20107099124 A1 |1 00 O 010 O 0 0

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization @T‘?‘S\

tellectual Property /,:‘.) OO 0 00O O
. L. ME' (10) International Publication Number
(43) International Publication Date \,!:,: #
2 September 2010 (02.09.2010) WO 2010/099124 Al

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 17/50 (2006.01) kind of national protection available). AE, AG, AL, AM,
(21) International Application Number: ég’ éﬁ’ ég’ CAI\ZI, CBS ? CBRB’ CBI(J}, g;l’ DB]IE{ ? DBI\(V ’];313[{ ’]];é’
PCT/US2010/025104 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
23 February 2010 (23.02.2010) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data:

12/391,926 24 February 2009 (24.02.2009) ys (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

(71) Applicant (for all designated States except US): MEN- GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
TOR GRAPHICS CORPORATION [US/US]; 8005 Sw ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
Boeckman Road, Wilsonville, OR 97070-7777 (US). TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(72) Inventors; and MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,

(75)]I;lve-ntors/ApphcanFs (for US only).. PLATZKER, TR), OAPI (BF, BJ. CF, CG, CL, CM, GA, GN. GQ. GW.
aniel, M. [US/US]; 12281 Country Squire Lane, Sarato- ML, MR, NE, SN, TD, TG)
ga, CA 95070 (US). MITRA, Pankaj [IN/US]; 85 Rio ? P ’
Robles E #1112, San Jose, CA 95134 (US). VALS, Published:
Alexander [IL/US]; 880 Ridder Park Drive, San Jose, CA
95131 (US).

(74) Agent: BIBLE, Patrick, M.; Klarquist Sparkman, LLP,
One World Trade Center, Suite 1600, 121 SW Salmon
Street, Portland, OR 97204 (US).

— with international search report (Art. 21(3))

(54) Title: NETLIST SYNTHESIS USING MULTIPLE SYNTHESIS CONFIGURATIONS

(57) Abstract: Disclosed herein are representative embodiments of methods, systems, and apparatus for performing synthesis. For
example, in one exemplary method disclosed herein, a high-level description of a complete circuit design is partitioned into a plu-
rality of sections. Two or more synthesis engine configurations are selected for a respective one of the sections. The respective one
of the sections is synthesized using the two or more selected synthesis engine configurations, thereby generating two or more gate-
level descriptions. A gate-level description of the complete circuit design is generated that includes at least a portion of one of the
gate-level descriptions. Computer-readable media storing instructions for causing a computer to perform any of the disclosed
methods are also disclosed herein.

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

NETLIST SYNTHESIS USING MULTIPLE SYNTHESIS CONFIGURATIONS

CROSS REFERENCE TO RELATED APPLICATION
This application claims the benefit of and priority to U.S. Patent Application
No. 12/391,926 filed February 24, 2009, which is hereby incorporated herein in its

entirety.

FIELD
This application relates generally to the field of synthesis (e.g., synthesizing

a high-level description of a circuit design to a gate-level netlist).

BACKGROUND

The design of complex circuits no longer begins with a circuit diagram.
Instead, a circuit designer typically will start with a high-level description or
representation of the logic functions required for a new circuit. These logic function
definitions will often be described using a hardware description language (“HDL”)
(e.g., a SystemVerilog, Verilog, VHDL, or other register-transfer level (“RTL”)
description) or even using an algorithmic description (e.g., a C++, SystemC, or other
algorithmic description). The designer will then use this functional description to
generate a lower-level description or representation of the circuit that describes how
the desired functionality is to be implemented. This lower-level representation is
typically a gate-level netlist, such as a mapped netlist. Furthermore, the mapped
netlist may then be placed and routed, thereby generating a placed and routed netlist.
If the design is to be implemented by one or more field programmable gate arrays
(“FPGAS”), the placed and routed netlist can then be transformed into one or more
binary configuration files suitable for programming the FPGAs.

In general, the process of generating a lower-level circuit description or

representation (such as a gate-level netlist) from a high-level description of logic

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

function (such as an RTL or algorithmic description) is referred to as “synthesis.”
Similarly, a software application used to generate a lower-level circuit description or
representation from a high-level description of logic function is referred to as a
“synthesis tool.” Furthermore, when the design is to be implemented using one or
more FPGAs, the synthesis process is referred to as “FPGA synthesis,” and the
synthesis tools for performing the synthesis are referred to as “FPGA synthesis
tools.”

An FPGA is a type of integrated circuit device that can be programmed by a
user to perform a specific function after it has been manufactured. Because of their
flexibility, FPGAs are employed for a wide variety of uses, including
telecommunications, digital signal processing, and image and speech recognition. In
addition to being employed in end-user products, many designers use FPGAs to
emulate a proposed design for an application-specific integrated circuit (“ASIC”).
The accuracy of the design can then be tested and verified using the FPGAs before
the actual ASIC is manufactured. An FPGA device typically includes an array of
configurable logic blocks, routing channels for interconnecting the configurable
logic blocks, and programmable switch boxes for connecting the channels. Some
FPGA devices also may include other specialized circuit structures, such as memory
circuits, input/output logic circuits, and digital signal processor (“DSP”) circuits.
With this arrangement, a designer can program the configurable logic blocks and the
switch blocks so as to configure the FPGA device to provide the desired
functionality.

While a variety of synthesis tools have been available for many years, many
of these tools still have some difficulty generating an efficient configuration of
circuit components from high-level logic functions. For example, a recent article
estimated that some FPGA synthesis tools produce circuit configurations that are 70
to 500 times larger than known synthesis solutions. See Richard Goering, “Huge
FPGA Synthesis Gap Seen,” EE Times (Feb. 20, 2006). Inefficient circuit
configurations require more area of an FPGA, which in turn may lead to the need for
more FPGA devices to implement desired functionality. Further, inefficient circuit

configurations may inadvertently create timing problems for the implemented

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-3-

functionality. Similar problems exist for synthesis tools used to implement ASIC
designs.

To address these problems, synthesis tool manufacturers continuously seek
to develop algorithms that will improve the synthesis process. Due to the complexity
and uniqueness of the synthesis algorithms, however, no single synthesis tool is
likely to provide an optimal circuit configuration for every given HDL design.
Instead, each synthesis tool typically will perform better than other synthesis tools in
limited circumstances (e.g., for particular types or portions of circuit designs, or for
FPGA synthesis targeting particular types of FPGA architectures).

Accordingly, there is a need for improved synthesis tools that can use
multiple synthesis engine configurations (including synthesis engine configurations
from different vendors) and can exploit the relative strengths of these various

synthesis engine configurations during synthesis.

SUMMARY

Disclosed herein are representative embodiments of methods, systems, and
apparatus for performing synthesis using multiple synthesis engine configurations
(e.g., using two or more synthesis engines, two or more configurations of a single
synthesis engines, or any combination thereof). The disclosed methods, systems, and
apparatus should not be construed as limiting in any way. Instead, the present
disclosure is directed toward all novel and nonobvious features and aspects of the
various disclosed embodiments, alone and in various combinations and
subcombinations with one another. The methods, systems, and apparatus are not
limited to any specific aspect or feature or combinations thereof, nor do the
disclosed methods, systems, or apparatus require that any one or more specific
advantages be present or problems be solved.

Embodiments of the disclosed technology relate to the synthesis of netlists
from a higher-level description of a circuit design, such as circuit design described
in a hardware description language (“HDL”) like SystemVerilog, Verilog, or
VHDL. In some embodiments of the disclosed technology, an initial higher-level

circuit description is provided to a partitioning module. The partitioning module

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

partitions the initial circuit description into one or more sections or blocks. With
some implementations of the disclosed technology, the partitioning module may
partition the initial circuit description based upon a single criterion, such as timing
behavior. Thus, the partitioning module may partition the initial circuit description
into one or more sections that are timing sensitive (e.g., fail a timing constraint) and
one or more sections that are not timing sensitive (e.g., do not fail a timing
constraint). With still other implementations of the disclosed technology, however,
the module may partition the initial circuit description based upon two or more
criteria, such as timing behavior, power consumption, area, the existence of
embedded IP, and/or other such design or performance characteristics. Once the
partitioning module has partitioned the initial circuit description into different
sections, it can add section markers or indicators to the initial circuit descriptions so
that the interfaces between the partitioned sections can be identified.

In various implementations of the disclosed technology, the partitioned
initial circuit description or characteristics of the partitioned initial circuit
description is provided to an exploration module. Based upon the characteristics of
the partitioned initial circuit description, the exploration module can select one or
more synthesis engine configurations for use in synthesizing the partitioned initial
circuit description. According to some implementations of the disclosed technology,
for example, the exploration module can select the synthesis engine configurations
according to one or more general characteristics of the partitioned initial circuit
design, such as the function of the circuit. For example, if the circuit is intended for
use as a digital signal processor, then the exploration module can select one or more
synthesis engines and/or configurations that are known to be efficient in
synthesizing circuits of similar functionality. The exploration module can also select
the synthesis engine and/or its configurations based upon more specific
characteristics of the partitioned initial circuit description, such as, for example, the
number or types of hardware resources needed to implement the design (e.g.,
embedded DSPs, multiplier blocks, memory blocks, and/or logic (such as look-up
tables (“LUTSs”) and registers)). The exploration module can also select the synthesis

engine configurations based upon the source of one or more portions of the

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

partitioned initial circuit description. For example, if the partitioned initial circuit
description includes an intellectual property (“IP”) block provided by a particular IP
vendor, then the exploration module can select one or more synthesis engines and/or
configurations that are recommended by that IP vendor or that are known to be
suitable for the IP block based on the characteristics of the IP block. The exploration
module can also select the synthesis engine configurations based upon one or more
criteria (e.g., user-selected criteria) that are desirably achieved by the synthesis
engine. The criteria can include, for example, timing behavior, area, or power
consumption.

In various embodiments of the disclosed technology, the partitioned initial
circuit description is provided to a dispatch module, which in turn provides the
partitioned initial circuit description to one or more synthesis engines using the
settings determined by the exploration module. In some implementations of the
disclosed technology, the synthesis engines and/or configurations may operate in
parallel using a parallel computing system. For example, the dispatch module may
be implemented using a master computer, while the synthesis engine configurations
may be implemented on a variety of servant computers communicating with the
master computer over a suitable computer network (e.g., a local area network, a
wide area network, the internet, or other such networks). During the synthesis
operation, the synthesis engines can preserve the interface boundaries identified by
the section indicators in the initial circuit description.

In certain embodiments of the disclosed technology, after the various
synthesis engines and/or configurations have generated gate-level netlists from the
initial circuit description, an evaluation module can evaluate the respective
partitioned sections using the synthesis results and select one or more of the netlists
as the preferred results for each section. In various implementations of the disclosed
technology, the evaluation module will evaluate the respective sections based upon
the criteria used to create the original section from the initial circuit description. For
example, if the partition module partitioned a section of the initial circuit description
because the operation of this section was timing sensitive, then the evaluation

module may determine the timing delay for each corresponding section in the

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

-6 -

synthesis results and select the corresponding section having the smallest timing
delay. After the evaluation module has selected results for each section in the
partitioned initial circuit design, an assembly module combines the respective
sections from the selected results into a composite synthesized gate-level netlist.

In one exemplary embodiment disclosed herein, a high-level description of a
complete circuit design is partitioned into a plurality of sections. Two or more
synthesis engine configurations are selected for a respective one of the sections. The
respective one of the sections is synthesized using the two or more selected
synthesis engine configurations, thereby generating two or more gate-level
descriptions. A gate-level description of the complete circuit design is generated
that includes at least a portion of one of the gate-level descriptions. The generated
gate-level description of the complete circuit design can be stored in one or more
computer-readable media. In some implementations, the selecting the one or more
synthesis engine configurations is performed using engine characteristic data stored
in an engine characteristic database. The engine characteristic database can
comprise, for example, data indicative of performance characteristics of a plurality
of candidate synthesis engine configurations. In particular implementations,
synthesis results are generated during synthesis and the engine characteristic
database is updated using data from the synthesis results. In certain
implementations, the two or more synthesis engine configurations are selected based
on one or more criteria, such as one or more of timing behavior, area, target
architecture, intended function, or power consumption for the respective one of the
sections. The criteria can also include one or more of synthesis run time or available
synthesis tool licenses. Any of the criteria can be selected by a user. In some
implementations, the two or more synthesis engine configurations are selected by
identifying that the respective one of the sections comprises proprietary IP, and
selecting at least one of the synthesis engine configurations based on the
identification. In some implementations, one of the two or more gate-level
descriptions corresponding to the respective one of the sections is selected for
inclusion in the gate-level description of the complete circuit design. The selection

of the one of the two or more gate-level descriptions can be based on one or more

10

15

20

25

30

WO 2010/099124

criteria, such as one or more of estimated timing behavior, area, or power
consumption of the two or more gate-level descriptions generated for the respective
one of the sections. In certain implementations, the two or more synthesis engine
configurations are implemented by a single synthesis engine using different
synthesis engine settings and/or two different synthesis engines from two different
synthesis engine vendors. In some implementations, portions of the high-level
description of the complete circuit design are identified that do not satisfy one or
more criteria when the high-level description is synthesized by a single synthesis
engine configuration during a preliminary synthesis run. In some implementations,
synthesis is performed so that interfaces between the partitioned sections are
preserved during the synthesis process. In further implementations, the gate-level
description of the complete circuit design is evaluated to determine whether one or
more criteria are met by the gate-level description of the complete circuit design,
and one or more iterations of the synthesizing and the generating are performed if
the one or more criteria are not met. In these implementations, a maximum number
of iterations can be selected by a user. Further, the one or more iterations can be
performed until the one or more criteria are met or until a user-selected run time is
reached.

