wo 2015/073526 A1 [N 00O O O O

(43) International Publication Date

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

21 May 2015 (21.05.2015)

WIPOIPCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2015/073526 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 9/30 (2006.01) GO6F 15/80 (2006.01)
GO6F 9/38 (2006.01)

International Application Number:
PCT/US2014/065200

International Filing Date:
12 November 2014 (12.11.2014)

Filing Language: English
Publication Language: English
Priority Data:

14/082,088 15 November 2013 (15.11.2013) US

Applicant: QUALCOMM INCORPORATED [US/US];
Attn: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventor: KHAN, Raheel; 5775 Morehouse Drive, San
Diego, California 92121-1714 (US).

Agents: MATTHEW, Benjamin B. et al; Novak Druce
Connolly Bove + Quigg LLP, P.O. Box 2207, Wilmington,
Delaware 19899 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(84)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: VECTOR PROCESSING ENGINE EMPLOYING FORMAT CONVERSION CIRCUITRY IN DATA FLOW PATHS
BETWEEN VECTOR DATA MEMORY AND EXECUTION UNITS, AND RELATED METHOD

/ 2(3)

VLANED 100(0) VLANET 100(1) YLANETS 1000%)
VECTOR DATA VECTOR DATA VECTORDATA
FILE 82(0) FILE 82(1) 8606) FILE 820¢)
86(4) 80(1) I ™~
S~ 88(1) )~ /86
TEET [l e
D> i SHADOW H T8
o TAPPED-DELAY LINE 78(1)
T Jix' v |
< X FRIVARY -
1550 158(1) TAPPED-DELAY LINE 78(0) 169Xt
i —— ~ 17200
111~ 86F, 86SF
|7 o] gy 78 by B NI
| L T 9800
3 ik b el g 8K (X), 885700 |
130(0)130(%) & 0))7 ‘ ST VD NP
86F(0) 8657(0) y %) :
w0 BF{(1), B6SF(1)
98(0)
FiG. 19

(57) Abstract: Vector processing engines (VPEs) employing format conversion circuitry in data flow paths between vector data
memory and execution units to provide in-flight format-converting of input vector data to execution units for vector processing opet -
ations are disclosed. Related vector processor systems and methods are also disclosed. Format conversion circuitry is provided in
data flow paths between vector data memory and execution units in the VPE. The format conversion circuitry is configured to con -
vert input vector data sample sets fetched from vector data memory in-flight while the input vector data sample sets are being
provided over the data flow paths to the execution units to be processed. In this manner, format conversion of the input vector data
sample sets does not require pre-processing, storage, and re-fetching from vector data memory, thereby reducing power consumption
and not limiting efficiency of the data flow paths by format conversion pre-processing delays.
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UNITS, AND RELATED METHODS

RELATED APPLICATIONS

[B8081] The present apphcation is related to ULS. Paient Application Serial No.
13/798,641 entitled  “VECTOR  PROCESSING ENGINES  HAVING
PROGRAMMABLE DATA PATH CONFIGURATIONS FOR PROVIDING MULTI-
MODE VECTOR PROCESSING, AND RELATED VECTOR PROCESSORS,
SYSTEMS, AND METHODS,” 123249 filed on March 13, 2013 and incorporated
herein by reference n its entirety.

6062} The present application is related to U8, Paient Apphcation Serial No.
13/798,618 entitled “VECTOR PROCESSING CARRY-SAVE ACCUMULATORS
EMPLOYING REDUNDANT CARRY-SAVE FORMAT TO REDUCE CARRY
PROPAGATION, AND RELATED VECTOR PROCESSORS, SYSTEMS, AND
METHODS,” 123248 filed on March 13, 2013 and corporated herein by reference in
its entirety.

16083} The present application is also related to U.S. Patent Application Serial No.
14/082,075 entitled “VECTOR PROCESSING ENGINES (VPEs) EMPLOYING A
TAPPED-DELAY LINE(S) FOR PROVIDING PRECISION FILTER VECTOR
PROCESSING OPERATIONS WITH REDUCED SAMPLE RE-FETCHING AND
POWER CONSUMPTION, AND RELATED VECTOR PROCESSOR SYSTEMS
AND METHODS.” 124362 filed on November 15, 2013 and incorporated herein by
reference n 118 entirety.

6084} The present application is also related to U.S. Patent Application Serial No.
14/082,079 entitled “VECTOR PROCESSING ENGINES (VPEs) EMPLOYING
TAPPED-DELAY LINE(S) FOR PROVIDING PRECISION
CORRELATION/COVARIANCE VECTOR PROCESSING OPERATIONS WITH
REDUCED SAMPLE RE-FETCHING AND POWER CONSUMPTION, AND
RELATED VECTOR PROCESSOR SYSTEMS AND METHODS,” 124364 filed on

Movember 15, 2013 and incorporated herein by reference m its entirety.”



WO 2015/073526 PCT/US2014/065200

[8045] The present apphication is also related to ULS. Patent Application Serial No.
14/082.081 entitled “VECTOR PROCESSING ENGINES (VPEs) EMPLOYING
REORDERING CIRCUITRY IN DATA FLOW PATHS BETWEEN EXECUTION
UNITS AND VECTOR DATA MEMORY TO PROVIDE IN-FLIGHT REORDERING
OF QUTPUT VECTOR DATA STORED TO VECTOR DATA MEMORY, AND
RELATED VECTOR PROCESSOR SYSTEMS AND METHODS,” 124450 filed on
November 15, 2013 and incorporated herein by reference in its entirety.

16006] The present application is also related to U8, Patent Application Serial No.
14/082,073 entitled “VECTOR PROCESSING ENGINES (VPEs) EMPLOYING
MERGING CIRCUITRY IN DATA FLOW PATHS BETWEEN EXECUTION UNITS
AND VECTOR DATA MEMORY TO PROVIDE IN-FLIGHT MERGING OF
OUTPUT VECTOR DATA STORED TO VECTOR DATA MEMORY, AND
RELATED VECTOR PROCESSING INSTRUCTIONS, SYSTEMS, AND
METHODS,” 12436301 filed on Movember 15, 2013 and incorporated hercin by
reference in 118 enfirety.

[80467] The present apphication is also related to ULS. Patent Application Serial No.
14/082.067 entitled “VECTOR PROCESSING ENGINES (VPEs) EMPLOYING
DESPREADING CIRCUITRY IN DATA FLOW PATHS BETWEEN EXECUTION
UNITS  AND  VECTOR DATA MEMORY TO PROVIDE  IN-FLIGHT
DESPREADING OF SPREAD-SPECTRUM SEQUENCES, AND RELATED
/ECTOR  PROCESSING  INSTRUCTIONS, SYSTEMS, AND METHODS)”

124363102 filed on November 15, 2013 and incorporated herein by reference in #s

entirety.
BACKGROUND
i Field of the Disclosure
[B008] The feld of the disclosure relates to vector processors and related systems

for processing vector and scalar operations, including single instraction, muliple data

(SIMD) processors and multiple instruction, multiple data (MIMD) processors,

. Background
[6069] Wireless computing systems are fast becoming one of the most prevalent
technologies i the digital information arena.  Advances in technology have resulied in

smaller and more powerful wireless communications devices. For example, wireless
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computing devices commonly mclude portable wireless telephones, personal digital
assistants (PDAs), and paging devices that are small, hghtweight, and easily carried by
users. More specifically, portable wireless telephones, such as cellular telephones and
Interaet Protocol {IP) telephones, can commmunicate voice and data packets over wireless
networks. Further, many such wireless comyounications devices include other types of
devices. For example, a wireless telephone may inchide a digital still camera, a digital
video camera, a digital recorder, and/or an audio file player. Also, wireless telephones
can include a web interface that can be used to access the Intemet. Further, wireless
communications devices may include complex processing resources for processing bigh
speed wireless commumications data according to designed wireless communications
technology standards (e.g., code division multiple access (CDMA), wideband CDMA
(WCDMA), and long term evolution (LTE)). As such, these wireless comnumications
devices inchude significant computing capabilities.

16014] As wireless computing devices become smaller and more powerful, they
become increasingly resource constrained.  For example, screen size, amount of
available memory and file systero space, and amount of mput and output capabilities
may be hmited by the small size of the device. Further, battery size, amount of power
provided by the battery, and Iife of the battery arc also Hmited. One way fo increase the
battery hife of the device is to design processors that consume less power.

HHY In this regard, baseband processors may be employed for wireless
communications devices that include vector processors, Vector processors have a
vector architecture that provides high-level operations that work on vectors, i.¢. arrays
of data. Vector processing involves fetching a vector instruction once and then
execuling the vector instruction multiple timnes across an entire array of data elements,
as opposed to executing the vector instruction on one set of data and then re-fetching
and decoding the vector instruction for subsequent clements within the vector. This
process allows for a reduction in the energy required to execute a program, because
among other factors, cach vector imstruction needs 0 be fetched fewer times. Since
vector instructions operate on long vectors over multiple clock cycles at the same time,
a high degree of parallelism is achicvable with stmple m-order vector instruction
dispatch.

{6012} Figure 1 illustrates an cxemplary baseband processor 10 that may be
employed in a computing device, such as a wireless computer device. The baschand

processor 10 inchides multiple processing engines (PEs) 12, each dedicated to providing
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function-specific vector processing for specific applications. In this example, six (6)
separate PEs 12(()-12(5) arc provided in the baseband processor 10. The PEs 12(0}-
12(5) are cach configured to provide vector processing for fixed X-bit wide vecior data
14 provided from a shared memory 16 to the PEs 12(0)-12(5). For example, the vector
data 14 could be 512 bits wide. The vector data 14 can be defined in sroaller multiples
of X-bit width vector data sample sets 18(0)-18(Y) (e.g., 16-bit and 32-bit sample sets).
In this manner, the PEs 12(0}-12(5) are capable of providing vector processing on
multiple vector data sample sets 18 provided in parallel to the PEs 12{0)-12(5) o
achieve a high degree of parallelhism. Each PE 12(03-12(5} may include a vector register
file (VR for storing the results of a vector instruction processed on the vector data [4.
[6013) Each PE 12{(0)-12(5) m the bascband processor 10 in Figure 1 includes
specific, dedicated circuitry and hardware specifically designed to efficiently perform
specific types of fixed operations. For example, the baseband processor 10 in Figure |
includes separate WCDMA PEs 12(0), 12(1) and LTE PHEs 12(4}, 12(5), because
WODMA and LTE fovolve different types of specialized operations.  Thus, by
providing separate WCDMA-specific PHEs 12(0), 12(1) and LTE-specific PEs 12(4},
12(5}, each of the PEs 12(0), 12(1), 12(4}, 12(5) can be designed to include specialized,
dedicated circuitry that is specific to frequently performed functions for WCDMA and
LTE for highly efficient operation. This design is m contrast to scalar processing
engines that include more general circuitry and hardware designed to be flexible to
upport a larger number of unrelated operations, bot in a less efficient manner.
16014} Certain wireless bascband operations require data samples to be format
converted before being processed by execution units. For example, format conversion
may include dectmation of data samples representing a signal, which is also known as
“de-interleaving.”  For example, in CDMA processing operations, data samples
epresenting a signal may be de-interleaved to separate out even and odd phases of the
signal. The de-interleaved signal may be correlated with a locally generated code or
sequence number in a correlation processing operation to determine if the CDMA
system can exiract the signal. Conventional programmable processors implement format
conversion of data saroples i multiple steps, which add cycles and power consumption.
Vector processors also suffer from data flow complications in vector data sample format
conversions. To solve this issue, vector processors can pre-process the vector data
sampies to provide format conversions before the format-converted vector data samples

are provided to execution units. The format-converted vector data samples are stored in
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hed as part of a vector processing operation requining

vector data memory and re-fete
data format conversion to be processed by execution units. This pre-processing delays
the subsequent processing of the format-converted vector data samples by execotion

units, and causes computational components in the execution units to be underutilized.

SUMMARY OF THE BISCLOSURE

16301 5] Embodiments disclosed herein include vector processing engines {VPEs)
employing format conversion circuitry in data fiow paths between vector data mermory
and execution unils to provide in-flight format-converting of mput vector data to
execulion unils for vector processing operations. Related vector processor systems and
methods are also disclosed. Format conversion circuitvy is provided n data flow paths
between vector data memory and execution units in the VPE. The format conversion
circuitry is configured to convert input vector data sample sets fetched from vector data
memory in-flight while the input vector data sample scis are being provided over the
data flow paths 1o the execution units to be processed. To-flight format conversion of
input vector data sample sets means that the input vector data sample set retrieved from
vector data memory s format-converted without having 1o be stored and re-feiched
from the vector data memory before being provided to execution units for execution. In
this manner, format conversion of the iInput vector data sarople sets does not requure pre-
processing, storage, and re-fetching from vector data memory, thereby reducing power
consumption. Further, because the format conversion of the inpwt vector data sample
sets does not require pre-processing, storage, and re-fetching of the format-converted
input vector data sample sets from vector data memory, the execution units are not
delayed from performing vector processing operations. Thus, the efficiency of the data
flow paths in the VPE arc not limited by format conversion pre-processing delays of the
input vector data sample sets. The format-converted input vector data sample sets are
provided localized to the execution units. The vector processing in the execution units
is only limited by computational resources rather than by data flow limitations.

18816} In this regard in one embodiment, a VPE configured to provide mo-flight
format conversion of mput vector data sample sets for a vector processing operation is
provided. The VPE comprises at least one vector data file. The vector data file(s) is
configured to provide a fetched input vecior data saraple set in at least one input data
flow path for a vector processing operation. The vector data file(s) is alse configured fo

receive a resultant output vector data sample set from at least one output data flow path
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to be stored. The VPE also comprises at least one format conversion circnitry. The
format conversion cireuitry is configured to receive the input vector data sample set.
The format conversion circuitry is alse configured to format convert {¢.g., de-interleave)
the mput vector data sample sef into a format-converied mput vector data sample set
without the Input vector data sample set being re-feiched from the at least one vector
data file. The format conversion circuitry is also configured to provide the format-
converted mput vector data sample sct on the at least one input data flow path.

18617} Further, the VPE also comprises af feast one execution unit provided in the at
least one input data flow path. The execotion unit(s) is configured o receive the
format-converted tnput vector data sample set on the at least one input data {low path.
The execution unit(s) is also configured to execute the vector processing operation oo
the {ormat-converted mmput vector data sample set o provide the resultant output vector

data sample set on the at least one output data flow path.

)
=

orma

b--

[0618] In another embodiment, 2 VPE configured to provide in-flight
conversion of nput vector data sample sets for a vector processing operafion is
provided. The VPE comprises at least one vector data file yoeans. The vector data file
means comprises a means for providing a feiched input vector data sample set in at least
one mput data flow path means for a vector processing operation. The vector data file
means also comprises a means for receiving a resultant filtered output vector data
sample set from at least one oulput data flow path mieans to be stored. The VPE also

comprises at least one format conversion means. The format conversion means

~

comprises a means for receiving the input vector data sample set.  The format
conversion means also comprise a means for de-interleaving the input vector data
sample set into a format-converted input vector data sample set without the mput vector
data sample sct being re-fetched from the at least one vector data file means. The
format counversion means also comprises a means for providing the format-converted
mput vector data sample set on the at least one mput data flow path roeans.

168019} Further, the VPE also comprises at least one execution unit means provided
in the at least one input data flow path means. The execution unit raeans comprises a
means for receiving the format-converted mput vector data sarople set on the at least
one input data flow path means. The execution unit means also comprises a vector
processing means for vector processing the format-converted input vector data sarapic
set to provide a resultant output vector data sample set on the at least one output data

flow path means.
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[6020] {n another embodiment, a method of providing m-flight format conversion of
mput vector data sample sets for a vector processing operation in a VPE is provided.
The method comprises fetching an input vector data sample set from at least one vector
data file in at least one ioput data flow path for a vector processing operation. The
method also comprises format converting the input vector data sample set in at least one
format conversion circuilry in the at least one input data flow path to provide a format-
converted nput vector data sample set without the fnput vector data sample set being re-
fetched from the at least one vector data file. The method also comprises providing the
format-converted input vector data sample set on the at feast one input data flow path to
at least one exccution unit. The method also comprises executing the vector processing
operation on the format-converted mput vector data sample set in the at least one
exccution unit to provide a resultant oulput vector data sample set in at least one output
data flow path. The method also comprises storing the resultant output vector data

sarapic set from the at feast one output data flow path in the at least one vector data file.

BRIEF DESCRIPTION OF FIGURES

16021} Figwre | 1s a schematic diagram of an exemplary vector processor that
ncludes multiple vector processing engines (VPEs), each dedicated to providing
function-specific vector processing for specific applications;

8023} Figure 2 1s a schematic diagram of an exemplary baseband processor that
includes a VPE haviog programmable data path configurations, so thal common
circuitry and hardware provided in the VPE can be programmed in nultiple modes to
perform specific types of vector operations in a highly efficient mamner for multiple
applications or technologies, without a requirement to provide separate VPEs;

{8023} Figure 3 1s a schematic diagram of a discrete finite impulse response {(FIR}
filter that may be provided 1o a filter vector processing operation supported by a VPE;
[8024] Figure 4 1s a schematic diagram of an exemplary VPE employing tapped-
delay lines to receive and provide shifted input vector data sample sets to execution
units te be processed with filter coefficient data for providing precision filter vector
processing operations with reduced re-fetching and power consumption;

16025} Figure 5 is a flowchart ilustrating an exemplary filter vecior processing
operation that can be performed in the VPE in Figure 4 according to an exemplary filter

vector instruction;
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8026} Figure 6A is a schematic diagram of filter tap coefficients stored in a register
file in the VPE of Figure 4;
{8027} Figure 6B is a schematic diagram of excmplary input vector data sampic sets

stored 1o a vector data file in the VPE in Figure 4;

[B028] Figure 7 1s a schematic dingram illustrating an exemplary tapped-delay hine
and optional shadow tapped-delay line that can be provided in the VPE in Figwe 4,
wherein the exemplary tapped-delay lines each comprise a plurality of pipeline registers
for receiving and providing, fo execution units, an mput vector data sample set from
vector data memory and a shifted fnput vector data sample set, during filter vector
processing operations performed by the VPE;

{8829} Figure § is a schematic diagram illusirating more exemplary detail of the
tapped-delay hines in Figure 7, illustrating exemplary detail of pipeline registers m data
lanes, including intra-lane and inter-lane rouling among the pipeline registers for
shifting of input vector data samples in an nput vector data sample set during a filter
vector processing operation;

16030] Figure 9A is a schematic diagram of an input vector data sample set mmtally
stored in a primary tapped-delay line i the VPE of Figure 4 as part of a first filter tap
execution of an exemplary cight (8) tap filier vector processing operation;

[8031] Figure 98 is a schematic diagram of Glier tap coclficients stored in 4 register
file and shadow input vector data sample set inittally stored in a shadow tapped-delay
line in the VPE of Figure 4 as part of a first filler tap execution of the exemplary cight
() tap filter vector processing operation filter vector processing operation illustrated in
Figure 9A;

16032} Figure 9C is a schematic diagram of shified nput vector data sample sets
stored in the primary tapped-delay line and the shadow tapped-delay line, and the filter
tap cocfiicients stored in a register file, in the VPE of Figure 4 as part of a second fitter
tap execution of the exemplary eight (8) tap {ilter vector processing operation;

33} Figure S0 is a schematic diagram of the shifted input vector data sample sets
stored in the primary tapped-delay line and the shadow tapped-delay line, and the filter
tap coefficients stored in the register file, in the VPE of Figure 4 as part of an eighth
filter tap execution of the exemplary eight (8) tap filter vector processing operation;
{8034} Figure 10 is a schomatic diagram of contenis of accurmudators of the
execution units in the VPE of Figure 4 after the exeroplary eight (8) tap filter vector

processing operation has been fully executed;
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[86035] Figure 11 1s a schematic diagram of an exemplary VPE emploving tapped-
delay lnes to receive and provide shifted input vector data sample sets to execation
unifs o be processed with sequence number data for providing precision
correlation/covariance vector processing operations with reduced re-feiching and power
consumption;

8836} Figures 12A  and 12B  are {lowcharts illustrating exemplary
correlation/covariance vector processing operations that can be performed in parallel in
the VPE 1o Figure 11 with fetched mnterleaved on-time and late input vector data sample
sets according to an exemplary correlation/covariance vector processing operation;
16037} Figure 13 is a schematic diagram of a correlation/covariance input vector
data sample sct stored n a register file in the VPE of Figure 11;

[B038] Figure 14 is a schematic diagram illustrating an exemplary tapped-delay line
and optional shadow tapped-delay hine that can be provided in the VPE in Figure 11,
wherein the exemplary tapped-delay lines cach comprise a phurality of pipeline registers
for recetving and providing, fo execution units, an mput vector data sample set from
vector data memory and a shifted input vector data sample set, during a
correlation/covariance vector processing operation performed by the VPE;

{8839} Figure 15A 1s a schematic diagram of the input vector data saraple set from
the vector data file imtially provided in the primary tapped-delay Hne m the VPE of
Figure 11 as part of a first processing stage of a correlation/covariance vector processing
operation;

16846} Figure 158 is a schematic diagram of a shadow input vector data sample set
from the vector data {ile nitially stored in the shadow tapped-delay line in the VPE of
Figure 11 as part of a {irst processing stage of a correlation/covariance vector processing
operation;

(8041} Figure 15C 1is a schematic diagram of the shified mput vector data saraple
sets stored in the primary tapped-delay line and the shadow tapped-delay bne and the
shifted input vector data sarapie set stored in the register file, in the VPE of Figure 11 as
part of & sccond processing stage of a correlation/covariance vector processing
operation;

16042} Figure 15D 48 a schematic diagram of the shifted input vector data sample
sets stored in the primary tapped-delay line and the shadow tapped-delay line, and the

shifted mput vector data sample set stored in the register file, in the VPE of Figure 11 as
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part of a fourteenth processing stage of a correlation/covariance vector processing
operation;

{8043} Figure 16 is a schomatic diagram of contenis of accurudators of the
execution units in the VPE of Figure 11 after the exeowplary correlation/covariance
vector processing operation has been fully executed;

8044} Figure 17A is a disgram of exemplary vector data files showing a stored
resultant filter output vector data sample sot stored in the real and imaginary
components of resultant filter output vector data samples stored separately;

[8045] Figure 178 is a diagram of exemplary vecior data files showing a stored
resultant filter output vector data sample set stored with its even and odd resuliant filter
output vector data samples stored separately;

[8046] Figures 18A and 18B are diagrams of cxemplary interleaved vector data
samples of a vector data sample set stored in a vector data file of a VPE in signed
complex sixteen (16} bit format and complex eight (8) bit format, respectively;

16847} Figure 19 is a schematic diagram of an exemplary VPE employing format
conversion circuitry configured to provide m-flight format-converting of input vector
data sample sct in at least one input data ffow path between a vector data file and at Jeast
one exccution unit without the input vector data sample set being required to be re-
fetched from the vector data file, to provide a format-converted input vector data sarople
set to the at least one execution unit for executing a vector processing operation;

[ 34 8] Figure 20 is a flowchart illustrating exemplary in-flight format-converting of
an input vector data sample set in the at least one input data flow path between the
vector data file and the at least one execution unit that can be performed m the VPE of
Figure 19;

{8049} Figure 21 is a schematic diagram of an exemplary format conversion
circuitry provided between tapped-delay lines and execution units in the VPE of Figure
19, wherein the format conversion circuitry is configured to provide m-flight format-
converting of the input vector data sample set provided by the tapped-delay lines in the
input data flow path to the execution units;

[6054] Figure 22 illustrates an exemplary vector instraction data format to provide
programming to the VPE of Figure 19 to provide in-flight format conversion of the
input vector data sample set in an input data flow path before receipt at execution units;
(8051} Figure 23 is a schematic diagram of an exemplary VPE coploving

reordering circustry configured to provide m-fhight reordering of a resuliant output
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vector data sample set in at least one ouiput data {low path between at least one
execulion unit and at least one vector data file without the resultant culput vector data
sampic set being stored in the at least one vector data file, to provide and store a re-
ordered resultant output data sanple set;

[B8053] Figure 24 is a flowchart iHustrating exemplary in-flight de-interleaving of an
culput vector data sample set in the at least one output data flow path between the
vector data file and the at least one execution unit in the VPE of Figure 23 to be stored
in reordered form in the vector data file;

[6053] Figwe 25 is a schematic diagram of an exemplary VPE eroploying
reordering circuitry in output data flow paths between executions units and a vector data
file to provide m-tlight reordering of output vector data sample sets stored to the vecior
data file;

[8054] Figure 26A is a diagram of an exemplary vector data sample sequence
representing a comimunications signal;

16055) Figure 26B is a diagram of an exemplary code division vwiltiple access
{(CDMA) chip sequence;

18056} Figure 260 is a diagram of the vector data sample sequence in Figure 26A
affer being spread with the CIOMA chip sequence in Figure 268;

6087} Figure 260D 18 a diagram of despreading the spread vector data sample
sequence in Figore 26C with the CDMA chip sequence in Figure 26B to recover the
original vector data samplc sequence in Figure 26A;

16658] Figure 27 48 a schematic diagram of an cxemplary VPE employing
despreading circuitry configured to provide despreading of a resultant output vector data
sample set in at least one output data flow path between at least one execution anit and
at least one vector data file without the resultant cutput vector data sample set being
stored 1o the at least one vector data file, to provide and store a despread resultant output
vector data sample set;

[ 359] Figure 28 is a flowchart illustrating exemplary despreading of a resultant
output vector data sample set in the at least one output data flow path between the at
least one vector data file and the at least one execution unit in the VPE of Figure 27, to
provide and store the despread resultant output vector data sample set in the at least one
vector data file;

{8068 Figure 29 is a schematic diagraro of an exemplary despreading circuitry in

output data flow paths between at least one execution unit and at least one vector data
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file in the VPE of Figure 27 to provide despreading of resuliant ountput vector data
sample sets to provide and store the despread resuliant output vector data sample sets in
the at least one vector data file;

{8061} Figure 30 is a diagram of exemplary vector data saraples 1o be merged, and
Hiustrating the merged resultant vector data samples;

8063} Figure 31 18 a schomatic diagram of an exemplary VPE employing merge
circuitry configured to provide merging of a resultant output vector data sample set in at
feast one output data flow path between at least one execution unit and at least one
vector data file without the resultant output vector data sample set being stored in the at
least one vecior data file, to provide and siore a merged resultant output vector data
sampie set;

[8063] Figure 32 is a flowchart llustrating exemplary add-merging of a rvesultant
culput vector data sample set in the at least one output data flow path between the
vector data file and the at least one execution unit in the VPE of Figure 31, to provide
and store the add-merged resultant output vector data sample set in the vector data file;
[8064] Figure 33 18 a schematic diagram of an exemplary merge circuitry in ouiput
data flow paths between executions units and a vector data file in the VPE of Figure 31
to provide add-merging of resultant output vector data sample sets and storing of the
add-merged resultant output vector data sarople set in the vector data file;

[8865] Figure 34 15 a schomatic diagram of an exemplary merge circnilry m output
data flow paths between executions units and a vector data file in the VPE of Figure 31
to provide maximunyminimum merging of resultant output vector data sample sets and
stormg of the maximom/minimum-merged resultant output vector data sample sels in
the vector data {ile:

{8064} Figure 33 is a schematic diagram of exemplary vector processing stages that
can bhe provided in a VPE, wherein certain of the vector processing stages inchude
exemplary vector processing blocks having programmable data path configurations;
367} Figare 36 is a flowchart illustrating exemplary vector processing of
multipher blocks and accunwidator blocks, cach having programmable data path
configurations and provided in different vector processing stages in the exemplary VPE
of Figure 35;

16068} Figure 37 is a more detailed schematic diagram of a plurality of rudtiphier

3

blocks provided o a vector processing stage of the VPE of Figure 35, wherein the

o~

plurality of multiplier blocks each have programmable data path configurations, so that
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the plurality of multiplier blocks can be programmed in nuiltiple modes to perform
specific, different types of vector multiply operations;

{8069} Figure 38 is a schematic diagram of internal components of a maultiphier
block among the plurality of multiplier blocks in Figure 37 having programmable data
paths configurations capable of being programmed to provide multiply operations for &-
bit by 8-bit mput vector data sample sets and 16-bit by 16-bit imput vector data sample
sets;

18670} Figure 39 is a gencralized schematic diagram of a multiphier block and
accumulator block in the VPE of Figure 38, wherein the accumulator block employs a
carry-save accumulator siructure employing redundant carry-save format to reduce carry
propagation;

[8071] Figure 40 is a detailed scherpatic diagram of exeroplary internal components
of the accumuolator block of Figure 39, which is provided m the VPE of Figure 35,
wherein the accumulator block has programmable data path configurations, so that the
accunmtulator block can be programmed in mudtiple modes to perform specific, different
types of vector accumulate operations with redundant carry-save format; and

16072} Figure 41 is a block diagram of an exemplary processor-based system that
can inchude a vector processor that can include the VPEs disclosed herein to provide the
vector processing cofreuits and vector processing  operations, according o the

embodiments disclosed herein.

BETAILED DESCRIPTION

16673} With reference now to the drawing figures, several exemplary embodiments
of the present disclosure are described. The word “exemplary” is used herein t¢ mean
“serving as an exarople, instance, or iHustration.” Any embodiment described herein as
“exeroplary” 1s not necessarily to be construed as preferred or advantageous over other
embodiments.
16074} Embodiments disclosed herein also include vecior processing engines
(VPEs) employing format conversion circutiry i data flow paths between vecior data
emory and execulion units to provide n-flight format-converting input vector data to
execulion unils for vector processing operations. Related vector processor systems and
methods are also disclosed. Format conversion circuifry is provided in data flow paths
between vector data memory and execution units in the VPE. The format conversion

circuitry is configured to convert input vector data sample sets fetched from vector data
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memory in-fhight while the input vector data sarmple sets are being provided over the
data flow paths 1o the execation umits to be processed. In-fHght format conversion of
input vector data sample seis means the input vector data sarople set refrieved from
vector data memory is format converted without having to be stored and re-fetched from
vector data memory before being provided to execution unils for execution. In this
manner, format conversion of the input vector data sample sets does not require pre-
processing, storage, and re-fetching from vector data memory, thereby reducing power
consumption. Further, because the format conversion of the jnput vector data sample
sets does not require pre-processing, storage, and re-fetching of the format-converted
mput vector data sample sets from vecior data memory, the execution units are not
delayed from performing vector processing operations.  Thus, the efficiency of the data
flow paths in the VPE are not limited by format conversion pre-processing delays of the
mput vector data sample sets. The format-converted nput vector data sample sets are
provided localized to the execution units. The vector processing in the execution units
is ony himited by computational resources rather than by data flow limitations.
18075] n this regard, Figure 2 is a schematic diagram of a baseband processor 20
that inclodes an exemplary vector processing unit 22, also referred to as a veclor
processing engine (VPE)Y 22, As will be discussed 1 more detail below, the VPE 22
meludes execution units 84 and other particular exemplary circuitry and functionality to
provide vector processing operations mcluding the exemplary vector processing
operations disclosed herein. The baschand processor 20 and its VPE 22 can be provided
in a semiconductor die 24. In this embodiment, as will be discussed in more detal
below, the baseband processor 20 imchides a common VPE 22 that inclades
programmable data paths 26 that can be programmed to provide different programmable
data path configurations. In this manner, the programmable data paths 26 beiween the
cxecution units 84 and vector data files B2 in the VPE 22 can be programumed and
eprogrammmed to provide different, specific types of vector processing operations in
different operation modes without the requirement to provide separate VPEs 22 in the
haschand processor 20,
18076} Before discussing the particular cireuitry and vector processing operations
configured to be provided by the VPE 22 in this disclosure for efficient processing
starting with Figure 3, the components of the baseband processor 20 in Figore 2 are first
described. The bascband processor 20 1n this non-Hiniting exanple is a 512-bit vector

processor. The baseband processor 20 meludes components in addition to the VPE 22
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to support the VPE 22 providing vector processing in the bascband processor 20, The
baseband processor 20 includes vector registers, also known as vector data files 82, that
are configured to receive and store vector data 30 from a vecior unit data memory
(LMEM) 32, For example, the vector data 30 is X bits wide, with "X defined
according to design choice (e.g., 512 bits). The vector data 30 may be divided into
vector data sample seils 34, As a non-limiting example, the vector data 30 may be 256-
bits wide and may corprise smaller vector data sample sets 34(Y)-34(0). Some vector
data sarople sets 34(Y})-34(0) can be 16-bits wide as an example, and others of the
vector data sample sets 34(Y)-34(0) can be 32-bits wide. The VPE 22 is capable of
providing vector processing on certain chosen vector data sample sets 34(Y)-34(0)
provided in parallel to the VPE 22 to achieve a high degree of parallelisrn. The vector
data files 82 are also configured to store results generated when the VPE 22 processes
the vector data 30, In certain embodiments, the VPE 22 is configured 1o not store
intermediate vector processing resulis in the vector data files 82 to reduce register writes
to provide faster vector instruction execution times., This configuration is opposed to
scalar instructions executed by scalar processing engines that store mntermediate results
in registers, such as scalar processing digital signal processors (B8Ps).

16077} The baschand processor 20 1 Figure 2 also meludes condition registers 36
configured o provide conditions to the VPE 22 for use m conditional execution of
vector msiructions and to store updated conditions as a result of vector instruction
gxecution. The basecband processor 20 alse inchudes accumulate registers 38, 2 global
register file 40 that tncludes global registers, and address registers 42, The accunulate
registers 38 are configured {o be used by the VPE 22 to store accumulated results as a

result of executing certain specialized operations on the vector data 30. The global

(D

register file 40 is configured to store scalar operands for certain vector mstructions
supported by the VPE 22, The address registers 42 are configured to store addresses
addressable by vector load and store mstructions supported by the VPE 22 to retrieve
the vector data 30 from the vector unit data memory 32, and store vecior processing
results n the vector unit data reemory 32.

[6078] With contmuing reference to Figure 2, the bascband processor 20 in this
embodiment also inchudes a scalar processor 44 (also referred to as an “integer unit”} {o
provide scalar processing in the baseband processor 20 n addition to vector processing
provided by the VPE 22, Ut may be desired to provide a central processing unit (CPU)

configured to support both vector and scalar instruction operations based on the type of
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mstruction executed for highly efficient operation. In this embodiment, the scalar
processor 44 is a 32-bit reduced instruction set computing (RISC) scalar processor as a
non-timiting exarapie. The scalar processor 44 includes an arithmetic logic unit (ALU)
46 for supporting scalar instruction processing n this example. The baseband processor
20 includes an instruction dispatch circuit 48 configured to fetch instructions from
program memory 50, decode the fetched mstructions, and direct the fetched instractions
to either the scalar processor 44 or through a vector data path 53 to the VPE 22 based on
instruction type. The scalar processor 44 includes general purpose registers 54 for use
by the scalar processor 44 when executing scalar instructions.  An mnfeger unit data
memory (DMEM} 56 s incloded i the baseband processor 20 to provide data from
main memory inte the general purpose registers 34 for access by the scalar processor 44
for scalar jostruction execution. The DMEM 56 may be cache memory as a non-
Hmiting example. The baseband processor 2{ also includes a memory controller 58 that
includes memory controller registers 60 configured to receive memory addresses from
the general purpose registers 54 when the scalar processor 44 is cxecuting vector
mstructions requiring access to mam memory through memory controller data paths 62.
16379} One type of specialized vector processing operation that may be destred to
be supported by vector mstruction processing by the VPE 22 is filiering. A filter
operation compules a gquantized time-domain representation of the convolution of a
sampled input time function and a representation of a weighting function of the filter.
Convolution in the time domain corresponds to muliiplication in a frequency domain.
Thus, digital filters can be realized in the VPE 22 by an extended sequence of
multiphcations and additions carvied out at a uniformly spaced sample interval. For
example, a discrete finite impulse response (FIR} filter can be implemented using a
finite number (Y} of delay taps on a delay huoe with “Y” computation filier coefficients
to comapute a filter function.

[B080] In this regard, Figure 3 is a schematic diagram of an exemplary discrete FIR
filter 64 that may be desired to be supported through a filter vector processing operation
in the VPE 22 in Figure 2. A digitized input sigonal 66 (x[n]) can be filicred by passing
digitized mput signal saroples ([0, x{1], ... x[n]} through delay structures called “filter
delay taps” 68(13-68(Y-1}). The filier delay taps 68(13-68(Y-1} shift clocked digitized
input signaf samples (i.e., x{0} x{1} ... xin}]) into multiphiers 7H{0)}-70(Y-1) for all
digitized mput signal samples (i.e., x{0], x{1], ... x[n]) to each be multiphied by filter

coefficients (h[01-h{(Y-1)) to provide §lter sample nuitiplicands 72{0)-72(Y-1} (i.e., h{d)
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* x[n-fh).  The filter sample nmltiphicands 72(0)-72(Y-1} are summed together by
summers {i.e., adders} 74(13-74(Y-1} to provide a resuliant filtered output signal 76 (i.e.,
y{ni). Thus, the discrete FIR filter 64 in Figure 3 can be summarized as follows:

yinl = ST AD < x[n ]

where:

1 1s the nurnber of input signal samples;

x[n] s the digitized input signal 66;

yin] is the resultant filtercd output signal 76;

h{/} are the filter coefficients; and

Y is the mumber of filter coefficients.
The filter coefficients 1/} may be compiex. In one aspect, the VPE 22 may receive
filter coefficients {(c.g., from the global register file 40). The VPE 22 may usc the
recetved filter coefficients divectly to perform the FIR filter function, in which case the
filter coefficients h{/} in the above eguation may represent the received filte
coefficients. Alternatively, the VPE 22 may compuic the complex conjugates of the
received filter coefficients before using them to perform the FIR filter function, in
which case the filter coefficients h{/) in the above equation may represent the conjugates
of the received filter coefficients.
16081} The above discrete FIR filter 64 in Figure 3 can be recast as:
vl n]Fht + x[n-1 Fhi+ .+ x{n-71*h7
[6682} However, filtering operations, such as the discrete FIR {ilter 64 in Figure 3,
may be difficult to paraliclize in vector processors due to the specialized data flow paths
provided in a vector processor. When the input vector data sample set {e.g., the
vectorized digitized input signal 66) o be filtered is shifted between filter delay taps
(e.g., 68(1)-68{Y-1}), the inpul vector dala sample set i3 re-fetched from a vecior data
file, thus increasing power consurption and reducing throughput. To minimize re-
fetching of input vector data sample sets from a vector data file, the data flow pathin a
vector processor could be configured to provide the same number of multiphiers {e.g.,
70(0)-70(Y -1}y as filier delay taps {e.g., 68(1}-0&(Y-1}) for efficient parallclized
processing. However, other vector processing operations may require fewer multiphiers
thereby providng jnefficient scaling and underutilization of the multipliers in the data
flow path. If the number of multipliers s reduced to be less than the number of {ilter

delay taps to provide scalability, paraliclism is limited by more re-fetches being required
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to memory to obtain the same input vector data sample set for different phases of the
filter processing.

