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Methods of designing integrated circuit gate arrays include
the step of generating a netlist for a gate array integrated
circuit having at least first logic and signal resources therein,
directly from bitstream data which characterizes a program-
mable logic device having a first operational functionality
and the first logic and signal resources as well. The gener-
ating step is also followed by the step of using the netlist to
configure the first logic and signal resources within the gate
array integrated circuit to provide the first functionality. A
preferred integrated circuit design system is also provided
and includes a programmable logic device having pre-
programmed logic and signal resources therein and a gate
array device having base logic and signal resources therein
which are equivalent to the unprogrammed logic and signal
resources of the programmable logic device. A computer-
based apparatus is also provided for decoding a bitstream
that characterizes the programmable logic device having a
first operational functionality when programmed, into a
netlist that designates electrical connections in the gate array
device when wired to have the first operational functionality,
and to provide a method for generating scan-based test
vectors to verify the first functionality. Accordingly, when
switching from a functional programmable logic device
(PLD) implementation to a gate array implementation, it is
unnecessary to start the design process over from scratch by

Int. CL7 oo GO6F 17/50 performing logic synthesis, place and route and other front
end design operations associated with conventional gate
US. CLl o 716/16; 716/17 array design techniques.
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FIG. 6
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FIG. 8

LB BASE COORDINATES

Row Base coordinates
Row# Y-coord

1 2050
2 1050 800
3 50
4 -950
5 -1950

Column Base coordinates

Col # X-coord
1 -2100
2 -1910
3 -1720
4 -1530
5 -1340 850
6 -1150
7 -960
8 -770
9 -580
10 -390
11 -200
12 -10
13 180
14 370
15 560
16 750
17 940
18 1130
19 1320
20 1510
21 1700

22 1890
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FIG. 10A

X-Sun-Data-Type: text
X-Sun-Data-Description: text
X-Sun-Data-Name: text
X-Sun-Charset: us-ascii
X-Sun-Content-Lines: 485

module le_1_1_1(SCANCLK, SCANCLKB, SDI, CAPTURE, SHIFT, UPDATE, TEST,
NORMAL, CASCADEIN,
DATA1, DATA2, DATA3, DATA4, CARRYIN, C2iN, LABCTR1, LABCTR2,
LABCTR3, LABCTR4, POR, SDOUT, LEOUT, CASCADEOUT,
CARRYOUT, C20UT);

input SCANCLK;
input SCANDLKB,;
input SD;

input CAPTURE;
input SHIFT,;
input UPDATE;
input TEST;

input NORMAL,;
input CASCADEIN;
input DATAT;
input DATAZ2;
input DATAS;
input DATA4;
input CARRYIN,;
input C2IN;

input LABCTRT,
input LABCTRZ,
input LABCTRS3;
input LABCTRA4;
input POR;

output SDOUT;

output LEQUT;

output CASCADEOUT,
output CARRYOUT;
output C20UT;

wire pr100, pr101, pr102, pr103, pr104, pr105, pr106, pr107, pr108,
pr109, pr110, pr111, pr112, pr113, prii4, pr115;

wire n1, n2, n3, n4, n5, ng, n7, n8, n9, n10, n11, n12
ni13, n14, n15, n16, n13, n19, n20, n21, n22, n23, n24, n25,
n26, n27, n28, n29, n30, n31, n32, n33, n34, n35, n36, n37,
n38, n39, n42, n43, nd4, nd5, n46, n4d7, n48, n49, n50,
n51, n52, n53, n54, n55, n56, tocarry1, regoutb, tocas;
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FIG. 10B

supplyC gnd;
supply1 vee:

mux2_11_1 (tocarry1, C20QUT,n55,n29);
not i_59 (tocas, DATAZ2);

noti_46 (n1, pr100);
not i_45 (n2, pr101);
"noti_44 (n3, pr102);
noti_43 (n4, pr103);
noti_42 (n5, pr104);
~hoti_41 (n6, pr105);
noti_40 (n7, pr106);
noti_39 (n8, pr107);
noti_38 (n9, pr108),
noti_37 (n10, pr109);
noti_36 (n11, pr110);
noti_35(n12, pr111);
noti_34 (n13, pr112);
noti_33 (n14, pr113);
noti_32 (n15, pr114);
noti_31 (n16, pr115);

mux2_1i_15 (n1,n2,n18,n19);
mux2_1i_8 (n3,n4,n18,n20);
mux2_11i_14 (n5,n6,n18,n21);
mux2_11i_13 (n7,n8,n18,n22);
mux2_1i_12 (n9,n10,n18,n23);
mux2_1i_11(n11,n12,n18,n24);
mux2_11i_10 (n13,n14,n18,n25);
mux2_11i_9 (n15,n16,n18,n26);

mux2_1 i_4 (n19,n20,n54,n27);
mux2_1i_7 (n21,n22,n54,n28);
mux2_1i 6 (n23,n24,DATA2 tocarry1);
mux2_11i_5 (n25,n26, DATA2,C20UT);
mux2_11i_3 (n27,n28,n55, n30);
mux2_1i_60 (n30,n56,DATA4, n31);
mux2_11i_87 (vee,n31,n32,n33);
noti_84 (n37,n33);

noti_86 (n34,n36);
not i_85(n35,C2IN);

mux2_11_28 (n35,n34,CARRYIN,CARRYOUT);
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FIG. 10C

iscan i_27 (.DATAIN (n51),
SDI (n39),

.SCANCLK (SCANCLK),
.SCANCLKB (SCANCLKB),
.CAPTURE (CAPTURE), 832
SHIFT (SHIFT),
UPDATE (UPDATE),
.TEST (TEST),
.NORMAL (NORMAL),
.SDO (SDOUT),

.DATAQUT (regoutb)

¥

iscan i_25 (.DATAIN (n37),
- SDI (n42),
.SCANCLK (SCANCLK),
-SCANCLKB (SCANCLKB),
.CAPTURE (CAPTURE) 830
SHIFT (SHIFT),
UPDATE (UPDATE)
.TEST (TEST),
.NORMAL (NORMAL),
.SDO  (n39),
.DATAOUT (CASCADEOUT)
);

iscan i_26 (.DATAIN (tocarry1),
.SDI {SDI),

.SCANCLK (SCANCLK),
-SCANCLKB (SCANCLKB),
.CAPTURE (CAPTURE), 831
SHIFT (SHIFT),
UPDATE (UPDATE)
TEST (TEST)
NORMAL (NORMAL)
.SDO (n42),

DATAOUT  (n36)

);
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FIG. 10D

not i_83 (n44, n43);
not i_82 (n45, n44);

and i_79 (n46, n45, DATA3);
nori_62 (n53, n44, DATA3);

nori_61 (n52, n46, n47, POR);

not i_80 (n49, n48);
- noti_81 (n50, n49);

/Inoti_23 (LEQUT, n40);

noti_88 (n17, regoutb);
not i_89 (n40, regoutb);

© wire dummy;

leffi_29 (.DATAIN (CASCADEOUT),
.CLEAR (n52),

PRESET (n53), 840
.CLK (n50),

.CLKB (n49),

.DATAOUT (dummy),

.DATAQUTB (n51)
)i
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/lassign pr100 = gnd;
flassign pr100 = vcc;

/lassign pr101 = gnd;
/fassign pr101 = veg;

/lassign pr102 = gnd;
/lassign pr102 = vec;

/fassign pr103 = gnd;
/{assign pr103 = vee;

