Best Mode for Carrying Out the Invention

A first preferred embodiment of the invention consists of a motor-assisted turbocharger that has a centrifugal compressor connected to supply air to the intake ports of a two-cycle engine, as illustrated in FIGURE 1. The centrifugal compressor is also connected to be driven by an exhaust gas turbine, mounted on the same shaft, which is connected to receive exhaust gas from the cylinders of the engine. The turbocharger is provided with an internal motor arranged to provide torque to the turbocharger rotor assembly. Suitable control means are provided to energize the motor even before the engine is cranked so as to supply charge air for starting the engine. The motor remains energized as long as the turbocharger is incapable of supplying scavenging and charging air to maintain proper running of the engine.

20 Referring to FIGURE 1, a two-cycle internal combustion engine 10 is shown with air intake ports 11 in the cylinder wall and exhaust valving 12 in the cylinder head to allow what is commonly termed uniflow scavenging of the combustion space. A turbocharger 13 is mounted to accept exhaust gas from the engine cylinders through manifolding 14, which expands through the turbine 15 to drive compressor 16, mounted on the other end of the rotor shaft. The turbocharger 13 includes a 25 turbocharger housing 13a having a shaft 101 rotatably mounted in the housing. An exhaust gas turbine scroll 102 and a compressor scroll 103

5

are mounted on the housing, and a turbine rotor 104 and a compressor rotor 105 are mounted to the shaft 101 for rotation within the exhaust gas turbine scroll 102 and the compressor scroll 103, respectively. As known to those skilled in the art, exhaust gas from the engine rotates the turbine rotor and the shaft which, in turn, rotates the compressor rotor so that the engine exhaust gas drives the compressor rotor to deliver compressed air to the inlet manifold when the engine is running.

10

Also interposed internally in the turbocharger between the turbine rotor and the compressor rotor is an electric motor 17 arranged to impart driving torque to the compressor rotor when energized from an external power source 18. The power to the motor is turned on, modulated, or turned off by a control means 19 in response to various input signals (generally designated at 25) from operational parameters. These parameters can be engine speed, turbocharger speed, intake manifold pressure, throttle position, and the like.

15

20

Outside air enters the intake of the turbocharger compressor 20, preferably from an air cleaner (not shown) and is directed to the intake manifold 21 in the cylinder wall. On the upstroke of the piston, the exhaust valve 12 closes, the intake ports 11 are covered, and compression of the air charge occurs. Fuel enters the cylinder near top dead center, where combustion occurs, forcing the piston down on the power stroke. When the piston reaches the latter part of the power stroke, the exhaust valve opens allowing blow down of the high pressure exhaust gas into the exhaust manifold, where it flows to the turbocharger turbine 15. The piston then uncovers the intake port and allows charge air to enter the cylinder, force out the residual exhaust gas, and fill the cylinder with a fresh charge for a repetition of the process each revolution of the crankshaft.

25

30

When the operator desires to start the engine, electric motor 17 is supplied with power from control means 19 to supply adequate air for engine breathing. The turbocharger rotating assembly is then brought up to

5

10

15

20

25

30

an adequate speed by electric motor power to provide charge air for starting. When sufficient air pressure is available from the turbocharger compressor, the engine is cranked over by the starting motor. After the engine is started, the control means senses when the exhaust gas turbine is able to supply adequate pressurization of the intake manifold system without the motor. At that time, the internal motor 17 can be de-energized allowing the engine to operate at normal speeds and loads. However, at any time the engine is operated at low speed and load or at idling conditions, the motor is re-energized by an appropriate signal to the control means, in order to maintain the turbocharger operating speed high enough to provide enough charge air to keep the engine running.

FIGURE 2 shows another embodiment of this invention wherein an electric motor-driven compressor is connected to the air intake port of a crankcase-scavenged, two-cycle engine. In this case, the motor is energized to aid in starting and in accelerating the engine. Since the motor-driven compressor provides more air than can be generated by crankcase compression, additional fuel can be supplied to the cylinders during acceleration and at maximum power demand for enhancing the power output of a given size engine and for shortening the time to accelerate the engine and driven vehicle from low to high speed. The provision of more air during acceleration leads to more efficient combustion of fuel, and thus reduces the amount of pollutants present in the exhaust gas during the acceleration period. Suitable control means are provided to turn on current to the motor when needed. Suitable controls are also provided to maintain the motor-driven compressor at a predetermined minimum speed so as to minimize the restriction of air flow to the intake ports that might be present if the centrifugal compressor remains inactive.

Referring to FIGURE 2, the engine 22 has a piston 24 which reciprocates up and down in a cylinder under control of crank 26. The crank operates in a closed crankcase 28. The air intake port 30 into the

crankcase has a reed valve 32 which allows air only into the crankcase. As the piston moves down, the air in the crankcase which is compressed by the downward motion of the piston moves upward through transfer passage 34 into the cylinder. The exhaust port 36 is uncovered at this position of the piston. Thus, the air scavenges the cylinder and provides a new charge of air. The air is compressed as the piston moves upward and closes off the exhaust port. As fuel is introduced near to the top dead center, the spark plug 38 initiates ignition.

Rotary compressor 40 is driven by electric motor 42, which receives appropriate signals from control means 44 so that adequate air is supplied to the engine 22. Starting air is required, and acceleration can be enhanced by additional air. The control means 44 receives signals 25 indicating when starting is required and when acceleration is required so that appropriate power is supplied to the electric motor to suitably drive the compressor 40.

A third embodiment of this invention is illustrated in FIGURE 3 where a motor-assisted turbocharger is provided to augment the air supplied by crankcase compression in a crankcase-scavenged, two-cycle internal combustion engine. The internal motor in the turbocharger is energized when more power is required for accelerating the engine under load, and for maintaining the speed of the turbocharger rotor at a predetermined minimum level.

The embodiment of FIGURE 3 has an engine 46, which is the same as engine 22. That is to say it has a transfer passage 48 with an inlet port which is uncovered by the piston as it moves downward from the top dead center position shown in FIGURE 3. Exhaust port 50 is first uncovered so that high pressure exhaust gas is discharged to exhaust gas turbine 52. The exhaust gas turbine drives rotary compressor 54. The rotary compressor can also be driven by electric motor 56, which is between the turbine and compressor and mounted on the shaft therebetween.

-9-

When running, the exhaust gas from the engine is sufficient to drive the exhaust gas turbine 52 with enough power to drive the compressor 54 to supply adequate air flow through the air intake port and reed valve into the crankcase. However, during starting, the compressor is driven by the electric motor and supplies enough starting air to start the engine. The system can be configured so that additional electric motor power may or may not be needed during times of engine acceleration. Control means 57 is similar to the previously described control means 44 and functions in the same manner.

In a fourth embodiment of this invention illustrated in FIGURE 4, an electric motor-driven compressor 58 is provided in series with a turbocharger compressor 60. The air outlet 62 of the motor-driven compressor is connected to the air inlet of the turbocharger compressor. The outlet 64 of the turbocharger compressor is connected to the air intake system of a two-cycle engine 66. The motor-driven compressor 58 is energized for starting the engine and supplies starting air through the open passages of the turbocharger's centrifugal compressor 60. After starting, the motor-driven compressor 58 assists the turbocharger compressor's capability of supplying charge air to keep the engine 66 running at idle and low loads. Suitable control means 68 are provided to turn the motor 70 on when needed or to maintain the motor-driven compressor 58 at a predetermined minimum speed.

The operation of the system shown in FIGURE 4 can be enhanced by the addition of an internal motor in the turbocharger as illustrated in FIGURE 5. Specifically, FIGURE 5 shows a diagrammatic cross-section of a uniflow-scavenged, two-cycle engine using a motor-assisted turbocharger and a motor-driven compressor with their compressors arranged in series for starting and charging the engine.

