A 0 OO

0 01/09727 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
8 February 2001 (08.02.2001)

O 00RO A

(10) International Publication Number

WO 01/09727 A2

(51) International Patent Classification”: GOG6F 12/00
(21) International Application Number: PCT/US00/20691
(22) International Filing Date: 28 July 2000 (28.07.2000)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

09/364,124 30 July 1999 (30.07.1999) US
(71) Applicant: STERLING SOFTWARE, INC. [US/US];

One Computer Associates Plaza, [slandia, NY 11749 (US).

(72) Inventor: BOGRETT, Steven, W.; 514 Clearview Drive,
Los Gatos, Santa Clara, CA 95032 (US).

(74) Agent: STALFORD, Terry, J.; Baker Botts L.L.P., 2001
Ross Avenue, Dallas, TX 75201-2980 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AT
(utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA,

CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility
model), DK, DK (utility model), DM, DZ, EE, EE (utility
model), ES, FI, FI (utility model), GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KR (utility
model), KZ, LC, LK, IR, LS, LT, LU, LV, MA, MD, MG,
MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, SK (utility model), SL,, TJ, TM, TR, TT,
TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
Cl, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations"” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: MULTIDIMENSIONAL STORAGE MODEL AND METHOD

360 360 360 362
’/
UNIQUE UNIQUE UNIQUE CALCULATED
DIMENSIONAL VALUES DIMENSIONAL VALUES DIMENSIONAL VALUES DIMENSION
372~
DATA 376
VALUE DATA
DIMENSION VALUE . VALUE I ,
1| pama VALLE | VALUE
VALUE [-376
382
380 :
374
ENTRY |57, | < 380 380 l__(E
= - R
ENTRY Pl 1
STORAGE ENTRY 374 7Y DATA
| 380 ENTRY ‘ ENTRY i
L ENTRY v S 380 380 [DATA
374
3707”7 380
COMBINATRIC COMBIKATRIC COMBINATRIC
DIMENSIONAL VALUES DIMENSIONAL VALUES DIMENSIONAL VALUES

(57) Abstract: A multidimensional storage model includes a set of non-sparse entries for each of a plurality of dimensions. The
non-sparse entries each identify an associated data value. A set of interdimensional links is provided for each non-sparse entry. The
interdimensional links each identify an intersection between non-sparse entries in disparate dimensions and collectively identify all

intersections between non-sparse entries in the dimensions.

WO 01/09727 PCT/US00/20691

MULTIDIMENSIONAL STORAGE MODEL AND METHOD

TECHNICAL FIELD OF THE INVENTION

This invention relates generally to the field of
analytical data processing, and more particularly to a
multidimensional storage model and method for business

intelligence portals and other data processing tools.

BACKGROUND OF THE INVENTION

Business intelligence systems began largely as
decision support systems (DSS) and executive information
systems (EIS). Decision support systems (DSS) and
executive information systems (EIS) were value added
systems that provided additional information from
existing on-line transactional processing (OLTP) systems.

As Dbusiness intelligence systems developed, they
integrated decision support system (DSS) functionality
with executive information system (EIS) functionality,
and added on-line analytical processing (OLAP) tools and
management reporting tools. These hybrid business
intelligence systems were gradually moved from a main-
frame environment to a distributed server/desktop
environment to allow greater user access.

More recently, the advent of «centralized data
warehouses and datamarts have created a dramatic increase
in available data waiting to be analyzed, exploited and
distributed within an organization. Such data warehouses
and datamarts, however, were typically optimized for
information delivery rather than transacticnal
processing. As a result, data warehouses and datamarts
offered only limited solutions for turning stored data

into useful and strategic tactical information. During

WO 01/09727 PCT/US00/20691

this same time, business intelligence systems gained
prominence by offering sophisticated analysis tools for
analyzing large amounts of stored information to support
effective planning and decision making within an
organization.

Such analysis tools provided by business
intelligence systems include multidimensional data cubes
that allow users to view and analyze intersections
between data in different dimensions. A problem with
traditional multidimensional data cubes, however, is that
the size of the data cubes can increase very gquickly,
growing to ten or even hundreds of times the size of the
original database. This 1is because the data cubes
usually have a large number of intersections with no
value. These empty intersections are stored to indicate
that the corresponding data does not intersect. Another
problem with traditional data cubes 1s that they are
closed with all calculations being predefined,
precalculated and stored as part of the data cube. As a
result, if a user requests new calculations that were not
anticipated during definition of a data cube, the whole

cube must be recalculated and regenerated.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

SUMMARY OF THE INVENTION

The present invention provides a multidimensional
storage model and method that substantially eliminates or
reduces disadvantages and problems associated with
previous systems and methods. In particular, the
multidimensional storage model wutilizes a non-sparse
architecture to minimize the size of model. In addition,
the model uses an open architecture to allow calculations
to Dbe dynamically performed after the model is
constructed.

In accordance with one embodiment of the present
invention, a multidimensional storage model includes a

set of non-sparse entries for each of a plurality of

dimensions. The non-sparse entries each identify an
associated data wvalue. A set of interdimensional links
is provided for each non-sparse entry. The

interdimensional 1links each identify an intersection
between non-sparse entries in disparate dimensions and
collectively didentify all intersections between non-
sparse entries in the dimensions.

More specifically, 1in accordance with a particular
embodiment of the present invention, the links are bi-
directional and the non-sparse entries include a pointer
to the associated data value. In this and other
embodiments, the multidimensional storage model may
include a set of calculated wvalues for a calculated
dimension. Each calculated value represents a value at
an intersection between non-sparse entries in disparate
dimensions.

Technical advantages of the ©present invention
include providing an improved business intelligence

portal that efficiently represents multidimensional data

10

15

20

25

30

WO 01/09727 PCT/US00/20691

for analysis by a wuser. The multidimensional storage
model provides interactive pivot views, data drilling for
high and low level analysis and dynamic calculations of
data intersections.

Another technical advantage of the present invention
includes providing an efficient multidimensional storage
model. In particular, the multidimensional storage model
utilizes a non-sparse architecture to minimize system
resources necessary to generate and store the model. The
reduced size of the model improves processing times and
allows efficient pivot and drill operations during data
analysis.

Still another technical advantage of the present
invention includes providing an improved multidimensional
storage model having an open architecture. In
particular, the multidimensional storage model allows
additional calculations to be performed after the model
is constructed. As a result, a user can create new
calculations to analyze data intersections that were not
anticipated during the original definition of the model.
This reduces time and resources needed to support pivot
and drill operations.

Other technical advantages of the present invention
will be readily apparent to one skilled in the art from

the following figures, description, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present
invention and its advantages, reference is now made to
the following description taken in conjunction with the
accompanying drawings, wherein 1like reference numerals

represent like parts, in which:

10

15

20

25

30

WO 01/09727 PCT/US00/20691

FIGURE 1 is a block diagram illustrating a business
intelligence portal in accordance with one embodiment of
the present invention;

FIGURE 2 is a flow diagram illustrating a method for
initializing the business intelligence portal of FIGURE 1
in accordance with one embodiment of the present
invention;

FIGURE 3 is a flow diagram illustrating a method for
generating predefined query models in the business
intelligence portal of FIGURE 1 in accordance with one
embodiment of the present invention;

FIGURE 4 is a flow diagram illustrating a method for
deploying and maintaining client applications in the
business intelligence portal of FIGURE 1 in accordance
with one embodiment of the present invention;

FIGURE 5 is a flow diagram illustrating a method for
generating and executing a gquery model based on a
predefined query model in accordance with one embodiment
of the present invention;

FIGURE 6 is a block diagram illustrating operation
of the modular query engine of FIGURE 1 in accordance
with one embodiment of the present invention;

FIGURE 7 is a flow diagram illustrating operation of
the modular query engine of FIGURE 6 in accordance with
one embodiment of the present invention;

FIGURE 8 is a block diagram illustrating a
multidimensional storage model in accordance with one
embodiment of the present invention;

FIGURE 9 is a block diagram illustrating exemplary

data for the multidimensional storage model of FIGURE 8;

10

15

20

25

30

WO 01/09727 PCT/US00/20691

FIGURE 10 is a flow diagram illustrating a method
for generating the multidimensional storage model of
FIGURE 8 in accordance with one embodiment of the present
invention;

FIGURE 11 is a screen diagram illustrating a display
of related views in the portfolio of FIGURE 1 in
accordance with one embodiment of the present invention;
and

FIGURE 12 1is a screen diagram illustrating window
tabs for navigating between related views in accordance

with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIGURE 1 illustrates a business intelligence portal
10 in accordance with one embodiment of the present
invention. Generally described, the business intelligence
portal 10 provides integrated data access and information
sharing across an enterprise, as well as sophisticated
multidimensional analysis tools. The analysis tools are
highly automated and intuitive to allow a wide range of
users to utilize stored information in making strategic
decisions. In this way, the business intelligence portal
10 maximizes decision support benefits users receive from
their data, while minimizing the cost of implementing and
administrating the system.