/lassign pr104 = gnd;
/fassign pr104 = vee;

/lassign pr105 = gnd;
/lassign pr105 = vec;

/lassign pr106 = gnd;
/fassign pr106 = vce;

/fassign pr107 = gnd;
/lassign pr107 = vcg;

//assign pr108 = gnd;
{lassign pr108 = vcc;

/lassign pr109 = gnd;
/lassign pr109 = vee;

/fassign pr110 = gnd;
/fassign pr110 = vec;

/lassign pr111 = gnd;
/lassign pr111 = vee;

/fassign pr112 = gnd;
ffassign pr112 = vee;

Hassign pr113 = gnd;
/fassign pr113 = vcc;

/lassign pr114 = gnd;
/lassign pr114 = vec;

//assign pr115 = gnd;
/lassign pr115 = vee;

FIG. 10E

[I<LUT15ZERO>
/I<LUT150NE>

HI<LUT14ZERO>
/I<LUT140ONE>

/I<LUT13ZERO>
/I<LUT130NE>

/I<LUT12ZERO>
[I<LUT120NE>

II<LUT11ZERO>
//<LUT110ONE>

/I<LUT10ZERO>
[I<LUT100NE>

II<LUT9ZERO>
/I<LUT9ONE>

/I<LUT8ZERO>
/I<LUT8ONE>

II<LUT7ZERO>
II<LUT7ONE>

//<LUTBZERO>
/I<LUTBONE>

[I<LUT5ZERO>
/I<KLUT50NE>

/I<LUT4ZERO>
//<LUT4ONE>

/I<LUT3ZERO>
II<LUT3ONE>

II<LUT2ZERO>
/I<LUT20NE>

/1<LUT1ZERO>
/I<LUT10ONE>

/I<LUTOZERO>
[I<LUTOONE>
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FIG. 10F

/lassign (streng, strong0) n18 = DATAT,; I/<QNORM>
ffassign (strong1, strong0) n18 = n17; HI<QUPDWN>
/lassign (strong1, strong0) n54 = DATA1; [/<RUPDWN>
{/assign (strong1, strong0) n54 = DATAZ,; [I<RNORM>
{{assign (strong1, strong0) n55 = DATAS; [[<PNQ_CI>
{fassign (strong1, strong0) n55 = CARRYIN;  //<PCI>

/fassign (strong1, strongQ) n56 = n29; //<SNORM>
{{assign (strong1, strongQ) n56 = DATAS3; [I<SUPDWN>
//assign n32 = vcg; HI<NVCC>

fassign (strong1, strong0) n32 = CASCADEIN; [I<KNCASCIN>
/fassign (strong1, strongQ) n32 = tocas; [/[<NMQODE>

{lassign (strong1, strong0) LEOUT = n40; [I<KREG>
/lassign (strong1, strong0) LEOUT = CASCADEQUT,; /I<KUNREG>
/lassign n43 = LABCTR1; II<JPRE>

{fassign n43 = gnd; JI<JPRENQOT>

/fassign (strong1, strong0) n47 = LABCTR1; //<MCT1>
/lassign (strong1, strong0) n47 = LABCTRZ; //<MCT2>

/lassign (strong1, strong0) n48 = LABCTRS; //<LCT3>
/fassign (strong1, strong(0) n48 = LABCTR4; //[<LCT4>
//assign n48 = gnd; /[<LGND>

endmodule
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FIG. 11

BEGINDEVICE
DEVICE=500

LB,3,2,LE2,<QNORM>=T
LB,3,2,LE2,<QUPDWN>=F
LB,3,2,LE2,<RUPDWN>=F
LB,3,2,LE2,<RNORM>=T
LB,3,2,LE2,<PNO_CI>=T
LB,3,2,LE2,<PCI>=F
LB,3,2,LE2,<SNORM>=T
LB,3,2,LE2,<SUPDWN>=F
LB,3,2,LE2 <NVCC>=T
LB,3,2,LE2,<NCASCIN>=F 833
1B,3,2,LE2, <NMODE>=F
LB,3,2,LE2,<KREG>=T
LB,3,2,LE2,<KUNREG>=F
LB,3,2,LE2, <JPRE>=F
LB,3,2,LE2,<JPRENOT>=T
LB,3,2,LE2,<MCT1>=F
LB,3,2,LE2,<MCT2>=T
LB,3,2,LE2,<LCT3>=F
LB,3,2,LE2,<LCT4>=F
LB,3,2,LE2,<LGND>=T

ENDDEVICE
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FIG. 12

assign (strong1, strong0) n18 = DATA1, [/<QNORM>

/fassign (strong1, strong0) n18 = n17; I1<QUPDWN>
/lassign (strong1, strong0) n54 = DATAT; HH<RUPDWN>
assign (strong1, strong0) n54 = DATAZ; [/<RNORM>

assign (strong1, strongQ) n55 = DATAS; //<PNO_CI>

flassign (strong1, strong0) n55 = CARRYIN; [I<PCI>

assign (strong1, strong0) n56 = n29; [/[<SNORM>
assign (strong1, strong0) n56 = DATAS, H<SUPDWN>
f/assign n32 = vcc; [[<NVCC>

{lassign (strong1, strong0) n32 = CASCADEIN; //<NCASCIN>
assign (strong1, strong0) n32 = tocas; //<NMODE>

assign (strong1, strong0) LEOUT = n40; I[<KREG>

/fassign (strong1, strong0) LEOUT = CASCADEOUT; //<KUNREG>
assign n43 = LABCTR1; /<JPRE>

/lassign n43 = gnd; /I<JPRENOT>

/fassign (strong1, strong0) n47 = LABCTR1; //<MCT1>
/lassign (strong1, strong0) n47 = LABCTR2; //<MCT2>

/fassign (strongt, strong0) n48 = LABCTR3;  //<LCT3>
/fassign (strong1, strong0) n48 = LABCTR4;  //<LCT4>
assign n48 = gnd; //<LGND>

endmodule
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METHODS AND SYSTEMS FOR DESIGNING
INTEGRATED CIRCUIT GATE ARRAYS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of prior applica-
tion Ser. No. 09/211,515, filed Dec. 14, 1998, the disclosure
of which is hereby incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to integrated circuit
design methods, and more particularly to application spe-
cific integrated circuit design methods.

BACKGROUND OF THE INVENTION

[0003] Integrated circuit designers frequently choose
application specific integrated circuit (ASIC) technology
when designing integrated circuits to perform unique and
customized functions. This is because ASIC technology
provides designers with comprehensive tools to customize
logic to perform specialized and multiple functions on a
single integrated circuit substrate or chip, instead of the
multiple chips which typically would be required in the
event standardized circuit technology was employed. As will
be understood by those skilled in the art, ASICs may be
generated in many different ways and have many different
designations based on the methods used to design and/or
manufacture them. The most time consuming method, but
often the one that yields the smallest chip size and/or best
performance, is the “full-custom” designed ASIC. These
ASICs are often designed entirely from scratch at the
transistor level with only occasional use of previously
designed circuit “blocks” which are typically referred to as
cells, standard cells, or macrocells. Because of this compre-
hensive approach, custom designed ASICs typically require
the creation of an entire design database and test methods
(including custom test vectors). A complete set of custom-
ized fabrication masks is also typically required for fabri-
cation. These requirements typically make the design and
fabrication of custom ASICs very time consuming and
expensive when generating prototype devices and when
iterating through design changes. Alternative ASIC design
methodologies include the use of standard cell technology,
which differs from full custom design in that multiple cells
or macrocells that have been previously designed are uti-
lized. These cells are selected from libraries of cells for their
applicability to the design, and placed and routed with
software that is well known in the art. The final circuit then
has no fewer custom mask layers than the full custom design
method. However, this method does have advantages over
the full custom design method in the time required to
complete a design, because the elementary level of cell
design is only done once to create the libraries, and this work
can be reused in multiple subsequent designs.