{6083} In this regard, Figurce 4 is a schematic diagram of an excmplary VPE 22(1)
that can be provided as the VPE 22 in Figure 2. As will be described in more detai]
below, the VPE 22(1) in Figure 4 provides precision filter vector processing operations
m the VPE 22(1} with eliminated or reduced vector data sample re-fetching and reduced
power consumption. The precision filter vector processing operations can be provided
in the VPE 22(1) as compared to filler vector processing operations that require storage
of intermediate results requiring vector data sample re-fetching, thereby ncreasing
power consamption as a result. To eliminate or minimize re-fetching of mput vector
data samples from a vector data file to reduce power consumption and imaprove
processing efficiency, tapped-delay lines 78 are included in input data flow paths 80{(0)-
80(X) between vector data files S2(())~82(X) and execation units 84(0}-84(X) {(also
labeled “EU™) in the VPE 22(1). X'+ is the maximum number of parallel input data
fancs provided in the VPE 22(1) for processing of vector data samples fo this example.
The tapped-delay bines 78 are configured (o receive an input vector data sample se
86(0}-86(X} on tapped-delay hne mputs 88(0}-83(X) as a subset or all of the nput
vector data samples 86 of the input vector data sample set R6(0)-86(X) from a
corresponding subset or all of the vector data files 82(03-82(X). The input vector data
sample set 86(03-86(X) is comprised of “X+17 mput vector data samples 86, which in
this exaraple are 86{C}, 86(1}, ... , and 86(X).

16084} With continuing reference to Figure 4, the tapped-delay hines 78 store input
vector data sample sets 86{0}-86(X) {etched from the vector data files 82(()-82(X) to be
processed by the execution units 84(0)-84(X} for a filter vector processing operation.
As will be discussed in more detail below with regard to Figures 6 and 7 below, the
tapped-delay lines 78 are configured to shift the input vector data sample sets 86{0)-
86(X) for cach filter delay tap (1.e., filter processing stage) of the filter vector processing
operation according to a filier vector instruction to be executed by the VPE 22(1) to
provide a shifted input vector data sample set 868(0)-865(X) to the exccution units
R4(0)-84(X. Al of the shifted mmput vector data samples 865 comprise the shifled input
vector data sample set 868(0)-868(X). The tapped-delay lines 78 provide the shifted
input vector data sample 865(0)-865(X) to exccution unit inputs 90(0)-90(X) of the
execution units 84(0)-84(X) during the filler vector processing operation. o this

manner, intermediate filter resulis based on operations performed on the shifted mput
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vector data sample set 86S(0}-865(X) for the filter taps of the filter vector processing

operation do not have to be siored, shifled, and re-fetched from the vector data files

82(0)-82(X} during each processing stage of the filter vector processing operation
performed by the VPE 22(1}3.  Thus, the tapped-delay lines 78 can reduce power
consumption and increase processing efficiency for filter vector processing operations

performed by the VPE 22(1}.

[ 385] A processing stage i the VPE 22(1}, which is also referred to as a “vector

processing stage,” comprises cireuiity and associated vector data paths that are designed

to carry out a specific task or operation. A vector processing operation may executed
by the VPE 22(1) in several different processing stages. Each processing stage may be
performed over one or multiple clock cycles of the VPE 22(1). Counsequently, execution
of a vector processing operation i the VPE 22(1) may take many clock cyeles to
complete, since each processing stage of the vector processing operation may consume
one or more clock cycles cach. For example, a processing stage may include the

fetching of the mput vector data sample set 86(0)-86(X) into the tapped-delay lines 78

in the VPE 22(1} 1o Figure 4. The vector processing stages m the VPE 22(1) can be

pipelined.

{8086} The execution units 84(0)-84(X) may include one or more pipchne stages

that process the fetched input vector data sample set 86(0)-86(X).  For example, one

pipeline stage in the execution umits 84(0)-84(X) may nclude an accomulation stage
comprised of accumulators configured to perform accumulation operations.  As another

exarople, another pipeline stage in the execution unis 84(03-84(X) may include a

multiphcation stage comprised of multipliers configured to perform multiplication

operations.

{8087} With contimuing reference o Figuwre 4, the execution units 84(0)-84(3
receive a filter coefficient 92 from among flter coefficients 92(0)-92(Y-1} stored in the
global register file 40 of Figure 2 for the filter vector processing operation, where °Y’

can equal the number of filter cocfficients for the filier vector processing operation. The

execution units 84(0}3-84(X) arc cach configured to multiply one of the received filte

coefficient 92(0), 90(1), ... 9O(Y-1) with a shifted mput vector data sample 865(0}),

865(1), ... 86S(X) of the shifted mput vecior data sample set 865(0}-868(X} during

cach processing stage of the vector filter processing operation {0 provide intermediate

filter vector data oufput samples i the execcution votts 84(03-84(X). The intermediate

filter vector data output sample sets are accuroulated in each of the execution units
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R4(0)-84(X (ie., a prior accumulated filier ocutput vector data sample 18 added t0 a
current accumulated filter output vector data sample). This provides a final, resultant
filter output vector data sample set 94{03-94{X) provided by the execution units 84(0}-
84(X) on execcution vt outputs 96(0}1-96(X) on output data flow paths 98(()-98(X],
respectively, for each shified input vector data sample 8650}, 868(1), ... 868(X) in the
shifted input vector data sample set 86S(0)-8658(X}. The resultant {ilter outpul vector
data sample sct 94(01-94(X) is comprised of ‘X+17 resultant filter output vector data
saroples 94, which in this example are 94(0), 94(1}, ..., and 94(X). The resultant filter
output vector data sample sct 94(0)-94(X} is stored back in the respective vector data
files 82(0)-82(X) for further use and/or processing by the VPE 22(1) without having to
store and shift intermediate filter vector data ouiput sample sets gencrated by the
exccution units 34(0)-84(X).

3088} With continuing reference to Figure 4 and as will be discussed in more detail
below, the tapped-delay lines 78 are programamabic to be controlled according to the
vector instruction being processed. If a filter vector instruction is not being processed,
the tapped-delay hnes 78 can be programmed to not be included in the input data fow
paths 80(0}-83(X) between the vector data files 82(0}-82(X) and the execution units

-

84(03-84(X). o this embodiment, the tapped-delay lines 78 are configured to load and
shift the mput vector data sample set 86{0)-86(X) received from the vecior data files
82(0}-82(X} to provide a shifted input vector data sample set 865(0)-865(X) for cach
filter tap of the filter vector processing operation. Thus, the shifted input vecior data
saropic set 86S{03-865(X) can be provided to the execution units 8HO)-84(X) for
execution of a filter tap of the filter vector processimg operation. Without a tapped-
delay line 78, a separaie shifting process would have to be performed to provide the
shifted intermediate mput vector data sample set again to the cxecution umiis 84(0)-
84(X) for subsequent filter taps of the filter vector processing operation, thereby
mereasing latency and consuming additional power.  Further, the efficiency of the mput
and output data flow paths 80}-80(X), 98{0}-98(X) in the VPE 22{(1} is not Himited by
the re-fetching delay of the shifted input vector data sample set 868(0)-865(X) from the
vector data files 82(0)-82(X) during the filier vector processing operation.

16089} The shifted input vector data sample set 865{(}1-865(X) 1s provided by the
tapped-delay Hnes 7€ localized to the execution units 84(0}-84(X}). The vector
processing in the exccution units 84(0)-84(X) is only lmited by computational

resources rather than by data flow limitations. This means that the execution units
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R4(0)-84(Xy are kept busy continuously, or substantially continuously, receiving the
shifted input vector data sample set 865{03-865(X) for performing vector processing
operations without having to wait for the shifted input vector data sampiec set 86S(0}-
86S5(X) 1o be fetched from the vector data files 82(0)-82(X).

[8090] Further, the filter vector processing operations performed by the VPE 22(1)
m Figure 4 may be more precise by employing the tapped-delay lines 78, because oulput
accuntulations for intermediate filter processing stages in the execution units 84(0)-
84(X) do uvot have to be stored in the vector data files 82(0)-82(X). Storing of
intermediate output vector data sample sets from the execution anits 84(0)-84(X) m the
vector data {iles 82(0)-82(X} may result in rounding. Thus, when the next intermediate
output vector data sample set would be provided to the execution units 84{0)-84(X) for
the vector processing operation, any rounding ervor would be propagated and added
during each multiplication phase of the vector processing operation. In contrast, in the
exarple of the VPE 22(1) in Figure 4, the intermediate output vector data sample sets
calculated by the execution units 84(03)-84(X) do not have to be stored in the vector data
files B2{0)-82(X). The execution units 84(0)-84(X) can accumulate prior intermediate
cutput vector data sample sets with intermediate output vector data sample sets for next
filter delay taps, because the tapped-delay lines 78 provide the shifted input vector data
sample set B6S(0)-863(X) to the execution units 84(1)-84(X) during the vector
processing operation 1o be processed, and the results are accumulated with prior vector
data sample sets for prior filter delay taps.

18091} With continuing reference to Figure 4, the VPE 22(1) in this embodiment is
comprised of a phlurality of vector data lanes (labeled VLANEO-VLANEX) 100(0)-
100(X3) for paralielized processing. Each vector data lane 100(0)-100(X) contains a
vector data file 82 and an execution unit 84 in this embodiment. Taking vector data lane
100(0) as an exarople, the vector data file 82(0) therein is configured o provide the
mput vector data sample 86{0) on the mput data flow path 80(0} to be received by the
exccution unit 84{0) for filter vector processing. As discussed above, the tapped-delay
fnes 78 arc provided in the imput data flow path 80(0} to shift the input vector data
sarople 86(0} and to provide the shifled mput vector data sample 865(0) to the execution
unit 84(1) for filter vector processing. The vector data file 82(0} is also configured to
receive a resultant filter output vector data sample 94¢0) provided by the execution unit
84(0} as a result of filter vector processing from the output data flow path 98(0) to be

stored back in the vector data file 82(0) for a subsequent vector processing operation, as
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needed or desired according fo the current or next vector mstruction to be processed by
the VPE 22(1).

16092} Any number of vector data lanes 100{0}- 100(X) may be provided in the VPE
22¢1} as desired. The number of vector data lanes 100(0)-100(X) provided in the VPE
22(1} may be based on tradeoffs for paralichized vector processing for efficiency
purposes versus the additional circuitry, space, and power consumption mvolved in
providing additional vector data lanes 100{(0}-100(X).  As one non-limiting example,
sixteen vector data lanes 100 may be provided 1o the VPE 22(1}, with cach vector data
fane 100 having a data width capability of thirty-two (32} bits, to provide {or
parallelized processing of up to 512 bits of vector data in the VPE 22(1).

[80393] With continuing reference to Figure 4, using vecior data file 820} in vector
data lane 100(0) as an example but apphcable 1o all vecior data fles 82(0)-82(X), the
vector data file 82(0) allows one or multiple samples of an inpat vector data sample
86(0} to be stored for vector processing, The width of the input vector data sample
26(0) 18 provided according to prograroming of the input vector data sample 86(0)
according to the particular vector instruction being executed by the VPE 22(1}%. The
width of the mput data flow path 830} is programmable and reprogrammable on a
vector-instruction-hy-vector-instruction basis, including on clock-cycle-by-clock-cycle
basis for a given vector instruction to provide diffevent widths of the fnput vector data
sampie 86{C} to the tapped-delay lines 78 and the execution unit 84(0). In this manner,
the vecior data lane 10({0) can be programmed and reprogrammed to provide
processing of different widths of the fnput vector data sample 86(0) depending on the
type of vector instruction being executed.

16394} For example, the vector data file 82{0) may be thirty-two (32} bits wide and
capable of storing input vector data samples 86 that are also up to thirty-twe {32} bits
wide. An input vector data sample 86{0) may consume the entire width of the vecior
data file 82(0) {e.g., 32 bits), or may be provided m smaller sample sizes of the vector
data file 82(0} width. The input vector data sample 86(0) size can be configured based
on progranuming of the foput data flow path 800} configuration for the size of the input
vector data sample 86(0) based on a vector instruction being exccuted by the VPE 22(1).
For example, the input vector data sample 86{0) may comprise two (2) separate 16-bit
vector data samples for one vector instruction. As another example, the input vector
data sample 86{0) moay comprise four (4) 8-bit vector data samples in the vector data file

82(0} for another vector instruction, as opposed to one (1) 32-bit vector data sample. In
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another example, the input vector data sample 86(0) may comprise one (1) 32-bit vector
data sample. The VPE 22(1) 1s also capabie of programming and reprograming the
output data flow path 98({}) for the vector data file 82(0) 1o receive different sizes of a
resultant filter output vector data sampies 94(0) provided by the execution unit 84(0) o
the vector data file 82(0}) {or each vector instruction and/or each clock cycle of a given
vector instruction.

18695] A further description of additional details and features of the VPE 22(1) in
Figure 4 and the tapped-delay ines 78 for providing the shified mput vector data sample
set B65(0)-868(X) to the execution units 84(03-84(X) in the input data flow paths 80(0}-
8O(X} in this embodiment will now be described. In this regard, Figure S is a flowchart
illustrating an exemplary filter vector processing operation 102 that can be performed o
the VPE 22(1} in Figure 4 employing the tapped-delay lines 78 according to an
excmplary filter vector instruction. The exemplary tasks performed in the filter vector
processing operation 102 in Figure 5 will be described with reference to the examples
provided in Figures 6A-10.

[8096] With reference to Figure S, the input vector data samople set 86(0)-86(X) to
be processed in the {iller veclor processing operation 102 according to a filter vector
nstruction is fetched from vector data files 82(0)-82(X} into the input data flow paths
80(0}1-80(X) for the filter vector processing operation 102 (block 104}, As discussed
above with regard to the VPE 22(1) in Figare 4, the input vector data sample set 86(0)-
86(X) is multiplied by the filter coefficients 92(03-92(Y-1} received from the global
register {ile 40 in the execution units 84(0)-84(X). For exarople, Figure 6A illustrates
filter coefficients 92{0)-92(Y-1) (i.e,, h7-b0) 1u the global register file 40, In this
example, there are eight (8) filter coefficients 92 stored in the global register file 40
providing cight (8) filter taps i the filier vecior processing operation 102 to be
performed. WNote that n this example, the filier vector processing operation 102 from
the discrete FIR filter 64 equation in Figure 3 discussed sbove i3

vind = x[nf*h0 + xin-1]*hi+ .+ x[n0-7]¥h7.

16097} Figure 68 iHlustrates an exemplary toput vector data sample set 86{0}-86{X)
stored n the vector data files 82(03-82(X) in the VPE 22(1} in Figure 4 representing an
mput signal to be filtered by the filter vector processing operation 102, In this example,
sampie X0 is the oldest sanmple, and sample X63 is the most recent sample. in other
words, in this example, sample X63 occurs in time afier sample X0. Because cach

address of the vector data files 82(03-82(X) 18 16-bits wide, the first input vector data
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sarople set 86{0}-86(X) stored in the vector data files 82(0)-82(X) spans ADDRESS 0
and ADDRESS 1, as shown in Figure 6B. This allows the vector data files B2({1)-82(X}
to provide input vector data samples 86 of 32-bit width to support the 32-bit width
capability of the execution units 84(0)-84(X) i the VPE 22(1) exanple in Figure 4. In
this regard, there are sixty-four {64) total input vector data sample subsets (1.e., X0-X63)
each 8-bits in width totaling 512 bits that comprise the first input vector data sample set
86(0}-86(X3. Similarly, ADDRESS 2 and ADDRESS 3 store another, second input
in the example of Figure 6B, eight (8) addresses (ADDRESS 0-7) of each vector data
file 82{(01-82(X) are shown, which ilhstrate 256 total input vector data samples 86 (e,
X(-X23553, but such is not Himiting.

(6898} Either one, some, or all of the vector data lanes 100(0)-100X) in the VPE
22(1} in Figure 4 can be employed to provide the filter vector processing operation 102
according to the programming of the vector instruction depending on the width of the
operation 102.  If the entire width of the vector data files 82(0)-82(X) is required, all
vector data lanes 100(0)-100(X) can be employved for the filter vector processing
operation 102, Note that the filter vector processing operation 102 may only require a
subset of the vector data lanes 100(0)-100(X) that may be employed for the {ilter vector
processing operation 102, This may be because the width of the nput vector data
sarapic set €6{(0)-86(X) is less than the width of all vector data files §2{0)-82(X), where
it 18 desired to enploy the additional vector data lanes 100 for other vector processing
operations to be performed in parallel to the filter vector processing operation 102. For
the purposes of discussing the current example, it i3 assamed that the input vector data
sampie set 86(0)-86{X} employed in the filter vector processing operation 102 involves
all vector data lanes 100(0)-1000X.

[B8399] With reference back to Figure 5, a feiched input vector data sample set
86(0}-86(X} is provided to the input data flow paths 83{0)-80(X} from the vector data
files 82(0)-82(X) 1o be loaded into the tapped delay-lines 78 as a current mput vector
data sample set 86(0)-86(X} (block 106}, An jnput vector data sample set 86{0}-86(X)
is loaded into the primary tapped-delay line 73(() as the input vector data sample set
86(0}-86(X} 1o be processed by the execution units 84(0)-84(X) for the filter vector
processing operation 102, The input vector data sample sct 86(03-86(X) Joaded into the

primary tapped-delay Hne 78(0) is not shifted for the first filter tap operation of the filter



WO 2015/073526 PCT/US2014/065200
25

vector processing operation 102, However, as discussed above and discussed in more
detail below with regard to Figure 7, the purpose of the tapped-delay lines 78 is {o
provide shifting of the input vector data sample set 86{0}-86(X) to provide a shified
input vector data sample set 868(0)-865(X) fo the execution units 84{0)-84(X) for
subsequent filier tap operations of the filter vector processing operation 102. During
each processing stage of the filter vector processing operation 102 execuied by the
execution units 84((1)-84(X}, the input vector data samples &6 are shifted in the primary-
tapped delay hne 78(0) 1o provide the shifted input vector data sample set 865(0)-
R6S(X)} to the execution units 84(0)-84(X). In this mamner, the input vector data sample
set 86(0)-86{X) does not have to be stored, shifted in the vector data files 82(0)-82(X),
and re-fetched for each filter tap operation of the filter vector processing operation 102,

[B0166] 11 the optional shadow tapped-delay line 78(1} is provided in the VPE 22(1},
a next inpuat vector data sample set 86N(0}-86N(X) can also be lpaded {rom the vector
data files §2(0)-82(X) into the shadow tapped-delay line 78(1}). As will be discussed in
more detail below with regard to Figure 7, the next foput vector data sample st 86N(0)-
ON(X} 1s shifted nto the primary tapped-delay line 78(0) during the filter vector
processing operation 102 to become at least part of the shifled input vector data sample
set 868(0)-2868(X). Thus, the primary tapped-delay line 78(0) can have the shified mput
vector data sample set 865(0)-865(X) available during the filter vector processing
operation 102 without fetching delay that would otherwise be incurred if the execution
units €4{01-84{X) were required to wait uniif the next input vector data sample set
RON{DY-86N(X) to be executed for the filter vector processing operation 102 was
fetched from the vector data files 82(03-82(X) mnto the primary tapped-delay hine 78(0).

[60881]  In this regard, Figure 7 llustrates the exemplary tapped-delay lines 78 that
can be provided in the VPE 22(1} in Figure 4. In this embodiment, the tapped-delay
lines 78 comprise the shadow tapped-delay line 78(1} and the primary tapped-delay line
78(0}. The primary-tapped delay hine 78(0) in this example is comprised of a plurahity
of 8-bit primary pipeline registers 120 to allow resolution of input vector data samples
86 down to B-bits in length. The first input vector data sample sot 86{01-86{X)
processed by the execution units 84(0)-84(X) will be un-shified in this example for the
first filter tap of the filter vector processing operation 102, as will be discassed in regard
to Figure 9A below. As the execution umits 84{03-84(X) process subsequent filicr taps
for the filter vector processing operation 102, the input vector data samples 86 in the

mput vector sample set 86{0}-86(X) stored m the primary tapped-delay Iine 78(0) are
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shifted in the primary pipeline registers 120(0}3-120(4X+3), as mndicated by the arows in
Figure 7, to become the shifted input vector data sample set 865(03-865(X). In this
manner, the execution units 84{0)-84(X) are fully utilized by receiving and performing
the filter vector processing operation 102 of the shifted input vector data sample set
86S(0)-865(X) without having 1o store and shift the input vector data sample set 865(0)-
86S8(X), and re-fetch the shifted input vector data sample set 8365(()-865{X) from the
vector data files 82(G}-82(X.

160162]  In this embodiment, the primary pipeline vegisters 120{0)120(4X+3)
collectively are the width of the vector data files 82(0)-82(X) in Figwre 4. In the
example of the vector data files 82(0}-82(X} being 512-bits in width with “X” equal to
fifteen (13), there will be sixty-four (64) total primary pipeline rogisters 120(0)-120(63)
each of eight (8) bits 1n width to provide a total width of 512 bits (i.e., 64 registers x 8
bits each). Thus in this example, the primary tapped-delay line 78(0} is capable of
storing the entive width of one (1) mput vector data sample set 86{G}-86(X). By
providing the primary pipeline registers 120(0)-120(4X+3) of eight (8) bit widths in this
exarple, the mput vector data sample set 86{0)-86(X) can be shified in the primary
pipeline registers 120(03-120(4X+3) down to a vector data sample size of eight {8) bits
for B-bit filter vector processing operations. I larger sized input vector data sample 86
sizes are desired for a filter vector processing operation, such as 16-bit or 32-bit samples
for example, the mput vector data sample set86(0)-86(X) can be shifted in the primary
pipeline registers 120(0)-120(4X+3} by two (2) primary pipeline registers 120 at a time.

1601631 With continuing reference to Figure 7, the shadow tapped-delay line 78(1) is
also provided in the tapped-delay hine 78. The shadow tapped-delay hine 78(1) can be
employved to latch or pipeline a next input vector data sample set BON{(1)-86N{X} from
the vector data files 82(0})-82(X) for a subseguent vector processing operation. A next
input vector data samples 86N from the next mput vector data saraple set 86N{()-
S8ON(X) 1s shifted from the shadow tapped-delay lime 78(1) into the primary tapped-
delay line 78(0) as cach filter tap for the filter vector processing operation 102 is
executed by the execution units 84(0)-84(X). The shadow tapped-delay tne 78(1) 18
also comprised of a plurality of 8-bit shadow pipeline registers 122 to allow resolution
of input vector data samples 86 down to 8-bits in length similar to the primary tapped-
delay line 78((3). Like the primary pipeline registers 120{0}-120(4X+3}, the shadow
pipcline registers 122(0)-122(4X+3) provided in the shadow tapped-delay line 78(1)

collectively are the widih of the vector data files 82(0)-82(X), which is 512-bits in this
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example. Thus, the shadow pipeline registers 122(0)-122{4X+3} of the shadow tapped-
delay line 78(1} are also capable of storing the entire width of one (1) input veclor data
sampie set 86(1)-86(X3. Thus in this embodiment, the number of shadow pipeline
registers 122(03-122(4X+3) included in the primary tapped-delay hine 78(0) s four
times the nomber of vector data lanes 100(0)-100(X), which total sixteen (16) in this
example (ie., X=15). Thus, the number of shadow pipeline registers 122 also totals
sixty-four (64) in this example for a total of 512 bits (i.c., 64 regisiers x & bits each).
As discussed above with regard to the primary tapped-delay line 78(0), by providing the
shadow pipeline registers 122(0)-122(4X+3) of eight {8} bit widths in this example, the
next input vector data sample set 86MN(0}-86N(X) can be shifted down to a vector data
samplie size of cight (8} bits for ¥-bit filter vector processing operations.

[60164] Figure 8 is a schematic diagram illustrating selected primary pipeline and
shadow pipeline registers 120, 122 present in the primary and shadow tapped-delay
lines 78(0), 78(1) in Figure 7. Figure 8 is provided to facilitate discussing an example
of shifting input vector data saroples 86 between primary and shadow pipeline registers
120, 122, As discussed above, the input vector data samples 86 can also be shifted
within the primary and shadow tapped-delay lines 78(0), 78(1) as well as from the
shadow tapped-delay hne 78(1) to the primary tapped-delay line 78(0). The pipeline
registers 120, 122 are cach 8-bits wide in this example to allow for input vector data
sample 86 shifting at &-bits of resolution if desired. This will be discussed in more
detail below. The primary and shadow tapped-delay lines 73((), 78(1) arc also capable
of perforring 16-bit and 32-bit shifting reselution of fnput vector data samples 86, ag
will also be discussed in more detail below.

[608685]  In this regard, Figure 8 illustrates shifling of input vector data samples 86
into primary pipeling registers 120(4X+3), 120(2X+1), 120(4X+2), and 120{2X) that
form the storage registers for mput vector data sample 86S(X) i the primary tapped-
delay line 78(01) in Figure 7. Primary pipehne registers 120(4X+3) and 120(4X+72) are
registers By and Bag, respectively, in the primary tapped-delay line 78(0} in Figure 7.
Primary pipeline registers 120(2X+1y and 12002X) are vegisters As and  Agg,
respectively, m the primary tapped-delay hine 78(0) o Figure 7. As illustrated in Figure
7, primary pipeline registers [20{(dX+3}) and 120{4X+2) for registers By and Big are
configired to receive shifted input vector data samples 86 from adjacent shadow
pipcline registers 122 in the shadow tapped-delay line 78(13. Thus, in the example in

Figure 8, shadow pipeline registers 122(0), 122(1) for registers A’y and A’y
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respectively, are illustrated as being configured fo shift input vector data samples 86
into primary pipehine registers 120(4X+3) and 120(4X42) for By and Bsy. Similarly, in
the example in Figure &, primary pipeline registers 126{2X+3} and 12({2X+2) for
registers B; and B, respectively, in the primaary tapped-delay fine 78(0) are dlustrated as
being configured to shift mput vector data samples 86 into adjacent privoary pipeline
registers 120(2X+1} and 120(2X) for registers Az and Ase. Exemplary shifting of input
vector data samples 86 between these registers will now be discussed,

160166]  With continuing reference to Figure 8, fo provide for the flexibility to
configure the primary and shadow pipeline registers 120, 122 to load new jnput vector
data sample sets 86(0)-86(X) from the vector data files 82(0}-82(X) in Figure 4 as well
as shifting of the input vector data sanples 86, an input vector data sample selector is
associated with cach of the primary and shadow pipeline registers 120, 122, In this
regard, input vector data sample selectors 124{03-124(4X+3) are provided to vector data
lcaded or shifted into primary pipeline registers 120(0)-120(4X+3), respectively, in the
primary tapped-delay Hoe 78(0). Input vector data sample sclectors 126(0)-126{4X+3)
are provided to vector data loaded or shifted into shadow pipeline registers 122(0)-
122(4X-+3), respectively, n the shadow tapped-delay line 78(1}. The input vector data
sampie selectors 124(0)-124(4X+3) and mput vector data sample selectors 126(0)-
126(4X+3} are each a multiplexor in this example. As will be discussed in more detail
below, the impul vector data sample selectors 124(0)-124(4X+3), 126(03-126{4X+3} can
cach be controlied by data width shift control inputs 125 to select input vector data to
cither be loaded or shifted into the primary and shadow pipeline registers 120(0)-
120(4X+3), 122(0)-122(4X+3).

{86187} Note that in Figure 8, only input vector data sample selectors 124(4X+3),
124(4X+2), 124(2X+1}, 124(2ZX) are shown for primary pipeline registers 120(4X+3),
12004 X+2), 120(2X+1), 12002X), respectively, which correspond to registers Bsy, B,
Asy and Asg, respectively. Only input vector data sample selectors 126(1), 126(0},
124(2X+3), 124(2X+2) are shown in Figure 8 for pipeline registers 122{1), 122{03,
12002¥+3), 120(2X+2), respectively, which correspond to registers A%y, A%y, By, and
By, respectively.

(601688 With continuing reference to Figwe &, if new input vector data is to be
loaded nto the primary and shadow tapped-delay lines 78(0), 78(1} for a vecior
processing operation, the data width shift control inputs 125 can be configured by the

VPE 22(1) m Figure 4 io cause the input vector data sample selectors 124(4X43),
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124(4X+2), 124(2X+1), 124(2X) to select the load data flow paths 133 (4X+3),
133(4X-+2), 133(2X+1), 133(2X). Selecting the load data flow paths 133 (4X+3),
133(4X+2), 133(2X+1), 133(2X) allows mput vector data from the vector data files
§2(03-82(X) to be stored in the primary pipeline registers 120(4X+3), 120(4X+2),
12002X+1}, 120(2X). Loading input vector data from the vector data files §82(0)-82(X)
may be performed on a new or next vector instraction to be processed by the VPE 22(1)
as an exampie. Similarly, the data width shift control inputs 125 can also be configured
by the VPE 22{1} m Figure 4 1o cause the input vector data sample selectors 126(13,
124(2X+3), 126(0), 124(2X+2) to select the mput data flow paths 135(1), 133(2X+3),
135(0), 133(2X+2). Selecting the load data flow paths 135{1), 133(2X+3), 135(0),
133(2X+2) allows input vector data from the vector data files 82(0}-82(X) to be stored
m the pipeline registers 122(1), 120(2X+3}, 124(0), 120(2X+2).

(801681  With continuing reference to Figure 8, if the vector data stored in the
primary tapped-delay line 78(0) and shadow tapped-delay line 78(1) is desired to be
shifted for a vector processing operation, the data width shift control nputs 125 can be
configured by the VPE 22{1} m Figure 4 to cause the mput vector data sample selectors
124(4X+3), [24{4X+2), 12402X+1), 124(2X) to select the input dala flow paths
F37(4X+3), 137(4X+2), 137(2X+1), 137(2X) for vector data sample shifting. The data
width shift control inputs 125 also cause the inpat vector data sample selectors 126{1},
124(2X+3), 126(0), 124(2X+2) to select the input data flow paths 1391}, 137(2X+3},
139(0), 137(2X+2) for vector data sampic shifting. As iflustrated therein, the input
vector data sample sclectors 124(4¥+3), 124(4X+2), 124(2X+1), 124(2X) and input
veetor data sample selectors 126(1), 124(2X43), 126(0), 124(2X+2) cach include output
data flow paths [41{4X+3}, 141(4X+2), 141(2X+1), 412X and 143(1), 14 1(2X+3),
143(0), 1242X+2), respectively, that allow vector data to be shifted to other registers.
The output data flow paths shown in Figure § are part of the output data flow paths
141(0)-141(4X+3) and 143(0)-143(4X+3)} that are now shown in total, but inchuded for
the input vector data sample selectors 124{0)-124(4X+3) in the primary tapped-delay
Hne 78(0) and the input vector data sample selectors 126(0)-126(4X+3} in the shadow
tapped-delay bne 78(1), respectively.

[60818]  As examples, during 8-bit vector data shifting, the tnput vector data sample
selectors 124¢4X+3), 124(4X+2), 124(2X+ 1y, 124(2X) and input vector data sample
selectors 126{1), 124(2X+3), 126{0), 124(2X+2) are configured to select the input data
flow paths 137(420+3), 137(4X+2), 137(2X+1), 137{2X), 1391y, 137(2X+3), 139(0),
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137(2X+2), respectively.  In this regard, as an example, the vector data m primary
pipeline register 12H2X+1) (1.e., Asy) is shifted on output data flow path 141 (ZX+1} o
primary pipeline register 120(2X) {1.c., A}, as tHusirated in Figure 8. The vector data
in primoary pipeline register 120(4X+3) (i.c,, Byy) is shifted on output data flow path 141
{4X+3} to primary pipeline register 120(4X+2} (i.e., Bag), as Hustrated in Figore & The
vector data in shadow pipeline regisier 122(0) (i.e., A’g) is shifted on output data flow
path 143({) to primary pipeline register 120(4X+3) (1.e., Bay), as illustrated in Figure 8.
The vector data in primary pipeline register 120(2X+3) (G.e., By} is shifted on ouiput
data flow path 141{2X43) 1o primary pipchine register 120(4X+2} (e, Big), a8
ithustrated in Figure 8. The vector data in shadow pipeline register 122{1} (i.e., A'1) is
shifted on output data How path 143(1) to shadow pipehne register 122{0) (i.c., A'y), as
tiustrated in Figure 8. The vector data in primary pipeline register 120(2X+2) (e, By)
1s shifted on output data flow path 141(2ZX+2) to primary pipeline register 120(2X+1)
{(i.e., Az;), as illustrated in Figure 8.

160113} With continuing reference to Figure 8, during 16-bit vector data shifting, the
nput vector data sample selectors 124(4X+3), 124(4X+2), 124(2X~+1), 124(2X) and
mput vector data sample selectors 126(1), 124(2X+3), 126(0), 124(2X+2) wre
configured to select the mput data flow paths 145(4X+3), 145(4X+2), H45(ZX+1),
H3(2X5, 147(1), 14502X+3), 147(0), 145(2X+2), respectively. In this regard, as an
example, the vector data in primary pipeline register [20(2X+2} (i.e., By} is shifted on
culput data flow path 141{(2X+2) fo primary pipeline register 120(2X) {i.c., Asg), as
illustrated n Figure 8. The vector data mn shadow pipeling register 122(0) (e, A'g) is
shifted on output data flow path 143(0) to primary pipeline register 120(4X+2) (e,
Bso), as illostrated in Figure 8. The vector data in primary pipeline register 120(2X+3)}
{(i.c., By} is shificd on output data flow path 141{2X+3} o primary pipeline register
12002X+1} (1.2, Asi), as illustrated in Figure 8. The vector data in shadow pipeline
register 122(1) (i.e., A7) 15 shified on output data flow path 1431} to primary pipeline
register 120(4X+3) {i.c., Byy), as ithustrated in Figure 8.

160112]  if 32-bit vector data shifting 18 desired o the primary and shadow tapped-
delay ines 78(0), 78(1), the vector data stored m the primary pipeline registers 120(G}-
120(4X-+3) and the shadow pipeline registers 122(0}-122(4X+3} can be shifted in two
{2} 16-bit vector data shifl operations, if desired.

(601131 Note i Figure 7 that primary pipeline registers 12004X+3), 120(4X+2) for

registers B3y and Bse, and primary pipeline registers 120(2X+1), 120(2X) for registers
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Ay and Asg, are logically associated with each other to shifted input vector data sample
865(X}, but are not physically adjacent to cach other as Hustrated in Figure 8. This
arrangement is provided in {his example due to the storage pattern of the input vector
data sample set 86(0}-86(X) in the vector data files 82(0)-82(X), as illustrated in Figure
68. As also itlusirated in Figure 6B, the input vector data sample set 86(0}-86{ X} stored
m the vector data files 82{0}-82(X) spans ADDRESS 0 and ADDRESS 1. Note
however, that the disclosure herein is not Hmited to this storage pattern of the input
vector sample set 86{0}-86(X) in the vector data files 82(03-82(X).

160114}  Further, with regard to Figure 8, the tapped-delay lnes 78(0}, 78(1) are
configurable to be selectively provided or not provided i the input data flow paths
8O(03-B80(X) between the vector data files 82(0)-82(X) and the execution voits 84{0)-
84(X) based on a programmable mput data path configuration for the tapped-delay hnes
78(0}, 78(1) according to a vector instraction to be executed. For example, if the vector
instruction is not a filler vector processing instruction and/or does not otherwise require
the tapped-delay tines 78(0), 78(1) to shift the input vector data sample sets 86(0)-
86(X), the tapped-delay Tmes 78(0), 78(1} can be configured to not latch the input vector
data sample sets 86(0}-86(X). The input vector data sample sets 86{0)-86(X) can be
provided from the vector data files 82(0)-82(X} to the respective exccution units 84(()-
84(X) by bypassing the primary and shadow tapped-delay lines 78(0), 78(1). This
programmable data path configuration further allows the primary and shadow tapped-
delay lines 78(G), 78(1) to be provided or not provided in the input data flow paths
RO0)-80(X3.  The primary and shadow tapped-delay lnes 78(0), 78(1) can be
programmed o be provided or not provided in the input data flow paths 80(0}-802 ) for
each vector instraction, as desired.

[86115] Figure 9A ilhusirates an input vector daia sample set 86(1)-86(X} loaded
from the vector data files 82(0)-82(X) into the primary tapped-delay line 78(0) during a
first elock cyele (CYCLED) of a filter vector processing nstraction.  The primary
tapped-delay line 78(0) and the shadow tapped-delay line 78(1) are shown in simplified
form from Figure 7. The global register file 40 1s also shown. The first input vector
data sample set 86(0)-86(X) is loaded into the primary tapped-delay hne 78(0) as mput
vector data samples X0-X63. Tor example, a special vector instruction may be
supported to lead the {irst input vector data sample set 86(0)-86{X} into the primary
tapped-delay line 78(0) (and also the shadow-tapped delay line 78(1), as discussed in

more detail below), This first input vector data sample set 86(0)-86(X) was stored in
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ADDRESSES 0 and | i the vector data files 82(0)-82(X) shown in Figure 6B. Note
that in this example, X0, X1, X32, and X33 form the first input vector data sample
86(0), only because of the storage pattern of the vector data files 8Z{(IH-82(X}) m the
VPE 22(1) in Figure 4 for this example. Other input vector data samples 86 are
similarly formed as shown 1o Figure 8A {c.g., 861}, 86(2), ... 86(X}). Other patterns
could be provided to group the mput vector data samples 86 together to form the input
vector data sample set 86{0)-86(X).

160116]  Figure 9B illustrates 2 next input vector data sample set 86N{0}-86N(X)
loaded into the shadow tapped-delay hine 78(1) during a second clock cycle (CYCLED)
of a filter vector processing instruction. The next mput vector data sample set 86N(G)-
SON(XY 1s loaded into the shadow tapped-delay Iine 78(1) after the first tuput vector
data sample set 86(0)-86(X) from the vector data files 82(0}-82(X) 18 loaded into the
primary tapped-delay hne 78(0} to setup the execution of a filter processing operation.
This next input vector data sample sct S6N()-86N{X) is loaded into the shadow tapped-

-
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delay hine 78(1) as input vector data samples X64-X127. This next input vector data
sarople set 88N(D)-86N{X} was stored m ADDRESSES 2 and 3 n the vector data files
82(0}-82(X) shown in Figure 6B. Note that in this example, X64, X685, X96, and X87
form the {irst input vector data sample 86(0), only because of the storage pattem of the
vector data files 82{0)-82(X) m the VPE 22(1} in Figure 4 for this example. Other
patterns could be provided to group the input vector data samples 86 together to form
the imput vector data sample set 86(0)-86(X}. The first filter coefficients 92(0) from the
global register file 40 are also shown as provided in a register (“C”) o the execution
units 84(0)-84(X) m Figure 9B for use in the filter vector processing operation 102.