In the embodiment illustrated by FIGURE 1, the
business intelligence portal 10 implements a three-tier
distributed architecture comprising a database tier 12, a
server tier 14, and a client tier 16 connected by one or
more networks 18. The server and client tiers 14 and 16
are Java-based to support the Internet communication

protocol (TCP/IP), multiple client and server platforms,

10

15

20

25

30

WO 01/09727 PCT/US00/20691

pooled connections to a wide variety of data sources, and
complete scalability of the portal 10 across an
enterprise. In addition, the Java-based server and
client tiers 14 and 16 provide an open API architecture
that is highly adaptable and functional for processing
structured data in databases as well as unstructured
data. The client/server network 18 comprises a company
Intranet while the server/database network 18 includes
portions of public and private networks. It will be
understood that the business intelligence portal 10 may
be implemented using other suitable architectures,
programming languages, and links.

Referring to FIGURE 1, the database tier 12 includes
one or more databases 20. As described in more detail
below, the databases 20 are each exposed as an alias that
contains all the information necessary to connect to the
database 20, including the database login. The use of
database aliases prevents direct user access to the
native database in order to maintain the integrity in the
database 20. For the illustrative embodiment, the
databases 20 may each be any Java database connection
(JDBC) or object database connection (ODBC) compliant
database, as well as a suitable data warehouse or
datamart.

The server tier 14 includes one or more servers 30.
The servers 30 each comprise a set of Java-based
applications that can operate on different platforms. As
described in more detail below, the servers 30 provide
hierarchical security, centralized administration, <fast
multithreaded pooled data access, and multidimensional

data analysis for the business intelligence portal 10.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

The server 30 includes a catalog 32, a catalog

manager 34, a security manager 36, a query gJgenerator 38,

a database access system 40, a cache manager 42, a
multidimensional model manager 44, and a client
administrator 46. The catalog 32 stores all

configurations, documents, and work products created by
administrators and users of the business intelligence
portal 10. This centralizes management of documents,
eliminates redundant and outdated copies residing on

client systems, allows documents to be shared across an

enterprise, and provides continual security for the
documents. The catalog manager 34 manages all shared
information within the server 30. It will be understood

that such configurations, documents, and work products
may be otherwise suitably stored and managed within the
business intelligence portal 10.

The catalog 32 includes one or more database aliases
50, user profiles 52, security groups 54, and predefined
query models 56 configured by a system administrator.
The catalog 32 also includes one or more portfolios 58
that store related views 60 created by a system user. As
previously described, the database aliases 50 contain all
information necessary to connect to the databases 20.
The use of the database aliases 50 prevents direct user
database access to maintain data integrity in the native
databases 20 and makes it possible for non-technical
users to safely access corporate data without fear of
corruption. In addition, the database aliases 50 also
serve to pool connections to the physical databases 20
and thereby reduce the number of database connections

required to support a large number of clients.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

The user profiles 52 each define a specific range of
privileges for a user and one or more security groups 54
to which a user has access. The user profiles 52 are
generated and maintained by a system administrator. The
security groups 54 implement a hierarchical security
model with security rights and privileges assigned to
each group 54 by a system administrator. An
administrator security group 1s ©provided to allow
administrators full access to the system, including
permissions to add, modify, and delete security groups 54
and user profiles 52 in the system. The final security
rights and privileges that a user inherits are the union
of his or her individual rights as defined in the user
profiles 52 and the rights of each security group 54 to
which he or she belongs. In this way, exposure of system
features to users is controlled through the extensive use
of permissions, or privileges, which are assigned or
withheld from security groups 54 or individual user
profiles 52. Thus, while administrators may have the
ability to connect to databases 20 and add or delete
users, power users might not have this permission.
Instead, power users may have access to a full range of
data analysis and collaboration features, while
information consumers may only be able to run and adapt
reports or charts that were previously defined by an
administrator or power user.

The predefined query models 56 are self-contained
logical models of particular databases that are
established to make query creation by 1less technical
users easily and intuitive. The predefined query models
56 further abstract data from a database 20, exposing

only those portions of the database 20 that 1s relevant

10

15

20

25

30

WO 01/09727 PCT/US00/20691

10

to the group or groups of wusers who will wuse the
particular query model 56. The predefined guery models
56 include relevant tables from a database, fields within
the database tables, and 1links Dbetween the database
tables that together define a query. The predefined
guery models 56 form the basis for all gqueries created by
users. In this way, the predefined gquery model 56
controls the elements in any database 20 to which any
particular set of users will have access. In addition,
the predefined query models 56 establish mechanisms that
may restrict the type of queries that can be made by any
group of users. In particular, the mechanisms define the
maximum computer resources, or governors, that can be
used to execute the queries, and allowable joins between
tables to prevent run-away or malicious queries that
could impact the integrity of the business intelligence
portal 10.

The portfolios 58 provide a file system for storing

user created or obtained views 60. In addition, to
internally generate views 60, the portfolios 58 may
include, for example, views 60 of word processing
documents, spread sheet documents, and web pages. The

portfolios 58 are each a compound file capable of
restoring a collection of views 60 or other related sets
of data. The views 60 may be stored directly within the
portfolio 58 or linked to each other in the portfolio 58.

Access to the portfolios 58 1s determined by
established security parameters for users and
additionally by the creators of the views 60 1in the
portfolio 58. In one embodiment, users never see
portfolios 58 to which they do not have access

privileges. In addition, the portfolios 58 may be

10

15

20

25

30

WO 01/09727 PCT/US00/20691

11

customized to provide automatic notification to
associated users when views 60 within the portfolio 58
have been updated or otherwise modified. In this way,
security is made integral to the operation of the system
which facilitates collaboration and information sharing
within an enterprise.

The views 60 provide data for displaying a wide
variety of formats, such as, for example, tables, graphs,
reports, pivots, and web pages. The views 60 may be
either live views representing current data or snapshot
views of data at a particular point in time. In
addition, as described in more detail below, live views
60 may be scheduled to be updated automatically at
regular intervals, updated when first opened, and the
like. Snapshot views 60 may be set to overwrite prior
snapshots or to create a sequence of snapshot or rollover
views 60 for historical analysis. The views 60 and
portfolios 58 can be saved privately by a user or may be
distributed or shared among one or more sSecurity groups
54 to facilitate collaboration and decision making.

The security wmanager 36 manages security in the
business intelligence portal 10. In particular, the
security manager 36 includes predefined security tasks
for generating and maintaining user profiles 52 and
security groups 54. The security manager 36 also
provides a security hierarchy that allows user profiles
62 and security groups 54 to inherit privileges from
parent classes. In this way, a system administrator can
easily establish and maintain security for the business

intelligence portal 10.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

12

The query generator 38 provides graphical views of
database elements to assist system administrators and
power users in defining the gquery models 56. The
predefined gquery models 56 each define the database
connection, the family of tables and columns exposed from
the database, the allowable join types and combinations,
metadata, execution governors, and aliases for the query.
The predefined query models 56 can be later adapted and
used by a large range of users to perform safe, secure
queries.

The database access system 40 includes functionality
and software for accessing and querying the databases 20
and for returning query results to the server 30 for
manipulation, analysis, and reporting by users. For the
illustrated embodiment, the database access gystem 40
includes a query scheduler 72, an SQL generator 74, a
connection manager 76, and a Java database
connection (JDBC) 78.