[0004] Alternative application specific integrated circuit
design technologies which typically do not incur the time
and expense penalties associated with full custom ASICs
include gate array technology. Gate array technology typi-
cally utilizes the building blocks of logic gates and/or
memory devices as resources to minimize design time and
cost. This extensive use of blocks enables the gate array
designer to focus more on the routing of connections (e.g.,
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metal wiring and interconnects) between these blocks and
less on the design and operation of the individual logic gates
and other low-level devices. Here, the designer may be able
to reduce the number of custom mask layers that must be
generated for fabrication because typically only the upper-
most masking layers are specific to a particular design. On
the other hand, the base masking layers that determine the
logic and memory blocks are typically identical for a variety
of designs. With these savings comes a penalty since only
certain types and sizes of logic gates are typically available
to choose from and constraints on the placement of such
gates may not always lead to a device having ideal charac-
teristics.

[0005] Gate array technology also provides a reduction in
the time and expense associated with making design changes
through an iterative process. This is because less than all
mask layers are involved in any design change at any level,
as opposed to the full-custom ASIC design case where
design changes may require a change to all mask layers.
Notwithstanding these benefits, gate array technology may
still require some relatively expensive custom tooling for the
upper level masks. Moreover, design checking in physical
silicon cannot take place without processing one or more
wafers through multiple fabrication steps including deposi-
tion, masking and etching, for example, just like full-custom
ASIC technology. The terms ASIC and gate array are meant
to be interchangeable for the purposes of this disclosure.
ASIC or gate array can refer to fully-custom integrated
circuits, or semi-custom integrated circuits, including stan-
dard cell integrated circuits.

[0006] Referring now to FIG. 1, a flow diagram of opera-
tions 100 performed when designing a full-custom ASIC
will be described. Although the flow diagram displays many
decision points and their associated unacceptable paths, the
following description does not attempt to elaborate on all the
unacceptable paths. As illustrated, a design specification of
a desired integrated circuit is initially provided, Block 102,
and then from this a HDL/schematic description of the
integrated circuit is entered into a design system, Block 104,
to generate a complete HDI./schematic description, Block
106. From this HDIL/schematic description, an operation is
performed to simulate the functional operation of the inte-
grated circuit, Block 108. The simulation is then checked for
accuracy, Block 110. If the simulation is correct, an opera-
tion is performed to synthesize logic and generate a logic
netlist, Blocks 112 and 114. The synthesis of the logic may
require ASIC logic primitives and resources, Block 113, and
user synthesis constraints, Block 111. A check may then be
performed to determine whether the integrated circuit will
receive an internal scan test, Block 116. If so, scan elements
can be added to the logic netlist, Block 118. Then, with the
addition of ASIC element timing estimates, Block 115, an
operation is performed to simulate the timing of the inte-
grated circuit, Block 121. The timing simulation is then
checked for accuracy, Block 123. If the simulation is correct,
a logic placement and signal routing operation will be
performed, Block 120, based on a set of user routing and
logic placement constraints, Block 150, and ASIC logic
resources and routing resources and constraints, Block 117.
From this placement and routing operation, a routed netlist
will be generated, Block 122.

[0007] A timing extraction operation (e.g., parasitic R and
C extraction operation) may then be performed, Block 124,
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to generate timing parameters, Block 126. The routed netlist
and timing parameters are then used to perform another
timing simulation, Block 128, which takes into account the
actual placement of gates, devices, etc., and interconnect
nets which link these devices together. A check is then
performed to determine whether the simulation is accept-
able, Block 130. If the simulation is acceptable, test vectors
are created, Block 140. Operations are also performed to
create mask-making data, Block 132. The mask-making
data, Block 134, is then used to create masks, Block 136. A
prototype of the full-custom ASIC device is then fabricated,
Block 138. An operation is then performed to test and
evaluate the device and/or system, Block 142. If the test
results are acceptable, then the design is complete. However,
if the test results are not acceptable, then a check is made to
determine whether the HDI /schematic description of the
invention (i.e. logic) needs to be modified, the routing and
placement needs to be modified, or the synthesis constraints
need to be modified, Block 144. If the HDL/schematic
description needs to be modified, Block 146, then essentially
all the above-described steps and operations will need to be
repeated. If the synthesis constraints need to be modified,
Block 119, then the majority of the above-described steps
and operations will need to be repeated from the logic
synthesis step, Block 112. But, if only the routing and
placement constraints need to be modified, Block 148, then
the process can resume at the logic placement and signal
routing step, Block 120.

[0008] Programmable logic devices (PLDs) may also be
used as an alternative application specific integrated circuit
design technology. Such devices are also typically referred
to as programmable array logic (PAL) and field program-
mable gate arrays (FPGAs), as described in Chapter 11 of a
textbook by Jan M. Rabaey, entitled Digital Integrated
Circuits, Prentice Hall, pp. 629-692 (1996), the disclosure of
which is hereby incorporated herein by reference. When
customizing a PLD, a user typically defines the device
within the constraints of the PLD architecture, and then
creates through the use of computer aided design tools, a
specific set of interconnections or device states at each of the
programmable configuration points within the PLD. As will
be understood by those skilled in the art, each of these
configuration points may be controlled by one or more fuses,
antifuses or memory elements, and may be one-time pro-
grammable or reprogrammable. The configuration of the
PLD is then stored in a configuration file, which is com-
monly referred to as a “bitstream”. This configuration file
defines the state of each fuse, antifuse or memory element in
the PLD. In the case of PLDs, this bitstream may be
programmed into the PLD directly, or in the case of a
volatile device, this bitstream may be stored in another
device and then read into the PLD upon startup.

[0009] An obvious advantage of PLDs is that they require
relatively little time and expense to design or generate
design iterations. However, for a given functional design,
PLDs typically require greater layout area, consume con-
siderably more power and are slower than ASIC technolo-
gies (i.e. custom ASIC, standard cell, or gate array). PLDs
consume more power and are slower because the signals
which traverse programmable elements within the PLD
typically encounter higher resistance and capacitance asso-
ciated with the programmable elements than the resistance
and capacitance associated with metal interconnect lines
within the gate array and full-custom ASIC technologies.
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PLDs also require greater layout area because they include
additional programmable elements and configuration points.

[0010] Referring now to FIG. 2, a flow diagram of opera-
tions 200 performed when designing a conventional PLD
will be described. As illustrated, a design specification of a
desired integrated circuit is initially provided, Block 202,
and then from this a HDL/schematic description of the
integrated circuit is entered into a design system, Block 204,
to generate a complete HDI./schematic description, Block
206. From this HDI /schematic description, an operation is
performed to simulate the functional operation of the inte-
grated circuit, Block 208. The simulation is then checked for
accuracy, Block 210. If the simulation is correct, an opera-
tion is performed to synthesize logic and generate a logic
netlist, Blocks 212 and 214. The synthesis of the logic
typically requires PLD logic primitives and resources, Block
213. A logic placement and signal routing operation is then
performed, Block 220, based on a set of user routing and
logic placement constraints, Block 250, and PLD logic
resources and routing resources and constraints, Block 217.
From this placement and routing operation, a routed netlist
will be generated, Block 222.