(608177 With reference back to Figare 7, as the mput vector data samples 86 are
shifted in the primary tapped-delay tine 73(() during each processing stage of the filter
vector processing operation 102, the next input vector data samples 86N stored in the
shadow pipeline registers 122 are also shifted in the shadow pipeline registers 122 of the
shadow tapped-delay line 78(1). The input vecior data sample 86 stored i the first
shadow pipeline register 122(0) in Figure 7 is shifted mnto the last primary pipeline
register 120{4X+3) of the primary tapped-delay line 78(0) during each shift. Thus, in
this manner, as the filter vector processing operation 102 processing stages progress in
the execution units 84(1H-84(X), at least a portion of the next input vector data saraple
set B6N{0-RoN{X) mitially stored in the shadow tapped-delay Hine 78(1) is shifted into

the primary tapped-delay line 78({)) to be provided to the execution units 84{0)-84(X)
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for processing. The number of shifts will be dependent on the number of filter taps
provided in the filter vector processing operation 102 in this example. If the mimber of
input vector data samples 86 in the input vector data sample set 86(()-86(X} fetched
into the primary tapped-delay line 78(0} and shadow tapped-delay line 78(1) from the
vector data files 82(0)-82(X) s greater than the nurober of filter taps in the filter vector
processing operation 102, the execution umts 84(0)-84(X} can perform the filter vector
processing operation 102 without any further input vector data sample sets 86{01-86(X}
being re-fetched from the vector data files 82(03-82(X). However, if the number of
filter taps in the filter vector processing operation 102 8 greater than the jnput vector
data samples 86 in the input vector data sample set 86{(0)-86(X) fetched into the primary
tapped-delay Hine 78(0} and shadow tapped-delay line 78(1) from the vector data files
82(0}3-82(X)}, additional mnput vector data sample sets 86{0}-86{X)} can be fetched from
the vector data files 82(0}-82(X) as part of the filter vector processing operation 102
Atter the filter vecior processing operation 102 is complete on the shifted input vector
data sample set 86S(01-865(X), the execution units 84{0)-84(X) can then be provided
with the previous next input vector sample data set 86N{0}-B8O6N(X) stored in the
primary tapped-delay hne 78(0) as the shifted mput vector data sample set 86S(0)-
86S(X) for a next vector processing operation if unprocessed input vector data sarople
86S are present in the tapped-delay bnes 78(0}, 78(1).

(801181  Ancther exemplary rationale for providing the shadow tapped-delay line
78(1} is as follows. If a current filter vector processing operation 102 invelves more
input vector data samples 86 than can be provided 1o the width of the vector data lanes
100()-100(X), an additional input vector data saraple set 86(0)-86(X) loaded into the
shadow tapped-delay hne 78(1) will be available {o the exccution units 84{()-84(X}
during the flter vector processing operation 102 without delay. As the filter vector
processing operation 102 progresses through the shifted input vector data sample sets
S6S(0)-865(X} durng execution, as discussed above, additional next input vector data
sarapic seis SON(01-86N(X) loaded into the shadow tapped-delay line 78(1) are shified
into the primary tapped-delay lne 78(0). Thus in this maunner, the next input vector data
saropie set 8GN(0}-86N(X) for use in vector processing by the execution units 84(0)-
84(X} is available without delay. The execution units 84(0}-84(X} can contine to be
fully utilized during the filter vector processing operation 102 regardiess of whether a

single fetched input vector data sample set 86{(0)-86(X} of the width of the vector data
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files 82(0}-82(X) 1s sufficient to perform the entire filter vector processing operation
102.

[60819]  After the first input vector data sample set 86(0)-86(X)} and next input vector
data sample set SEN(0}-86N(X) are loaded into the primary tapped-delay line 78(0) and
the shadow tapped-delay bue 73(1), respectively, the first mput vector data sample set
86(0}-86(X} provided in the primary tapped-delay Hne 78(0) is provided to the
respective execution units 84(0)-84(X) to be processed in a first processing stage of the
filter vector processing operation 102 (block 108 in Figure 3). The first input vector
data sample set 86(0)-86(X} is shifted in the primary tapped-delay Iine 78(0) to become
the shifted input vector data sample set 868((1)-865(X) to be processed by the exccution
units 84(0)-84(X} afier the first input vector data sample set 86{0}1-86(X)) is processed by
the exccution units 84{(0)-84(X). The shifted mput vector data sample 865(0) 1is
provided to the execution unit 84((), the shified input vector data sample 86S(1} is
provided to the execution unit 84(1), and so on, as iHlusirated in the VPE 22(1} in Figure
4.

[60120] Next, the execution units 84(0}-84(X) perform the filer vector processing
operation 102 (block 110 in Figure 5}, More particularly, the execotion units 84(0}-
84X multiply the first input vector data sarople set 86(0)-86(X)} by the current fiter
coefficient 92(0) in a first ieration according to the operation: yin] = x[n-71*h7 in this
example, where xfn-7} is the first input vector data sample set 86(0)-86(X) to provide
the resultant filter output vector data sample set 94(0)-94(X). In subsequent iferation of
the filter vector processing operation 102 (hlock 110 m Figure 5), subsequent shifted
input vector data sample sets 865(0)-868(X) for the filier vector processing operation
102 are multiplied by the current filter coefficient 92(1)-92(Y-1}). The exccution units
84(0)-84(X) accumulate the resultant filier vector output vector data sample set 94(0)-
O4( X} with the prior resultant filter cutput vector data sample set 94(03-94(X) caleulated
by the execution units 84(0}-84(X) to provide the new prior resuliant filter output vector
data samapie set 94(0)-94(X) (block 112 in Figure 5). In the first processing stage of the
filter vector processing operation 102, there is no prior resultant filter output vector data
sarople set.

[60823] I all processing stages of the filter vecior processing operation 102 have
been completed (block 114 in Figure 53, the accumulated prior resultant filter output
vector data saraple set 94(0)-94(X) is provided as the resultant filter output vector data

sample set 94(03-94(X) in the output data {low paths 98(03-98(X) to be provided and
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stored in the vector data files 82(0)-82(X) {block 116 in Figure §). I all processing
stages of the filter vecior processing operation 102 have not been completed {(block 114
in Figure 53, the samples stored in the tapped-delay lines 78(0) and 78(1} are shifted
within the tapped-delay lines 78((), 78(1} to provide 2 next shifted input vector data
sample set 865(0)-868(X) for the filier vector processing operation 102 {block 118 in
Figure 5}, The shifted imput vector data sample set 86S(0}-865(X} is provided for
calcuiating a next resultant filter output vector data sample set as an intermediate result
to be accumwlated with the prior resultant filter output vector data saropic set until the
filter vector processing operation 102 is complete. The shifting of the input vector data
samples 86 to provide the shifled input vector data sample set 86S(0}-865(X) in the
tapped-delay lines 78(0), 78(1) was previously deseribed above in detail with regard 1o
Figure 7. The final accumulation of the intermediate resulis provided by the execution
units 84(0}-34(X} for the filter vector processing operation 102 is provided as the
resultant filter output vector data sample set 94{03-94(X) from the execution units 84(0)-
R4(X}, as illustrated o Figure 4.

160122}  Figure 9C illusiraics the contents of the tapped-delay hnes 78 when the mput
vector data sample set 86{03-86(X) is shifled in a second processing stage of the filter
vector processing operation 102 to becore the next shified input vector data samople set
86S(0)-865(X} for the next filter processing operation y{nil = x[n-6] * h6. The shifted
mput vector data sample set 865(()-865(X) i the primary tapped-delay hne 78(0) is
shifted i the primary pipeline registers 120(03-1206{(4X+3} according to the width of
input vector data sampie shifting prescribed by the vector instruction being executed.
For examople, sample X2 1s shifted in shifted input vector data sample 865(0), as
ithustrated in Figure 9C. The new shifted input vector data sample set 865{0}-868(X)} is
provided fo the exccution units 84(0)-84(X) for exccution for the next filter tap of the
filter vector processing operation 102, The filler coefficient 92 provided to the
exccution units 84(0)-84(X} is also the next filter coefficient 92, which 18 “h6” m this
example,

1601231 With continuing reference to Figure 5, the process repeats by providing the
shifted mput vector data sample set B65(0)-865(X) from the primary tapped-delay hine
78() to the execation umits 34(0)-84(X) (block 108 in Figure 5} to be multiphied with
the next filter coefficient 92 {(block 118 in Figure 5). The resultant filier output vector
data sample set 94(0}-94(X)} iz accurulated with the prior resultant filter output vector

data sample set 94(0)-94(X) (block 112 in Figure 5). Figure 9D illustrates the state of
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the input vector data samples 86 present m the tapped-delay hines 78(0), 78(1) during
the last processing stage of the exemplary filter vecior processing operation 102, In this
example as shown in Figure 9D, there were eight (8) filter taps (Y} i the filter vector
processing operation 102, because of filter coefficients 92 “h77-"h0" (i.e., 92(0)-92(Y-
1)), “hO” 1s the last filter coefficient 92 1n the filter vector processing operation 102 as
shown in Figure 9D. The shifted mput vector data sample set 865(0)-86S(X) has been
shifted seven (7} times {one time less than the number of filter taps) such that input
vector data sample X39 is stored in the shifted input vector data sample B68(0) in the
primary tapped-delay Hine 78(10) in the final, eighth, processing stage for the filter vector
processing operation 102,
[60124]  Note that while the example of the filter vector processing operation 102
described above employs each of the vector data lanes 100(0)-100(X) m the VPE 22(1)
te provide the filter vector processing operation 102, such 1s not required.  The filter
vector processing operation 102 may only require a subset of the vector data langs
H00(-100(X) to be employed for the filter vector processing operation 102, For
example, the width of the input vector data sample set 86{0)-86(X) may be less than the
width of all vector data files 82(()-82(X}, where it is desired to employ the additional
vector data lanes 100 for other vector processing operations to be performed in parallel
to the filter vector processing operation 102, In this scenario, the tapped-delay lines
78(0), 78(1} mn Figure 7 may need to be meodified to shift the next nput vector data
sarapic set &6N{0}-86N(X} from the shadow tapped-delay line 78(1} to the primary
tapped-delay line 78(0) as shifted input vector data sample set 865(0)-86S(X) m a
vector data lane 100 prior to reaching the end vector data lane 100(X).
{60825} TFigure 10 is a schematic diagram of contents of accumulators (L., the
resultant filter output vector data samples 94} in the exccution units 84(1)-84(X} in the
VPE 22(1) of Figure 4 after the exernplary eight (8) tap filicr vector processing stages in
the above example have been fully executed according to yn} = x[nf*h0 +x[n-11*hl +.
. x{8-71*h7  Accumulators AccO-Acc3 are shown in Figure 180, because in this
exarople, cach execution unit 84(0)-84(X) has four accumulators disposed in parallel for
each vector data lane 100(0)-100(X). The accumulated resuhant output vector data
samples can be provided on the cutput data flow paths 98(0}-98(X) to the vector data
files 82(MY-82(X) as the collective resultant filter output vector data sample set 94(0)-
94(X) to be stored therein for further analysis and/or processing. A specialized vector

msiniction may be supported by the VPE 22(1) to move rows of the resubtant filter
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output vector data sample set 94(0)-94(X) from the vector data Gles 82((H-82(X) to the
vector unitt data memory 32 of Figure 2, if deswred.

[60826] Other types of vector processing operations other than the filter vector
processing operation 102 can also enjoy processing efficiencies in a VPE by use of
tapped-delay lines 78 hke or similar to that provided in the VPE 22(1) in Figure 4
discussed above. For example, another specialized vector processing operation that
nvolves shifting of input vector data sample scts 8 in a VPE is a
correlation/covariance vector processing operation (referred to herein as “correlation
vector processing operation”).  As an example, it may be destred to employ vector
processing o provide correlation operations io choose the direct spread-specinim code
(DSSC) (e, chip sequence} for demodulating a user signal n a CDMA systern to
provide good separation between the user signal and signals of other users in the CDMA
systemi. The separation of the signals is made by correlating the received signal with the
focally generated chip sequence of the desired user. If the signal matches the desired
user's ¢hip sequence, the correlation function will be high and the CDMA system can
extract that signal. {f the desired user's chip sequence has hittle or nothing in common

with the signal, the correlation should be as close to zero as possible (thus eliminating

the signal}, which is referred to as cross-correlation. f the chip sequence is correlated
with the signal at any time offset other than zevo, the correlation should be as close to
zero as possible. This 1s referred (o as auto-correlation, and is used to reject mulii-path
interference.

160127} However, correlation operations may be difficult to paraliclize in vector

processors due to the specialized data flow paths provided in vector processors. When

the input vector data sample set representing the signal to be correlated is shifted
between delay taps, the input vecior data sample set is re-fetched from the vector data
file, thus increasing power consumption and reducing throughput. To minimize re-
fetching of the input vector data sample set from memory, the data {low path could be
configured to provide the samc nmumber of multipliers as delay taps for cfficient
paralliclized processing. However, other vector processing operations may require fewer
multiphers thereby providing inefficient scaling and underutilization of the multipliers
in the data flow path. If the nmumber of multipliers is reduced to be fewer than the
number of delay taps to provide scalability, parallclism is limited by more re-fetches
being required to memory to obtain the same nput vector data sample set for different

phases of the correlation processing.
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[60128]  In this regard, Figure 11 s a schematic diagram of another exemplary VPE
22(2} that can be provided as the VPE 22 in Figure 2. As will be described in more
detail below, the VPE 22(2) in Figure 11 is configured to provide precision correlation
vector processing operations in the VPE 22(2) with eliminated or reduced vector data
sample re-fetching and reduced power consumption. The precision correlation vector
processing operations can be provided in the VPE 22(2) as compared to correlation
vector processing operations that require storage of intermediate results requiring vector
data sample re-fetching, thereby increasing power consumption as a result,.  To
ehiminate or nunimize re-fetching of mput vector data samples from a vector data file to
reduce power consamption and improve processing efficiency, the tapped-delay Iines 78
mchuded in the VPE 22{1) in Figure 4 are also included in the input data flow paths
80(0}1-80(X)) between the vector data files 82{0})-82(X) and exccution units §4(0)-84(X)
{also labeled “EU™) in the VPE 22(2). “X’+1 is the maximum nomber of parallel input
data ianes provided in the VPE 22(2) for processing of vector data samples in this
exarople.  As previously discussed above, the tapped-delay lines 78 are configured to
receive an fnput vector data sample set 86{0)-86(X) on tapped-delay line mputs 88(0)-
88(X} as a subset or all of input vector data samples 86 of the input vector data sample
set 86(0)-86(X) from a corresponding subsct or all of the vector data files 82(0)-82(X).
A1l the input vector data samples 86 comprise the input vector data sample sct 86(0)-
86(X). As will be discussed m more detail below, the input vector data sample set
86(0}-86(X from the vector data files 82{0}-82(X) is correlated in the VPE 22(2) with a
reference vector data sample set 130(0)-130(X) to provide a resultant correlated output
vector data sample set 132(0)-132(X). The reference vector data sample set 130(0)-
130(X} is comprised of “X+1° reference vector data samples 130, which in this example
are 130(0), 1301}, ..., and 130(X). The resultant correlated output vector data sarmple
set 132(0)-132(X) is comprised of "X+17 resultant correlated output vector data samples
132, which in this example are 132(0), 132(1), ..., and 132(X).

136129]  With continuing reference to Figure 11, the tapped-delay lines 78 shift the
input vector data sample set 86(0}3-86(X) for cach correlation delay tap (i.¢., correlation
processing stage} of the correlation vector processing operation according o a
correlation vector instruction to be executed by the VPE 22(2) to provide a shifted input
vector data sample set 86S(03-868(X). All of the shified input vector data samples 865
comprise the shifted input vector data sample set 865(0)-865(X). The tapped-delay

1

hnes 78 shuft the input vector data sample set 86(03-86(X) to provide a shified mput
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vector data sample set 868(0)-865(X}, o execution unit mputs 90(0)-90(X) of the
execulion units 84¢(0}-84(X) during a correlation vector processing operation.  In this
manner, intermediate correlation results based on the operations performed on the
shifted iput vector data sample set 86S(03-865(X) do not have to be stored, shiffed,
and re-fetched from the vector data files 82(0)-82(X) during each processing stage of a
correlation vector processing operation performed by the VPE 22(2). Thus, the Eapped~
delay lines 78 can reduce power consumplion and increase processing efficiency for a
correlation vector processing operation performed by the VPE 22(2),

[601308]  With continuing reference to Figure 11, the execution units 84(0)-84(X) also
receive the reference vector data sample 130 from among the reference vector data
sample set 130(0}3-130(X) stored in a sequence number generator (SNG) 134 for the
correlation vector processing operation. The execution units 84(0)-84(X) are configured
te correlate the reference vector data sample set [30{03-130(X) with the inpul vector
data sample sct 86(()-86{X} as part of the correlation vector processing operation.
However, note that the sequence nuraher generator 134 could also be a register or other
file. The sequence number generator 134 is provided in this embodiroent to provide the
reference vecior data sample set 130(0)-130(X), because the correlation veclor
processing operation in this example is for a CBMA correlation vector instruction. The
reference vector data sample set [30{0)-130(X) s provided as a generated chip
sequence for use in signal extraction from the inpuat vector data sample set 86{0}-86(X)
if the correlation between the reference vector data sample set 130(03-1306{X} and the
input vector data sample set 86(0)-86(X) is high.

160131}  For example, the correlation vector processing operation for a CDMA vector
correlation mnstruction could provide a correlation between on-time nput vector data
samples 86 in the input vector data sample set 86(01-86(X) and late inpul vector data
sampies in the input vector data sampie set 86(0)-86(X}. For example, the on-time nput
vector data samples 86 in the nput vector data sample set 86(0)-86(X) may be the even
input vector data samples 86 in the input vector data sarople set 86(0)-86{X) (c.g., 86{0},
R6(2), 86(4), ... Bo(X-1)). The late input vector data samples 86 in the input vector data
sarople set 86{0)-86(X) may be the odd mput vector data samples 86 in the input vector
data sample set B6(()-86(X} {e.g., 86(1}, 86(3), BO(5), ... 86(X}). Alternatively, the on-
time input vector data samples 86 may be the odd input vector data samples &6, and the
late input vector data samples 86 may be the even input vector data samples 86. The

results of the correlation vector processing operation, the resuliant corrvelated output
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veotor data sample set 132(0)-132(X) for the on-time input vector data samples 86, and
the late input vector data samiples 86 may be used to determine whether to use the on-
time or late input vector data samples from the input vector data sample set 36{((13-86(X}
for signal exiraction. For example, an on-time correlation vector processing operation
may be provided according to the followmg:

=511

i
RO nl= 3" w{2I}"x[2] +n]
=0
, where:
1 18 the number of input signal samples;
x{n} is the digitized input signal 66;
y{n]is the reference signal; and
{15 the sample number.
(801321 A late correlation veclor processing operation may be provided according to

the following:

[=511
R [n]= Z}’{Zi ¥ 2+ 14w
i=0

, where:

u is the number of mput signal samples;

x{n] s the digitized mput signal 66;

v{n] s the reference signal; and

I s the sample number.

The reference signal y[ni (i.¢., reference vector data samples) may be complex. Inone
aspect, the VPE 22(2) may recetve a reference signal (e.g., from the sequence mumber
generator 1343, The VPE 22(2} may use the received reference signal directly 1o
perform the on-time and late correlation operations, in which case the reference signal
v{n] m the above cquations may represent the received reference signal. Alternatively,
the VPE 22(2) may compute the complex conjugate of the received reference signal
before using the reference signal to perform the on-time and late correlation operations,
in which case the reference signal y[n] in the above eguations may represent the
conjugate of the received reference signal.

(608331  With continuing reference to Figure 11, the execution anits 84(0)-84(X) are
cach configured to multiply the reference vector data sample set 1303(0)-130(X) with the
shifted input vector data samples 865(0), 865(1}, ... R6S(X} of the shifted mput vector

data sample set 865{0}-865(X) during each processing siage of the correlation vector
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processing operation to provide intermediate correlation output vector data samples in
the exccation units 34{0)-84(X}. The mtermediate correlation outpat vector data sample
sets are accumulated o cach of the execution umts 84{0}-84(X) {i.e., prior accuraulated
correlation oufput vector data sarople 18 added to current correlation output vector data
sample). This provides the final, resultant correlated output vector data sarople set
132(03-132¢(X) provided by the exccution amits 84(0)-84(X) on execution unit oulputs
96{0}-96(X} on the output data flow paths 98(0)-98(X}, respectively, for each input
vector data sample set 86(0), 86(1}, ... 86{X) to be stored back in the respective vector
data files R2(0)-82(X) for further use and/or processing by the VPE 22(2) without
having to store and shifl intermediate correlation output vector data sample sets
generated by the execution uniis 84(()-84(X).

[83134]  Further, note that the same components and architecture provided in the VPE
22(2} in Figwre 11 is provided in the VPE 22(1} in Figure 4. The sequence mumber
generator 134 is added and multiplexed by a multiplexor 136 with the global register
file 40 that can provide the filler cocfficients 92(0)-92(Y-1) or other data to be
processed with the reference vector data sample set 130(0)3130(X). Thus, the VPE
22(2y in Figure 11 can provide both the aforementioned filler vector processing
operations and correlation vector processing operations discussed here and in more
detail below by control of the multiplexor 136, The multiplexor 136 can be controlled
by a selector signal 138 that is controlled based on the vector instruction being executed
by the VPE 22(2). For a filter vector instruction, the selector signal 138 can be
configured to provide filter coefficients 92(0}-92(Y -1} from the global register file 40 to
be provided to the execution units 84(0)-84(X}. For a correlation vector nstruction, the
selector signal 138 can be configured to select the reference vector data sample set
130(1)-1306(X) from the sequence number generator 134 {o be provided to the exccution
units 84(0)-84(X}.

[B0135] With continuing reference to Figare 11 and as will be discussed in more
detail below, the tapped-delay lines 78(G), 78(1) are prograramable fo be controlled
according to the vector instruction being processed. If a correlation vector instruction or
other nstruction that does not employ the tapped-delay lines 78 is not being processed,
the tapped-delay Hnes 78 can be programmed to not be included in the input data flow
paths 80{0}-80(X)} between the vector data files 82{0}-82(X) and the execution units
84(03-84(X). In this embodiment, as previously discussed, two tapped-delay lines 78

are provided, a primary tapped-delay Iine 78(0) and a shadow tapped-delay hne 78(1},
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with the shadow-tapped delay line 78(1) being optional in this embodiment.  As
previously discussed, without the tapped-delay lines 78, a separate shifting process
weuld have to be performed to provide the shifted intermediate input vector data samaple
set again to the execution units 84{03-84(X), thereby increasing latency and consuming
additional power. Further, the efficiency of the input and cutput data How paths 80(()-
80(X), OB(D)-98(X} in the VPE 22(2} are nol Hmited by the re-fetching delay of the
shifted nput vector data sample set 865(()-865{X} from the vector data files SZ{0)-
R2(X) during a correlation vector processing operation. The shifted input vector data
sarople set 365(1)-868(X} is provided by the tapped-delay hincs 78 locahized to the
execulion anils 84(0)-84(X. The vector processing in the execulion units 84(()-84(X)}
is only Himited by computational resources rather than by data flow Hmitations.

[80136]  Further, the correlation vector processing operations performed by the VPE
22(2} in Figure 11 may be made more precise by employing the tapped-delay lines 78,
because output accumulations for imtermediate correlation processing stages in the
execution units 84(0)-84(X) do not have to be stored i the vector data files 82(0)-
82(X). Storing of intermediate vector data sample sets from the exccution units 84(0})-
84(X} in the vector data files 82(0)-82(Xy may result in rounding. Thus, when the next
intermediate vector data samople set would be provided to the execution units 84{()-
84(X) for the vector processing operation, any rounding error would be propagated and
added during each multiplication phase of the vector processing operation. In contrast,
in the example of the VPE 22(2) in Figure 11, the intermediate correlation output vector
data sarople sets caleulated by the execution umits 84(0}-84(X} do not have to be stored
in the vector data files 82(0)-82(X). Prior mtermediate correlation oulput vector data
sample sets can be accumulated with intermediate correlation output vector data sample
sets for next corrclation ouiput vector data sample sets, because the tapped-delay lines
78 provide the shifted input vector data sample sets RO8(0)-865(X) to the execution
umits 84(0)-84(X) during the vector processing operation to be processed, and the results
accuntulated with prior vector data sample sets for prior correlation output vector daia
saropic sets.

1601371 The previous discussion of the components provided in the VPE 22(1) n
Figure 4 above is equally applicable for the VPE 22(2) in Figure 11, and thus will not be
re-described.

[B0138] A further description of additional details and features of the VPE 22(2) in

5
H

Figure and the tapped-delay hnes 78 for providing the shifted mput vector data
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saropie set B6S(()-865(X} to the execution units 84(0)-84(X) m the mput data fow
paths 86(03-80(X) in this embodiment will now be described. In this regard, Figures
12A and 12B arc flowcharts illustrating an exemplary correlation vecior processing
operation 140 that can be performed in the VPE 22(2) n Figure 11 employing the
tapped-delay hines 78 according o an exemplary correlation vector mstruction. Figures
1ZA and 12B are {lowcharts illustrating an exemplary correlation/covariance vector
processing operations that can be performed in paraliel in VPE 22(2) in Figure 11 with
fetched interleaved on-time and late input vector data sample sets according to an
exemplary correlation/covariance vector processing operation.

[6083%9] The coxemplary tasks performed in the comelation vector processing
operation 140 in Figures 12A and 128 will be deseribed with reference to exaraples
provided in Figures 13-17B. With reference to Figure 124, the input vector data sarople
set 86{0)-86(X) to be processed in a correlation vector processing operation 144
according to a correlation vector instruction is feiched from the vector data files 82(0)-
R2(X) inte the jnput data flow paths 80(0)-80(X) for a correlation vector processing
operation 140 (block 142). As discussed above with regard to the VPE 22(2) in Figure
11, the mput vector data sample set 86(0)-86(X} 1s multiplied by the reference vector
data sample set 130(0)-130(X) received from the sequence number generator 134 inthe
excoution units 84(0}-84(X). For example, Figure [3 illustrates the reference vector
data sample set 130(0)-133(X) in the sequence number generator 134, In this example,
there are sixteen {16) reference vector data samples 130(0), 1301}, ... 138(15) stored in
the global register file 40 to be correlated with sixteen (16) nput vector data samples
&6(0), 86(1), ... 86(15) in the mput vector data sample set 86(0)-86(X). Figure 6B
previously discussed above illustrated an exemplary input vector data sample set 86(0})-
86(X} stored in the vector data files S8Z{0)-82(X)}, which is also apphcable in this
example and thus will not be re-described here.

[80140]  Either one, some, or all of the vector data lanes 100(03-1000X) in the VPE
22{2} in Figure 11 can be cmployed to provide the correlation vector processing
operation 140 according to the prograraming of the vector imstruction depending on the
width of the mpul vector data sample set §6(0)-86(X) and the reference vector data
sample set 133(0)-130(X) to be correlated i the correlation vector processing operation
140, If the entire width of the vector data files 82{0}-82(X) is required, all vecior data
lanes 100(0)-100(3) can be employed for the correlation vector processing operation

140. Note that the correlation vector processing operation 140 may only require a
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subset of the vector data lanes 100(0)-100(X) that roay be employed for the correlation
vector processing operation 140, This may be because the width of the input vector data
sampic set 86((}-86(X} is less than the width of all vector data files 82(()-82(X}, where
it is desired to employ the additional vector data lanes 100 for other vector processing
operations to be performed in parallel to the correlation vector processing operation 140,
For the purposes of discussing the current example, i is assumed that the input vector
data sample sct 86(0)-86(X) and the reference vector data sample set 130{03-13(X)
employed 1o the correlation vector processing operation 140 involves all vector data
anes 100(0)-100(X) inthe VPE 22(2).

(60841}  With reference back to Figure 12A, a fetched mput vector data sample set
86(0}1-86(X) is provided into the input data flow paths RO(0)-80(X} from the vector data
files 82(0)-82({X} to be loaded mto the tapped delay-Hines 78 as a first input vector data
sample set 86S{0)-86(X) for the correlation vector processing operation 140 (block
144). An mput vector data sample set 86{01-86(X) is loaded into the primary tapped-
delay line 78(0) as the input vector data sample set 86(0)-86(X} to be processed by the
execution units 84(0}-84(X) for the correlation vector processing operation 140, The
mput vector data sample set 86{03-86(X) lvaded inlo the primary tapped-delay line
78(0} is not shifted for the first operation of the correlation vector processing operation
140, A next input vector data sample set 86N{0)-86N(X) can also be loaded into the
shadow tapped-delay Hne 78(1} as a next input vector data sample set 86N(0}-86N{X) to
be processed by the exccution units 84(0)-84(X}. As previously discussed above and
discussed n more detail below, the purpose of the tapped-delay hines 78 is fo provide
shifting of the input vector data sample set 86(0}-86(X) to provide a shifted input vector
data sample set 865(()-865(X} to the execution units 84(0}-84(X) for subsequent
correlation operations during operation of the correlation vector processing operation
140, During cach processing stage of the correlation vector processing operation 140
excouted by the execution umits 34(0)-84(X), the mput vector data samples 86 are
shifted in the primary-tapped delay line 78(0) to provide the shifted input vecior data
saropic set 868(0}-865(X) to the cxecution units 84(0)-84(X). I this manner, the input
vector daia sample set 86{0)-86(X} does not have to be stored, shified in the vector data
files 82(0}-82(X}, and re-fetched for each correlation operation of the correlation vector
processing operation 140,

(601421  in this regard, Figure 14 ilhustrates the exemplary tapped-delay lines 78 that

can be provided in VPE 22(2) in Figure 11, In this embodiment, the tapped-delay hnes
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78 coroprise the shadow tapped-delay line 78(1) and the primary tapped-delay line
78(0).  As previously discussed above, the primary-tapped delay lne 78(0) in this
example is comprised of a plurality of 8-bit primary pipeline registers 120 o allow
resolution of ioput vector data samples 86 down to 8-bits m length. The first input
vector data sample set 36(0)-86(X) processed by the execution units 84(0)-840X) will be
un-shifted in this example for the first correlation operation of the correlation vector
processing operation 140.  As the execution units 84(0)-84(X) process subscguent
correlation operations for the correlation vector processing operation 144, the input
vector data samples 86 in the input vector data sample set 86(0})-86(X) stored in the
primary tapped-delay Hne 78(0), arc shified i the primary pipeline registers 120(0})-
120(4X+3}, as indicated by the arrows in Figure 14, to becorne the shifted mput vector
data sample set 86S(0)-865(X). In this manner, the execulion units 84(0)-84(X} are
fully utitized by receiving and performing the correlation vector processing operation
140 of the shifted input vector data sample set 865(0)-865(X} withowt having to store,
shift, and re-fetch the input vector data sample set 86 (0)-86 (X} from the vector data
files 82(0)-82(X).

[60843] The number of shifts performed in the primary and shadow tapped-delay
hines 78(0}, 78(1) for the correlation vector processing operation 140 will be dependent
on the number of samples to be correlated. If the number of fuput vector data samples
86 in the imput vector data sample set 836(0}-86(X) fetched into the primary tapped-delay
line 78(0) and shadow tapped-delay line 78(1} from the vector data files 82((1)-82(X} is
greater than the number of correlation operations in the correlation vecior processing
operation 140, the execution units 84(0)-84(X) can perform the correlation vector
processing operation 140 without any further input vector data sample sets 86(()-86(X}
being re-fetched from the vector data files 82(03-82(X). However, if the number of
correlation operations in the correlation vector processing operation 140 18 greater than
the number of input vector data samples 86 in the ioput vector data sample set 86(0)-
86(X) fetched into the primary tapped-delay line 78{0} and shadow tapped-delay line
781} from the vector data files 82(0)-82(X), additional joput vector data sample sels
RO(O)-86(X) can be fetched from the vector data files 82(0)-82(X) as part of the
correlation vector processing operation 1440,

{60844} in this ombodiment, the primary pipeline registers 120(0)-120(4X+3)
collectively are the width of the vector data files 82(0)-82(X). In the cxample of the

vector data files 82(0)-82(X) being 512-bits m width with “X” equal to fifteen (15},
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there will be sixty-four (64) total primary pipeline registers 120(0)-120(63), each eight
{8} bits in width to provide a total width of 512 bits (i.e., 64 regisiers X 8 bits cach).
Thus, in this example, the primary tapped-delay line 78(0) is capabic of storing the
entire width of one (1} input vector data sample set 86(0)-86(X). By providing the
primary pipeline registers 120(0)- 120{4 X3} of eight {8) bit widths in this example, the
mput vector data samiple set 36{0}-86(X) can be shifted down to a vector data sample
size of cight (8) bits for &-bit correlation vector processing operations. H larger input
vector data sample 86 sizes are desired for a correlation vector processing operation
140, such as 16-bit or 32-bit samoples for example, the input vector data sample set
86(0}-86{X) can be shifted in the primary pipeline registers 120(0)-120(4X+33 by two
(2} privoary pipehine registers 120 at a time.

[60145] Figure [5A illustrates an nput vector data sample set 36(0)-86(X) loaded
from the vector data files 82{0}3-32{X} into the primary tapped-delay hne 78(0) during a
first clock cycle (CYCLED) of a correlation vector processing tnstruction 140, The first
input vector data sample set 86(03-86(X) is loaded mto the primary tapped-delay line
7R(0Y as input vector data samples X1-X32, but sixty-four (64) input vector data
samples are provided. The primary pipeline registers 120(0)-120(2X+1) {see also,
Figure 14) are loaded with on-time and late input vector data samples 86 from the nput
vector data sample set 86(0)-86(X). For example, a special vector instruction may be
supported to load the on-time and Iate input vector data samples of the input vector data
sarapic set 86{((}-86(X) into the primary tapped-delay tine 73(() (and also the shadow-
tapped delay hne 78(1), as discussed in more detail later below). For example, primary
pipeline registers 122(0), 122¢1}, 12202X+2), and 122(2X+3) collectively contain input
vector data sample 86(0). Primary pipchine registers 122(0), 1221} contain on-time
input vector data sample 860T{0}, which are X(0} and X{1}, where “OT” means “on-
time.” Primary pipeline registers 122(2X+2), 122(2X+3) contain late input vector data
samples 861.(0), which are X{1) and X{2}, where “L” means “late.” This input vector
data sample 86 storage pattemn in the primary tapped-delay line 78(0) is repeated for the
other primary pipeline registers 122(2)-122(2X+1} and 122(2X+43-122{4X+3) (sec
Figure 14}

[60846]  With reference back to Figure 14, the shadow tapped-delay hne 78(1) is also
provided in the tapped-delay line 78. The shadow tapped-delay line 78(1} can be
employed to latch or pipehine a next input vector data sarapie set 86N()-86N{X) from

the vector data files 82(1)-82(X) for a subsequent vector processing operation. The
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shadow tapped-delay hine 78(1) is also comprised of a plurality of 8-bit shadow pipeline
registers 122 to allow resolution of input vector data samples down to &-bits in length
similar to the primary tapped-delay line 78(0). The shadow pipcline registers 122
collectively are the width of the vector data files 82(0)-82(X), which 1s 312-bits in this
example, so that the shadow tapped-delay line 78(1} 1s also capable of storing the entire
width of one (1} input vector data sample set 86{0}-86(X) just Hke the primary tapped-
delay line 78(0). Thus in this cmbediment, the number of shadow pipeline registers
122(-122(4X+3) mcluded in the primary tapped-delay bne 78(0) is four times the
number of vector data lanes 100{0}-100(X), which total sixteen (16}, each vector data
lane 100{0)-100(X) capable of supporting 32-bits each in this example. Thus, the
number of primary pipeline vegisters 120 also totals sixty-four (64} in this example for a
total of 512 bits (i.c., 64 registers x 8 bits each).
(80147  Figure 158 ilustrates a next input vector data sample set 86N{0}-86N(X)
leaded into the shadow tapped-delay line 78(1) during a second clock cycle (CYCLED)
of a correlation vector processing instruction 140. The next jnput vector data sample set
ROEN{03-86N(1) 18 loaded into the shadow tapped-delay hne 78(1) afier the first juput
vector data sample set 36{0)-86(X} from the vector data files 82(0}-82(X} 1s lvaded into
the primary tapped-delay line 78(0) to setup the exccution of a correlation vector
processing operation [40. This next input vector data sample set BON{)-86N{X) is
loaded into the shadow tapped-delay hine 78(1) as mpul vector data samples X(32)-
X(63), with both on-time and late input vector data samples 860T, 86L. Note that in
this exarple, X{(32) and X(33) form the on-time inpwt vector data samples 8607 of the
input vector data sample 86(0), and X(33) and X{34) form the late input vector data
samples 86L of the input vector data sample 86(0}, hke the storage pattern provided in
the primary tapped-delay line 78(0) discussed above. Other patterns could be provided
to group the input vector data samples 86 together to form the input vector data sample
set 8o{()-86(X}. The reference vector data samples 130 correlated during a first
processing stage of the correlation vector processing operation 140 from the reference
vector data sample set 130(03-130(X) from the sequence number generator 134 (e
Y{(0} and Y(1)) arc also shown as provided in a register ("(C7) to the execution units
84(0}-84(X) in Figure 15B for use in the correlation vector processing operation 140,
[60848]  With reference back to Figurc 14, as the input vector data samples 86 in the
input vector data sample set 86{0}-86(X) are shifted in the primary tapped-delay line

780y dhirmg cach processng stage of the correlation vector processing operation 140
N o fol fre) = 3



WO 2015/073526 PCT/US2014/065200
48

the next mput vector data samples 86N stored m the shadow pipehine registers 122 are
also shifted i the shadow pipeline registers 122 of the shadow tapped-delay line 78(1}).
Because in this example, the input vector data samples 86 of the input vector data
sampie set 86(0}-86(X) arc stored as on-time and late versions, the shift patters
provided between the tapped-delay hines 78(0) and 78(1} in Figure 14 is different than
the shift pattern provided between the tapped-delay tines 78(0) and 78(1) in Figure 7.
As shown in Figure 14, the on-time input vector data sarapies 860T are shifted from the
shadow pipeline register 122(0) in the shadow tapped-delay hoe 78(1) to primary
pipeline register 120(2X+1} in the primary tapped-delay line 78(0). Likewise, the late
mput vector data samples 86L are shifled from the shadow pipeline register 122(2X+2)
in the shadow tapped-delay line 78(1}) to primary pipeline register 120(4X+3) in the
primary tapped-delay line 78((). In this manner, the on-time input vector data samples
860T and late input vector data samples 8607 are kept segregated from cach other in
the tapped-delay Hnes 78(0), 78(1) as the shifting of input vector data samples 86 occurs
during the correlation vector processing operation 140,

160149}  The correlation vector processing operation 140 processing stages progress
in the execution units 84(03-84(X), eventually, the entire next input vector data sample
set 8ON{0}-86N(X) initially stored in the shadow tapped-delay tine 78(1) is shifted fully
mio the primary tapped-delay hine 78(3) to be provided o the execution umits 84({(})-
84(X) for processing. In this manner, after the correlation vector processing operation
140 is complete on the current input vector data sample sot 86(0)-86(X), the execution
units 84(03-84(X) can then be provided with the previously next input vector sample
data set 86N({H-86N(X} stored 1 the primary tapped-delay line 78(0) as the current
mput vector data sample set 86{0)-86(X} for a next correlation vector processing
operation 140, if desired, without delay.