In another embodiment disclosed herein, a plurality of synthesis engine
configurations for synthesizing a high-level description of a circuit or circuit portion
is selected. The high-level description is caused to be synthesized using at least two
of the synthesis engine configurations, thereby generating at least two lower-level
descriptions of the circuit or the circuit portion. The at least two lower-level
descriptions are evaluated according to one or more criteria. A preferred one of the
at least two lower-level descriptions is selected based on the evaluation. The
preferred one of the lower-level descriptions can be stored in one or more computer-
readable media. In some implementations, the one or more criteria comprise at least
one of estimated timing behavior, area, or power consumption of the at least two
lower-level descriptions. The one or more criteria can be selected by a user. In
certain implementations, a first of the synthesis engine configurations targets a first

type of field programmable gate array and a second of the synthesis engine

PCT/US2010/025104

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-8 -

configurations targets a second type of field programmable gate array. In these
implementations, the one or more criteria can include an estimated cost of the first
and second field programmable gate arrays. In some implementations, the plurality
of synthesis engine configurations are selected by evaluating and selecting candidate
synthesis engine configurations according to the one or more criteria. In further
implementations, the preferred one of the lower-level descriptions is used to replace
a corresponding portion of a lower-level description of the circuit, thereby creating a
modified lower-level description of the circuit. The modified lower-level
description of the circuit can be stored in one or more computer-readable media. In
some implementations, the high-level description is synthesized by instructing a first
computing resource to perform synthesis of the high-level description using a first
synthesis engine configuration, and instructing a second computing resource to
simultaneously perform synthesis of the high-level description using a second
synthesis engine configuration. In these implementations, the first computing
resource and the second computing resource can be remote or local computing
resources. In some implementations, the plurality of synthesis engine configurations
are selected by identifying one or more available synthesis resources, and selecting
the plurality of synthesis engine configurations based on the available synthesis
resources. In certain implementations, the plurality of synthesis engine
configurations are selected by allowing a user to select one or more synthesis
resources, and selecting the plurality of synthesis engine configurations based on the
synthesis resources selected by the user.

In another disclosed embodiment, a synthesis run is performed on a high-
level description of a circuit design in order to generate a lower-level description
and one or more performance reports. The synthesis run is performed using a first
synthesis engine configuration. One or more sections of the high-level description
are identified to be synthesized using a synthesis engine configuration different than
the first synthesis engine by evaluating at least one of the high-level description or
the one or more performance reports according to one or more criteria. Indications
of the identified one or more sections for use with the high-level description of the

circuit design are generated. The indications of the identified one or more sections

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-9.

are stored in a computer-readable medium. The one or more criteria can comprise at
least one of estimated timing behavior, area, or power consumption. Furthermore,
the one or more criteria can be selected by a user. In certain implementations, the
one or more criteria include timing behavior, and the evaluation is performed by
identifying one or more paths in the circuit design that fail a timing constraint,
identifying one or more portions of the circuit design that are traversed by the one or
more paths, and including at least one of the portions of the circuit design traversed
by the one or more paths as at least one of the sections identified. In some
implementations, the one or more criteria include the existence of proprictary IP,
and the evaluation is performed by identifying a section of the high-level description
as being proprietary IP, and including the section as at least one of the sections
identified. In certain implementations, the indications of the identified one or more
sections are generated by generating one or more HDL wrappers corresponding to
the identified one or more sections. In any of these implementations, the indications
can enable interfaces to the identified one or more sections to be preserved during
synthesis.

In another disclosed embodiment, a first synthesis run is caused to be
performed using a first synthesis tool from a first vendor. The first synthesis run
generates a first netlist portion for a first portion of a circuit design. Further, a
second synthesis run is caused to be performed using a second synthesis tool from a
second vendor. The second synthesis run generates a second netlist portion for a
second portion of the circuit design. A full netlist is then generated for the circuit
design, where the full netlist comprises the first netlist portion and the second netlist
portion. In some implementations, at least one of the first synthesis run or the
second synthesis run is performed using a remote computing resource. In certain
implementations, the first netlist portion is part of a full netlist generated by the first
synthesis run. In some implementations, the first synthesis run targets a first type of
field programmable gate array and the second synthesis run targets a second type of
field programmable gate array. In further implementations, a preliminary synthesis
run is performed for a high-level description of the circuit design, and the first

portion of the circuit design and the second portion of the circuit design are

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-10 -

identified using results of the preliminary synthesis run. In certain implementations,
a first synthesis engine configuration for the first synthesis run and a second
synthesis engine configuration for the second synthesis run are identified using the
results of the preliminary synthesis run.

In another disclosed embodiment, a high-level description of a circuit design
is partitioned into at least a first partition corresponding to a first portion of the
circuit design and a partition corresponding to a remainder of the circuit design. The
high-level description of the circuit design is synthesized using a first synthesis
engine configuration, thereby generating a first gate-level description of the circuit
design. A portion of the high-level description corresponding to the first partition is
synthesized together with a portion of the first gate-level description corresponding
to the remainder of the circuit design using a second synthesis engine configuration,
thereby generating a second gate-level description of the circuit design. The second
gate-level netlist can be stored in a computer-readable medium. In some
implementations, the synthesis of the high-level description of the circuit design
using the first synthesis engine configuration is performed so that input and output
interfaces between the first partition and the partition corresponding to the
remainder of the circuit design are preserved. In certain implementations, the act of
partitioning comprises adding a wrapper to the high-level description of the circuit
design. In some implementations, the first synthesis engine configuration is
configured to improve a first performance criteria for the remainder of the circuit
design and the second synthesis engine configuration is configured to improve a
second performance criteria for the first portion of the circuit design.

In another embodiment disclosed herein, a high-level description of a circuit
design is partitioned into at least a first partition corresponding to a first portion of
the circuit design and a partition corresponding to a remainder of the circuit design.
At least a part of the high-level description of the circuit design is synthesized using
a first synthesis engine configuration, thereby generating a first gate-level
description of the circuit design. At least a part of the high-level description of the
circuit design is synthesized using a second synthesis engine configuration, thereby

generating a second gate-level description of the circuit design. A portion of the first

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-11 -

gate-level description corresponding to the first partition is assembled with a portion
of the second gate-level description corresponding to the remainder of the circuit
design to create a third gate-level description of the circuit design. The third gate-
level netlist can be stored in a computer-readable medium. In some
implementations, the synthesis of the high-level description of the circuit design
using the first synthesis engine configuration and the high-level description of the
circuit design using the second synthesis engine configuration are both performed so
that input and output interfaces between the first partition and the partition
corresponding to the remainder of the circuit design are preserved. In certain
implementations, the first synthesis engine configuration is configured to improve a
first performance criteria for the first portion of the circuit design and the second
synthesis engine configuration is configured to improve a second performance
criteria different than the first performance criteria for the second portion of the
circuit design. In some implementations, the first partition is not synthesized by the
second synthesis engine configuration and the second partition is not synthesized by
the first synthesis engine configuration.

Embodiments of the disclosed methods can be performed by software stored
on one or more tangible computer-readable media (e.g., one or more optical media
discs, volatile memory components (such as DRAM or SRAM), or nonvolatile
memory components (such as hard drives)) and executed on a computer. Such
software can comprise, for example, an electronic-design-automation (“EDA™)
synthesis tool. Such software can be executed on a single computer or on a
networked computer (e.g., via the Internet, a wide-area network, a local-arca
network, a client-server network, or other such network). Additionally, any circuit
description, design file, data structure, data file, intermediate result, or final result
(e.g., a portion or all of a high-level circuit description, a portion or all of a gate-
level netlist, data indicative of synthesis engine characteristics, data indicative of
selected evaluation criteria, data indicative of selected synthesis engine
configurations or of selected netlists) created or modified using any of the disclosed
methods can be stored on a tangible computer-readable storage medium (e.g., one or

more optical media discs, volatile memory components (such as DRAM or SRAM),

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

12 -

or nonvolatile memory components (such as hard drives)). Furthermore, any of the
software embodiments (comprising, for example, computer-executable instructions
for causing a computer to perform any of the disclosed methods) or circuit
descriptions, design files, data structures, data files, intermediate results, or final
results created or modified by the disclosed methods can be transmitted, received, or
accessed through a suitable communication means.

The foregoing and other objects, features, and advantages of the disclosed
technology will become more apparent from the following detailed description,

which proceeds with reference to the accompanying figures.

BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 is a block diagram illustrating an exemplary computer network
suitable for performing embodiments of the disclosed technology.

Fig. 2 is a block diagram illustrating an exemplary processing unit that can
be used as part of the computer network shown in Fig. 1.

Fig. 3 is a block diagram illustrating components of an exemplary
embodiment of a synthesis tool in accordance with the disclosed technology.

Fig. 4 is a block diagram illustrating exemplary translator and partition
modules as can be used in embodiments of the disclosed technology.

Fig. 5 is a block diagram illustrating an exemplary exploration module as can
be used in embodiments of the disclosed technology.

Fig. 6 is a block diagram illustrating an exemplary synthesis module as can
be used in embodiments of the disclosed technology.

Fig. 7 is a block diagram illustrating an exemplary evaluation module as can
be used in embodiments of the disclosed technology.

Fig. 8 is a block diagram illustrating exemplary assembly, netlist evaluation,
and place and route modules as can be used in embodiments of the disclosed
technology.

Fig. 9 is a block diagram illustrating an exemplary synthesis flow in which
assembly-free synthesis is performed according to embodiments of the disclosed

technology.

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

- 13-

Fig. 10 is a block diagram illustrating an exemplary synthesis flow in which
different target architectures are explored according to embodiments of the disclosed
technology.

Fig. 11 is a block diagram illustrating another exemplary synthesis flow in
which different target architectures are explored according to embodiments of the
disclosed technology.

Fig. 12 is a block diagram illustrating a computer network that can be used to
perform any of the embodiments of the disclosed technology.

Fig. 13 is a block diagram illustrating another computer network that can be
used to perform any of the embodiments of the disclosed technology.

Fig. 14 is a block diagram illustrating how the computer networks of Figs. 1,
12, or 13 can be used to perform aspects of the disclosed technology.

Fig. 15 is a block diagram illustrating how the computer networks of Figs. 1,
12, or 13 can be used to transmit computer-executable instructions for performing
any of the disclosed methods.

Fig. 16 is a screenshot of a first exemplary graphic user interface as can be
used to perform aspects of the exploration module.

Fig. 17 is a screenshot of a second exemplary graphic user interface as can
be used to perform aspects of the exploration module.

Fig. 18 is a screenshot of a third exemplary graphic user interface as can be
used to perform aspects of the exploration module.

Fig. 19 is a screenshot of a first exemplary graphic user interface as can be

used to perform aspects of the synthesis module.

DETAILED DESCRIPTION

1. General Considerations

Disclosed herein are representative embodiments of methods, systems, and
apparatus for performing synthesis using multiple synthesis engine configurations
(e.g., using two or more synthesis engines, two or more configurations of a single
synthesis engines, or any combination thereof). The disclosed methods, systems, and

apparatus should not be construed as limiting in any way. Instead, the present

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

- 14 -

disclosure is directed toward all novel and nonobvious features and aspects of the
various disclosed embodiments, alone and in various combinations and
subcombinations with one another. The methods, systems, and apparatus are not
limited to any specific aspect or feature or combinations thereof, nor do the
disclosed methods, systems, or apparatus require that any one or more specific
advantages be present or problems be solved.

Although the operations of some of the disclosed methods are described in a
particular, sequential order for convenient presentation, it should be understood that
this manner of description encompasses rearrangement, unless a particular ordering
is required by specific language set forth below. For example, operations described
sequentially may in some cases be rearranged or performed concurrently. Moreover,
for the sake of simplicity, the attached figures may not show the various ways in
which the disclosed methods or modules can be used in conjunction with other
methods or modules. Additionally, the description sometimes uses terms like
“decide” and “provide” to describe the disclosed methods. These terms are high-
level abstractions of the actual operations that are performed. The actual operations
that correspond to these terms can vary depending on the particular implementation
and are readily discernible by one of ordinary skill in the art.

The disclosed technology can be used to synthesize a circuit design (e.g., to
synthesize a high-level circuit description into a gate-level netlist for implementation
on a field-programmable gate array (“FPGA”) or with an application specific
integrated circuit (“ASIC”)). Embodiments of the disclosed technology, for
example, enable a user to use multiple synthesis engine configurations for different
sections of a circuit description and to select a result that best suits the user’s
objectives, all using a single software platform and within a short amount of time.
The disclosed technology is mainly described in connection with FPGA synthesis.
The particular application of this technology to FPGA synthesis should not be
construed as limiting, however, as any aspect of the technology can be used during
the design and implementation of other integrated circuits (e.g., application-specific
integrated circuits (“ASIC”), other programmable logic devices (“PLDs”), systems-

on-a-chip (“SoCs”), or microprocessors).

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

-15-

Embodiments of the disclosed methods can be used to modify or create a
circuit represented as a circuit description stored on one or more computer-readable
media. The circuit description can comprise, for example, one or more design files
or data structures representing the circuit (e.g., a high-level circuit description (such
as SystemVerilog, Verilog, VHDL, or other register-transfer-level description), a
gate-level netlist, or the like) and may be created or modified on a single computer
or via a network.