[0011] A timing extraction operation may then be per-
formed, Block 224, to generate timing parameters, Block
226. The routed netlist and timing parameters are then used
to perform a timing simulation, Block 228, which takes into
account the actual placement of gates, devices, etc., and
interconnect nets which link these devices together. A check
is then performed to determine whether the simulation is
acceptable, Block 230. If the simulation is acceptable, an
operation is performed to generate a bitstream/programming
file, Blocks 232 and 234. A prototype of the PLD can then
be programmed, Block 236. An operation is then performed
to test and evaluate the operation and/or system of the
device, Block 242. If the test results are acceptable, then the
design of the PLD is complete. However, if the test results
are not acceptable, then a check is made to determine
whether the HDL schematic description of the circuit needs
to be modified or the routing and placement needs to be
modified, Block 244. If the HDL schematic description
needs to be modified, Block 246, then essentially all the
above-described steps and operations of FIG. 2 will need to
be repeated. But, if only the routing and placement con-
straints need to be modified, Block 248, then the process can
resume at the logic placement and signal routing step, Block
220.

[0012] Unfortunately, as integrated circuit designs such as
those having asynchronous inputs increasingly become
more complex, the importance of physical testing becomes
more important since many of state-of-the-art software
simulation tools cannot provide completely accurate simu-
lation. Accordingly, physical designs may need to be rede-
signed in an iterative manner more frequently, which
increases design time and expense. To address these limi-
tations in the ability to accurately and completely simulate
highly complex integrated circuits, integrated circuit design
methodologies have been developed which include the gen-
eration of prototype devices and the performance of small
volume production with PLDs. Then, once a final functional
design is obtained utilizing the PLLD, a conversion is then
typically made to full-custom or gate array ASICs for large
volume production after the design has been finalized.
Unfortunately, a problem with this design methodology is
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the lack of an efficient technique to provide this conversion
from a PLD to a gate array or full-custom ASIC without
having to go back to the beginning or HDI./schematic
definition stage and repeat the time-consuming and expen-
sive process of generating the gate array or full-custom
ASIC to mimic the operation of the PLD. Thus, when
switching from a functional PLD implementation to a gate
array ASIC implementation, the design process essentially
starts over since the logic synthesis operations must be
repeated along with the place and route operations and all
the other steps in the flow.

[0013] This relatively inefficient design methodology is
more fully illustrated by FIG. 3. In particular, FIG. 3
illustrates conventional operations 300 which are performed
when switching from a PLD implementation to an ASIC
implementation. Although the flow diagram displays many
decision points and their associated unacceptable paths, the
following description does not attempt to elaborate on all the
unacceptable paths. These operations include the step of
selecting a PLD for conversion, Block 302, with the descrip-
tion of the PLD being defined by a HDL /schematic descrip-
tion, Block 304. A check is then made to determine whether
the HDL/schematic format of the PLD is compatible with
the format for specifying an ASIC, Block 306. If the formats
are not compatible, then the HDIL/schematic of the PLD
undergoes a conversion process, Block 308, to generate a
converted format for the desired ASIC, Block 349. From this
HDL/schematic description, an operation is performed to
simulate the functional operation of the integrated circuit,
Block 350. The simulation is then checked for accuracy,
Block 352. If the simulation is correct, an operation is
performed to synthesize logic and generate a logic netlist,
Blocks 312 and 314. The synthesis of the logic may require
ASIC logic primitives and resources, Block 313, and the
user synthesis constraints, Block 311. A check may then be
performed to determine whether the integrated circuit will
receive an internal scan test, Block 316. If so, scan elements
will be added to the logic netlist, Block 320. Then, with the
addition of the ASIC element timing estimates, Block 315,
an operation is performed to simulate the timing of the
integrated circuit, Block 317. The timing simulation is then
checked for accuracy, Block 323. If the timing simulation is
not correct, a check is made at Block 343 to determine
whether the synthesis constraints need to be modified, Block
325, or whether the logic needs to be modified. However, if
the simulation is correct, a logic placement and signal
routing operation will be performed, Block 318, based on a
set of user routing and logic placement constraints, Block
321, and ASIC logic resources and routing resources and
constraints, Block 319. From this placement and routing
operation, a routed netlist will be generated, Block 322.

[0014] A timing extraction operation (e.g., parasitic R and
C extraction operation) may then be performed, Block 324,
to generate timing parameters, Block 326. The routed netlist
and timing parameters are then used to perform another
timing simulation, Block 328, which takes into account the
actual placement of gates, devices, etc., and interconnect
nets which link these devices together. A check is then
performed to determine whether the simulation is accept-
able, Block 330. If the simulation is acceptable, test vectors
are created, Block 342. Operations are also performed to
create mask-making data, Block 332. The mask-making
data, Block 334, is then used to create masks, Block 336. A
prototype of the ASIC device is then fabricated, Block 338.
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An operation is then performed to test and evaluate the
operation of the device and/or the device within the appli-
cation, Block 340. If the test results are acceptable, then the
design is complete. However, if the test results are not
acceptable, then a check is made to determine whether the
HDL/schematic description of the invention (i.e. logic)
needs to be modified, the routing and placement needs to be
modified, or the synthesis constraints need to be modified,
Block 344. If the HDL schematic description needs to be
modified, Block 346, then essentially all the above-de-
scribed steps and operations will need to be repeated. If the
synthesis constraints need to be modified, Block 325, then
the majority of the above-described steps and operations will
need to be repeated from the logic synthesis step, Block 312.
But, if only the routing and placement constraints need to be
modified, Block 348, then the process can resume at the
logic placement and signal routing step, Block 318.

[0015] Alternative methods of converting PLDs to ASICs
have been devised that reduce the workload in the conver-
sion process by creating parameterized software models for
elements of the PLD such as described in U.S. Pat. No.
5,815,405 to Baxter titled “Method and apparatus for con-
verting a programmable logic device representation of a
circuit into a second representation of the circuit”. These
methods attempt to allow the reuse of work product in the
same way that standard cell ASIC technology allows the
reuse of work product. Standard cell ASIC technology
reuses previously created cells or macrocells and allows the
designer to reuse these higher level previously designed
building blocks, lessening the design effort over full custom
design. In the same way, Baxter proposes reusing previously
designed software macros of the logic elements within the
PLD, and creating a software model of the design from the
bitstream of the PLD, relieving the designer of these repeti-
tive tasks. These methods however still suffer from the
limitations that they require the user to complete the mul-
tiple steps of synthesis and place and route after the software
model has been created, and do not guarantee that equivalent
logic implementation and timing, or relative placement and
relative routing delays of signals will be maintained between
the target PLD representation being converted and the ASIC
device as converted.

[0016] In particular, U.S. Pat. No. 5,815,405 to Baxter
discloses an apparatus which parses a device specific bitwise
representation used to program a PLD. The apparatus iden-
tifies various configurable elements being programmed by
the bitwise representation, and identifies the actual configu-
ration of the identified elements. As illustrated by FIG. 1B
of the *405 patent, for each configurable element represented
in the bitwise representation, a new instance of that type of
element is included in a pre-compiled representation 137 of
the circuit design. This pre-compiled representation, which
is independent of the target fabrication technology, may be
an HDL representation or a netlist representation. A com-
piler then uses a target fabrication technology library 142 to
convert the pre-compiled representation 137 into a post-
compiled representation 147. A place and route tool 150 is
then used to place and route the post-compiled representa-
tion 147 in the desired target technology. Unfortunately, like
the relatively inefficient design methodology of FIG. 3,
expensive and time consuming operations are still required
to convert from an HDL or netlist representation of the
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desired circuit to a design which is compatible with the
target technology. Conventional place and route operations
are also required.