Similar to the embodiment of FIGURE 1, the turbocharger shown in FIGURE 5 has an internal motor 65 arranged to impart driving torque to the turbocharger rotor when energized from external power source 18.

-10-

The power to the motor is turned on, modulated or turned off by control means 68 in response to input signals 25 from operational parameters. The internal motor 65 can be energized during starting to assist in supplying starting air to start the engine, and, in general, to provide additional electric motor power when needed. For example, it may be energized during times of engine acceleration under load or when the engine is operated at low speed and load or at idling conditions to ensure enough charge air is provided to keep the engine running properly.

FIGURE 6 illustrates a motor-driven compressor 72 and a turbocharger compressor 74 connected in series, as applied to a crankshaft scavenged, two-cycle internal combustion engine 75. The engine structure is similar to that shown in FIGURE 3, and the turbocharger has the same connections. However, the compressor 72 driven by motor 76 is separate and series-connected in the air flow. The control means 78 controls motor 76 in response to the type of signals previously discussed.

FIGURE 7 illustrates a crankcase-scavenged, two-cycle engine using a motor-assisted turbocharger and a motor-driven compressor with their compressors arranged in series for starting and charging the engine. The embodiment of FIGURE 7 is similar to that of FIGURE 6 except that the turbocharger is provided with an internal motor 77. As in previous embodiments, the internal motor 77 can be energized when needed or desired to assist in supplying starting air for starting the engine, to provide additional power during times of engine acceleration under load, for maintaining the speed of the turbocharger rotor at a predetermined minimum level, and the like.

FIGURE 8 illustrates a motor-driven compressor 80 and a turbocharger compressor 82 connected in a parallel flow arrangement in which the compressed air from the motor-driven compressor 80 is admitted to the intake duct of the engine 86 at a point between the turbocompressor 82 and the engine intake manifold 84, providing nearly instantaneous supercharging of the scavenging system upon demand. When the

-11-

turbocharger speed of the exhaust gas turbine 85 rises sufficiently to produce a pressure output exceeding that of the motor-driven compressor, the motor control means 88 will signal the motor 90 to shut off. Backflow of air from either compressor through the other compressor is prevented by the placement of pressure activated reed check valves 92 and 94 or other types of fast-acting valves. Motor control means 88 is provided to command shutoff of the motor-driven compressor when not needed.

5 The embodiment of FIGURE 9 is similar to that of FIGURE 8 except that an internal motor 95 is provided for the turbocharger.

10 Specifically, FIGURE 9 illustrates a uniflow-scavenged, two-cycle engine using a motor-assisted turbocharger and a motor-driven compressor with their compressors arranged in parallel and check valves in each compressor outlet duct to prevent backflow of air through the compressor having inferior outlet pressure. As in previous embodiments, the turbocharger motor 95 can be energized when needed or desired to assist in supplying additional starting air for starting the engine, to provide additional power during times of engine acceleration under load, for maintaining the speed 15 of the turbocharger rotor at a predetermined level, and the like.

15 This invention has been described in several of its presently contemplated best modes, and it is clear that it is susceptible to numerous modifications, modes and embodiments within the ability of those skilled in the art and without the exercise of the inventive faculty. Accordingly, the scope of this invention is defined by the scope of the following claims.

Claims

5 1. A motor-assisted compressor system for supplying charge air to a two-cycle internal combustion engine, comprising:

(a) a two-cycle internal combustion engine having at least one cylinder and having an air intake valve or port for each cylinder, and an exhaust valve or port for each cylinder;

10 (b) an intake manifold connected to supply charging and scavenging air to each inlet valve or port;

(c) a compressor having a shaft and having a compressor rotor on said shaft, said compressor being connected to said intake manifold to supply air thereto;

15 (d) an exhaust manifold connected to said engine, receiving exhaust gas from each cylinder;

(e) an exhaust gas turbine having a rotor mounted on said shaft, said turbine being connected to said exhaust manifold, so as to receive exhaust gas from said exhaust manifold to drive said rotor and said shaft;

20 (f) an electric motor being positioned on said shaft between said turbine rotor and said compressor rotor to drive said compressor rotor to supply air to said intake manifold; and

25 (g) control means connected to said electric motor to supply power to said electric motor to drive said compressor rotor to supply charge air to said intake manifold for starting.

30 2. The motor-assisted turbocharger system of Claim 1, where said control means is connected to receive signals from said engine so that said control means supplies power to said electric motor to drive said compressor rotor to supply charge air to said intake manifold whenever said turbine is unable to drive said compressor rotor to supply enough charge air to sustain engine operation.

-13-

3. The motor-assisted turbocharger system of Claim 1, wherein
said control means is connected to receive signals from said engine so that
said control means supplies power to said electric motor to assist said
turbine rotor in driving said compressor rotor when the engine is called
upon to accelerate under load.

5

4. The motor-assisted turbocharger system of Claim 2, wherein
said control means receives signals corresponding to engine rotative speed,
intake manifold air pressure, or engine throttle position for control of said
electric motor.

10

5. The motor-assisted turbocharger system of Claim 3, wherein
said control means receives signals corresponding to engine rotative speed,
intake manifold air pressure, or engine throttle position for control of said
electric motor.

15

6. A motor-assisted turbocharger system, comprising:

(a) an internal combustion engine, said internal
combustion engine having cylinders and pistons within said cylinders, said
internal combustion engine having an intake port or valve and an exhaust
port or valve for respective admission of air into and exhaust of combustion
gas from each cylinder;

20

(b) an exhaust manifold connected to receive exhaust gas
from each said exhaust port or valve, an exhaust gas turbine connected to
receive exhaust gas from said exhaust manifold;

25

(c) a turbocharger housing, said housing having a shaft
therethrough, said shaft being rotatably mounted in said housing, an
exhaust gas turbine scroll mounted on said housing, and a turbine rotor on
said shaft within said exhaust gas turbine scroll so that exhaust gas rotates
said turbine rotor and said shaft, a compressor rotor on said shaft and a
compressor scroll mounted around said compressor rotor and mounted on

30

-14-

said housing, an inlet manifold connected to receive compressed air from said compressor scroll so that engine exhaust gas drives said compressor rotor to deliver compressed air to said inlet manifold when said engine is running; and

5 (d) an electric motor mounted on said shaft within said housing to drive said compressor rotor to deliver compressed air to said inlet manifold when there is insufficient exhaust gas to supply sufficient air to said inlet manifold for charging and scavenging said engine cylinders.

10 7. The motor-assisted turbocharger system of Claim 6, further including control means for controlling said motor so that said motor is energized to supply adequate air to said intake manifold when there otherwise would be insufficient compressed air for proper engine operation.

15 8. The motor-assisted turbocharger system of Claim 7, wherein said control means receives signals corresponding to inlet manifold pressure and engine speed for supplying power to said electric motor.

20 9. The motor-assisted turbocharger system of Claim 8, wherein said control means also receives signals corresponding to the engine operator's desire for engine power in order to control the electric power to said motor.

25 10. A method of operating a two-cycle internal combustion engine which has connected thereto a motor-assisted turbocharger, wherein a charging compressor is driven both by an electric motor and an exhaust gas turbine comprising the steps of:

30 (a) supplying initial scavenging and charging air for starting by energizing the electric motor and running the compressor while there is insufficient exhaust gas to supply starting air; and

-15-

(b) ceasing motor energization after exhaust gas flow is sufficient to drive the compressor to supply adequate scavenging and charging air to the cylinders of the two-cycle internal combustion engine.

5 11. The method of Claim 10, further including the step of collecting signals corresponding to intake manifold pressure, engine speed, and engine operator's power demand for determining the energization of the electric motor.

