
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2003/0200520 A1 

Huggins et al. 

US 2003O200520A1 

(43) Pub. Date: Oct. 23, 2003 

(54) 

(76) 

(21) 

(22) 

(63) 

(51) 

(52) 

METHODS AND SYSTEMS FOR DESIGNING 
INTEGRATED CIRCUIT GATE ARRAYS 

Inventors: Alan H. Huggins, Gilroy, CA (US); 
David E. Schmulian, San Jose, CA 
(US); John MacPherson, Fremont, CA 
(US); William L. Devanney, Menlo 
Park, CA (US) 

Correspondence Address: 
Clear Logic, Inc. 
5870 Hellyer Avenue 
San Jose, CA 95138 (US) 

Appl. No.: 09/939,015 

Filed: Aug. 24, 2001 

Related U.S. Application Data 

Continuation of application No. 09/211,515, filed on 
Dec. 14, 1998, now Pat. No. 6,311,316. 

Publication Classification 

Int. Cl. ............................................... G06F 17/50 

U.S. Cl. ................................................. 716/16; 716/17 

AUTOMATICALLY 
BASEPD 
DEFENTON OR PROGRAMMING 

DATA FELE INTO CONNECTION 
408 DATA FLE 

410 

CONNECTION: 
CONFIGURATION 

DATALE 

BEGIN PLD OASC 
CONVERSION 

DECODEBISTREAM 

(57) ABSTRACT 

Methods of designing integrated circuit gate arrays include 
the Step of generating a netlist for a gate array integrated 
circuit having at least first logic and Signal resources therein, 
directly from bitstream data which characterizes a program 
mable logic device having a first operational functionality 
and the first logic and Signal resources as well. The gener 
ating Step is also followed by the Step of using the netlist to 
configure the first logic and Signal resources within the gate 
array integrated circuit to provide the first functionality. A 
preferred integrated circuit design System is also provided 
and includes a programmable logic device having pre 
programmed logic and Signal resources therein and a gate 
array device having base logic and Signal resources therein 
which are equivalent to the unprogrammed logic and Signal 
resources of the programmable logic device. A computer 
based apparatus is also provided for decoding a bitstream 
that characterizes the programmable logic device having a 
first operational functionality when programmed, into a 
netlist that designates electrical connections in the gate array 
device when wired to have the first operational functionality, 
and to provide a method for generating Scan-based test 
vectors to Verify the first functionality. Accordingly, when 
Switching from a functional programmable logic device 
(PLD) implementation to a gate array implementation, it is 
unnecessary to Start the design process over from Scratch by 
performing logic Synthesis, place and route and other front 
end design operations associated with conventional gate 
array design techniques. 

-400 

USER PLD 
BITSTREAM OR 
PROGRAMMING 

FLE 
412 

BASE GATE AUTOMATICALLY 
ARRAY CONVERT CONNECTION LASER 

CONNECTION DATA TO LASER USE FUSE 
COORDINATE COORDINATES AND FILE 

DATA MASKDATA 440 
435 430 

---- 445 

BASE GATE MASK 
ARRAY AUTOMATICALLY ORLASER MASK 

CREATE DEVICE DEVICE DEVICE 
SIMULATON MODEL FROM REQUIRED 

MODEL CONNECTION DATA t CONVERT 
472 470 LASER OR 

LASER CONNECTION 
DATAFELE TO 
MASKMAKING 

DATA 
450 

GATE ARRAY MODEL MASKMAKING 
MODIFIED BY DATA FLE 

CONNECTION DATA 452 
480 

MAKEMASKS 
AUTOMATICALLY 460 

CREATE TEST VECTORS MM 

490 FABRICATE | FABRCAE 
LASERED MASKED 

TEST VECTORFLE DEVICE DEVICE 
495 448 465 

  

      

  







Oct. 23, 2003 Sheet 3 of 27 US 2003/0200520 A1 Patent Application Publication 

r——), 
(LHV HOIYjd) 

Z 

SO|- 

872 SILNIV/>]|SNOO &, CIERHEILTTV/ E18 O L SCIEEN LVHWA 

/TCIH 

OGZ 

ZZZ 1.SIT LEIN GJEJLTIOR] OZZ 

TOIH (JO 

ZOZ 

  

  

  

  

      

    

  

  

  

  

  

  

  

  

  

  

  



Oct. 23, 2003 Sheet 4 of 27 US 2003/0200520 A1 Patent Application Publication 

(LHV HORJd) "EZ "SO|–| 
    

    

  

      

  

  

  





Oct. 23, 2003 Sheet 6 of 27 US 2003/0200520 A1 Patent Application Publication 

  

        

    

  

    

  

  

  

  

  

  

  

  

    

  

  



Patent Application Publication Oct. 23, 2003 Sheet 7 of 27 US 2003/0200520 A1 

400 
BEGIN PLD TO ASIC -1 

CONVERSION 
401 

AUTOMATICALLY 
BASE PLD DECODE BITSTREAM 
DEFINITION OR PROGRAMMING 

DATA FILE INTO CONNECTION 

408 DAAFILE 

USER PLD 
BITSTREAMOR 
PROGRAMMING 

FILE 
412 

CONNECTION/ 
CONFIGURATION 

DATA FILE FIG. 4. 
415 

BASE GATE AUTOMATICALLY 
ARRAY CONVERT CONNECTION 

CONNECTION DATA TO LASER FUSE 
COORDINATE COORDINATES AND 

DATA MASK DATA 
435 430 

------- 445 

BASE GATE MASK 
ARRAY AUTOMATICALLY ORLASER MASK 

CREATE DEVICE DEVICE DEVICE 
SIMULATION MODEL FROM RECURED 

MODEL CONNECTION DATA ? CONVERT 
472 470 LASER OR 
w------- LASER CONNECTION 

DATA FLE TO 
MASKMAKING 

DATA 
450 

GATE ARRAY MODEL MASKMAKING 
MODIFIED BY DATA FLE 

CONNECTION DATA 452 
480 

MAKE MASKS 
AUTOMATICALLY 460 

CREATE T5, VECTORS 
FABRICATE | FABRICATE 
LASERED MASKED 

TEST VECTOR FILE DEVICE DEVICE 
495 448 465 

  

  

    

  

    

    

  

  



Patent Application Publication Oct. 23, 2003 Sheet 8 of 27 US 2003/0200520 A1 

I/O ELEMENT-IOE 

i FASTTRACKOE 
520-N- i. : INTERCONNECT 

41 30 
CASCADE-N / 

CARRY-IN 

660V DAIA1-Look-UP DATA2 2 CARRY CASCADE LE-OUT 
EE ABH CHAINH CHAIN DATA4 540 

\ 
LABCTRL1 
LABCTRL2 

540 
\ 
LABCTRL3 
LABCTRL4 

PRESET 
CLEAR/ 

511 CARRYOUT 
CASCADE-OUT 

  

  

    

  



Patent Application Publication Oct. 23, 2003 Sheet 9 of 27 US 2003/0200520 A1 

DEDICATED ROW 
INPUTS INTERCONNECT 

SSM) 
CONTROL SIGNALS INTERCONNECT 

540 

CARRY-OUT 
570 AND 

52O / CASCADE-OUT V 

FIG. 5B. 
503 

  
  



Patent Application Publication Oct. 23, 2003 Sheet 10 of 27 US 2003/0200520 A1 

  



Patent Application Publication Oct. 23, 2003 Sheet 11 of 27 

F.G. 6 
Bitstream file layout 

Bit position 
ReC it 1 11 21 211 221 

Header record 
Top I/O bits 

US 2003/0200520 A1 

Left f() 
bits 

Logic bits 

117 
118 
119 
120 
121 
122 
123 
124 

194 
195 
196 
197 
198 
199 
2OO 
201 
2O2 
2O3 
204 
205 
2O6 
2O7 
208 

Bottom f() records 

Trailer 
record 

Right I/O 
BitS 

6 3 O 

6 4 O 
rare-am 

  

  





Patent Application Publication Oct. 23, 2003 Sheet 13 of 27 US 2003/0200520 A1 

FIG. 8 
LB BASE COORDINATES 

ROW Base Coordinates 
Row # Y-Coord 

1 2050 

2 105O 8OO 

3 50 

4 -950 

5 - 1950 

Column Base coordinates 
Col # X-Coord 

1 -2100 
2 - 1910 
3 -1720 
4 - 1530 
5 - 1340 850 
6 - 1 150 
7 -96O 
8 -77O 
9 -580 
10 -390 
11 -200 
12 -10 
13 18O 
14 37O 
15 560 
16 750 
17 940 
18 1130 
19 1320 
20 1510 
21 17OO 
22 1890 