[0017] Thus, notwithstanding the above-described tech-
niques for designing integrated circuits, there still continues
to be a need for design techniques which enable more
efficient conversion of PLD-based designs to functionally
equivalent ASIC designs.

SUMMARY OF THE INVENTION

[0018] 1t is therefore an object of the present invention to
provide improved integrated circuit design and manufactur-
ing methodologies.

[0019] Tt is another object of the present invention to
provide integrated circuit design and manufacturing meth-
odologies which enable a more efficient conversion from
PLD integrated circuits to gate array integrated circuits.

[0020] Tt is still another object of the present invention to
provide integrated circuit design and manufacturing meth-
odologies which maintain functional equivalency when con-
verting from PLD integrated circuits to gate array integrated
circuits.

[0021] Tt isstill a further object of the present invention to
provide integrated circuit design and manufacturing meth-
odologies which enable replication of the functionality of a
PLD in a gate array integrated circuit, without requiring the
synthesis or the placement and routing steps which are
typically required when starting from an HDL or schematic
entry level of a circuit design.

[0022] These and other objects, features and advantages of
the present invention are provided by methods of designing
integrated circuit devices which comprise the step of gen-
erating a netlist for a gate array integrated circuit having at
least first logic and signal resources therein, directly from
bitstream data which characterizes a programmable logic
device having a first operational functionality and the first
logic and signal resources as well. The generating step is
also followed by the step of using the netlist to configure the
first logic and signal resources within the gate array inte-
grated circuit to provide the first functionality. A preferred
integrated circuit design system is also provided. This sys-
tem includes a programmable logic device having unpro-
grammed logic and signal resources therein and a gate array
device having base logic and signal resources therein which
are equivalent to the unprogrammed logic and signal
resources of the programmable logic device. A computer-
based apparatus is also provided for decoding a bitstream
that characterizes the programmable logic device having a
first operational functionality when programmed, into a
netlist that designates electrical connections in the gate array
device when wired to have the first operational functionality.
Accordingly, when switching from a functional program-
mable logic device (PLD) implementation to a gate array
implementation, it is unnecessary to start the design process
over from scratch by performing logic synthesis, place and
route and other front end design operations associated with
conventional gate array design techniques.

[0023] According to one aspect of the present invention,
the generating step comprises the step of generating a netlist
for the gate array integrated circuit having a first operational
functionality. The generating step may also make use of
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definition data for the programmable logic device, and may
further make use of definition data for the gate array
integrated circuit. The netlist may be further used to generate
test vectors for a test of operational functionality of the gate
array integrated circuit. The test of operational functionality
may include scan-based testing.

[0024] According to another aspect of the present inven-
tion, the generating step comprises the step of generating
hookup data which characterizes a plurality of nets for a gate
array integrated circuit having a first operational function-
ality. Preferentially, this generating step would not require a
logic synthesis operation or placement and/or routing steps.
The generating step may also make use of definition data for
the programmable logic device, and may further make use of
definition data for the gate array integrated circuit. In
another embodiment of the present invention, hookup coor-
dinates are generated as an output of the generating step,
which may also include the use of definition data for the
programmable logic device or the gate array integrated
circuit or both. The hookup coordinates may define points of
electrical connections, disconnections or both. The creation
of the connections or disconnections may make use of a
targeting energy beam, such as an electron beam, ion beam,
laser, or other similar methods, hereinafter referred to as a
laser, or may make use of photolithography, etch, plating,
and deposition technology which is well known in the art,
wherein the pattern locations created by the laser or photo-
mask are designated by the hookup coordinates.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1 is a flow diagram of operations which may
be performed when designing a conventional application
specific integrated circuit (ASIC).

[0026] FIG. 2 is a flow diagram of operations which may
be performed when designing a conventional programmable
logic device (PLD).

[0027] FIG. 3 is a flow diagram of conventional opera-
tions which may be performed when converting a PLD
implementation of an integrated circuit to an application
specific integrated circuit.

[0028] FIG. 4 is a flow diagram of preferred operations for
converting a PLLD implementation of an integrated circuit to
a gate array having equivalent functionality.

[0029] FIG. 5A is a block diagram of an exemplary PLD
which can be converted directly to a gate array in accordance
with the present invention.

[0030] FIG. 5B is a block diagram of a first portion of the
exemplary PLD shown in FIG. 5A.

[0031] FIG. 5C is a block diagram of a second portion of
the exemplary PLD shown in FIG. 5B.

[0032] FIG. 5D is a block diagram of a portion of a base
gate array device into which an exemplary PLD can be
directly converted in accordance with the present invention.

[0033] FIG. 6 is a diagram of a bitstream file used to
program the exemplary PLD.

[0034] FIG. 7 is an exemplary table of bitstream bits and
their logical implications used in converting an exemplary
PLD directly into a gate array in accordance with the present
invention.
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[0035] FIG. 8 is an exemplary table of logic block coor-
dinates of a gate array device used in converting an exem-
plary PLD directly into a gate array in accordance with the
present invention.

[0036] FIG. 9 is an exemplary table of logic element
hookup coordinates within a logic block of a gate array
device used in converting an exemplary PLD directly into a
gate array in accordance with the present invention.

[0037] FIG. 10A is a first portion of a base gate array
simulation model for use in creating test vectors when
converting an exemplary PLD directly into a gate array in
accordance with the present invention.

[0038] FIG. 10B is a second portion of a base gate array
simulation model for use in creating test vectors when
converting an exemplary PLD directly into a gate array in
accordance with the present invention.

[0039] FIG. 10C is a third portion of a base gate array
simulation model for use in creating test vectors when
converting an exemplary PLD directly into a gate array in
accordance with the present invention.

[0040] FIG. 10D is a fourth portion of a base gate array
simulation model for use in creating test vectors when
converting an exemplary PLD directly into a gate array in
accordance with the present invention.

[0041] FIG. 10E is a fifth portion of a base gate array
simulation model for use in creating test vectors when
converting an exemplary PLD directly into a gate array in
accordance with the present invention.

[0042] FIG. 10F is a sixth portion of a base gate array
simulation model for use in creating test vectors when
converting an exemplary PLD directly into a gate array in
accordance with the present invention.

[0043] FIG. 11 is a portion of a connection/configuration
data file for use in directly converting an exemplary PLD
directly into a gate array in accordance with the present
invention.

[0044] FIG. 12 is a portion of a modified gate array
simulation model for use in creating test vectors when
converting an exemplary PLD directly into a gate array in
accordance with the present invention.

[0045] FIG. 13 is a block diagram of a portion of a base
gate array device into which an exemplary PLD can be
directly converted in accordance with the present invention.

[0046] FIG. 14 is a schematic diagram representation of
the portion of a base gate array device shown in FIG.13.

