WO 02/49342 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

20 June 2002 (20.06.2002)

(10) International Publication Number

WO 02/49342 Al

(51) International Patent Classification”. HO4N 5/00, 7/24

(21) International Application Number: PCT/GB01/05090

(22) International Filing Date:
19 November 2001 (19.11.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

0030706.6 15 December 2000 (15.12.2000) GB

(71) Applicant (for all designated States except US): BRITISH
TELECOMMUNICAITONS PUBLIC LIMITED
COMPANY [GB/GB]; 81 Newgate Street, London, EC1A
7AJ (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEANING, An-
thony, Richard [GB/GB]; G07/B81, Adastral Park,
Martlesham Heath, Ipswich, Suffolk IP5 3RE (GB).
WHITING, Richard, James [GB/GB]; G07/B81, Adas-
tral Park, Martlesham Heath, Ipswich, Suffolk IP5S 3RE
(GB).

(74) Agent: LLOYD, Barry, George, William; BT Group Le-
gal Services, Intellectual Property Department, Holborn
Centre, 8th Floor, 120 Holborn, London ECIN 2TE (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN,
YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: DELIVERY OF AUDIO AND/OR VIDEO MATERIAL

‘ SERVE? \/ 1

;ICker’«d_‘

N

(57) Abstract: Delivery of recorded audio
or video material over a telecommunications
link (2) from a server (1) to a terminal (3)
is accomplished by dividing the material
into a sequence of sub-files each of which
is independently requested by the terminal,
which thereby has control of the rate
of delivery. Provision may be made for
switching between alternative sub-file sets
representing alternative delivery modes or
data rates.

/3

TECHINAL

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

Deli f Audio and/or Video Material

The present invention is concerned with the delivery, over a telecommunications link, of

digitally coded material for presentation to a user.

In known systems of this type, a special server — often called a “streamer”, controls
delivery of material to a user terminal. Often, in the server, an item of material to be transmitted is
stored as a single file; though U.S. patent 5 610 841 describes a video server which stores the
material segmented into “media segment files”. Another such system is described in published
European patent application EP-A-669 587, where network congestion is accommodated by the
terminal monitoring the contents of its receive buffer and, where appropriate, requesting the server

to adjust its video data rate.

According to one aspect of the invention there is provided a terminal for playing audio or
video material which is stored on a remote server as a set of files representing successive temporal
portions of the said material, the terminal comprising:

a telecommunications interface for communication with the server;

a buffer for receiving the files from the telecommunications interface;

means for playing the contents of the buffer; and

control means responsive to the state of the buffer to generate request messages for further files for

replenishment of the buffer.

In another aspect, the invention provides a method of transmitting digitally coded audio or
video material comprising:
partitioning the material into a plurality of discrete files each representing successive temporal
portions of the said material;
storing the files at a first station; and

at a second station —

a) transmitting to the first station requests for successive respective ones of the files;
b) receiving the files; and
c) decoding the files for replay of the material.

Other, optional, aspects of the invention are set out in the sub-claims.

Some embodiments of the present invention will now be described, with reference to the

accompanying drawings, in which:

Figure 1 is a diagram illustrating the overall architecture of the systems to be described;

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

2

Figure 2 is a block diagram of a terminal for use in such a system;
Figure 3 shows the contents of a typical index file;
Figure 4 is a timing diagram illustrating a modified method of sub-file generation; and

Figure 5 is a diagram illustrating a modified architecture.

The system shown in Figure 1 has as its object the delivery, to a user, of digitally coded
audio signals (for example, of recorded music or speech) via a telecommunications network to a
user terminal where the corresponding sounds are to be played to the user. However, as will be
discussed in more detail below, the system may be used to convey video signals instead of, or in
addition to, audio signals. In this example, the network is the internet or other packet network
operating in accordance with the Hypertext Transfer Protocol (see RFCs 1945/2068 for details),
though in principle other digital links or networks can be used. It is also assumed that the audio
signals have been recorded in compressed form using the ISO MPEG-1 Layer III standard (the
“MP3 standard”); however it is not essential to use this particular format. Nor, indeed, is it
necessary that compression be used, though naturally it is highly desirable, especially if the
available bit-rate is restricted or storage space is limited. In Figure 1, a server 1 is connected via the
internet 2 to user terminals 3, only one of which is shown. The function of the server 1 is to store
data files, to receive from a user terminal a request for delivery of a desired data file and, in
response to such a request, to transmit the file to the user terminal via the network. Usually such a
request takes the form of first part indicating the network delivery mechanism (e.g. http:// or file://
for the hypertext transfer protocol or file transfer protocol respectively) followed by the network
address of the server (e.g. www.server 1.com) suffixed with the name of the file that is being
requested. Note that, in the examples given, such names are, for typographical reasons, shown with
the “//” replaced by “\\”.

In these examples, -the use of the hypertext transfer protocol is assumed; this is not
essential, but is beneficial in allowing use of the authentication and security features (such as the

Secure Sockets Layer) provided by that protocol.

Conventionally, a server for delivery of MP3 files takes the form of a so-called streamer
which includes processing arrangements for the dynamic control of the rate at which data are
transmitted depending on the replay requirements at the user terminal, for the masking of errors due
to packet loss and, if user interaction is allowed, the control of the flow of data between server and
client; here however the server 1 contains no such provision. Thus it is merely an ordinary “web

server’”.

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

3

The manner in which the data files are stored on the server 1 will now be explained.
Suppose that an MP3-format file has been created and is to be stored on the server. Suppose that it
is a recording of J. S. Bach’s Toccata and Fugue in D minor (BWV565) which typically has a
playing time of 9 minutes. Originally this would have been created as a single data file, and on a
conventional streamer would be stored as this one single file. Here, however, the file is divided
into smaller files before being stored on the server 1. We prefer that each of these smaller files is
of a size corresponding to a fixed playing time, perhaps four seconds. With a compressed format
such as MP3 this may mean that the files will be of different sizes in terms of the number of bits
they actually contain. Thus the Bach file of 9 minutes duration would be divided into 135 smaller
files each representing four seconds’ playing time. In this example these are given file names
which include a serial number indicative of their sequence in the original file, for example:

000000.bin
000001.bin
000002.bin
000003.bin

000134.bin

The partitioning of the file into these smaller sub-files may typically be performed by the
person preparing the file for loading onto the web server 1. (The expression “sub-files” is used here
to distinguish them from the original file containing the whole recording: it should however be
emphasised that, as far as the server is concerned each “sub-file” is just a file like any other file).
The precise manner of their creation will be described more fully below. Once created, these sub-
files are uploaded onto the server in a conventional manner just like any other file being loaded
onto a web server. Of course the filename could also contain characters identifying the particular
recording (the sub-file could also be “tagged” with additional information — when you play an MP3
file you get information on the author, copyright etc), but in this example the sub-files are stored on
the server in a directory or folder specific to the particular recording - e.g. mp3_bwv565. Thus a

sub-file, when required, may be requested in the form:
http:\\www.serverl.com/mp3_bwv565/000003.bin
where “www.serverl.com” is the URL of the server 1.