The query scheduler 72 initiates scheduled queries.
As previously discussed, any view 60, including the data
and calculations contained in the view 60, can be set to
refresh from the database 20 according to several
options, including specific time schedules. This allows
views 60 to be easily refreshed to reflect the current
state of the data and users to always work with the most
up-to-date information. In addition, snapshot views 60
can be automatically scheduled to create an historical
repository of snapshot views 60 based on the same query.
Thus, for example, a view 60 may be scheduled for updates
at 10:00 p.m. every Monday, Wednesday, and Friday and
automatically distributed to a group of wusers via a

shared portfolio 58.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

13

The SQL generator 74 receives user-adapted or
unadapted query models from a user and generates a
textual SQL query for execution by the connection manager
76 . In this way, query models which are graphically
displayed and edited by users are automatically converted
to executable database instructions and thereafter
executed. This allows novice users and other information
consumers with little or no programming knowledge to
fully use and benefit from the business intelligence
portal 10.

In one embodiment, the SQL generator 74 includes
dialog specific generators and an SQL parse tree toO
generate the textual SQL. The dialog specific generators
correspond to the different types of databases 20
accessed by or wused in connection with the Dbusiness
intelligence portal 10. The dialog-specific generators
may include, for example, Oracle, Sybase, DB2, and MS SQL
generators.

The connection manager 76 receives textual SQL query
requests from the SQL generator 74 and communicates with
the databases 20 to perform the requested gueries through
the Java database connection (JDBC) 78. In the
illustrated embodiment, the connection manager includes a
modular query engine 80 including an intelligent dataset
82 and a library of data drivers 84. As described in
more detail below, the data drivers 84 each execute a
predefined database operation. The intelligent dataset
82 selects and orders data drivers 84 from the library as
necessary to perform a query request. As a result,
database access methods are standardized and the dataset

need not be customized for each application.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

14

The cache manager 42 includes a cache 90 having a
plurality of pages 92 and a process thread 94. The cache
manager 42 receives data extracted from the databases 20
in response to query requests and feeds them into the
pages 92. The cache manager 42 runs asynchronously with
the process thread 94 driving the cache 90 to feed data
into the pages 92. It will be understood that data may
be otherwise suitably received, stored, and initially
processed by the server 30.

The multidimensional model manager 44 generates and
manipulates multidimensional storage models 100. As
described in more detail Dbelow, the multidimensional
storage model 100 utilizes a non-sparse architecture to
minimize the size of the model 100. The reduced size of
the model 100 improves processing times and allows
efficient pivot and drill operations during data
analysis. In addition, the model 100 uses an open
architecture to allow calculations to be dynamically
performed after the model has been constructed. As a
result, users can create new calculations to analyze data
intersections that were not anticipated during the
original definition of the models 100. This reduces time
and resources needed to support pivot and drill
operations.

The client administrator 46 provides a central point
from which the portal 10 manages client administration.
The client administrator 46 provides a Zero-
administration architecture that automatically manages
deployment of client applications to maximize user
performance and minimize network traffic, while assuring

the latest applications are always used by the clients.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

15

The client tier 16 includes a plurality of clients
110. The clients 110 may be local to or remote from each
other and the server 30. In one embodiment, the clients
110 provide all access, including system administration,
to the server 30. As previously described, all client
110 functions are controlled by a robust set of
permissions stored on the server 30. Permissions are
granted to both individual users and security groups of
users. In this way, the robust functionality of the
business intelligence portal 10 is appropriately
controlled and metered out to all users across the
enterprise without seeming overcomplex to less technical
users.

The client 110 includes a client API 112 and a
graphical user interface (GUI) 114. In the illustrated
embodiment, the client 110 is designed with all
components being Java pieces, or Java beans. In this
embodiment, as described in more detail below, the client
110 identifies its components when establishing a
connection with the server 30. This allows efficient
administration of the client 110 and integration of
additional functionality into the client 110.

The client API 112 comprises a set of Java classes
that define how the c¢lient 110 communicates with the
server 30. Because the client API 112 allows any Java
program to communicate with the server 30, an enterprise
may efficiently add additional, custom capabilities for
its clients 110.

The graphical user interface 114 includes a set of
administration panels 116, a set of user panels 118, a
set of wizards 120, a gquery composer 122, a set of

viewers 124, and a Dproperty inspector 126. The

10

15

20

25

30

WO 01/09727 PCT/US00/20691

16

administrative and user panels 116 and 118 provide
graphical displays for guiding administrators and users
through their respective operations.

The wizards 120 divide creation processes into one
or more logical steps and guide administrations and users
through the creation process. This assists novice users
and other information consumers without detailed
programming knowledge in performing queries and analyzing
results. In this way, all users within an enterprise are
able to efficiently use the business intelligence portal
10 to extract meaningful data and thereby improve their
area of operation within an enterprise.

The query composer 122 gpecifies where data comes
from, what substantive data to display, and how it is to
be stored. The query composer 122 provides a graphical
view of predefined query models 56 to allow wusers to
intuitively understand and alter the models 56 to suit
their particular needs. In one embodiment, the query
composer 122 allows users to only see those data elements
in a model 56 to which they have privileges. The query
composer 122 saves user edits of a predefined query model
56 as a user-adapted query model 128 that can be uploaded
to and executed by the server 30.

The viewer 124 creates a combination of data views
for tables, graphs, reports, pivots, web pages, and the
like. The viewer 124 allows users to easily switch from
any view 60 of data to any other and to sort and filter
data. The views 60 can also be exported to HTML for
publication on a web server or for sharing in the catalog
32. As previously described, data views 60 may be live
or snapshots. Views 60 or portfolios 58 of views 60 can

be saved privately within an individual wuser's own

10

15

20

25

30

WO 01/09727 PCT/US00/20691

17

catalog area or may be distributed and shared among one
or more security groups 54 to facilitate collaboration
and decision making.

Within the viewer 124, a table viewer 130 displays
information as a series of columns and rows. A table
view typically serves as a starting point for developing
ideas Dbecause it provides an overall idea of how
information is organized. In the table view, users can
add filters, add calculated fields, and add summary and
subtotal information. Columns can be rearranged, hidden,
and otherwise modified. Content can be sorted and viewed
at different levels.

A report viewer 132 displays data 1in a report
format. A report view provides a robust, banded report
format and facilitates automatic report generation and
distribution. Users can freely arrange fields and
columns in an interactive graphical design view of a
report while adding calculations, subtotals, groupings,
headers, footers, titles, and graphics.

A graph viewer 134 displays graph views of data in a
wide variety of 2-D and 3-D formats. These formats may
include, for example, bar, pie, line, scatter, and radar
graphs. While working with a graph, users can change the
graph type or contents by filtering data, using a subset
of the original data, and draw multidimensional data.
The graph view can also be changed on the fly, by sorting
the records in a different order, as well as changing the
graph properties.

A pivot viewer 136 provides pivot views displaying
multidimensional, or cubed, data along multiple
dimensions. This allows users to slice and dice

information along disparate dimensions to gain different

10

15

20

25

30

WO 01/09727 PCT/US00/20691

18

perspectives on the activities and performance of an
enterprise. The pivot view supports hierarchies in the
multiple dimensions which allows users to perform drill-
down, drill-up and drill-through analysis. As described
in more detail below, the multidimensional views are
generated from the multidimensional storage model 100.

A browser viewer 138 provides a built-in, cross-
platform web browser. This allows users to access work
products and web-based Internet or Intranet environments.
Reports or objects created in other views can be exported
to HTML for posting to websites or display through the
browser interface.

The property inspector 126 allows users to change
display properties of a particular view. In one
embodiment, the property inspector 126 is modeless. In
this embodiment, the property inspector 126 applies the
changes while on the screen to allow users to experiment
with different configurations and attributes Dbefore
closing the property inspector 122.

Together, the c¢lient 110 and server 30 of the
business intelligence portal 10 add a strategic layer to
an enterprise information structure and provides a single
point of entry for integrated query, reporting, and
analysis which are inherently extensible for a wide range
of users. Because the business intelligence portal 10
may be fully integrated across an enterprise, the portal
10 facilitates routine enterprise-wide analysis delivery
and sharing of information. As a result, far more people
within an enterprise will be able to make regular and
productive use of data that already exists for the

enterprise.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

19

FIGURE 2 is a flow diagram illustrating a method for
initializing the ©business intelligence portal 10 in
accordance with one embodiment of the present invention.
Referring to FIGURE 2, the method begins at step 200 in
which a system administrator defines the user profiles
52. As previously described, the wuser profiles 52
provide permissions for users to utilize features within
the system. Next, at step 202, the system administrator
defines security groups 54. As previously described,
final security rights and privileges that a user inherits
are the union of his or her individual rights as defined
in the user profiles 52 and the rights of each security
group 54 to which he or she belongs.