US 2003/0200520 A1 Patent Application Publication Oct. 23, 2003 Sheet 14 of 27 

  

  

  

  

  

  



Patent Application Publication Oct. 23, 2003 Sheet 15 of 27 US 2003/0200520 A1 

F.G. 1 OA 

X-Sun-Data-Type: text 
X-Sun-Data-Description: text 
X-Sun-Data-Name: text 
X-Sun-Charset: us-ascii 
X-Sun-Content-Lines: 485 

module le 111 (SCANCLK, SCANCLKB, SDi, CAPTURE, SHIFT, UPDATE, TEST, 
NORMAL, CASCADEN, 

DATA1, DATA2, DATA3, DATA4, CARRYIN, C2N, ABCTR1, LABCTR2, 
LABCTR3, LABCTR4, POR, SDOUT, LEOUT, CASCADEOUT, 

CARRYOUT, C2OUT), 

input SCANCLK, 
input SCANDLKB; 
input SDi, 
input CAPTURE; 
input SHIFT, 
input UPDATE; 
input TEST; 
input NORMAL, 
input CASCADEEN; 
input DATAt; 
input DATA2; 
input DATA3, 
input DATA4; 
input CARRYIN; 
input C2EN, 
input LABCTR1; 
input LABCTR2; 
input LABCTR3; 
input LABCTR4; 
input POR; 

output SDOUT; 
output LEOUT; 
output CASCADEOUT; 
output CARRYOUT; 
output C2OUT; 

wire pr100, pr101, pr102, pr103, pr104, pr105, pr106, pr107, pr108, 
pr109, pr110, pr111, pr112, pr113, pr114, pr115; 

wire n1, m2, n3, n.4, n.5, né, n7, n.8, n9, n.10, n11, n.12 
n13, n.14, n.15, in 16, n18, n19, n2O, n21, n22, n23, n24, n25, 
n26, n27, n28, n29, n30, n31, n32, n33, n34, n35, n36, n37, 
n38, n39, n42, na3, n.44, n.45, ná.6, na7, n48, n49, n.50, 
n51, n52, n53, n54, n55, n56, tocarry 1, regOutb, tocas, 





Patent Application Publication Oct. 23, 2003 Sheet 17 of 27 US 2003/0200520 A1 

FIG 10C 
isCan 27 (DATAIN (n51), 

SDI (n39), 
SCANCLK (SCANCLK), 
SCANCLKB (SCANCLKB), 
.CAPTURE (CAPTURE), 832 
SHIFT (SHIFT), 
UPDATE (UPDATE), 
TEST (TEST), 
NORMAL (NORMAL), 
SDO (SDOUT), 
DATAOUT (regoutb) 
), 

iscan i 25 (DATAIN (n37), 
SDI (n42), 

SCANCLK (SCANCLK), 
SCANCLKB (SCANCLKB), 

CAPTURE (CAPTURE) 830 
SHIFT (SHIFT), 
UPDATE (UPDATE) 

TEST (TEST), 
.NORMAL (NORMAL), 
SDO (n39), 
DATAOUT (CASCADEOUT) 
), 

iscan i 26 (DATAIN (tOcarry1), 
.SD1 (SDI), 

SCANCLK (SCANCLK), 
SCANCLKB (SCANCLKB), 
CAPTURE (CAPTURE), 831 
SHIFT (SHIFT), 
UPDATE (UPDATE) 
TEST (TEST) 
.NORMAL (NORMAL) 
SDO (n42), 
DATAOUT (n36) 



Patent Application Publication Oct. 23, 2003 Sheet 18 of 27 US 2003/0200520 A1 

FIG 1 OD 
not i 83 (n44, n43); 
not 82 (nA5, n44); 

and 79 (n46, nA5, DATA3); 
nori 62 (n53, n44, DATA3); 

nori 61 (n52, n46, n47, POR); 
not i 80 (n49, n48); 
not i 81 (n50, n49); 

finot 23 (LEOUT, n.40); 
not i 88 (n.17, regoutb); 
not i 89 (nA.0, regoutb); 

wire dummy; 

leff 29 (.DATAIN (CASCADEOUT), 
CLEAR (n52), 

PRESET (n53), 840 
..CLK (n50), 
..CLKB (n49), 
DATAOUT (dummy), 
DATAOUTB (n51) 

); 





Patent Application Publication Oct. 23, 2003 Sheet 20 of 27 US 2003/0200520 A1 

F.G. 1 OF 
flassign (strong1, strongO) in 18 F DATA1, I/CORNORM> 
flassign (strong1, strongO) in 18 = n.17; |<QUPDWND 

f/assign (strong1, strong0) n54 = DATA1, If CRUPDWNe 
lfassign (strong1, strong0) n54 = DATA2; fferNORMD 

flassign (strong1, strongO) n55 = DATA3; (l-PNOCZ 
I?assign (strong1, strongO) n55 = CARRYIN; if-PCD 

flassign (strong1, strong0) n56 = n29, If CSNORMe 
f/assign (strong1, strong0) n56 = DATA3, lfaSUPOWN) 

flassign n32 = WCC, f/3NVCCD 
(lassign (strong1, strongO) in32 = CASCADEIN; If CN CASCN> 
(lassign (Strong1, strongO) in32 = tocas, IgMMODE> 

flassign (strong1, strongO) LEOUT = n.40; //<KREG> 
//assign (strong1, strongO) EOUT = CASCADEOUT, Il-KUNREGD 

|lassign na3 = LABCTR1; //g, JPRED 
lfassign na-3 = gnd; If-JPRENOT> 

f/assign (strong1, strongO) n47 = LABCTR1; 114MCT1> 
fiassign (strong1, strong0) na7 = LABCTR2; fl-MCT2> 

flassign (strong1, strongO) n48 = LABCTR3;ff-LCT3> 
flassign (strong1, strongO) n48 = LABCTR4; //gLCT4> 
|lassign na:8 = gnd; Ifa GNDD 

end module 





Patent Application Publication Oct. 23, 2003 Sheet 22 of 27 US 2003/0200520 A1 

F.G. 12 

assign (strong1, strongO) in 18 - DATA1; If CONORMD 
Itassign (strong1, strongO) in 18 = n.17; // COUPOWND 

|lassign (strong1, strong0) n54 = DATA1; If CRUPDWND 
assign (strong1, strongO) n54 F DATA2; f/<RNORMs 

assign (strong1, strong0) n55 F DATA3, //<PNO CID 
flassign (strong1, strongO) n55 = CARRYIN; ff-PC> 

assign (strong1, strongO) n56 = n29, If CSNORMD 
|lassign (strong1, strongO) n56 = DATA3, If-SUPOWND 

f/assign n?2 = WCC, //<NVCCD 
|lassign (strong1, strongO) in32 = CASCADEN; //<NCASCIND 
assign (strong1, strong0) n32 = tocas; //CNMODE> 

assign (strong1, strong0) LEOUT = nA.0; //<KREG> 
Ilassign (strong1, strong0) LEOUT = CASCADEOUT; 174KUNREG> 

assign na3 = LABCTR1; //<JPRE) 
lfassign nat3 = gnd; /feJPRENOT> 

|lassign (strong1, strongO) n47 = LABCTR1; 114MCT1> 
|lassign (strong1, strongO) n47 = LABCTR2; 17-MCT2> 

Itassign (strong1, strongO) n48 = LABCTR3; //<LCT3> 
flassign (strong1, strongO) n48 = LABCTR4, f/<LCT4> 
assign na8= gnd; 11<LGN)> 

end module 



US 2003/0200520 A1 Oct. 23, 2003 Sheet 23 of 27 Patent Application Publication 

?no NVOS 
Z 

_LTIO EIGTV/OSVO TIO?H_LNOO 88Tl 

------ «-» - - - - - - ~- - - - - - - -5DERH---- Ull 

N\/OS! N\/OS 9/! / 9=}}}SOISOOTOISDOT LTT N\/OS|| |BC]\/OSVOÅRH?HVO#7 
} 

-------- _________________________________. EGY OSV9|_„_|_^}}}}V9 
NINI 



-------------___--VI SE No. 
"O?7], '91-' O.L. 