It is also convenient for the person preparing the sub-files for loading onto the server to

create, for each recording, a link page (typically in html format) which is also stored on the server

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

4

(perhaps with filename mp3 bwv565/link.htm), the structure and purpose of which will be

described later.

It is also convenient that the web server stores one or more (html) menu pages (e.g.
menu.htm) containing a list of recordings available, with hyperlinks to the corresponding link
pages.

Turning now to the terminal, this may typically take the form of a conventional desktop
computer, with, however, additional software for handling the reception of the audio files
discussed. If desired, the terminal could take the form of a handheld computer, or even i)e
incorporated into a mobile telephone. Thus Figure 2 shows such a terminal with a central
processor 30, memory 31, a disk store 32, a keyboard 33, video display 34, communications
interface 35, and audio interface (“sound card”) 36. For video delivery, a video card would be
fitted in place of, or in addition to, the card 36. In the disk store are programs which may be
retrieved into the memory 31 for execution by the processor 30, in the usual manner. These
programs include a communications program 37 for call-up and display of html pages - that is, a
“web browser” program such as Netscape Navigator or Microsoft Explorer, and a further program
38 which will be referred to here as “the player program” which provides the functionality
necessary for the playing of audio files in accordance with this embodiment of the invention. Also
shown is a region 39 of the memory 31 which is allocated as a buffer. This is a decoded audio
buffer containing data waiting to be played (typically the playout time of the buffer might be 10
seconds). The audio interface or sound card 36 can be a conventional card and simply serves to
receive PCM audio and convert it into an analogue audio signal, e.g. for playing through a
loudspeaker. Firstly, we will give a brief overview of the operation of the terminal for the re_trieval

and playing of the desired recording when using the HTTP and an embedded or “plugin” client

L. The user uses the browser to retrieve and display the menu page menu.htm from the server

1.

2. The user selects one of the hyperlinks within the menu page which causes the browser to
retrieve from the server, and display, the link page for the desired recording - in this example
the file mp3_bwv565 link.htm. The actual display of this page is unimportant (except that it
may perhaps contain a message to reassure the user that the system is working correctly).
What is important about this page is that it contains a command (or “embed tag”) to invoke
in the processor 30 a secondary process in which the player program 37 is executed. The
invocation of a secondary process in this manner is well-known practice (such a process is
known in Netscape systems as a “plug-in” and in Microsoft systems as “ActiveX”). Such

commands can also contains parameters to be passed to the secondary process and in the

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

5

system of Figure 1 the command contains the server URL of the recording, which, for the

Bach piece, would be http:\www.serverl/mp3_bwv565.

The player program 37 includes an MP3 decoder, the operation of which is, in itself,
conventional. Of more interest in the present context are the control functions of the

program which are as follows.

The player program, having received the URL, adds to this the filename of the first sub-file,
to produce a complete address for the sub-file - i.e. www.serverl/mp3_bwv565/000000.bin.
It will be observed that this system is organised on the basis that the sub-files are named in
the manner indicated above, so that the terminal does not need to be informed of the
filenames. The program constructs a request message for the file having this URL and
transmits it to the server 1 via the communications interface 35 and the internet 2. (Processes
for translating the URL into an IP address and for error reporting of invalid, incomplete or
unavailable URLs are conventional and will not therefore be described). We envisage that
the player program would send the requests directly to the communications interface, rather

than via the browser. The server responds by transmitting the required sub-file.

The player program determines from the file the audio decoding used in this sub-file and
decodes the file back to raw PCM values in accordance with the relevant standard (MP3 in
this example), making a note of the play time of this sub-file. Generally an audio file
contains an identifier at the beginning of the file which states the encoding used. The

decoded audio data is then stored in the audio buffer 38.

The player program has a parameter called the playout time T,. In this example it is set at 10
seconds (it could be made user-selectable, if desired). It determines the degree of buffering

that the terminal performs.

The player program increments the filename to 000001.bin and requests, receives, decodes
and stores this second sub-file as described in (4) and (5) above. It repeats this process until
the contents of the buffer reach or exceed the playout time T, Note that it is not actually
essential that the decoding occurs before the buffer but it simplifies matters as since the
audio is decoded back to raw PCM then the duration of the buffered material is then
explicitly known. It simplifies the control of the audio buffer if each of the sub-files is the

same audio playback size.

Having reached the playout threshold Tp the decoded data are sent from the buffer to the

audio interface 36 which plays the sound through a loudspeaker (not shown).

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

6

9. Whilst playing the sounds as in (8) above, the player program continually monitors the state
of buffer fullness and whenever this falls below T, it increments the filename again and
obtains a further sub-file from the server. This process is repeated until a “file not found

error” is returned.

10. If; during this process, the buffer becomes empty, the player program simply ceases playing

until further data arrives.

The sub-file naming convention used here, of a simple fixed length sequence of numbers
starting with zero, is preferred as it is simple to implement, but any naming convention can be used
provided the player program either contains (or is sent) the name of the first sub-file and an

algorithm enabling it to calculate succeeding ones, or alternatively is sent a list of the filenames.

It will have been observed that the system described above offers the user no opportunity
to intervene in the replay process. Nor does it offer any remedy for the possibility of buffer
underflow (due for example to network congestion). Therefore a second, more sophisticated

embodiment of the invention, now to be described, offers the following further features:

a) the server stores two or more versions of the recording, recorded at different compression rates
(for example at compressions corresponding to (continuous) data rates of 8, 16, 24 and 32 kbit/s

respectively) and the player program is able to switch automatically between them.

b) the player program displays to the user a control panel whereby the user may start the playing,
pause it, restart it (from the beginning, or from the point at which it paused), or jump to a

different point in the recording (back or forward).

Note that these features are not interdependent, in that user control could be provided

without rate-switching, or vice versa.

In order to provide for rate switching, the person preparing the file for loading onto the
server prepares several source files - by encoding the same PCM file several times at different
rates. He then partitions each source file into sub-files, as before. These can be loaded onto the
server in separate directories corresponding to the different rate, as in the following example
structure, where “008k™, “024k” in the directory name indicates a rate of 8 kbit/s or 24 kbit/s and so

on.

He also creates an index file (e.g. index.htm) the primary purpose of which is to provide a

list of the data rates that are available.