Proceeding to step 204, the system administrator
generates a database alias 50 for each of the databases
20. The database aliases 50 prevent direct user access
to the databases in order to maintain data integrity and
to make it possible for non-technical users to safely
access corporate data without fear of corruption. The
database aliases also serve to pool connections to the
physical databases 20 and thereby reduce the number of
database connections required to support a large number
of clients 110.

Next, at step 206, the system administrator
generates the predefined query models 56 using the query
generator 38. The predefined query models 56 control the
elements in a database 20 to which any particular set of
users will have access. In addition, the predefined
query models 56 restrict the types of gueries that can be
executed and define the maximum computer resources that

can be used to execute the queries and the allowable

10

15

20

25

30

WO 01/09727 PCT/US00/20691

20

joins between tables to prevent run-away or malicious
queries.

Step 206 leads to the end of the process by which
the system administrator sets up the business
intelligence portal 10 for use within an enterprise. As
part of the setup process, permissions and queries for
users have been defined in order to control access and
distribution of data within the system.

FIGURE 3 is a flow diagram illustrating a method for

generating the predefined query models 56 1in accordance

with one embodiment of the present invention. In this
embodiment, specified data within the model is
automatically 1linked to the extent possible. In

addition, database elements are graphically displayed to
the system administrator to facilitate generation of the
query model 56.

Referring to FIGURE 3, the method begins at step 220
in which the query generator 38 automatically identifies
and displays to a system administrator the tables and
columns of a database 20 for which a query 1is to be
generated. Next, at step 222, the system administrator
selects a subset of the tables and columns for a
predefined query model 56.

Proceeding to decisional step 224, the query
generator 38 determines whether the database 20 has full
foreign key (FK)/primary key (PK) information. Full
foreign key/primary key information allows data in
disparate tables to be automatically linked.
Accordingly, 1if the database 20 includes full foreign
key/primary key information, the Yes branch of decisional
step 224 leads to step 226 in which child tables are

automatically linked to parent tables in the predefined

10

15

20

25

30

WO 01/09727 PCT/US00/20691

21

query model 56 using the foreign key/primary key
information. Step 226 leads to the end of the process.
At this point, the predefined query model 56 can be saved
or further edits can be made by the system administrator.

Returning to decisional step 224, 1if full foreign
key/primary key information is not available, the No
branch of decisional step 224 leads to decisional step
228. At decisional step 228, the query generator 38
determines whether full primary key information 1is
available from the database 20. Provision of full
primary key information allows parent and child tables to
be determined by a database table search. Accordingly,
if full primary key information is available, the Yes
branch of decisional step 228 leads to step 226 where the
database table search is performed to determine parent
and child tables. After the parent and child tables are
determined, they are automatically linked to generate the
predefined gquery model 56. The predefined gquery model
may then be saved or further edited by the system
administrator.

Returning to decisional step 228, if full primary

key information is not available, the No branch of
decisional step 228 leads to decisional step 230. At
decisional step 230, the query generator determines

whether unique index information capable of identifying
parent and child tables is available from the database
20. If such unique index information is available, the
Yes branch of decisional step 230 leads to step 226. At
step 226, the unique index information is used to search
the database for parent and child tables. The query
generator 38 then automatically links child and parent

tables to generate the predefined guery model 56. The

10

15

20

25

30

WO 01/09727 PCT/US00/20691

22

predefined query model may then be saved or further
edited by the system administrator.

Returning to decisional step 230, if wunique index
information is not available from the database 20, the No
branch of decisional step 230 leads to step 232. At step
232, the system administrator manually identifies and
links child and parent tables to generate the predefined
query model 56. In this way, the predefined query models
56, are to the extent possible, automatically generated
with minimal administrator interaction. It will be
understood that database tables and other elements may be
otherwise suitably linked.

FIGURE 4 is a flow diagram illustrating a method for
deploying and maintaining client applications in
accordance with one embodiment of the present invention.
In this embodiment, client applications are centrally
deployed and maintained from the server 30 using a thin
boot strap applet that is initially used to download Java
classes forming the client applications to the client
110. After this, all upgrades to the client software are
done automatically by the server 30 upon initiation of a
new session by the client 110. pPart of the
installation/update procedure includes downloading a
manifest file 1listing all names and versions of all
modules and resources on a client 110.

Referring to FIGURE 4, the method begins at step 250
in which a new connection to the server 30 1is made by the
client 110. At step 252, the boot strap agent on the
client 110 transmits the wuser's manifest file to the

server 30.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

23

Proceeding to step 254, the server 30 compares the
versions of all modules and resources 1listed in the
manifest file to current versions of the corresponding
files in the server 30. At decisional step 256, the
server 30 determines whether some or all of the modules
or resources are outdated based on the comparison. If
some or all of the modules or resources are outdated, the
Yes branch of decisional step 256 leads to step 258. At
step 258, the server 30 generates an incremental update
for the client 110. The incremental update includes only
the modules that need to be updated.

Next, at step 260, the server transmits the
incremental update to the client 110. At step 262, the
client 110 updates the client side applications based on
the incremental update. At gstep 264, a new session is
then launched for the update-to-date <client 110.
Returning to decisional step 256, if none of the client
applications are outdated, the No branch of decisional
step 256 also leads to step 264 in which a new session is
launched. In this way, the server 30 determines what, 1if
any, modules (or Java classes) are out-of-date, missing,
or obsolete and then selectively pushes the correct
modules to the wuser's machine along with an updated
manifest. As a result, users never have to manually
update client software and are able to easily roam
between different work stations to log on without
requiring their applications and data files to Dbe
reinstalled on each station. In addition, the client 110
executes quickly and is always up-to-date while
administration is centrally maintained and network

traffic is minimized.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

24

FIGURE 5 is a flow diagram illustrating a method for
adapting and executing a query model based on a
predefined query model 56 1in accordance with one
embodiment of the present invention. In this embodiment,
predefined query models 56 are generated and maintained
on the server 30 by an administrator and provided to
users upon request and verification of access privileges.

Referring to FIGURE 5, the method begins at step 280
in which the server 30 receives a request from a user for
a predefined query model 56. Next, at step 282, the
server determines an accessible portion of the predefined
query model 56 based on the user's privileges. The
accessible portion 1is a portion of the query model 56
that may be viewed by the wuser. In a particular
embodiment, the accessible portion of the predefined
query model 56 may also be the portion of the guery model
editable by the wuser. Determination of the accessible
portion of the ©predefined query model 56 may Dbe
accomplished by determining the user's privileges to the
query model and then determining the accessible portion
based on the user's privileges.

In determining the accessible portion of the
predefined query model 56, the server 30 may also
determine a protected portion of the predefined query
model ©56. The protective portion 1is the remaining or
other suitable portion of the predefined gquery model 56.
As described in more detail below, the query composer 122
may conceal the protective portion of the predefined
query model or otherwise prohibit edits to the protected

portion of the predefined query model.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

25

Next, at step 284, the server 30 downloads the
predefined query model 56 to the client 110. At step
286, the query composer 122 displays the accessible
portion of the predefined query model 56 to the user. In
one embodiment, the query composer 122 displays a
graphical view of accessible data elements defining the
predefined query model 56. In displaying the accessible
portion, the query composer 122 may conceal the protected
portion of the predefined query model 56 to prevent
editing and/or viewing of that portion.

Proceeding to step 288, the query composer 122
receives user edits to the predefined query model 56.
User edits may include the selection or deselection of
database tables, columns in the database tables, and
joins between the database tables. Next, at step 290,
the query composer 122 generates a user-adapted query
model 128 based on user edits to the accessible portion
of the predefined query model 56. At step 292, the user-
adapted query model 128 is uploaded to the server 30 for
execution.

At step 294, the SQL generator 74 automatically
generates a database gquery Dbased on the user-adapted
query model 128. The database query comprises textual
SQL that can be executed by the connection manager 76 to
perform the query. At step 296, the server 30 receives
the results of the query. As previously described, the
guery results are initially stored in the server 30 by
the cache manager 42.

Proceeding to decisional step 298, 1if the query
includes multidimensional analysis, the Yes branch of
decisional step 298 leads to step 300 in which a

multidimensional storage model 100 is generated based on

10

15

20

25

30

WO 01/09727 PCT/US00/20691

26

the results. At step 302, the multidimensional storage
model 100 is used to generate pivot, drill through, and
other views as requested by the user.