As more fully explained below, embodiments of the disclosed methods can
be performed by software stored on one or more tangible computer-readable media
(e.g., one or more optical media discs, volatile memory components (such as DRAM
or SRAM), or nonvolatile memory components (such as hard drives)) and executed
on a computer. Such software can comprise, for example, an electronic-design-
automation (“EDA”) synthesis tool. Such software can be executed on a single
computer or on a networked computer (e.g., via the Internet, a wide-area network, a
local-area network, a client-server network, or other such network). The software
embodiments disclosed herein can be described in the general context of computer-
executable instructions, such as those included in program modules, which can be
executed in a computing environment on a target real or virtual processor.
Generally, program modules include routines, programs, libraries, objects, classes,
components, data structures, etc. that perform particular tasks or implement
particular abstract data types. The functionality of the program modules may be
combined or split between program modules as desired in various embodiments.
Computer-executable instructions for program modules may be executed within a
local or distributed computing environment. For clarity, only certain selected aspects
of the software-based implementations are described. Other details that are well
known in the art are omitted. For example, it should be understood that the disclosed
technology is not limited to any specific computer language, program, or computer.

Additionally, any circuit description, design file, data structure, data file,
intermediate result, or final result (e.g., a portion or all of a high-level circuit
description, a portion or all of a gate-level netlist, data indicative of synthesis engine

characteristics, data indicative of selected evaluation criteria, data indicative of

10

15

20

25

WO 2010/099124 PCT/US2010/025104

- 16 -

selected synthesis engine configurations or of selected netlists) created or modified
using any of the disclosed methods can be stored on a tangible computer-readable
storage medium (e.g., one or more optical media discs, volatile memory components
(such as DRAM or SRAM), or nonvolatile memory components (such as hard
drives)).

Furthermore, any of the software embodiments (comprising, for example,
computer-executable instructions for causing a computer to perform any of the
disclosed methods) can be transmitted, received, or accessed through a suitable
communication means. Similarly, any circuit description, design file, data structure,
data file, intermediate result, or final result (e.g., a portion or all of a high-level
circuit description, a portion or all of a gate-level netlist, data indicative of synthesis
engine characteristics, data indicative of selected evaluation criteria, data indicative
of selected synthesis engine configurations or of selected netlists) created or
modified using any of the disclosed methods can be transmitted, received, or
accessed through a suitable communication means. Such suitable communication
means include, for example, the Internet, the World Wide Web, an intranet, software
applications, cable (including fiber optic cable), magnetic communications,
electromagnetic communications (including RF, microwave, and infrared
communications), electronic communications, or other such communication means.
Such communication means can be, for example, part of a shared or private network.

Moreover, any circuit description, design file, data structure, data file,
intermediate result, or final result (e.g., a portion or all of a high-level circuit
description, a portion or all of a gate-level netlist, data indicative of synthesis engine
characteristics, data indicative of selected evaluation criteria, data indicative of
selected synthesis engine configurations or of selected netlists) produced by any of
the disclosed methods can be displayed to a user using a suitable display device
(e.g., a computer monitor or display). Such displaying can be performed as part of a

computer-implemented method of performing any of the disclosed methods.

10

15

20

25

30

WO 2010/099124

-17 -

11. Exemplary Operating Environments

The execution of various electronic design automation processes according
to embodiments of the disclosed technology can be implemented using computer-
executable software instructions executed by one or more programmable computing
devices. Because these embodiments of the disclosed technology can be
implemented using software instructions, the components and operation of a generic
programmable computer system on which various embodiments of the disclosed
technology can be employed will first be described. Further, because of the
complexity of some electronic design automation processes and the large size of
many circuit designs, various electronic design automation tools are configured to
operate on a computing system capable of simultaneously running multiple
processing threads. The components and operation of a computer network having a
host or master computer and one or more remote or servant computers therefore will
be described with reference to Fig. 1. This operating environment is only one
example of a suitable operating environment, however, and is not intended to
suggest any limitation as to the scope of use or functionality of the disclosed
technology.

In Fig. 1, the computer network 101 includes a master computer 103. In the
illustrated example, the master computer 103 is a multi-processor computer that
includes a plurality of input and output devices 105 and a memory 107. The input
and output devices 105 may include any device for receiving input data from or
providing output data to a user. The input devices may include, for example, a
keyboard, microphone, scanner, or pointing device for receiving input from a user.
The output devices may include a display monitor, speaker, printer, or tactile
feedback device. These devices and their connections are well known in the art, and
thus will not be discussed at length here.

The memory 107 may similarly be implemented using any combination of
tangible computer readable media that can be accessed by the master computer 103.
The tangible computer readable media may include, for example, microcircuit
memory devices such as read-write memory (“RAM?”), read-only memory

(“ROM”), electronically erasable and programmable read-only memory

PCT/US2010/025104

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

- 18 -

(“EEPROM?”), or flash memory microcircuit devices, CD-ROM disks, digital video
disks (“DVD”), or other optical storage devices. The tangible computer readable
media may also include magnetic cassettes, magnetic tapes, magnetic disks, or other
magnetic storage devices, punched media, holographic storage devices, or any other
tangible medium that can be used to store desired information.

As will be discussed in detail below, the master computer 103 runs a
software application for performing one or more operations according to various
examples of the disclosed technology. Accordingly, the memory 107 stores software
instructions 109A that, when executed, will implement a software application for
performing one or more operations. The memory 107 also stores data 109B to be
used with the software application. In the illustrated embodiment, the data 109B
contains process data that the software application uses to perform the operations, at
least some of which may be parallel.

The master computer 103 also includes a plurality of processor units 111 and
an interface device 113. The processor units 111 may be any type of processor
device that can be programmed to execute the software instructions 109A, but will
ordinarily be a microprocessor device. For example, one or more of the processor
units 111 may be a commercially generic programmable microprocessor, such as
Intel® Pentium® or Xeon™ microprocessor, Advanced Micro Devices Athlon™
microprocessor or Motorola 68K/Coldfire® microprocessor. Alternately or
additionally, one or more of the processor units 111 may be a custom-manufactured
processor, such as a microprocessor designed to optimally perform specific types of
mathematical operations. The interface device 113, the processor units 111, the
memory 107 and the input/output devices 105 are connected together by a bus 115.

With some implementations of the invention, the master computing device
103 may employ one or more processing units 111 having more than one processor
core. Accordingly, Fig. 2 illustrates an example of a multi-core processor unit 111
that may be employed with various embodiments of the disclosed technology. As
seen in this figure, the processor unit 111 includes a plurality of processor cores 201,
202. Each processor core 201, 202 includes a respective computing engine 203, 204

and a respective memory cache 205, 206. As known to those of ordinary skill in the

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-19-

art, a computing engine contains logic devices for performing various computing
functions, such as fetching software instructions and then performing the actions
specified in the fetched instructions. These actions may include, for example,
adding, subtracting, multiplying, and comparing numbers, performing logical
operations such as AND, OR, NOR and XOR, and retrieving data. Each computing
engine 203 may then use its corresponding memory cache 205 to quickly store and
retrieve data and/or instructions for execution.

Each of the processor cores 201, 202 is connected to an interconnect 207.
The particular construction of the interconnect 207 may vary depending upon the
architecture of the processor unit 201. With some processor cores 201, 202 such as
the Cell microprocessor created by Sony Corporation, Toshiba Corporation and IBM
Corporation, the interconnect 207 may be implemented as an interconnect bus. With
other processor cores 201, 202, however, such as the Opteron™ and Athlon™ dual-
core processors available from Advanced Micro Devices of Sunnyvale, California,
the interconnect 207 may be implemented as a system request interface device. In
any case, the processor cores 201, 202 communicate through the interconnect 207
with an input/output interface 209 and a memory controller 210. The input/output
interface 209 provides a communication interface between the processor cores 201,
202 and the bus 115. Similarly, the memory controller 210 controls the exchange of
information between the processor cores 201, 202 and the system memory 107. With
some implementations of the disclosed technology, each of the processor cores 201,
202 may include additional components, such as a high-level cache memory, which
may be shared by the processor cores 201, 202. While Fig. 2 shows one illustration
of a processor unit 111 that may be employed by some embodiments of the
disclosed technology, it should be appreciated that this illustration is representative
only, and is not intended to be limiting.

It also should be appreciated that, with some implementations, multiple
separate processor units can be used in lieu of a multi-core processor unit.
Furthermore, an alternate implementation of the disclosed technology may employ a

single processor unit having six cores, two multi-core processor units each having

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-20 -

three cores, a multi-core processor unit with four cores together with two separate
single-core processor units, and so on.

Returning now to Fig. 1, the interface device 113 allows the master computer
103 to communicate with the servant computers 117A, 117B, 117C .. . 117x
through a communication interface. The communication interface can be any
suitable type of interface including, for example, a wired network connection or an
optically transmissive wired network connection. The communication interface can
also be a wireless connection, such as a wireless optical connection, a radio
frequency connection, an infrared connection, or even an acoustic connection. The
interface device 113 translates data and control signals from the master computer
103 and each of the servant computers 117 into network messages according to one
or more communication protocols, such as the transmission control protocol
(“TCP”), the user datagram protocol (“UDP”), or the Internet protocol (“IP”’). These
and other communication protocols are well known in the art, and thus will not be
discussed here in more detail.

Each servant computer 117 can include a memory 119, a processor unit 121,
an interface device 123, and, optionally, one more input/output devices 125
connected together by a system bus 127. As with the master computer 103, the
optional input/output devices 125 for the servant computers 117 can include any
input or output devices, such as keyboards, pointing devices, microphones, display
monitors, speakers, and printers. Similarly, the processor units 121 can be any type
of general processing device or custom-manufactured programmable processor
device. For example, one or more of the processor units 121 can be commercially
generic programmable microprocessors, such as Intel® Pentium® or Xeon™
microprocessors, Advanced Micro Devices Athlon™ microprocessors or Motorola
68K/Coldfire® microprocessors. Alternately, one or more of the processor units 121
can be custom-manufactured processors, such as microprocessors designed to
optimally perform specific types of mathematical operations. Still further, one or
more of the processor units 121 can have more than one core, as described with
reference to Fig. 2 above. For example, with some implementations of the disclosed

technology, one or more of the processor units 121 can be a Cell processor. The

10

15

20

25

30

WO 2010/099124

221 -

memory 119 then can be implemented using any combination of the computer
readable media discussed above. Like the interface device 113, the interface devices
123 allow the servant computers 117 to communicate with the master computer 103
over the communication interface.

In the illustrated example, the master computer 103 is a multi-processor unit
computer with multiple processor units 111, while each servant computer 117 has a
single processor unit 121. It should be noted, however, that alternate
implementations of the disclosed technology can employ a master computer having
single processor unit 111. Further, one or more of the servant computers 117 can
have multiple processor units 121, depending upon their intended use, as previously
discussed. Also, while only a single interface device 113 or 123 is illustrated for
both the master computer 103 and the servant computers, it should be noted that,
with alternate embodiments of the disclosed technology, either the computer 103,
one or more of the servant computers 117, or some combination of both may use
two or more different interface devices 113 or 123 for communicating over multiple
communication interfaces.

With various examples of the disclosed technology, the master computer 103
can be connected to one or more external data storage devices. These external data
storage devices can be implemented using any combination of tangible computer
readable media that can be accessed by the master computer 103. The tangible
computer readable media can include, for example, microcircuit memory devices
such as read-write memory (“RAM?”), read-only memory (“ROM”), electronically
erasable and programmable read-only memory (“EEPROM”) or flash memory
microcircuit devices, CD-ROM disks, digital video disks (“DVD”), or other optical
storage devices. The tangible computer readable media may also include magnetic
cassettes, magnetic tapes, magnetic disks, or other magnetic storage devices,
punched media, holographic storage devices, or any other tangible medium that can
be used to store desired information. According to some implementations of the
disclosed technology, one or more of the servant computers 117 can alternately or
additionally be connected to one or more external data storage devices. Typically,

these external data storage devices will include data storage devices that also are

PCT/US2010/025104

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

22

connected to the master computer 103, but they also can be different from any data
storage devices accessible by the master computer 103.

It also should be appreciated that the description of the computer network
illustrated in Fig. 1 and Fig. 2 is provided as an example only and is not intended to
suggest any limitation as to the scope of use or functionality of alternate
embodiments of the disclosed technology. For example, any of the embodiments of
the disclosed technology can be implemented on a single computer having a single

Proccssor.

111. Synthesis Using Multiple Synthesis Engine Configurations

A. General Overview of an Exemplary Synthesis Tool Using Multiple
Synthesis Engine Configurations

An exemplary framework of a synthesis tool 300 for performing synthesis
according to the disclosed technology is illustrated in Fig. 3. The illustrated
components can consist of one or more software modules configured to interact and
exchange information among each other as indicated. It should be understood that
the synthesis tool framework illustrated in Fig. 3 is not to be construed as limiting,
as embodiments of the disclosed technology can include different combinations and
subcombinations of the illustrated modules. For example, embodiments of the
disclosed technology can comprise fewer than all of the illustrated modules or
additional modules not shown. Before describing implementations of the individual
modules in greater detail, a brief overview of the modules shown in Fig. 3 is
provided.

In general, the synthesis tool 300 illustrated in Fig. 3 is capable of
partitioning a design into multiple sections (also referred to as “blocks™) and
performing synthesis on each of the multiple sections using one or more different
synthesis engine configurations. The synthesis engine configuration can comprise
different configurations of the same synthesis engine, configurations from two or
more different synthesis engines or tools, or any combination thereof. The illustrated
synthesis tool 300 is also capable of reassembling selected synthesized netlists for

the various sections into a single full netlist representing the complete design. Using

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

_23.

the illustrated synthesis tool 300, sections of a design can be synthesized using
different constraints and/or using different synthesis engines during the synthesis
process. As part of the synthesis process, the resulting netlists for the different
design sections can be compared to one another and the most desired result selected
using a wide variety of criteria (e.g., estimated speed, area, power, and/or other such
design or performance criteria). In this way, the capabilities of various synthesis
engines can be exploited and used for portions of a design where those capabilities
are most useful. In general, this multi-synthesis-engine-configuration approach can
produce higher quality of result (QoR) netlists in a shorter amount of time than by
using conventional synthesis tools. Moreover, in particular implementations, the
synthesis tool 300 provides a single synthesis environment for the user, even though
the synthesis tool 300 may use synthesis engines from multiple vendors. This single
framework and interface eliminates the need for a user to learn the various protocols,
syntaxes, and formats that exist among the various synthesis engines offered by
different EDA vendors.