WO 02/49342

PCT/GB01/05090

Directory

Subdirectory

Filename

mp3_bwv565

none

link.htm
index.htm

mp3_bwv565

008k 11 m

000000.bin
000001.bin
000002.bin
000003.bin

000134.bin

mp3_bwv565

016k _11_m

000000.bin
000001.bin
000002.bin
000003.bin

000134.bin

mp3_bwv565

018k_11_s

000000.bin
000001.bin
000002.bin
000003.bin

000134.bin

mp3_bwv565

024k _11_s

000000.bin
000001.bin
000002.bin
000003.bin

000134.bin

WO 02/49342 PCT/GB01/05090

10

15

20

Subdirectory

Directory Filename

000000.bin
000001.bin
000002.bin
000003.bin

mp3_bwv565 032k_11_s

000134.bin

Note that because the length of a sub-file corresponds, as explained earlier, to a fixed
length of time, the number of sub-files is the same for each directory. The subdirectory names
comprise the data rate in kbit/s (three digits) plus the letter “k™; in this example indications of the

audio sampling rate (11.025 kHz) and a mono-stereo flag are appended, for verification purposes.
The index file would thus contain a statement of the form :
<! Audio =“024k 11_s 032k 11 s 018k 11_s 016k _11_m 008_11_m”-->

(The <!--...--> simply indicates that the statement is embedded as a comment in an html
file (or a simple text file could be used)). A typical index file is shown in Figure 3 where other
information is included: LFI is the highest sub-file number (i.e. there are 45 sub-files) and SL is the
total playing time (178 seconds). “Mode” indicates “recorded” (as here) or “live” (to be discussed

below). The other entries are either self-explanatory, or standard html commands.

Initially the player program will begin by requesting, from the directory specified in the
link file, the index file, and stores locally a list of available data rates for future reference. (It may
explicitly request this file or just specify the directory: most servers default to index.htm if a
filename is not specified.) It then begins to request the audio sub-files as described earlier, from
the first-mentioned “rate” directory in the index file — viz. 024k_11_s (or the terminal could
override this by modifying this to a default rate set locally for that terminal). The process from
then on is that the player program measures the actual data rate being received from the server,
averaged over a period of time (for example 30 seconds). It does this by timing every URL request;
the transfer rate achieved (number of bits per second) between the client and server is determined.
The accuracy of this figure improves as the number of requests goes up. The player maintains two

stored parameters which indicate, respectively, the current rate, and the measured rate.

The initiation of a rate change is triggered:

10

15

20

WO 02/49342 PCT/GB01/05090

9

a) if the buffer ever empties AND the measured rate is less than the current rate AND the
measured Buffer Low Percentage exceeds a Step Down Threshold (as described below),
reduce the current rate; (changing at a time when the buffer is already empty is
advantageous as the sound card is not playing anything and it may be necessary to
reconfigure it if the audio sampling rate, stereo-mono setting or bit width (number of bits per

sample) has changed).

b) if the measured rate exceeds not only the current rate but also the next higher rate for a given
period of time (e.g. 120 seconds: this could if desired be made adjustable by the user)

increase the current rate

The Buffer Low Percentage is the percentage of the time that the buffer contents represent
less than 25% of the playout time (i.e. the buffer is getting close to being empty). If the Step Down
Threshold is set to 0% then when the buffer empties the system always steps down when the other
conditions are satisfied. Setting the Step Down Threshold to 5% (this is our preferred default value)
means that if the buffer empties but the measured Buffer Low Percentage is greater than 5% it will
not step down. Further buffer empties will obviously cause this measured rate to increase and will
eventually empty the buffer again with a Buffer Low Percentage value exceeding 5% if the rate can

not be sustained. Setting the value to 100% means the client will never step down.

The actual rate change is effected simply by the player program changing the relevant part
of the sub-file address for example, changing “008k” to “024k” to increase the data rate from 8 to
24 kbit/s, and changing the current rate parameter to match. As a result, the next request to the
server becomes a request for the higher (or lower) rate, and the sub-file from the new directory is
received, decoded and entered into the buffer. The process just described is summarised in the

following flowchart:

User Terminal Server

Select Menu
page

Request http:\serverl.com/menu.htm

Send
http:\\serverl.com/menu.ht

m

Display menu.htm

Select item

from Menu

WO 02/49342 PCT/GB01/05090

10

User Terminal Server

(Bach)

Extract hyperlink URL from menuhtm
(mp3_bwv565/link.htm)

Request
http:\\serverl.com/ mp3_bwv565/link.htm

Send http:\\serverl.com/
mp3_bwv565/link.htm

Display link.htm

Execute secondary process (player program)
specified in link.htm with parameters specified
in link.htm (http:\\server1/mp3_bwv565)

Set Stem to that specified

Set URL = Stem + “index.htm”

Request this URL

Send requested file

Set Rate List to rates specified in index.htm
Set LFI to value specified in index.htm

Set StemC = Stem + “/” + RateList(item 1)

Set CurrentRate = rate specified in RateList
(item 1)

Set RateU = next higher rate in list or zero if
none

Set StemU = Stem + “/” + item in rate list
corresponding to this rate;

Set RateD = next lower rate in list or zero if
none

Set StemD = Stem + “/” + item in rate list

corresponding to this rate;

Set Current Subfile = 000000.bin

J1: Set URL = StemC + Current Subfile

Request this URL

If requested subfile exists,

Send requested subfile;

WO 02/49342 PCT/GB01/05090
11
User Terminal Server
otherwise send error
message

If error message received, Stop

Decode received subfile

Write to buffer

J1A: If Buffer Fullness > Tp seconds go to
Step J3

J2: Increment Current Subfile

| Go to Step J1

J3: Begin/continue playing of buffer contents

via sound card

J4: If Buffer Fullness < Tp seconds go to Step
J2

If BufferFullness = 0 AND Mrate <
CurrentRate AND BufferLow% > Td go to
Stepdown

If MRate > NextRate AND NextRate <> 0
goto Stepup

Input of user

commands

If UserCommand = Pause then:
Stop reading from buffer;

Loop until Usercommand = Resume;

go to J3
If UserCommand = Jump(j%)then:
Clear buffer;
Set CurrentSubfile =

Integer[(LFI+1)*j/100];
go to Step J1

Go to Step JIA

Stepup:

Clear Buffer

Set RateD = RateC
Set StemD = StemC
Set RateC = RateU

WO 02/49342 PCT/GB01/05090

10

12

User

Terminal Server

Set StemC = StemU

Set RateU = next higher rate in list or zero if
none

Set StemU = Stem + “/” + item in rate list
corresponding to this rate

Go to Step J1A

Stepdown:

Clear Buffer

Set RateU = RateC

Set StemU = StemC

Set RateC = RateD

Set StemC = StemD

Set RateD = next lowerr rate in list or zero if
none

Set StemD = Stem + “/” + item in rate list
corresponding to this rate

Go to Step J1A

The user control is implemented by the user being offered on the screen the following

options which he can select using the keyboard or other input device such as a mouse:

a)

b)

Start: implement the numbered steps given above, from step 4. Whether, when a recording
is first selected, it begins to play automatically, or requires a Start instruction from the user,
is optional; indeed, if desired, the choice may be made by means of an additional “autoplay”

parameter in the link file.