10 12. A motor-assisted turbocharger system for supplying charge air to a crankcase-scavenged, two-cycle internal combustion engine, comprising:

15 (a) a two-cycle internal combustion engine having at least one cylinder and having an inlet port or valve for each cylinder and an exhaust port or valve for each cylinder;

(b) a closed crankcase wherein the downstroke of the piston causes air to be compressed;

20 (c) a turbocharger housing, said housing having a shaft therethrough, said shaft being rotatably mounted in said housing, an exhaust gas scroll mounted on said housing, a turbine rotor on said shaft within said exhaust gas scroll so that exhaust gas rotates said rotor and said shaft, a compressor rotor on said shaft, and a compressor scroll mounted around said compressor rotor and mounted on said housing, said compressor scroll connected to said inlet port or valve to deliver compressed air to said engine cylinders; and

25 (d) an electric motor mounted on said shaft within said housing to drive said compressor rotor to deliver compressed air to said intake port or valve to augment the air being compressed in said closed crankcase.

30

5 13. The motor-assisted turbocharger system of Claim 12, further including control means connected to said electric motor to energize said electric motor, said control means being connected to said two-cycle internal combustion engine to receive signals therefrom so that said two-cycle internal combustion engine receives air from said compressor scroll to allow additional power to be produced from said engine to achieve faster acceleration by said engine and to operate said two-cycle internal combustion engine so as to reduce exhaust pollutants.

10 14. The motor-assisted turbocharger system of Claim 12, including control means to supply power to said electric motor to maintain said compressor rotor at a predetermined minimum speed to overcome resistance to air flow through said compressor rotor when said engine does not need crankcase compression augmented.

15 15. A motor-driven compressor system, comprising:
20 (a) a crankcase-scavenged, two-cycle internal combustion engine having a crankcase and at least one cylinder with a piston reciprocating therein, said crankcase having an air inlet and an air outlet and otherwise being closed, wherein the downstroke of the piston causes air to be compressed in the crankcase;
25 (b) a transfer passage connecting said outlet of said closed crankcase with an intake port in each said engine cylinder;
 (c) a compressor rotor rotatably mounted within a compressor scroll, the outlet of said compressor scroll being connected to the said inlet of said closed crankcase;
 (d) an electric motor attached to said compressor scroll so as to drive said compressor rotor; and
 (e) control means connected to said electric motor to supply power to said electric motor to drive said compressor rotor and

deliver compressed air to said closed crankcase to augment the air being compressed by the downstroke of said piston in said closed crankcase.

5 16. The motor-driven compressor system of Claim 15, wherein said control means delivers power to said electric motor when the engine is called upon to accelerate under load.

10 17. The motor-driven compressor system of Claim 15, wherein said control means supplies power to said electric motor to maintain said compressor rotor at a predetermined minimum speed to overcome resistance to air flow through said compressor rotor when said engine does not need crankcase compression augmented.

15 18. A two-stage charge system for two-cycle internal combustion engines, comprising:

(a) a two-cycle internal combustion engine having at least one cylinder with a piston reciprocating therein and having an intake valve or port for each cylinder and an exhaust valve or port for each cylinder;

20 (b) an intake manifold connected to supply charging and scavenging air to each said intake valve or port;

(c) an exhaust manifold connected to receive exhaust gas flow from each said cylinder;

25 (d) a turbocharger having an exhaust gas turbine arranged to receive exhaust gas flow from said exhaust manifold and a centrifugal compressor having an air inlet and arranged to deliver compressed air to said intake manifold;

(e) a motor-driven centrifugal compressor having a compressor scroll, the outlet of said compressor scroll connected to said air inlet of said turbocharger centrifugal compressor; and

30 (f) control means to supply power to said motor-driven centrifugal compressor to deliver charge air through said turbocharger

-18-

centrifugal compressor to said intake manifold of said engine for starting and maintaining engine operation at low speed and load.

5 19. The system of Claim 18, wherein said control means de-energizes said motor-driven compressor when said turbocharger is capable of maintaining engine operation on its own.

10 20. The system of Claim 18, wherein said motor-driven compressor is energized to augment the air delivered by said turbocharger centrifugal compressor by virtue of being connected in series arrangement so that the horsepower output of said engine can be substantially increased.

15 21. The system of Claim 18, wherein said control means supplies power to the motor-driven centrifugal compressor to maintain a predetermined minimum speed of said motor-driven centrifugal compressor to overcome resistance to air flow being drawn through said motor-driven centrifugal compressor by said turbocharger centrifugal compressor.

20 22. The system of Claim 18, further including control means connected to said electric motor to energize said electric motor, said control means being connected to said two-cycle internal combustion engine to receive signals therefrom so that said two-cycle internal combustion engine receives air from said compressor scroll to allow additional power to be produced from said engine to achieve faster acceleration by said engine and to operate said two-cycle internal combustion engine so as to 25 reduce exhaust pollutants.

23. A two-stage charge system for crankcase-scavenged, two-cycle internal combustion engines, comprising:

30 (a) a two-cycle internal combustion engine having a crankcase and at least one cylinder with a piston reciprocating therein, said

-19-

crankcase having an air inlet and an air outlet and otherwise being closed, wherein the downstroke of said piston causes air to be compressed;

(b) a transfer passage connecting said outlet of said closed crankcase with an intake port in each engine cylinder;

5 (c) an exhaust manifold connected to receive exhaust gas from said engine cylinder;

(d) a turbocharger having an exhaust gas turbine arranged to receive exhaust gas flow from said exhaust manifold and a centrifugal compressor with an air inlet and an air outlet arranged to deliver compressed air to said air inlet of said closed crankcase;

10 (e) a motor-driven centrifugal compressor having a compressor scroll, the outlet of said compressor scroll connected to said air inlet of said turbocharger centrifugal compressor; and

15 (f) control means to supply electric power to said motor-driven centrifugal compressor to deliver charge air in series through said turbocharger centrifugal compressor to augment the charge air delivered by said turbocharger centrifugal compressor by virtue of being connected in series.

20 24. The system of Claim 23, wherein said control means de-energizes said motor-driven compressor when said turbocharger is capable of maintaining engine operation on its own.

25 25. The system of Claim 23, wherein said motor-driven compressor is energized to augment the air delivered by said turbocharger centrifugal compressor by virtue of being connected in series arrangement so that the horsepower output of said engine can be substantially increased.

30 26. The system of Claim 23, wherein said control means is connected to said two-cycle internal combustion engine to receive signals therefrom so that said two-cycle internal combustion engine receives air

-20-

from said compressor scroll to allow additional power to be produced from said engine to achieve faster acceleration by said engine and to operate said two-cycle internal combustion engine so as to reduce exhaust pollutants.

5 27. A charger for supplying charging and scavenging air to a two-cycle internal combustion engine, comprising:

 a two-cycle internal combustion engine having at least one cylinder with a piston reciprocating therein and an inlet valve for each cylinder and an exhaust valve for each cylinder;

10 an intake manifold connected to supply charging and scavenging air to each inlet valve;

 a compressor having a shaft and having a compressor rotor on said shaft, said compressor being connected to said intake manifold to supply charging and scavenging air thereto;

15 an electric motor connected to rotate said shaft to drive said compressor rotor to supply air to said intake manifold; and

20 control means connected to said electric motor to power said motor to drive said compressor rotor to supply compressor air to said intake manifold whenever the air supplied to said intake manifold becomes insufficient for proper engine operation to aid in starting and running said two-cycle internal combustion engine with a minimum of uncombusted fuel to increase power output and efficiency of said two-cycle internal combustion engine.