DESCRIPTION OF PREFERRED
EMBODIMENTS

[0047] The present invention now will be described more
fully hereinafter with reference to the accompanying draw-
ings, in which preferred embodiments of the invention are
shown. This invention may, however, be embodied in many
different forms and should not be construed as limited to the
embodiments set forth herein. Rather, these embodiments
are provided so that this disclosure will be thorough and
complete, and will fully convey the scope of the invention
to those skilled in the art. Like numbers refer to like
elements throughout.
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[0048] FIG. 5A illustrates a PLD device 500 of a type
manufactured by Altera Corporation of San Jose, Calif.,
which can be converted directly to a gate array in accordance
with the present invention. Device 500 has a row and
column architecture, with multiple I/O elements 510 on four
sides connected to row 502 and column 503 interconnects,
with logic blocks (LBs) 520 disposed along the rows and
columns in a two dimensional format. Each LB 520 contains
8 logic elements (LEs) 30 and has multiple interconnections
to its adjacent row interconnect 502 and column intercon-
nect 503, as illustrated in FIG. SB. Control signals 540 are
derived from row interconnect 502. Local interconnect 550
allows input lines 560 to LE 30 be drawn from row inter-
connect 502 or from feedback bus 570 made up of the eight
LE-Out lines 14 from each of the logic elements 30 in the
logic block.

[0049] FIG. 5C shows a block diagram of exemplary
logic element 30 containing look-up table 40, fed by four LE
input lines 560 and Carry-in line 41, cascade chain logic 15,
register 16, register bypass circuit 12 , and LE-Out MUX 10
controlled by logic state 11 and yielding LE-Out line 14.
Logic element 30 also contains clock select MUX 50
controlled by logic state 51 and selecting one of two LE
control signals 540 to go into register 16. Clear/Preset logic
571 uses one of the four LE input lines 560 and two of the
four LE control signals 540 to determine the states of preset
and clear on register 16. This exemplary portion is a logic
element of a FLEX 8000 architecture used in PLDs manu-
factured by Altera Corporation of San Jose, Calif.

[0050] PLD devices are manufactured with different fun-
damental logic architectures, the two most popular of which
are the lookup-table architecture, and the product-term
architecture. Examples of lookup-table architecture are
devices such as the FLEX 8000 family manufactured by
Altera Corporation of San Jose, Calif., and the XC4000
family manufactured by Xilinx, Inc. of San Jose, Calif.
Examples of product-term architecture are the MAX 7000
family manufactured by Altera Corporation, and the
XC9500 family manufactured by Xilinx, Inc. In one aspect
of the present invention, it is advantageous for the base gate
array device into which the PLD device is to be converted
to have the same architecture type, such that if the PLD to
be converted has an architecture containing logic elements
made up of a four input lookup table, cascade logic, a
register, a register bypass path, and arithmetic carry capa-
bility, then the base gate array device into which the PLD is
to be converted should have blocks containing the same or
equivalent elements. Likewise, if the PLD to be converted
contains macrocells with five product terms each with
thirty-six input terms feeding an OR gate, a register, product
term sharing logic, and a register bypass path, then the base
gate array device into which the PLD is to be converted
should have blocks containing the same or equivalent ele-
ments. Since this will also allow segments of logic in the
PLD, when converted and placed into the gate array device,
to be in the same relative locations as they occupied in the
PLD. In this way internal logic placement and routing can
most easily be matched, and internal timing and logic
consistency can be most easily maintained, without need of
logic resynthesis, or placement and routing steps.

[0051] FIG. 5D is a block diagram of such a base gate
array device 599 into which PLD device 500 with a first
operational functionality can be directly converted, to yield
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a gate array device with the first operational functionality.
Base gate array device 599 contains at least the logic
resources and signal path resources present in PLLD device
500. Each logic building block 590 of base gate array device
599 contains eight gate array logic element sections 70 (as
shown in FIG. 13), each corresponding to logic elements 30
of PLD device 500. The device contains I/O elements (IOE)
591 containing multiple I/Os, connected to row 592 and
column 593 interconnect structures, corresponding to like
elements 510, 502, and 503 of PLD device 500. It is a feature
of the present invention that the congruence of logic
resources and signal path resources of PLLD device 500 and
base gate array device 599, allows a high efficiency of
conversion when PLD device 500 with a first operational
functionality is converted to a gate array device with the
same first operational functionality. It can be noted that the
congruence of logic and signal path resources of PLD device
500 and base gate array device 599 include such things as
the row and column architecture of elements 502, and 503
to 592 and 593, and the relative placement of major logic
blocks such as LB 520 and LBB 590. Interconnect structures
of the base gate array device 599, such as row 592 and
column 593 interconnects should have at least the signal
path resources of corresponding row 502 and column 503
interconnect structures of PLD device 500. It is less impor-
tant that the congruence extend to the physical placement of
elements 30 within block 520 compared to the placement of
sections 70 within blocks 590. It would be perfectly accept-
able for elements 30 to be stacked eight high in a vertical
arrangement in block 520 of PLD device 500, while logic
element sections 70 of LBB 590 of base gate array device
599 were disposed in a two by four matrix. This is due to the
relative importance of distance and length of signal line in
determining signal delays on an integrated circuit. It will be
understood by one skilled in the art that the relative signal
delays between logic elements 30 within the same LB 520
will be small in comparison to the signal delays generally
encountered between logic blocks 520 located in different
areas of PLD device 500.

[0052] FIG. 13 is a block diagram of a gate array logic
element section 70 of a base gate array device 599, corre-
sponding to the logic element 30 of PLD device 500 shown
in FIG. 5C, which is suitable for direct conversion using the
invention described herein from the PLD device 500 into the
corresponding gate array device 599. It can be seen that the
base gate array logic element section 70 also contains
similar logic resources and signal path resources to logic
element 30 of PLD device 500. Among these are lookup-
table (LUT) 71 corresponding to the lookup-table 40 of PLD
logic element 30, cascade logic 76 corresponding to similar
logic 15 in logic element 30, and a register 72 to correspond
with register 16 of logic element 30. FIG. 13 also shows that
a logic element section 70 of a base gate array 599 in
accordance with one aspect of this invention has the addition
of multiple internal scan registers 73, 74, and 75 for use in
testing the completed device.

[0053] FIG. 14 shows a schematic diagram of the logic
element section 70 of the base gate array shown in FIG. 13.
This schematic diagram more completely shows the logic
resources and possible connections of the base gate array
logic element section 70, including register 72 and scan
registers 73, 74, and 75. It will be apparent to one skilled in
the art that additional internal scan registers can be placed as
required in other areas of gate array device 599 such that
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scan test of the majority of the operational logic can be
performed without use of all the device pins.

[0054] Referring now to FIG. 4, preferred operations 400
will now be described for designing an application specific
integrated circuit (ASIC), by directly converting bitstream
data of a programmable logic device (PLD) having first
logic and signal path resources into connection data (e.g., a
netlist) which is compatible with an ASIC (e.g., gate array)
having the first logic and signal path resources as well. This
bitstream data, programming-ready for writing directly into
the PLD, or into a Programmable Read-Only Memory
(PROM), may be a file generated by MAXPLUS™ II
software in Intel™ hex format, or other appropriate format
for the PLD. As illustrated by Block 410, an operation is
initially performed to automatically decode a PLD bitstream
or programming file, Block 412, and generate a connection/
configuration data file therefrom, Block 415. As described
more fully hereinbelow, this decoding operation is per-
formed using PLD definition data, Block 408. This defini-
tion data may include a data set that describes the function
of a majority of the bits contained within the bitstream or a
data set that describes the functionality of the PLD as
defined by the bits, or both. This connection/configuration
data may represent logic, logic states and interconnections
specified in a bitstream provided by a user. The data will
contain information relating to the configuration of logic
resources into various logic segments, as well as relative
placement of these logic segments, and the routing of signal
paths. The combination of the circuit resource and routing
resource information of the base gate array and the connec-
tion/configuration data can yield information about the
placement of the logic resources and the routing of signals
between those resources (including the starting and termi-
nating points of at least one connection path on the target
gate array integrated circuit).