Pause: implemented by an instruction to the MP3 decoder to suspend reading data from the
buffer;

Resume: implemented by an instruction to the MP3 decoder to resume reading data from the

buffer;

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

13

d) Jump: implemented by the user indicating which part of the recording he wishes to jump to -
for example by moving a cursor to a desired point on a displayed bar representing the total
duration of the recording; the player then determines that this point is x % along the bar and
calculates the number of the next sub-file needed, which is then used for the next request. In
the Bach example with 125 sub-files then a request to play from a point 20% into the
recording would result in a request for the 26th sub-file - i.e. 000025.bin. It will be apparent
that this calculation is considerably simplified if each sub-file corresponds to the same fixed
duration. We prefer, in the case of the jump, to suspend decoding and clear the buffer so that

the new request is sent immediately, but this is not actually essential.

It is of interest to discuss further the process of partitioning the original file into sub-files.
First, it should be noted that if (as in the first version described above), there is no expectation that
a sub-file will be followed by a sub-file other than that which immediately follows it in the original
sequence, then it matters little where the boundaries between the sub-files are located. In that case
the sub-file size can be a fixed number of bits, or a fixed playing time length (or neither of these) -
the only real decision is how big the sub-files should be. Where jumps are envisaged (in time, or
between different data rates) there are other considerations. Where, as with many types of speech
or audio coding (including MP3), the signal is coded in frames, a sub-file should contain a whole
number of frames. In the case of rate switching, it is, if not actually essential, highly desirable that
the sub-file boundaries are the same for each rate, so that the first sub-file received for a new rate
continues from the same point in the recording that the last sub-file at the old rate ended. To
arrange that every sub-file should represent the same fixed time period (e.g. the 4 seconds
mentioned above) is not the only way of achieving this, but it is certainly the most convenient.
Note however that, depending on the coding system in use, the requirement that a sub-file should
contain a whole number of frames may mean that the playing duration of the sub-files does vary
slightly. Note that in this embodiment of the invention, the available data rates, though they use
different degrees of quantisation, and differ as to whether they encode in mono or stereo, all use the
same audio sampling rate and in consequence the same frame size. Issues that need to be addressed

when differing frame sizes are used are discussed below.

As for the actual sub-file length, excessively short sub-files should preferably be avoided
because (a) they create extra network traffic in the form of more requests, and (b) on certain types
of packet networks - including IP networks — they are wasteful in that they have to be conveyed by
smaller packets so that overhead represented by the requesting process and the packet header is
proportionately greater. On the other hand, excessively large sub-files are disadvantageous in

requiring a larger buffer and in causing extra delay a when starting play and/or when jumps or rate

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

14

changes are invoked. A sub-file size of between 30% and 130% of the playout time, or preferably

around half the playout time (as in the examples given above), is found to be satisfactory.

The actual process of converting the sub-files can be implemented by means of a computer
programmed in accordance with the criteria discussed. Probably it will be convenient to do this on

a separate computer, from which the sub-files can be uploaded to the server.

Another refinement that can be added is to substitute a more complex sub-file naming
convention so as to increase security by making it more difficult for an unauthorised person to copy
the sub-files and offer them on another server. One example is to generate the filenames using a

pseudo-random sequence generator, e.g. producing filenames of the form :
01302546134643677534543134.bin

94543452345434533452134565.bin

In this case the player program would include an identical pseudo-random sequence
generator. The server sends the first filename, or a “seed” of perhaps four digits, and the generator
in the player can then synchronise its generator and generate the required sub-file names in the

correct sequence.

In the above example of rate-switching, all the data rates used had the same frame size,
specifically they used MP3 coding of PCM audio sampled at 11.025 KHz and a (PCM) frame size
of 1152 samples. If it is desired to accomplish rate switching between MP3 (or other) recordings
having different frame sizes, problems arise due to the requirement that a sub-file should contain a
whole number of frames, because the frame boundaries do not then coincide. This problem can be
solved by the following modified procedure for creating the sub-files. It should be noted
particularly that this procedure can be used in any situation where rate switching is required and is

not limited to the particular method of delivery discussed above.

Figure 4 shows diagrammatically a sequence of audio samples, upon which successive
four-second segments are delineated by boundary marks (in the figure) B1, B2 etc. At 11.025
KHz, there are 44,100 samples in each segment.

1. Encode the audio, starting at boundary Bl, frame by frame, to create an MP3 sub-file,
continuing until a whole number of frames having a total duration of at least four seconds has been
encoded. With a frame size of 1152 samples, four seconds corresponds to 38.3 frames, so a sub-
file S1 representing 39 frames will actually be encoded, representing a total duration of 4.075

seconds.

WO 02/49342 PCT/GB01/05090

5

10

15

20

25

30

15

2. Encode the audio, in the same manner, starting at boundary B2.

3. Repeat, starting each time at a 4-second boundary, so that in this way a set of overlapping sub-
files is generated for the whole audio sequence to be coded. The last segment (which may well be
shorter than four seconds) has of course nothing following it, and is padded with zeroes (i.e.

silence).
Coding of the other data rates using different frame sizes proceeds in the same manner.

At the terminal, the control mechanisms are unchanged, but the decoding and buffering

process is modified :

1. Receive sub-file S1;

2. Decode sub-file S1;

3. Write into the buffer only the first four seconds of the decoded audio samples (discard the
remainder);

4, Receive sub-file S2;

5. Decode sub-file S2;

6. Write into the buffer only the first four seconds of the decoded audio samples;

7. Continue with sub-file S3 etc..

In this way, it is ensured that the sub-file sets for all rates have sub-file boundaries which

correspond at the same points in the original PCM sample sequence.

Thus, each four-second period except the last is, prior to encoding, “padded” with audio
samples from the next four-second period so as to bring the sub-file size up to a whole number of
MP3 frames. If desired, the padding samples could be taken from the end of the preceding four-

second period instead of (or as well as) the beginning of the following one.