25 28. The charger for supplying charging and scavenging air to a two-cycle internal combustion engine in accordance with Claim 27 further including:

30 (a) an exhaust manifold connected to said engine at each said exhaust port, said exhaust manifold receiving exhaust gas from each said cylinder; and

-21-

5 (b) a turbocharger, said turbocharger having an exhaust gas turbine connected to receive exhaust from said exhaust gas manifold and a turbocompressor connected to be driven by said exhaust gas turbine, said turbocompressor being connected to supply charging and scavenging air to said intake manifold, said motor-driven compressor being connected to also deliver charging and scavenging air to said intake manifold.

5

10 29. The charger of Claim 28 wherein said motor-driven compressor is connected in series to said exhaust gas turbine-driven compressor.

10

15 30. The charger of Claim 28 wherein said motor-driven compressor is connected to deliver air to said intake manifold in parallel to said exhaust gas turbine-driven compressor.

15

31. The charger of Claim 30 wherein there is at least one backflow preventing check valve in said compressor connections to said intake manifold.

20

32. The system of Claim 18, and further including an electric motor in said turbocharger and connected to said turbocharger centrifugal compressor to drive said turbocharger centrifugal compressor to provide increased air supply to said intake manifold.

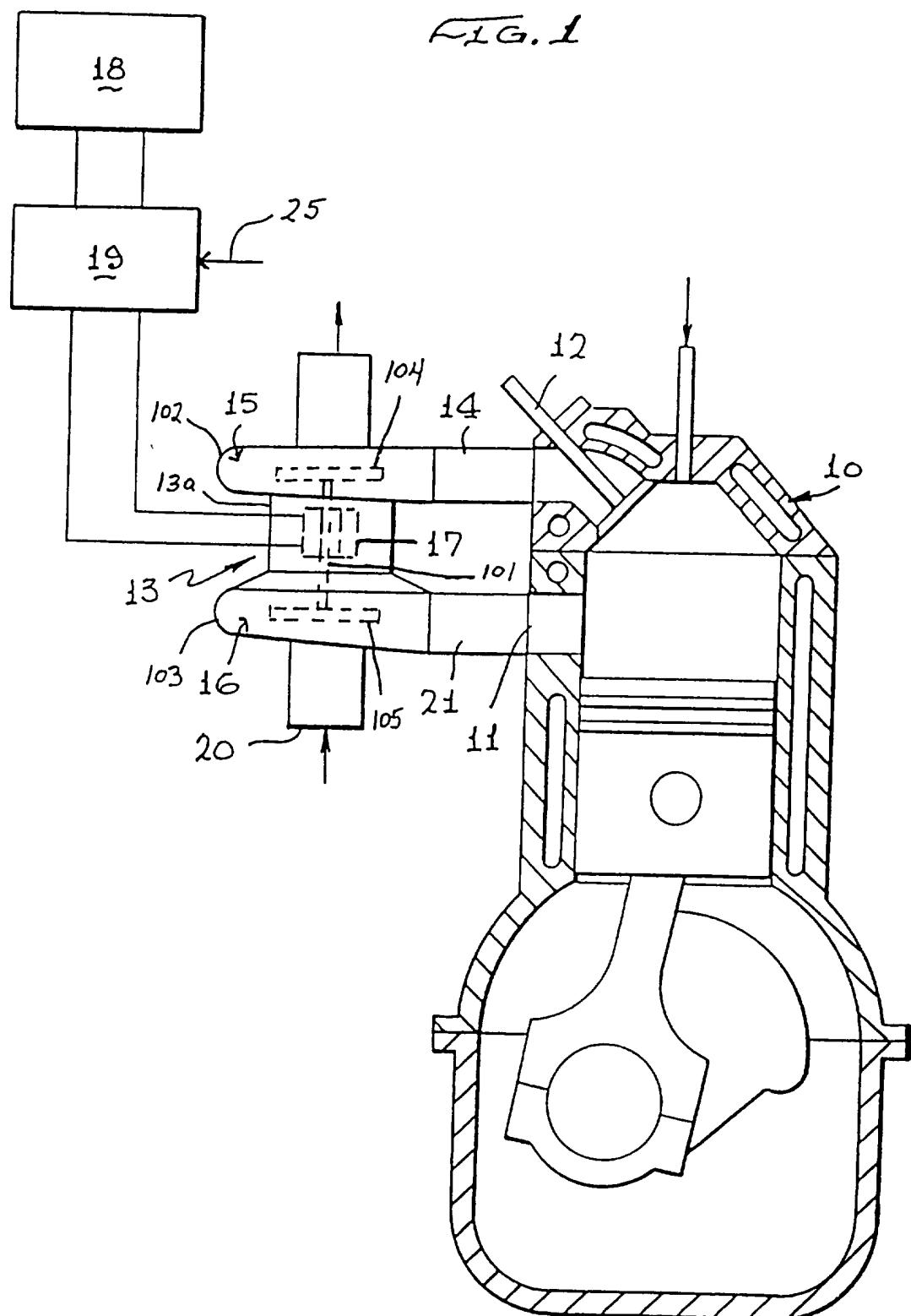
25

33. The system of Claim 32 wherein said control means is connected to said electric motor to energize said electric motor to provide increased air supply to said intake manifold when needed or desired for enhanced engine operation.

30

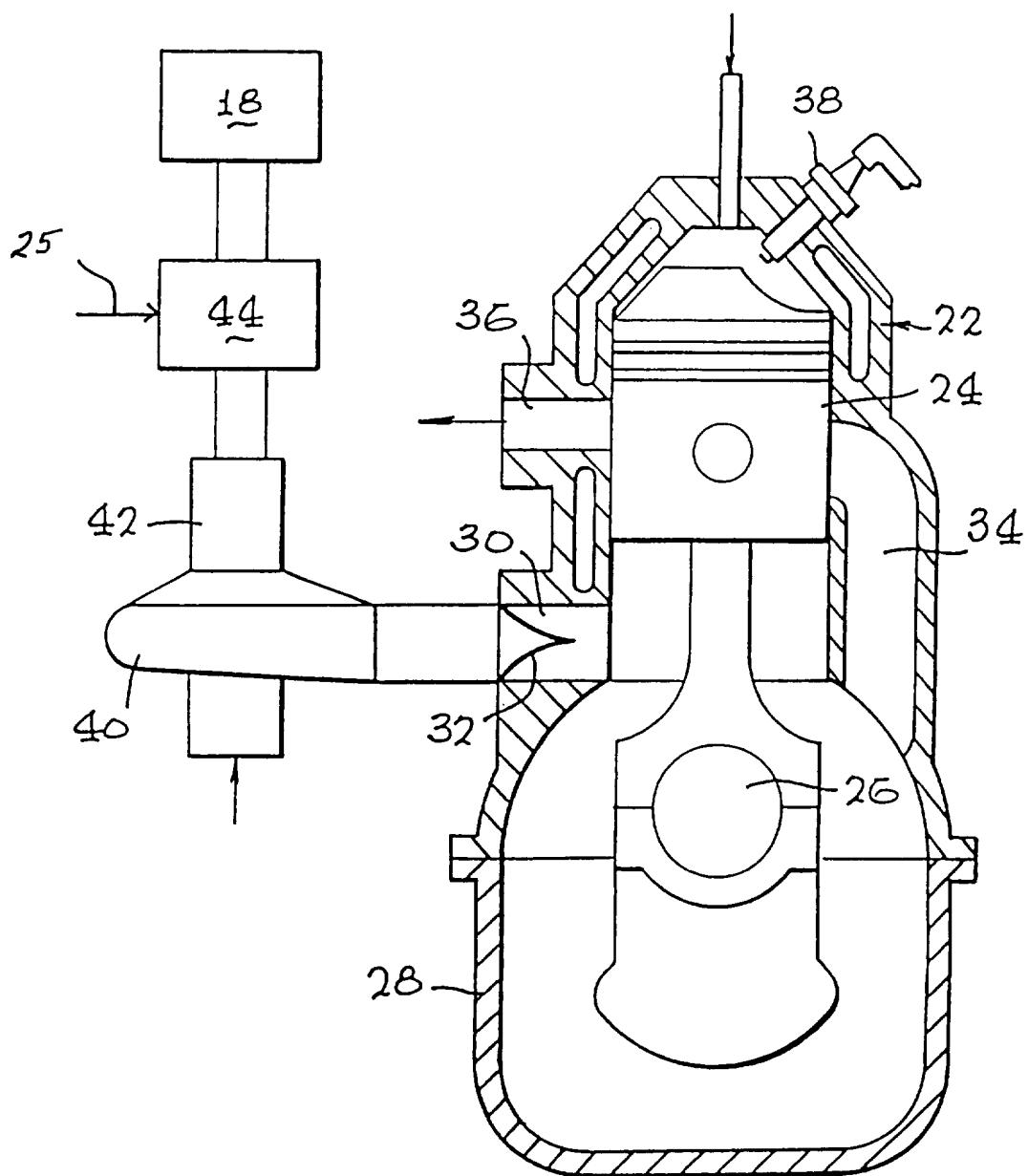
34. The system of Claim 23, and further including an electric motor in said turbocharger and connected to said turbocharger centrifugal