(601561 After the first input vector data saraple set 86(0}-86(X) and next input vector
data sample set BON(0}-86N(X) are loaded mto the primary tapped-delay line 78(0) and
the shadow tapped-delay Hine 78(1), respectively, as shown in Figure 158, the first mput
vector data sample set 86(0)-86(X) provided in the primary tapped-delay line 78(0} is
provided to the respective execution units 84(0)-84(X) to be processed in a first
processing stage of the correlation vector processing operation 140 (block 146 in Figure
12A%. The first input vector data sample set 86{0}-86(X) becomes the current input
vector data sanple set 86(0)-86(X) being processed by the execution units 84{01-84(X).

The current mput vector data sample 86(0) is provided to execution unit 84((}), the
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current input vector data sarople 86(1) is provided to execution umit 84{1}, and so on, as
ilustrated in the VPE 22(2) in Figure 11, The reference vecior data inputl samples
130(1)-130(X) to be corrclated with the input vector data sample set 86(0)-86(X} are
provided to the execution units 84{0)-84(X) in the current processing stage of the
correlation vector processmg operation 140 (block 148 in Figure 124).

(RHIEREE Next, the execulion units 84(0}-84(X) perform the correlation vector
processing operation 140 (block 150 in Figuare 12A). Morc particularly, the cxecution
units 84¢0)-84(X) rounitiply the current input vector data sarople set 86(0)-86(X) by the
reference vector data samples 130 during the first processing stage according to the
operation: R(OT}[n] = y{0] * x[n] for on-time input vector data samples 8607 and
R{)n] = y[1] * x{1+n]} for late mput vector data samples 866, where v[] is the
designated reference vector data sample 130, and x{n] i1s the current input vector data
sample set 86{0}-86(X). The result of the correlation is a current on-time comrelation
cuiput vector data sample set R{OT)[n] and a current late correlation output vector data
saropic set R{L){n}l. The execution units 84(0)-84(X} then accumulate each current
resultant correlation vector data sample set with its corresponding prior resuliant
correlation vector data sample set calculated by the execution units 34(0)-84(X) to
provide the new prior foput vector data sample sets 86(0)-86(X) (block 152 1o Figure
12B}). In the first processing stage of the corvelation vector processing operation 140,
there is no prior resultant correlated output vector data sample set 132{03-132{X). Thus,
the first/current resuftant correlated output vector data sample set 132(0)-132(X) will
simply become the prior toput vector data sample set 86(0)-86{X) for the sccond, next
processing stage of the correlation vector processing operation 140,

[60852] If all processing stages of the correlation vector processing operation 140
have been completed (block 154 in Figure 1ZB), the accumulated prior resuliant
correlated output vector data sample set 132(0)-132(X} is provided as the resultant
correlated output vector data sample set 132{0)-132(X) in the output data flow paths
98(0}-98(X} to be provided and stored in the vector data files 82(0)-82(X) (block 157 in
Figure 128B). if all processing stages of the corrclation vector processing operation 140
have not been completed (block 154 m Figure 124), the shifted input vector data sample
set 865(0}-865(X} is shifted in the tapped-delay lines 78(0), 78(1} to the next position
for the correlation vector processing operation 140 to provide the shified input vector
data sample set 868(()-86S(X) (block 156 in Figure 12B). The shifted input vector data

sample set 86S(0}-865(X) 1s provided for calculating a next resultant correlation output
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vector data sample set [32(0)-132{X} to be accumulated with the prior resuliant
correlation output vector data sample set 132(0)-132(X). The shifling of the mput
vector data samples 86 in the tapped-delay lines 78(0}, 78(1) was previously described
above in detail with regard to Figure 14,

[B0153]  Figure 15C illustrates the contents of the tapped-delay Ines 78 when the
mput vector data sample set 86(03-86(X) is shifted in a second processing stage of the

e

correlation vector processing operation 140 to become the new shifted input vector data
saropic set 868(0)-8658( X for a next correlation processing operation 140 R{OT){n} =
y[21* x[2+n]} for on-time input vector data samoples 8630T and R{L)n] = y{3]* x[3+n]
for late input vector data samples 868SL. The input vector data sample set 86{0)-86(X}
in the primary tapped-delay Hne 78(0) is shified by two input vector data samples 86.
For example, input vector data sample 86G7T(1) in Figure 158 of X(2} and X(3} 18 now
shifted into mput vector data sample 865(1) in Figure 15C. The shifted inpul vector
data sample sct 865(0)-868(X) becomes the current nput vector data sample set 86(0)-
R6(X). The reference vector data samples 130 provided to the exccution units 84(0}-
84(X} are also the reference vector data samples 130, which are Y(2) and Y(3) in this
example.

[B0154]  With continuing reference to Figure 12B, the process repeats by providing
the next shifted input vector data sample set 86S(03-865(X} from the primary lapped-
delay line 78(0} (and from a portion of the shadow tapped-delay line 78(1}} to the
execution units 84(()-84(X} to be multiphed with the next reference vector data samples
130 {block 150 in Figure 12A), with the resultant correlated output vector data sample
set 132(0)-132(X) being accumulated with the prior resubtant correlated output vector
data sample set 132(03-132(X) (block 152 in Figure 12B). Figare 15D illostrates the
state of input vector data samaples 86 present in the tapped-delay lines 78(0), 7&(1)
during the last processing stage of the exemplary correlation vector processing operation
140. o this example as shown m Figure 150, there were sixieen (16) processing stages
for the correlation vector processing operation 140, because the full data width of the
tapped-delay lines 78 were employed for the input vector data sample set 86(0)-86(X),
but split among on-time and laic input vector data samples 8607, 86L. Y(30) and
Y{(31} are the last reference vector data samples 130(X) in the cowrelation vecior
processing operation 140 as shown in Figure 15D, which is reference vector data
sampies 130(15) n the example of Figure 13. The shifted input vector data sarapie set

86S(0)-865(X) has been shifted sixteen {16} umes (the width of the vector data lanes
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100(1)-100(X) in thas exarople) such that input vector data samples X(30) and X(31) are
stored i the shifled input vector data sample 86S(0) in the primary tapped-delay line
78(0) in the final, sixteenth, processing stage for the correlation vector processing
operation 140.

[B0I55)  Figure 16 15 a schematic diagram of contents of accumulators (i.e., resultant
correlated output vector data samples 132) in the execution units 84{03-84(X) in the
/PE 22{2) of Figure 11 afier the exemplary sixteen (16) correlation vector processing
stages 1o the above example have been fully executed. The resultant correlated output
vector data sample set is shown as 132(0)-132(X). Accumulators Acel-Ace3 are shown
in Figure 16, because in this example, each execution unit 84(0)-84(X) has four
accurnulators disposed i parallel for cach vector data lane 100(0)-100(X). The
accumulated resultant output vector data samples can be provided on the output data
flow paths 98(0)-9&(X} to the vector data files 82(0)-82(X) as a collective resultant
correlated outpwt vector data sample set 132(0)-132(X} 1o be stored therein for further
analysis and/or processing. A specialized vector instruction 1oay be supported by the
VPE 22(2} to move rows of the resuitant correlated oulput vector data sample set
132(0)-132(X) from the vector data files 82(1)-82(X} to the vector unit data memory 32
{(see Figure 2}, if desired.

[80156] Resultant output vector data sample sets provided by the exccution units
84(0)-84(X}, mehuding the resoltant filier vector output data sample sets 94{0)}-94(X)
and the resultant correlated output vector data sample sets 132(0)-132(X} described
above, can be stored back in the vector data files B2{0)-82(X), 82(31) mn different
nterleaved formats depending on the vector mstruction executed by the VPE. ‘X0 is
equal to thirty-one (31} in this example to provide the vector data files 82(0}-82(X),
cach thirty-two (32} bits width. For example, as illustrated in Figure 174, a resultant
output vector data sample set 138(0)-158(X0, 158(31) can be stored 1 the vector data
files 82(0}-82(X) separated by thewr real (“g”") and ymaginary (1) components. The
resultant output vector data sample set 1538(0)-158(X)} is comprised of “X-+17 resultant
output vector data samples 158, which in this example are 158(0), 158(1), ... , and
158(X}. It may be more efficient to store the resultant output vector data samople set
1S8(0)-158(X3, 138(31) separated by their real ("q”) and imaginary (1"} components
for efficiency purposes, such as if 3 next vector instmiction operates on real and
imaginary components of the resultant output vector data sample set 158(0)-158(X},

158(31) as an imput vector data sample set. Or, 1t may not be possible to store the
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resultant output vector data sample 158 in a vector data file 82 such that separation of
the resultant output vector data sample 158 into its real and imaginary components. For
example, if a sixteen {16} bit vector data sample is multiplied by another sixicen (16) bit
vector data sample, a thirty-two (32) bit resultant vector data sample results. For
example, the thirty-two (32} bit resultant output vector data sample 158 could be Y0 in
Figure 17A. The imagiary component of YO, Y0.1 158(1), can be stored in ADDRESS
‘1" of vector data file 82(1), and the real component of Y0, Y0.q 158(0}, can be stored
in another ADDRESS, such as ADDRESS ‘A

160157} The resultant output vector data samople set 158(03-158(X), 158(31) in Figure
17A could be stored in the vector data {iles 82(0}-82(X}, 82(31} interleaved by even and
odd resultant output vector data samples. This s illustrated by example in Figure 17B.
As illustrated i Figure 178, resultant output vector data sample YO-Y31 158(0)-
15&(X), 158(31) is stored in an interleaved format by even and odd vector data samples
among ADDRESS ‘07 and ADDRESS "A” in vector data files 82(03-82{31). Resuliant
output vector data sample YO 158(0) is stored o ADDRESS 0 in vector data file
82(0). Resultant output vector data sample Y1 158(1}) is stored not in ADDRESS 07 in
vector data file 82(1}, but in ADDRESS ‘A’ in vector data file 82(0). Resultant output
vector data saropic Y2 1538(2) is stored in ADDRESS *(7 in vector data file 82(1), and
80 ON.

{80158  Certain wireless baschand operations require data samples to be format-
converted before being processed. For example, the resultant output vector data sample
sets 158(0)-158(X) stored in the vector data files 82(0)-82(X) in intericaved format in
Figures 17A and 17B may neced to be de-interleaved for a next vector processing
operation.  For example, if the resultant output vector data samples 158(1)-158(X}
epresent a CDMA signal, the resultant output vector data samples 158(0}-158(X) may
need to be de-interieaved to separate out even and odd phases of the signal. The de-
mierleaved signal may also be corvelated with a locally generated code or sequence
number in a correlation processing operation to determine if the CDMA system can
extract the signal, such as with the exemplary correlation vector processing operation
described above in regard to Figures [1-16. Conventional prograromable processors
implement format conversion of data samples in muoltiple steps, which add cycles,
power consumption, and data {low complications m vector data sample format
conversions.  Vector processors can pre-process the vector data samples fo provide

format conversions before the format-converted vector data samples are provided to
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execution units. The format-converted vector data samples are stored 1o vector data
memory and re-feiched as part of a vector processing operation requiring data format
conversion to be processed by execution units. However, this format pre-processing of
the vector data samples delays the subsequent processing of the format-converted vector
data samples by the execution units, and causes computational components in the
exccution units to be underutitized.

183159 Embodiments disclosed herein and below provide for conversion of
interleaved vector data sample sets, such as those illustrated 1o Figures 18A and 18R,
For example, Figures 18A and 18AR illustrate a vector data sample set D(D)-DB(X}
stored in vector data files 82(0)-82(X) in different formats. Figure 18A illustrates the
vector data sample set D(0O)-D(X) stored in signed complex (SC) sixteen-bit samples
(8Ci6) and format-interleaved by real and tmaginary components. The sixteen (16) bit
real and 1maginary components of thirty-two (32} bit vector data sample THO) - D(OY}Q)
and D{(0)I) arc stored in thirty-two (32} bit vector data file 82(0). The sixicen {16} bit
real and imaginary components of vector data sample (X)) - DOXQ) and DG are
stored n thirty-two (32) bit vector data file 82(X). Figure 18 illustrates the vector data
sample set D(0-D(X) stored in SC eight-bit samples (SC8) and format-interieaved by
real and imaginary componenis. The cight (8) bit real and imaginary components of
sixteen {16) bit vector data sample D(OY(1) - DEYH(Q), DY H{T), are stored in vector
data file 82{0). The eight (8) bit real and imaginary components of sixteen (16} bit
vector data sample D{O}0) - DEOHOWQ), DY OXL), are also stored in thirty-two (32} bit
vector data file 82(0). Likewise, the eight (8) bit veal and imaginary components of
sixteen {16} bit vector data sample D{X)(1) - DOO{HHQ), DEGMY), are stored n
thirty-twe {32) bit vector data file 82(X).  The eight (8} bit real and imaginary
components of sixteen {16} bit vector data sample DEXNE) - DEGONQ), DO,
are also stored 1o thirty-two (32) bit vector data file 82(X).

(601601 In this regard, Figure 19 is a schematic diagram of another exemplary VPE
22{3} that can be provided as the VPE 22 i Figure 2. As will be described in more
detail below, the YPE 22(3) in Figure 19 iz configured fo provide in-flight format
conversion {e.g., de-interleaving) of input vector data sample sets provided to execution
units for vector processing operations in the VPE 22(3) with climinated or redoced
vector data sample re-fetching and reduced power consumption. In-fhight format
conversion of mput vector data sanple sets means the input vector data sample set

retrieved from vector data memory is format-converted without having to be stored and



WO 2015/073526 PCT/US2014/065200
54

re-fetched from vector data memory before being provided to execution umits for
execution. To elminate or mimimize re-fetching of nput vector data samples from a
vector data file to reduce power consumption and improve processing efficiency, format
conversion circuitry 159(0)-159(X) is included in each of the vector data lanes 100{0)-
100(X) between the vector data files 82(0)-82(X) and the execution umits 84(0)-84(X}.
As will be discussed in more detail below, the mput vector data sample set 86{01-86(X)
from the vector data files 82(0)-82(X) is format-converied (¢.g., de-interleaved) in the
format conversion circuitry 15%03-15%(X) i the VPE 22(3) to provide a format-
converted input vector data sample set 86F(0)-86F(X) to the execution units 84(0)-
84(X} for a vector processing operation that requires de-interleaving of the input vector
comprise the format-converted input vector data sample set 86F{03-86F(X) m this
example. X'+ is the maximum number of paralle] inpot data lanes provided in the
VPE 22(3) for processing of input vector data saropies 86 in this example.

160161]  in this manner, format conversion of the input vector data sanple sets 86(0)-
86(X) m the VPE 22(3) does not require pre-processing, storage, and re-fetching from
vector data files 82(0}-82(X}, thereby reducing power consumption. Further, because
the format conversion of the input vector data sample sets 86(0)-86(X) does not require
pre-processing, storage, and re-feiching of the format-converted mput vector data
sample sets 36(0)-86(X) from vector data file 82(0)-82(X), the execution units 84(()-
84(X) arc not delayed from performing vector processing operations.  Thus, the
cfficiency of the data flow paths in the VPE 22(3) are not lmited by format conversion
pre-processing delays of the input vector data sample sets 86(03-86(X). The format-
converted {e.g., de-interleaved) mput vector data sample sets 86F(0)-86F(X) are
provided localized to the exccution units 84(0)-84(X). The vector processing in the
execution units 84{0}-84(X} 1 only hnuted by computational resources rather than by
data flow bmitations.

186162} Note that while the primary and shadow tapped-delay lines 78(0), 78(1) are
iHustrated in the VPE 2203} in Figure 19, mchiding a tapped-delay line in the VPE 22(3)
in Figure 19 is not requived. In this example as illustrated in Figure 19, the format
conversion circuitry 159(03-159(X} can be mncloded in the optional primary tapped-
delay line 78((). This arrangement provides the format conversion circuitry 15%03-
159(X) n the nput data flow paths RO(0)-80(X) between the vector data files 82{0)-
82(X) and exccution units 84(0)-84(X} in the VPE 22(3) in Figure 19. The operation of
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the primary tapped-delay line 78({)) was previously described above with regard to
VPEs 22¢1) and 22(2). As previously discussed above, the primary and shadow tapped-
delay lines 78{03, 78(1) may be employed for the vector processing operation, requiring
format-converted input vector data sample sets 86F(0)-86F(X) to be provided to the
exccution units 84(0)-84(20), which in tum also requires format-converted, shifted mput
vector data sample sets, designated as 86SF(0}-865F(X).

186163} Notce that the same components and architecture provided in the VPE 22(3)
in Figure 19 are provided o the VPE 22(2) in Figwe 11. Common componenis
between VPE 22(3) in Figore 19 and VPE 22(2) in Figure 11 are illustrated in Figure 19
with common element numbers with the components i Figure 11 of the VPE 22(2).
The previous description and discussion of these comunon components for the VPE
222y m Figure 11 above are also applicable to the VPE 22(3) in Figure 19, and thus
will not be re-described here.

i30164] A further description of additional details and features of the VPE 22(3} in
Figure 19 and the tapped-delay lines 78 for providing the format-converted mput vector
data samople set B6F{()-86F(X) to the execution units 84(()-84(X) in the mmput data {low
paths 80(0)-80(X} in this embodiment will now be described. In this regard, Figure 20
is a flowchart illustrating an excmplary de-interleaving format conversion vector
processing operation 160 that can be performed in the VPE 22(3) in Figuwre 19
employing the format conversion circuitry 159(03-15%(X) according to an exemplary
vector instruction requiring format conversion of the input vector data sample set 86(1h-
RO(X).

160165 With reference to Figure 20, the input vector data sample set 86{0)-86(X) for
a vector processing operation 160 according to a vector instruction 1s fetched from the
vector data files 82{0}-82(X) into the input data flow paths 8O(1)-80(X) {block 162).
For example, the format conversion for the vector processing operation 160 may be a
de-interleaving vector processing operation 160 where the input vector data sampie set
86(0}-86(X) is de-interleaved from its interleaved state in the vector data files 8Z(()-
R2(X) mio de-inferleaved nput vector data sample set 86F(0)-86F(X).  Fither one,
some, or all of the vector data lanes 100(0)-100(X) in the VPE 22(3) m Figure 19 can be
employed to provide the vector processing operation 160 according (o the programming
of the vector imstruction depending on the width of the inpwt vector data sample set
86(03-86(X) 1o be format-converted for the vector processing operation 160, I the

entire width of the vector data files §2(0)-82(X) is required, all vector data Janes 100(0)-
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100(X) can be employed for the vector processing operation 160. The vector processing
operation 160 may only reguire a subset of the vector data lanes 100{0)-100(X) that may
be employed for the vector processing operation 160, This may be because the width of
the input vector data sample set 86(0)-86(X) is less than the width of all vector data files
82(03-82(X}, where it is desired o employ the additional vector data lanes 100 for other
vector processing operalions to be performed in parallel to the veclor processing
operation 160, For the purposes of discussing the current example, it is assumed that
the input vector data sample set 86(0)-86(X) format-converted into nput vector data
sarople set 86F(0)-86F(X) for the vector processing operation 160 involves all vector
data lanes 100(0)-100(X) in the VPE 22(3) in Figure 19.

(60166  With continuing veference to Figure 20, the fetched input vector data saraple
set 86(0)-86(X) 1s provided into the nput data flow paths 83{0)-80(X) to the format
conversion circuitry 159(0)-15%(X) to be format-converted according to the vector
processing operation 160 {block 164). As a non-hmiting example, the current input
delay line 78(0) as the mput vector data sample set 86(0)-86(X) to be format-converted
betore being provided to the execution umnits 84(0)-84(X) for the vector processing
operation 160, As previcusly discussed, a next input vector data sample set 86(0)-86(X)
may also be optionally loaded into the shadow tapped-delay Tine 78(1) as a next mput
vector data sample set 86N{0}-86N(X) to be processed by the execution units 84(0)-
84{X). As proviously discussed above, the purpose of the tapped-delay lines 78 is to
shift the input vector data sample sot 86{0}-86(X) 1o shifted toput vector data samples
BO8{0)-86S(X)} 10 be provided to the execution units 84(0)-84(X) during operation of a
vector processing operation 160 operating on shified input vector data samples 865, If
the format-converied input vector data sample set 86F{(0}3-86F(X) is also shifled in the
tapped-delay lines 78 during the vector processing operation 160, the shiffed format-
converted mput vector data sample set is designated as 865F(0)-865F(X).

136167]  With continuing reference to Figure 2§, the execution units 84(0)-84(X) may
next perform the vector processing operation 160 using the format-converted foput
vector data sample set 86F(()-86F (X)) (block 166). The execution units 34{0)-84(X)
may be configured to provide multiplications and/or accumulation using the format-
converted tnput vector data sample set 86F(03-86F(X). If the tapped-delay hines 7€ arc
ermployed to shift the format-converted mput vector data sarople set 86F(0Y-86H(X)

during the vector processing operation 164, the execution units 84{0}-84(X) can receive
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the shified, format-converted fnput vector data sample set 86SF0)-R65F (X)) during each
processing stage of the vector processing operation 160 uniil the vector processing
operation 160 is completed (block 168}, Once the vector processing operation 160 has
been completed, a resuitant output vector data saraple set 172(0)-172(X) based on
vector processing with a format-converted mput vector data sample set 86F(0)-86F(X},
or shified, format-converted input vector data sample sets 868F(0}-865F(X}, is provided
in the output data flow paths 98(0)-98(X) to be provided and stored in the vector data
files 82(0)-82(X) (block 170).  The resultant output vector data sample set 172(0)-
172(X) is comprised of X+17 resultant cutput vector data samples 172, which in this
example are [72(03, 172(1), ..., and 172(X}.

[80168] Figure 21 is a schematic diagram of exemplary format conversion circuiiry
159(0)-159(X) that receive shifted input vector data sample set 865(0)-865(X) from the
primary tapped-delay hne 78(0). In this example, the format conversion circuitry
159(0})-159%(X) is provided on the output of the primary tapped-delay line 78(0} in the
input data flow paths 80{0)-80(X). The cxemplary format conversion circuitry 159(0)-
159(X) will now be described.

[6086%9] The coxemplary format conversion circuitry 15%(()-159(Xy will now be
described.  Exeraplary detail of the internal components of the format conversion
circuitry  159(0) 1s provided in Figure 21, but such is also applicable for format
conversion circuitry 159(1)-15%(X}.  Taking formal conversion circuttry 1590} in
Figure 21 as an example, the format conversion circuitry 5%} in this example is
configured to provide de-interleaving and sign extension of input vector data sample
&6(0} or shified input vecior data samples 865(0) from the privoary pipeline registers
12000, 120(1) 1202X+2), 120(2X+3) in vector data lane 100(0) to provide format-
converted input vector data saraples 6F(0} or shified, format-converted input vector
data samples B6SF(0), respectively. In this regard, four multiplexors 174(3)}-174(0} arc
provided mn this example, which are arranged according to an assigned primary pipeline
register 120(0)-120(2X+3), respectively. Fach multiplexor 174(3)-174(0) is configured
to select cither the portion of the shified input vector data sample 865(0) in the assigned
primary pipeline register 120(0), 120(1), , 12002X+2), 120(2X+3)}, or the portion of the
shifted input vector data sample 865(0) to store in a primary pipehine register 120
adjacert {o the assigned primary pipeline register 120(0), 120(1), 120(2X+2),

120(2X+3).
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1601708}  For example, 11 primary pipeline registers [20(0), 120(1}, 12002X+2),
120(2X-+3) store terleaved shified input vector data sample 865(0) i complex,
interieaved form as real [15:8], tmaginary [15:8], real {7:0}, imaginary [7:0], and the
desired de-interleaved format is real [15:0} and imaginary [15:0} according to the vector
msiruction to be executed, multiplexor 174(3)-174(0) selections would be as follows.
Multiplexor 1743} would select the portion of the shifted input vector data sample 868
stored in its assigned primary pipeline register 120(0). However, muitiplexor 174(2)
would select the portion of the shifted foput vector data sample 868 stored in primary
pipeline register 120(1). This would provide a de-interleaved real portion of the nput
vector data sample 365(0) (i.e., real [15:0]) in adjacent input data flow paths 83{(3H(3),
SHOND). Similarly, multiplexor 174(0) would select the portion of the shified mput
vector data sample 868 stored in its assigned primary pipelive register [20{2X+3).
However, multiplexor 174(1) would select the portion of the shifted nput vecior data
sarapic 865 stored in primary pipeline register 120(2X+2). This would provide a de-
interleaved tmaginary portion of the shifted input vector data sample 865(0) (ie,
imagmary [15:0]) 1o adjacent imput data {low paths 86(0)(1), 80(OXD). Multiplexors
76(1), 176{0) provide the ability, to each multiplexor 174(3)-174(0}, to sclect a portion
of the shifted joput vector data sample B6S(0)} from a non-assigned, nown-adjacent
primary pipeline registers 120(0), 120¢1), 1202X+2)-120(2X+3), as iilustrated in
Figure 21.
186171]  With continuing reference to Figure 21, the formal conversion circuitry
159(0)-159(X) can alse be configured fo sign extend format-converted mput vector data
sarople sets 86F(()-86F(X). For example, it the format conversion of the jnput vector
data sample sets 86{0)-86(X) involves signed vector data samples converted from small
bit widths o large bit widths, the format conversion circuitry 159(3)-159(X) can be
configured to sign extend the de-interleaved vector data samples by extending the most
significant bits as “07"s for non-negative numbers, and as “F”s for negative numbers.
The format conversion circuitry 159%(0}-159(X) may have a sign extension (S3C) mput
T78(0)-178(X) set according to the vector instruction being executed fo indicate if sign
extension 18 io be performed on the format-converted nput vector data sample set
B6F{0)-86F(X) or not. The SC inputs [78(03-178(X) can be provided to sign extension
circuitry 180{(0}-183{X) provided i the format conversion circuitry 159(0)-15%X) to
perform the sign extension according to a programmable data path configuration

provided by the SC mputs 178(0)-178(X) according to the vector insiruction being
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processed. The SC mputs 178(0)-178(X)} can be configured and reconfigured for each
vector instruction to provide for {lexibility n the vector processing by the VPE 22(3).
For example, the programmabie data paths in the format conversion circuitry 159(0})-
159(X) can be configured by the SC puts 178(03-178(X) can be configured and
reconfigured for each clock-cycle of a vector instruction, on a clock-cycle-by-clock-
cycle basis if desired, to provide format conversion as desired, with full utilization of
the executinn units 84{0}-84(X)}, if desired.

160172]  But as discussed above, the format conversion circustry 13%(0)-13%(X) does
not have to be provided as part of the primary tapped-delay hine 78(0). The primary and
shadow tapped-delay lines 78(0), 78(1) arc optional. The format conversion circaiiry
159(0)-159(X) could receive jnput vector data sample sets 86((0)-86(X) directly from the
vector data files 82{0)-82(X). In this scenario as an example, with reference to Figure
24, the mput vector data sample set 86(0)-86(X} could be loaded from the vector
register fiies 82(0})-82(X) directly into the primary registers 12(0)-120(4X+3).

160173} Further, note that although the format conversion circuitry 159(0}3-15%(X) is
provided on the output of the primary tapped-delay line 78(0) to format converted fnput
vector data sample sets 86(0}-86(X), such is not required. The format conversion
cireuitry 159(03-159(X) fn Figure 21 could be provided on the input side of the primary
and shadow tapped-delay hines 78(0}), 78(1), such that the foput vector data sample sets
86(0}-86(X) fetched from the vector data files 82{()-82(X} are format converted in the
format conversion circuiiry 159(0}-159(X) prior to being loaded into the primary and
shadow tapped-delay hnes 78(0), 78(1). In this example, the input vector data sample
sets 86{(0)-86(X) would be stored as format-converted nput vector data sample sets
B6F{0)-86F(X) (or B6SF(0)-86SF(X) after shifting} in the primary and shadow tapped-
delay lines 78(0), 78(11. The format-converied mput vector data sample scis 86F(0)-
BOF(X) {or B6SF(-868F(X) after shifting} could then be provided directly from the
primary tapped-delay hne 78(0) directly to the execution units 84(()-84(X} for
gxecution in a vector processing operation.

160174]  As discussed above, the joput data flow paths SO0(0)-80(X) can be
programmed according to a programmable mput data path configuration to employ the
format conversion circuitry 15%0)-159(X) according to the vector mstruction to be
executed. In this regard, Figure 22 is a chart 182 that provides an exemplary data
format of bits of a vector mstruction to control programming of shifting and format

conversion of input vector data sample sets 86{0)-86(X) in the VPE 22(3) in Figure 19,
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The data provided in the fields in the chart 182 provide programming to the VPE 22(3)
to control whether the format conversion cireuilry 159(0}-159(X) and/or tapped-delay
hines 78 are included in the input data flow paths 80(0)-80{X) depending on if their
functionality is needed for the vector instruction to be processed.

[60175]  For example in Figure 22, a bias field 184 (BIAS 5CI16) is provided in bits
[7:0] of a vector instraction or vector programuming to indicate if a shift bias for
arithmetic instractions is provided when using signed complex sixteen (16} bit format
(SC16) by the tapped-delay lines 78. A first source data format conversion field 186
(DECIMATE SRC1) 1s provided in bit [16] of the vecior instruction or vector
programming 1o indicate if a first source data (i.e., input vector data sample set 86(0})-
format or not. A second source data format conversion field 188 (DECIMATE SRC2)
18 provided i bit [17] of the vector instruction or vector programming to indicate if a
sccond source data (1.e., input vector data sample set 86{0}-86(X)) should be decimated
(i.c., de-interleaved) and converted from SCR to SC16 format or not.  An output data
format ficld 190 (DEST FMT) is provided in bit [18] to indicate if an output source
data (e.g. resultant output vector data sample set 172(0}-172(X} in VPE 22(3} in Figure
19} should be stored m SC16 format or converted from SC16 to SCR format and re-
ordered when stored in the vector data files §2{0}-82(X). A phase format feld 192
(DECIMATE PHASE) is provided m bit [19] to indicate if input source data (i.e., input
vector data sample set 86(0)-86(X)) and output data (e.g., resultant output vecior data
saropic set 172(03-172(X) in VPE 22(3) in Figure 19} should be decimated (i.c., de-
interleaved) along even {e.g., on-time} and odd {e.g., late} samples, which may be useful
for CDMA-specific vector processing operations in particular, as previously described
above and in Figure 178,

(60176  As discussed above, affer the execution units 84(0}3-84(X) in the VPEs 22
perform vector processing on input vector data sample sets and provide resultant output
vector data sample sots on the output data flow paths 98(0)-98(X) as a rosuli,
subsequent vector processing operations may need fo be perforred on the resuliant
output vector data sample scts. However, the resultant ouiput vector data sample sets
may need o be reordered for subsequent vector processing operations.  Thus, the
esultant output vector data sample sets resulting from previous processing operations
nwust be stored 1o the vector data files 82(0)-82(X), feiched for reordering, and re-stored

m reordered {ormat in vector data files 82{0)-82(X). For example, subscquent
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processing operations may require previously processed vector data samples to be
mterleaved when stored in the vector data files 82(0}-82(X), as discussed above in
Figures 17A and 178.
(601771  As another cxample, subsequent processing operations may  require
previously processed vector data samples to be de-interieaved when stored in the vector
data files 82(0}-82(X). For example, in COMA processing operations, data samples
representing a signal may need to be stored and interleaved according to even (on-time)
and odd (ate) phases of the signal. To solve this issue, vector processors can inchude
circuttry that performs post-processing reordering of output vecior data from execution
units after the output vector data is stored in vector data memory. The post-processed
output vector data samples stored in vecfor data memory are feiched from the vector
data memory, reordered, and stored back i the vector data memory. This post-
processing delays the subsequent processing of the reordered vector data samples by the
execution units, and causes computational components in the cxecution unils 1o be
underutilized.
166178]  In this regard, Figure 23 is a schematic diagram of another exemplary VPE
22(4} that can be provided as the VPE 22 in Figure 2. As will be described in more
detail below, the VPE 22(4) mn Figure 23 15 configured to provide in-flight reordering of
esultant output vector data sample sets 194(0}-184(X) provided by the execution units
84(0}-84(X} for vector processing operations o be stored in the vector data files 82(0)-
82(X) in the VPE 22(4) with climinated or reduced vector data sampie re-fetching and
reduced power consuwmption. The resultant output vector data sample set 194(0)-194(X)
is comprised of “X+1” resultant output vector data samples 194, which m this example
are 194(0), 194(1), ..., and 194(X). For example, reordering could inchide miterleaving
of the resuliant cutput vector data sample scts 194(0)-194(X) before being stored in the
vector data files 82(0}3-82(X).
(60179  As shown in Figure 23 and discussed in more detail below, reordering
circuitry 196(0)-196(X) is provided in the output data flow paths 98{03-98(X) between
the execution units 84(()-84(X) and the vector data files 82(03-82(X) in each of the
veetor data lanes 100(0)-100(X). The reordering circuitry 196(0)-196(X) is conligured
based on programming according o a vector instruction to be executed o provide
cordering of resultant output vector data sample set 194(0)-194(X) as reordered
resultant output vector data samople set 194R(0)-194R(X)) in the output data flow paths

98(0)-98(X). In-Thght reordering of the resultant output vector data sample set 194(0)-
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194(X) i the VPE 22(4) in Figure 23 means the resuliant output vector data sample set
194(0)-194(Xy provided by execotion units 84(0)-84(X) is reordered as reordered
resultant output vector data sample sct 194R(0)-194R(X) before being stored in vector
data files 82(0)-82(X). In this manner, the resultant output vector data samaple set
194(0)-194(X) 18 stored m vector data files 82(0)-82(X) in reorvdered format as the
reordered resultant output vector data sample set 194R{0}-194R(X). As a non-himiting
example, the reordering of resuliant output vector data samaple sets 194(0)-194(X) may
include interleaving or de-interleaving of the resultant output vector data sample seis
194(1)-194(X) 1o be stored as the reordered resultant output vector data sample sets
194R{(0)-194R(X) to in the vector data files 82(1H)-82(X}.

(601801  Thus, with the reordering cireuiiry 196(03-196(X) provided 1o the output
data flow paths 98(0)-98(X}, the resubtant output vector data sample set 194{0}-194(X)
18 not required to {irst be stored in the vector data files 82(0}-82(X}, and then fetched
from the vector data files 82(0)-82(X}, reordered, and restored in vector data files 8Z({})-
R2(X). The resuliant output vector data sample set 194(0)-194(X) 18 reordered hefore
being stored in the vector data files 82(0)-82(X). In this roanner, the resultant output
vector data sample sets 194{03-194(X) are stored in the reordered format in the vector
data files 82{(0)-82(X) without requiring additional post-processing steps, which may
delay subsequent vector processing operations to be performed in the execution units
84(0)-84(X). Thus, the efficiency of the data {low paths in the VPE 22{4} are not
limited by the reordering of the resultant ouiput vector data sample sets 194(0)-194(X).
The subsequent vector processing in the execution units 84(0)-84(X} is only limited by
computational resources rather than by data flow hnutations when the resultant output
vector data samiple sets 194(0)-194(X} are to be stored in reordered formal as reordered
resultant output vector data sample sets 194R{0}-194R(X} in the vector data files 82(0}-
82(X).

[B0I81]  In this example as lustrated in Figure 23, the VPE 22(4) that includes the
reordering circuitry 196{0)-196(X) can also optionally include the primary tapped-delay
Hne 78(0) and/or the shadow tapped-delay line 78(1). The operation of the tapped-delay
hines 78(0}, 78(1) was previously described above with regard to VPEs 22(1) and 22(2).
As previgusly discussed above, the tapped-delay lines 78((), 78(1) may be employed for
the vector processing operation reguiring shiffed input vector data sample sets 865(0)-
865(X) to be provided to the exccution units 84(0)-84(X). Also, note that common

components are provided in the VPE 22(4) in Figure 23 that are provided in the VPEs
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22(1)3-22(3y in Figures 4, 11, and 19. Common components are illustrated m m the VPE

22(4y m Figure 23 with common element numbers. The previcus description and
discussion of these common components above with regard to VPEs 22(1)-22(3} arc
also applicable to the VPE 22(4) in Figure 23, and thus will not be re-described here.
[B0¥82]  With continuing reference to Figure 23, more specilically, the reordering
circuitry 196(0}-196(X) is configured 1o receive the resullant oulput vector data sample
sets 194(0)-194(X) on reordering circuitry inpuis 198(0)-198(X) on the output data flow
paths 98(01-98(X). The reordering cirenitry 196(0)-196(X) is configured to reorder the
resultant output vector data sample sets 194(0)- 19400 to provide the reorderved resuliant
cutput vector data sample sets 194R{0)-194R(X). The reordering circuitry 196(0}-
196(X) s configured to provide the reordered resultant ouiput vector data sample sets
194R{03-194R(X) on reorder circuttry outputs 200{0)-200(X) in the output data flow
paths 98(11)-98(X)} to be provided to the vector data files 82(0)-82(X) for storage.
[B0E83] A further description of additional details and features of the VPE 22{(4) in
Figure 23 for providing the reovdered resultant output vector data sanple sets 194R(0)-
194R{X) 1o the vector data files 82(0)-82(X) i the output data flow paths 98(0)-98(X)
in this embodiment will now be deseribed. In this regard, Figure 24 is a flowchart
illustrating an exemplary reordering of vesultant output vector data sample sets 194{(0)-
194(X) resulting {fromn a vector processing operation 202 that can be performed in the
VPE 22(4) in Figure 23 employing the reordering circutry 196(0}-196(X} according to
an exemplary vector instruction requiring reordering of the resultant output vector data
sarpie set 194(0)-194(X).