In the illustrated embodiment, the translation module 310 receives (e.g.,
loads or buffers into memory) data representative of the design to be synthesized,
the resources available to the synthesis tool, and/or any design constraints to be
considered during synthesis. The translation module 310 is configured to translate
this data into a common format used by the synthesis tool 300. In general, the
translation module 310 allows the synthesis tool 300 to be compatible with a wide
variety of design formats.

The partition module 312 evaluates the design and, if appropriate, partitions
the design into sections that are desirably synthesized using different synthesis
engine configurations than the remainder of the design. To perform the evaluation,
the partition module 312 of certain embodiments performs one or more initial
synthesis runs. The results of these runs can be evaluated to identify areas of the
design that could be improved using different synthesis engine configurations. For
example, one or more sections of the design may be identified as being problematic
for failing to meet a desired timing constraint, area constraint, power constraint, or

other such performance criteria. Additionally, one or more sections of the design

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-4 -

may be partitioned because they represent an embedded IP block in the design that is
desirably synthesized using a particular synthesis engine (e.g., a synthesis engine
recommended by the vendor of the IP block). The constraints or criteria that are
used to evaluate the one or more initial synthesis runs can be provided by the user as
part of the constraints data that is loaded by the translation module 310 or through a
suitable user interface.

The exploration module 314 determines which synthesis engine
configuration to use to synthesize the respective sections of the design identified by
the partition module 312. For instance, for each partitioned section of the design, the
exploration module 314 can select one or more synthesis engine configurations that
are likely to produce desired synthesis improvements (e.g., improved timing, area,
power, or other such performance characteristics). It should be noted that the
synthesis engine configurations referred to and selected by the exploration module
314 include instances of the same synthesis engine operating with different
configurations (e.g., with different switches or optimizations set), instances of
different synthesis engines operating with the same or different configurations, or
any combination thereof.

In certain embodiments, the intended function performed by an identified
circuit section can be used by the exploration module 314 to help determine the
appropriate synthesis engine configuration to use during synthesis. For instance, if
the identified circuit section will be used for video processing, certain synthesis
configurations may be better suited than other synthesis engine configurations. A
database storing information about various synthesis engine configurations and their
performance characteristics can be accessed by the exploration module 314. The
database may also include information about which synthesis engine configurations
are well suited for particular circuit functions. The database can initially include
information supplied by the vendor of a synthesis engine but can be periodically or
continuously updated using heuristic data generated through ongoing use of the
synthesis tool 300 or using heuristic data generated by the vendor of the synthesis
tool 300.

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

-25-

The synthesis module 316 prepares and dispatches the various synthesis runs
using the synthesis engine configurations selected by the exploration module 314.
The synthesis module 316 can use resource information obtained by the translation
module 310 to perform this function. To prepare the various synthesis runs, the
synthesis module 316 of certain embodiments of the disclosed technology inserts
markers or indicators into the original circuit description that demarcate the sections
identified by the partition module 312. For instance, the markers may be in the form
of a “wrapper” (e.g., an HDL wrapper) that allows the inputs and outputs of the
section (the interface of the section) to be preserved during synthesis while still
allowing for certain optimizations to occur during synthesis. By inserting markers
into the original description of the circuit design, the entire description can be loaded
and used by the synthesis engine configurations selected by the exploration module
314. To dispatch the synthesis runs, the synthesis module can use the information
obtained by the translation module 310 about the available resources—including, for
example, the speed and number of processing resources available (e.g., in a server
farm)—and can also use information about the expected run time of each synthesis
engine configuration. Based on this information, the synthesis module 316 may limit
or alter the synthesis runs selected by the exploration module 314. In particular
embodiments, the synthesis module 316 can also dispatch one or more synthesis
runs that are configured to synthesize those portions of the design that are not
selected by the partition module 314. For example, these one or more synthesis runs
are referred to herein as “backdrop runs” and are generally performed using different
synthesis engine configurations than the other synthesis runs. In general, a netlist
from the backdrop runs can be combined with the netlists from the other synthesis
runs to form a complete netlist that contains netlist portions that are optimized for
the corresponding sections of the circuit.

The evaluation module 318 evaluates the results of the synthesis runs for
each circuit section identified by the partition module 312 and selects a netlist for
each circuit section from the results. The selection can be made, for example, based
on the criteria originally used by the partition module 312. For instance, the

selection can be made based on estimated timing behavior, area, power

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-26 -

consumption, or other such design or performance criteria. In particular
embodiments, the evaluation module 318 focuses on the performance or design
improvements to the particular section of the circuit that the synthesis run targeted.
Thus, for example, a particular synthesis run result may be discarded because the
desired improvements were not seen in the targeted section of the circuit, even
though other portions of the design exhibit the desired improvements. In other
embodiments, improvements to the design as a whole are considered by the
evaluation module 318 (e.g., as a weighted factor).

If multiple backdrop runs are performed, the evaluation module 318 can
select from among the resulting backdrop netlists based on different criteria (e.g., on
the area improvements in the backdrop netlists if the other synthesis runs targeted
timing, or vice versa). During this evaluation process, the evaluation module 318
can focus its evaluation just on the remaining portion of the design that does not
include the sections identified by the partition module 312. In some situations, single
synthesis runs are selected and performed for one or more of the sections of the
circuit identified by the partition module 312. In these cases, the evaluation module
318 can be bypassed as shown in Fig. 3. Furthermore, in some instances, the
partition module does not identify any circuit sections to be separately synthesized.
In these cases, the evaluation module 318 and the assembly module 320 can both be
bypassed as also shown in Fig. 3.

The assembly module 320 combines the netlists selected by the evaluation
module 318 into a single netlist. For example, in particular implementations, the
sections markers inserted by the synthesis module 316 are used to preserve the
boundaries of the circuit sections identified by the partition module 312 during the
synthesis process, allowing portions of the netlists corresponding to the identified
sections to be identified and copied into one another. In one particular
implementation, netlist portions of the selected backdrop netlist are replaced with
corresponding netlist portions from the netlists selected by the evaluation module
318 and corresponding to the sections identified by the partition module 312. The

assembly module 320 produces a final netlist.

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

_27 -

The netlist evaluation module 322 evaluates the final netlist against one or
more criteria (e.g., the original criteria used by the partition module) such as
estimated timing behavior, area, power consumption, or other such design or
performance criteria. This evaluation procedure can be performed automatically or
with user input (e.g., using a sortable report displayed to the user). If the desired
criteria are not met, the evaluation module 322 can cause the synthesis tool 300 to
perform another iteration of synthesis. During any iteration, the final netlist from a
previous iteration can be used as the original design input to the partition module
312. If the desired criteria are met, then the final netlist can be placed and routed
with place and route module 324. The place and route module 324 performs a place
and route operation on the final netlist for a target architecture (e.g., a targeted

FPGA device).

B. Embodiments of the Translation Module

As noted above, the translation module 310 can be configured to receive and
translate data representative of the design to be synthesized, the resources available
to the synthesis tool, and/or any design constraints to be considered during synthesis.
In general, the process of translation involves extracting data from a file, data
structure, or database in one format and transferring the data into another file, data
structure, or database having a common format used by the synthesis tool. This
produces data in a single compatible format and allows the synthesis tool 300 to
operate using a common user interface.

As illustrated in block diagram 400 of Fig. 4, which generally shows the data
received and produced by the translation module 310 and the partition module 312
as well as the representative actions performed by those modules, the translation
module 310 can receive (e.g., load or buffer into memory) the design to be
synthesized 404. The design 404 can comprise a circuit description in a variety of
high-level hardware description languages (“HDLs”), such as SystemVerilog,
Verilog, VHDL, or any other high-level circuit description or RTL language. The
design 404 can also be a gate-level netlist that is to be resynthesized. Depending on

the format of the design 404, the translation module 310 may not need to perform

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-28 -

much, if any, translation. The translation module 310 can additionally include
translators for receiving and translating circuit design projects from specific EDA
design or synthesis tools. For example, the translation module 310 can include
translators for receiving design projects (including timing constraints and attributes)
from Mentor Graphics Corporation’s Precision®, Modelsim®, or Leonardo®
Spectrum tools, Xilinx Corporation’s XST tool, or Altera Corporation’s QIS tool.
More generally, the translation module 310 can include translators for translating
various other formats for representing a circuit design into a standard format for the
synthesis tool 300. The translation module 310 can also be updated periodically
(either through an automatic or manual update) to include additional translators for
various other design formats.

In embodiments of the disclosed technology, the translation module 310 can
also receive resource data 406 representative of the resources available to the
synthesis tool 300. For example, the resource data 406 can comprise information
about the number of computing resources available (e.g., information about
available resources at a server farm (such as through Sun Microsystems’ Sun Grid or
through another load sharing facility (“LSF”’)). The resource data 406 can further
include data concerning the type and number of any synthesis engines that are
available to the tool 300, including, for example, information about the licenses to
use one or more synthesis tools as well as any restrictions or constraints imposed by
such tools and/or licenses. The resource data 406 may further include data
concerning a time limit in which the synthesis process is to be completed.

In embodiments of the disclosed technology, the translation module 310 can
also receive constraints data 408 representative of any synthesis constraints that
have been identified by the user or that are otherwise associated with the design 404.
For example, the translation module 300 can receive information about the
constraints from a known format, such as a Synopsys Design Constraints (“.SDC”)
file or a User Constraint File (“.UCF”).

At 402, the design, resource, and/or constraint data is translated. For
example, the design, resource, and constraint data can be translated into a common

format that can be used by the synthesis tool 300. In certain embodiments of the

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-29.

disclosed technology, the synthesis tool 300 provides a framework that uses a
common communication protocol for receiving and sending information about a
circuit design and the synthesis of the circuit design. For instance, each vendor’s
synthesis engine can have a separate translator that is used to interface with the
synthesis tool 300. The translator can operate as a “plug-in” program that allows a
synthesis engine from a third-party vendor to be registered and used within the
synthesis framework provided by the synthesis tool 300. Because the synthesis tool
300 can operate using a standardized communication protocol, a third-party vendor
can create and provide the necessary translator. The communication protocol should
provide a standardized framework for communicating the design project,
constraints, and attributes used by the synthesis tools and design tools, as well as a
standardized framework for communicating results from any synthesis report
generated (e.g., timing results, area results, and the like). The particulars of how
translation can be performed to extract data from one format and store it in another
will vary depending on the synthesis engines to be used with the synthesis tool 300,
but are known in the art and can be implemented by those of ordinary skill in the art.

Any of the data that is described in relation to the translation module 310 can
alternatively be input by the user (e.g., through a suitable graphic user interface). For
example, a graphic user interface can be displayed to the user on a display device
and allow selection of the various constraints that are to be applied during the
synthesis process. Furthermore, a graphic user interface can be provided that allows
a user to select from among the various resources available (e.g., which synthesis

engines to use, which processing units to use).

C. Embodiments of the Partition Module

Block diagram 400 also illustrates representative actions performed by
embodiments of the partition module 312. At 410, one or more initial or preliminary
synthesis runs are performed. The one or more initial synthesis runs can be
performed, for example, using different synthesis engines, each using their default
settings, or using the same synthesis engine using different optimization settings, or

a combination thereof. In Fig. 4, the synthesis engine configurations that are used to

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-30 -

perform the initial synthesis runs are depicted as “engine E;” through “engine Ex”
and can comprise any number of configurations, including just one configuration. In
some embodiments, the initial synthesis runs also involve performing a place and
route procedure. Performance of a place and procedure generally produces a report
having a highly accurate timing report, but can increase runtime. In other
embodiments, however, other methods are used to obtain information about the
performance of the design prior to place and route. For example, information about
the synthesis runs can be obtained by analyzing a post-logic-synthesis report (e.g.,
analyzing whether the sum of cell delay on a path already exhibits negative slack),
performing pre-place-and-route physical synthesis (“PPARPS”) and analyzing the
results (e.g., using a PPARPS technique (such as the Precision® RTL Plus tool
available from Mentor Graphics Corporation) that takes into account certain
physical characteristics of the target architecture and potentially some DRC),
performing partial place and route (e.g., performing only placement in order to
obtain timing estimates), or any combination thereof. In certain embodiments, for
instance, these methods (or a subset thereof) are incrementally used to avoid full
place and route, if possible. If necessary, however, place and route can be
performed.

At 412, the results of the one or more initial runs are evaluated. For instance,
the results can be evaluated in order to identify sections of the design (shown as
“blocks”) that could be improved by using a different synthesis engine
configuration. With some implementations of the disclosed technology, the
evaluation is performed based upon a single criterion, such as timing. In other
implementations of the disclosed technology, however, the evaluation is performed
based upon two or more criteria, such as estimated timing behavior, area, power
consumption, the existence of embedded IP, the utilization of particular resources
(e.g., memory, DSPs, LUTs, and the like) and/or other such design or performance
characteristics. In certain embodiments, the evaluation criteria are provided by the
user (e.g., user criteria 420 shown in Fig. 4, which can be provided through a
suitable user interface) and reflect the user’s optimization goals. The evaluation

criteria can alternatively be provided by the user as part of the constraints data 408

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

-31 -

that is loaded by the translation module 310. In embodiments using multiple criteria,
the number of criteria can be selected by the user and/or weighted according to the
user’s preference. Furthermore, the criteria can take the form of specific values or
constraints (e.g., a minimum frequency, a maximum area, or a maximum power
usage) or of categorical criteria (e.g., timing behavior, area, or power consumption).