Note that the MP3 standard allows (by a scheme known as “bit reservoir”) certain
information to be carried over from one audio frame to another. In the present context, while this is
acceptable within a sub-file, it is not acceptable between sub-files. However, since naturally the
standard does not allow such carry-over at the end or beginning of a recording, this problem is

easily solved by encoding each sub-file separately, as if it were a single recording.

Changes of sampling rate (and indeed switching between mono and stereo operation) have
some practical implications for operation of the audio interface 36. Many conventional sound

cards, although capable of operation at a range of different settings, require re-setting in order to

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

16

change sampling rate, and necessarily this causes an interruption in its audio output. Thus in a
further modification, we propose that the sound card could be run continuously at the highest
sampling rate envisaged. When the player program is supplying, to the buffer, data at a lower
sampling rate, this data is then up-sampled to this highest rate before or after the buffer. Similarly,
if the card is always operated in stereo mode, decoded mono signals can be fed in parallel so feed
both the left and right channels of the sound card input. Again, if the number of bits per sample of
the decoded signal is lower than expected by the card, the number of bits can be increased by

padding with zeros.

Recollecting that the criteria discussed earlier for automatic data rate switching downwards
envisaged a rate reduction only in cases of buffer underflow (involving therefore interruptions in
the output), we note that with this modification such interruption can be avoided and therefore a
criterion which anticipates underflow and avoids it in the majority of cases. In this case the first of

the three AND conditions mentioned above (namely, that the buffer is empty) would be omitted.

The same principle may be applied to the delivery of video recordings, or of course, video
recordings with an accompanying sound track. In the simpler version, where there is only one
recording, the system differs from the audio version only in that the file is a video file (e.g. in
H.261 or MPEG format) and the player program incorporates a video decoder. The manner of

partitioning the file into sub-files is unchanged.

As in the audio case, there may be two or more recordings corresponding to different data
rates, selected by the control mechanism already described. Also one can provide additional
recordings corresponding to different replay modes such as fast forward or fast reverse which can
be selected by an extension of the user control facilities already described. Again, a systematic
convention for file and directory naming can be followed so that the player program can respond to

- for example — a fast forward command by amending the sub-file address.

The delivery of video recordings does however have further implications for file
partitioning if switching or jumps are to be permitted. In the case of recordings where each frame
of a picture is coded independently, it is sufficient that a sub-file contains a whole number of
frames of a picture. If corripression involving inter-frame techniques is in use, however, the
situation is more complex. Some such systems (for example the MPEG standards) generate a
mixture of independently coded frames (“intra-frames”) and predictively coded frames; in this case

each sub-file should preferably begin with an intra-frame.

In the case of inter-frame coding systems such as the ITU H.261 standard, which do not

provide for the frequent, regular inclusion of intra-frames, this is not possible. This is because —

WO 02/49342 PCT/GB01/05090

10

15

20

25

17

taking rate-switching as an example, if one were to request sub-file n of a higher bit rate recording
followed by sub-file n+1 of a lower bit-rate recording, the first frame of the lower bit-rate sub-file
would have been coded on an inter-frame basis using the last decoded frame of sub-file n of the
lower rate recording, which of course the terminal does not have at its disposal — it has the last
decoded frame of sub-file n of the higher rate recording. Thus serious mistracking of the decoder

would occur.

In the case of switching between normal play and a fast play mode, the situation is in
practice slightly different. On fast forward play at, for example, 5 times normal speed, one
encodes only every 5™ frame. In consequence the inter-frame correlation is much reduced and
inter-frame coding becomes unattractive, so one would generally prefer to encode a fast play
sequence as intra-frames. Switching from normal to fast then presents no problem, as the intra-
frames can be decoded without difficulty. However, when reverting to normal play, the
mistracking problem again occurs because the terminal is then presented with a predictively coded

frame for which it does not have the preceding frame.

In either case the problem can be solved by using the principle described in our
international patent application No. W098/26604 (issued in USA as patent 6,002,440). This
involves the encoding of an intermediate sequence of frames which bridges the gap between the

last frame of the preceding sequence and the first frame of the new sequence.

The operation of this will now be described in the context of fast forward operation (fast
rewind being similar but in reverse). In this example we assume that a 9 minute video sequence
has been encoded at 96kbit/s according to the H.261 standard, and again at 5 times normal rate
entirely at H.261 infra-frames, and that the resulting files have each been partitioned into four-
second sub-files. Here, four seconds refers to the duration of the original video signal, not to the
fast forward playing time. Following a naming convention similar to that employed above, the

sub-files might be:

WO 02/49342 PCT/GB01/05090

18
Directory Subdirectory Filename
mpg_name 096k _x1 000000.bin
000001.bin
000134.bin
096k _x5 000000.bin
000134.bin

where “name” is a name to identify the particular recording, “x1” indicates normal rate and

“x5” indicates five times normal rate — i.e. fast forward.

To switch from normal play to fast forward is only necessary for the player program to

5 modify the sub-file address to point to the fast forward sequence —e.g.
Request mpg_ name/096k_x1/000055.bin
is followed by
Request mpg_name/096K_x5/000056.bin

In order to construct the bridging sequences for switching back to normal play it is

10 necessary to construct a bridging sub-file for each possible transition. As described in our
international patent application mentioned above, a sequence of three or four frames is generally
sufficient for bridging, so a simple method of implementation is to construct bridging sub-files of

only 4 frames duration —e.g.

Directory Subdirectory Filename
mpg_name 096K _5>1 0000001.bin
000133 .bin

So that the switching is accomplished by a series of requests such as:

15 Request mpg_name/096k_x5/000099.bin

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

19
Request mpg_name/096k_5>1/000099.bin
Request mpg_name/096k_x1/000100.bin
The bridging sub-file is generated as follows:

e Decode the fast forward sequence to obtain a decoded version of the last frame of
sub-file 99, (at 25 frames per second this will be frame 100,000 of the original
video signal).

e Decode the normal sequence to obtain a decoded version of the first frame of sub-
file 100 (i.e. frame 100,001). Re-encode this one frame four times using H.261
inter-frame coding based on the decoded frame 100,000 as the initial reference

frame.

e Thus, when the decoder has decoded the fast forward sub-file, followed by the
bridging sub-file it will have reconstructed frame 100,000 correctly and will be
ready to decode the normal (x1) frames. Incidentally, the reason that one encodes
the same frame several times in this procedure is that doing so merely once, would

produce poor picture quality due to the quantisation characteristics of H.261.

Exactly the same process could be used for rate-switching (albeit that now bridging sub-
files are required in both directions). However, it will be observed that, as described, the bridging
sub-file results in a freezing of the picture for a period of four frames — i.e. (at 25 frames per
second) 160ms. In switching from fast to normal play this is acceptable — indeed one would
probably choose to clear the buffer at this point. It may or may not be subjectively acceptable on
rate-switching. An alternative therefore would be to construct a four-second bridging sequence.