[60184]  With reference to Figures 23 and 24, the ioput vector data sample set 86(0)-
86(X} to be processed according to the vector processing operation 202 according to a
vector mstruction is fetched from the vector data files 82{0}-82(X) and provided in the
input data flow paths 80(0}-80(X) (block 204 in Figure 24). For example, the vecior
processing operation 202 can involve any vector processing operation desired according
to the vector instruction o be exccuted. Non-himiting examples including the filter,
correlation, and the format conversion vector processing operations described above,
Either one, some, or all of the vector data lanes [00(0)-100(X} in the VPE 22(4) n
Figure 23 can be employed to provide the vector processing operation 202 according to
the programming of the vector instruction depending on the width of the input vector
data sample set R6(0)-86(X} for the vector processing operation 202, If the eotire width

of the vector data files 82(0}-82(X} is required, all vector data lanes 100{0)-100(X) can
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be eroploved for the vector processing operation 202, The vector processing operation
202 may only require a subset of the vector data lanes [00{03-100(X). This may be
because the width of the mput vector data sarapic set 86{0}1-86(X} is less than the width
of all vector data files 8Z(0}-82(X}, where it is desired to employ the additional vecior
data lanes 100 for other vector processing operations 1o be performed in parallel to the
vector processing operation 202.
186185]  With contimuing reference to Figures 23 and 24, the fetched input vector data
saropic set 86((1-86(X} is received from the oput data flow paths S0(0)-80(X) at the
execution units 84(0)-84(X) (block 206 1 Figure 24). The execution units 84{()-84(X)
perform vector processing on the received input vector data sample set 36(0)-86(X)
according to the vector processing operation 202 provided according to a vector
msiruction (block 208 in Figure 24). As a non-hmiting example, the foput vector data
sample set 86(0)-86(X) may optionally be loaded into the primary tapped-delay line
78(0} as the mput vector data sample set 86(0)-86(X) to be shifted during execution of
the vector processing operation 202 during cach processing stage of the vector
processing operation 202 executed by the execufion upits 84(0}-84(X) that mvolve
shifting of the nput vector data sample set 36{0}-86(X). As previcusly discussed, a
next input vector data sample set 86N{0}-86N(X) may also be optionally loaded into the
shadow tapped-delay Hne 78(1} as a next input vector data sample set 86N(0)-86N{X) to
be processed by the execation umits 84(0)-84(X). As previcusly discussed above, the
purpose of the tapped-delay lines 7€ is to shift the input vector data sampie set 86(0)-
R6(X) 1o shified mput vector data samples 865(0)-865(X}) to be provided to the
execution onits 84(0)-84(X) durmg operation of a vector processing operation 202
operating on shifted mput vector data samples 865,
[60886] With continuing reference to Figures 23 and 24, the execution uniis 84(0}-
84(X) may be configured to provide multiplications and/or accunudation using the mnput
vector data sarople set 86(0)-86(X). I the tapped-delay lines 78 are eroployed to shift
the format-converted input vector data sample set 86F(0}-86F(X} during the vector
processing operation 202, the execcution units 84(0)-84(X) can received the shifted tput
vector data sample set 868(0)-86S(X) during each processing stage of the vector
processing operation 202 until the vector processing operation 202 is completed, as
previously described by example. Once the vector processing operation 202 has been
completed, a resultant output vector data sample set 194(0)-194(X) based on vector

processing of the mput vector data sample set 86(0}-86(X), or shifted, format-converted
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input vector data sample sets 865(0)-865(X), 1s provided in the output data flow paths
O8(0)-98(X).

[60887] With continuing reference to Figures 23 and 24, before the resultant output
vector data saraple set 194(0)-194(X) is stored 1n the vector data files 82(0)-82(X), the
resultant output vector data sample set 194(0)-194(X) 13 provided to the reordering
circuitry 196(0)-196(X} provided in the output data flow paths 98(0)-98(X) provided
hetween the exccution units 84(0)-84(X) and the vector data files 82(03-82(X). The
reordering circuitry 196{(0)-196(X) is programmmable to be included in the output data
flow paths 98(0)-98(X} according to the vector instruction being executed, and if the
vector instroction calls for reordering of the resultant oulput vector data sample set
194(0)-194(X) 10 be stored 1o the vector data files 82{0})-82(X)}, as discussed below in
more detail. The reovdering cireuitry 196(0)-196(X) reorders the resultant output vector
data sample set 194((1)-194(X} according to the reordering provided in the programming
according to the vector instruction being executed without the resultant outpul vector
data sample set 194{03-194(X) being stored in the vector data files 82(0)-82(X) (block
210 m Figure 24). In this manner, the resultant output vector data sample set 194(0)-
194(Xy does not have to first be stored in the vector data files 82(0)-82(X}, re-fetched,
reovdered in @ post-processing operation, and stored in reordered format in the vector
data files 82(0)-82(X}, thereby providing delay in the execution units 84{(0)-84(X). The
resultant cutput vector data sample set 194(0)-194(X} 1s stored as the reordered resultant
culput vector data sample set 194R{0)-194R(X) in the vector data files 82{0}-82(X)
without reordering post-processing required (block 212 1o Figure 24). For example, the
resultant output vector data sample set 194(0)-194(X} may appear in a format hike that
provided in Figorcs 18BA and 18B before being reordered by the reordering circuitry
196(1H-196(X}.

[60188]  An cxarople of the reordering civeudtry 196{0)-196(X) will now be described
with regard to Figure 25, Exeroplary detail of the internal components of the reordering
circuitry 196{03-196(X) is provided for onc instance of the reordering circuitry 196({1)
provided in vector data lane 100(0) 1s provided i Figure 25, but such is also applicable
for reovdering circuitry 196{1}3-196(X). Taking reordering circuitry 196(0) i Figure 25
as an example, the reordering circuitry 196(0) in this example is configured to reorder
the resultant ouiput vector data sample 194(0) provided by the execution unit 84(0) in
the output data flow path 98(0) in vector data lane 100(0) to provide the reordered

resultant output vector data sample 194R(0). In thus regard, four output vector data
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saropie selectors 214(3)-214(0), provided m the form of multiplexors in this example,
are provided in this example, which are arranged according to the bit widths of the
execution unit outputs 96(G), which are four {4} in this example of cight (8} bit widths
each 96(0Y3)-96(0X0). Each output vector data sample selector 214(3)-214{(0) is
configured to select either the portion of the resultant output vector data sarople 194(0)
m the assigned execulion unit output 96(0)3)-96(0X0), or a portion of the resultant
shifted output vector data samaple 194(0) from an execution unit cutput 96 adjacent to
the assigned execution unit output 96(0H3)-96(0 D).

[6018%]  For example, if execution unit outputs 96(0Y(3)-96(0){0) provide resuliant
cutput veetor data sarple 194(0) in sixteen (16} bit signed complex format real {31:24],
real {23:16], imaginary {15:8], imaginary [7:0] and the desired reordered (c.g.,
mterleavedy format is veal [31:24], imaginary [23:16], real [15:8], tmaginary [7:0]
according to the vector msiruction o be executed, output vector data samiple selector
214{3%214{0} scloctions would be as follows. Ouiput vector data sample selector
2143} would select the resultant output vector data sample 194(0)3) from execution
unit output 96(0X(3) to provide on output data flow path 98(0)(3). However, output
vector data sample selector 214(2) would select the portion of the resultant output vector
data sample 194{0%1) on execcution unit output 26(03(1) to provide on oulput data flow
path 98(0X2). This would provide an interleaved real portion of the resublant shified
culput vector data sample 194(0) (e, real [31:24], imaginary [23:16]) in adjacent
cutput data flow paths 98(0%3), 98(0}2), as reordered resultant output vector data
saropic 194R(0)3), 194R{H(2)} of reordered resultant output vector data sanple
194R{(0). Sinularly, output vector data sample selector 214(0) would select the resultant
cutput vector data sample 194(0K0) from exccotion umit cutput 96{0}0) to provide in
output data flow path 98(0)(0). However, output vector data sample sclector 214(1)
would select the resultant output vector data saropic 194(0X 2} on execution unit output
S6(0)2) to provide on cutput data flow path 98(0)(1). This would provide a reordered,
nterleaved resultant output vector data samples 194(0)2), 194(0X0) (i.e., real [15:8],
imaginary {7:0]) in adjacent output data flow paths 98(0)(1), 98(0)0), as reordered
resultant output vector data samples I94R{0)1), 194R(0)0) of reordered resuliant
cutput vector data sample [94R(0). QOutput vector data sample selectors  216(1),
216(0), also provided in the form of multiplexors, provide the ability to select between a
resultant output vector data sample 194(0)3)-194(0N0) from a non-assigned, non-

adjacent execution unit output 96(0)(3)-96(0X0), as illustrated in Figure 25.
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(601508  With continuing reference to Figures 23 and 25, the reordering eircuitry
196(0)-196(Xy could be provided as bemng programmable to be configured or
cconfigured to not reorder resuftant oufput vecior data sample set 194(0)-194(X)
according to the vector instruction to be exccuted. In this example, the reordering
circuitry 196(0}-196(X) may be programmed to provide for the output data flow paths
98(0)-98(X) to flow straight o the reordering circuitry 196(0)-196(X} without any
reordering operations being formed. As previously discussed above and iflustrated in
Figure 22, the output data format field 190 (DEST FMT) in chart 182 can be provided
in bit {18} of a vector instruction as a non-limiting example to indicate if an output
source data (e.g., resultant output vector data sample set 194(03-194(X} in VPE 22{4) in
Figure 23) should be stored in SC16 format or converted from SC16 to SCE format and
re-ordered when stored 1o the vector data files 82(0)-82(X).

(801911  In this regard, a programmable reordering data path configuration input
218{0} in Figare 25 can be provided to the reordering circuitry 196(0} o program the
reovdering circuitry 196(0) to either reorder or not reorder the resuliant output vector
data samples 194(03(3)-194(0)(0) 1o the output data flow path 98(0). Programumable
reordering data path configuration inputs 218(13-218(X) (not shown) can alse be
similarly provided to the reordering circuitry 196{1)-196(X} to program the reordering
circuitry 196(13-196(X)} 1o either reorder or not reorder the resultant cutput vector data
sample sels 194(1)-194(X} in the output data flow paths 98(1)-98(X), respectively. In
this manner, the reordering circuitry 196(0)-196(X} can be progranumed to not reorder
the resuliant output vector data sample sets 19403-194(X) if the vector instruction doos
not provide for such processing to be performed. The programomable reordering data
path configuration mputs 218(03-218(X} can be configured and reconfigured for each
vector instruction to provide for flexibility in the vector processing by the VPE 22(4).
For example, the programmable reordering data path configuration ioputs 218(0)-
218{X) can be configured and reconfigured for each clock-cycle of a vector instruetion,
on a clock-cycle-by-clock-cycle basis, if desired, to provide reordering as desired, with
fult utibization of the execution units 84{0)-84({X)), if desired.

160192}  Other vector processing operations can also be provided that nvolve in-
fight processing of resaliant output vector data sample sets from the execution units
84(0})-84(X) without requiring additional post-processing sieps, which may delay
subsequent vector processing operations to be performed in the execution units 84(0-

84(X). For example, CDMA wireless baseband operations requiring despreading of
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chip sequences according to spread signal data sequences of varying length may benefit
from in-flight vector processing.
{60893} For example, a data signal 220 that can be modulated using CDMA is
illustrated 10 Figure 26A. The data signal 220 has a period of 27, The data signal 220
epresents the data sequence 1010 in this example, where high signal levels represent a
fogical *17 and low signal levels represent a logical 0, as illustrated in Figure 26A. In
CDMA modulation, the data signal 220 is spread by a chip sequence 222, such as chip
sequence 222 in Figure 268, which may be a pseudorandom code. The chip sequence
222, in this example, has a period that 1s ten (10) times smaller than the period of the
data signal 220 to provide a chip sequence 222 having a spreading rate or {actor of ten
(10) chips for cach sample of the data signal 220 in this exampie. To spread the data
signal 220 in this example, the data signal 220 is exclusively ORed (ie., XOR’ ed) with
the chip sequence 222 to provide a spread transmitted data signal 224, as illustrated in
Figure 26C. Other data signals for other users transmitted in the same bandwidth with
the spread transmoitted data signal 224 are spread with other chip sequences that are
orthogonal to each other and the chip sequence 222, In this mammer, when the original
data signal 220 is o be recovered, the spread transmitted data signal 224 is correlated
with the sequence numbers, as previously described above with regard to Figures 11-16.
If there is a high correlation between the sequence mumber and the spread transmitled
data signal 224, such as will be the case with chip sequence 222, the origmal data signal
220 can be recovered using the chip sequence associated with the high correlation
sequence murnber. The spread iransmitted data sigoal 224 is despread with the highly
correlated chip sequence, which is chip sequence 222 in this example, to recover the
original data signal 220 as recovered data signal 226 i Figure 26D,
{80894} The despreading of the spread transmifted data signal 224 in Figure 26 can
be performed in a despreading vector processing operation as an inner product between
the spread transmitted data signal 224 and potential chip sequences, smmilar to the
correlation vector processing operation described above with regard to the VPE 22(2) in
Figure 11, to determine a highly correlating chip sequence. The spread transmitted data
signal 224 can be despread with the chip sequence 222 determined to have been used to
CDMA modulate the original data signal 220, to provide the recovered data signal 226
in Figure 26D.
[60195]  in vector processors that tnclude CDMA processing operations, the vector
£

processors can include circuitry that performs despreading of

spread signal vector data
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sequences after being output from execution units and stored m vector data memory. In
this regard, the spread signal vector data sequences stored in vector data memory are
fetched from vector data memory in a posi-processing operation, and despread with
correlated spread code sequence or chip sequence to recover the original data signal.
The despreaded vector data sequences, which are the original data samples beflore
spreading, are stored back in vector data memory. This post-processing operation can
delay the subsequent vector operation processing by the execution units, and causes
computational components in the eoxecution units 1o be uvnderutitized. Further,
despreading of spread signal vector data scquences using a spreading code sequence is
difficult to parallchize, since the spread signal vector data sequences to be despreaded
cross over different data {low paths from the execution units,
[88196] To address thus issue, in embodiments disclosed below, VPEs that include
despreading circuitry provided i data flow paths between execution units and vector
data memory in the VPE are provided. The despreading circuitry is counfigured to
despread spread-spectrura sequences using an output vector data sample set from
xecution units fo-Tlght while the output vector data sample set is being provided over
the output data flow paths from the execution units to the vector data memory. In-flight
despreading of output vector data sample sets means that the output vector data saraple
set provided by execution units is despread before being stored in vector data memory,
8o that the oulput vector data sample set s stored in veclor data memory in a despread
format. The despread spread-spectrum sequences (DSSS) can be stored in despread
form in the vector data memory without requiring additional post-processing steps,
which may delay subsequent vector processing operations to be performed in the
execution units. Thus, the efficiency of the data flow paths m the VPE may not be
hirnited by the despreading of the spread-spectrum sequences. The subsequent vector
processing in the execution units may only be haited by computational resources rather
than by data flow lhimitations when despread spread-specinim seguences are stored in
vector data memory.
160197]  in this regard, Figure 27 is a schematic diagram of another exeroplary VPE
22(5} that can be provided as the VPE 22 m Figure 2. As will be described i move
detail below, the VPE 22(5) in Figure 27 is configured to provide in-flight despreading
of resuliant output vector data sample sets 228(0)-228(X) provided by the execution
units 84{0)-84(X) with a code sequence for vector processing operations to be stored in

the vector data files 82(0)-82(X) in the VPE 22(5} with elmunated or reduced vector
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data sample re-fetching and reduced power consumption.  The resultant output vector
data sample sets 228(0)-228(X} are comprised of "X-+17 input resultant oulput vector
data samples 228, which in this example are 228(0), 228(1), ..., and 228(X). The code
sequence could be a spread-spectrum CDMA chip sequence for a CDMA despreading
vector processing operation, 43 a non-lmiting example. In the VPE 22(5) in Figure 27,
the resaltant cutput vector data sample set 228(0)-228(X}) can be despread with a code
sequence before being stored in the vector data files 82(0)-82(X).

160198] As shown in Figure 27 and discussed in more detail below, despreading
circuttry 230 1s provided in the output data flow paths 98(0)-98(X) between the
execulion anits 84(0)-84{X) and the vector data files 32{0)-82(X} in cach of the vector
data lases 100(0-100(X). The despreading circuitry 230 is configured based on
programyuing according to a vector instruchion to be executed to provide in-fhight
despreading of the resuliant output vector data sample set 228(0}3-228(X} with a code
sequence provided as reference vector data sample set 130(0)-130(X) generated by
sequence murnber generator 134, as previously described above m Figures 11-16 with
regard to correlation vector processing operations. A despread resultant output vector
data sample set 229(03-229(Z) 1s provided by the despreading circuitry 23{ in the output
data flow paths 98(0)-98(X). The despread resultant output vector data sample set
229(03-229(2) i3 comprised of ‘Z+1° despread resultant output vector data samples 226,
which i this example are 229(0), 229(1), ..., and 229(Z). In-tlight despreading of the
resultant output vector data sample set 228(0-228(X) in the VPE 22(5) in Figure 27
means the resultant output vector data sample set 228(03-228(X) provided by execution
units 84(0)-84(X) is despread with a code sequence in the resultant vector data sample
set 228(0)-228(X} before being stored in vector data files 82(0)-82(X). In this manner,
the resultant output vector data sample set 228{03-228(X) is stored in vector data files
82(03-82(X} mn despreaded form as despread resultant output vector data sample sot
229(0)-229(X).

186199]  Thus, with the despreading circuitry 230 provided in the output data flow
paths 98(03}-98(X), the resultant output vector data sample sot 228(0)-228(X) is not
required to first be stored in the vector data files 82(0}3-82(X), and then feiched from the
vector data files 82(0)-82(X), despread, and restored in despreaded form in the vector
data files 82((1)-82(X}. The resultant output vector data sample set 228(0)-228(X) is
despreaded before being stored in the vector data files 82{0)-82(X). Tn this manner, the

despread resultant output vector data sample set 228(0)-22%(2) is stored in the vector



WO 2015/073526 PCT/US2014/065200
71

data files 82{0)-82(X) without requiring additional post-processing steps, which roay
delay subseguent vector processing operations to be performed in the execution umnits
84(0)-84(X). Thus, the efficiency of the data flow paths in the VPE 22(5) arc not
hmited by the despreading of the resultant output vector data sample set 228(0)-228(X).
The subsequent vector processmg m the exccution units 84(0}-84(X) is only limited by
computational resources rather than by data flow Hmitations when the resultant output
vector data samplc sets 228(0)-228(X} are stored in despreaded form as despreaded
resultant oufput vector data sample sets 229(03-229(2) 1 the vector data files 82(0)-
R2(X).

[602806] Further, by providing the despreading civcuitry 230 in the output data flow
paths 98(0}-98(X} between the execution units 84(03-84(X} and the vector data files
82(0}3-82(X), the resultant output vector data sample set 228(03-228(X}) does not have to
cross vector data lanes 100 in the input data Oow paths 80(0)-80(X) between the vector
data files 82((}-82(X) and the execution umits 84H{(}3-84(X). Providing data flow paths
for despreading of input vector data samples 86 in an wput vector data saraple set 86(0)-
86(X) between different vector data lanes 100 would merease routing complexities. As
a resull, execution units 84(0)-84(X) may be underutilized while despreading operations
are being performed in the input data flow paths 80(0)-80(X). Also, as discussed above,
despreading of the resultant output vector data sample set 228(0)-228(X) in the mput
data flow paths 80¢{0}-80(X} would require the resultant output vector data sample set
228{01-228(X) to first be stored in the vector data files 82(03-82(X) in the VPE 22(5) in
Figure 27, thereby increasing power consumption when re-fetched and despread and/or
risking underutibization of the execution units 84(0)-84(X} that may be delayed while
despreading operations are being performed.

[60281] Note that comumon components are provided in the VPE 22(5) in Figure 27
that are provided in the VPEs 22(1}-22(4} in Figures 4, 11, 19, and 23. Common
components are illustrated in the VPE 22(5) i Figure 27 with common elerent
numbers. The previous description and discussion of these common componenis above
in the VPEs 22{1}-22(4) arc also applicable to the VPE 22(5} in Figure 27, and thus will
not be re-described here.

(602682} With contimuing reference to Figure 27, more specifically, the despreading
circuitry 230 is configured to receive the resultant output vector data sample set 228(0})-
228(X) on despreading circuitry inputs 232(03-232(X} on the output data flow paths

O8(0)-98(X). The despreading circuitry 230 i3 configured to despread the vesultant
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output vector data sample set 228{(0)-228(X) to provide the despread resultant output
vector data samiple set 229(()-229(Z}).  As discussed in more detail below, the number
of despread resultant output vector data samples 229 is “Z+17 in the despread resultant
output vector data sample set 229(0)-229(%). The number of despread resultant output
vector data samples 229 in the despread resultant output vector data sample set 229(0)-
2295(Z} is dependent on the spreading factor used to despread the resultant output vector
data sample sct 228(0)-228(X)}. The despreading circutiry 230 is configured to provide
the despread resultant output vector data sample set 229(03-229(2) on despreading
circuttry outputs 234(0)-234(X) i the output data flow paths 98(0)-98(X) to be
provided to the vector data files 82(0)-82(X} for storage.

(602631 A further description of additional details and features of the VPE 22(5) in
Figure 27 for providing the despread vesultant output vector data sample set 229(0)-
229(Z} to the vector data files 82{03-32(X} i the output data flow paths 98(0}-98(X) in
this embodiment will now be described. o this regard, Figure 28 is a flowchart
illustrating an exemplary despreading of resubtant output vector data sample sets 228(0)-
228(X) resulting from a despread vector processing operation 236 that can be performed
in the VPE 22(5} in Figure 27 employing the despreading civcuitry 238 according to an
exemplary vector instruction requiring despreading of the resultant output vector data
sample set 228(0)-228(X).

[80264] With reference to Figures 27 and 28, the input vector data sample set 86(0)-
86(X) to be processed according to the despread vecior processing operation 236
according to a vector instruction 18 fetched from the vector data files 82{03-82(X) and
provided in the mput data Jow paths BO(0)-80(X) (block 238 in Figure 28). Hither one,
some, or all of the vector data lanes 100(0)-100(X) in the VPE 22(5) m Figure 27 can be
employed to provide the despread vector processing operation 236 according to the
programming of the vector instruction depending on the width of the resultant output
vector data sample set 228(0)-228(X) for the resultant despread veclor processing
operation 236, If the despread vector processing operation 236 mvolves performing
despreading of all the resultant output vector data samples 228 o the resultant output
vector data sample set 228(0)-228(X), all vector data lanes 100(1)-100(X) n the output
data flow paths 98(0}-98(X) from the execation units 84{0}-84(X) can be employed for
the despread vector processing operation 236, Alernatively, the despread vector
processing operation 236 may only involve despreading a subset of resultant output

vector data samples 228 m the resultant output vector data sample set 228(0)-228(X},
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thus only involving the vector data lanes 100 in the output data flow paths 98
corresponding to the subset of resultant output vector data samples 228.

[60285]  With continuing reference to Figures 27 and 28, prior to the despreading
vector processing operation performed by the despreading cireuiiry 230 in the VPE
22(5) in Figure 27, the fetched mput vector data sample set 86{0)-86(X} is received
from the input data {low paths 86{0}-8({X) at the execution units 84{0}-84(X) (block
240 in Figure 28). The execution umits 84(0)-84(X} perform one or more vector
processing operafions on the received input vector data sample set 86{0)-86(X)
according to the vector processing operation provided according to a vector instruction
{block 242 in Figure 28). For example, the execution units 84(0}-84(X) provide
nultiphications and/or accumulations using the input vector data sample set 86(0)-86(X)
and the code sequence in the reference vector data sample set 130(0)-130(X) for
performing a vector processing operation to provide the resultant output vector dala
sarapic set 228(0)-228(X}). For example, the resultant output vector data sample set
228(0)-228(X) may be based on vecior processing of the input vector data sample set
Ro(D)-86( X} with the reference vector data sample set 130(0}- 130(X) is provided in the
cutput data flow paths 98(0}-98(X) of the VPE 22(5} in Figure 27.

(602066  With contimuing refercnce to Figures 27 and 28, if i 15 desived to despread
the resuitant output vector data sample set 228(0)-228(X), the despreading vector
processing operation 236 can be performed before the resultant output vector data
sarapic set 228(0)-228(X) is stored in the vector data files 82{03-82(X). In this example,
the resultant output vector data sample set 228(0)-228(X} is provided to the despreading
circuttry 230 provided in the output data flow paths 98(0)-98(X)} provided between the
execulion units 84{(0}-84(X) and the vector data files 82(03-82(X} in the VPE 22(5) in
Figure 27. The despreading circuilry 230 is programmable to selectively despread
resultant output vector data sample set 228(03-228(X) m the output data flow paths
O8(0)-98(X) according to the vector nstruction being executed, and if the vector
instruction calls for despreading of the resuliant output vector data sample set 228(0)-
228(X) to be stored in the vector data files 82(03-82(X)}. The despreading circuiiry 230
despreads the resultant output vector data sample set 228(0)-228(X) according 1o the
despreading programming according to the vector instruction being executed without
the resultant output vector data saraple set 228(0)-228(X)} being stored in the vector data

files 82(0)-82(X) (block 244 in Figure 28},
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166267} In this manner, the resultant output vector data sample set 228((0)-228(X)
does not have to first be stored in the vector data files §2{03-82(X), re-fetched, despread
in a post-processing operation, and stored in despreaded format in the vector data files
§2(03-82(X) thereby providing delay in the execution units 84(0)-84(X). The resultant
output vector data sample set 228(0)-228(X) 15 siored as the despread resultant output
vector data sample set 229(0)-229(7) in the vector data files 82(1)-82(X} without
despreading post-processing required (block 246 in Figure 28).

160268]  Figure 29 is a schematic diagram of an exemplary despreading circuitry 230
that can be provided m the output data flow paths 98(0)-98(X) between the executions
units 84(0)-84{X} and the vector data files 82(0}-82(X) in the VPE 22(5) of Figure 27.
The despreading civcuitry 230 is configured to provide despreading of the resulant
oulput vector data sample set 228(0)-228(X) to provide the despread resultant output
vector data sample set 22%0)-22%7) for different spreading factors of repeated code
sequences in the reference vecior data sample set 130(03-13{X). The resultant output
vector data sample set 228(0)3-228(X) 1s provided from the execution unit outpuis 96(0)-

96(X} to the despreading circuitry 230, as illustrated in Figure 27, I may be desived to
despread the resultant output vector data sample set 228(()-228(X) with different
spreading factors of repeating sequence numbers in the reference vector data sample set
130(0)-130(X) generated by the sequence number generator 134 in Figure 27, because
the spreading factor of the resultant output vector data sample set 228(03-228(X) may be
unknown.
160269]  For example, if the resultant output vector data sample set 228(0)-228(X)
contained thirty-two samples, and the entire resultant output vector data sample set
228((H-228(X}y was despread assumimng a spreading factor of fowr (4), the despread
esultant cutput vector data sample set 229032292} would contain cight {8} despread
samplies {1.e., 32 samples / spreading factor of 4) afler despreading of the resultant
oulput vector data sample set 228(0)-228(X) 15 performed. However, i this same
exarple, if the entire resultant ouiput vector data sample set 228{03-228(X) was
despread assuming a spreading factor of eight (8}, the despread resultant output vector
data sample set 229(0)-229(Z) would contain four (4) despread samples (i.e., 32 samples
/ spreading factor of &) afler despreading of the resulant ouiput vector data sample set
228((H-228(X} is performed.
(602161 Thus, with continuing reference to Figure 29, the despreading circuitry 230

1s configured to despread the resultant output vector data sarople set 228(0)-228(X) for a
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different number of spreading factors.  The despreading cwemitry 230 i this
embodiment 1s configured to provide despread resultant output vector data sample set
229(HY-229(Z) for different spreading factors in one vecior processing operation/one
vector jostruction. I this regard, the despreading circuiiry 230 contains an adder tree
248 coupled to the execution unit outputs 96{0)-96(X} to receive the resultant output
vector data sample set 228(0)-228(X}. The adder tree 248 of the despreading circuitry
230 is configured to receive cach sample 228 of resuftant output vecior data sample set
228(01-228(X) 1u their respective vector data lanes 100(0)-100(X). A first adder tree
level 248(1} 15 provided mn the adder tree 248, The first adder tree Tevel 248(1) is
comprised of adders 250(0)-250(((X+1¥*2)-1}, 250(7) to be able to spread the samples
228 in the resultant output vector data sample set 228(0)-228(X) by a spreading factor
of four (4). Laiches 251{0)-251(X} are provided in the despreading circwtry 230 to
latch the resultant outpul vector data sample set 228(1)-228(X) from the ouiput data
flow paths 98(0)-98{X).

160213]  For cxample, if cach sample 228 m the resultant output vector data sample
set 228(0)-228(X} is 32 bits wide and comprised of two (2} 16-bit complex vector data
(i.c., first vector data according to format IBQ8 and sccond vector data according to
format 180Q8), a spreading factor of four (4) could be apphied 1o despread the four (4)
vector data samples in two (2) resultant output vector data saroples 228 1 the resultant
culput vector data sample set 228(03-228(X) mnto one despread resultant output vector
data sample. For example, as illustrated in Figure 29, adder 256(0) is configured to
despread resuliant output vector data samples 228(0) and 228(1) by a spreading factor of
four (4) for those samples. Likewise, adder 250(1) 18 configured to despread resultant
output vector data samples 228(2) and 228(3) by a spreading factor of four (4} for those
samples.  Adder 250(((X+1)/2)-13, 2506(7) is configured to despread resultant cutput
vector data sample set 228(X-1} and 228(X) to provide a despread vector data saraple
set 252{0)-252(((X+1¥2)-1}, 252(7) with a spreading factor of four (4). A despread
vector data sample set 252(0)-252(((X+1)/2)-1), 2527) from despreading performed by
the adders 250(({X+1)/2)-1), 250(7) is latched into latches 255(03-255(((X+1)/2)-1),
255(7).

(60212}  if the despread vector processing operation 236 requires a despreading of the
esultant output vector data sample set 228(01-228(X} by a spreading factor of four (4),
as will be discussed in more detail below, the despread vector data sample set 2520)-

282{({X+1Y2¥-1}, 252(7) can be provided as the despread resultant output vector data
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sample set 229(0)-229(7), wherein ‘27 15 seven (7). However, if the despread vector
processing operation 236 calls for a higher spreading factor {e.g., 8, 16, 32, 64, 128,
256), the despread wvector data samaple set 252(0C)-252(((X+1Y2%1), 252(7) is not
provided as despread resultant output vector data sample set 22%{(0)-229%7). The
despread vector data sample set 252(0)-252{({X+1)/2)-1), 252(7} 1s provided to a second
adder tree level 248(2) to adders 254(0)-234(((X+1)/4)-1}, 254(3). In thus regard, adder
254{0} is configured to performing despreading on despread vector data samples 252(1)
and 252(1} to provide a resultant despread vector data sampie 256(0) with a spreading
factor of cight {8) for those samples. Likewise, adder 254(1} is configured to perform
despreading on despread vector data samples 252(2) and 252(3} to provide a resultant
despread vector data samaple 256(1) having a spreading factor of eight (B} for those
samples.  Adder 254(({(X+1)/4)-1), 2543} 1s configured to perform despreading on
despread vector data sample set 252{({X+1y/4)-2), 252(({X+1)/43-1}, 2523} to provide a
sultant despread vector data sample 256({({X+1)/4)-13, 256(3) with a spreading factor
of eight (8. The resultant despread vector data sample set 256(0)-256(((X+1)/4)-1},
256(3) from despreading performed by the adders 254(0)-254(((X+1)/4)3-1), 2543} is
latched into latches 257(0)-2587(((X+1)/4)-1), 257(3).
(602131 With continuing reference to Figure 29, if the despread vector processing
operation 236 requires a despreading of the resultant output vector data sample set
228{03-228(X) by a spreading factor of eight (8}, as will be discussed in more detail
below, the despread vecior data sample set 256{03-256(({(X+1)/4)-1), 256(3) can be
provided as the despread resultant output vector data sample set 229(0)-229(%), wherein
‘27 s three (3). However, if the despread vector processing operation 236 calls for a
higher spreading factor than eight (8) {e.g., 16, 32, 64, 128, 256}, the despread vector
data sample set 256{0)-256({(3+1)/4)-1}, 256(3} is not provided as despread resultant
output vector data sample set 229(03-229(Z). The despread vector data sample set
256{01-256{((X+1}/4)-1), 256(3) is provided fo a third adder wree level 248(3) to adders
258(0-258(({X+1)/8)-1), 258(1). In this regard, adder 258(0) is configured io
performing despreading on despread vector data saroples 256(0) and 256(1) to provide a
spreading factor of sixteen (16) for those samples. Likewise, adder 258(1) is configured
to perform despreading on despread vector data samples 256(2} and 256(3) to provide a
despread vector data sample set 260(0)-260(((X+1¥/8)-11, 260(1) with spreading factor
of sixteen (16). The despread vector data sample set 260(0)-260({(X+1)/8)-1), 260(1)
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from despreadmg performed by the adders 258(0)-258(((X+1¥8)-1), 258(1) 1s latched
into latches 259(G)-25%((X+1)/8)-1), 259(2).

[86214] With continuing reference to Figure 29, if the despread vector processing
operation 236 requires a despreading of the resultant output vector data sample set
228{031-228(X) by a spreading factor of sixteen (16), as will be discussed in more detai]
below, the despread vecior data sample set 260(03-260(({(X+1)/8)-1), 256(1) can be
provided as the despread resuliant output vecior data sample set 229(03-229(Z), wherein
‘27 1s one (1). However, if the despread vector processing operation 236 calls for a
higher spreading factor than sixteen (16) {e.g., 32, 64, 128, 256}, the despread vector
data sample set 260{03-260({(X+1Y8)-1), 260(1} is not provided as despread resultant
output vector data sample set 229(03-229(Z). The despread vector data sample set
260{01-260(((X+1)/8)-1), 260(1) is provided to a fourth adder tree level 248(4) to adder
262. In this regard, the adder 262 is configured to performing despreading on despread
vector data samples 260(0) and 260(1) to provide a despread vector data sample 264
with a spreading factor of thirty-two (32). The despread vector data sample 264 from
despreading performed by the adder 262 1s latched into latches 266 and 268.

[60215] With continuing reference to Figure 29, if the despread vector processing
operation 236 requires a despreading of the resultant output vector data sample set
228{03-228(X) by a spreading factor of thirty-two (32), as will be discussed in more
detail below, the despread vector data sample 264 can be provided as a despread
resultant cutput vector data sampie 229. However, if the despread vector processing
operation 236 calls for a higher spreading factor than thirty-two (32) (e.g., 64, 12§,
256}, the despread vector data sample 264 1s not provided as a despread resultant output
vector data sample set 229. The despread vector data sample 264 remains latched into
latch 268 without having to be stored in a vector data file 82, Another resultant output
vector data sample set 228(0)-228(X) s loaded mto latches 25U0-251(X) over
additional processing cycles to be despread using a spreading factor of thirty-two (32},
as described above. The resulting despread vector data samaple 2647 is added by adder
270 in a fifth adder tree 248(3) to the provious despread vector data sample 264 to
provide a despread vector data sample 272 having a spreading factor of sixty-four (64).
Selector 273 countrols whether the despread vecior data sample 264 having a spread
factor of thirty-two {32 or the despread vector data sample 2647 having a spread factor
72

of stxty-four (64} is latched as despread vector data sampie 272 is latched into latch 274,

This same process of latching additional resultant ouiput vector data sample sets 228(0})-
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228(X) and despreading of same can be performed to achieve spread factors greater than
sixty-four (64), if desired. The despread vector data sample 272 will eventually be
Iatched nto latch 274 as the desired despread resultant cuiput vector data sample 229
according to the desired spreading factor for the despread vector processing operation
236.