At 414, sections of the design that fail to meet the evaluation criteria are
identified and partitioned. For instance, sections of the design that fail to meet the
selected criteria can be identified and the HDL source code associated with the
section modified or supplemented to demarcate the section. In one embodiment, an
HDL wrapper is generated for the corresponding section. In other embodiments, an
attribute is set on the module instance corresponding to the section. If the user
selects a categorical criteria to evaluate the design (e.g., timing), then a fixed or
user-selected number of sections can be identified according to that criteria (e.g., the
n sections of the design that have the longest path delays, where # is the fixed or
user-selected number).

Additionally, one or more sections of the design may be partitioned because
they correspond to a proprietary IP block in the design that is desirably synthesized
using a particular synthesis engine. Such sections can typically be identified from
characteristic markers in the design. For instance, the HDL description of the design
may contain a recognizable term in the code (e.g., a special pragma) signaling that
that section is proprietary IP. The description for an IP block may also be in a
clearly recognizable lower-level format. For example, the description may comprise
pre-mapped (or otherwise presynthesized) technology cells. Sections of the design
corresponding to proprictary IP may also be encrypted, such that it cannot be used if
the recommended synthesis engine is not used. Using any of these characteristics or
other such signals provided in the design, the sections of the design corresponding to
proprictary IP can be partitioned at 414.

In Fig. 4, the blocks identified and partitioned at 414 are designated as
“block D,” through “block D,”, which indicates that any number of blocks can be
identified and partitioned, including just one block. In some cases, results from the

initial synthesis runs indicate that the user’s criteria for the design were met and that

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-32.-

no partitioning is necessary. In these cases, synthesis can still be performed for the
unpartitioned design using one or more synthesis engine configurations.

To explain one embodiment of the initial run evaluation 412 and design
partitioning 414 in more detail, consider an example in which the user has indicated
that timing is the relevant evaluation criteria and has provided a particular timing
constraint that is to be met by the synthesized design. In this example, the
frequencies of the clocks in the design can be constrained across multiple domains
(e.g., across all domains) during the initial synthesis runs. A timing report can be
generated after a full place and route is performed (which is the most accurate report
but requires long runtimes). From this timing report, a separate report or list can be
created that lists the critical paths for each clock (e.g., the logic paths that exceed the
timing constraint for each clock). Other techniques can alternatively or additionally
be used to identify critical paths. For instance, and as more fully explained above, a
post-logic synthesis report can be used, a pre-place-and-route physical synthesis
technique can be performed, a partial place and route can be performed, or any
combination or subcombination thereof. For each identified critical path, the
portions of the circuit design that are traversed by the critical path can be identified.
For instance, in one particular implementation, these portions of the circuit design
comprise the hierarchical blocks that participate in a respective critical path. These
portions of the circuit design can then be designated as critical timing portions (or
critical timing blocks) and partitioned accordingly.

If area is selected as an evaluation criterion, one or more area critical blocks
can be identified and partitioned at 412 and 414. For example, an area report can
also be generated during the one or more initial synthesis runs. In general, arca
reports that are generated during synthesis are fairly accurate and primarily measure
the number of LUTs, registers, and slices (or LABs, depending on the technology)
used in the design. Typically, the number of slices correlates directly with the
percentage area of the FPGA that the design occupies. In implementations that use
two or more initial synthesis runs, a block-by-block comparison can be performed

between the multiple runs. If the area of a block varies between the synthesis runs by

10

15

WO 2010/099124

PCT/US2010/025104

-33.-

some threshold amount, the block can be designated as an area critical block and
partitioned accordingly.

In implementations in which timing and area are designated as evaluation
criteria, if the area of a block varies between the synthesis runs by some threshold
amount and if the block is not a timing critical block, the block can be identified and
partitioned as an area critical block.

According to one embodiment of the disclosed technology, a partition that is
created for an identified section can have one or more of the following
characteristics: (1) the partition top is the same as the top module of a hierarchy
block in the design; (2) two peer hierarchy blocks are in the same partition only if
their common parent is selected as partition top; (3) the partition will contain all
modules inside the hierarchy; and (4) modules within the hierarchy block that are
not contained in the partition will be designated as “black boxes” in the partition.
Additionally, when the partitions are created, one or more of the following
guidelines can be used: (1) if multiple initial synthesis runs are performed and
identify different critical paths, all identified critical paths can be used to generate
partitions; (2) paths with negative slack should not be split into different partitions;
and (3) cross-hierarchical RAM and DSP inferences should not be broken up.

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-34 -

D. Embodiments of the Exploration Module

Fig. 5 is a block diagram 500 illustrating representative actions performed by
embodiments of the exploration module 314. At 510, one or more synthesis engine
configurations are selected for a block identified by the partition module 312 (e.g.,
block Dy). One or more synthesis engine configurations can also be selected for any
additional blocks identified by the partition module 312. For instance, at 512, one or
more synthesis engine configurations are selected for block D,, which represents the
last of the blocks identified by the partition module 312. The ellipses in Fig. 5
indicate that the blocks between D; and D, can also have respective synthesis engine
configurations selected by the exploration module. It is to be understood, however,
that this notation includes the possibility that only a single block is considered (i.e.,
n > 1), in which case only the actions at 510 will be performed.

In Fig. 5 and throughout this disclosure, synthesis engine configurations for a
block D, are designated as Eab,, where the value of “a” identifies the block and the
value of “b” identifies the configuration for the block. The number of configurations
for any block will vary and ranges from 1 to any positive integer. Throughout this
disclosure, the upper end of similar ranges of numbers will be designated as a
variable (e.g., m, n, x, y, z), which can represent any positive integer, including 1.

In certain embodiments, the user is allowed to directly select the synthesis
engine configurations to use. For example, a graphic user interface can be provided
that allows a user to select from among a variety of available synthesis engines and
select the constraints to use during synthesis. Options can be provided to the user
that allow the user to selectively override various default optimizations performed
by the one or more of the synthesis tools.

In certain embodiments, the selection process 510 can be guided by
evaluation criteria identified by the user (e.g., the user’s criteria 420 or newly input
criteria). For example, if the circuit section under consideration was identified and
partitioned because it failed a timing constraint, then the selection process 510 can
select one or more synthesis engine configurations that are tailored for improving

the timing of the circuit section. Similarly, if the circuit section under consideration

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-35-

was identified and partitioned because it corresponds to proprietary IP, then the
selection process 510 can select the synthesis tool recommended by the IP vendor.

A number of different techniques can be used to select the one or more
synthesis engine configurations for the identified block. For example, according to
one embodiment, the results from the initial runs are used to select at least one of the
recommended synthesis engine configurations. For instance, if synthesis engine
configurations Eq and E; were used during the initial synthesis runs and if
configuration E; provided a better frequency result than Ey, then the synthesis
engine that performed E; can be selected for one of the recommended synthesis
engine configurations. Additionally, the synthesis engine configuration E; can be
optimized for timing by selecting a particular configuration of the synthesis engine
that is tailored for timing optimizations (e.g., by setting switches that indicate the
timing-oriented synthesis goals to be followed during synthesis).

In some embodiments, a database of engine characteristics 520 can be used
during the selection process 510. The engine characteristics database 520 can store,
for example, details of particular synthesis engine configurations (e.g., an
identification of a synthesis engine along with any switch settings and/or constraints
for the synthesis engine) along with information indicating the effectiveness of the
respective configurations in one or more categories. For example, the categories can
include the evaluation criteria by which the partitions and synthesis engine
configuration selections are made (e.g., timing behavior, area, power consumption,
or the source of proprictary IP). Thus, the synthesis engine configurations selected
during the selection process 510 can be particularly effective at addressing the
desired optimization criteria. The configurations may also be categorized in the
database 520 according to the target architecture for the design (e.g., for a particular
type of FPGA or for a particular FPGA vendor). Thus, the synthesis engine
configurations selected during the selection process 510 can be particularly effective
for designs to be implemented on particular target architectures. The intended target
architecture can be included as part of the resource information received by the
translation module 310 or input by the user (e.g., using a suitable graphical user

interface) and selected as part of the criteria for guiding the selection process 510.

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-36 -

Still further, the configurations can be categorized in the database 520
according to the intended function of the circuit portion being synthesized (e.g.,
networking, image or video processing, audio processing, automotive processing,
and so on). For example, certain synthesis engine configurations may be particularly
well-suited for synthesizing circuits for image or video processing, whereas other
synthesis engine configurations may be particularly well-suited for synthesizing
networking circuits. Data indicating the relative suitability of a synthesis engine
configuration for synthesizing a circuit design having a particular function can be
stored in the engine configuration database as well. The intended function can be
included as part of the resource information received by the translation module 310
or input by the user (e.g., using a suitable graphical user interface) and selected as
part of the criteria for guiding the selection process 510.

Additional categories can also be included as part of the engine characteristic
database 520 and used to guide the selection process 510. For example, data
concerning the run time of a synthesis engine configuration, the number of available
licenses to the synthesis engine configurations, and/or the memory consumption
used by the synthesis engine configuration can be included in the database 520.
Furthermore, information about how a synthesis engine configuration utilizes
available resources (e.g., DSP blocks, LUTs, and so on) can also be included in the
database 520.

Any of these categories for selecting synthesis engine configurations can be
applied individually or used in combination with one another. For instance, a user
may select one or more of the categories to use during the selection process (and in
some implementations may weight the relative importance of each category). That
is, the user may select which of the categories (or combination of categories) should
be used to guide the selection process and, in some embodiments, the relative
importance of each category. The user may make the selection before or after the
initial synthesis run is performed. Alternatively, the identification of the engine
characterization categories can be determined automatically.

The data used in the engine characteristic database 520 can be provided and

updated using a variety of techniques. For example, the characteristics of the various

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-37-

synthesis engine configurations can be determined by performing a series of
benchmark tests, gathering data over time as the synthesis tool is used, or both. For
example, each time synthesis runs are performed, the engine characteristic database
520 can be updated with information derived from the resulting reports.
Furthermore, the engine characteristics database 520 can be maintained locally by
the operator of the synthesis tool 300 or can be maintained as a master database by
the EDA software vendor supporting the synthesis tool 300. In this case, the engine
characteristic database may be stored in a server that is accessed by multiple client
computers using the synthesis tool 300 (e.g., multiple client computers operated by a
single entity or multiple client computers operated by multiple, unrelated entities).
The master database can be updated periodically using results obtained from
multiple users and/or licensees of the synthesis tool 300.

As noted, the user can identify the criteria to be used during the selection
process 510. In some embodiments, the user can also indicate that the synthesis tool
300 should continue to explore various synthesized net lists until a particular
performance target is reached, until the user chooses to stop the synthesis tool,
and/or until a certain run time has been reached. For instance, the user can choose to
operate the synthesis tool 300 in a “constraint mode” in which one or more
performance targets are set (e.g., a timing, area, or power target) and synthesis
continues until the one or more targets are reached by the synthesized design. Or the
user can choose to operate the synthesis tool 300 in a “benchmark mode” in which
synthesis is iteratively performed until the user stops the synthesis tool 300 or a
selected run time is reached or results can no longer be improved iteratively.

As illustrated in Fig. 5, the results from selecting synthesis engine
configurations at 510, 512 are lists of the selected configurations (designated as
“E1;” through “E;” and “E,;” through “E,,”). The number of configurations
selected can vary, and may be limited (e.g., to a fixed maximum or to a maximum
that is dependent on the resources available to the synthesis tool).

Fig. 16 is a screenshot of an exemplary graphic user interface 1600 to
implement aspects of the exploration module 314 according to certain embodiments

of the disclosed technology. In particular, graphic user interface 1600 allows a user

10

15

20

25

30

WO 2010/099124

- 38 -

to select which target architecture the design is to be synthesized for. Graphic user
interface 1600 includes a navigation window 1610 that allows a user to select from
among different windows that control the synthesis tool 300 and allow, in many
instances, for user input. A device setup window 1620 includes a list 1630 of the
possible target architectures for which the synthesis tool 300 can perform synthesis.
The list 1630 can show a variety of information for each target architecture (or
device), but in the illustrated embodiment shows the vendor name, the family to
which the device belongs, the part number, the package type, and the speed
designation (typically given by the manufacturer). Devices can be selected by the
user pointing to the desired device, selecting it (e.g., with a mouse click), and then
selecting the “add” button. Devices can be deselected by the user pointing to the
device to be deselected, selecting it, and then selecting the “remove” button. The
user can also deselect all devices by selecting “remove all.” Additional devices can
be added to the list through the illustrated device setup window 1620 as well. For
instance, the user can add a new device by selecting the “load from file” button, and
either directing the synthesis tool 300 to an appropriate resource file or inputting the
information about the new resource manually. In the illustrated screen shot, the
Xilinx, Virtex-4, 4VFX12SF363, is sclected and the Actel, IGLDO,
AGLI125V5VQI100 is highlighted and may be selected or deselected by the user.