The request series would then look like:
mpg_ name/096k_x1/000099.bin
mpg_name/096/128 x1/000100.bin
mpg_ name/128k x1/000101.bin

The bridging sub-file would in that case be constructed either by recoding the fifth decoded
frame of the decoded 128Kkbit/s sequence four times starting with decoded 96kbit/sframe 100,000 as
the reference frame, or coding the first four frames of the decoded 128kbit/s sequence starting with
decoded 96kbit/s frame 100,000 as the reference frame. In both casés the remaining 96 frames of

the bridging sub-file would be a copy of the 128kbit/s sub-file.

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

20

The files to be delivered have been referred to as “recordings”. However, it is not
necessary that the entire audio or video sequence should have been encoded — or even exist —
before delivery is commenced. Thus a computer could be provided to receive a live feed, to code it
using the chosen coding scheme, and generate the sub-files “on the fly” and upload them to the

server, so that, once a few sub-files are present on the server, delivery may commence.

One application of this delivery system would be for a voice-messaging system, as
illustrated in Figure 5 where the server 1, network 2 and terminal 3 are again shown. A voice-
messaging interface 4 serves to receive telephone calls, for example via the public switched
telephone network (PSTN) 5, to record a message, encode it, partition it into sub-files, and upload
them to the server 1, where they can be accessed in the manner described earlier. Alternatively a
second interface 6 could be provided, operating in a similar manner to the terminal 3 but controlled

remotely via the PSTN by a remote telephone 5, to which the replayed audio signals are then sent.

The same system can be used for a live audio (or video) feed. It is in a sense still
“recorded” - the difference being primarily that delivery and replay commence before recording
has finished, although naturally there is an inherent delay in that one must wait until at least one

sub-file has been recorded and loaded onto the server 1.

The system can proceed as described above, and would be quite satisfactory except for the
fact that replay would start at the beginning whereas what the user will most probably want is for it

to start now - i.e. with the most recently created sub-file.

With a lengthy audio sequence one may choose to delete the older sub-files to save on
storage: with a continuous feed (i.e. 24 hours a day) this will be inevitable and moreover one would
need to reuse the sub-file names (in our prototype system we use 000000.bin to 009768.bin and
then start again at 000000.bin), so that the older sub-files are constantly overwritten with the new
ones. A simple method of ensuring delivery starting with the most recent sub-file would be to
include in the index file an extra command instructing the player program to start by requesting the
appropriate sub-file. This however has the disadvantage that the index file has to be modified very
frequently - ideally every time a new sub-file is created. Therefore we propose a method whereby
the player program scans the server to find the starting sub-file, as follows. In the index file, the
Mode parameter is set to “live” to trigger the player program to invoke this method. LFI is set to
indicate the maximum number of sub-files that may be stored - say 9768. The method involves the
following steps and presupposes that (as is conventional) each sub-file's “last modified” time and
date has been determined. When using the HTTP protocol this can be achieved using a HEAD
request which results not in delivery of the requested sub-file but only of header information

indicating the time that the sub-file was written to the server, or zero if the sub-file does not exist.

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

21

This time is represented below as GetURL(Livelndex) where Livelndex is the sequence number of

the sub-file in question. Comments are preceded by "//".

1

20

30

LFI= 9768 // read from the index.htm file

LiveIndex = LFI1/2
StepSize = LFI/2
LiveIndexModifiedAt = 0; // the beginning of time.

ThisIndexWasModifiedAt = GetURL(Livelndex);

If (StepSize = 1) [was If (StepSize == 1)]

{
// LiveIndexModified At contains the time the file was written or 0 if no file
// has been found. Livelndex contains the index.

goto 30 [was FINISH]
}

StepSize = StepSize / 2

if (ThisIndexWasModifiedAt > LiveIndexModifiedAt)
{
LiveIndexModifiedAt = ThisIndexesModifiedAt;
LiveIndex = Livelndex + StepSize
}

else

{
Livelndex = Livelndex - StepSize

}
Goto 10

FINISH

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

22

Having found the Livelndex it is prudent to step back the Tp (playout time) and start to

make the requests to fill the audio buffer from there. Playing may commence in the normal way.

Once the recording has actually finished, the index file can if desired be modified to set

Mode to “recorded”, and any length parameters.

If desired the player program could check periodically to see whether the index file has

changed from "live" to "recorded" mode and if so to switch to "recorded" mode playing.

A simpler and much faster method of the identification of the “latest” sub-file will now be

described, assuming, first of all, a single continuous sub-file numbering sequence.
1. Terminal issues a HEAD request for the first sub-file (e.g. 000000.bin).

2. The server replies by sending the header of this file and includes the date and time
the file was last modified (MODTIME) and the date and time at which this reply was sent
(REPLYTIME) (both of these are standard http. fields).

3. The terminal calculates the elapsed time (ELTIME) by subtracting the two

. (ELTIME = REPLYTIME — MODTIME), and divides this by the playing duration of a sub-file (4

seconds, in these examples) to obtain LIVEINDEX = ELTIME/4.
4. The terminal calculates the filename of the sub-file having this index.

5. The terminal issues a HEAD request with this filename and if necessary each
subsequent filename until it receives zero (file not found) whereupon it regards the latest sub-file

which is found as the “Current sub-file”.

6. The terminal begins requesting files, starting at point J1: of the flowchart given

earlier.

This method is considerably faster than that described above for the cyclically numbered
sub-files. Note that older sub-files may still be deleted, to reduce storage requirement, as long as
the starting sub-file is kept. The method can however be modified to accommodate filename re-use

(cyclic addresses), but would require:

() That the starting sub-file name (e.g. 000000.bin) is not re-used so that it is always
available to supply the header information at Step 2. Thus, with wrapping at 009768 .bin, sub-file
009768.bin would be followed by sub-file 000001.bin.

(1) The calculated LIVEINDEX at Step 3 is taken Modulo 9768 (i.e. the remainder
when ELTIME/4 is divided by 9768).

WO 02/49342 PCT/GB01/05090

23

(i) Sub-file deletion always leads the creation of new sub-files so that a few file-
names between the newest sub-file and the oldest undeleted sub-file do not exist, in order that the

expected “file not found” response occurs at Step 5.

There may be a danger of the playing operation running slightly faster or slower than the

5 recording operation. To guard against the former it may be arranged that the player program
checks each sub-file it receives to ascertain whether it is marked with a later time than the previous
one: if not the sub-file is discarded and repeated requests made perhaps three times) followed by a

check of the index file if these requests are unsuccessful.