[86216] With continuing reference to Figure 29, no matter what spreading factor s
called for in the despread vector processing operation 236, the despread resultant output
vector data sample set 229(0%-229(Z) will need to be stored in the vector data files
R2(M-82(X m Figure 27. As will now be discussed, the despreading circuitry 230 in
Figure 29 is also configured to load the despread resuliant output vector data samples
229 provided as a result of performing the despreading vector processing operation 236
on resultant output vector data samples 228(03-228(X) into latches 276(0)-276(X), to
form the despread resullant output vector data sample set 229(0)-22%(Z). The despread
esultant output vector data sample set 229(0)-229(2) can be provided 1o the vector data
files 82(0}-82(X} to be stored. In this manner, only one (1) write is required to the
vector data files 82(0}-82(X) to store the despread resultant output vector data sample
set 229(0)-229(Z} created by the despreadmg circuitry 238, The adder trees 248(1)-
248(5) n the despreading circuitry 230 in Figure 29 can geperate despread resultant
output vector data samples 229 for all of spreading factors 4, §, 16, and 32 regardless of
what spreading factor is called for in the despread vector processing operation 236.
Alternatively, adders in adder trees not necessary to perform the despread vector
processing operation 236 according to the desived spreading factor can be disabled or
configured to add ('s. However, to determine which of these despread resultant output
vector data samples 229 will be provided o the latches 276(0)-276(X) to be stored,
selectors 278{0)-278{{{X+1})/4)-1}, 278(3) are provided, as will now be discussed.
(602171  in this regard, with continuing refercoce to Figure 29, selector 278(0) ¢
select despread resultant output vector data samples 229 for any of spreading factors 4,
8, and 16 from adders 250(0), 254(0), 258(0), respectively, and spreading factors 32, 64,
128, 256 from adders 262, 270 based on the despread vector processing operation 236
being executed.  Selector 278(1) can select despread resultant output vector data
samples 229 for spreading factors 4, 8, and 16 from adders 2501}, 254(1), and 25&(1}
respectively, based on the despread vector processing operation 236 being executed.
Selector 278(2) can select despread rosuliant output vector data samples 229 for

spreading factors 4 and 8 from adders 250(2) and 254(2), vespectively, based on the
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despread vector processing operation 236 bemng executed.  Selector 278(3) can select
despread resultant output vector data samples 229 for spreading factors 4 and 8 from
adders 230(3) and 254(3), respectively, based on the despread vector processing
operation 236 being executed.  Sclector 278(4) can select despread resultant output
vector data samples 229 for spreading factors 4 and 8 from adder trecs 248(1) and
248{2}, respectively, based on the despread vector processing operation 236 being
exccuted. Selectors are not provided to control the despread resultant output vector data
saropies 229 provided from adders 250(4)-250(7), because providing a spreading factor
of eight (8) can be fully satisfied by selectors 278(0)-278(3).
{60218} With continuing reference to Figure 29, a series of data shicers 280(0})-
2RO(({XA+1)2)-1}, 280(7} arc provided to receive the despread resultant oulput vecior
data samples 229 selected by the selectors 278(03-27R(((X+1y/4)-1), 278(3) and adders
250{43-250¢((X+1)/2}-1), 250(7), respectively. Data slicers 280(0)-280({((X+1)/2)-1},
280(7} are configured to select whether its received despread resultant output vector
data samples 229 will be characterized as 2 logical high level (e.g., a logical “1"Yor a
logical low level {c.g., a logical *0”}. The despread resubtant output vector data samples
229 are then routed through connections to a crossbar 282 to the desired latch 276
mong laiches 276(01-276(X) to be stored. The crossbar 282 provides for the flexibility
to provide the despread resultant output vector data samples 229 according to the
despread vector processing operation 236 o different lalches 276{(0)-276{X}. In this
manner, despread resuliant cutput vector data samples 229 can be stacked in latches
276{01-276{X) among different tterations of despread vector processing operations 236
betore being stored m the vector data files 82(0)-82(X). For example, a despread
resultant oulput vector data sample set 229(0)-22%Z) can be stacked in latches 276{0}-
276(X}y among different iterations of despread vector processing operations 236 before
being stored in the vector data files 82(0)-82(X). In this manner, accesses to the vector
data files 82(0)-82(X) to store despread resultant output vector data sample set 229((})-
229{Z can be minimized for operating efficiency.
160219]  For example, as illustrated in Figure 29, selectors 284(03-284(X) coupled to
crossbar 282 can be controlled to store the despread resultant output vector data sample
229 from data slicer 280(0} in any of latches 276(0)-276{X}. Seleciors 284(1}, 284(3},
284(5), 2847}, 284(9), 284¢11), 284(13), 284{15} coupled to crossbar 282 can be
controlled to store despread resultant ou‘fput vector data sample 229 from data slicers

280(1) to be stored n latches 276(1), 27603}, 276(5), 276(7}, 276(9), 276(1 1), 276(13},
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and 276(15). Selectors 284(2}, 284(6), 28410}, 284(14) coupled to crossbar 282 can be
controlled to store a despread resuliant cutput vector data sample 229 from data shicer
280(2Z) in latches 276(2), 276(6), 276{10), and 276(14). Seclectors 284(3}, 284(7),
284(1 1), 284(15) coupled to crossbar 282 can be controlled fo store a despread resultant
oulput vector data sample 229 from data shcer 280¢(3}) in latches 276(3), 276(7},
276{11}, and 276(15). Seclectors 284(4) and 284(12) coupled to crossbar 282 can be
controlled to store a despread resultant ouiput vector data sample 229 from data shcer
280(4) 1o latches 276{4) and 276(12}. Selectors 284(5) and 284(13) coupled to crossbar
282 can be controlled to store a despread resultant ouiput vector data sample 229 from
data slicer 28({5} to be stored in latches 276(5} and 276(13). Seclectors 284(6) and
284(14) coupled to crossbar 282 can be controlled fo store a despread resultant output
vector data sample 229 from data slicer 280(6) in laich 276{(6) or 276(14). Selectors
284{7y and 284{15) coupled to crossbar 282 can be controlled to store a despread
resultant output vector data sample 229 from data slicer 280(7) in latches 276(7) or

276(15

1602208}  With continuing reference to Figure 29, the despreading circuitry 230 can be

N2

5).

,..A

programmed to be configured to perform or not perform despreading operations on the
resultant output vector data samples 228(03-228(X) according to the vector fnstruction
to be executed. o this regard, a despread configuration input 286 in Figure 29 can be
provided to the despreading circuitry 230 to perform despread operations on the
resultant output vector data samples 228(0)-228(X) or to simply provide the resultant
output vector data samples 228(0)-228(X) to the latches 276{01-276(X), respectively, to
be stored in the vector data files 82{0)-82(X). In this manner, the despreading circuitry
230 can be programmed to not despread the resultant output vector data sample sets
228((H-228(X) if the vector tnsiruction does not provide for such processing o be
performed. The despread configuration mput 284 can be configured and reconfigured
for each vector nstruction to provide for {lexibility in the vector processing by the VPE
22{5} in Figure 27. For exampic, the despread configuration input 284 can be
onfigured and reconfigured for each clock-cycle of a vector mstruction, on a clock-
cyele-by-clock-cvele basis, if desired, to provide despreading as desired, with full
utilization of the execution umiis 84{0}-834(X)}, if desired.
(602211  Certain other wireless haschand operations require merging of data samples
determined from previous processing operations for reasons other than despreading of

spread spectruro data sequences. For example, it may be desired to accumulate vector
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data samples of varying widths that are wider than the data flow paths for the execution
units 84(0)-84(X} provided by the vector data lanes 100{0)-100{X}). As another
example, it may be desired to provide a dot product multiphication of cutput vecior data
samplies from different execution units 84(0)-84(X) to provide merging of output vecior
data in vecior processmg operations. The vector data lanes 100(0)-100(X) in the VPE
could include complex routing to provide intravector data paths for crossing over vector
data lanes 100(0)-100(X) to provide merged vector processing operations. However,
this increases complexity and can reduce cfficiency of the VPE, because of
parallelization difficuities in the output vector data to be merged crossing over different
vector data lanes.  Vector processors could include circuitry that performs post-
processing merging of output vector data stored in vector data memory from execution
units. The post-processed output vector data samples stored in vector data memory are
fetched from vector data memory, merged as desired, and stored back m vector data
memory. However, this post-processing can delay the subsequent vector processing
operations of the VPE, and cause computational components i the exccution units to be
underutilized.

(60222} Tor example, a two input vector data samples 290(0), 290(1) provided in
vector data files 82(0), 82(1) 1n a VPE previously described are shown in Figure 30, It
may be desired to add these two input vector data samoples 290(0), 290(1) together. In
this example, the sum of the two input vector data samples 290(0), 290(1) is
Ox11250314E, which has a data width larger than either vector data lane 100(0) or
100(1). Data fow paths could be provided in the VPE 22 to provide vector data routing
between vector data lanes 100(0), 106(1) to allow execution units 84{0), 84(1} to

N

perform the execution of the sum of the two input vector data samples 290((}), 290(1)
together, inchuding providing carry logic between the two execution units 84(0), 84(1)
across the vector data Janes 100(0), 100(1). The ability to cross all vector data lanes
100(0)-100(X) may be required to provide a scalar result of merged vector data samples,
which may further increase complexity in data flow paths. However, as discussed
above, this would add complexity in data flow paths thereby increasing complexity, and

possibly reducing efficiency.

1662237 To address this issueg, the embodiments disclosed below inchide VPEsS that
mchide merging circuttry provided in output data flow paths between execution units
and vector data memory 1o a VPE. The merging circuitry is configured to merge output

vector data samples {rom an output vector data sample set provided by the execution
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units in-thght while the output vector data sample set is being provided over the output
data flow paths from the execution units o the vector data memory. In-flight merging
of output vector data samples means the ouiput vector data samples provided by
cxecution units can be merged before being stored 1o vector data memory, so that the
esulting output vector data sample set is stored in vector data memory in a merged
format. The merged output vector data samples can be stored i vector data files
without requiring additional post-processing steps, which may delay subseguent vector
processing operations to be perforroed in the execution units. Thus, the efficiency of the
data {low paths in the VPE is not hmuted by vector data merging operations.  The
subsequent vector processing in the execution umits is only limited by computational
resources rather than by data flow limitations when merged vector data samples are
stored in vector data memory.
[80224]  In this regard, Figure 31 is a schematic diagram of another exemplary VPE
22{6} that can be provided as the VPE 22 i Figure 2. As will be described in more
detail below, the VPE 22(6} in Figure 31 is configured fo provide in-fhight merging of
resultant oulput vector data sample sets 292(03-292(X) provided by the execution units
84(0}-84{X) with a code sequence for vector processing operations to be stored in the
vector data files 82(0)-82(X) 1o the VPE 22(6) with climinated or reduced vector data
sample re-fetching and reduced power consumption. The resultant output vector data
sample set 292(0)-292(X) is comprised of resultant outpul vector data samples 292{(0},
o, 292{X).  As non-limiting exaraples, a merge vector processing operation could
include adding resultant output vector data samples 292, deternmuning a moaxinmum vector
data sample value arong a plurality of resultant output vector data samples 292, or
determining a minimum vector data sample vahie among a plurality of output vector
data samples 292,  In the VPE 22(6) in Figure 31, the resuoltant ouiput vector data
samplies 292 among the resultant output vector data sample set 292(0)-292(X) can be
merged before being stored m the vector data files 82{0)-82(X}.
186225  The merging circuilry 294 is configured based on programuming according to
vector instruction to be executed to provide m-flight mergmg of the resubtant output
vector data samples 228 among the resultant output vector data sample set 228(0)-
228(Xy. Merged resultant ouiput vector data samples 296{(0}-296(7) are provided by
the merging circuitry 294 in the output data flow paths 98(03-98(X). 2’ in the merged
resultant output vector data samples 296(0)-296(2) represents the numaber of merged

resultant output vector data samples 296 in the merged vesultant output vector data
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sarople sets 296(0)-296(2).  The merged resultant output vector data sarople set 296(0)-
296(Z} 1s comprised of resultant output veclor data samples 296, which are 296(0), ..,
and 296(Z) in this example. The nuwmwber of merged resultant output vector data samples
296 in the merged resultant output vector data sample set 296{01-296(7) 18 dependent on
the merging operations performed on the resuliant output vector data sample set 292(0)-
292{X). In-fhight merging of the resuliant output vector data samples 292 in the VPE
22{6} in Figure 31 means that resuliant output vector data samples 292 in the resuliant
output vector data saraple set 292(0)-292 (X)) provided by execution units 84{0}-84(X)
can be merged together before bemng stored mn vector data files 82(0)-82(X). In this
mamner, the merged resultant cutput vector data samples 296 of the merged resuliant
output vector data sample set 296(03-296(Z) can be stored in vector data files 8Z(0)-
82(X) m merged form as merged resultant output vector data sample set 296{0)-296().
(802261  Thus, with the merging circuitry 294 provided in the cutput data flow paths
98(0}-98(X), the resultant output vector data sample set 292(0)-292(X} is not required to
first be stored in the vector data files 82{01-82(X), and then fetched from the vector data
files 82(0)-82(X)}. Desired resuliant output vector data samples 292 are roerged, and the
resultant culput vector data samples 292 are restored in merged form in the vector data
files 82(0)-82(X). Resultant output vector data samples 292 from the resultant output
vector data sample set 292(0}-292(X) can be merged before being stored m the vector
data files 82(0)-82(X}. In this manner, merged resoltant ouiput vector data samples 296
from the merged resultant output vector data sample set 296(03-296(Z) are stored in the
vector data files 82(0)-82(X) without requiring additional post-processing steps, which
may delay subsequent vector processing operations to be performed m the execution
units 84((1)-84(X}. Thus, the efficiency of the data flow paths in the VPE 22(6) are not
hirnited by the merging of the resultant cutput vector data samples 292, The subsequent
vector processing in the execution units 84{0)-84(X) is only himited by computational
resources rather than by data flow lindtations when the vesultant output vector data
sarapics 292 are stored in merged form in the vector data files 82{0}-82(X).

1602277 Further, by providing the merging cireuitty 294 1n the output data flow paths
O8(()-98( X} between the exccution units 84(0)-84(X) and the vector data files 82(0)-
82(X}, the resultant output vector data sample set 292(()-292(X} does not have to cross
vector data lanes 100 in the input data flow paths 83{0)-80(X} between the vector data
files 82(03-82(X) and the exccution units 84(0)-84(X). Providing data flow paths for

merging of mput vector data samples 86 in an input vector data sample set 86(0)-86(X)
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between different vector data lanes 100 would increase routing complexitics. As a
result, execution units 84{03-84(X) may be understilized while merging operations are
being performed in the input data flow paths 80(0)-80(X3. Also, as discussed above,
merging of resultant output vector data samplies 292 from the resultant oufput vector
data sample set 292(03-292(0) in the nput data flow paths 80(0)-80(X) would require
the resuliant output vector data sample set 292(0)-292(X) to first be stored in the vector
data files 82{C}-82(X} in the VPE 22(6) in Figure 31, thercby imcreasing power
consumption when re-feiched and merged and/or risking underutibization of the
execution units 84(0)-84(X} that may be delayed while merging operations are being
performed.

[60228]  Note that common components are provided in the VPE 22(6) in Figure 31
that are provided in the VPEs 22(1)-22(5) i Figures 4, 11, 19, 23, and 27. Common
componenis are ilustraled i the VPE 22(6) in Figure 31 with common element
numbers. The previous description and discussion of these common componenis above
in the VPEs 22{1}-22(5) arc also applicable to the VPE 22(6} in Figure 31, and thus will
not be re-described here.

(60229} With contimuing reference to Figure 31, more specifically, the mergimg
circuitry 294 is configured to receive the resultant output vector data sample set 292{0)-
292{X) on merging circuttry nputs 300(0)-300(X) on the ouiput data flow paths 98(1})-
G8(X). The merging circuitry 294 is configured to merge destred resultant outpat vector
data samples 292 from the resultant ouipwt vector data sample set 292(0)-292(X) to
provide the merged resuliant output vector data sample set 296{0)-296(7). ‘2’ in the
merged resuliant output vector data sample set 296(0)-296(%), represents the bit width
of the merged resultant output vector data sample set 286(0)-296(2). ‘2’ may be less
than the bit width of resultant output vector data sample set 292{0}-292(X), represented
by ‘X, due to merging operations. As discussed in more detail below, the number of
merged resuliant output vector data samples 286 ‘Z+17 in the merged resultant output
vector data sarapic set 296(0}-296{Z) is dependent on the resultant output vecior data
saropies 292 from the resultant output vector data sanple set 292(01-292(X) 1o be
merged together. The mergng circuitry 294 1s configured to provide the merged
resultant ouiput vector data sample set 296(03-296(Z) on merging circuitry outputs
301(0)-301(X) in the output data flow paths 98{0}-98(X) to be provided to the vector
data files 82(0)-82(X) for storage.
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1602308} A further description of additional details and features of the VPE 22(6) in
Figure 31 for providing the merged resultant oulput vector data sample set 296(0)-
296(X} to the vector data files 82(01-82(X) in the cuiput data flow paths 98(03)-98(X) in
this embodiment will now be described.  In this regard, Figure 32 18 a flowchart
lustrating an exemplary merging of resultant output vector data samples 292 of the
resultant output vector data sample sets 292(03-292(X) resulting from a vector
processing operation 302 that can be performed in the VPE 22(6) in Figure 31
employing the merging civcuitry 294 according to an cxemplary vector instruction
requiring merging of the resuitant output vector data samples 292

(60231}  With reference to Figures 31 and 32, the input vecior data sample set 86{0}-
vector mstruction is fetched from the vector data files 82(0)-82(X) and provided in the
mput data {low paths 80(03-80(X) (block 304 in Figure 32). Either one, some, or all of
the vector data lanes 100(03-1006{X} in the VPE 22(6} in Figure 31 can be employed to
provide the vector processing operation 302 according to the programming of the vector
mstruction depending on the width of the input vector data sample set 86(0)-86(X) for
the vector processing operation 302, If the entire width of the vector data files 82(0})-
§2(X) 18 required, all vector data lanes 100{0}3-100{X) can be coployed for the vector
processing operation 302, The vector processing operation 302 may only require a
subset of the vector data lanes [100{0)-100(X). This may be because the width of the
input vector data sample set 86{0}-86(X)} is less than the width of all vecior data files
R2(0Y-82( X}, where #t is desired to enploy the additional vector data lages 100 for other
vector processing operations to be performed in parallel to the vector processing
operation 302

(60232}  With continuing reference to Figures 31 and 32, the fetched input vector data
samplie set 86(0)-86(X) is received from the input data flow paths 80(0)-80(X) at the
exccution units 84(0)-840X) (block 306 in Figure 32). The execution units 84(0)-84(X)
perform the vector processing operation 302 on the received input vector data sample
set 86(()-86{ X} according to the vector processing operation 302 provided according to
a vector fnstruction (block 308 n Figure 32). The exccution units 84{0}-84(X} can
provide multiplications and/or accwmulation using the input vector data sample set
86(0)-86(X) for the vector processing operation 302 to provide the resultant output
vector data sample set 292(0)-292(X). Once the vector processing operation 302 has

been completed, a resultant output vector data sample set 292{0)-292(X) based on the
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vector processing operation 302 carried out on the mput vector data samaple set 86(0)-
86(X} is provided in the oulput data flow paths 98(0}-98(X) of the VPE 22(6) in Figure
31

[80233]  With continuing reference to Figures 31 and 32, before the resultant output
vector data sample set 292(0)-292(X) 1s stored 1n the vector data files 82(0)-82(X}, the
resultant output vector data sample set 292(0)-292(X) is provided to the merging
circuitry 294 provided in the output data flow paths 98(0}-98(X) provided between the
execution units 84(0)-84(X) and the vector data files BX()-82(X).  The merging
circutiry 294 is prograromable to be inchided m the output data flow paths 98(0)-98(X)
according to the vector instruction being executed, and if the vector instraction calls for
merging of the resultant output vector data samples 292 from the resultant output vector
data sample set 292{0)-292(X) to be stored m the vector data fles 82(0}-82(X), as
discussed below in more detail. The merging circuitry 294 merges the resultant output
vector data sarpics 292 from the resuliant output vector data sample set 292{0}-292(X)
according to the vector instruction being executed without the resultant output vector
data sample set 292(0}3-292(X) being stored in the vector data files 82{0)-82(X) {block
310 in Figure 32). In this manner, the resultant outpat vector data sample set 292{0}-
292(X) does not have 1o first be stored in the vector data files 82(0)-82(X), re-fetched,
merged m a post-processing operation, and stored in merged {ormat in the vector data
files 82(0)-82(X), therchy providing delay in the execution units 834(0)-84(X). The
resultant output vector data sample set 292(0)-292(X} is stored as the merged resuliant
output vector data saraple set 296(0}-296(7) i the vector data files 82(0)-82(X) without
merge post-processing required (block 312 m Figure 32).

(60234} Tigure 33 is a schematic diagram of an exemplary merging circuitry 294 that
can be provided in the output data flow paths 98(0}3-98(X) between the execution units
84(03-84(X) and the vector data files 82()-82(X) in the VPE 22(6) of Figure 31. The
merging circuitry 294 i3 conligured to provide merging of the resultant output vector
data sample set 292(03-292(X) to provide the merged resultant output vector data
saropic set 296(0)-296(Z). The resultant oufput vector data saraple set 292(0}3-292(X)} 13
provided from the execution unit outputs 96{03-96(X) to the merging circuitry 294, as
ithustrated in Figare 31

(60235} With continuing reference to Figure 33, the merging circuitry 294 is
configured to merge the resultant output vector data sample set 292(01-292(X). The

merging circuitry 294 in this embodiment is configured to provide a merged resultant
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output vector data sarople set 296(0)-296(7). In this regard, the merging circuitry 294
containg an adder tree 318 coupled to the execation unit outputs 96(0)-96(X) Lo receive
the resultant output vector data sample set 292{03-292(X). The adder tree 318 of the
merging circuitry 294 is configured to receive cach sample 292 of vesultant output
vector data sample set 292(0)-292(X} in their respective vector data lanes 100(0)-
100(X). A first adder tree level 318(1) is provided in the adder tree 318, The first adder
tree level 318(1) is comprised of merge circuits 320(03-320({(X+1¥/2)-1}, 320(7) 1o be
able to merge adjacent sanples 792 in the resultant output vector data sample set
202()-292(X). Latches 32 1{1)-321(X) are provided in the merging circuitry 294 to
latch the resultant cutput vector data sample set 292(0}3-292(X) from the output data
flow paths 98(()-98(X).

[80236] For example, if each sample 292 m the resultant output vecior data sample
set 292¢(0)-292(X) is 32 bits wide and comprised of two (2} 16-bit complex vector data
{(i.e., first vector data according to format 18038 and second vector data according to
format 18QR}, a merging operation could be applied to merge the four (4} vector data
saropies in two (2) resultant output vector data samples 292 in the resultant output
vector data sample set 292(03-292(X) into one merged resultant oulput vector data
sampie 296, For example, as illustrated n Figure 33, adder 320(0) is configured to
merge resultant output vector data samples 292(0) and 292(1). Likewise, adder 320(1)
18 configured to merge resoltant output vector data samples 292(2) and 292(3) for those
sarapics. Adder 320(((X+1¥2)-1), 328(7} is configured to merge resultant output vector
data sarople set 292(X-1) and 292(X) to provide a merge vector data sample set 322(0)-
SATXATY2-15, 3227y, A merge vector data sample set 322(0)-322(((X+1)/2)-1},
322(7) from merging performed by the adders 320(((X+1)/2)-1}, 320(7} is latched into
latches 325(03-325(((X+1V/2)- 1), 325(7).

(602371 If the moerge vector processing operation 302 requires 2 merging of the
resultant output vector data sample set 292(()-292(X), as will be discussed m more
detail below, the merge vector data sample set 322(0)-322(((X+1¥2)-13, 322(7) can be
provided as the merge resultant output vector data saropie set 296(03-296(Z2), wherein
‘27 1s seven (7). However, if the merge vector processing operation 302 calls for a
merging of non-adjacent resoltant output vector data samples 292 in resuliant output
vector data sample set 292(0)-292(X), the merge vector data sampie set 322(0)-
I22(((X+1¥2)-13, 322(7) 1s not provided as merge resultant output vector data saraple

set 296(0)-296(2). The merge vector data sample set 322(0)-322(((X+1)72)-1), 322(7)
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is provided to a second adder tree level 318(2) to adders 324(0)-324(((X+1)/4)-1},
324(3). In this regard, adder 324(0) is configured to perform merging on merge vector
data samples 322(0) and 322(1) to provide a resultant merge vector data sample 326(0).
Likewise, adder 324(1) is configured to performa merging on merge vector data samples
322(2y and 322(3) to provide a resultant merge vector data sample 326(1). Adder
I24({({X+1)/4)-1), 324(3) 1s configured to perform merging on merge vector data sample
IZ2(((X+1Y4)-2), 322(({(X+1Y43-1), 322(3) to provide a resuliant merge vector data
saropie 326{{(X+1)/
326(({X+1)4)-13, 326(3) from merging performed by the adders 324(0)-324{((X+1)/4)-
1}, 324(3) 1s latched into latches 327(0)-327(((X+1y43- 13, 327(3).

43-1), 326(3). The resultant merge vector data sample set 326(0)-

[B0238]  With continuing reference to Figure 33, if the merge vector processing
operation 302 requires a merging of the resultant output vector data sample set 292(0)-
292{X) by a merge factor of eight (8), as will be discussed in more detail below, the
merge vector data sample set 326{0)-326({({X+1¥4)-1), 326(3) can be provided as the
merge resultant output vector data sample set 296(0)-296(Z), wherein ‘27 is three (3).
However, if the merge vector processing operation 302 calls for a higher merge factor
than eight {8} {e.g., 16, 32, 64, 128, 256), the merge vector data sample set 326(0)-
I26(((X+1y4)-13, 326(3) is not provided as merge resultant output vector data saraple
set 296(0)-296(2). The merge vector data sample set 326(0)-326(({(X+1)/4)-1), 326(3)
18 provided to a third adder tree level 318(3) to adders 328(0)-328(((X+1y8&)-11, 328(1}.
In this regard, adder 328(0} is configured to performing merging on merge vector data
saropies 326(0) and 326(1) to provide a merge factor of sixteen (16} for those samples.
Likewise, adder 328(1) is configured to perform merging on merge vector data samples
326(2) and 326(3) to provide a merge vector data sample set 330(0)-330(((X+1)y/8)-1),
330(1) with merge factor of sixteen (16}, The merge vector data sampie set 3303(0)-
I30(((XKATYEY-13, 330(1) from merging performed by the adders 328(0)-328(({X+1)/8)-
1}, 328(1} 1s latched nto latches 329(0)-329(((X+1y/8)- 1}, 329(1).
1862397  With continuing reference to Figure 33, if the merge vector processing
operation 302 requires a merging of the resultant output vector data sample set 292(0)-
292(X) by a merge factor of sixteen (16}, as will be discussed o more detail below, the
merge vector data sample set 336(0)-330({((X+1)/8)-1}, 330(1) can be provided as the
merge resultant output vector data sample set 296(0)-296(Z), wherein ‘Z7 is one (1}
However, if the merge vector processing operation 236 calls for a higher merge factor

than sixteen (16) (e.g., 32, 64, 128, 256), the merge vector data sample set 330(0)-
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33G(((X+1)R)-1), 330(1) is not provided as merge resultant output vector data sample
set 286(0)-296(Z). The merge vector data sample set 330(0)-330(((X+1)/8)-1), 330(1)
s provided to a fourth adder tree level 318(4) to adder 332, In this regard, the adder
332 is configured to perform merging on merge vector data samples 330(0} and 330(1)
to provide a merge vector data sample 334 with a merge factor of thirty-two {32). The
merge vector data sample 334 from merging performed by the adder 332 is latched into
latches 336 and 338.
1602406  With continuing reference to Figure 33, if the moerge vector processing
operation 302 requires a merging of the resultant output vector data sample set 292(0)-
292(X) by a merge factor of thirtyv-two (32}, as will be discussed in more detail below,
the merge vector data samaple 334 can be provided as a merge resultant output vector
data sample 296. However, if the merge vector processing operation 302 calls for a
higher merge factor than thirty-two (32) {c.g., 64, 128, 256}, the merge vector data
sample 334 is not provided as a merge resuliant output vector dats sample 3¢t 296, The
nerge vector data saraple 334 remains latched mto latch 338 without having to be
stored i a vector data file 82, Another resultant output vector data sample set 292{0)-
292X} 15 loaded into latches 321(0)-32 X} over additional processing cycles to be
merged using a merge factor of thirty-two (32), as described above. The resulting
nerge vector data sample 334° is added by adder 340 1n a fifth adder tree 318(5) 1o the
previous merge vector data sample 334 {o provide a merge vector data sample 342
having a merge factor of sixty-four (64). Seclector 343 controls whether the merge
vector data sample 334 having a merge factor of thuty-two (32) or the merge vector data
saropie 334 having a merge factor of sixty-four {64) is latched as merge vector data
sample 342 18 latched into laich 344, This same process of latching additional resultant
output vector data sample sets 292(0)-292{X} and merging of same can be performed to
achieve merge factors greater than sixty-four (64), if desired. The mwerge vector data
sample 342 will eventually be latched into latch 344 as the desired merge rvesultant
culput vector data sample 296 according to the desired merge factor for the merge
vector processing operation 302.
160241} With continuing reference to Figure 33, no matter what merge vector
processing operation is called for in the merge vector processing operation 302, the
merge resultant output vector data sample set 296{03-296(Z) will need to be stored in
the vector data files 82(0)-82(X). As will now be discussed, the merging circuitry 294

m Figure 33 is also configured to load the merge resultant output vector data samples
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296 provided as a result of perfornmung the merging vector processing operation 302 on
resultant cutput vector data samples 292(0)-292(X} into latches 346(0)-346(X), to form
the merge resuliant output vector data sample set 296(0)-296(Z). The merge resuliant
output vector data sample set 296(0)-296(Z) can be provided to the vector data files
82(01-82(X} to be stored. In this manner, only one (1} write is required to the vector
data files 82(0)-82(X) to store the merge resultant output vector data sample set 296(0)-
296{Z) created by the merging circuifry 294, The adder trees 318(13-31&(5} in the
merging cireuitty 294 ju Figure 33 can generate merge resultant output vector data
saropies 296 for all of merge factors 4, 8, 16, and 32 regardless of what merge factor is
called for in the merge vector processing operation 302, Alternatively, adders in adder
trees not necessary to perform the merge vector processing operation 302 according to
the desired merge factor can be disabled or configured to add 0’s. However, fo
determine which of these merge resultant output vecior data samples 296 will be
provided to the latches 346(0}3-346{X) to be stored, selectors 348(0)-348(((X+1V4)-13,
348(3) are provided, as will now be discussed.

160242}  in this regard, with continuing reference to Figure 33, selector 348(0) can
select merge resultant output vector data samples 296 for any of merge factors 4, 8, and
16 from adders 320(0), 324(0), 328(0}, respectively, and merge factors 32, 64, 128, 256
from adders 332, 340 bascd on the merge vector processing operation 302 being
exccuted. Selector 348(1) can select merge resultant output vector data samples 296 for
merge factors 4, 8, and 16 from adders 320(1}, 324(1), and 328(1) respectively, based
on the merge vector processing operation 302 being executed.  Sclector 348(2) can
select merge resultant output vector data samples 296 for merge factors 4 and 8 from
adders 320(2} and 324{2}, respectively, based on the merge vector processing operation
302 being exccuted.  Sclecior 348(3) can select merge resultant output vector data
sampies 296 for merge factors 4 and 8§ from adders 320(3) and 324(3), respectively,
based on the merge vector processing operation 302 bemng execuied. Selectors are not
provided to control the merge resultant cutput vector data samples 296 provided from
adders 320{4)-320(7}, because providing a merge factor of eight (8} can be fully
satisfied by selectors 348(()-348(3).

(86243} With continuing reference to Figure 33, the data slicers 350¢(0)-
ISO(XAH1Y23-1), 350(7) provided for merge vector processing operations could be
bypassed or configured to not perform data sphicing on the received merge resuitant

output vector data samples 296 sclected by the selectors 348(0)-348({({(X+1)Y/4)-1},



WO 2015/073526 PCT/US2014/065200
91

343(3) and adders 320(4)-320(((X+1)/2)-1}, 320(7), respectively. The merge resultant
cutput vector data samples 296 are then routed through connections to a crossbar 352 {o
the desired laich 346 among latches 346(0)-346(X) to be stored. The crossbar 352
provides for the flexibility to provide the merge resultant output vector data samples
296 according to the merge vector processing operation 302 1o different latches 346(0)-
346(X). In this manner, merge resoltant output vector data samples 296 can be stacked
in latches 346(0)-346(X) among diffcrent ifcrations of merge vector processing
operations 3072 before being stored in the vector data files 82(0)-82(X). For example, a
merge resultant output vector data sample set 296(0)-296(Z) can be stacked m latches
346((1)-346(Xy among different iterations of merge vector processing operations 302
beiore being stored in the vector data files 82(0)-82(X}. In this manner, accesses 1o the
vector data files 82(()-82(X)} to store merge resultant output vector data sample set
296{0}1-296(Z) can be minimized for operating efficiency.

180244} For cxample, as illustrated in Figure 33, selectors 354{0}3-354(X) coupled to
crossbar 352 can be conirolled to store the merge resuliant output vector data sample
296 from selector 348(0) in any of laiches 346(0}-346(X). Selectors 354(1}, 354(3},
3S54(5), 354(7), 354(9), 354(11), 354(13), 35415} coupled to crossbar 352 can be
controlled to store merge resultant output vector data sample 296 from sclector 348(1)
to be stored in latches 346(1), 346(3), 346(5), 346(7), 346(9), 346(11}, 346(13), and
346(15). Selectors 354(2), 354(6), 354(10}, 354(14) coupled to crossbar 352 can be
controlled to store a merge resultant cutput vecior data sample 296 from selector 348(2)
in latches 346(2), 346(6), 346(10), and 346(14). Selectors 354(3), 354(7), 354(11),
354(15) coupled to crossbar 352 can be controlled to store a merge resultant output
vector data sample 296 from selector 348(3) in laiches 346(3), 346(7}, 346{11}, and
346(15). Sclectors 354(4) and 354(12) coupled to crossbar 352 can be controiied o
store a merge resultant oufput vector data sarople 296 from adder 320(4) i latches
346(4) and 346(12). Selectors 354(5) and 354(13) coupled to crossbar 352 can be
controlled to store a merge resultant output vector data saraple 296 from adder 320(5) to
be stored in latches 346(5) and 346(13). Selectors 354(6) and 354(14) coupled to
crossbar 352 can be controlled to store a merge resultant output vector data sample 296
from adder 320(6) in latch 346(6) or 346{14}. Selectors 354(7) and 354(15} coupled to
crossbar 352 can be controlled to store a merge resultant output vector data sample 296

from adder 320(7) in latches 346(7) or 346(15}.
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1602458}  Note that in the mergmg circuitry 294 in Figure 33, the adders could be
configured to allow non-adjacent resultant output vector data samples 282 i the
resultant output vector data sample set 292(0)-292(X} 1o be merged. For example, if it
is desired to merge resultant output vector data saraples 292(0) with resultant output
vector data samples 292(9), adders in adder tree levels 318(13-318(3} could be
configured to simply pass merge resultant output vector data samples 292(0) with
resultant output vector data sarples 292(9) to adder tree level 318(4). The adder 332 in
adder tree level 318(4) could then merge resultant output vector data sample 292(0) with
resultant output vector data samples 292(9) to provide merged output vector data
samples 296.

(60246  Merging circuitry could also be provided 1o the output data flow paths 98(()-
O8(X) between the execution units 84(()-84(X) and the vector data files 82(0)-82(X)
that provide other types of vector merging operations other than vector and/or scalar
adding. For example, the merging circuiiry 294 in Figure 33 could be configured to
provide maximum or minfnwm vector and/or scalar merging operations.  For exarople,
the adders in the adder tree levels 318(1)-318(5) in the adder tree 318 m Figure 33 could
be replaced with maximum or minimum {unction cireuitry. In other words, the circuitry
would select 1o pass either the larger or the lesser of two resultant output vector data
samples 292 from the resultant ouiput vector data sample set 292(0)-292(X). For
example, if the two resultant output vector data samples 292 from the resultant output
vector daia sample set 292(0)-292(X} were the two input vector data samples 290(0},
2890(1) 1o Figure 30, the merging circuitry 294 could be configured to select vector data
saropies 290(1) if the merging circuitry 294 1s configured to select the maximum vector
data sample.

186247}  in this regard, with reference to Figure 34, adders 320{(0)-320(({X+1)/2)-1),
320(7) in the fivst adder tree fevel 318(1) in Figure 33 could be replaced with maxinwrg
or roininum merge selectors adders 320°(0)-320°({((X+1)/2)-1}, 326°(7), as illostrated in
Figure 34. Adders 324{0}-3Z4{({X+1)/4)-1}, 324(3} in the sccond adder tree level
318(2) could be replaced with maximum or roidmum selectors 3247 (03247 (({(X+1)/4)-
13, 324°(3), as illustrated 1o Figure 34, Adders 328(0)-328(({X+1y/8)-1), 328(1) m the
third adder tree level 318(3) could be replaced with maximum or minimum selectors
3287(0)-328°(({X+1y83-1), 328°(1), as illustrated in Figure 34. Adder 332 in the fourth
adder tree level 318(4) could be replaced with maximum or miniroum selector 3327, as

ustrated in Figure 34, Adder 340 in the fifth adder tree level 318(5) could be replaced
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with maximum or mimimum selector 3407, as llustrated in Figure 34, Note that i the
merging circoitry 294 in Figure 34, the adders could be configured to select 2 maximum
or minimum resultant output vector data sample 292 between non-adjacent resultant
output vector data samples 292 in the resuliant output vector data sample set 292(0)-
292{X) to be merged. For example, if it is desired to maximum merge resultant output
vector data samples 292{0) with resultant cuotput vector data samples 292(9}, adders in
adder tree levels 318(1)-318(3) could be configured to simply pass merge resuliant
output vector data samples 292(0) with resultant output vector data samples 292(9) to
adder tree tevel 318(4). The adder 3327 in adder tree level 318(4) could then maximum
merge the resuliant cutput vector data sample 292{0) with resultant output vector data
sampies 292(9) to provide merged output vector data saroples 264.
30248}
(802481  As discussed above, the execution onits 84(0)-84(X} are provided in the
/PEs 22{1}-22{6) to periorm vector processing operations on inpui vector data sample
sets BO{0)-86(X). The execution units 84{0)-84(X) also include programmable data path
configurations that allow the execution units 84(0)-84(X) to provide multiple modes of
operation with common circuitry and hardware for different vector processing
operations. More exemplary detail regarding the execution units 84(0)-84(X} and their
programmable data path configurations for providing multiple modes of operation with
common cirouitry and hardware are now discussed.
1862507  in this regard, Figure 35 illustrates an exemplary schematic diagram of an
excroplary execution unit that can be provided for each of the execution units 84(0)-
84(X) m the VPEs 22(1)-22(6). As illustrated in Figure 35 and as will be described in
more detail below in Figures 36-39, the exccution wunit 84 includes a plorality of
exemplary vector pipeline stages 460 having cxemplary vector processing blocks that
may be configured with programmable data path configurations. As will be discussed
m more detail below, the programmable data path configurations provided in the vector
processing blocks allow specific circuits and hardware o be programumed and
reprogranyaed to support performing different, specific vector processing operations on
the vector data 30 received from the veetor unit data memory 32 m Figure 2.
(60253} Tor example, certain vecior processing operations may commonly require
mulftiplication of the vector data 30 followed by an accumulation of the multiplied
vector data resulis. Non-limiting examples of such vector processing cludes filiering

operations, correlation operations, and Radix-2 and Radix-4 buiterfly operations
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commonly used for performing Fast Fourier Transform (FFT) operations {or wireless
commmunications algorithms, where a series of parallel multiplications are provided
followed by a series of parallel accumulations of the multiplication results. As will also
be discussed in more detail below with regard to Figures 39 and 40, the execution unit
84 in Figure 35 also has the option of fusing multiphiers with carry-save accumulators to
provide a redundant carry-save format in the carry-save accumulators. Providing a
redundant carry-save format in the carry-save accumulators can eliminate a need to
provide a carry propagation path and a carry propagation add operation during each step
of accumulation.

[86252] In thus regard, with {urther reference to Figure 35, a MO multiply vector
pipcline stage 460(1) of the VPE 22 will first be described. The MO oudtply vector
pipchne stage 460(1) is a second vector pipelme stage contaming a plurality of vector
processing blocks in the form of any desired number of multiplier blocks 462(A)-
462{0}, cach having programmable data path configurations. The multiplier blocks
462{A)-462(0) are provided to perform vector multiply operations in the execution unit
84. The plurality of multipher blocks 462(A)-462(1}) are disposed in parallel to each
other in the MO moltiply vector pipeline stage 460(1) for providing multiphcation of up
to twelve (12) mudtiply vector data saraple sets 34(Y)-34(0}. In this embodiment, ‘A’ s
equal to three (3), meaning four (4) multiplier blocks 462(33-462(()) are mcluded in the
MO multiply vector pipeline stage 460(1) n this example. The multiply vector data
sarapic sets 34(Y)-34(0) are loaded o the exccution unit 84 for vector processing into
a plurality of latches 464(Y)-464(0} provided in an ijoput read {RR} vector pipeline
stage, which is a first vector pipeline stage 460{0) i the execution unit 84, There are
twelve (12) latches 464(11)-464{(0) in the execution unit 34 i this embodiment,
meaning that "Y'’ is equal to eleven {11} in this embodiment. The latches 46411}
464(0) are configured to Jatch the mmltiply vector data sample sets 34(113-34(0)
retrieved from the vector registers {see the vector data files 28 of Figure 2) as vector
data input sample scts 466(1 13-466(11). In this example, each latch 464(11}-464(0) is 8-
bits wide. The latches 464(113)-464(0) are ecach respectively configured to latch the
multiply vector data nput sample sets 466(11}3-466(0), for a total of 96-bits wide of
vector data 30 (e, 12 latches x 8 bits each).