Fig. 17 is a screenshot of an exemplary graphic user interface 1700 to
implement other aspects of the exploration module 314 according to certain
embodiments of the disclosed technology. In particular, the graphic user interface
1700 allows a user to control the synthesis engine configurations selected by the
exploration module 314. As with graphic user interface 1600, the graphic user
interface 1700 includes a navigation window 1710 that allows a user to select from
among different windows that control the synthesis tool 300. An optimization setup
window 1720 allows a user to select either the constraint mode by selecting the
constraint setup option 1730 or the benchmark mode by selecting the benchmark
setup option 1732. For example, in the illustrated implementation, the constraints
setup option 1730 allows a user to select either frequency (a type of timing

performance) or area as the relevant criteria for guiding synthesis engine

PCT/US2010/025104

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-39.

configuration selection. The actual constraint to be used as the target for the
synthesis can be input by the user in another window (not shown). In the illustrated
interface 1700, the user can also choose which synthesis engines should be used to
implement the synthesis runs in a synthesis engine selection area 1740. Although
only three synthesis engines are shown, the number of synthesis engines will
typically vary depending on how many are supported by the particular
implementation of the tool and how many are licensed by the user. The graphic user
interface 1700 also includes a place-and-route selection area 1750 where the user
can choose to perform place and route during the ensuing synthesis runs. Performing
place and route will typically increase the run times, but allow more accurate
performance reports to be generated. The illustrated interface 1700 additionally
includes an optimization selection area 1760 in which various synthesis
optimizations can be manually selected by the user. In particular, in the optimization
selection area 1760, the user can control the synthesis engine configurations that are
selected by indicating whether the selected configurations should have certain
synthesis optimizations activated (“on”), deactivated (“off”), or selected
automatically by the particular synthesis tool. The number and type of synthesis
optimizations that can be selected by the user will vary from implementation, but in
the illustrated implementation comprise synthesis settings enabling resource sharing,
retiming, and finite-state machine (“FSM”) optimizations. Furthermore, although
optimization selection area 1780 is shown as applying the user selections to all
activated synthesis engines, the optimization selection area can allow for adjustment
of individual synthesis engines in certain embodiments.

Fig. 18 is a screenshot of an exemplary graphic user interface 1800 to
implement additional aspects of the exploration module 314 according to certain
embodiments of the disclosed technology. In particular, graphic user interface 1800
allows a user to provide synthesis engine specific commands for use with a
particular synthesis engine configuration. As with graphic user interface 1600,
graphic user interface 1800 includes a navigation window 1810 that allows a user to
select from among different windows that control the synthesis tool 300. Here, the

navigation window 1810 further allows a user to select which particular synthesis

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

- 40 -

engine is to be specifically controlled. Because synthesis tools vary widely in their
available optimization settings, the graphic user interface 1800 is an example of an
interface that allows a user to choose a particular configuration using a synthesis
tool’s unique scripts or command structure. In the illustrated embodiment, the
interface 1800 is adapted for Mentor Graphics’ Precision® RTL synthesis tool. The
interface 1800 includes a script input area 1820 in which a user can supply a
particular script used to control the synthesis engine by selecting the “use precision
custom script” box and inputting the custom script in the window provided. The
interface 1800 also includes a command and attribute area 1830 in which particular
commands and attributes can be provided by the user. For instance, the user can
select a particular parameter in the parameter window provided and the value of the
parameter in the parameter value window provided. Once input, the user can select
the add button to add the parameter and value to the selected synthesis engine

configuration.

E. Embodiments of the Synthesis Module

Fig. 6 is a block diagram 600 illustrating actions performed by embodiments
of the synthesis module 316. In general, the synthesis module 316 prepares and
dispatches the various synthesis runs identified by the exploration module 314, thus
generating multiple netlists that are optimized for each identified section and that
can be used in assembling a final netlist.

At 610, the synthesis runs using the synthesis engine configurations selected
by the exploration module 314 are prepared for the partitioned sections of the
design. For example, as illustrated at 612 and 614, markers or indicators can be
generated for the synthesis runs selected for blocks D; through Dy. In general, the
markers that are generated allow the identified sections of the design to be
recognized and separately manipulated in the resulting netlist. For instance, in
particular embodiments, the markers allow the interfaces to a particular section (e.g.,
the inputs/outputs) to be preserved during synthesis so that the interfaces will appear
in the resulting netlist and allow the corresponding section to be easily moved (or

copied) into another netlist for the design. In other words, the section marking

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-4] -

process allows a partitioned section of the design to be easily isolated and
interchanged in the resulting netlist without impacting the time, area, or other
optimizations that desirably occur to the partitioned section during the synthesis
process. At 616, markers are created for any combination of blocks that had one or
more of the same synthesis engine configurations selected by the exploration
module 314. For example, if the exploration module 314 selects synthesis engine
configurations E; and E, for block D, and configurations E, and E; for block D5,
then configuration E, targets both block D; and D,. Rather than running two
separate synthesis runs for blocks D; and D, using configuration E,, a single
synthesis run can be performed on a design that includes markers for both D; and
D,. The generation of any such block combination markers is performed at 616.
Alternatively, separate synthesis runs can be performed for any of the blocks that
had the same synthesis engine configuration selected by the exploration module.

The section marking process can be performed using a variety of different
techniques. For example, in the illustrated embodiment, markers are inserted into the
original high-level description of the circuit design at locations corresponding to the
identified section, but the remainder of the high-level description is left intact. Thus,
the file that remains after the marking process represents the full design with
modifications to the partition for which the synthesis run is targeted (e.g., the files
“Dy’ + rest of design” and “D,," + rest of design” shown in Fig,. 6).

Using the full design in a synthesis run allows the exploration of different
netlist implementations while avoiding downstream resource management and
constraint management issues. For example, running the partitions in the context of
the entire design can help avoid overmapping problems that might occur if the
partitions are synthesized separately and combined later. Further, by running the
partition in the context of the entire design, the original design constraints can be
used, eliminating any need for any constraint partitioning. Additionally, black boxes,
which are not handled well by all synthesis tools, can be more easily handled.

In order to provide a partitioned netlist into which the various optimized
netlist portions can be assembled, a so-called “backdrop” netlist can also be created

by the synthesis module 316. To prepare the backdrop netlist, a design with markers

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-4 -

inserted for all identified sections can be created at 618. This backdrop design
(shown as “Dy' + ... + D, + rest of design” in Fig. 6) can then be used to perform
the one or more backdrop synthesis runs.

In certain embodiments, the markers that are inserted into the original design
comprise commands used for incremental or block-based synthesis flows. When
using existing incremental synthesis commands, however, it is possible that certain
optimizations (e.g., constant propagation, dead logic remove, and other such
optimizations) within a block will be prevented. Accordingly, in certain
embodiments of the disclosed technology, an HDL wrapper is used that contains the
incremental commands, instantiates the block, and connects the block inputs and
outputs to constants or unconnected nets based on how the block is instantiated in
the actual design. This preserves the block interface while also allowing desired
optimizations to occur. In these embodiments, information about constant or
unconnected inputs/outputs can be gathered during the initial synthesis runs. In
addition, the wrapper can be used to provide a way to name-wrap complex interface
types (e.g., VHDL records) between different tools, thus creating a consistent
interface between the synthesis tools that provide the various synthesis engines.

In one particular embodiment, an HDL wrapper is created by making one or
more of the following modifications to the high-level description of the partition
targeted by the synthesis run: (1) the instance of the partition top is changed to an
instance of a wrapper; (2) the original constraints are modified to account for the
extra hierarchy of the wrapper; and (3) so-called “hard hierarchy” constraints are
added to the partition tops and black-boxes so that they can be swapped out of the
netlist. In general, the resulting wrapper will have the same interface as the
partitition top and will instantiate the partition top with the required generics,
constants, and unused outputs. The wrapper will therefore allow cross-boundary
optimizations to occur during the synthesis process. For example, to enable constant
propagation and dead logic removal across the partition top, the partition inputs can
be connected to the recorded constant, unused partition outputs can be left

unconnected, and undriven wrapper outputs can be connected to zero. As noted,

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-43 -

information regarding the need for constant propagation can be obtained from the
initial synthesis runs (e.g., by analyzing the post-compile netlist or schematic).

In other embodiments, one or more synthesis runs can be prepared in which
only the corresponding portions of the high-level circuit description are used. For
example, instead of performing synthesis in the context of the entire design, any of
the synthesis runs can be performed for just the portion of the high-level description
that corresponds to an identified circuit section. In these embodiments, further
constraints might be included to account for the potential resource management
problems that might occur (e.g., the synthesis runs might include appropriate
constraints on the number of resources available).

At 620, 622, and 624, synthesis runs are dispatched for the identified blocks
(blocks D, through D, in Fig. 6) using the synthesis engine configurations identified
by the exploration module 314 and using the modified designs created at 612, 614,
and 616. The one or more synthesis runs that are performed for each respective
block are designated in Fig. 6 as “E;;” through “E” for the block D synthesis runs,
and “E,;” through “E,,” for the block D, synthesis runs. These synthesis runs
generate respective netlists “nlist;;” through “nlist ;x” for block; and “nlist ,;”
through “nlist ,” for block D,. Additionally, in certain embodiments, constraints
files are also generated by the synthesis runs. The constraints files can be used
during any subsequent place and route procedure.

As noted above, the exploration module 314 may have selected the same
synthesis engine configuration for two or more different blocks. In this case, a single
synthesis run using the identified synthesis engine configuration can be performed
using the design generated at 616 that combines the two or more different blocks.
There may exist multiple such overlapping selections across multiple various
combinations, all of which are intended to be encompassed by the synthesis runs
“Ee1” and “E,” and their resulting netlists “nlistc;” and “nlist.,” shown in Fig. 6.

Additionally, at 626, one or more backdrops runs can be dispatched using the
backdrop design generated at 618. These backdrop runs are designated in Fig. 6 as
“Eq1” through “Eq4n” and generate backdrop netlists “bkdrop nlisty;” through “bkdrop

nlisty,.” In particular embodiments, the backdrop runs are performed using different

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

_44 -

synthesis engine configurations than the other synthesis runs and are designed to
optimize the remainder of the design according to different criteria. Thus, for
example, if the sections identified by the partition module 312 are synthesized using
synthesis engine configurations optimized for improving timing, the backdrop runs
may be synthesized using synthesis engine configurations optimized for area, or vice
versa. As shown, multiple backdrop synthesis runs can be performed in order to
provide multiple results from different synthesis engine configurations.

To dispatch the synthesis runs, the synthesis module 316 can use the
information obtained by the translation module 310 about the available resources—
including, for example, the speed and number of processing resources available
(e.g., in a server farm)—and can also use information about the expected run time of
cach synthesis engine configuration. Alternatively, information about the available
resources to use during synthesis can be provided by the user through a suitable
graphic user interface (e.g., graphic user interface 1900 show below). Based on this
information, the synthesis module 316 may limit or alter the synthesis runs selected
by the exploration module 314 (e.g., in order to complete the synthesis runs within a
desired time limit).

Fig. 19 is a screenshot of an exemplary graphic user interface 1900 for
implementing aspects of the synthesis module 316 according to certain embodiments
of the disclosed technology. In particular, graphic user interface 1900 allows a user
to provide information about the computing resources to use during the synthesis
runs. As with graphic user interface 1600, graphic user interface 1900 includes a
navigation window 1910 that allows a user to select from among different windows
that control the synthesis tool 300. Computing resource selection area 1920 allows a
user to select the local machine or a grid for performing the synthesis runs. Other
computing resources may be available for user selection depending on the
implementation. If the local machine is selected for use by the user, then a CPU
limit window 1922 can be used by the user to select the number of CPUs allowed to
be used for the synthesis runs if the local machine is a multi-CPU machine. If a grid
is selected for use by the user, then a setup script can be provided by the user in a

grid-setup window 1930. Additionally, in the illustrated interface 1900, the user can

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

-45 -
set a maximum number of synthesis runs to be performed using a maximum job
number window 1932. Furthermore, the user can similarly limit the number of CPUs

that are allowed to be used during the synthesis runs in a CPU limit window 1934.

F. Embodiments of the Evaluation Module

Fig. 7 is a block diagram 700 illustrating representative actions performed by
embodiments of the evaluation module 318. In general, the evaluation module 318
evaluates the netlists produced by the synthesis runs and selects a netlist for each
identified circuit section. At 710 and 712, the netlists generated by the synthesis runs
targeting blocks D; through D, are evaluated. For each targeted block, a single
respective netlist can be selected (designated in Fig. 7 as the “selected nlist;’through
“selected nlist,”). Using block D, as an example, the netlists considered at 710 will
typically comprise all netlists generated by synthesis runs that targeted block D;
(e.g., netlists “nlist;;” to “nlist;y”), including any synthesis runs that may have
targeted additional blocks as well (e.g., any of “nlist;” to “nlist.,” that were
produced from synthesis runs targeting block D; in addition to any other blocks).
Additionally, at 714, the netlists generated by the backdrop synthesis runs are
evaluated and a single backdrop run selected (designated in Fig. 7 as “sel. bkdrop
nlist;””). In embodiments for which only a single synthesis run is performed for any
of the identified blocks or for the backdrop run, then the evaluation and selection
processes 710, 712, 714 can be bypassed.

The evaluation and selection processes of 710, 712, 714 can be performed
according to a variety of different techniques. The evaluation and selection can be
made, for example, based on the criteria originally used by the partition module 312.
Alternatively, and as more fully explained below, the user may select different
criteria for evaluating the netlists (e.g., using a suitable graphical user interface). The
selection can be based, for example, on estimated timing behavior, area, power
consumption, or other such design or performance criteria. Furthermore, the
selection can be based on any combination or subcombination of these criteria (e.g.,
using user-selected criteria and weights). Additionally, the criteria can change

depending on the block for which the netlists were generated.