Returning to decisional step 298, if
multidimensional analysis is not indicated, the No branch
of decisional step 298 leads to step 304 1in which
requested single dimensional views are generated based on
the query results. Steps 302 and 304 each lead to
decisional step 306. At decisional step 306, the server
30 determines whether the user-adapted query model 128
will be stored for later reuse. If the user desires to
save the query model 128, the Yes branch of decisional
step 306 leads to step 308 in which the query model 1is
saved to a selected portfolio 58 of the user or a
security group 58 to which the user has access. Step 308
and the No branch of decisional step 306 each lead to
decisional step 310.

At decisional step 310, the server 30 determines
whether the query results are to be stored as an
historical snapshot. If a user selects to store the
results as a snapshot, the Yes branch of decisional step
310 leads to step 312 in which the gquery results are
stored to a selected portfolio 58. Step 312 leads to the
end of the process by which a predefined query model 56
is provided to a user for adaptation and customization.
The predefined query model 56 1is displayed and altered
using a graphical view of data elements. This
facilitates robust data analysis by all users and allows
novice users to effectively use available information to

improve operations within their organization.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

27

FIGURE 6 is a block diagram illustrating details of
the query engine 80 in accordance with one embodiment of
the present invention. In this embodiment, the query
engine 80 includes a library of data drivers 84 and an
intelligent dataset 82 operable 1in response to a query
request to identify from the 1library necessary data
drivers 84 to perform the request. The intelligent
dataset 82 is further operable to determine the necessary
order of the data drivers 84 to perform the request, to
generate a driver chain comprising the necessary data
drivers 84 1in the necessary order, and to execute in
order the data drivers 84 in the driver chain.

Referring to FIGURE 6, the intelligent dataset 82
generates a driver chain 320 in response to a query
request. The driver chain 320 includes data drivers 322
necessary to perform the requested duery. The data
drivers 322 are dynamically selected from the library of
available data drivers 84 and ordered by the intelligent
dataset 82 based on the query request. In one
embodiment, the data drivers 84 in the library are
derived from a base class for which all interface methods
call the next driver in the chain. In this embodiment,
each data driver has a chain priority for placement in a
same relative position within the chain 320. As used
herein, the term each means every one of at Ileast a
subset of the identified items.

For the illustrated embodiment, the driver chain 320
includes data drivers D1, D2, D3, and D4. Data driver DI
performs a fetch database operation which returns
requested records. The returned records are next sorted
by data driver D2 and indexed by data driver D3. Data

driver D4 then performs the requested search on the

10

15

20

25

30

WO 01/09727 PCT/US00/20691

28

sorted and indexed data zrecords. In this way, the
modular query engine 80 employs standardized access
methods to perform database gqueries. As a result, the
portal 10 need not be customized for particular database
queries and the cost to provide and maintain the business
intelligence portal 10 is reduced.

FIGURE 7 is a flow diagram illustrating operation of
the modular gquery engine 80 in accordance with one
embodiment of the present invention. Referring to FIGURE
7, the method begins at step 340 in which a query request
is received by the intelligent dataset 82. Next, at step
342, the intelligent dataset 82 dynamically selects data
drivers 84 from the library necessary to perform the
query request.

Proceeding to step 344, the intelligent dataset 82
determines the order of data drivers 84 necessary to
perform the request. At step 346, the intelligent
dataset 82 dynamically constructs a driver chain
comprising the necessary data drivers in the necessary
order to perform the query request.

Next, at step 348, the intelligent dataset executes
the driver chain to perform the query request. Within
the driver chain, the datasets 82 are executed in order
with each calling a next driver 84 1in the chain upon
completion of its own execution. As a result, the query
engine 80 and dataset 82 are application independent and
can be easily modified to support new functionality by
adding data drivers 84 to the library and programming the
intelligent dataset 82 as to their functionality.

FIGURE 8 is a block diagram illustrating details of
a multidimensional storage model 100 in accordance with

one embodiment of the present invention. In this

10

15

20

25

30

WO 01/09727 PCT/US00/20691

29

embodiment, the storage model 100 utilizes a non-sparse
architecture to minimize the size of the model 100. In
addition, the storage model 100 uses an open architecture
to allow calculations to be dynamically performed after
the model 100 is constructed.

Referring to FIGURE 8, the multidimensional storage
model 100 comprises a slot 360 for each dimension and a
slot 362 for a calculated dimension. The dimensional
slots 360 contain entries and associated data values
extracted from a database while the calculated dimension
slots 362 contain data calculated based on the extracted
data.

For the illustrated embodiment, each dimension slot

360 includes an entry storage 370 and a dimension storage

372. The entry storage 370 contains a set of non-sparse
entries 374 for the corresponding dimension. Preferably,
only non-sparse entries are included. The entries 374

represent combinatric dimensional values and each
identify an associated data value 376. In one
embodiment, each entry 374 includes a pointer to the
associated data value 376. Alternatively, the data
values 376 can be stored along with the entries 374 in
the entry storage 370. Use of the pointers and separate
storage of the data value 376, however, improves
efficiency and processing speed of the multidimensional
storage model 100.

The dimension storage 372 includes the data values
376 associated with entries 374 in the entry storage 370.
The data wvalues 376 represent unique dimensional values

for each dimension.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

30

A set of interdimensional links 380 is provided for
each non-sparse entry 374. Each interdimensional 1link
identifies an intersection between non-sparse entries 374
in different dimensional slots 360. The set of
interdimensional links 380 includes one or more
interdimensional links. In one embodiment, the
interdimensional links 380 are bi-directional to allow
efficient traversal between the dimensional slots 360 in
either direction from an entry point.

The interdimensional links 380 collectively identify
all intersections between non-sparse entries 374 in the
dimensional slots 360. Accordingly, all intersections,
including non stored empty intersections, can be
determined from the non-sparse entries 374 and traversal
of the interdimensional links 380. In particular, a null
intersection between database entries in a first and a
second dimension is determined by the 1lack of the
database entries in the model or the lack of
interdimensional links 380 connecting the entry 374 in
the first dimension to the entry in the second dimension.
Non-sparse intersections between entries 374 in a first
and second dimension are determined by traversing the
interdimensional links 380 from the specified entry in
the first dimension to the specified entry in the second
dimension and then obtaining the data value 376
associated with the entry 374 in the second dimension.
Data and information obtained by traversal of the
interdimensional storage model 100 is output for further
processing as described in more detail below.

The calculated dimension 362 includes a set of
calculated wvalues 382. The calculated wvalues 382 are

values derived from predefined calculations requested by

10

15

20

25

30

WO 01/09727 PCT/US00/20691

31

a user contemporaneously with the multidimensional
storage model 100. Thus, while the multidimensional
storage model 100 provides an open architecture to allow
calculations after its creation, contemporaneous
calculations requested by the user with the model are
precalculated and stored to minimize processing after
creation of the model 100 and to improve the speed of
multidimensional analysis.

FIGURE 9 is a block diagram illustrating exemplary
data 400 and an exemplary multidimensional storage model
402 for the exemplary data 400. Referring to FIGURE 9,
the exemplary data 400 includes dimensions Cl and C2 and
calculated dimension C3. Dimension C1 includes unique
entry values A, B, and C while dimension C2 includes
unigque entry values D, E, F, G, and H. The calculated
dimension C3 includes calculated data wvalues 1, 2, 3, 4,
5, and 6 corresponding to different predefined
calculations.

The exemplary storage model 402 includes dimensional
slots 404 for dimensions Cl1 and C2 and calculated
dimensional slot 406 for calculated dimension C3. In the
Cl dimensional slot 404, the dimensional storage 410
includes wunique dimensional values A, B, and C. The
entry storage 412 includes entries with which the data
values are associated and pointers to the data wvalues.
Similarly, the C2 dimensional slot 404 includes unique
data values D, E, F, G, and H in dimensional storage 414.
Entry storage 416 includes entries associated with the
data values and pointers to the data values.
Interdimensional links 420 identify intersections between
entries, and thus data, in the Ci and C2 dimensions. The

calculated dimension 406 includes calculated data values

10

15

20

25

30

WO 01/09727 PCT/US00/20691

32

1, 2, 3, 4, 5, and 6 associated with predefined
intersections of data in the Cl and C2 dimensions.