(602537 With continuing reference fo Figure 35, the plurality of multiphier blocks
462(33-462(0) are configured to be able fo receive certain combinations of the vector

data mput sample sets 466(113-466(0} for providing vector multiply operations, wherein
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‘Y’ is equal to eleven (11) in this example. The multiply vector data fnput sample sets
466(11)-466(0) are provided m a plurality of input data paths A3-A0, B3-B0, and C3-
C0 according to the design of the execution unit 84, Vector data input sample sets
466(33-466(0) correspond to foput data paths C3-C0 as illustrated in Figure 35. Vector
data mput sample seis 466(7)-466(4) correspond to input data paths B3-B0 as illustrated
m Figure 35. Vector data mput sample sets 466(11)-466(8) correspond to inpuot data
paths A3-A0 as illustrated in Figure 35. The plorslity of multiphier blocks 462(3)-
4620} are configured fo process the received vector data mput sample sets 466(11)-
466(() according to the nput data paths A3-AQ0, B3-BO, C3-Ch, respectively, provided
to the plorality of mualtiphier blocks 462(3)-462{0), to provide vector multiply
operations,

[80254]  As will be discussed 1n more detail below with regard to Figures 37 and 38,
programmable nternal data paths 467(3}-467(0) provided in the multipher blocks
462{31-462{0} in Figure 35 can be programmed to have different data path
configurations. These different data path configurations provide different combinations
and/or different bit lengths of multiplication of particular received vector data mput
sample sets 466{(11)-466(}) provided to the multiplier blocks 462(3)-462(1}) according
to the particular input data paths A3-A0, B3-B0, C3-C0 provided to cach multiplier
block 462(3)-462(0). In this regard, the plurality of multiplier blocks 462(3)-462((H)
provide vector multiply output sample sets 468(3)-463(0) as a vector result output
sarapic set comprising a nultiplication result of multiplying a particular combination of
the vector data input sample sets 466(11}1-466(0) together.

160255}  For example, the programmable inlernal data paths 467(3)-467(0) of the
multiphier blocks 462(3)-462(0) may be programmed according o settings provided
from: a vector nstruction decoder in the instruction dispatch circuit 48 of the baschand
processor 20 in Figure 2. o this embodiment, there are four (4) prograromable internal
data paths 467(3)-467(0) of the multiplier blocks 462(3}-462(0). The vector instruction
specifies the specific type of operation to be performed by the exccution unit 84, Thus,
the execution unit 84 can be programmoed and reprogrammed fo configure the
programmable internal data paths 467(3)-467(0) of the nultiphier blocks 462(3)-462(0)
to provide different types of vector multiply operations with the same common circuiiry
in a highly efficient manner. For example, the execution unit 84 may be programmed {o
configre and reconfigure the programmable jnternal data paths 467(3)-467(0) of the

multiplier blocks 462(3)-462(0) on a clock-cycle-by-clock-cycle basis for each vector



WO 2015/073526 PCT/US2014/065200
96

mstruction executed, according to decoding of the vector instractions m an insiruction
pipeline in the instruction dispatch circuit 48. Thus, if the MO multiply vector pipeline
stage 460(1} in the execution unit 84 is configured to process vector data mpul sample
sets 466 cvery clock cycle, as a vesult, the multiplier blocks 462(3)-462(0) perform
vector multiply operations on every clock cyele according to decoding of the vector
msiructions i an nstruction pipeline in the instruction dispaich circuit 48.

186256] The nwltipher blocks 462 can be prograrmomed to perform real and complex
multiphcations. With continuing reference fo Figure 35, in one vector processing hlock
data path configuration, a multiphier block 462 may be configured to multiply two 8-bit
vector data input sample sets 466 together. In one multiply block data path
configuration, a mudtiplier block 462 may be configured to multiply two 16-bit vector
data input sample sets 466 together, which are formed from a first pair of 8-bit vector
data input sample sets 466 multiplied by a second pair of &-bit vector data input sample
sets 466. This is illustrated in Figure 38 and discussed in more detail below. Again,
providing the programmable data path configurations in the multiphier blocks 462(3)-
462(03) provides flexibility in that the multiphier blocks 462(33-462(0) can be conligured
and reconfigured to perform different types of multiply operations to reduce area in the
execution unit 84 and possibly allow fewer execution units 84 to be provided m the
baseband processor 20 to carry out the desired vector processing operations.

(802571 With reference back to Figure 35, the plurality of multiplier blocks 462(3)-
462{0y 1s configured to provide the vector muliiply output sample seis 468(3)-468(0) in
prograromable output data paths 470(3)-470(0) to either the next vector processing stage
460 or an output processmg stage. The vector ronltiply output sample sets 468(3)-
468((}) are provided in the programmable cutput data paths 4706(33-470(0} according to a
progranuned configuration based on the vector instruction being cxecuted by the
plurality of multipher blocks 462(3)-462(0). In this example, the vector multiply output
sample sets 468(33-468(0) in the programmable ouiput data paths 470(3)-470(0) are
provided to the M1 accumulation vector pipeline stage 46(0(2) for accumulation, as will
be discussed below.  In this specific design of the exccution unit 84, it s desired to
provide the plurality of multipher blocks 462(3)-462(0) followed by accumulators to
support specialized vector mstructions that call for muldtiphications of vector data inputs
followed by accumulation of the multiplied results. For exampie, Radix-2 and Radix-4
putterfly operations commonly used to provide FFT operations include a series of

multiply operations followed by an accumulation of the muoltiplication results.
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However, note that these combinations of vector processing blocks provided in the
execution anit 84 are exemplary and not imiting. A VPE that has programmable data
path configurations could be configured to include one or any other number of vector
processing stages having vector processing blocks, The vector processing blocks could
be provided to perform any type of operations according to the design and specific
vector mstructions designed 1o be supported by an execution unit.

1862358 With continved reference to Figure 35, in this embodiment, the vector
multiply output sample sets 468(33-468(0) are provided to a plurality of accumulator
blocks 472(3)-472(1) provided in a next vector processing stage, which is the M
accumulation vector processing stage 460(2). Each accumulator block among the
plurality of accumulator blocks 472(A)-472(0) contains two accumulators 472(X)(1)
and 472040y (e, 47203} (1), 472(3X0), 472(2) 1}, 472(2X0), 472(1)(1}, 472(1X(0),
and 472(1(1}, 472(0%1). The plurality of accamulator blocks 472(3)-472(()
accunulate the results of the vector multiply output sample sets 468(33-468(0}). As will
be discussed in more detail below with regard to Figures 39 and 490, the plurality of
accumulator blocks 472(33-472(0} can be provided as carry-save accumulators, wherein
the carry prodoct is in essence saved and not propagated during the accumulation
process until the accunudation operation 18 completed. The phurality of accummidator
blocks 472(3)-472(0} also have the option of being fused with the plurality of multipher
blocks 462(3)-462(}} in Figures 35 and 37 to provide redundant carrv-save format in the

e

plurality of accumulaior blocks 472(33-472{0). Providing redundant carry-save format
in the plurality of accumulator blocks 472(3)-472(0) can chminate a need to provide a
carry propagation path and a carry propagation add operation during each siep of
accumulation in the plurality of accumulator blocks 472(3)-472(0). The Ml
accumulation vector processing stage 460(2) and its plurality of accumulator blocks
472(33-472(0) will now be introduced with reference to Figure 35.

(60258 With reference to Figure 35, the plurahity of accumulator blocks 472(3)-
472{0} in the M! accumwlation vecior processing stage 460(2) is configured to
accuntdate the vector multiply output sarople sets 468(3)-468(0) m progranynable
output data paths 474(33-474(0) (e, 47431}, 4740)0), 4742 1), 474,
474001, 47410}, and 474(0X{(1}, 474(0X0}), according to programmable output data
path configurations, {o provide accumulator output sample sets 476(33-476{0) (ie,
476(3)( 1y, 476(3)0), 476(2)(1), 476(2(0), 476011y, 476(1X0), and 476(03(1),

476{0)0}} in either a next vector processing stage 460 or an outpul processing stage. In
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this example, the accumulator output sample sets 476(33-476(0} are provided o an
cutpul processing stage, which is an ALU processing stage 460(3). For example, as
discussed in more detail below, the accumulator cutput sample sets 476(33-476(0} can
also be provided to the ALU 46 1o the scalar processor 44 in the bascband processor 20
m PFigure 2, as a nou-limiting example. For example, the ALU 46 may take the
accomulator output sample sets 476(3)-476(0) according to the specialized vector
insiructions executed by the execution unit 84 to be used in more general processing
operations.

1602608}  With reference back to Figure 35, programmable input data paths 478(3)-
478(() and/or programmable internal data paths 480(3)-480(0) of the accumulator
blocks 472(33-472(0) can be progranmuged o be reconfigured to receive different
combinations and/or bit lengths of the vector multiply output sample sets 468(3)-468(0)
provided from the multiplier blocks 462(3)-462(0) to the accamulator blocks 472(3)-
472{0}. Because ecach accummulator block 472 is comprised of two accumulators
47X, 47200(0}, the programmable input data paths 478(A)-478(0) arc shown in
Figure 35 as 478(3)(1), 4783y, 478 (1), 478(2)(0), 478(1)(1), 478(1)0}, and
478(Y( 1}, 473(0)0). Similarly, the programmable mternal data paths 480(3)-480(0) are
shown in Figure 35 as 480(3)(1), 480(3)(0), 480(2)(1), 480(2)0), 480(1 }(1), 480(1 (D),
480(0)( 1), 480(0)0). Providing programmable input data paths 478(3)-478(0) and/or
programmable internal data paths 480(3)3-483(0} in the accumulator blocks 472(3)-
472{C} is discussed in more detail below with regard to Figures 39 and 40. In this
manner, according to the progranunable mput data paths 478(3)-478(0) and/or the
programmable internal data paths 480{3)-480(0) of the accumulator blocks 472(3)-
47X, the accumulator blocks 472(33-472(0} can provide the accumulator output
sampie seis 476(33-476{0) according to the programmed combination of accuraulated
vector multiply output sample sets 468(3)-468(0).  Agam, this provides flexibility in
that the accumulator blocks 472(3)-472(0) can be configured and reconfigured fo
perform different types of accumulation operations based on the programuming of the
prograromable joput data paths 478(3)-478(1)) and/or the programmable infernal data
paths 480{3}-480(0) to reduce area in the execution unit 84 and possibly allow fewer
execulion unils 84 to be provided in the baseband processor 20 to carry out the desired
veClor processing operations.

(60263 For examople, m one accunmulator mode configuration, the prograromable

mput data path 478 and/or the programmable internal data paths 480 of two accumulator
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blocks 472 may be programmmed to provide for a single 40-bit accurmnulator as a non-
hmiting example. In another accumulator mode configaration, the programmable fnput
data path 478 and/or the programmable internal data path 480 of two accumulator
blocks 472 may be programmed to provide for dual 24-bit accumulators as a non-
hrmiting example. In another accumulator mode configuration, the programmable mput
data path 478 and/or the programmable internal data path 480 of two accumulator
blocks 472 may be prograramed to provide for a 16-bit carry-save adder followed by a
single 24-bif accumulator.  Specific, diffevent combinations of nultiphications and
accumulation operations can also be supported by the execution unit 84 according to the
programming of the multiplier blocks 462(3}-462(0) and the accanudator blocks 472(3}-
472(0) (e.g., 16-bit complex nwltiplication with 16-bit accunwidation, and 32-bit
complex multiplication with 16-bit accumulation).
[#6262] The programmable input data paths 478(33-478(0) and/or the programmable
internal data paths 480(33-480{0) of the accumulator blocks 472(3}-472(0) may be
prograromed according o settings provided from a vecter instruction decoder o the
mstruction dispatch circutt 48 of the bascband processor 20 m Figure 2. The vector
mstruction specifies the specific type of operation to be performed by the execution amit
84. Thus, the execution unit 84 can be configured to reprogram the prograramable mput
data paths 478(3}3-478(0) and/or the prograromable internal data paths 480(33-480(0) of
the accumulator blocks 472(3)-472(1) for each vector instruction executed according to
decoding of the vector instruction in an instruction pipeline in the instruction dispaich
circuit 48, A vector instruction may execute over oune or more clock cycles of the
xecution unit 24, Also in this example, the execution unit 84 can be configured to
reprogram the programmable input data paths 478(33-478(0} and/or the programmable
internal data paths 480(3}-480(0) of the accummlator blocks 472(3)-472(() for each
clock cyele of a vector mstruction on a clock-cycle-by-clock-cycle basis.  Thus, for
example, it a vector instruction executed by the M1 accunuidation vector processing
stage 460(2) in the execution unit 84 processes the vector multiply output sample sets
468(31-468(0) overy clock cycle, as a result, the progranunable input data paths 478(3)-
478(0) and/or the programmable miemal data paths 480(3)-480(0) of the accumulator
blocks 472(33-472(0} can be reconfigured each clock cycle during exccution of the
vector instraction.
(602631 Figure 36 is a flowchart tilustrating exemplary vector processing of the

multiphier blocks 462(A)-462(0} and the accumulator blocks 472(A)(1)-472(0){0) in the
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execution unit 84 1 Figures 2 and 35 to provide additional Hlustration of the exemplary
vector processing. The wmultiphier blocks 462(A)-462{0) and accumulator blocks
47Z{AX1}-472(0)}0} each have programmable data path configurations and are provided
in different vector processing stages in the excroplary execution unit 84 of Figures 2 and
35, For example, FFT vector operations involve multiply operations followed by
accomulale operations.

186264]  In this regard, with regard to Figure 36, the vecior processing involves
recetving a plurality of multiply vector data sample sets 34(Y)-34(0) of a width of &
vector array in an mput data path among a4 plorality of mput data paths A3-C0O v an
mput processing stage 460(0) (block 501}, The vector processing then includes
receiving the multiply vector data sample sets 34(Y)-34(0) from the plurahity of input
data paths A3-C0 in a plurality of multipher blocks 462{A}-462(0) (block 503}, The
vector processing then includes multiplying the multiply vector data sample sets 34{(Y)-
34(G} o provide multiply vector result output sample sets 468(A-468(0} in mukiply
output data paths 470(A)-470(0) among a plurality of multiply output data paths
470(A-470(0), based on programomable data path configurations for the nuiluplier
blocks 462(A}462(0) according to a vecior mnstruction executed by the vecior
processing stage 460(1) (block 505). The vector processing next includes recciving the
multiply vector result output sample sets 468(A-468(0) from the plurality of multiply
culput data paths 478{A)}-470(0) in a phlurality of accumulator blocks 472(AN1)-
472{03(0} (block 507). The vector processing next tncludes accumulating the multiply
vector result output sample sets 468(A-468(0) together to provide accunwidator output
saropie sets 476{A}1)-476(0)(0) based on prograromable mput data paths 478(A)1)-
478(1H(0), programmable mternal data paths 430(A¥1)-480(1)0}, and programmable
output data paths 474(AX1+-474(0x(0) configurations for the accumulator blocks
AT2{AN1)-472(0)}0} according to a vector mstruction executed by the second vector
processing stage 460(2) (block 509). The vector processing then includes providing the
accuntulator output sample sets 476(AX1}-476(0)0) in the programmable output data
paths 474{A)1-474(0X0) (block 511} The vector processing then ncludes receiving
the accumulator output sample sets 476(A Y1 1-476(0}0) from the accumulator blocks
47 AN -472(0)}0} in an cutpul vector processing stage 460(3) (block 513).

[60265] Now that the overview of the exemplary execution unit 84 of Figure 35 and
vector processtng in Figure 36 employing vector processing blocks having

programmable daia path configurations have been described, the remainder of the
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description describes more exemplary, non-Himiting details of these vector processing
blocks in Figures 37-40.

[60266] In this regard, Figure 37 is a more detailed schemstic diagram of the
plurality of multipler blocks 462(3)-462(0) in the MO multiply vector processing stage
460(1) of the execution unit 84 of Figure 35, Figure 38 18 a schematic diagram of
mternal components of a muliipher block 462 in Figure 37, As illustrated in Figure 37,
the vector data input sample sets 466{11}3-466(0) that are received by the muwltiphier
blocks 462(3)-462(0) according to the particular input data paths A3-A0, B3-B0, C3-C0
are shown. As will be discussed in more detail below with regard to Figure 38, cach of
the wultiphier blocks 462(3)-462(0) i this example nclude four (4) B-bit by 8-bit
oltipliers.  With reference back to Figure 37, cach of the multiphier blocks 462(3)-
462{0) in this example are configured to nultiply a multiphicand input ‘A’ by either
multiplicand iput ‘B” or multiplicand input ‘C.” The multiplicand inputs ‘A,” and ‘B’
or ‘C’ that can be multiplied together in a multiplier block 462 are conirolled by which
input data paths A3-AQ, B3-80, C3-C0 are connected to the multiplier blocks 462(3)-
462((3), as shown in Figure 37. A multiphcand selector input 482(3)-482(03) 1s provided
as an input to cach mudtiplier block 462(3)-462(0) to control the programmable internal
data paths 467(3}-467(0) in each multiplicr block 462(33-462(0) to select whether
multiphicand input ‘B7 or multiphecand input “C” s selected to be multiphied by
muliiplicand input ‘A In this manner, the muliphier blocks 462(3}-462(0}) are
provided with the capability for their programmable internal data paths 467(3)-467(0) to
be reprogranumed fo provide different maultiply operations, as desired.

160267}  With continuing reference to Figure 37, using multiphicr block 462(3) as an
example, input data paths A3 and A2 are connected to mputs AH and AL, respectively.
Ioput AH represents the high bits of multiplicand input A, and AL means the low bits of
input multiplicand input ‘A Input data paths B3 and B2 are connected to mputs BH
and BL, respectively. Input BH represents the high bits of multiplicand mput B, and
AL represents the Jow bits of input multiphicand input ‘B.” Input data paths 3 and C2
are connected to mputs Cl and CQ, respectively.  Input CF represents the real bifs
portion of input nultiphicand input “C” i this example.  CQ represents the imaginary
bits portion of mput multiphcand nput ‘C” in this example. As will be discussed in
maore detail below with regard to Figure 38, the multiplicand selector input 482(3) also
controls whether the programmable internal data path 467(3) of multiplier block 462(3)

1s configured to perform #-bit multiplication on multiplicand mput A’ with
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multiphcand input *B’ or multiplicand input ‘C,” or whether multiplicr block 462(3) is
configured to perform 16-bit multiplication on multiplicand input *A” with mudtiplicand
input ‘B or multiplicand input *C° in this example.

(60268  With continuing reference to Figure 37, the multiper blocks 462(33-462(0)
are configured to each generate vector nuidtiply outpui sample sets 468(3)-468(0) as
carry ‘C” and sum 5’ vector output sample seis of the multiphication operation based on
the configuration of their programmable nternal data paths 467(3)-467(0). As will be
discussed mn more detail below with regard to Figures 39 and 40, the carry ‘C” and sum
‘S7 of the vector multiply output sample sets 468(3}3-468(0) are fused, meaning that the
carry ‘C’ and the sum S’ are provided in redundant carry-save format to the phuality of
accurnulator blocks 472(3)-472(0) to provide redundant carry-save format in the
plurality of accumulator blocks 472(3)-472(0). As will be discussed in more detail
below, providing a redandant carry-save format in the phurality of accumualator blocks
472{33-472{0} can climinate a nced to provide a carry propagation path and a carry
propagation add operation during accuroulation operations performued by the plurahity of
accumulator blocks 472(3)-472(0).

(60269 Examples of the multiplier blocks 462(3}-462(0) generating the vecior
multiply output samaple sets 468(3)-468(0) as carry ‘C’ and sum ‘8’ vector output
sample sets of the multiphcation operation based ov the configuration of their
programmable internal data paths 467(3)-467(0) are shown m Figure 37. For example,
multiplier block 462(3} is configured fo generate carry CO0 and sum SO0 as 32-bit
values for 8-bit multiplications and carry CO1 and sum SO1 as 64-bit values for 16-bit
multiphcations. The other multiphier blocks 462(23-462(() have the same capability in
this example. In this regard, multiphier block 462(2}) 1s configured to generate carry C10
and sumn S0 as 32-bit values for 8-bit multiphications and carry C11 and sum S11 as
64-bit values for 16-bit multiplications. Multiplier block 462(1) is configured to
generate carry 20 and som 520 as 32-bit valoes for 8-bit multiplications and carry
C21, and sum S21 as 64-bit values for 16-bit multiphications. Multiphier block 462(0) is
configured to generate carry C30 and sum S30 as 32-bit values for 8-bit multiphications
and carry C31 and sum 831 as 64-bit values for 16-bit multiplications.

(802781 To explain more exemplary detail of programmable data path configurations
provided in a multiplier block 462 in Figure 37, Figurce 3¢ is provided. Figure 38 is a

-
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schematic diagram of internal componenis of a roultiplier block 462 in Figure 37 having

programmable data path configurations capable of multiplying 8-bit by 8-bit vector data
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nput sarople set 466, and 16-bit by 16-bit vector data input sample set 466, In this
regard, the multiplier block 462 inclades four 8x8-bit multiphers 484(3)-484((}) in this
example. Any desired number of multipliers 484 could be provided. A first multiplier
484(3) 15 configured to reccive 8-bit vector data input sample set 466A[H] (which is the
high bits of mput multiplicand mput “A’) and nuliiply the vector data mput sample set
466ATH] with either 8-bit vector data input sample set 466B[H] (which is the high bits
of mput multipficand input ‘B’) or 8-bit vector data input sample set 466C[1] (which is
the high bits of input multiphcand mput *C”). A vultiplexor 486(3) is provided that is
configured to select either 8-bit vector data input sample set 466B[H] or 8-bit vector
data input sample set 466C[1] being providing as a multiplicand to the multipher 484(3).
The multiplexor 486(3) is controlled by multiplicand sclector input 482{31, which is the
high bit in the multiplicand selector input 482 n this embodiment. In this manner, the
multiplexor 486(3) and the multiphcand selector input 482[3] provide a programmable
internal data path 467[0] configuration for the multiplier 484(3) to control whether 8-bit
vector data jnput sample set 466B{H] or 8-bit vector data input sample set 466C[1] 18
multiphed with received vector data input sample set 466AH].

(60271} With continuing reference to Figure 38, the other multiphiers 484(2})-484(0)
also include similar programmable internal data paths 467[21-467[0] as provided for the
first multipher 484(3). Multipher 484(2) includes the programmable internal data path
467[27 having a programmable configuration to provide either 8-bit vector data input
sarapic set 466B[H] or 8-bit vector data input sample set 466C{] in the programumable
internal data path 46711} fo be multipbied with 8-bit vector data input sample set
466A1L], which is the low bits of multiplicand imput *A.” The selection is controlled by
multiplexor 486(2) according to the muitiplicand selector input 482{2} i the
mulftiplicand selector input 482 in this cmbodiment. Multiplier 484(1) includes
programmable internal data path 467{1] prograromabie to provide either 8-bit vector
data input sample set 466B[L], which 1s the low bits of multiphicand input ‘B, or 8-bit
vector data tnput sample set 466C[Q1, which is the low bits of nmultiplicand foput *C” in
the programmable nternal data path 467[1] to be multiphed with 8-bit vector data mput
sarople set 460A[H]. The selection s controlled by multiplexor 486(1) according to the
multiphicand selector inpot 482[1] i the multiphicand selector input 482 in this
embodiment. Further, roultiphier 484(0) mcludes programomable internal data path
467107 programmable to provide either 8-bit vector data input sample set 466B[1L] or §-

bit vector data input sample set 466C[(Q1 in the programmable internal data path 467[0],
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to be multiphed with 8-bit vector data input sample set 466A[L}.  The selection is
controlled by multiplexor 486(0} according to the multiplicand selector bit nput 482[0]
in the raultiplicand selector input 482 in this embodiment.

(602721 With continuing referconce to Figure 38, as discussed above, the multipliers
484(3)-484(0} can be configured to perform different bit length nuiltiplication
operations.  In this regard, cach multiphier 484(3)-484(0) includes bit length multiply
mode inputs 488(3)-488(0), respectively. In this example, cach multiplier 484(3)-484(1})
can be programumned in 8-bit by 8-bit mode according o the inputs that control the
configuration of programmable data paths 490(3)-490(0), 491, and 492(3)-492(1}},
respectively. Each muoltiplier 484(3)-484(0) can also be programmed to provide part of
a larger bit multiphication operation, including 16-bit by 16-bit mode and 24-bit by §-bit
mode, according to the inputs that control the configuration of programmable data paths
490(33-490(0}, 491, and 492(3)-492(0)}, respectively. For example, if cach multiplier
484(31-484(C} is configured in 8-bit by 8-bit multiply mode according to the
configuration of the progranmable data paths 490(3)-490(0), the plurality of multiphers
484(3)-484(1}) as a unit can be configured 1o comprise two (2) fndividoal 8-bit by 8-bit
multiphiers as part of the multiphier block 462, If each multiplier 484(3)-484(D}) is
configired in 16-bit by 16-bit multiply mode according to configuration of the
programmable data path 491, the plorality of multipliers 484(3)-484(0) as a unit can be
configured to comprise a single 16-bit by 16-bit multiplier as part of the multiplier block
462, I the multiphiers 484(3)-484(0) arc configured in 24-bit by 8-bit multiply mode
according to configuration of the programmmable data paths 492(3)-492(0}, the plurality
of multipliers 484(3)-484(0) as a unit can be configured to comprise one (1) 16-bit by
24-bit by 8-bit muoltiplier as part of the mualtiphier block 462,

(60273}  With continuing reference to Figure 38, the multipliers 484(3-484{0} 1o this
example are shown as being configured n 16-bit by 16-bit pwltiply mode.  Sixteen
(16)-bit input sums 494(3), 494(2) and mnput camies 496(3), 496(2) are generated by
cach multipfier 484(3), 484(2), respectively. Sixteen {163-bit input surs 494(1), 494(0)
and mput carries 496(1), 496(0) are generated by each raultiphier 484(1), 484(0),
respectively. The 16-bit Input suros 494(3), 494(2) and input carries 496(3), 496(2) are
also provided to a 24-bit 4:2 compressor 515 along with 16-bit sums input 494(1),
494(1) and toput carries 496(1), 496{0} to add the input sums 494(3}-494(0) and nput
carries 496(3)-496(0) together. The added mput sums 494(3)-494(0) and input carries

496(33-496(0) provide a single sum 498 and single carry 500 in 16-bit by 16-bit
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multiply mode when the programmable data path 491 is active and gated with the input
sums 494(3}3-494(0) and input carries 496(33-496{0). The programmable data path 491
is gated by a first AND-based gate 502(3} with combined input sums 494(3), 494(2)as a
16-bit word, and by 2 second AND-based gate 502(2) with combined inpuf carries
496(3}), 496(2) as a 16-bit word to be provided to the 24-bit 4:2 compressor 515, The
programmable data path 421 1s also gated by a third AND-based gate 502(1) with
combined input surs 494(1), 494(7) as a 16-bit word, and by a fourth AND-based gate
502(0) with combined input carries 496(1}, 496(0) as a 16-bit word to be provided to the
24-bit 4:2 compressor 515, The programmable output data path 470{0] 1s provided with
the vector multiply output sample set 4680} as a compressed 32-bit sum S8 and 32-bit
carry C( partial product if the multiphicr block 462 13 configured 1o a 16-bit by 16-hit ot
24-bit by 2-bit multiply mode.

(802741 The programmable outpul data path 470[ 1] configuration is provided as the
16-bit input sums 494(3)-494(0) and corresponding 16-bit input carries 496(3}-496(0) as
partial products without coropression, if the multiphiers 484(33-484(0) in the nultiplier
block 462 are configured m 8-bit by 8-bit multiply mode. The programmable output
data path 470[1] is provided as the 16-bit input sums 494(3}-494(0) and corresponding
16-bit joput carvics 496{3)-496(0) as the vector multiply output sample scts 468[1]
without comopression if the multipliers 484(3)-484(0) in the multiphier block 462 are
configured in 8-bit by 8-bit multiply mode. The vector multiply output sample sets
468101, 468{1], depending on a multiplication mode of the muliplicr block 462, are
provided to the accumudator blocks 472(33-472(0) for accumulation of sum and carry
produets according to the vector instruction being executed.

(602751 Now that the multiphier blocks 462(3}-462(0) in Figures 37 and 38 having
programinable data path configurations have been described, features of the multiplier
blocks 462(3)-462(0) in the execution unit 84 to be fused with the accuronlator blocks
472{33-472(0} configured in redundant carry-save format will now deseribed in general
with regard to Figure 39.

160276]  in this regard, Figure 39 is a gencralized schermatic diagram of a multiplier
block and accumulator block in the execution units 84(0)}-84(X) described above,
wherein the accomulator block emiploys a carry-save accumulator structure employing
redundant carry-save format to reduce carry propagation. As previously discussed and
illustrated i Figure 38, the nuwltiplier blocks 462 are configured to multiply

multiplicand mputs 466[H] and 466[L] and provide at least one input sum 494 and at
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least one inputl carry 496 as a vector multiply output sample sets 468 in the
programmable ocutput data path 470, To ehminate the need to provide a carry
propagation path and a carry propagation adder in the accumulator block 472 for each
accurnulation step, the at least one mput sum 494 and the at least one toput carry 496 in
the vector roultiply output sample sets 468 m the programmable output data path 470
are fused in redundant carry-save format {o at least one accumulator block 472, In other
words, the carry 496 in the vector multiply cutput sample scts 468 is provided as vector
input carry 496 n carry-save forroat to the accunwator block 472, In this manner, the
input sum 494 and the input carry 496 n the vector moultiply output sample scts 468 can
be provided to a compressor SO08 of the accumulator block 472, which in this
embodiment 18 a complex gate 4:2 corapressor. The compressor 508 is configured to
accumulate the joput sum 494 and the foput carry 496 together with a previous
accomulated vector output sum 512 and a previous shified accomulated vector output
carry 517, respectively. The previous shifted accuwmulated vector oulput carry 517 is in
gssence the saved carry accunmulation during the accomulation operation,

160277} In this manner, only a single, final carry propagate adder 1s required to be
provided in the accumuolator block 472 to propagate the received input carry 496 to the
input sum 494 as part of the accumulation generated by the accumulator block 472,
Power consumption associated with performing a carry propagation add operation
during each step of accumclation in the accumulator block 472 i3 reduced in this
embodiment.  Also, gate delay associated with performing a carry propagation add
operation during each step of accumulation in the accumulator block 472 is also
ehminated m this embodiment.

{60278} With continuing reference to Figure 39, the compressor 508 is configured to
accurnulate the input sum 494 and the input carry 496 in a redundant form with the
previous accurmulated vector output sum 512 and previous shifted accummudated vector
output carry 517, respectively. The shifted accumulated vector output carry 517 1s
generated by an accomulated vector cutput carry 514 generated by the compressor 508
by shifting the accunuated vector output carry 514 hefore the next accunmlation of the
next received input suro 494 and mmput carry 496 1s performed by the compressor 508.

5 -
1

The final shified accumulated vector output carry 517 18 added to the final accumulated
vector output sum 512 by a single, final carry propagate adder 519 provided in the
accurnulator block 472 to propagate the carry accumwlation in the final shified

accumulated vector output carry 517 to convert the final accurnnlated vector cutput sum
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512 to the final accumulator cutput sample set 476 2's complement notation. The {inal
accumulated vector output sum 512 is provided as accumulator output sample set 476 in
the prograromable cutput data path 474 (sec Figure 35).

(602791 Now that Figure 39 illustrating the fusing of a multiplier blocks 462 with an
accumulator block 472 configured in redundant carry-save format has been described,
more oxemplary detail regarding the accumulator blocks 472(3)-472(0) are now
described in general with regard to Figure 40. Figure 40 is a detailed schematic diagram
of exemplary internal components of an accumulator block 472 provided in the
execution unit 84 of Figure 35, As previously discussed and discussed in more detail
below, the accumulator block 472 is configured with programmable input data paths
478(33-478(0) and/or the programmmable mternal data paths 480(33-480(0), so that the
accumulator block 472 can be programumed to act as dedicated cireuitry designed to
perform specific, different types of vector accumulation operations. For example, the
accuntulator block 472 can be programmed to provide a number of different
accunmations and additfions, including signed and unsigned accumulate operations.
Specific examples of the programmable nput data paths 478(3)-478(0) and/or
programmable internal data paths 480(3)-480{0} in the accumuolator block 472 being
configured to provide different types of accurqulation operations are disclosed.  Also,
the accumulator block 472 is configured to include carry-save accumulators 472[0],
472117 to provide redundant carry arithmetic to avoid or reduce carry propagation to
provide high speed accumulation operations with reduced combinational logic.

160280]  Exemplary intemnal components of the accuraulator block 472 are shown in
Figure 40,  As illustrated therein, the accumulator block 472 in this embodiment is
configured to receive a first input sum 494{0] and first inpot carry 496[0], and a second
input sum 494{1] and sccond input carry 496{1] from a nwhiplier block 462 to be
accurnulated together. With regard to Figure 40, the input sums 494[01, 4941} and
mput carries 496[0], 496[1] will be referred to as vector input sums 494{0], 454{1] and
vector input carries 496{0], 496{1}. As proviously described and ilhustrated in Figure
39, the vector fnput sums 494{0], 494{1] and vector input carrics 496[0], 496{1] in this
embodiment are each 16-bits in length. The accumulator block 472 in this example is
provided as two 24-bit carry-save accumulator blocks 472{0}, 472[1], each contaimng
similar componerds with commoen element numbers with {0} being designated for

carry-save accunulator block 472{0], and with {1} being designated for carry-save
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accumulator block 472[1]. The carry-save accomulator blocks 472[0], 472[1] can be
configured to perform vector accurmulation operations concurrently.

186281] With reference to carry-save accumulator block 472[0] in Figore 40, the
vector input sum 494{0] and vector mput carry 496[0] are input in a maultiplexor 504(0)
provided as part of the programoable internal data path 480[0]. A negation circuit
S06(0), which may be comprised of exclusive OR-based gates, is also provided that
generaies a negative vector mput sum 494{01 and negative vector input carry 496{07
according to an inpat 521(0), as mputs into the multiplexor 504(0) for accumulation
operations requiring a negative vector mput sum 494{0} and negative vector input carry
49607, The multiplexor 504(0) 1s configured to select either vector inpat sum 494[C]
and vector input carry 496[0] or the negative vector input sum 494[0] and the negative
vector input carry 496[07 to be provided to a compressor S08(0) according (o a selector
mput S13{{0) generated as a resull of the vector mstruction decoding. In this regard, the
selector input 510(0) allows the programmable input data path 478[0] of carry-save
accuntdator block 472{0} to be programamable to provide either the vector input sum
494107 and vector input carry 496[0], or the negative vector input sum 494{0}7 and the
negative vector input carry 496[01, to the compressor S08(0} according to the
accurnulation operation configured to be performed by the accumulator block 472,
[B0282]  With contimuing reference to Figure 40, the compressor S08(0) of the camy-
save accumlator block 472{01 in this embodiment is a complex gate 4:2 compressor.
In this regard, the compressor 508(0) is configured to accumulate sums and carries in
redundant carry-save operations. The corapressor S08(0) is configured to accuroulate a
current vector input sum 494{0] and vector fnput carry 496[(, or a current negative
vector input sum 494{07 and negative vector input carry 496[01, together with previous
accumulated vecior input sum 494{0] and vector input carry 496{0}, or accumulated
negative vector put summ 494{01 and negative vector input carry 496[01, as the four
{4) inputs to the compressor S08(6). The compressor S08(0) provides an accumulated
vector output sum 512(0) and accumulated vector output carry 514(0) as the
accuntulator output saraple sot 476{0] in the programmable output data path 474[0] (see
Figure 35} to provide accumulator output sample sets 476(3)-476(0). The accumulated
vector output carry 5314(0) is shifted by a bit shifter 516(0} during accumulation
operations to provide a shifted accumulated vector output carry 517(0) to control bit
width growth during each accumulation step. For exanyple, the bit shifter 516(0) 1o this

embodiment is a barrel-shifter that is fused to the compressor S08(0} in redundant carry-
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save format. In this manner, the shifted accumulated vector output carry 317(0) 1s in
essence saved without having to be propagated to the accumuolated vector suiput sum
512(1) during the accumulation operation performed by the accunwlator block 472{0].
o this manuner, power consumption and gate delay associated with performing a carry
propagation add operation during each step of accumulation m the accumulator block
472[0] is eliminated in this embodiment.

186283] Additional follow-on vector input sums 494{0} and vector input carries
49601, or negative vector input sums 494[0] and negative vector input carries 496{01,
can be accumulated with the current accumudated vector output sum 512(0} and current
accumulated vector output carry 517(0). The vector input sums 434{0] and vector input
carries 4960}, or negative vector put sums 494[0] and negative vector input carries
496[07, are sclected by a multiplexor 518(1) as part of the programmable internal data
path 480[0] according to 8 sum-carry selector S20((}) generated as a resolt of the vector
insiruction decoding. The current accunmmlated vector output sum 512(0) and current
shifted accunwidated vector output camry 517(0) can be provided as inputs to the
compressor 308(0) for carry-save accumulator block 472[0] to provide an updated
accumulated vector output sum 512{(0) and accamulated vector output carry 514(8). In
this regard, the sum-carry selector 520(0) allows the programamable internal data path
480107 of accumulator block 472[0] to be programmable to provide the vector input surg
494{0] and vector input carry 496[0] to the compressor 508(0) according to the
accunmulation operation configured to be performed by the accumulator block 472
Held gates 522(0}, 524(0) are also provided 1o this embodiment to cause the multiplexor
518(0) to hold the current state of the accumulated vector ouiput sum 512(0} and shifted
accumulated vector output carry S17(0) according to a hold state mput 526(0) to control
operational timing of the accumulation in the carry-save accurnulator block 472{01
[80284]  With continuing reference to Figure 40, the accumulated vector oulput sum
512(0) and shifted accumulated vector output carry 517(0) of carry-save accumulator
block 472[0], and the accumulated vector output sum 512(1} and shifled accumulated

I
/
i

ector output carry 517(1) of carry-save accumulator block 472{1], are gated by control

gates 534(0), 536(0) and 534(1), 536(1}, respectively. The control gates 534(0}}, 536(0)
and 534(1), 536(1) control the accumulated vector culput sum S12(0) and shifted
accumulated vector output carry 517(0), and the accumulated vector output sum 512(1)
and shifted accumulated vector output carcy 317(1), respectively, being returned 1o the

mpressors S08(0), SO8(1).
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160285}  In swmmary, with the programmable mput data paths 478[0], 478{1] and
programmable internal data paths 480[0], 480[1] of the accormdator blocks 472{0],
472111 of the accunmulator block 472 in Figure 40, the accunmmlator block 472 can be
configured in different modes. The accumulator block 472 can be configured to provide
different accumulation operations according to a specific vector processing instruction
with commion accumulator circuilry illustrated in Figure 40.