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

- 46 -

In particular embodiments, the evaluation module 318 focuses only on
performance or design improvements to the particular section of the circuit for
which the synthesis run was targeted. Thus, for example, a particular synthesis run
result may be discarded because the desired improvements were not seen in the
resulting netlist for the identified section, even though the design might elsewhere
exhibit desirable improvements. In other embodiments, improvements to the design
as a whole are considered by the evaluation module 318 (e.g., as a weighted factor).

If multiple backdrop runs are performed, the evaluation module 318 can
select from among the resulting netlists based on criteria that is different than that
used for the identified blocks (e.g., if the synthesis runs for one or more of blocks D
to Dy targeted timing, the criteria for selecting the backdrop netlist can be area, or
vice versa). During this evaluation process, the evaluation module 318 can focus its
evaluation just on the remaining portion of the design that does not include the
sections identified by the partition module 312.

As noted above, there may be situations in which no circuit sections are
identified by the partition module 312. In these situations, the evaluation module
318 as well as the assembly module 320 can be bypassed.

The information used to perform the evaluations and selections at 710, 712,
and 714 can be obtained from the synthesis tools that were used to perform the
synthesis runs. For example, the timing reports and area reports that are generated
by the various synthesis engine configurations can be used. In some embodiments,
place and route can be performed in order to provide more detailed information. In
other embodiments, however, place and route is not performed unless necessary. In
these embodiments, timing reports may be generated using other timing estimation
techniques. For instance, and as more fully explained above, a post-logic synthesis
report can be used, a pre-place-and-route physical synthesis technique can be
performed, a partial place and route can be performed, or any combination thereof.
The various synthesis results and/or reports generated by the different synthesis
tools can be translated so that the results can be assembled and analyzed in a
common format (e.g., according to a standardized communication protocol used by

the synthesis tool 300).

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-47 -

In some embodiments of the disclosed technology, the evaluation and
selection processes 710, 712, 714 are performed automatically based on the criteria
provided earlier in the flow. In other embodiments, however, the criteria for
selecting from among the resulting netlists can be newly selected by a user. For
example, the results of the synthesis runs (or summaries of the results) for one or
more of the partitioned circuit sections can be displayed to the user in a suitable
graphic user interface. The graphic user interface can additionally allow the user to
modify the criteria by which the selection is to be made (e.g., by drop-down menu,
adjusting weights, and so on). The results of the synthesis runs can then be sorted
according to the modified criteria and displayed in the order to the user. This
provides the user the ability to more fully explore the various implementation

possibilities.

G. Embodiments of the Assembly Module

Fig. 8 is a block diagram 800 illustrating representative actions performed by
embodiments of the assembly module 320. At 810, the assembly module 320
combines the netlists selected by the evaluation module 318 into a single netlist. For
example, in the illustrated embodiment, “selected netlist;” as well as any additional
netlists selected by the evaluation module 318 (e.g., up to and including “selected
netlist,”) are used to replace portions of the backgroud netlist “sel. bkdrop nlist;”. In
particular implementations, the markers inserted by the synthesis module 316
preserve the input and outputs to the partitioned circuit sections during synthesis. As
a result, the portions of the selected netlists corresponding to the partitioned circuit
sections can be identified and cleanly separated from the remainder of the netlist. In
addition, because the backdrop synthesis run for the selected backdrop netlist was
performed on a design having markers for each of the partitioned circuit sections,
the locations in the backdrop netlist corresponding to the partitioned circuit sections
can be easily identified and replaced by the appropriate portions of the selected
netlists. In this fashion, a netlist (designated in Fig. 8 as “assmb’d nlist;”) can be

formed that includes netlist sections synthesized using the best available synthesis

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

- 48 -

tool and synthesis tool configuration for that particular section and according to the
user’s particular design objectives.

In certain embodiments, the netlist sections are modified somewhat so that
there are no conflicts for modules shared among partitions or between partitions and
the rest of the design. For example, in one particular embodiment, a partition-
specific prefix is added to each module (except to the partition wrapper top and
techcells). The partition specific prefix helps ensure that no naming conflicts exist
between partitions. Additionally, the partition specific prefix helps handle different

names generated by different engines for generics or parameterized blocks.

H. Embodiments of the Netlist Evaluation Module

Block diagram 800 of Fig. 8 also illustrates representative actions performed
by embodiments of the netlist evaluation module 322. In general, the netlist
evaluation module 322 evaluates whether other performance aspects of the design
were adversely affected during the synthesis process, thereby creating previously
unknown problems. At 812, for example, the assembled netlist is evaluated against
one or more criteria. For example, the assembled netlist can be evaluated according
to the original criteria used by the partition module 312, such as estimated timing
behavior, area, power consumption, or other such design or performance criteria. To
perform this evaluation, the assembled netlist may be resynthesized and new timing
reports and area reports generated.

This evaluation procedure can be performed automatically or by displaying a
report to the user. If the desired criteria are not met, an iteration of the synthesis
process can be performed at 814 (e.g., beginning with the exploration module and
the selection of synthesis engine configurations for one or more of the partitioned
blocks of the design). During any iteration, the assembled netlist (or any portion
thereof) can be used as the original design that is considered. Alternatively, the
previously considered design can be used again, but the optimization criteria
modified so as to prevent the adverse performance results from reappearing.

Additionally, in certain embodiments, information from the previous

synthesis runs can be used during any iteration that is performed. For example, the

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

- 49 .

synthesis engine configurations selected during any iteration can be based on one or
more of the synthesis engine configurations from the previous iteration. The
synthesis engine configurations selected can thus comprise slightly modified
versions (e.g., using slightly different synthesis constraints or settings) of the best
performing one or more synthesis engine configurations from the previous iteration
(e.g., the best n synthesis engine configurations, where # is a preset or user-defined
number). In this way, more finely-tuned synthesis optimizations can be explored
during a subsequent iteration.

Data concerning the synthesis engine configurations selected during any
iteration and the resulting performance of the synthesis engine configuration for a
particular design can be stored in the engine characteristic database discussed above.
In this way, the synthesis tool 300 can be “self-learning” and produce improved
synthesis results during subsequent iterations.

If the desired criteria are met, the final netlist can proceed to the place and
route module 324. In some embodiments, a place and route procedure is performed
before the final netlist is evaluated. Thus, the place and route module 324 shown in

Fig. 8 may be called before the netlist evaluation module 322.

1. Embodiments of the Place and Route Module

Block diagram 800 of Fig. 8 also illustrates representative actions performed
by embodiments of the place and route module 324. In particular, at 816, a place and
route is performed on the assembled netlist. Typically, the place and route that is
performed is technology specific and uses the place and route tool provided by the
vendor of the target architecture. For instance, if the particular FPGA device for
which the design is targeted is known, then that vendor’s specific place and route

tool can be used.

J. Assembly-Free Synthesis

In certain embodiments of the disclosed technology, any of the synthesis
runs that are performed using the selected synthesis engine configurations can be

modified to avoid any post-synthesis assembly. For instance, the backdrop netlist

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-50 -

can be generated before the netlists for one or more of the identified sections of the
design are generated. Portions of the backdrop netlist can then be used during
preparation of the synthesis runs for an identified circuit section to replace those
portions of the high-level circuit description that do not correspond to the targeted
circuit section. In other words, the design that is synthesized by a particular
synthesis engine configuration can include a high-level circuit description
corresponding to the targeted section of the circuit design and a gate-level netlist
corresponding to the remainder of the circuit design. The synthesis that is performed
can then convert the high-level circuit description to a gate-level netlist using the
selected synthesis engine configuration without modifying the netlist for the
remainder of the design. The resulting netlist therefore automatically incorporates
the backdrop netlist. This alternative synthesis procedure addresses the fact that
many vendor’s synthesis tools do not allow their resulting netlists to be freely
accessed and manipulated.

Furthermore, the overall synthesis flow for embodiments of the synthesis
tool can be modified such that this assembly-free synthesis can be performed for one
or more of the synthesis runs. For example, the overall flow can be modified such
that some of the synthesis runs produce netlist portions that are evaluated and
assembled as explained above, whereas other synthesis runs are assembly free. An
additional evaluation stage for evaluating and selecting netlists from any assembly-
free synthesis run can be included in the synthesis process.

Fig. 9 illustrates one exemplary embodiment of a synthesis tool 900 that
incorporates an assembly-free synthesis run. Furthermore, Fig. 9 illustrates how the
synthesis tool 900 might synthesize a particular high-level description of a design D
into a final netlist. Unless otherwise stated, the particular modules shown in Fig. 9
can operate in accordance with any of the methods and features described in the
previous sections.

As shown, the partition module 912 performs two initial synthesis runs using
synthesis engine configurations Ey and E;. The partition module 912 also evaluates
the results of the synthesis run according to one or more criteria and identifies

sections of the circuit design that fail to meet the criteria. As shown in Fig. 9, the

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-51 -

partition module 912 partitions the design into a partition for block D; and a
partition for block D, based on the evaluation.

The exploration module 914 evaluates the blocks D; and D, and selects
synthesis engine configurations for the blocks that are configured to address the
criteria. In the example illustrated in Fig. 9, the exploration module 914 selects
synthesis engine configurations E,, E3, and Es for block D; and synthesis engine
configurations Ej, E4, and Es for block Dy.

The synthesis module 916 prepares the blocks D; and D, for synthesis using
the selected synthesis engine configurations and dispatches the synthesis runs. In
addition, backdrop synthesis 930 is performed. In particular, a suitable HDL
wrapper for both blocks Dy and D; is generated and used to modify or supplement
the original design description D. A backdrop synthesis run using synthesis engine
configuration Ey is performed and the backdrop netlist generated (shown in Fig. 9 as
“D-(D+D7)”). For the synthesis engine configurations E; and Es selected for block
Dy, the synthesis module 916 generates a suitable HDL wrapper for Dy in the
original design description and dispatches separate synthesis runs, which are
evaluated by the evaluation module 918. For the synthesis engine configurations E;
and E4 selected for block D», the synthesis module 916 generates a suitable HDL
wrapper for D, in the original design description and dispatches separate synthesis
runs, which are also evaluated by the evaluation module 918. (It should be noted
that, in this example, separate synthesis runs are performed using synthesis engine
configuration E3, even though the configuration was selected for both of the blocks
D; and D;.) The evaluation module 918 selects one of the netlists generated by the
synthesis runs for each of the blocks D, and D,. The selected D, netlist and the
selected D, netlist are then assembled with the backdrop netlist (“D-(D;+D;)”) into a
full netlist (“full netlist;”) at 920.

For synthesis engine configuration Es, assembly-free synthesis is performed
at 932. It may be desirable to perform assembly-free synthesis for the configuration
Es because the synthesis tool implementing the configuration Es may not allow
access to netlists that it produces, thereby preventing the manipulations necessary to

assemble the resulting netlist with other netlists. As shown in Fig. 9, the backdrop

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

-5

netlist (“D-(D;+D>)”) is used to represent the rest of the circuit design in the circuit
description that is input into the synthesis tool. The synthesis run using synthesis
engine configuration Es produces a full netlist (“full netlist,”).

The netlist evaluation module 922 can evaluate the two full netlists and
select one final netlist based on one or more criteria (e.g., the criteria initially used
by the partition module 912 or new criteria input by the user). The criteria can
include, for example, one or more of timing behavior, area, power consumption, or

other such design or performance criteria.

K. Target Architecture Exploration

Embodiments of the disclosed technology can also be used or modified to
allow a user to explore different possible target architectures and to select from
among them. Such embodiments can be particularly useful when performing FPGA
synthesis because there exist a variety of different FPGA architectures, each having
different hardware resources and performance characteristics.

In one exemplary embodiment, one or more types of architectures (e.g., the
vendor and model of FPGA) are selected by the exploration module 1014 as part of
the synthesis engine configurations selected. For example, the exploration module
1014 can select different sets of synthesis engine configurations for the synthesis
runs, each targeting a different target architecture. For instance, a first set of
synthesis engine configurations can be selected for the partitioned blocks and for the
backdrop run, all targeting a single target architecture, and a second set of synthesis
engine configurations can be selected for the partitioned blocks and for the backdrop
run, all targeting a different target architecture. The synthesis runs can then be
performed using the different synthesis engine configurations. For each candidate
target architecture, full netlists can be assembled, each representing the optimized
netlist for that architecture and including netlist portions that were optimized using
the partitioning and selection procedures described above. The target architectures to
be explored can be selected by the user (e.g., using a suitable graphical user
interface) or selected using data in the engine characteristic database. For instance,

the data stored in the engine configuration database can include information

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

-53-

identifying a particular target architecture, information indicating the resources
available in the target architecture, and/or information indicating the cost of the
target architecture.

Fig. 10 illustrates one exemplary embodiment of a synthesis tool 1000
configured to perform target architecture exploration. Furthermore, Fig. 10
illustrates how the synthesis tool 1000 might synthesize a particular design D into a
final netlist. Unless otherwise stated, the particular modules shown in Fig. 10 can
operate in accordance with any of the methods and features described in the
previous sections.

As shown, the partition module 1012 performs one or more initial synthesis
runs (not specifically shown) using one or more synthesis engine configurations.
The partition module 1012 also evaluates the results of the synthesis run according
to one or more criteria and identifies sections of the circuit design that fail to meet
the criteria. As shown in Fig. 10, the partition module 1012 partitions the design into
a partition for block D; and a partition for block D, based on the evaluation.