From the exemplary storage model 402, it can be
determined, for example, that entry values A and D in the
Cl1 and C2 dimensions intersect in that they are connected
by interdimensional 1links 420. It can be further
determined that entry values C and D do no intersect in
that they are not connected by interdimensional links
420. Entries are connected by interdimensional links if
any one or a series of interdimensional links connect the
entries.

FIGURE 10 is a flow diagram illustrating a method
for generating and using the multidimensional storage
model 100 in accordance with one embodiment of the
present invention. Referring to FIGURE 10, the method
begins at step 440 in which the multidimensional storage
model 100 is generated by the multidimensional model
manager 44 in response to a query request and is based on
results of the query request. The query reguest
specifies the dimensions and data dimensions for the
multidimensional storage model 100.

In one embodiment, the multidimensional model
manager 44 generates the multidimensional storage model
100 by first fetching data records from the source. For
each data record, the dimensional values and data values
are then fetched. Thereafter, for each dimensional value
of a data record the multidimensional model manager 44
determines if the dimensional value is present in entry
storage 370, in which case it may be wused. If the
dimensional wvalue 1s not present in the entry storage
370, an entry 374 is created for the dimensional value in

entry storage 370 and the corresponding data wvalue 376

10

15

20

25

30

WO 01/09727 PCT/US00/20691

33

stored 1in dimension storage 372. In either case, the
dimensions are next traversed from left to right to
create interdimensional links 380 for the entries 374 in
entry storage 370. Existing links are reused while links
that are missing are created. In addition, for the
right-most dimension, data values fetched for the record
are added by the multidimensional model manager 44. It
will be understood that the multidimensional storage
model 100 may be otherwise suitably generated.

After the multidimensional storage model 100 1is
generated, step 440 proceeds to step 442. At step 442,
the multidimensional model manager 44 receives a view
request for a subset of the specified dimensions and/or
data dimensions. Next, at step 444, the multidimensional
model manager 44 determines traversals necessary to
generate the view from the storage model 100 and a
starting point for each traversal. The traversals are
defined by the specified dimensions and the starting
point on entry determined based on how the model 100 is
organized.

In one embodiment, the multidimensional model
manager 44 retrieves a first and a next record from the
multidimensional storage model 100 wusing a bottom-up,
right-to-left recursive movement. In this embodiment, to
retrieve the first record, the multidimensional model
manager 44 positions a first dimension selected for
display to the first entry storage value. Next, all
parent entries, which are those to the left of the first
entry, are positioned to their first entry storage value.
Child entries, which are those to the right of the
selected dimension, are also positioned to their first

entry storage value. For the first record, the

10

15

20

25

30

WO 01/09727 PCT/US00/20691

34

multidimensional model manager 44 then retrieves values
for dimensional entries at these positions. To retrieve
the next record, the multidimensional manager 44 attempts
to move the right-most child in the view. If the right-
most child is movable, it is repositioned and the data
values fetched at the current positions within the
multidimensional storage model 100. If the right-most
child is not movable, the multidimensional model manager
44 attempts to move the parent of that child, which is
the entry immediately to the left of the child. If the
parent is movable, it is repositioned and the data values
fetched at their current positions in the
multidimensional storage model 100. If the parent cannot
be moved, an attempt is made to move the parent of that
parent, which is the entry immediately to the left of the
first parent, and the process repeated until no parents
remain. At this point, the end of the process is
reached. It will be understood that the traversals and
starting points within the multidimensional storage model
100 may be otherwise suitably determined.

Proceeding to step 446, the multidimensional model
manager 44 traverses the multidimensional storage model
100 from the entry point across connecting
multidimensional 1links 380 to determine the existence
and/or value at a specified intersection. At step 448,
the multidimensional storage model 100 determines any
value at the specified intersection. Next, at step 448,
the multidimensional model manager 44 determines whether
additional traversals exist for the model 100. If
additional traversals exist, the Yes branch of decisional
step 450 returns to step 446 and the remaining traversals

are performed and intersectional values calculated until

WO 01/09727 PCT/US00/20691

35

all traversals have been completed. The No branch of
decisional step 450 then leads to step 452.

At step 452, data and information output from the
multidimensional storage model 100 1is summarized and
sorted. It will be understood that the multidimensional
storage model 100 may be otherwise configured to presort
and summarize data. However, by separating the traversal
operation from the summarizing and sorting operatiomns,
processing efficiency is improved.

Next, at step 454, information output from the
multidimensional storage model 100 is graphically
displayed to the user in a requested view by the viewers
124 on the client 110. Proceeding to decisional step
456, i1f additional views are requested, the Yes branch
returns to step 442 in which the view request and
specified dimensions are received and the process
repeated until all requested views have been completed
and displayed to the user. At this point, the No branch
of decisional step 456 leads to the end of the process.
In this way, the business intelligence portal 10 provides
a multidimensional storage model 100 of reduced size and
improved processing speeds that support efficient pivot
and drill operations during data analysis. In addition,
a user can create new calculations to analyze data
intersections that were not anticipated during the
original definition of the model. This reduces time and
resources needed to support pivot and drill operations.
The additional views may include pivot views and data

drilling for high and low level analysis.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

36

FIGURE 11 is a screen diagram illustrating a display
of related window 480 in accordance with one embodiment
of the present invention. Referring to FIGURE 11, the
display window 480 includes a menu bar 486 with a variety
of pull down menus 488 disposed along a top edge of the
display window 480. A tool bar 490 is disposed
immediately below the menu bar 486.

The display window 480 further includes a catalog
window 492 and a portfolio window 494 adjacent the
catalog window 492. The catalog window 492 displays a
file hierarchy within the catalog 32. The portfolio
window 494 displays the views 1linked by the action
portfolio.

Within the portfolio window 494, each of the views
is separately displayed in a discrete view window 496.
Storage of the views in discrete files linked Dby the
portfolio and display of the related views within the
portfolio window 494 allows related documents to be
easily organized together and efficiently displayed to a
user. In particular, the portfolio window 494 provides a
common window with a single data interface (SDI). The
discrete view windows 496 are displayed within the common
window in a multiple data interface (MDI). It will be
understood that other types of related components may be
discretely stored and linked together for display through
a compound file.

FIGURE 12 is a screen diagram illustrating a display
window 500 including view buttons for navigating between
related views in a portfolio in accordance with one
embodiment of the present invention. Referring to FIGURE
12, the display window 500 includes a menu bar 502 with a

variety of pull down menus 504 disposed along a top edge

10

15

20

25

WO 01/09727 PCT/US00/20691

37

of the display window 500. A tool bar 506 is disposed
immediately below the menu bar 502. The display window
500 includes a catalog window 508 and a portfolio window
510 as previously described in connection with catalog
window 492 and portfolio window 494.

In the illustrated embodiment, view windows 512 are
maximized with the portfolio window 510 to provide
optimized viewing. To allow navigation between the
maximized windows, view buttons 514 are provided in
response to maximization of a window 512 and displayed as
tabs along a top edge of the portfolio window 510. The
view buttons 6514 are each operable to display an
associated window 512 as the active window in response to
activation. This allows users to quickly and easily
navigate between the windows. As a result, users need to
constantly move, close, open, and resize windows to view
related data stored in disparate files. The view buttons
may be otherwise displayed or generated in response to
other suitable events. For example, the view buttons may
be generated any time a first window becomes at least
substantially hidden from display by an overlying window.
Thus, as soon as a user indicates that a window should be
maximized, positioned, or displayed to cover a window, a
view button 514 may be generated for the window to be
covered. The view buttons 514 may be positioned
independently of a corresponding window. Thus, they may
be displayed adjacent to or remote from a corresponding

window.

WO 01/09727 PCT/US00/20691

38

Although the present invention has been described
with several embodiments, various changes and
modifications may be suggested to one skilled in the art.
It is intended that the present invention encompass such
changes and modifications as fall within the scope of the

appended claims.

10

15

20

25

WO 01/09727 PCT/US00/20691

39

WHAT IS CLAIMED IS:

1. A multidimensional storage model residing on
computer readable media, the multidimensional storage
model comprising:

a set of non-sparse entries for each of a plurality
of dimensions, each non-sparse entry identifying an
associated data value;

a set of interdimensional links for each non-sparse
entry, each interdimensional link identifying an
intersection between non-sparse entries in disparate
dimensions; and

the interdimensional links collectively identifying
all intersections between non-sparse entries in the

dimensions.