[0055] Operations are then performed to convert the con-
figuration/connection data to laser fuse coordinates and/or
mask data, Block 430. Here, the connection/configuration
data file, Block 415, and base gate array integrated circuit
connection coordinate data, Block 435, are used to create a
laser fuse file, Block 440.

[0056] A test vector file, Block 495, is also generated by
automatically creating test vectors, Block 490, from the
modified gate array models, Block 480 . These test vectors
may also be used for scan-based testing. As will be under-
stood by those skilled in the art, scan-based test methods
may utilize a plurality of storage elements which are con-
nected together as a chain on an integrated circuit substrate.
During testing, these elements can be loaded with input test
data using a reduced number of I/O pins, as described by
U.S. Pat. No. 5,519,713 to Baeg et al. entitled “Integrated
Circuit Having Clock-Line Control and Method for Testing
Same”.

[0057] In addition, the laser fuse file, Block 440, can be
used to fabricate a lasered device, Blocks 445 and 448.
Alternatively, the laser fuse file Block 440, and/or the
connection/configuration data, Block 415, can be converted
to a mask making data file, Blocks 450, 452. Using con-
ventional operations, the mask making data file can be used
to make fabrication masks, Block 460, and fabricate the
target gate array (having at least the same signal path
resources and logic resources as the programmed PLD),
Block 465.



US 2003/0200520 A1l

[0058] According to another aspect of the present inven-
tion, the decoding operation may also generate hookup data
as connection/configuration data which describes a plurality
of patterned interconnect segments in the gate array which,
when joined, create an electrically conductive path between
starting and terminating points, and hookup coordinates
which describe, relative to an origin, connection points
between these patterned interconnect segments. These coor-
dinates may also give the location of points of disconnect to
form a single path out of a plurality of possible signal paths.
For example, the base target gate array may have both the
first and second nets connected and the connection/configu-
ration data file may provide hookup data which designates
which of the first or second nets is to be disconnected in the
base gate array to provide the desired function.

[0059] The above-described operations for decoding a
bitstream for a PLD 500 having first logic and signal path
resources therein into a connection/configuration data file
for a gate array integrated circuit having equivalent logic
and signal path resources will now be more fully described
with reference to FIG. 5C. In particular, FIG. 5C illustrates
a exemplary portion of a programmable logic device (PLD)
element 30 which can be converted directly to a gate array
integrated circuit by decoding the bitstream which programs
the PLD element 30 as a connection/configuration data file.
This exemplary portion is a logic element of a FLEX 8000
architecture used in PLDs manufactured by Altera Corpo-
ration of San Jose, Calif. Here, the decoding process utilizes
base PLD definition data to interpret a pattern of bits within
a bitstream or programming file used to program the PLD
500 and determine the function of each bit or combination
of bits. This bitstream may take the form of:

[0060] 000010000000001000000111000000
1000000010100

[0061] 000010000001000010000001110
000000101100001

[0062] 0000000001000000000000000
1110000100000010

[0063] 00000110000000001110000 . . . 111110000

[0064] 000010000001101000000111000000
1000000110100

[0065] 000010011001000010000001110
0001001011

[0066] 000010000110001000000000000000
111001010

[0067] 00001001100110000000001110000
111110001.

[0068] The geometry of the bits within the bitstream can
be representative of the logic and signal path resources of the
PLD or it can be independent of the PLD structure. For
example, bit “n” of the bitstream as the control for multi-
plexer 10 via a select input 11. If the multiplexer 10 is
programmed within the PLD to pass input line 12 to the
output line 14, the LE-OUT signal will be provided directly
by the output 20 of the cascade chain 15 in the target gate
array. Alternatively, if the multiplexer 10 is programmed to
pass input line 13 to the output line 14, the LE-OUT signal
will be provided directly by the output of the register 16 in
the target gate array. Thus, the function of bit “n” in the
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bitstream would be to determine whether LE-OUT is reg-
istered or not registered. Then, upon decoding of the bit-
stream, the connection/configuration data file would indicate
whether a first net interconnecting the output 20 of the
cascade chain 15 directly to LE-OUT is to be provided or
whether a second net connecting the output Q of register 16
to LE-OUT is to be provided. A similar process is also
repeated for each of the remaining bits in the bitstream, with
the PLD device definition data (Block 408) associating a
particular bit or bits in the bitstream with a function and the
gate array device connection/configuration data (Block 415)
associating the function with a plurality of nets. The high
efficiency of this decoding process is preferably achieved by
the base gate array having similar signal path and logic
resources as the target PLD. In particular, the base gate array
599 should have at least the logic and signal path resources
available in the target PLD 500.

[0069] FIG. 6 shows a pictorial representation 600 of a
portion of data set 408 showing how an exemplary bitstream
file 412 for such a PLD device such as device 500 disposed
in 5 rows and 22 columns of LEs 30 grouped into logic
blocks 520 of eight logic elements would commonly be
organized. It is common for records other than the header
and trailer to be a uniform length, however this is not a
requirement. FIG. 6 illustrates such an exemplary bitstream
file of 208 records in length with a uniform record length of
240 bits each. The bitstream file begins with a header record
610, followed by several records 620 containing configura-
tion bits for the top I/Os 510. At the bottom of the file are
additional bottom I/O configuration records 630 and a trailer
record 640. The center section of the file contains multiple
groups of records for configuring each of the five rows of
logic block 520 as well as the interconnections to rows 502
and columns 503 and the left and right side I/Os 510 as well.
The third row is described by records 85 to 124. Within this
section records 117-124 can be seen to contain the LE
Configuration bits, and more particularly, bits 21-30 of these
records 650 can be seen to contain the LE Configuration bits
for the LB in column 2 of row 3 and these blocks of LE
Configuration bits are replicated in a typically geometric
fashion for columns 1 to 22.

[0070] FIG. 7 shows a pictorial representation 700 of
another section of data set 408, containing the definitions of
a portion of the bits in the LE Config area for each LB. This
area of the file 412 is shown to contain 8 records of 10 bits
in width. It can be seen from table 700 that there is one
record for each of the eight logic elements 30 in the logic
block, which happen in this case to match the order of the
logic elements, but this is not required. Table 700 show that
bit fields 2 and 8 are unused and that the order of the other
bits and their polarities are constant throughout the block,
but this will depend upon the layout of PLD device 500 and
need not be constant. Table 700 also shows logic states for
only single bits, with each bit defining the logic states of two
logical connections only. This is not a limiting aspect of the
invention, and other numbers of bits or combinations of bits
and other numbers of logical connections may be more
advantageous in other cases. Entry 701 of table 700 corre-
sponds to the setting of logic state 11 controlling MUX 10
, and shows that to make the LE-Out of the second LE in an
LB be registered, the third bit of the second record of this
block is set to 1 such that KREG is true and KUNREG is
false. For bypass of register 16 by MUX 10, the bit is set to
0, such that KREG is false and KUNREG is true, where the
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values of KREG and KUNREG correspond to the possible
logical connections of MUX 10 of logic element 30 of the
PLD device 500 to be converted. It will be apparent to one
skilled in the art that computing the position of this bit “n”
within file 412 can be easily accomplished, and that by
observing the status of this and other bits within the bit-
stream file 412, given a full description of the file with tables
such as those described above, the intended functions of the
logic elements, and the intended connections within the PLD
can also be established. It will also be apparent to one skilled
in the art that there are multiple ways to tabulate and store
the PLD definition data 408, other than in the forms shown
in these drawings.