US 2003/0200520 A1 

CC 
V 
ve 

CD 
I 

Oct. 23, 2003. Sheet 24 of 27 

TO FIG. 14B. 
  



US 2003/0200520 A1 Oct. 23, 2003 Sheet 25 of 27 Patent Application Publication 

SV/ONV/OSI LSEL 

FROM FIG. 14A. 

  

  

  

  

  

      



US 2003/0200520 A1 

TO FIG. 14.D. 

Oct. 23, 2003 Sheet 26 of 27 

Z||||| 

Patent Application Publication 

Of 

s 
/\ 

  



US 2003/0200520 A1 

LSE L 

*------------—––––----------* 
Patent Application Publication 

FROMFG. 14C.   



US 2003/0200520 A1 

METHODS AND SYSTEMS FOR DESIGNING 
INTEGRATED CIRCUIT GATE ARRAYS 

CROSS-REFERENCE TO RELATED 
APPLICATION 

0001. This application is a continuation of prior applica 
tion Ser. No. 09/211,515, filed Dec. 14, 1998, the disclosure 
of which is hereby incorporated herein by reference. 

FIELD OF THE INVENTION 

0002 The present invention relates to integrated circuit 
design methods, and more particularly to application Spe 
cific integrated circuit design methods. 

BACKGROUND OF THE INVENTION 

0.003 Integrated circuit designers frequently choose 
application specific integrated circuit (ASIC) technology 
when designing integrated circuits to perform unique and 
customized functions. This is because ASIC technology 
provides designers with comprehensive tools to customize 
logic to perform Specialized and multiple functions on a 
Single integrated circuit Substrate or chip, instead of the 
multiple chips which typically would be required in the 
event Standardized circuit technology was employed. AS will 
be understood by those skilled in the art, ASICs may be 
generated in many different ways and have many different 
designations based on the methods used to design and/or 
manufacture them. The most time consuming method, but 
often the one that yields the Smallest chip size and/or best 
performance, is the “full-custom' designed ASIC. These 
ASICs are often designed entirely from scratch at the 
transistor level with only occasional use of previously 
designed circuit “blocks” which are typically referred to as 
cells, Standard cells, or macrocells. Because of this compre 
hensive approach, custom designed ASICs typically require 
the creation of an entire design database and test methods 
(including custom test vectors). A complete set of custom 
ized fabrication masks is also typically required for fabri 
cation. These requirements typically make the design and 
fabrication of custom ASICS very time consuming and 
expensive when generating prototype devices and when 
iterating through design changes. Alternative ASIC design 
methodologies include the use of Standard cell technology, 
which differs from full custom design in that multiple cells 
or macrocells that have been previously designed are uti 
lized. These cells are selected from libraries of cells for their 
applicability to the design, and placed and routed with 
Software that is well known in the art. The final circuit then 
has no fewer custom mask layers than the full custom design 
method. However, this method does have advantages over 
the full custom design method in the time required to 
complete a design, because the elementary level of cell 
design is only done once to create the libraries, and this work 
can be reused in multiple Subsequent designs. 
0004 Alternative application specific integrated circuit 
design technologies which typically do not incur the time 
and expense penalties associated with full custom ASICS 
include gate array technology. Gate array technology typi 
cally utilizes the building blocks of logic gates and/or 
memory devices as resources to minimize design time and 
cost. This extensive use of blockS enables the gate array 
designer to focus more on the routing of connections (e.g., 

Oct. 23, 2003 

metal wiring and interconnects) between these blocks and 
leSS on the design and operation of the individual logic gates 
and other low-level devices. Here, the designer may be able 
to reduce the number of custom mask layers that must be 
generated for fabrication because typically only the upper 
most masking layers are specific to a particular design. On 
the other hand, the base masking layers that determine the 
logic and memory blocks are typically identical for a variety 
of designs. With these Savings comes a penalty since only 
certain types and sizes of logic gates are typically available 
to choose from and constraints on the placement of Such 
gates may not always lead to a device having ideal charac 
teristics. 

0005 Gate array technology also provides a reduction in 
the time and expense associated with making design changes 
through an iterative process. This is because less than all 
mask layers are involved in any design change at any level, 
as opposed to the full-custom ASIC design case where 
design changes may require a change to all mask layers. 
Notwithstanding these benefits, gate array technology may 
Still require Some relatively expensive custom tooling for the 
upper level masks. Moreover, design checking in physical 
Silicon cannot take place without processing one or more 
wafers through multiple fabrication Steps including deposi 
tion, masking and etching, for example, just like full-custom 
ASIC technology. The terms ASIC and gate array are meant 
to be interchangeable for the purposes of this disclosure. 
ASIC or gate array can refer to fully-custom integrated 
circuits, or Semi-custom integrated circuits, including Stan 
dard cell integrated circuits. 
0006 Referring now to FIG. 1, a flow diagram of opera 
tions 100 performed when designing a full-custom ASIC 
will be described. Although the flow diagram displayS many 
decision points and their associated unacceptable paths, the 
following description does not attempt to elaborate on all the 
unacceptable paths. AS illustrated, a design specification of 
a desired integrated circuit is initially provided, Block 102, 
and then from this a HDL/Schematic description of the 
integrated circuit is entered into a design System, Block 104, 
to generate a complete HDL/Schematic description, Block 
106. From this HDL/schematic description, an operation is 
performed to Simulate the functional operation of the inte 
grated circuit, Block 108. The simulation is then checked for 
accuracy, Block 110. If the Simulation is correct, an opera 
tion is performed to Synthesize logic and generate a logic 
netlist, Blocks 112 and 114. The synthesis of the logic may 
require ASIC logic primitives and resources, Block 113, and 
user Synthesis constraints, Block 111. A check may then be 
performed to determine whether the integrated circuit will 
receive an internal Scan test, Block 116. If So, Scan elements 
can be added to the logic netlist, Block 118. Then, with the 
addition of ASIC element timing estimates, Block 115, an 
operation is performed to Simulate the timing of the inte 
grated circuit, Block 121. The timing Simulation is then 
checked for accuracy, Block 123. If the Simulation is correct, 
a logic placement and Signal routing operation will be 
performed, Block 120, based on a set of user routing and 
logic placement constraints, Block 150, and ASIC logic 
resources and routing resources and constraints, Block 117. 
From this placement and routing operation, a routed netlist 
will be generated, Block 122. 
0007. A timing extraction operation (e.g., parasitic R and 
C extraction operation) may then be performed, Block 124, 



US 2003/0200520 A1 

to generate timing parameters, Block 126. The routed netlist 
and timing parameters are then used to perform another 
timing simulation, Block 128, which takes into account the 
actual placement of gates, devices, etc., and interconnect 
nets which link these devices together. A check is then 
performed to determine whether the Simulation is accept 
able, Block 130. If the simulation is acceptable, test vectors 
are created, Block 140. Operations are also performed to 
create mask-making data, Block 132. The mask-making 
data, Block 134, is then used to create masks, Block 136. A 
prototype of the full-custom ASIC device is then fabricated, 
Block 138. An operation is then performed to test and 
evaluate the device and/or system, Block 142. If the test 
results are acceptable, then the design is complete. However, 
if the test results are not acceptable, then a check is made to 
determine whether the HDL/Schematic description of the 
invention (i.e. logic) needs to be modified, the routing and 
placement needs to be modified, or the Synthesis constraints 
need to be modified, Block 144. If the HDL/Schematic 
description needs to be modified, Block 146, then essentially 
all the above-described StepS and operations will need to be 
repeated. If the Synthesis constraints need to be modified, 
Block 119, then the majority of the above-described steps 
and operations will need to be repeated from the logic 
synthesis step, Block 112. But, if only the routing and 
placement constraints need to be modified, Block 148, then 
the process can resume at the logic placement and Signal 
routing step, Block 120. 
0008 Programmable logic devices (PLDs) may also be 
used as an alternative application Specific integrated circuit 
design technology. Such devices are also typically referred 
to as programmable array logic (PAL) and field program 
mable gate arrays (FPGAs), as described in Chapter 11 of a 
textbook by Jan M. Rabaey, entitled Digital Integrated 
Circuits, Prentice Hall, pp. 629-692 (1996), the disclosure of 
which is hereby incorporated herein by reference. When 
customizing a PLD, a user typically defines the device 
within the constraints of the PLD architecture, and then 
creates through the use of computer aided design tools, a 
Specific Set of interconnections or device States at each of the 
programmable configuration points within the PLD. As will 
be understood by those skilled in the art, each of these 
configuration points may be controlled by one or more fuses, 
antifuses or memory elements, and may be one-time pro 
grammable or reprogrammable. The configuration of the 
PLD is then stored in a configuration file, which is com 
monly referred to as a “bitstream”. This configuration file 
defines the State of each fuse, antifuse or memory element in 
the PLD. In the case of PLDs, this bitstream may be 
programmed into the PLD directly, or in the case of a 
volatile device, this bitstream may be stored in another 
device and then read into the PLD upon startup. 
0009. An obvious advantage of PLDs is that they require 
relatively little time and expense to design or generate 
design iterations. However, for a given functional design, 
PLDS typically require greater layout area, consume con 
siderably more power and are slower than ASIC technolo 
gies (i.e. custom ASIC, Standard cell, or gate array). PLDS 
consume more power and are slower because the Signals 
which traverse programmable elements within the PLD 
typically encounter higher resistance and capacitance asso 
ciated with the programmable elements than the resistance 
and capacitance associated with metal interconnect lines 
within the gate array and full-custom ASIC technologies. 