2. The multidimensional storage model of Claim 1,
wherein the interdimensional 1links are bi-directional

links.

3. The multidimensional storage model of Claim 1,
further comprising:

a set of calculated values for a calculated
dimension, each calculated value representing a value at
an associated intersection between non-sparse entries in
disparate dimensions; and

a calculated value link for each calculated value,
the calculated wvalue 1link identifying the associated

intersection.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

40

4. The multidimensional storage model of Claim 1,
further comprising:

a set of data values for each dimension, each set
including associated data values for non-sparse entries
in the dimension; and

each non-sparse entry including a pointer to the

associated data value.

5. A business intelligence portal residing on
computer readable media, the business intelligence portal
comprising:

a client portion operable to request a database
query for entries in a plurality of dimensions;

a server portion operable to perform the database
query and to generate a multidimensional storage model
based on results of the database query, the
multidimensional storage model comprising:

a set of non-sparse entries for each of the
dimensions, each non-sparse entry identifying an
associated data value;

a set of interdimensional 1links for each non-
sparse entry, each interdimensional 1link identifying an
intersection between non-sparse entries in disparate
dimensions; and

the interdimensional links collectively
identifying all intersections between non-sparse entries

in the dimensions.

6. The business intelligence portal of Claim 5,
wherein the interdimensional 1links are bi-directional

links.

10

15

20

25

30

WO 01/09727 PCT/US00/20691

41

7. The business intelligence portal of Claim 5,
the multidimensional storage model further comprising:

a set of calculated values for a calculated
dimension, each calculated value representing a value at
an associated intersection between non-sparse entries in
disparate dimensions; and

a calculated value link for each calculated value,
the calculated wvalue 1link identifying the associated

intersection.

8. The business intelligence portal of Claim 5,
further comprising:

a set of data values for each dimension, each set
including associated data values for non-sparse entries
in the dimension; and

each non-sparse entry including a pointer to the

associated data value.

9. A method for generating a multidimensional
storage model, comprising:

receiving results from a database query for entries
in a plurality of dimensions;

generating a set of non-sparse entries for each of
the dimensions;

identifying an associated data value for each non-
sparse entry;

generating a set of interdimensional links
collectively identifying all intersections between non-

sparse entries in the dimensions.

10. The method of Claim 9, wherein the

interdimensional links are bi-directional links.

WO 01/09727 PCT/US00/20691

42

11. The method of Claim 9, further comprising:

receiving a calculated dimension;

generating a set of calculated values for the

5 calculated dimension, each calculated value representing

a value at an associated intersection between non-sparse
entries in disparate dimensions; and

generating a calculated value 1link for each
calculated value, the calculated value link identifying

10 the associated intersection.

12. The method of Claim 9, identifying an
associated data value for each non-sparse entry
comprising generating for each non-sparse entry a pointer

15 to the associated data wvalue.

WO 01/09727 PCT/US00/20691

43

13. A method for determining an intersection
between a first entry in a first dimension and a second
entry in a second dimension, comprising:

providing a multidimensional storage model

5 including:

a set of non-sparse entries for each of the
dimensions, each non-sparse entry identifying an
associated data value; and

a set of interdimensional links collectively

10 identifying all intersections between non-sparse entries
in the dimensions;

selecting the first entry as an entry point in the
multidimensional storage model;

traversing the multidimensional storage model from

15 the entry point toward the second dimension along
interdimensional links connected to the entry point; and

determining an intersection exists between the first

entry and the second entry in response to

interdimensional links leading from the entry point to

20 the second entry in the second dimension.

14. The method of Claim 13, further comprising
determining the wvalue of the intersection from a data

value associated with the second entry.

PCT/US00/20691

WO 01/09727

1/9

gcl L7l ww_
\
¥01D3dSNI
¥ISMONE ALIA0N
91 8zl
\
| 10Nd | 300N A¥IND
%/_ a3Ldvav-y¥3sn
HdV¥9 NN/_
<l ¥3SOdN0D
N AY3ND
140d3Y gl
0cl N
N\ S1INVd ¥3ISN
JavL 91l
YIMIIA \
STINVd
ON/_ NINQY
SQYVZIM
N9
\
71 L1V NI |)
IN3I1D
Y311 IN3ID

\

91

81

TI00W A¥3N6F ™ [31140ud 09
03NI33038d [N-gg | ¥3SN 86~ [43n] [ain]
0 0103 180d
sdnod9 | 05~ s3svi
ALMNDIS - pg | 3svaviva| 85~ [M3A] [M3im}-~09
7C 90IVD 017041404
7€~ 39V 90 WIVD | 01

7 | 1300N 39VH0LS

VN |

0¢
/

3Svaviva

8l

3SvavLvad

\
0¢

~-0¢

8E~TH0IVaINID AU3N0 | | ¥I9¥NYI TI00N WNOISNWIO- 1IN
9¢~ SMSYL 75 _.I_.F_ - 06
YFOVNYN ALIINDIS QV3IYHL C+
$5370¥d WMWY | o
97~ YOLVYISININGY A4
INIITD YIOVNVI JHOVD
TENED 8L
05 ol
N o EEIEC mz_ozwwﬁzo | 0801
¥ ov
7/ qINNa
\ 9/~ ANVNEI 135 vivd WILSAS
¢8 || sS300v
43NAIHIS
43N0 ¥IOVNYA NOILDINNOD 3Svavivd
JIAY3S
Y311 YIANIS
yl

Y311 3Svaviva

VA
Al 0t

WO 01/09727

200~

DEFINE USER
PROFILES

Y

202~

DEFINE
SECURITY
GROUPS

Y

204

GENERATE
DATABASE
ALIASES

A

206"

GENERATE
PREDEFINED
QUERY MODEL

(E;\;D)
FIG. 2

2/9

-

YES

PCT/US00/20691

(START)

Y

[DENTIFY TABLES AND
INCLUDED COLUMNS IN
A DATABASE TO BE QUERIED

~220

Y

SELECT SUBSET OF
TABLES AND COLUMNS
WITHIN THE TABLES

222

FULL FOREIGN/
PRIMARY KEY
INFORMATION?

FULL PRIMARY
KEY INFORMATION
AVAILABLE?

INDEX

YES INFORMATION

Y

AUTOMATICALLY
LINK CHILD
TABLES TO

PARENT TABLES

AVAILABLE?

MANUALLY LINK CHILD
TABLES TO PARENT TABLES

~-232

(
226

K

/

(EN)
FIG. 3

WO 01/09727 PCT/US00/20691
3/9
FIG. 4
(SIART)
\
250~ RECEIVE NEW CONNECTION
TO SERVER FROM CLIENT FIG. 7
Y START
252~] TRANSMIT CLIENT
MANIFEST TO SERVER 340
T RECEIVE QUERY REQUEST |~
COMPARE VERSIONS OF w
254~] MODULES IN CLIENT DETERMINE DRIVERS NECESSARY | -342
MANIFEST TO CURRENT TO PERFORM REQUEST
SERVER VERSIONS T
DETERMINE ORDER OF 314
DRIVERS NECESSARY P~
MODULES NO T0 PERFORM REQUEST
OUTDATED? T
CONSTRUCT DRIVER CHAIN
INCLUDING NECESSARY g
DRIVERS IN NECESSARY 4
| GENERATE INCREMENTAL ORDER TO PERFORM REQUEST
258 UPDATE FOR CLIENT
[
L
EXECUTE DRIVER CHAIN TO
A TRANSMIT INCREMENTAL PERFORM QUERY REQUEST ~[-348
260 UPDATE TO CLIENT
| J
: END
UPDATE CLIENT (e)
969--| APPLICATIONS BASED ON
INCREMENTAL UPDATE
v
964~ LAUNCH CLIENT APPLICATION
Y
(v)
FIG. 6
r———-=-rmmTmmemeEememmsm T 1
82 1 322 DRIVER CHAIN !
\ L : RETURNS SORTED,
e sl D4 |+ 03 | D2 | D1 (e oataase f- MO A0
1 =7 7 S S RECORDS
390 (SEARCH) (INDEX) (SORT) (FETCH) |

g J

WO 01/09727

(START)

Y

280~

RECEIVE REQUEST FOR
A PREDEFINED QUERY MODEL

A

282~

DETERMINE AN ACCESSIBLE
PORTION OF THE PREDEFINED
QUERY MODEL

Y

284~_

DOWN LOAD
THE PREDEFINED QUERY
MODEL TO CLIENT

4/9

FIG. 5

\

286~

DISPLAY PREDEFINED
QUERY MODEL ON
CLIENT TO USER

Y

288"

RECEIVE USER EDITS

\

290"

GENERATE USER-ADAPTED
QUERY MODEL

Y

2921

UPLOAD USER-ADAPTED
QUERY MODEL TO SERVER

Y

2941

GENERATE QUERY REQUEST
BASED ON USER-
ADAPTED QUERY MODEL

Y

2961

RECEIVE QUERY RESULT

MULTI-DOMAIN
ANALYSIS?