[0071] FIGS. 8 and 9 show exemplary tables which are a
portion of data set 435 for use in the calculation of hookup
coordinates in step 430. Tables 800 and 850 which indicate
the base coordinates of LBs for the calculation of such
hookup coordinates show the respective Y coordinate bases
of each of the rows of LLBs in the gate array base array
relative to an origin, and the X coordinate bases of each
column of L.Bs within each row relative to an origin. Table
860 shows the offsets of individual connection or discon-
nection points relative to such LB base coordinates. Refer-
ring to the example above, the base coordinates of the LB
located on the third row and second column would be
(-1910,50). Referring to FIG. 9 we sce that when the first
operational functionality of PLD device 500 includes setting
LE-Out to registered, this corresponds to KREG=true and
KUNREG=false. In this example we have used “true” to
correspond to connections made or kept and “false” to
correspond to connections broken or not made. Therefore we
would make the connection corresponding to KREG=true
and break the connection corresponding to KUNREG=false.
Therefore a connection to be made or retained would be
computed equal to the base address of the LB (-1910,50)
from tables 800 and 850, plus the offset for KREG of LE 2
(70,810) from table 860, resulting in coordinates of (-1840,
860) and coordinates of a connection to be broken or not
made would be computed likewise to be (-1910,50)+(180,
775)=(-1730,825). These coordinates would then be entered
into file 440 for use in making mask data 452 or lasering the
device 448 using techniques well known in the art. Opera-
tions are then performed to automatically create gate array
device models, Block 480, by modifying base gate array
integrated circuit simulation models, Block 472, using the
connection/configuration data file, Block 415.

[0072] FIGS. 10A through 10F show an exemplary por-
tion of a base gate array device simulation model 472 in
Verilog for a section 70 of the base gate array to correspond
to the logic element 30 of device 500. FIG. 10C describes
three internal scan based test registers 830 labeled “iscan
i_ 257, 831 labeled “iscan i_ 26", and 832 labeled “iscan
i 277. FIG. 10D contains various logic and register 840, the
equivalent to register 16 with the title “leffi_29”. FIG. 10E
contains the settings for the 16 lookup-table values for the
base gate array LUT 71, and FIG. 10F contains the assign-
ments for the LE configuration bits of the base gate array
referred to in table 700.

[0073] FIG. 11 shows a section 833 of connection/con-
figuration data file 415 which shows several logic states and
configurations specified by bitstream file 412 as decoded by
process 410. More particularly this section of file 415 refers
to the LE configuration bits for LE 2 of the LB on row 3 and
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column 2, designated by the line prefix “LB,3,2,.LE2,”. Each
line ends with the desired state of a connection or logic state,
such as <KREG>=T and <KUNREG>=F, designating that
the lines in the base gate array model 472 on FIG. 1 OF
ending in <KREG> are to be included in the modified model
480, and the lines ending in <KUNREG:> are not to included
in the modified model 480, after processing by step 470 is
completed. FIG. 12 shows the modified lines of code of the
modified model 480 corresponding to the settings defined by
file 415 as shown on FIG. 11. It will be apparent to one
skilled in the art that there are other ways to create modified
gate array simulation model 480, and that model 480 can be
subsequently used in the creation of test vector file 495.

[0074] In the drawings and specification, there have been
disclosed typical preferred embodiments of the invention
and, although specific terms are employed, they are used in
a generic and descriptive sense only and not for purposes of
limitation, the scope of the invention being set forth in the
following claims.

That which is claimed is:
1. A method of designing an integrated circuit device,
comprising the step of:

generating a netlist for a gate array integrated circuit
having first logic and signal resources, from bitstream
data which characterizes a programmable logic device
having the first logic and signal resources.

2. The method of claim 1, wherein the bitstream data
characterizes a programmable logic device having a first
operational functionality; and wherein said generating step
is followed by the step of using the netlist to configure the
first logic and signal resources within the gate array inte-
grated circuit to provide the first operational functionality.

3. The method of claim 2, wherein said generating step
comprises determining end points of at least one net in the
netlist directly from at least one bit of the bitstream data.

4. The method of claim 2, wherein said generating step
comprises generating a netlist for a gate array integrated
circuit from bitstream data and programmable logic device
definition data.

5. The method of claim 4, wherein said generating step
comprises determining end points of at least one net in the
netlist directly from at least one bit of the bitstream data and
the programmable logic device definition data.

6. An integrated circuit design system, comprising:

a programmable logic device having pre-programmed
logic and signal resources;

a gate array device having pre-wired logic and signal
resources which are equivalent to the pre-programmed
logic and signal resources of said programmable logic
device; and

means for decoding a bitstream that characterizes said
programmable logic device having a first operational
functionality when programmed, into a netlist that
designates electrical connections in said gate array
device when wired to have the first operational func-
tionality.

7. A method of designing an integrated circuit device,

comprising the step of:

generating a netlist for a gate array integrated circuit
having a first operational functionality, from bitstream
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data which characterizes a programmable logic device
having the first operational functionality.

8. The method of claim 7, wherein said generating step
comprises generating a netlist for a gate array integrated
circuit having a first operational functionality, directly from
bitstream data which characterizes a programmable logic
device having the first operational functionality.

9. The method of claim 8, wherein the netlist is generated
from bitstream data and programmable logic device defini-
tion data.

10. The method of claim 8, wherein the netlist is used to
generate test vectors to be used for a test of operational
functionality of said gate array integrated circuit.

11. The method of claim 10, wherein said test of opera-
tional functionality includes scan-based testing.

12. The method of claim 9, wherein the netlist is gener-
ated from bitstream data, programmable logic device defi-
nition data and gate array device definition data.

13. A method of designing an integrated circuit device,
comprising the step of:

generating hookup data which characterizes a plurality of
nets for a gate array integrated circuit having a first
operational functionality, from bitstream data which
characterizes a programmable logic device having the
first operational functionality.

14. The method of claim 13, wherein said generating step
comprises generating hookup data which characterizes a
plurality of nets for a gate array integrated circuit having a
first operational functionality, directly from bitstream data
which characterizes a programmable logic device having the
first operational functionality.
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15. The method of claim 14, wherein said generating step
comprises generating hookup data for a gate array integrated
circuit having a first operational functionality without syn-
thesizing logic for the gate array integrated circuit.

16. The method of claim 14, wherein said generating step
comprises generating hookup data for a gate array integrated
circuit having a first operational functionality and logic
resource placement that is the same as the programmable
logic device.

17. The method of claim 14, wherein said generating step
comprises generating hookup data for a gate array integrated
circuit having a first operational functionality and signal
path resources which are the same as the programmable
logic device.

18. The method of claim 14, wherein hookup coordinates
are generated from the hookup data, said hookup coordi-
nates defining connection points of at least two nets.

19. The method of claim 18, further comprising the step
of forming a first set of electrical connections between the at
least two nets on the gate array integrated circuit; and
wherein the locations of the first set of electrical connections
are defined by the hookup coordinates.

20. The method of claim 19, wherein said step of forming
a first set of electrical connections comprises the use of a
targeting energy beam.

21. The method of claim 19, wherein said step of forming
a first set of electrical connections comprises the use of a
photomask which contains a pattern thereon having a loca-
tion designated by the hookup coordinates.