Oct. 23, 2003 

PLDS also require greater layout area because they include 
additional programmable elements and configuration points. 
0010 Referring now to FIG. 2, a flow diagram of opera 
tions 200 performed when designing a conventional PLD 
will be described. AS illustrated, a design specification of a 
desired integrated circuit is initially provided, Block 202, 
and then from this a HDL/Schematic description of the 
integrated circuit is entered into a design System, Block 204, 
to generate a complete HDL/Schematic description, Block 
206. From this HDL/Schematic description, an operation is 
performed to Simulate the functional operation of the inte 
grated circuit, Block 208. The simulation is then checked for 
accuracy, Block 210. If the Simulation is correct, an opera 
tion is performed to Synthesize logic and generate a logic 
netlist, Blocks 212 and 214. The synthesis of the logic 
typically requires PLD logic primitives and resources, Block 
213. A logic placement and Signal routing operation is then 
performed, Block 220, based on a set of user routing and 
logic placement constraints, Block 250, and PLD logic 
resources and routing resources and constraints, Block 217. 
From this placement and routing operation, a routed netlist 
will be generated, Block 222. 
0011 A timing extraction operation may then be per 
formed, Block 224, to generate timing parameters, Block 
226. The routed netlist and timing parameters are then used 
to perform a timing Simulation, Block 228, which takes into 
account the actual placement of gates, devices, etc., and 
interconnect nets which link these devices together. A check 
is then performed to determine whether the simulation is 
acceptable, Block 230. If the simulation is acceptable, an 
operation is performed to generate a bitstream/programming 
file, Blocks 232 and 234. A prototype of the PLD can then 
be programmed, Block 236. An operation is then performed 
to test and evaluate the operation and/or System of the 
device, Block 242. If the test results are acceptable, then the 
design of the PLD is complete. However, if the test results 
are not acceptable, then a check is made to determine 
whether the HDL schematic description of the circuit needs 
to be modified or the routing and placement needs to be 
modified, Block 244. If the HDL schematic description 
needs to be modified, Block 246, then essentially all the 
above-described steps and operations of FIG. 2 will need to 
be repeated. But, if only the routing and placement con 
straints need to be modified, Block 248, then the process can 
resume at the logic placement and Signal routing Step, Block 
220. 

0012 Unfortunately, as integrated circuit designs Such as 
those having asynchronous inputs increasingly become 
more complex, the importance of physical testing becomes 
more important Since many of State-of-the-art Software 
Simulation tools cannot provide completely accurate Simu 
lation. Accordingly, physical designs may need to be rede 
signed in an iterative manner more frequently, which 
increases design time and expense. To address these limi 
tations in the ability to accurately and completely simulate 
highly complex integrated circuits, integrated circuit design 
methodologies have been developed which include the gen 
eration of prototype devices and the performance of Small 
volume production with PLDs. Then, once a final functional 
design is obtained utilizing the PLD, a conversion is then 
typically made to full-custom or gate array ASICS for large 
Volume production after the design has been finalized. 
Unfortunately, a problem with this design methodology is 



US 2003/0200520 A1 

the lack of an efficient technique to provide this conversion 
from a PLD to a gate array or full-custom ASIC without 
having to go back to the beginning or HDL/Schematic 
definition Stage and repeat the time-consuming and expen 
Sive process of generating the gate array or full-custom 
ASIC to mimic the operation of the PLD. Thus, when 
Switching from a functional PLD implementation to a gate 
array ASIC implementation, the design process essentially 
Starts over Since the logic Synthesis operations must be 
repeated along with the place and route operations and all 
the other steps in the flow. 
0013 This relatively inefficient design methodology is 
more fully illustrated by FIG. 3. In particular, FIG. 3 
illustrates conventional operations 300 which are performed 
when switching from a PLD implementation to an ASIC 
implementation. Although the flow diagram displayS many 
decision points and their associated unacceptable paths, the 
following description does not attempt to elaborate on all the 
unacceptable paths. These operations include the Step of 
selecting a PLD for conversion, Block 302, with the descrip 
tion of the PLD being defined by a HDL/Schematic descrip 
tion, Block 304. A check is then made to determine whether 
the HDL/Schematic format of the PLD is compatible with 
the format for specifying an ASIC, Block 306. If the formats 
are not compatible, then the HDL/schematic of the PLD 
undergoes a conversion process, Block 308, to generate a 
converted format for the desired ASIC, Block 349. From this 
HDL/Schematic description, an operation is performed to 
Simulate the functional operation of the integrated circuit, 
Block 350. The simulation is then checked for accuracy, 
Block 352. If the simulation is correct, an operation is 
performed to Synthesize logic and generate a logic netlist, 
Blocks 312 and 314. The synthesis of the logic may require 
ASIC logic primitives and resources, Block 313, and the 
user synthesis constraints, Block 311. A check may then be 
performed to determine whether the integrated circuit will 
receive an internal Scan test, Block 316. If So, Scan elements 
will be added to the logic netlist, Block 320. Then, with the 
addition of the ASIC element timing estimates, Block 315, 
an operation is performed to Simulate the timing of the 
integrated circuit, Block 317. The timing simulation is then 
checked for accuracy, Block 323. If the timing simulation is 
not correct, a check is made at Block 343 to determine 
whether the synthesis constraints need to be modified, Block 
325, or whether the logic needs to be modified. However, if 
the Simulation is correct, a logic placement and Signal 
routing operation will be performed, Block 318, based on a 
Set of user routing and logic placement constraints, Block 
321, and ASIC logic resources and routing resources and 
constraints, Block 319. From this placement and routing 
operation, a routed netlist will be generated, Block 322. 
0.014) A timing extraction operation (e.g., parasitic R and 
C extraction operation) may then be performed, Block 324, 
to generate timing parameters, Block 326. The routed netlist 
and timing parameters are then used to perform another 
timing simulation, Block 328, which takes into account the 
actual placement of gates, devices, etc., and interconnect 
nets which link these devices together. A check is then 
performed to determine whether the Simulation is accept 
able, Block 330. If the simulation is acceptable, test vectors 
are created, Block 342. Operations are also performed to 
create mask-making data, Block 332. The mask-making 
data, Block 334, is then used to create masks, Block 336. A 
prototype of the ASIC device is then fabricated, Block 338. 

Oct. 23, 2003 

An operation is then performed to test and evaluate the 
operation of the device and/or the device within the appli 
cation, Block 340. If the test results are acceptable, then the 
design is complete. However, if the test results are not 
acceptable, then a check is made to determine whether the 
HDL/Schematic description of the invention (i.e. logic) 
needs to be modified, the routing and placement needs to be 
modified, or the Synthesis constraints need to be modified, 
Block 344. If the HDL schematic description needs to be 
modified, Block 346, then essentially all the above-de 
Scribed StepS and operations will need to be repeated. If the 
synthesis constraints need to be modified, Block 325, then 
the majority of the above-described StepS and operations will 
need to be repeated from the logic Synthesis Step, Block 312. 
But, if only the routing and placement constraints need to be 
modified, Block 348, then the process can resume at the 
logic placement and Signal routing Step, Block 318. 