-22-


compressor to drive said turbocharger centrifugal compressor to provide increased air supply to said air inlet of said closed crankcase.

5 35. The system of Claim 34 wherein said control means is also connected to said electric motor to energize said electric motor to provide increased air supply to said air inlet of said closed crankcase when needed or desired for enhanced engine operation.

10 36. The system of Claim 28, and further including an electric motor in said turbocharger and connected to said turbocompressor to drive said turbocompressor to provide increased air supply to said intake manifold.


15 37. The system of Claim 36 wherein said control means is also connected to said electric motor to energize said electric motor to provide increased air supply to said intake manifold when needed or desired for enhanced engine operation.

1/9

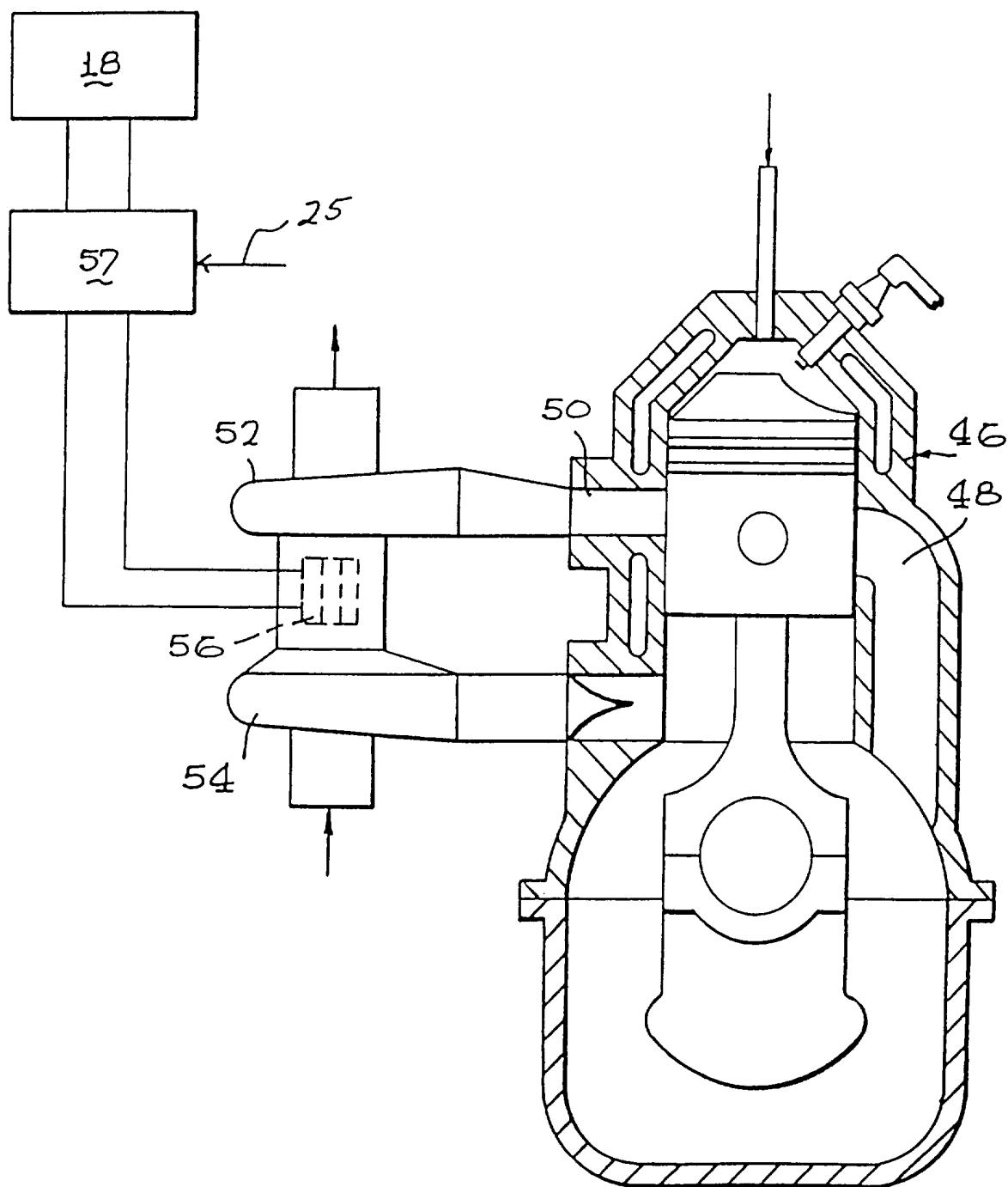

2/9

FIG. 2

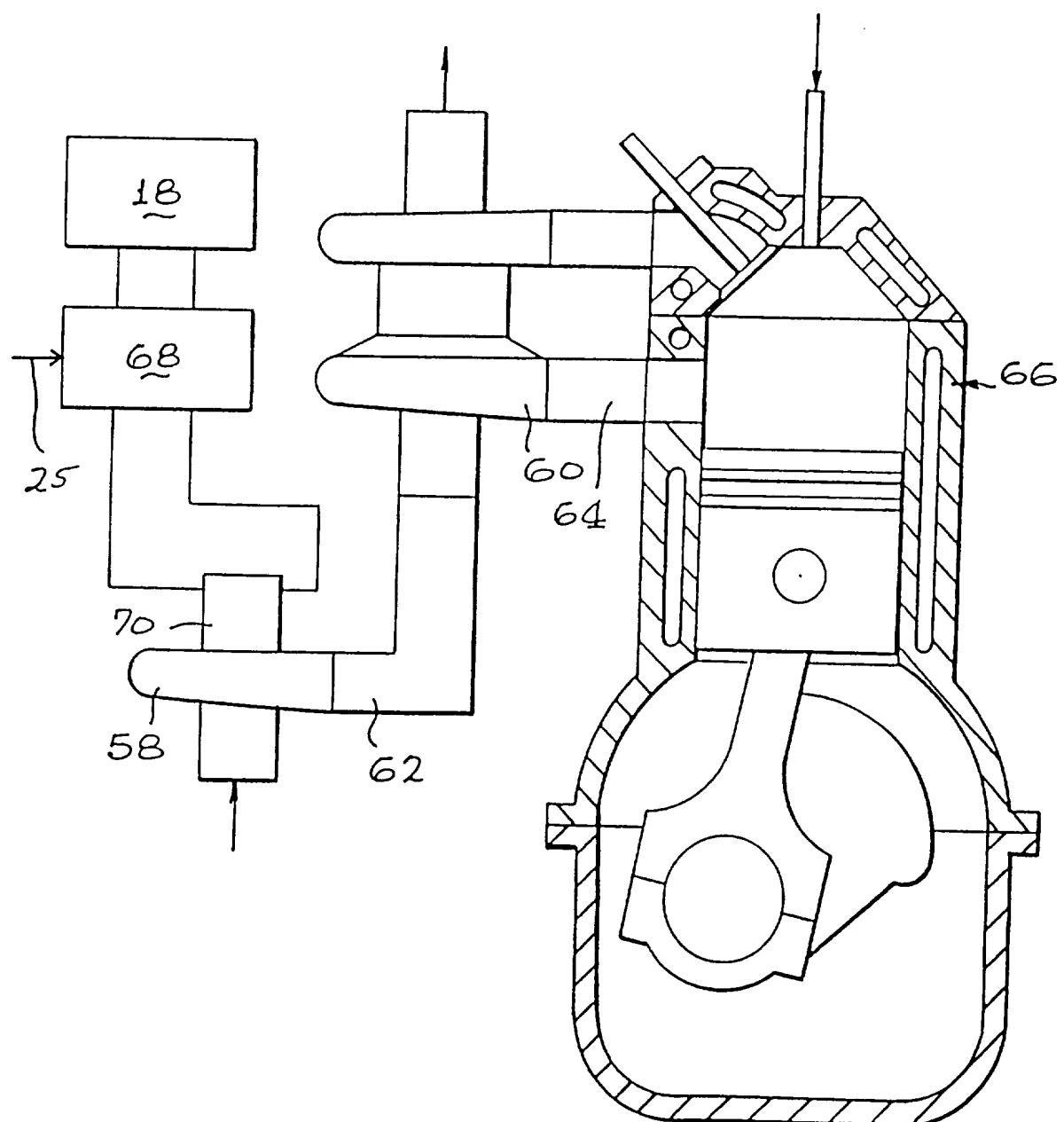

3/9

FIG. 3

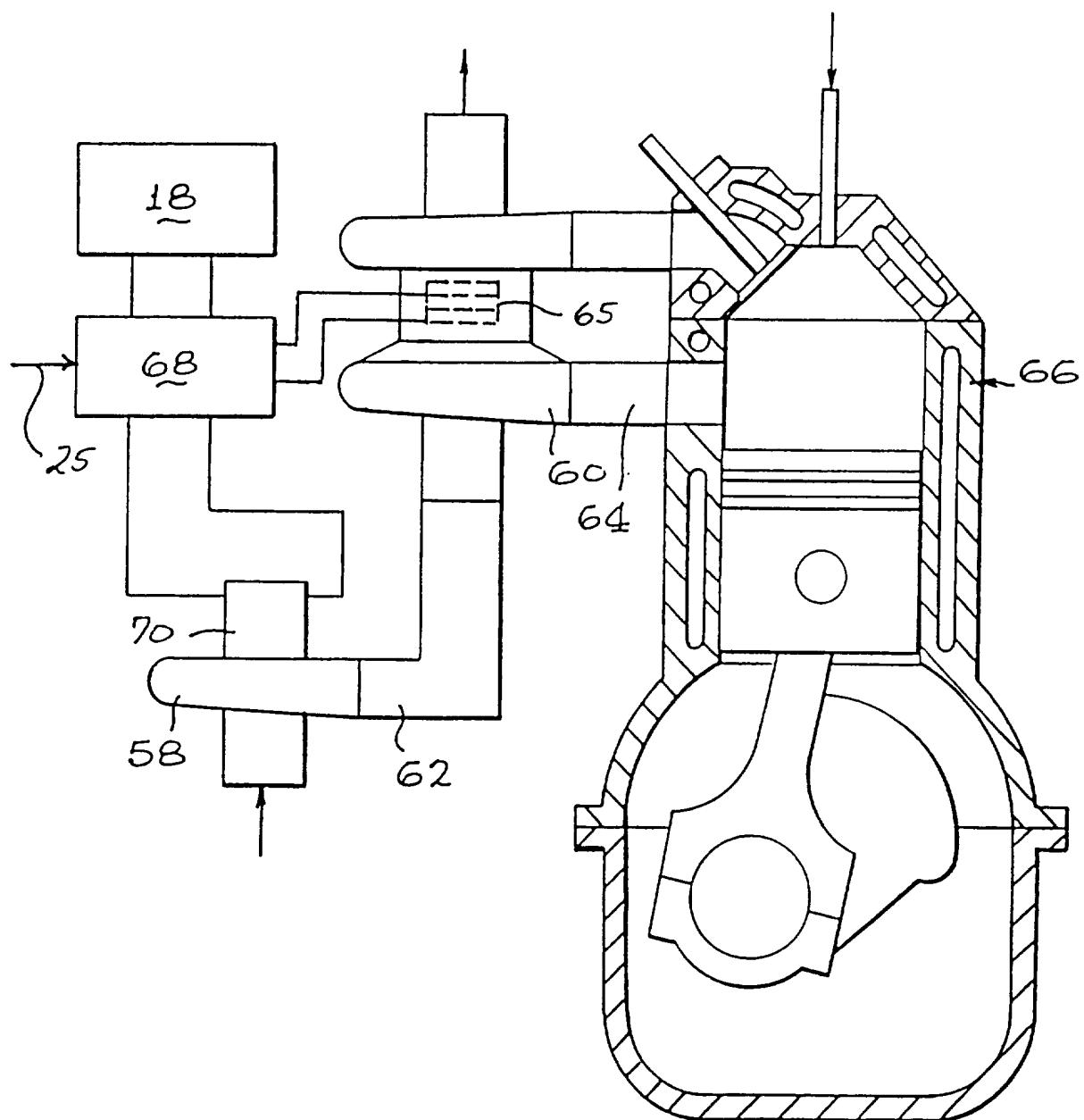

4/9

FIG. 2

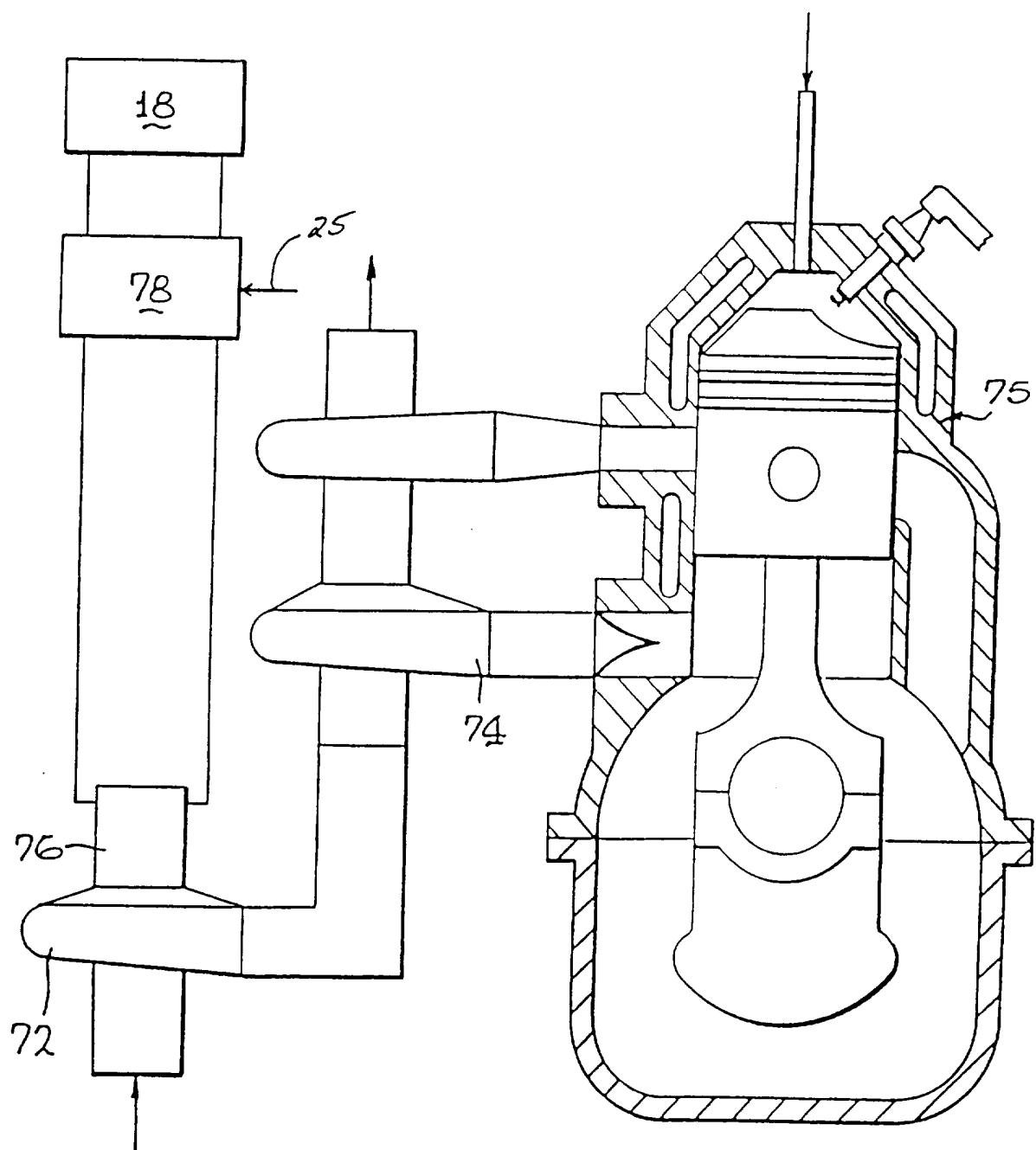

5/9

FIG. 5

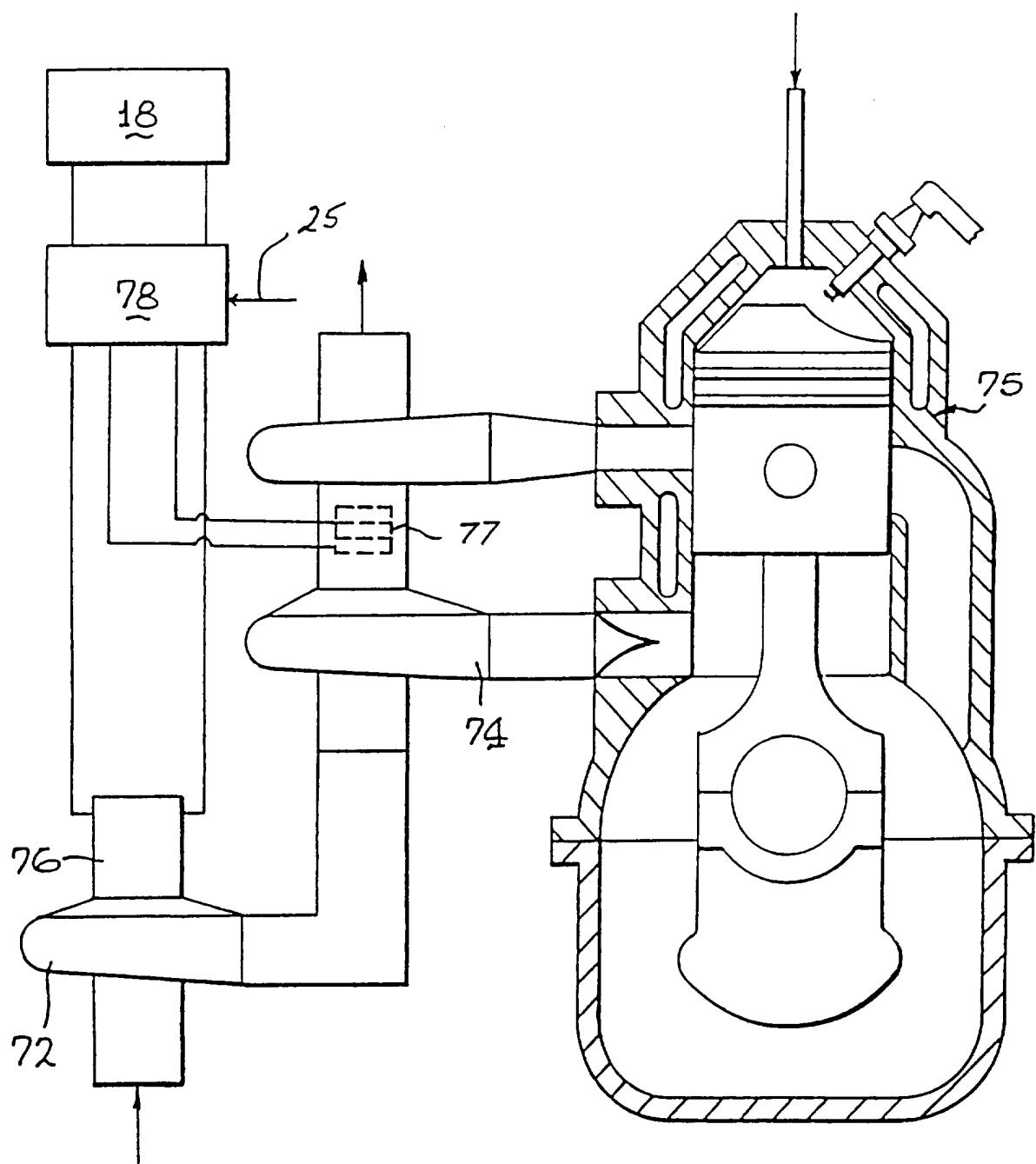

6/9

FIG. 6

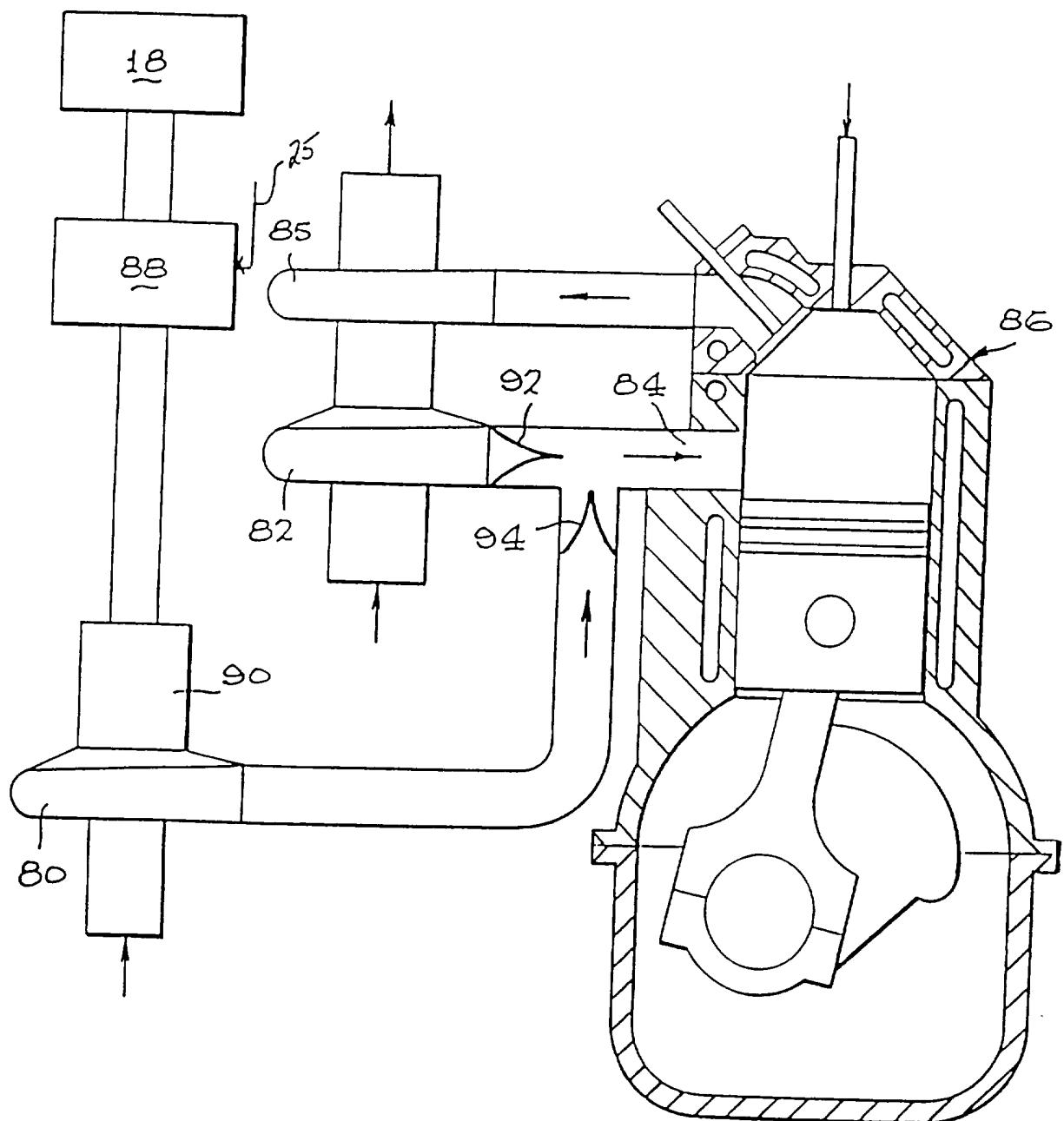

7/9

FIG. 7

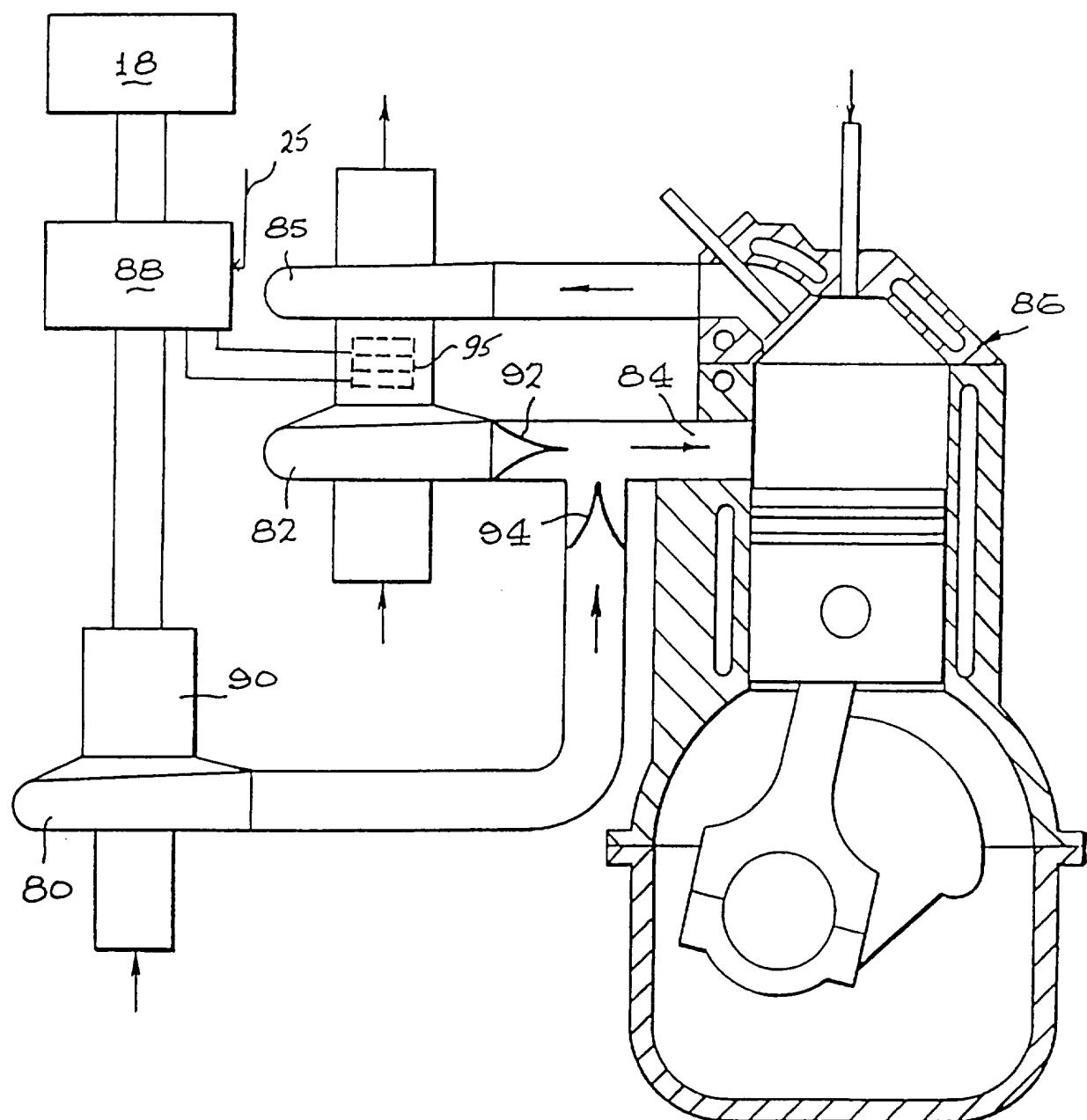

8/9

FIG. 8

9/9

FIG. 9

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/17007