180286} The VPEs according to concepts and embodiments discussed herein, may be
provided i or integrated into any processor-based device,  Examples, without
hmitation, inchude a set top box, an enterfainment unit, a navigation device, a
communications device, a fixed location data unit, a mobile location data wwit, a mobile
phone, a cellular phone, a computer, a portable computer, a desktop computer, a
personal digital assistant {(PDA), a monitor, a computer monitor, a television, a tuner, a
radio, a satellite radio, a music player, a digital music player, a portable music player, a
digital video player, a video player, a digital video disc (DVD) player, and a portable
digital video player.

160287}  In this regard, Figure 41 illustrates an example of a processor-based system
550. In this example, the processor-based system 550 includes one or more processing
units (PUs} 552, cach including one or more processors or cores 554, The PU(s) 552
may be the baseband processor 20 in Figure 2 as a non-limiting example.  The
processor 554 may be a vector processor Hike the baseband processor 20 provided in
Figure 2 as a non-himiting exaraple. In this regard, the processor 554 may also include a
VPE 556, inchuding but not Hnuted to the execcution unit 84 1o Figure 2. The P{s) 552
may have cache memory 558 coupled to the processor(s) 554 for rapid access to
temporarily stored data. The PU(s) 552 18 coupled to a system bus 560 and can
intercouple master and slave devices inchided in the processor-based system 550, Asis
well known, the PU(s) 557 coromunicates with these other devices by exchanging
address, control, and data information over the system bus 560, For example, the PU(s)
552 can communicate bus transaction requests to a memory controller 562 as an
example of a slave device. Although not dlustrated in Figure 41, roultiple system buses
560 could be provided, wherein each system bus 560 constitutes a different fabric.
[86288]  Other master and slave devices can be connected to the system bus 560, As

itlustrated in Figure 41, these devices can include a memory system 564, one or more

-+

input devices 566, one or more output devices 368, one or more network interface

devices 570, and one or more display controllers 572, as examples. The memory
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system 564 can include memory 565 accessible by the memory controller 562. The
mput device(s} 566 can mclude any type of input device, incloding but not hmited to
imput keys, switches, voice processors, eic. The output device(s) 568 can include any
type of output device, including but not liotted to audio, video, other visual indicators,
ete.  The network mterface device{s) 570 can be any devices configured to allow
exchange of data to and from a network 574, The network 574 can be any type of
network, including but not limited fo a wired or wireless network, a private or public
network, a local area network (LAN), a wide local area network (WLAN], and the
Internet. The network mterface device(s) 570 can be conligured to support any type of
commmunication protocol desired.

[60289]  The PUs 552 may also be configured to access the display controller{(s) 572
over the systern bus 560 to control mformation sent to one or more displays 578, The
display controller(s} 572 sends information to the display(s} 578 t¢ be displayed via one
or more video processors 580, which process the information to be displayed inte a
format suitable for the display(sy 578. The display(s) 578 can include any type of
display, including but not himited to a cathode ray tube (CRT), a hquid crystal display
{(LCD), a plasma display, etc.

(602901  Those of skill in the art will further appreciate that the various illustrative
logical blocks, modules, circuits, and algorithrs described in connection with the
embodiments of dual vollage domain memory buffers disclosed herein may be
implemented as electronic hardware, instructions stored in memory of in another
computer-readable medium and execcuted by a processor or other processing device, or
combinations of both. The arbiters, master devices, and slave devices described herein
may be employed in any circuit, hardware component, integrated circuit (IC), or IC
chip, as examples. Memory disclosed herein may be any type and size of memory and
may be configured 1o store any type of mformation desired. To clearly ilhustrate this
miterchangeability, various illustrative components, blocks, modules, circuits, and steps
have been described above gencrally in terms of their functionality. How such
functionality is implemented depends upon the particular application, design choices,
and/or design constraints imposed on the overall system. Skilled arlisans roay
implement the described functionality in varying ways for each particolar application,
but such implementation decisions should not be interpreted as causing a departure from

the scope of the present disclosure.
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186291}  The vanous illustrative logical blocks, modules, and circuits described in
connection with the embodiments disclosed herein may be uplemented or performed
with a processor, a DSP, an Application Specific Integrated Circuit {ASIC), an FPGA or
other programmable logic device, discrete gate or transistor logie, discrete hardware
components, or any combination thereof designed to perform the functions described
herein. A processor may be a microprocessor, but in the alternative, the processor may
be any conventional processor, controller, microcontroller, or state machine. A
processor may also be implemented as a comgbination of computing devices, ¢.g., a
combination of a PSP and a microprocessor, a plurality of microprocessors, one or
MOTe MICroprocessors in conjunction with a DSP core, or any other such configuration.
[80292] The embodiments disclosed herein may be embodied in hardware and in
msinictions that are stored n hardware, and may reside, for example, in Random Access
Memory (RAM}, flash memory, Read Ouly Memory (ROM), Electrically
Programimable ROM  {(EPROM), Elecirically Erasabic Programmable ROM
(EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of
computer readable medium known in the art.  An exemplary storage medium is coupled
to the processor such that the processor can read information from, and write
information 1o, the storage mediumn. In the alternative, the storage mediumn may be
mitegral to the processor. The processor and the storage medium may reside inan ASIC.
The ASIC may reside in a remote station. In the alternative, the processor and the
storage medium may reside as discrete components in a remote station, base station, or
Server.

160293} 1t s also noted that the operational steps described m any of the exemplary
embodiments herein are described to provide examples and discussion. The operations
described may be performed in numerous different sequences other than the iHustrated
sequences. Furthermore, operations described in a single operational step may actually
be performed n a number of different steps.  Additionally, one or more operational
steps discussed in the excraplary embodiments may be combined. It is to be undersiood
that the operational steps illusirated in the flow chart diagraras may be subject to
numerous different modifications as will be readily apparent to one of skill 1o the art.
Those of skill in the art will also understand that information and signals may be
epresented using any of a variety of different techoologies and technigues. For
example, data, fostructions, commands, imformation, signals, bits, symbols, and chips

that may be referenced throughout the above description may be represented by
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voltages, currents, electromagnetic waves, magnetic ficlds or particles, optical ficlds or
particles, or any combination thereot.

{60294} The previous description of the disclosure is provided to enable any person
skilled in the art to make or use the disclosure. Various modifications to the disclosure
will be readily apparent to those skilled in the art, and the generic principles defined
herein may be apphied to other variations without departing from the spirit or scope of
the disclosure. Thus, the disclosure is not intended to be limited to the examples and
designs described herein, but is 1o be accorded the widest scope counsisicnt with the

principles and novel features disclosed herein.
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What is claimed s

A wvector processing engine (VPE) configured to provide in-flight format

[

conversion of input vector data samaple sets for a vector processing operation,
comprising:
at least one vector data file configured to:
provide a fetched input vector data sample set in at feast one mput data
flow path for a vector processing operation; and
receive a resultant output vector data sample set from at least one ouiput
data flow path to be stored;
at least one format conversion circuiiry configured fo:
receive the nput vector data sarople set;
format convert the nput vector data sample set into a format-converied
inprut vector data sample set without the input vector data sample
set being re-feiched from the at least one vector data file; and
provide the format-converted mput vector data sample set on the at least
one input data flow path; and
at least one execution unit provided in the at least one input data fow path, the at
least one exccution unit configured to:
receive the format-converted input vector data sample set on the at least
one input data flow path; and
execute the vector processing operafion on the format-converted input
vector data sample set to provide the resultant cutput vector data

sample set on the at least one culput data flow path.

The VPE of claim 1, wherein the at least one vector data file is configured 1o

provide the input vector data sample set of a width of the at least one vector data
file in the at least one input data flow path for the vector processing
operation; and

receive the resultant cutput vector data sample set of the width of the at least one

vector data file from the at least one output data flow path to be stored.
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3. The VPE of claim 1, wherein:

T

the at least one vector data file 18 further configured to:
provide the input vector data sample sct on at least one vecior data file
output in the at least one mput data flow path; and
receive the resultant output vector data sample set on at least one vector
data file input in the at least one suiput data flow path;
the at least one format conversion circuitry is further configured to:
receive an interfeaved mput vector data sample set on at least one format
conversion circuilry mput in the at least one input data flow path
from the at least one vector data file; and
provide the format-converted fnput vector data saraple set on at least one
format conversion circuitry output 1o the at least one input data
flow path; and
the at least one execution unit condigured fo:
receive the format-converted input vector data sample set on at least one
execution unit nput in the at least one input data fow path; and
perform the veclor processing operation on the format-converted mput
vector data sample set to provide the resultant output vector data
sarople set on at least one execution unit oulput in the at least one

cutput data flow path.

4. The VPE of claim 1, wherein the at least one format conversion circuitry is
configured o receive the joput vector data sample set on the at least one joput data flow

path from the at least one vector data {ile.

5. The VPE of claim 1, wherein the at least one format conversion circuiity further
comprises a plurality of input vector data sample selectors, each configured to:

receive a first input vector data sample from the input vector data sample set and
a second input vector data sample from the nput vector data sample set, the second
input vector data sample being non-adjacent to the first mput vector data sample i the
mput vector data sample set; and

select between the first iapwt vector data sample and the second mpwt vector data
samplie to provide the format-converted tput vector data sample set on the at least one

mput data flow path.
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6. The VPE of claim 1, wherein:

the at least one format conversion cirenitry is further configured to sign-extend
the format-converied input vector data sample set info a sign-extended
format-converted input vector data sampie set without the jnput vecior
data sample set being re-fetched from the at least one vector data file;
the at least one format conversion circuitry is configured to provide the format-
converted input vector data sample sct on the at least one input data flow
path as the sign-extended format-converted wput vector data sample set
on the at least one input data {low path; and
the at least one execution unit is configured to:
receive the format-converted mput vector data sample set as a sigo-
extended format-converied input vector data sample st on the at
least one input data flow path; and
execute the vector processing operation on the sign-extended format-
converted input vector data sample set to provide the resultant
output vector data sample set on the at least one output data flow
path.
7. The VPE of claim 6, wherein the at least one format conversion circuitry further
comprises at least one sign extension circuitry further configured to sign extend the

format-converted input vector data sample set.

8. The VPE of claim 1, wherein:
the at least one format conversion circuifry is comprised of at least one de-
interleaving circuttry configured to:
format convert the input vector data sample set by de-interleaving the
nput vector data sample set into a de-interleaved mput vector
data sample set without the input vector data sample sct being re-
fetched from the at least one vector data file; and
provide the format-converted input vector data sample set coroprising the
de-interleaved nput vector data sample set on the at least one
input data flow path; and

the at feast one execution unit configured to:
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receive the format-converted input vector data sample set coroprising the
de-interleaved nput vector data sample set on the at least one
input data flow path; and

execute the vector processing operation on the format-converted input
vector data sample set comprising the de-interleaved mput vector
sample set to provide the resultant output vector data sample set

on the at least one output data flow path.

9. The VPE of claim 1, wherein the at least one format conversion circuitry is
configurable to be selectively provided in the at least one mnput data flow path between
the at least one vector data fie and the at least one execution unit based on a
programmable data path configuration for the at least one mput data flow path according

to a vector instruction to be executed by the at least one execution unit.

10, The VPE of claim 9, wherein the at least one format conversion circuifry is
configured to be reconfigured to be selectively provided in the at least one mput data
flow path based on the programmable data path configuration for the at least one mput
data flow path according to 2 next vector mstruction to be executed by the at least one

execution unit.

it The VPE of claim 10, wherein the at least one format conversion circuitry is
configured to be reconfigured 1o be selectively provided in the at least one input data
flow path on each clock cycle of the VPE to be executed by the at least one execution

it

12. The VPE of claim 1, further comprising at least one tapped-delay hne provided
between the at least one vector data file and the at lcast one format conversion circuitry
in the at feast one input data flow path,
the at least one tapped-delay line configured to:
receive the input vector data sample set from the at least one vector data
file; and
shift the input vector data sample set by a vector data sample width in a
plurality of pipeline registers for ecach processing stage among a

plurality of processing stages equal o a vumber of vector
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processing stages in the vector processing operation, to provide a

hifted input vector data sample set for each processing stage

& ped

among the plurality of processing stages in the at least one mput
data flow path to the at least one format conversion circuitry;
the at least one format conversion circuitry configured to:
receive the shified input vector data sample set for each processing stage
among the plurality of processing stages;
format convert the shifted input vector data sample set into a shifted
format-converted mput vector data sample set for each processing
stage among the plurality of processing stages; and
provide the shifted format-converted fnput vector data sample set on the
at least one input data flow path for each processing stage among
the plurality of processing stages; and
the at least one execution unit condigured fo:

receive the

(7]

hifted format-converted input vector data sample set on the
at least one input data flow path for each processing stage among
the plurality of processing stages; and

execute the vector processing operation on the shifted format-converted
input vector data sample set for each processing stage among the
phurality of processing stages to provide the resultant output

vector data sample set on the at least one output data flow path

13. The VPE of claim 12, wherem the at least one tapped-delay Iine comprises:
a shadow tapped-delay hne configured to:
receive the input vector data sample set from at least one vector data file
output in the at least one foput data flow path nto a shadow
plurality of pipeline registers; and
shifl the nput vector data sample set by the vector data sample width in
the shadow plurality of pipeline regisiers for ecach processing
stage nio a priroary tapped-delay Hne to provide the shifted input
vector data sample set; and
the primary tapped-delay line configured to provide the shifted mput vector data
sample set in the at least one input data flow path i each processing

stage in the phurality of processing stages.
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14. The VPE of claim 13, further comprising a plurality of input vector data sample

selectors, each of the plurality of input vector data sample sclectors assigned to a

pipeline register among the plurality of pipeline registers in the at least one tapped-delay
ling;

the plurality of input vector data sample selectors each configured to select

among an inpul vector data sample from the input vector data sample set

from the at lcast one vector data file and an input vector data sample

stored 1o an adjacent pipeline register, 1o store a shifted toput vector data

gister.

b

sample o an assigned pipeline re

15, The VPE of claim 14, wherein each of the plurality of input vector data saraple
selectors 1s configured to select a plurality of grouped input vector data samples
colfectively storing an input vector data sample word in a plurality of grouped adjacent
pipeline registers, to store a shifted tnput vector data sample word in a plorality of

grouped pipeline registers among the plurality of pipchine registers.

16. The VPE of claim 12, wherein the at least one tapped-delay hine is configurable
to be selectively provided 1o the at least one mput data flow path between the at least
one vector data file and the at least one execution unit based on 2 programmable mput
data path configuration for the at least one tapped-delay line according to a vector

instruction to be executed by the at least one exccution unit.

17.  The VPE of claim 16, wherein the at least one tapped-delay line is configured to
be reconfigured to be selectively provided in the at least one nput data flow path based
on the programumable input data path configuration for the at least onc tapped-delay line

according to a next vector ingtruction to be executed by the at least one execution unit,

18, The VPE of claim 17, wherein the at least one tapped-delay line is configured to
be reconfigured to be selectively provided in the at least oune input data flow path on

each clock cycle of the VPE to be executed by the at least one execution unit.
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19 The VPE of claim 1, further comprising at least one tapped-delay Ine in the at
least one mput data flow path,
the at lcast one tapped-delay line configured to:
receive the format-converted mput vector data sample set from the at
least one format conversion circuiiry; and

shift the format-converted input veclor data sample set by a vector data

sampie width in a plurality of pipeline registers for cach
processing stage among a plurality of processing stages cqual to a
number of vector processing stages in the vector processing
operation, to provide a shifled, format-converted input vector data
saropie set for cach processing stage among the plurality of
processing stages in the at least one input data flow path;
the at feast one execution unit configured {o:

receive the shifted, format-converted mput vector data sample set on the
at least one input data flow path for cach processing stage among
the plurality of processing stages; and

exeaite the vector processing operation on the shifted, format-converted
input vector data sample set for cach processing stage among the
plurality of processing stages to provide the resultant output

vector data sample set on the at least one output data flow path.

20. The VPE of claim 1, wherein the at feast one execution unit is configurable o
process different bit widths of mmput vector data samples from the input vector data
sample set based on a programmable input data flow path configuration for the at feast
ong exccution unit.
21. A wvector processing engime (VPE) configured to provide m-fhight format
conversion of imput vector data sample sets for a vector processing operation,
comprising:
at least one vector data file means, comprising:
a means for providing a feiched input vector data samiple set in at least
one input data flow path means for a vector processing operation;

and
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a means for receiving a resultant filtered output vector data sample set
from at least one output data flow path means to be stored;
at least one format conversion means, comprising:
a means for receiving the input vector data sample set;
a means for de-interleaving the input vector data sample set inio a
format-converted input vector data sample set without the input
vector data sample sel being re-fetched from the at least one
vector data file means; and
a means for providing the format-converted mput vector data sample set
on the at least one input data flow path means; and
at least one execution unit means provided io the at least one nput data flow
path means, comprising:
a means for receiving the format-converted inpat vecior data sample set
on the at least one input data flow path means; and
a vector processing means for vector processing the format-converted
mpit vector data sample set to provide a resultant output vector

data sample set on the at least one ouiput data flow path means.

22. A method of providing in-fhight format conversion of mput vector data sample

sels tor a vector processing operation in a vector processing engine (VPE), comprising:
fetching an input vector data sample set from at least one vector data file in at
feast one mput data flow path for a vector processing operation;

{ormat converling the mput vector dala sample set in at least one format
conversion circuifry in the at least one input data flow path to provide a format-
converted input vector data sample set without the input vector data sample set being re-
fetched from the at least one vector data file;

providng the format-converted input vector data sample set on the at least one
input data flow path to at least one execution unit;

exccuting the vector processing operation on the format-converted input vector
data sample set n the at least one execution unit to provide a resultant output vector
data sample set in at least one ouiput data flow path; and

storing the resultant output vector data sample set from the at least one cutput

data flow path m the at least one vector data file,
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23. The method of claim 22, further comprising:
receiving a first input vector data sample from the mput vector data sample set
and a second input vector data sample from the input vector data sample
set non-adjacent to the first foput vector data sample in the input vecior
data sample set; and
selecting between the first input vector data sample and the second mput vector
data sample to provide the format-converted input vector data sample set

on the at least one nput data flow path.

24. The method of claim 23, wherein format converting the input vector data sample
set further comprises sign-extending nput vector data sample set from the at least one
mput data flow path in at least one format conversion circuiry in the at least one mput
data flow path to provide a sign-exiended, format-converted mput vector data sample set
without the input vector data sample set being re-fetched from the at least one vector

data file.

25. The method of claim 22, further comprising selectively providing the at least
one format conversion circuilry in the at least one toput data flow path between the at
least one vector data file and the at least one execution unit based on a prograrmomable
mput data path configuration for the at least one input data {low path according to a

vector instruction to be executed by the at least one execution unit,

26. The method of claim 25, further comprising reconfiguring the at least one format
conversion circuitry to be selectively provided in the at least one nput data flow path
based on the programumable input data path configuration for the at least one input data
flow path according to a next vector instruction te be execuied by the at least one

execution unit.

27. The method of claira 26, comprising reconfiguring the at least format conversion
circutiry to be selectively provided in the at least one input data flow path on each clock

cycle of the VPE to be executed by the at least one exccution unit.
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28. The method of claim 22, further comprising:

receiving the fetched inpul vector data sample set in the at least one input data
flow path into at least one tapped-delay line provided in the at least one
input data flow path between the at least one vector data file and the at
east one execution unit;

shifting the mput vector data sample set by a vector data sample width in a
plurality of pipeline registers for cach processing stage among a plurality
of processing stages equal to a number of vector processing stages in the
vector processing operation, to provide a shifted mput vector data sample
set for each processing stage among the plurality of processing stages in
the at least one input data flow path to the at least one format conversion
circuitry;

receiving the shifted input vector data sample set for cach processing stage
among the plurality of processing siages on the at icast one input daia
flow path from the at least one vector data file;

{ormat-converting the input vector data sample set by format-converting the
shifted input vector data sample set {rom the at least one input data flow
path in the at least one format conversion circuilty in the at least one
mput data flow path to provide a shified format-converted mput vector
data sample set without the input vector data sample set being re-fetched
from the at least one vector data file for cach processing stage among the
phlurality of processing stages;

providing the shifted format-converted input vector data sample set on the at
feast one input data {low path for cach processing stage among the
plurality of processing stages;

receiving the shifted format-converted input vector data sampic set on the at
least one mput data flow path for each processing stage among the
plurality of processing stages; and

exccuting the vector processing operation by executing the vector processing
operation on the shifted format-converted mput vector data sample set
for each processing stage among the plurality of processing stages to
provide the resultant output vector data sample set on the at least one

output data flow path,
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29. The method of claim 28, further comprising selectively providing the at least
one tapped-delay line in the at least one input data flow path between the at least one
vector data file and the at least one execution unit based on a programmable input data
path configuration for the at least one tapped-delay line according to a vector instruction

to be executed by the at least one execution unit.

30. The method of claim 28, further comprising reconfiguring the at lcast one
tapped-delay line fo be selectively provided in the at least one foput data flow path
based on the programwmable input data path configuration for the at least one tapped-
delay hne according to a next vector instruction o be executed by the at least one

executiion umnit.
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FETCHING AN INPUT VECTOR DATA SAMPLE SET 5 V\;@ %%(8 FROM
VECTOR DATA FILES ':(82 DESZ&%INTO INPUT DATA FLOW PAT
FOR A FILTER VECTOR PROCESSING OPERATION

Y

RECEIVING THE FETCHED INPUT VECTOR DATA SAMPLE SET (86(0)-86 X))
IN THE INPUT DATA FLOW PATHS (80( T) H}) FROM THE VECTOR DATA
FILES (82(0)-82(X)) INTG THE TAPP gS)r
PROVIDED IN THE INPUT DA A FE.OW PATHS (80{0)- 8%)8 } BETWEEN THE VECTOR
DATAFILES 55824_0? 'I) AND THE EX CU ION UN
AS CURRENT INPU

r

PROVIDING THE SHIFTED VECTOR DATA SAMPLE SET 868&?}\]868 X&
TO THE EXECUTION UNITS (84(0)-84(X}) IN A CURRENT PIPELI

Y

PERFORMING THE FILTER VECTOR PROCESSING OPERATION
ON THE SHIFTED INPUT VECTOR DATA SAMPLE SET (86S(0 R-SSS(I_ 23
IN THE EXECUTION UNITS (84(0)-8 {S& ) INTHE CURRENT PIPE AGETO
GENERATE RESULTANT FILT RV CT

ACCUMULATING THE SHIFTED INPUT VECTOR DATA
SAMPLE SET 868 0)-865(X}} WITH A PRIOR RESULTANT FILTER QUTPUT VECTOR
DATA SAMPL A941{0|2 4&)2 ) IN THE CURRENT PIPELINE STAGE TO PROVIDE
THE PRIOR RESULT ILTER VECTOR QUTPUT DATA SAMPLE SET (94(0}-84(X)}
FOR THE FILTER VECTOR PROCESSING OPERATION

L 106
DELAY LINES
ETS 84 )i 84g 1
ECTOR DATA SAMPLE SET (86{0)-86(X}}
Y 108
L — 110
NE 8
QUTPUT DATA SAMPLE SET (84(0}-94(X})
L 112

NO

ANOTHER PIPELINE STAGE
FOR FILTER VECTQR PROCESSING OPERATION COMPRISING
THE NUMBER OF FILTER TAPS OF THE FILTER VECTOR PROCESSING
OPERATION (102}, REMAINING TQ PROCESS?

116
4

SHIFTING THE SHIFTED INPUT VECTOR DATA SAMPLE SET ges_lngsssg[ E)&
TO THE NEXT FILTER TAP IN THE TAPPED-DELAY LINE (7 FIL
VECTOR PROCESSING OPERATION TO PROVIDE THE Sf EF £D INPUT VECTOR
DATA SAMPLE SET (865(0)-86S(X)) AS THE CURRENT INPUT VECTOR DATA
SAMPLE SET (86(0}-86(X))

PROVIDING THE PRIOR RESULTANT FILTER VECTOR DATA SAMPLE SET
AS THE RESULTANT FILTER VECTOR QUTPUT DATA SAMPLE SET (94(0)-94(X))
IN THE QUTPUT DATA FLOW PATHS ngaéo gagr {%TO THE VECTOR DATA
FILES (82(0)-82(X)} TO BE STORED IN THE VECTOR DATA FILES (82(0)-82(X))

118

FIG. 5
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FETCHING AN INPUT VECTOR DATA SAMPLE SET (86(0)-86(X)) — 142
FROMVECTOR DATAFILES (82(0-820X) INTO INPUT DATA FLOW FATHS
(80{0)-80(X)) FOR A CORRELAT TOR PROCESSING OPERATION

!

RECEIVING THE FETCHED INPUT VECTOR DATA SAMPLE SET (86(0186(0X)) |~ %4
IN THE INPUT DATA FLOW PATHS (80(0)-80(K) INTO THE TAPPED-DELA
LINES (78) PROVIDED IN THE INPU LOW PATHS (80(0)-80(X))
ETWEEN VECTOR DATA FILES éaz (0)-82(X)) AND
THE EXECUTION UNITS ( 84%)% é AS | PUT
VECTOR DATA SAMPLE SET

‘l'«

146
PROVIDING THE SHIFTED INPUT VECTOR DATA SAMPLE SET 863 0)-865(X)) é
FROM THE PRIMARY TAPPED-DELAY LINE q%l\} ) INTHE ENPU FLO
PATHS (80(0)-80(X)} TO THE EXECU UNITS (84(0) ))
N'A'CURRENT PIPELINE STAGE

!

PROVIDING A NEXT REFERENCE VECTOR DATA SAMPLE SET (1 (Il:) 13082 148
TO THE EXECUTION UNITS (84(0)-84(X)) IN THE CURRENT PIPELINE STA

!

CORRELATING THE SHIFTED INPUT VECTOR DATA SAMPLE SET 8868 g -86S(X)) b 150
WITH THE NEXT REFERENCE VECTOR DATA SAMPLE SET (13 iglg
[N THE EXECUTION UNITS &84}50 )-84(X)) IN THE CURREN LIN

STAGE TO GENERATE A CURRENT CORRELATION OUTPUT VECTOR
DATA SAMPLE SET
®
FROM
TOFIG. 128 FIG. 12B
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FROM
FIG. 12A

? /152

ACCUMULATING THE CURRENT CORRELATION QUTPUT VECTOR DATA
SAMPLE SET WITH A PRIOR RESULTANT CORRELATION QUTPUT VECTOR DATA
SAMPLE SET IN THE CURRENT PIPELINE STAGE TO PROVIDE THE PRIOR
RESULTANT CORRELATION VECTOR DATA SAMPLE SET

¢ 154

ANOTHER PIPELINE STAGE
REMAINING FOR THE CORRELATION VECTOR

NO

PROCESSING OPERATION?

SHIFTING THE CURRENT INPUT VECTOR DATA SAMPLE SET (86 0258682%
TO THE NEXT CORRELATION SAMPLE IN THE SHIFTED INPUT VECTOR DATA
SAMPLE SET (865(0)- GSéX ) TO PROVIDE THE SHIFTED INPUT
VEC OR ATA SAMPLE SET (865(0)-86S(X))

PCT/US2014/065200

TO
FIG. 12A

E

PROVIDING THE PRIOR RESULTANT CORRELATION VECTOR DATA SAMPLE SET
AS THE RESULTANT CORRELATION OUTPUT VECTOR DATA SAMPLE

SET _[(13253'&132?(2 N OUTPUT DATA FLOW PATHS (98(0)- QBH_) TOTHE

VECTOR DATA FILES (8 FILI(:'g )TO BE STORED I TH VECTOR DATA

FIG. 12B
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13 | Y26 Y27
12 [ Y24 Y25
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FETCHING INPUT VECTOR DATA SAMPLE SET V\SOI-)’ (ﬁx
FROMVECTOR DATA FILES E&Z_%—SZ%(@ IN INPUT DATA FL AT
FOR AVECTOR PROCESSING OPERATION

!

FORMAT CONVERTING (E.G., DE-INTERLEAVE) THE INPUT VECTOR DATA SAMPLE
SET (88(0)86(X)) FROM THE INCUT DATA FLOW PATHS gso 0)-80(X))
IN FORMAT CONVERSION CIRCUITRY é159 8)
INTHE INPUT DATA FLOW PATHS (80(0) 80(X
T0 PROVIDE A FORMAT-CONVERTED INPUT VECTOR DA SAMPLE SET
(86F(0} 85 (gxgz WITHOUT THE INPUT VECTOR DATA SAMPLE SET (gﬁ& -86(X))
EING RE-FETCHED FROM THE VECTOR DATA FILES (82(0

!

PROVIDING THE FORMAT-CONVERTED INPUT VECTOR DATA SAMPLE
SET (86F(0)-86F (X)) ON THE INPUT DATA FLOW PATHS (80(0)-80(X))
TO THE EXECUTION UNITS (84(0)-84(X))

Y

EXECUTING A VECTOR PROCESSING OPERATION ON THE FORMAT-CONVERTED
INPUT VECTOR DATA SAMPLE SET (86F(0)-86F(X)) IN THE EXECUTION UNITS
(E)ra4(] 2) 7O PROVIDE A RESUL ANT o TPUT VECTOR DATA
SAMPL 0)-172(X)) ON THE OUTPUT DATA FLOW PATHS (98(0)-98(X))

|_— 168

Y

STORING THE RESULTANT QUTPUT VECTOR DATA SAMPLE SET (172(0)-172(X))
FROM THE OUTPUT DATA FLOW PATHS (98§%—98(X))
IN THE VECTOR DATA FILES (82(0)-82(X))

FIG. 20
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PROVIDING FETCHED INPUT VECTOR DATA SAMPLE SET seh)r 6)
FROM AT LEAST ONE VECTOR DATA FILE (82(0)-82 x% IN INP.
FLOW PATHS (80(0)-80(X)) FOR A VECTOR PROCESSING OPERATION

_— 204

!

RECEIVING THE INPUT VECTOR DATA SAMPLE SET (86(0)-86(X)) ON THE
INPUT DATA FLOW PATHS (80(0) O{xg ) IN THE EXECUTION UNITS (84(0)-84(X)
PROVIDED IN THE INPUT DATA FLOW PATHS (80(0)-80(X))

— 206

!

EXECUTING A VECTOR PROCESSING OPERATION ON THE RECEIVED
INPUT VECTOR DATA SAMPLE SET g;e (0)-86(X)) TO PROVIDE A RESULTANT
OUTPUT VECTOR DATA SAMPLE s T (194(0)-194(X))

ON THE OUTPUT DATA FLOW PATHS ((98(0)-98(X)) }

L~ 208

Y

REORDERING THE RESULTANT QUTPUT VECTOR DATA SAMPLE SET
(194(0}- 194(3%) INTO A REORDERED RESULTANT QUTPUT VECTOR DATA
SA PLE V(é94R -194R X WITHOUT THE RESULTANT OUTPUT

DATA SAMPLE SET 5_1 94&_%194&){2)
BEING STORED IN THE VECTOR DA -82(X

Y

STORING THE REORDERED RESULTANT FILTERED OUTPUT VECTOR DATA
SAMPLE SET (194R1 |\R 9413/(E 8 IN THE QUTPUT DATA FLOW PATHS (98(0)-98(X))
THE VECTOR DATA FILES (82(0)-82(X))

FIG. 24
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PROVIDING FETCHED INPUT VECTOR DATA SAMPLE SET (86(0)-86(X
IN INPUT DATA FLOW PATHS @OH_ )) FORAVE TO
PROCESSING OPERATION FROM OR D TA FILES (82(0

!

RECEIVING THE INPUT VECTOR DATA SAMPLE SET ﬁ?}h? B6(X )2 ON THE
INPUT DATA FLOW PATHS (80(0)-80(X)) IN EXECUTIO i
PROVIDED IN THE INPUT DATA FLOW PATHS (80(0 ( )

Y

EXECUTING THE VECTOR PROCESSING OPERATEON
ON THE INPUT VECTOR DATA SAMPLE SET {8668 ﬁ-n g)
IN EXECUTION UNITS (84(0 &M? IN THE INPUT DATA FLOW PATHS (80(0)-8
TO PROVIDE A RESUL AN UT VECTOR DATA SAMPLE SET ( 228( )
ON THE OUTPUT DATA FLOW PATHS(98(0)-98(X))

Y

DESPREADENG THE RESULTANT QUTPUT VECTOR DATA SAMPLE SET
é E,& -228(X}) IN THE DESPREADING CIRCUITRY (230) TO PROVIDE
A DESPREAD RES LTANT QUTPUT VECTOR DATA SAMPLE SET (229(0)-229(2))
[N QUTPUT DATA FLOW PATHS }&98&0 )-98(X)) WITHOUT THE
RESULTANT OUTPUT VECTOR DATA SAMPLE S 228 -228 )} BEING
STORED [N THE VECTOR DATA FILES 82

Y

STORING THE DESPREAD RESULTANT OUTPUT VECTOR DATA
SAMPLE SET (229(0)-229(Z)) FROM THE OUTPUT DATA FLOW PATHS (98(0)-98(X))
IN THE VECTOR DATA FILES (82(0)-82(X))

FIG. 28
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PROVIDING FETCHED INPUT VECTOR DATA SAMPLE SET (86(0)-86(X
IN INPUT DATA FLOW PATHS @OH_ )) FORAVE TO
PROCESSING OPERATION FROM OR D TA FILES (82(0

!

RECEIVING THE INPUT VECTOR DATA SAMPLE SET ﬁ%ﬁ 2 )} ON THE
INPUT DATA FLOW PATHS (80(0)-80(X)) IN EXECUTIO ETS 4(X))
PROVIDED IN THE INPUT DA A FLOW PATHS (80(0

!

EXECUTING THE VECTOR PROCESSING OPERATION ON THE INPUT VECTOR
DATA SAMPLE SET (86(0)- G\A;(B IN EXECUTION UNITS (84( E84
INTHE INPUTD TA LOW FATHS (80(0) SOI(EX%) TO PROVIDE
A RESULTANT QUTPUT VECTCR DATA SAMPL 58292 )-292(X))
ON THE QUTPUT DATA FLOW PATHS (98(0

Y

MERGING THE RESULTANT QUTPUT VECTOR DATA SAMPLES 292
FROM RESULTANT QUTPUT VECTOR DATA SAMPLE SET é BE 92(X
[N THE MERGING CIRCUITRY (294(0)-294( XQTO PROVI
A MERGED RESULTANT QUTPUT VECTOR DA A SAMPLE SET (296(0)-296(Z
[N QUTPUT DATA FLOW PATHS 1&98&0 )-98(X)) WITHOUT TH
RESULTANT QUTPUT VECTOR DATA SAMPLE S 292 -292 ) BEING
STORED N THE VECTOR DATA FILES 82

Y

STORING THE MERGED RESULTANT OUTPUT VECTOR DATA
SAVIPLE SET (296(0)-296(2)) FROM THE OUTRUT DATA FLOW PATHS (38(0}98(X)
IN THE VECTOR DATA FILES (82(0)-82(X))

FIG. 32
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RECEIVING A PLURALITY OF MULTIPLY VECTOR DATA SAMPLE
SETS (34(Y)-34(0)) OF AWIDTH OF A VECTOR ARRAY

IN AN INPUT DATA PATH AMONG A PLURALITY OF INPUT DATA
PATHS (A3-CO) IN AN INPUT PIPELINE STAGE (460(0))

Y

RECEIVING THE MULTIPLY VECTOR DATA SAMPLE SETS (34(Y)-34(0))
FROM THE PLURALITY OF INPUT DATA PATHS (A3-C0)
IN A PLURALITY OF MULTIPLIER BLOCKS (462(A)-462(0))

Y

MULTIPLYING THE MULTIPLY VECTOR DATA SAMPLE SETS (34(Y)-34(0))
TO PROVIDE MULTIPLY VECTOR RESULT OUTPUT SAMPLE SETS
(468(A)-468(0)) IN MULTIPLY OUTPUT DATA PATHS (470(A)-470(0))

AMONG A PLURALITY OF MULTIPLY OUTPUT DATA PATHS (470(A)-470(0)),
BASED ON PROGRAMMABLE DATA PATH CONFIGURATIONS
FOR THE MULTIPLIER BLOCKS (462(A)-462(0))
ACCORDING TO A VECTOR INSTRUCTION EXECUTED
BY THE VECTOR PIPELINE STAGE (460(1))

Y

RECEIVING THE MULTIPLY VECTOR RESULT OUTPUT SAMPLE
SETS (468(A)-468(0)) FROM THE PLURALITY OF MULTIPLY
OUTPUT DATA PATHS (470(A)-470(0)) IN A PLURALITY
OF ACCUMULATOR BLOCKS (472(A)(1)-472(0)(0)

Y

ACCUMULATING THE MULTIPLY VECTOR RESULT OUTPUT SAMPLE
SETS (468(A)-468(0)) TOGETHER TO PROVIDE ACCUMULATOR
OUTPUT SAMPLE SETS (476(A)(1)-476(0)(0)) BASED ON PROGRAMMABLE
DATA PATH CONFIGURATIONS FOR THE ACCUMULATOR
BLOCKS (472(A)(1)-472(0)(0)) ACCORDING TO A VECTOR INSTRUCTION
EXECUTED BY THE SECOND VECTOR PIPELINE STAGE (460(2))

Y

PROVIDING THE ACCUMULATOR QUTPUT SAMPLE SETS (476(A )( )-476(0)(0))
IN THE PROGRAMMABLE OUTPUT DATA PATHS (474(A)(1)-474(0)(0))

Y

RECEIVING THE ACCUMULATOR QUTPUT SAMPLE SETS
(476(A)(1)-476(0)(0)) FROM THE ACCUMULATOR BLOCKS
(472(A)(1)-472(0)(0)) IN AN OUTPUT VECTOR PIPELINE STAGE (460(3))

FIG. 36
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