0015. Alternative methods of converting PLDs to ASICs 
have been devised that reduce the workload in the conver 
Sion process by creating parameterized Software models for 
elements of the PLD Such as described in U.S. Pat. No. 
5,815,405 to Baxter titled “Method and apparatus for con 
Verting a programmable logic device representation of a 
circuit into a Second representation of the circuit'. These 
methods attempt to allow the reuse of work product in the 
same way that standard cell ASIC technology allows the 
reuse of work product. Standard cell ASIC technology 
reuses previously created cells or macrocells and allows the 
designer to reuse these higher level previously designed 
building blocks, lessening the design effort over full custom 
design. In the same way, Baxter proposes reusing previously 
designed Software macroS of the logic elements within the 
PLD, and creating a software model of the design from the 
bitstream of the PLD, relieving the designer of these repeti 
tive tasks. These methods however still Suffer from the 
limitations that they require the user to complete the mul 
tiple Steps of Synthesis and place and route after the Software 
model has been created, and do not guarantee that equivalent 
logic implementation and timing, or relative placement and 
relative routing delays of Signals will be maintained between 
the target PLD representation being converted and the ASIC 
device as converted. 

0016. In particular, U.S. Pat. No. 5,815,405 to Baxter 
discloses an apparatus which parses a device Specific bitwise 
representation used to program a PLD. The apparatus iden 
tifies various configurable elements being programmed by 
the bitwise representation, and identifies the actual configu 
ration of the identified elements. As illustrated by FIG. 1B 
of the 405 patent, for each configurable element represented 
in the bitwise representation, a new instance of that type of 
element is included in a pre-compiled representation 137 of 
the circuit design. This pre-compiled representation, which 
is independent of the target fabrication technology, may be 
an HDL representation or a netlist representation. A com 
piler then uses a target fabrication technology library 142 to 
convert the pre-compiled representation 137 into a post 
compiled representation 147. A place and route tool 150 is 
then used to place and route the post-compiled representa 
tion 147 in the desired target technology. Unfortunately, like 
the relatively inefficient design methodology of FIG. 3, 
expensive and time consuming operations are Still required 
to convert from an HDL or netlist representation of the 



US 2003/0200520 A1 

desired circuit to a design which is compatible with the 
target technology. Conventional place and route operations 
are also required. 
0017 Thus, notwithstanding the above-described tech 
niques for designing integrated circuits, there still continues 
to be a need for design techniques which enable more 
efficient conversion of PLD-based designs to functionally 
equivalent ASIC designs. 

SUMMARY OF THE INVENTION 

0.018. It is therefore an object of the present invention to 
provide improved integrated circuit design and manufactur 
ing methodologies. 

0019. It is another object of the present invention to 
provide integrated circuit design and manufacturing meth 
odologies which enable a more efficient conversion from 
PLD integrated circuits to gate array integrated circuits. 
0020. It is still another object of the present invention to 
provide integrated circuit design and manufacturing meth 
odologies which maintain functional equivalency when con 
Verting from PLD integrated circuits to gate array integrated 
circuits. 

0021. It is still a further object of the present invention to 
provide integrated circuit design and manufacturing meth 
odologies which enable replication of the functionality of a 
PLD in a gate array integrated circuit, without requiring the 
Synthesis or the placement and routing Steps which are 
typically required when starting from an HDL or Schematic 
entry level of a circuit design. 
0022. These and other objects, features and advantages of 
the present invention are provided by methods of designing 
integrated circuit devices which comprise the Step of gen 
erating a netlist for a gate array integrated circuit having at 
least first logic and Signal resources therein, directly from 
bitstream data which characterizes a programmable logic 
device having a first operational functionality and the first 
logic and Signal resources as well. The generating Step is 
also followed by the Step of using the netlist to configure the 
first logic and Signal resources within the gate array inte 
grated circuit to provide the first functionality. A preferred 
integrated circuit design System is also provided. This SyS 
tem includes a programmable logic device having unpro 
grammed logic and Signal resources therein and a gate array 
device having base logic and Signal resources therein which 
are equivalent to the unprogrammed logic and Signal 
resources of the programmable logic device. A computer 
based apparatus is also provided for decoding a bitstream 
that characterizes the programmable logic device having a 
first operational functionality when programmed, into a 
netlist that designates electrical connections in the gate array 
device when wired to have the first operational functionality. 
Accordingly, when Switching from a functional program 
mable logic device (PLD) implementation to a gate array 
implementation, it is unnecessary to Start the design proceSS 
over from Scratch by performing logic Synthesis, place and 
route and other front end design operations associated with 
conventional gate array design techniques. 
0023. According to one aspect of the present invention, 
the generating Step comprises the Step of generating a netlist 
for the gate array integrated circuit having a first operational 
functionality. The generating Step may also make use of 

Oct. 23, 2003 

definition data for the programmable logic device, and may 
further make use of definition data for the gate array 
integrated circuit. The netlist may be further used to generate 
test vectors for a test of operational functionality of the gate 
array integrated circuit. The test of operational functionality 
may include Scan-based testing. 
0024. According to another aspect of the present inven 
tion, the generating Step comprises the Step of generating 
hookup data which characterizes a plurality of nets for a gate 
array integrated circuit having a first operational function 
ality. Preferentially, this generating Step would not require a 
logic Synthesis operation or placement and/or routing StepS. 
The generating Step may also make use of definition data for 
the programmable logic device, and may further make use of 
definition data for the gate array integrated circuit. In 
another embodiment of the present invention, hookup coor 
dinates are generated as an output of the generating Step, 
which may also include the use of definition data for the 
programmable logic device or the gate array integrated 
circuit or both. The hookup coordinates may define points of 
electrical connections, disconnections or both. The creation 
of the connections or disconnections may make use of a 
targeting energy beam, Such as an electron beam, ion beam, 
laser, or other Similar methods, hereinafter referred to as a 
laser, or may make use of photolithography, etch, plating, 
and deposition technology which is well known in the art, 
wherein the pattern locations created by the laser or photo 
mask are designated by the hookup coordinates. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0025 FIG. 1 is a flow diagram of operations which may 
be performed when designing a conventional application 
Specific integrated circuit (ASIC). 
0026 FIG. 2 is a flow diagram of operations which may 
be performed when designing a conventional programmable 
logic device (PLD). 
0027 FIG. 3 is a flow diagram of conventional opera 
tions which may be performed when converting a PLD 
implementation of an integrated circuit to an application 
Specific integrated circuit. 
0028 FIG. 4 is a flow diagram of preferred operations for 
converting a PLD implementation of an integrated circuit to 
a gate array having equivalent functionality. 
0029 FIG. 5A is a block diagram of an exemplary PLD 
which can be converted directly to a gate array in accordance 
with the present invention. 
0030 FIG. 5B is a block diagram of a first portion of the 
exemplary PLD shown in FIG. 5A. 
0031 FIG. 5C is a block diagram of a second portion of 
the exemplary PLD shown in FIG. 5B. 
0032 FIG.5D is a block diagram of a portion of a base 
gate array device into which an exemplary PLD can be 
directly converted in accordance with the present invention. 
0033 FIG. 6 is a diagram of a bitstream file used to 
program the exemplary PLD. 
0034 FIG. 7 is an exemplary table of bitstream bits and 
their logical implications used in converting an exemplary 
PLD directly into a gate array in accordance with the present 
invention. 



US 2003/0200520 A1 

0035 FIG. 8 is an exemplary table of logic block coor 
dinates of a gate array device used in converting an exem 
plary PLD directly into a gate array in accordance with the 
present invention. 
0036 FIG. 9 is an exemplary table of logic element 
hookup coordinates within a logic block of a gate array 
device used in converting an exemplary PLD directly into a 
gate array in accordance with the present invention. 
0037 FIG. 10A is a first portion of a base gate array 
Simulation model for use in creating test vectors when 
converting an exemplary PLD directly into a gate array in 
accordance with the present invention. 
0.038 FIG. 10B is a second portion of a base gate array 
Simulation model for use in creating test vectors when 
converting an exemplary PLD directly into a gate array in 
accordance with the present invention. 
0039 FIG. 10C is a third portion of a base gate array 
Simulation model for use in creating test vectors when 
converting an exemplary PLD directly into a gate array in 
accordance with the present invention. 
0040 FIG. 10D is a fourth portion of a base gate array 
Simulation model for use in creating test vectors when 
converting an exemplary PLD directly into a gate array in 
accordance with the present invention. 
0041 FIG. 10E is a fifth portion of a base gate array 
Simulation model for use in creating test vectors when 
converting an exemplary PLD directly into a gate array in 
accordance with the present invention. 
0.042 FIG. 10F is a sixth portion of a base gate array 
Simulation model for use in creating test vectors when 
converting an exemplary PLD directly into a gate array in 
accordance with the present invention. 
0.043 FIG. 11 is a portion of a connection/configuration 
data file for use in directly converting an exemplary PLD 
directly into a gate array in accordance with the present 
invention. 