If the playing lags behind the recording process this can be identified by the player
10 program occasionally checking the server for the existence of a significant number of sub-files
more recent than those currently being requested, and if such sub-file do exist, initiating a "catching

up" process - e.g. by regularly discarding a small amount of data.

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

35

24

CLAIMS

1. A terminal for playing audio or video material which is stored on a remote server as a set
of files representing successive temporal portions of the said material, the terminal comprising:

a telecommunications interface for communication with the server;

a buffer for receiving the files from the telecommunications interface; and

means for playing the contents of the buffer;

characterised by control means operable to determine the addresses of further files to be requested
and operable in response to the state of the buffer to generate request messages, containing such

addresses, for further files for replenishment of the buffer.

2. A terminal according to claim 1 arranged in operation to decode the files before storing
them in the buffer.
3. A terminal according to claim 1 or 2 including means operable to generate a series of trial

requests to identify the most recent file and to commence decoding starting with the identified sub-

file.

4. A terminal according to claim 1, 2 or 3 for use with a server storing a plurality of sets of
files, which sets correspond to respective different delivery modes, the terminal including:
means operable to effect mode switching by providing that subsequent request messages shall

request files from a set different from the set to which the immediately preceding request related.

5. A terminal according to claim 4 for use with a server in which at least some of said sets of
files correspond to respective different data rates, in which:

the terminal includes means for monitoring the received data rate;

the mode switching means is operable, in the event that the measured rate is below that needed for
the set to which the currently requested file belongs, to provide that subsequent said request

messages shall request files from a set corresponding to a lower data rate.

6. A terminal according to claim 4 or 5 for use with a server in which at least some of said
sets of files correspornid to respective different data rates, in which:
the terminal includes means for monitoring the received data rate;
the mode switching means is operable, in the event that the measured rate is sufficient to support

delivery of files of a higher data rate than that of the set to which the currently requested file

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

35

25

belongs, to provide that subsequent said request messages shall request files from a set

corresponding to a higher data rate.

7. A terminal according to claim 4, 5 or 6 for use with a server in which at least some of said
sets of files correspond to respective different playing modes, in which:

the terminal includes means to receive commands from a user of the terminal to perform said mode
switching from a current playing mode to a desired playing mode corresponding to that command;
and

the mode switching means is operable, upon receipt of the command, to provide that subsequent

said request messages shall request files from a set corresponding to said desired playing mode.

8. A terminal according to any one of claims 1 to 7 for use in a method according to any one
of claims 19 to 22, in which the terminal is operable upon receipt of a file to decode it and to
discard that part of the decoded material which corresponds to said initial part of the following

portion.

9. A terminal according to any one of claims 4 to 7 for use with a server storing said material
in the form of video recordings, at least some of said files having been encoded using, for at least
some frames thereof, inter-frame coding, in which the terminal is arranged in operation, before
generating the request message for a file from a different set, to generate a request message for a

file for correction of decoder tracking.

10. A terminal according to any one of the preceding claims in which the files are allocated
addresses according to a predetermined algorithm and the terminal includes means operable for a
said request message to calculate, in accordance with said algorithm, an address for inclusion in the

request message.

11. A method of transmitting digitally coded audio or video material comprising:

partitioning the material into a plurality of discrete files each representing successive temporal
portions of the said material;

storing the files at a first station; and

at a second station —

a) transmitting to the first station requests for successive respective ones of the files;

b) receiving the files; and

C) decoding the files for replay of the material.

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

35

26

12. A method according to claim 11 in which the material is stored in a buffer and the request

messages are generated in dependence on the state of the buffer.

13. A method according to claim 12 in which the material is stored in the buffer after
decoding.
14. A method according to claim 11, 12 or 13, including, at the second station, generating a

trial request for a first file, receiving from the first station a reply including data representing the
original time of the first file and the time of said reply, and estimating from these data an estimated

identity of the most recent file at the first station.

15. A method according to claim 11, 12, 13 or 14 including generating, at the second station, a
series of trial requests to identify the most recent file at the first station and commencing said

decoding starting with the identified file.

16. A method according to any one of claims 11 to 15 including storing a plurality of sets of
files, which sets correspond to respective different delivery modes, and including, at the second
station, effecting mode switching by providing that subsequent request messages shall request files

from a set different from the set to which the immediately preceding request related.

17. A method according to claim 16 in which at least some of said sets of files correspond to
respective different data rates, including:

monitoring the received data rate at the second station; and

in the event that the measured rate is below that needed for the set to which the currently requested
field belongs, performing mode switching to provide that subsequent said request messages shall

request files from a set corresponding to a lower data rate.

18. A method according to claim 16 or 17 in which at least some of said sets of files
correspond to respective different data rates, including:

monitoring the received data rate at the second station; and

in the event that the measured rate is sufficient to support delivery of files of a higher data rate than
that of the set to which the currently requested file belongs, performing mode switching to provide
that subsequent said request messages shall request files from a set corresponding to a higher data

rate.

WO 02/49342 PCT/GB01/05090

10

15

20

25

30

35

27

19. A method according to claim 16, 17 or 18 in which at least some of said sets of files
correspond to respective different playing modes, in which:

the second station includes means to receive commands from a user of the second station to
perform said mode switching from a current playing mode to a desired playing mode corresponding
to that command; and

the mode switching means is operable, upon receipt of the command, to provide that subsequent

said request messages shall request files from a set corresponding to said desired playing mode.

20. A method according to any one of claims 11 to 19 in which said material is audio
material, in which:

a) the files are encoded using an audio coding method having a frame structure;

b) the step of partitioning the material into a plurality of discrete files comprises notionally
dividing the material into a plurality of temporal portions and generating each said file, other than
the last, by coding one respective temporal portion and an initial part of the following portion such
that the portions together represent a whole number of frames;

¢) after decoding, that part of the decoded material which corresponds to said initial part of the

following portion is discarded.

21. A method according to any one of claims 11 to 19 in which said material is audio
material, in which:

a) the files are encoded using an audio coding method having a frame structure;

b) the step of partitioning the material into a plurality of discrete files comprises notionally
dividing the material into a plurality of temporal portions and generating at least some of said files
by coding one respective temporal portion and so much of the end of the immediately preceding
temporal portion and/or the beginning of the immediately following temporal portion as to
constitute with said one respective said temporal portion, a whole number of frames of said frame
structure; and

c) after decoding, that part of the decoded material which corresponds to said end of the
immediately preceding temporal portion and/or beginning of the immediately following temporal

portion is discarded.