GENERATE USER

SELECTED VIEWS FROM

QUERY RESULTS

PCT/US00/20691

300

GENERATE
MULTI-DOMAIN
STORAGE MODEL

Y

GENERATE
USER SELECTED

SAVE QUERY
RESULTS?

NO

3\04 VIEWS BASED ON
STORAGE MODEL
. S
L 306 302
USER-ADAPTED YES
QUERY MODEL?
STORE USER-
ADAPTED QUERY
MODEL IN
PORTFOLIO
I
308

STORE RESULTS
IN PORTFOLIO

N

(El‘\;D)

312

PCT/US00/20691

WO 01/09727

5/9

viva

viva INdino

& 0ld

SINIVA TWNOISNINIG
DIMIVNIBNOD

vivad

AYIN3 WvR

vivd

—
NOISNINICQ

Q3LvINJvI

€8¢

A

¢9¢

AYIN Wlﬂ

[ZAY

ANVA

vivad

| ANTVA
viva

e
SINTVA ¥YNOISN3NIQ

JNDINN

A
095

i

SANTVA TYNOISNINIQ

SINTVA TYNOISNINIC

DINIYNIGNO) DIMLYNIGNOD
v 08¢ 0
08¢ N l ., AY¥IN3
| g 08s
mv A B 715N IV uw%ﬁw
AM| AYINT N b/c
08¢ w\ N ™ AYIN3
08¢
9.8~ 3nwa | |, |
WA |, vivd
vivd A | |, 39VH0LS
Tl vLvQ NOISNINIQ
viva A | |
98| viva | [
AT
SINTVA WNOISNINIQ SINTVA TYNOISNINIQ
INDINN INDINN
X X
09¢ 09¢

WO 01/09727 PCT/US00/20691

6/9
S\
C3
C1 C2

CALCULATED
DIMENSION | DIMENSION | " vienoion

A D 1

A D 2

A E 3

B F 4

B G S

C H 6

MULTIPLE DOMAIN DATA MODEL

402 C1 C2 CALCULATED
™ DIMENSION DIMENSION DIMENSION
o A 404~ D |e
> 8 /404 E <
— C -~ F -
414 . L '/
1
/4 2
420 5
/ L,
/A 420
——5
412
6
416"

WO 01/09727

7/9

START

440~

GENERATE MULTI-
DIMENSIONAL MODEL FOR
SPECIFIED DIMENSIONS

a

\

442~

RECEIVE VIEW REQUEST
FOR SUBSET OF
SPECIFIED DIMENSIONS

Y

444~

DETERMINE TRAVERSALS TO
GENERATE VIEW FROM
STORAGE MODEL AND ENTRY
POINT FOR TRAVERSALS

V‘

446~

TRAVERSE MULTI-DIMENSIONAL
MODEL FROM ENTRY POINT
ALONG MULTI-DIMENSIONAL LINKS
TO DETERMINE INTERSECTIONS

Y

4481

DETERMINE VALUES
OF INTERSECTIONS

ADDITIONAL
TRAVERSALS?

452

SUMMARIZE AND SORT
OUTPUT DATA

Y

4547

DISPLAY REQUESTED VIEW

ADDITIONAL

VIEW REQUEST
?

YES

FIG.

PCT/US00/20691

10

PCT/US00/20691

WO 01/09727

7/ Jopaisiuiwpy | ©
96¥
\
kianp | MA
< > || 1< ¥8 40 1 [[»[[»1|i[A
A DS jeusaqgo) DAD|) DJUDS uapow(y BJ IA f
nDg jaulaqo) OuIo0OpUaj 199NpiDg =
nDg jauJaqo) oujdopuay SEYICY =illl—
oS auJaqo) ouloopuay TELGELE i -
nDS jauiaqo) DUWOUOS 1uD}SDqag || M /
DS }aulaqo) DWOUOS us||3 us|9 =it - 249sN -1
nDS }autaqo) pwouos weaug Aig = _ 2G40 SINMB-- |
o nDg jaulaqo) DWOUOS s108 P soig) |=pil - Liasn &mu
N nog aulagn) pdoN IADPUON =il - _
© nog jausaqo) pdoN Z}IaH | l 919D SINIM X~ m
NDg jouiaqo) pdoN IIH_punoy < m - podey SWIL“INM@H |
08%~] T~ TIEVA NOI93Y aonaodd || li=lll= wo__ec&;xww i
=l - 10JDJySIUIW
HEE 2101 SINIM o1 Imopoys: (3| || 7| ol .mo“_,usow
X|ajpg— 3|0 SINIM (B BX D ¥ @
X0l] Hoday SW3LI™INM [Roidsig 1p3 way]
~ JOYJQ) SIOSMOJG a SHOdOY asydos9 . SIONd . SBIGD| A O1|OJIIOJAN |{ a bojpjp) 1
oy ohr % | I@ @ &l e8| BIE |
djafj mopulp ago 9|qp] uoyoJsiuIpy B|paI) YiPT 3l
X[[Cll— [21901 SINIM ©f 4nopioys] - adoasopieoy /:NOISIA &

A

™-06¥
987

}

914

S
88y

PCT/US00/20691

WO 01/09727

9/9

7 Jojpusiuiwpy | ©
kianp | M3IA
< »[i<] <] ¥8 10 1 |[»||»
Alp| a3y [2puDjuiZ pdoy II'H punoy
3! Q3Y | uoubianog jauiaqo) Aalajuop Jojho) |
bl @3Y | uoubianng }ausaqo) Aaiajuop UOSSDW |nDg
bl 03y | uoubianog jausaqo) DJD|) D}juUDS Jyoq
51 @3¥ | uoubianog jauiaqo) DJD|) DjuDS abply
bl @3Y | uoubianog jausaqo) DJD|) DjuDg uapowiy
bl 03y | uoubianog jausaqo) ouloopuap 190npJDg
bl @3y | uoubianpg }susaqo) oujdopuaiy JEYAEY 1asn
61 @3y | uoubianog jauiaqo) Oulo0puspy [I9MOJON ¢ ﬂTm
bl @3y | uoubianog jausaqo) DWwouog 1UDI}SDGaS 81901 SINIME-~ 1 [|L-00S
! @3y | uoubianog jauiaqo) DWOUOS ua|3 ua|9 [| jJasn 3 &
bl @3y | uoubianog jauJaqo bwouos o349 Mg 3|01 SINIM (Y- !
6l @3y | uoubianpg jausagqo) pwouosg stog np so[) oda i "
b1 03y | uoubianog jauiaqo) odoN IADPUON |] HoRd mw_u: Bl !
01103 HOJAN] mWHu |
bl 03y | uoubianog jausaqo) pdoy Z}1aH |
! a3y | uoubianpg jauJaqo) odoy iH_punoy < J0jD{SIUILIPY L&
v]iA[] 40100 ALIIVA NOI9 Y yongodd || | ooy
5 3 — — X B&E K| =
AﬂuN51;E32@2§E=%3§§@£%:§;2%%5@ foidsig Wp3 waf
A J3Y}0 . SJasmoug \» spoday asydosy o 22_“_\ ~S3|qD] A o__o*tom.f N A mo_c_ou-.,(wom
. 7 , =
eufon) olg ¥IS 71§ ¢ﬁ@.@.@@ﬁﬁﬁém
X<~ dioff mopulji Aan§ 9|go] uoNDASIUIWPY 84paI) P32l ™~-20G
X|§19j— [21901 SINIM 0} ynopoys] - oaoomou_w_ov_/"zo_ms R

gt OId

]
¥0S

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