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : F02B 37/10
 US CL : 60/608; 123/73AF
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 60/607, 608, 612; 123/73AF.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US, A, 4,981,017 (HARA ET AL) 01 January 1991, see the entire document.	1-5, 10, 11
Y	US, A, 3,676,999 (OLDFIELD) 18 July 1972, see the entire document.	1-5
Y	US, A, 4,969,332 (NANCARROW ET AL) 13 November 1990, col. 1, line 31; and col. 2, line 37.	1-5
Y -- X	US, A, 4,901,530 (KAWAMURA) 20 February 1990, see the entire document.	1-5, 11, 13, 14, 16, 17 ----- 6-9
Y	US, A, 3,903,854 (SHELTON) 09 September 1975, see the entire document.	12-17, 23-26, 34, 35

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
05 DECEMBER 1996 Date of mailing of the international search report
26 DEC 1996

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
MICHAEL KOCZO, JR.
Telephone No. 703-308-0861
Stacia Sinick

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/17007

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US, A, 2,710,521 (NETTEL) 14 June 1955, see the entire document.	10, 12-22, 28-33, 36, 37
--		----
X		27
Y	US, A, 4,958,497 (KAWAMURA) 25 September 1990, see the entire document.	18-26, 28, 29, 32-37
Y	JP, A, 4-54218 (TAKEUCHI) 21 February 1992, see the entire document.	30