22. A method according to claim 20 or 21 in which said sets comprise a first set and a second
set for which the frame length is different from that used for encoding the second set, and the

division into temporal portions is the same for both sets.

WO 02/49342 PCT/GB01/05090

10

16

20

25

28

23. A method according to claim 20, 21 or 22 when dependent on claim 13 in which that part
of the decoded material which corresponds to said initial part of the following portion is not stored

in the buffer.

24, A method according to claim 16 or any one of claims 17 to 23 when dependent on claim 16
in which said material is in the form of video recordings, at least some of said files having been
encoded using, for at least some frames thereof, inter-frame coding, and including, at the second
station, before generating the request message for a file from a different set, generating a request

message for a file for correction of decoder tracking.

25. A method according to any one of claims 11 to 24 in which the files are allocated addresses
according to a predetermined algorithm, the method including calculating, at the second station in

accordance with said algorithm, an address for inclusion in a request message.

26. A method according to claim 25 in which the algorithm generates the addresses in accordance
with a key, including the step of transmitting the key to the second station for use in calculating the

addresses.

27. A method according to claim 26 in which the algorithm generates the addresses in accordance

with a pseudo-random sequence.

28. A method according to claim 27 in which the algorithm generates the addresses in accordance
with a pseudo-random sequence and the key is a seed value for setting the start point of the pseudo-

random sequence.

WO 02/49342 PCT/GB01/05090
1/4

SERVER \/ L

;55 — 3
o 2 38 20
L34 CPy
l 5 | _ n Ej.a
I NEM,

L

Do | |
A‘)“J 90”133
) r > eSO

WO 02/49342 PCT/GB01/05090
2/4

<html>

<head>

<!-- Qdbits: Mode = "recorded" -->

<t Audio = "mp3-024k_11_s mp3-032k_11_s mp3-018k_11_s mp3-016k_11_m
mp3-008k_11_m" --> ‘ 1

<l LFI="44" -->
<l-- SL="178" -->

<!-- Title = "Toccata and Fugue in D minor" -->

<!-- Author ="J.S. Bach" -->

<!-- Created = "6 Nov 2000" -->

<!-- Copyright ="© 1999" -->

<!-- Comments = "One of Bach’s many organ works." --> ‘
</head>

<body>

An announcement to appear on the display

</body> |

</html>

WO 02/49342 PCT/GB01/05090
3/4

24 Y 83 Bu
4 sec_ —7F < sec > asec .
__’ _4’
“4.075 28¢c. < 4075 2ec
- - gJ | D
29 29
Ms Ame&-
sz 1 | S 2— \

WO 02/49342 PCT/GB01/05090
4/4

INTERNATIONAL SEARCH REPORT Intei

nal Application No

PCT/GB 01/05090

CLASSIFICATION OF SUBJECT MATTER

A,
IPC 7 HO4N5/00 HO4N7/24

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 HO4AN HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

abstract

column 9, Tine 40 -column 13, line 59

Y EP 0 669 587 A (AT & T CORP) 1-9,
30 August 1995 (1995-08-30) 11-19,
24,25
A abstract 10,
20-23,
26-28
column 18, line 31 -column 21, line 13
Y US 5 610 841 A (DOI SHINZO ET AL) 1-9,
11 March 1997 (1997-03-11) 11-19,
24,25

.

[E Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or afterthe international
filing date

‘L’ document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

'T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X' document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
invoive an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of 1he international search

15 March 2002

Date of mailing of the international search report

27/03/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Giannotti, P

Form PCT/ISA/210 (second sheet) (July 1892)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Intei nal Application No

PCT/GB 01/05090

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ©

Citation of document, with indication where appropriate, of the relevant passages

Relevant to claim No.

A

US 5 956 716 A (GRUBER HARRY ET AL)
21 September 1999 (1999-09-21)
abstract

column 20, line 10 - 1ine 34

column 21, line 18 - Tline 35

column 23, line 25 -column 24, line 13
column 25, line 55 —column 26, line 7
column 31, line 57 —column 33, Tine 31

EP 0 812 112 A (SUN MICROSYSTEMS INC)
10 December 1997 (1997-12-10)
the whole document

WO 97 22201 A (XIE DONG ;CAMPBELL ROY H
(US); CHEN ZHIGANG (US); TAN SEE MONG (US)
19 June 1997 (1997-06-19)

the whole document

US 6 118 790 A (BOLOSKY WILLIAM J ET AL)
12 September 2000 (2000-09-12)

abstract

column 4, 1ine 47 -column 5, line 25

RAMACHANDRAN RAMJEE ET AL: "ADAPTIVE
PLAYOUT MECHANISMS FOR PACKETIZED AUDIO
APPLICATIONS IN WIDE-AREA NETWORKS"
TORONTO, JUNE 12 - 16, 1994,L0S ALAMITOS,
IEEE COMP. SOC. PRESS,US,

12 June 1994 (1994-06-12), pages 680-688,
XP000496524

ISBN: 0-8186-5572-0

1-28

1-28

1,11

1,11

Fomn PCT/ISA/210 (continuation of secand sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Inte

PCT/GB 01/05090

nal Application No

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0669587 A 30-08-1995 CA 2140850 Al 25-08-1995
EP 0669587 A2 30-08-1995
us 5715404 A 03-02-1998
us 5822537 A 13-10-1998

UsS 5610841 A 11-03-1997 J°P 3204434 B2 04-09-2001
JP 7107425 A 21-04-1995
Jp 7211046 A 11-08-1995
Jp 7226747 A 22-08-1995
JP 7274107 A 20-10-1995
JP 3193563 B2 30-07-2001
JP 7284085 A 27-10-1995
JP 3134662 B2 13-02-2001
JP 7295912 A 10-11-1995
JP 8055071 A 27-02-1996

US 5956716 A 21-09-1999 US 6181867 Bl 30-01-2001
us 6269394 Bl 31-07-2001
us 6154744 A 28-11-2000
us 6003030 A 14-12-1999
AU 716842 B2 09-03-2000
AU 6113996 A 30-12-1996
CA 2228607 Al 19-12-1996
EP 0834143 Al 08-04-1998
JP 11507456 T 29-06-1999
WO 9641285 Al 19-12-1996

EP 0812112 A 10-12-1997 US 6065050 A 16-05-2000
EP 0812112 A2 10-12-1997
dJP 10075436 A 17-03-1998

W0 9722201 A 19-06-1997 EP 0867003 A2 30-09-1998
JP 2000515692 T 21-11-2000
WO 9722201 A2 19-06-1997

UsS 6118790 A 12-09-2000 EP 0906687 Al 07-04-1999
JP 2001526007 T 11-12-2001
WO 9749224 Al 24-12-1997

Fomn PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