0044 FIG. 12 is a portion of a modified gate array 
Simulation model for use in creating test vectors when 
converting an exemplary PLD directly into a gate array in 
accordance with the present invention. 
004.5 FIG. 13 is a block diagram of a portion of a base 
gate array device into which an exemplary PLD can be 
directly converted in accordance with the present invention. 
0.046 FIG. 14 is a schematic diagram representation of 
the portion of a base gate array device shown in FIG.13. 

DESCRIPTION OF PREFERRED 
EMBODIMENTS 

0047 The present invention now will be described more 
fully hereinafter with reference to the accompanying draw 
ings, in which preferred embodiments of the invention are 
shown. This invention may, however, be embodied in many 
different forms and should not be construed as limited to the 
embodiments set forth herein. Rather, these embodiments 
are provided so that this disclosure will be thorough and 
complete, and will fully convey the Scope of the invention 
to those skilled in the art. Like numbers refer to like 
elements throughout. 

Oct. 23, 2003 

0048 FIG. 5A illustrates a PLD device 500 of a type 
manufactured by Altera Corporation of San Jose, Calif., 
which can be converted directly to a gate array in accordance 
with the present invention. Device 500 has a row and 
column architecture, with multiple I/O elements 510 on four 
sides connected to row 502 and column 503 interconnects, 
with logic blocks (LBs) 520 disposed along the rows and 
columns in a two dimensional format. Each LB 520 contains 
8 logic elements (LEs)30 and has multiple interconnections 
to its adjacent row interconnect 502 and column intercon 
nect 503, as illustrated in FIG. 5B. Control signals 540 are 
derived from row interconnect 502. Local interconnect 550 
allows input lines 560 to LE 30 be drawn from row inter 
connect 502 or from feedback bus 570 made up of the eight 
LE-Out lines 14 from each of the logic elements 30 in the 
logic block. 
0049 FIG. 5C shows a block diagram of exemplary 
logic element 30 containing look-up table 40, fed by four LE 
input lines 560 and Carry-in line 41, cascade chain logic 15, 
register 16, register bypass circuit 12, and LE-Out MUX 10 
controlled by logic state 11 and yielding LE-Out line 14. 
Logic element 30 also contains clock select MUX 50 
controlled by logic state 51 and selecting one of two LE 
control signals 540 to go into register 16. Clear/Preset logic 
571 uses one of the four LE input lines 560 and two of the 
four LE control signals 540 to determine the states of preset 
and clear on register 16. This exemplary portion is a logic 
element of a FLEX 8000 architecture used in PLDS manu 
factured by Altera Corporation of San Jose, Calif. 

0050 PLD devices are manufactured with different fun 
damental logic architectures, the two most popular of which 
are the lookup-table architecture, and the product-term 
architecture. Examples of lookup-table architecture are 
devices such as the FLEX 8000 family manufactured by 
Altera Corporation of San Jose, Calif., and the XC4000 
family manufactured by Xilinx, Inc. of San Jose, Calif. 
Examples of product-term architecture are the MAX 7000 
family manufactured by Altera Corporation, and the 
XC9500 family manufactured by Xilinx, Inc. In one aspect 
of the present invention, it is advantageous for the base gate 
array device into which the PLD device is to be converted 
to have the same architecture type, such that if the PLD to 
be converted has an architecture containing logic elements 
made up of a four input lookup table, cascade logic, a 
register, a register bypass path, and arithmetic carry capa 
bility, then the base gate array device into which the PLD is 
to be converted should have blockS containing the same or 
equivalent elements. Likewise, if the PLD to be converted 
contains macrocells with five product terms each with 
thirty-six input terms feeding an OR gate, a register, product 
term sharing logic, and a register bypass path, then the base 
gate array device into which the PLD is to be converted 
should have blocks containing the same or equivalent ele 
ments. Since this will also allow Segments of logic in the 
PLD, when converted and placed into the gate array device, 
to be in the same relative locations as they occupied in the 
PLD. In this way internal logic placement and routing can 
most easily be matched, and internal timing and logic 
consistency can be most easily maintained, without need of 
logic resynthesis, or placement and routing StepS. 

0051 FIG. 5D is a block diagram of such a base gate 
array device 599 into which PLD device 500 with a first 
operational functionality can be directly converted, to yield 



US 2003/0200520 A1 

a gate array device with the first operational functionality. 
Base gate array device 599 contains at least the logic 
resources and Signal path resources present in PLD device 
500. Each logic building block 590 of base gate array device 
599 contains eight gate array logic element sections 70 (as 
shown in FIG. 13), each corresponding to logic elements 30 
of PLD device 500. The device contains I/O elements (IOE) 
591 containing multiple I/Os, connected to row 592 and 
column 593 interconnect Structures, corresponding to like 
elements 510,502, and 503 of PLD device 500. It is a feature 
of the present invention that the congruence of logic 
resources and signal path resources of PLD device 500 and 
base gate array device 599, allows a high efficiency of 
conversion when PLD device 500 with a first operational 
functionality is converted to a gate array device with the 
Same first operational functionality. It can be noted that the 
congruence of logic and Signal path resources of PLD device 
500 and base gate array device 599 include such things as 
the row and column architecture of elements 502, and 503 
to 592 and 593, and the relative placement of major logic 
blocks. Such as LB 520 and LBB 590. Interconnect structures 
of the base gate array device 599, such as row 592 and 
column 593 interconnects should have at least the signal 
path resources of corresponding row 502 and column 503 
interconnect structures of PLD device 500. It is less impor 
tant that the congruence extend to the physical placement of 
elements 30 within block 520 compared to the placement of 
sections 70 within blocks 590. It would be perfectly accept 
able for elements 30 to be stacked eight high in a vertical 
arrangement in block 520 of PLD device 500, while logic 
element sections 70 of LBB 590 of base gate array device 
599 were disposed in a two by four matrix. This is due to the 
relative importance of distance and length of Signal line in 
determining Signal delays on an integrated circuit. It will be 
understood by one skilled in the art that the relative signal 
delays between logic elements 30 within the same LB 520 
will be Small in comparison to the Signal delays generally 
encountered between logic blocks 520 located in different 
areas of PLD device 500. 

0.052 FIG. 13 is a block diagram of a gate array logic 
element section 70 of a base gate array device 599, corre 
sponding to the logic element 30 of PLD device 500 shown 
in FIG. 5C, which is suitable for direct conversion using the 
invention described herein from the PLD device 500 into the 
corresponding gate array device 599. It can be seen that the 
base gate array logic element Section 70 also contains 
Similar logic resources and Signal path resources to logic 
element 30 of PLD device 500. Among these are lookup 
table (LUT) 71 corresponding to the lookup-table 40 of PLD 
logic element 30, cascade logic 76 corresponding to Similar 
logic 15 in logic element 30, and a register 72 to correspond 
with register 16 of logic element 30. FIG. 13 also shows that 
a logic element section 70 of a base gate array 599 in 
accordance with one aspect of this invention has the addition 
of multiple internal scan registers 73, 74, and 75 for use in 
testing the completed device. 
0.053 FIG. 14 shows a schematic diagram of the logic 
element section 70 of the base gate array shown in FIG. 13. 
This Schematic diagram more completely shows the logic 
resources and possible connections of the base gate array 
logic element Section 70, including register 72 and Scan 
registers 73, 74, and 75. It will be apparent to one skilled in 
the art that additional internal Scan registers can be placed as 
required in other areas of gate array device 599 such that 

Oct. 23, 2003 

Scan test of the majority of the operational logic can be 
performed without use of all the device pins. 
0054) Referring now to FIG.4, preferred operations 400 
will now be described for designing an application specific 
integrated circuit (ASIC), by directly converting bitstream 
data of a programmable logic device (PLD) having first 
logic and signal path resources into connection data (e.g., a 
netlist) which is compatible with an ASIC (e.g., gate array) 
having the first logic and Signal path resources as well. This 
bitstream data, programming-ready for writing directly into 
the PLD, or into a Programmable Read-Only Memory 
(PROM), may be a file generated by MAXPLUSTM II 
Software in IntelTM hex format, or other appropriate format 
for the PLD. As illustrated by Block 410, an operation is 
initially performed to automatically decode a PLD bitstream 
or programming file, Block 412, and generate a connection/ 
configuration data file therefrom, Block 415. As described 
more fully hereinbelow, this decoding operation is per 
formed using PLD definition data, Block 408. This defini 
tion data may include a data Set that describes the function 
of a majority of the bits contained within the bitstream or a 
data set that describes the functionality of the PLD as 
defined by the bits, or both. This connection/configuration 
data may represent logic, logic States and interconnections 
specified in a bitstream provided by a user. The data will 
contain information relating to the configuration of logic 
resources into various logic Segments, as well as relative 
placement of these logic Segments, and the routing of Signal 
paths. The combination of the circuit resource and routing 
resource information of the base gate array and the connec 
tion/configuration data can yield information about the 
placement of the logic resources and the routing of Signals 
between those resources (including the starting and termi 
nating points of at least one connection path on the target 
gate array integrated circuit). 
0055 Operations are then performed to convert the con 
figuration/connection data to laser fuse coordinates and/or 
mask data, Block 430. Here, the connection/configuration 
data file, Block 415, and base gate array integrated circuit 
connection coordinate data, Block 435, are used to create a 
laser fuse file, Block 440. 
0056. A test vector file, Block 495, is also generated by 
automatically creating test vectors, Block 490, from the 
modified gate array models, Block 480. These test vectors 
may also be used for Scan-based testing. AS will be under 
stood by those skilled in the art, Scan-based test methods 
may utilize a plurality of Storage elements which are con 
nected together as a chain on an integrated circuit Substrate. 
During testing, these elements can be loaded with input test 
data using a reduced number of I/O pins, as described by 
U.S. Pat. No. 5,519,713 to Baeg et al. entitled “Integrated 
Circuit Having Clock-Line Control and Method for Testing 
Same'. 

0057. In addition, the laser fuse file, Block 440, can be 
used to fabricate a lasered device, Blocks 445 and 448. 
Alternatively, the laser fuse file Block 440, and/or the 
connection/configuration data, Block 415, can be converted 
to a mask making data file, Blocks 450, 452. Using con 
ventional operations, the mask making data file can be used 
to make fabrication masks, Block 460, and fabricate the 
target gate array (having at least the same signal path 
resources and logic resources as the programmed PLD), 
Block 465. 



US 2003/0200520 A1 

0.058 According to another aspect of the present inven 
tion, the decoding operation may also generate hookup data 
as connection/configuration data which describes a plurality 
of patterned interconnect Segments in the gate array which, 
when joined, create an electrically conductive path between 
Starting and terminating points, and hookup coordinates 
which describe, relative to an origin, connection points 
between these patterned interconnect Segments. These coor 
dinates may also give the location of points of disconnect to 
form a single path out of a plurality of possible signal paths. 
For example, the base target gate array may have both the 
first and Second nets connected and the connection/configu 
ration data file may provide hookup data which designates 
which of the first or second nets is to be disconnected in the 
base gate array to provide the desired function. 
0059. The above-described operations for decoding a 
bitstream for a PLD 500 having first logic and signal path 
resources therein into a connection/configuration data file 
for a gate array integrated circuit having equivalent logic 
and Signal path resources will now be more fully described 
with reference to FIG. 5C. In particular, FIG. 5C illustrates 
a exemplary portion of a programmable logic device (PLD) 
element 30 which can be converted directly to a gate array 
integrated circuit by decoding the bitstream which programs 
the PLD element 30 as a connection/configuration data file. 
This exemplary portion is a logic element of a FLEX 8000 
architecture used in PLDS manufactured by Altera Corpo 
ration of San Jose, Calif. Here, the decoding proceSS utilizes 
base PLD definition data to interpret a pattern of bits within 
a bitstream or programming file used to program the PLD 
500 and determine the function of each bit or combination 
of bits. This bitstream may take the form of: 

0060 000010000000001000000111000000 
1OOOOOOO101OO 

0061 000010000001000010000001110 
OOOOOO1011 OOOO1 

0062) 0000000001000000000000000 
111OOOO1OOOOOO10 

0063 00000110000000001110000 . . . 111110000 
0064) 000010000001101000000111000000 
1OOOOOO110100 

0065 000010011001000010000001110 
OOO1001011 

0066 000010000110001000000000000000 
111001010 

0067 00001001100110000000001110000 
111110001. 

0068 The geometry of the bits within the bitstream can 
be representative of the logic and Signal path resources of the 
PLD or it can be independent of the PLD structure. For 
example, bit “n” of the bitstream as the control for multi 
plexer 10 via a select input 11. If the multiplexer 10 is 
programmed within the PLD to pass input line 12 to the 
output line 14, the LE-OUT signal will be provided directly 
by the output 20 of the cascade chain 15 in the target gate 
array. Alternatively, if the multiplexer 10 is programmed to 
pass input line 13 to the output line 14, the LE-OUT signal 
will be provided directly by the output of the register 16 in 
the target gate array. Thus, the function of bit “n” in the 

Oct. 23, 2003 

bitstream would be to determine whether LE-OUT is reg 
istered or not registered. Then, upon decoding of the bit 
Stream, the connection/configuration data file would indicate 
whether a first net interconnecting the output 20 of the 
cascade chain 15 directly to LE-OUT is to be provided or 
whether a Second net connecting the output Q of register 16 
to LE-OUT is to be provided. A similar process is also 
repeated for each of the remaining bits in the bitstream, with 
the PLD device definition data (Block 408) associating a 
particular bit or bits in the bitstream with a function and the 
gate array device connection/configuration data (Block 415) 
asSociating the function with a plurality of nets. The high 
efficiency of this decoding proceSS is preferably achieved by 
the base gate array having Similar Signal path and logic 
resources as the target PLD. In particular, the base gate array 
599 should have at least the logic and signal path resources 
available in the target PLD 500. 
0069 FIG. 6 shows a pictorial representation 600 of a 
portion of data set 408 showing how an exemplary bitstream 
file 412 for such a PLD device such as device 500 disposed 
in 5 rows and 22 columns of LES 30 grouped into logic 
blocks 520 of eight logic elements would commonly be 
organized. It is common for records other than the header 
and trailer to be a uniform length, however this is not a 
requirement. FIG. 6 illustrates such an exemplary bitstream 
file of 208 records in length with a uniform record length of 
240 bits each. The bitstream file begins with a header record 
610, followed by several records 620 containing configura 
tion bits for the top I/Os 510. At the bottom of the file are 
additional bottom I/O configuration records 630 and a trailer 
record 640. The center section of the file contains multiple 
groups of records for configuring each of the five rows of 
logic block 520 as well as the interconnections to rows 502 
and columns 503 and the left and right side I/Os 510 as well. 
The third row is described by records 85 to 124. Within this 
Section records 117-124 can be seen to contain the LE 
Configuration bits, and more particularly, bits 21-30 of these 
records 650 can be seen to contain the LE Configuration bits 
for the LB in column 2 of row 3 and these blocks of LE 
Configuration bits are replicated in a typically geometric 
fashion for columns 1 to 22. 

0070 FIG. 7 shows a pictorial representation 700 of 
another section of data set 408, containing the definitions of 
a portion of the bits in the LE Config area for each LB. This 
area of the file 412 is shown to contain 8 records of 10 bits 
in width. It can be seen from table 700 that there is one 
record for each of the eight logic elements 30 in the logic 
block, which happen in this case to match the order of the 
logic elements, but this is not required. Table 700 show that 
bit fields 2 and 8 are unused and that the order of the other 
bits and their polarities are constant throughout the block, 
but this will depend upon the layout of PLD device 500 and 
need not be constant. Table 700 also shows logic states for 
only Single bits, with each bit defining the logic States of two 
logical connections only. This is not a limiting aspect of the 
invention, and other numbers of bits or combinations of bits 
and other numbers of logical connections may be more 
advantageous in other cases. Entry 701 of table 700 corre 
sponds to the setting of logic state 11 controlling MUX 10 
, and shows that to make the LE-Out of the second LE in an 
LB be registered, the third bit of the second record of this 
block is set to 1. Such that KREG is true and KUNREG is 
false. For bypass of register 16 by MUX 10, the bit is set to 
0, Such that KREG is false and KUNREG is true, where the 



US 2003/0200520 A1 

values of KREG and KUNREG correspond to the possible 
logical connections of MUX 10 of logic element 30 of the 
PLD device 500 to be converted. It will be apparent to one 
skilled in the art that computing the position of this bit “n” 
within file 412 can be easily accomplished, and that by 
observing the status of this and other bits within the bit 
stream file 412, given a full description of the file with tables 
Such as those described above, the intended functions of the 
logic elements, and the intended connections within the PLD 
can also be established. It will also be apparent to one skilled 
in the art that there are multiple ways to tabulate and Store 
the PLD definition data 408, other than in the forms shown 
in these drawings. 
0071 FIGS. 8 and 9 show exemplary tables which are a 
portion of data set 435 for use in the calculation of hookup 
coordinates in step 430. Tables 800 and 850 which indicate 
the base coordinates of LBS for the calculation of Such 
hookup coordinates show the respective Y coordinate bases 
of each of the rows of LBS in the gate array base array 
relative to an origin, and the X coordinate bases of each 
column of LBS within each row relative to an origin. Table 
860 shows the offsets of individual connection or discon 
nection points relative to Such LB base coordinates. Refer 
ring to the example above, the base coordinates of the LB 
located on the third row and second column would be 
(-1910,50). Referring to FIG. 9 we see that when the first 
operational functionality of PLD device 500 includes setting 
LE-Out to registered, this corresponds to KREG=true and 
KUNREG=false. In this example we have used “true” to 
correspond to connections made or kept and "false' to 
correspond to connections broken or not made. Therefore we 
would make the connection corresponding to KREG=true 
and break the connection corresponding to KUNREG=false. 
Therefore a connection to be made or retained would be 
computed equal to the base address of the LB (-1910,50) 
from tables 800 and 850, plus the offset for KREG of LE 2 
(70.810) from table 860, resulting in coordinates of (-1840, 
860) and coordinates of a connection to be broken or not 
made would be computed likewise to be (-1910,50)+(180, 
775)=(-1730,825). These coordinates would then be entered 
into file 440 for use in making mask data 452 or lasering the 
device 448 using techniques well known in the art. Opera 
tions are then performed to automatically create gate array 
device models, Block 480, by modifying base gate array 
integrated circuit Simulation models, Block 472, using the 
connection/configuration data file, Block 415. 
0072 FIGS. 10A through 10F show an exemplary por 
tion of a base gate array device Simulation model 472 in 
Verilog for a section 70 of the base gate array to correspond 
to the logic element 30 of device 500. FIG. 10C describes 
three internal scan based test registers 830 labeled “iscan 
i 25’, 831 labeled “iscan i 26', and 832 labeled “iscan 
i 27. FIG. 10D contains various logic and register 840, the 
equivalent to register 16 with the title “leffi 29". FIG. 10E 
contains the Settings for the 16 lookup-table values for the 
base gate array LUT 71, and FIG. 10F contains the assign 
ments for the LE configuration bits of the base gate array 
referred to in table 700. 

0073 FIG. 11 shows a section 833 of connection/con 
figuration data file 415 which shows several logic states and 
configurations specified by bitstream file 412 as decoded by 
process 410. More particularly this section of file 415 refers 
to the LE configuration bits for LE 2 of the LB on row 3 and 

Oct. 23, 2003 

column 2, designated by the line prefix “LB,3,2,LE2,”. Each 
line ends with the desired State of a connection or logic State, 
such as <KREG>=T and <KUNREGd=F, designating that 
the lines in the base gate array model 472 on FIG. 1 OF 
ending in <KREG> are to be included in the modified model 
480, and the lines ending in <KUNREGd are not to included 
in the modified model 480, after processing by step 470 is 
completed. FIG. 12 shows the modified lines of code of the 
modified model 480 corresponding to the settings defined by 
file 415 as shown on FIG. 11. It will be apparent to one 
skilled in the art that there are other ways to create modified 
gate array simulation model 480, and that model 480 can be 
Subsequently used in the creation of test vector file 495. 
0074. In the drawings and specification, there have been 
disclosed typical preferred embodiments of the invention 
and, although specific terms are employed, they are used in 
a generic and descriptive Sense only and not for purposes of 
limitation, the Scope of the invention being Set forth in the 
following claims. 

That which is claimed is: 
1. A method of designing an integrated circuit device, 

comprising the Step of: 
generating a netlist for a gate array integrated circuit 

having first logic and Signal resources, from bitstream 
data which characterizes a programmable logic device 
having the first logic and Signal resources. 

2. The method of claim 1, wherein the bitstream data 
characterizes a programmable logic device having a first 
operational functionality; and wherein Said generating Step 
is followed by the Step of using the netlist to configure the 
first logic and Signal resources within the gate array inte 
grated circuit to provide the first operational functionality. 

3. The method of claim 2, wherein Said generating Step 
comprises determining end points of at least one net in the 
netlist directly from at least one bit of the bitstream data. 

4. The method of claim 2, wherein Said generating Step 
comprises generating a netlist for a gate array integrated 
circuit from bitstream data and programmable logic device 
definition data. 

5. The method of claim 4, wherein Said generating Step 
comprises determining end points of at least one net in the 
netlist directly from at least one bit of the bitstream data and 
the programmable logic device definition data. 

6. An integrated circuit design System, comprising: 
a programmable logic device having pre-programmed 

logic and Signal resources; 
a gate array device having pre-wired logic and Signal 

resources which are equivalent to the pre-programmed 
logic and Signal resources of Said programmable logic 
device; and 

means for decoding a bitstream that characterizes Said 
programmable logic device having a first operational 
functionality when programmed, into a netlist that 
designates electrical connections in Said gate array 
device when wired to have the first operational func 
tionality. 

7. A method of designing an integrated circuit device, 
comprising the Step of: 

generating a netlist for a gate array integrated circuit 
having a first operational functionality, from bitstream 



US 2003/0200520 A1 

data which characterizes a programmable logic device 
having the first operational functionality. 

8. The method of claim 7, wherein Said generating Step 
comprises generating a netlist for a gate array integrated 
circuit having a first operational functionality, directly from 
bitstream data which characterizes a programmable logic 
device having the first operational functionality. 

9. The method of claim 8, wherein the netlist is generated 
from bitstream data and programmable logic device defini 
tion data. 

10. The method of claim 8, wherein the netlist is used to 
generate test vectors to be used for a test of operational 
functionality of Said gate array integrated circuit. 

11. The method of claim 10, wherein said test of opera 
tional functionality includes Scan-based testing. 

12. The method of claim 9, wherein the netlist is gener 
ated from bitstream data, programmable logic device defi 
nition data and gate array device definition data. 

13. A method of designing an integrated circuit device, 
comprising the Step of: 

generating hookup data which characterizes a plurality of 
nets for a gate array integrated circuit having a first 
operational functionality, from bitstream data which 
characterizes a programmable logic device having the 
first operational functionality. 

14. The method of claim 13, wherein Said generating Step 
comprises generating hookup data which characterizes a 
plurality of nets for a gate array integrated circuit having a 
first operational functionality, directly from bitstream data 
which characterizes a programmable logic device having the 
first operational functionality. 

Oct. 23, 2003 

15. The method of claim 14, wherein Said generating Step 
comprises generating hookup data for a gate array integrated 
circuit having a first operational functionality without Syn 
thesizing logic for the gate array integrated circuit. 

16. The method of claim 14, wherein Said generating Step 
comprises generating hookup data for a gate array integrated 
circuit having a first operational functionality and logic 
resource placement that is the Same as the programmable 
logic device. 

17. The method of claim 14, wherein Said generating Step 
comprises generating hookup data for a gate array integrated 
circuit having a first operational functionality and Signal 
path resources which are the same as the programmable 
logic device. 

18. The method of claim 14, wherein hookup coordinates 
are generated from the hookup data, Said hookup coordi 
nates defining connection points of at least two nets. 

19. The method of claim 18, further comprising the step 
of forming a first Set of electrical connections between the at 
least two nets on the gate array integrated circuit; and 
wherein the locations of the first Set of electrical connections 
are defined by the hookup coordinates. 

20. The method of claim 19, wherein said step of forming 
a first Set of electrical connections comprises the use of a 
targeting energy beam. 

21. The method of claim 19, wherein said step of forming 
a first Set of electrical connections comprises the use of a 
photomask which contains a pattern thereon having a loca 
tion designated by the hookup coordinates. 