The exploration module 1014 evaluates the blocks D; and D, and selects
synthesis engine configurations for the blocks that are configured to address the
criteria. In the illustrated embodiment, the exploration module 1014 also selects
candidate synthesis engine configurations for two or more target architectures
(designated as “architecture;” and “architecture,”). In particular, the exploration
module 1014 selects synthesis engine configurations E; and E, (both of which use
architecture;) for the block D; and configurations Es and Es (both of which use
architecture;) for the block D,. Additionally, the exploration module 1014 selects
synthesis engine configurations E; and E4 (both of which use architecture,) for the
block D; and configurations E; and Eg (both of which use architecture,) for the
block D».

In some cases, a target architecture may not have the requisite number or
type of hardware resources for implementing a design. The exploration module 1014
can also be used to identify target architectures that cannot support the design. For
instance, the exploration module 1014 can perform an initial evaluation of the

design to determine the minimum number of I/Os and/or the minimum number of

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-54 -

hardware resources (such as DSPs or block RAMSs) for implementing a design.
Based on this evaluation, certain target architectures can be removed from
consideration or identified as being insufficient to implement the design alone (in
which case, multiple target architectures may be used to implement the design and
the synthesis runs will have to be run accordingly).

The synthesis module 1016 prepares the blocks Dy and D, for synthesis using
the selected synthesis engine configurations and dispatches the synthesis runs. In
this embodiment, full netlists will be generated for each candidate target
architecture. Accordingly, backdrop synthesis runs are performed at 1034 to
generate multiple backdrop netlists. For example, in the illustrated embodiment,
backdrop netlists are created for each of the target architectures (shown as “arch;
bkdrp nlist” and ““arch, bkdrp nlist”). Synthesis runs are also dispatched for each
target architecture according to the selected synthesis engine configurations. These
architecture-specific synthesis runs are shown in Fig. 10 as arch; synthesis 1030 and
arch, synthesis 1032.

The evaluation module 1018 also evaluates and selects netlists for each
target architecture. In other words, the evaluation module 1018 treats the netlists for
cach target architecture separately. For example, the evaluation module 1018 selects
one of the netlists generated by the synthesis runs for each of the blocks Dy and D,
for architecture; and selects one of the netlists generated by the synthesis runs for
each of the blocks D; and D, for architecture;. The selected D; and D, netlists for
architecture; are then assembled with the architecture; backrop netlist into a full
architecture; netlist (“full arch; netlist”). The selected D and D, netlists for
architecture; are also assembled with the archictecture, backdrop netlist into a full
architecture; netlist (“full arch, netlist”).

Netlist evaluation module 1022 evaluates the full netlists generated for each
target architecture and selects one as the final netlist. In Fig. 10, for example, the
netlist evaluation module 1022 evaluates full arch; netlist and full arch, netlist and
selects one based on one or more criteria. For example, the final netlist can be
evaluated on the criteria initially used by the partition module 1012 or new criteria

input by the user. The criteria can include, for example, one or more of timing

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-55-

behavior, area, power consumption, or other such design or performance criteria.
Furthermore, in this embodiment, the criteria can include the cost of the target
architecture. These criteria can be considered alone or as a combination of one
another (e.g., as a weighted factor).

In the embodiment shown in Fig. 10, the original design description D is
partitioned into one or more circuit sections. In other embodiments, however,
various synthesis engine configurations are considered for the design in its entirety.
For example, the exploration module can select one or more synthesis engine
configurations targeting one or more target architectures without partitioning the
design. An example of one such embodiment is shown in Fig. 11.

Fig. 11 illustrates an exemplary embodiment of a synthesis tool 1100
configured to perform target architecture exploration for a high-level description of
an entire circuit design. In Fig. 11, exploration module 1114 can select two or more
synthesis engine configurations for the high-level description of the entire design
(shown in Fig. 11 as “design D”). For example, synthesis engine configurations
targeting different target architectures can be selected. Furthermore, multiple
synthesis engine configurations for each candidate target architecture can be
selected. The synthesis engine configurations can be selected based on a variety of
criteria. The criteria can include, for example, one or more of timing behavior, area,
power consumption, or other such design or performance criteria. Furthermore, in
this embodiment, the criteria can include the cost of the target architecture. These
criteria can be considered alone or as a combination of one another (e.g., as a
weighted factor). In the example shown in Fig. 11, synthesis engine configurations
E, and E; (targeting architecture;) and E; and E4 (targeting architecture,) are
selected.

In some cases, a target architecture may not have the requisite number or
type of hardware resources for implementing a design. The exploration module 1114
can also be used to identify target architectures that cannot support the design. For
instance, the exploration module 1114 can perform an initial evaluation of the
design to determine the minimum number of I/Os and/or the minimum number of

hardware resources (such as DSPs or block RAMS) for implementing a design.

10

15

20

25

WO 2010/099124 PCT/US2010/025104

-56-

Based on this evaluation, certain target architectures can be removed from
consideration or identified as being insufficient to implement the design alone (in
which case, multiple target architectures may be used to implement the design and
the synthesis runs will have to be run accordingly).

The synthesis module 1116 prepares synthesis runs for the selected synthesis
engine configurations and dispatches the synthesis runs. In this embodiment, full
netlists will be generated for each target architecture under consideration.
Accordingly, synthesis runs are dispatched for each target architecture using the
selected synthesis engine configurations. These architecture-specific synthesis runs
are shown in Fig. 11 as arch; and arch, synthesis. Because the synthesis runs are
intended to be for the entire design, no assembly of a final netlist from candidate
netlist portions is necessary.

The evaluation module 1118 evaluates and selects the final netlist for each
target architecture. In other words, the evaluation module 1118 treats the netlists for
cach target architecture separately. Thus, in Fig. 11, two netlists are selected, one for
architecture; and one for architecture, (shown in Fig. 11 as “arch; netlist” and ““arch,
netlist”). The criteria used to select the netlists can be the same as the criteria used
by the exploration module or new criteria selected by the user.

The netlist evaluation module 1122 evaluates the full netlists generated for
each target architecture and selects one as the final netlist. In Fig. 11, for example,
the netlist evaluation module 1122 evaluates arch; netlist and arch, netlist and
selects one of them based one or more criteria. The final netlist can be evaluated on
the criteria initially used by the exploration module 1114 or new criteria input by the
user. The criteria can include, for example, one or more of timing behavior, area,
power consumption, or other such design or performance criteria. Furthermore, in
this embodiment, the criteria can include the cost of the target architecture. These
criteria can be considered alone or as a combination of one another (e.g., as a

weighted factor).

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-57-

V. Exemplary Network Environments for Applying the Disclosed Techniques

Any of the aspects of the technology described above may be performed
using a distributed computer network, such as the computing environment described
above with respect to Fig. 1. Fig. 12 shows a simplified embodiment of one such
exemplary network. A server computer 1200 can have an associated storage device
1202 (internal or external to the server computer). For example, the server computer
1200 can be configured to perform synthesis according to any of the disclosed
embodiments (e.g., as part of an EDA software tool). The server computer 1200 can
be coupled to a network, shown generally at 1204, which can comprise, for example,
a wide-arca network, a local-arca network, a client-server network, the Internet, or
other such network. One or more client computers, such as those shown at 1206,
1208, may be coupled to the network 1204 using a network protocol. The work may
also be performed on a single, dedicated workstation, which has its own memory
and one or more CPUs.

Fig. 13 shows another exemplary network. One or more computers 1302
communicate via a network 1304 and form a computing environment 1300 (e.g., a
distributed computing environment). Each of the computers 1302 in the computing
environment 1300 can be used to perform at least a portion of the synthesis
technique according to any of the disclosed embodiments (e.g., as part of an EDA
software tool). The network 1304 in the illustrated embodiment is also coupled to
one or more client computers 1308.

Fig. 14 shows one exemplary manner in which a circuit description (e.g., an
HDL description, such as a VHDL, SystemVerilog, Verilog, or other such high-level
description indicative of a circuit design) can be synthesized using a remote server
computer (such as the server computer 1200 shown in Fig. 12 or the master
computer 103 of Fig. 1) or a remote computing environment (such as the computing
environment 1300 shown in Fig. 13) using any of the embodiments disclosed herein.
At process block 1402, for example, the client computer sends or transmits the high-
level description to the remote server or computing environment. In process block
1404, the description is received and loaded by the remote server or by respective

components of the remote computing environment. In process block 1406, synthesis

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-58 -

is performed using any of the disclosed embodiments. At process block 1408, the
remote server or computing environment sends the resulting gate-level netlist or
netlist portions to the client computer, which receives the data at process block

1410. It should be apparent to those skilled in the art that the example shown in Fig.
14 is not the only way to perform synthesis using multiple computers. For instance,
the circuit description may be stored on a computer-readable medium that is not on a
network and that is sent separately to the server or computing environment (e.g., a
CD-ROM, DVD, or portable hard drive). Or, the server computer or remote
computing environment may perform only a portion of the synthesis procedures.

Fig. 15 shows one exemplary manner in which computer-executable
instructions for performing any of the disclosed embodiments can be transmitted,
accessed, or received using a remote server computer (such as the server computer
1200 shown in Fig. 12 or the master computer 103 of Fig. 1) or a remote computing
environment (such as the computing environment 1300 shown in Fig. 13) At
process block 1502, for example, the client computer sends a request to download
computer-executable instructions for performing any of the disclosed methods or
techniques (e.g., after purchasing a license to a synthesis tool, such as any of the
embodiments of the synthesis tool 300). In process block 1404, the request is
received by the remote server or by respective components of the remote computing
environment. In process block 1406, the remote server or computing environment
transmits computer-executable instructions for performing any of the disclosed
methods or techniques (e.g., computer-executable instructions for implementing any
of the embodiments of synthesis tool 300 on a computer). At 1408, the computer-
executable instructions are received (e.g., stored, buffered, and/or executed) by the
client computer.

Having illustrated and described the principles of the illustrated
embodiments, it will be apparent to those skilled in the art that the embodiments can
be modified in arrangement and detail without departing from such principles. For
example, although many of the embodiments described herein imply that only a
single target architecture exists, any of the disclosed embodiments can also be used

to perform synthesis for designs to be implemented on a plurality of target

10

WO 2010/099124 PCT/US2010/025104

-59.-

architectures (e.g., a plurality of FPGAs). Furthermore, although embodiments
described herein are used to generate a desired netlist, any of the embodiments
disclosed herein can be used to generate a desirable constraints file for use during
place and route as well.

In view of the many possible embodiments, it will be recognized that the
illustrated embodiments include only examples and should not be taken as a
limitation on the scope of the invention. Rather, the invention is defined by the
following claims. We therefore claim as the invention all such embodiments that

come within the scope of these claims.

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

- 60 -

What 1s claimed is:

1. A computer-implemented synthesis method, comprising:

partitioning a high-level description of a complete circuit design into a
plurality of sections;

selecting two or more synthesis engine configurations for a respective one of
the sections;

synthesizing the respective one of the sections using the two or more selected
synthesis engine configurations, thereby generating two or more gate-level
descriptions; and

generating a gate-level description of the complete circuit design that

includes at least a portion of one of the gate-level descriptions.

2. The computer-implemented method of claim 1, storing the generated
gate-level description of the complete circuit design in one or more computer-

readable media.

3. The computer-implemented method of claim 1, wherein the selecting
the one or more synthesis engine configurations is performed using engine

characteristic data stored in an engine characteristic database.

4. The computer-implemented method of claim 3, wherein the engine
characteristic database comprises data indicative of performance characteristics of a

plurality of candidate synthesis engine configurations.

5. The computer-implemented method of claim 3, wherein the
synthesizing generates synthesis results, and wherein the method further comprises

updating the engine characteristic database using data from the synthesis results.

6. The computer-implemented method of claim 1, wherein the selecting

the two or more synthesis engine configurations is based on one or more criteria, the

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-61 -

criteria comprising one or more of timing behavior, area, target architecture,

intended function, or power consumption for the respective one of the sections.

7. The computer-implemented method of claim 6, wherein the criteria

are selected by a user.

8. The computer-implemented method of claim 1, wherein the selecting
the two or more synthesis engine configurations is based on one or more criteria, the
criteria comprising one or more of synthesis run time or available synthesis tool

licenses.

9. The computer-implemented method of claim 1, wherein the selecting
the two or more synthesis engine configurations comprises:

identifying that the respective one of the sections comprises proprictary IP;
and

selecting at least one of the synthesis engine configurations based on the

identification.

10. The computer-implemented method of claim 1, further comprising
selecting one of the two or more gate-level descriptions corresponding to the
respective one of the sections for inclusion in the gate-level description of the

complete circuit design.

11. The computer-implemented method of claim 10, wherein the
selecting the one of the two or more gate-level descriptions is based on one or more
criteria, the criteria comprising one or more of estimated timing behavior, area, or
power consumption of the two or more gate-level descriptions generated for the

respective one of the sections.

12. The computer-implemented method of claim 1, wherein the selecting

the two or more synthesis engine configurations comprises selecting at least two

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-62 -

synthesis engine configurations that are implemented by a single synthesis engine

using different synthesis engine settings.

13. The computer-implemented method of claim 1, wherein the selecting
the two or more synthesis engine configurations comprises selecting at least two
synthesis engine configurations that are implemented by two different synthesis

engines from two different synthesis engine tools.

14. The computer-implemented method of claim 1, wherein the method
further comprises identifying portions of the high-level description of the complete
circuit design that do not satisfy one or more criteria when the high-level description
is synthesized by a single synthesis engine configuration, and wherein the

partitioned sections correspond to the identified portions.

15. The computer-implemented synthesis method of claim 1, wherein the
synthesizing is performed so that interfaces between the partitioned sections are

preserved during synthesis.

16. The computer-implemented method of claim 1, further comprising:

evaluating the gate-level description of the complete circuit design to
determine whether one or more criteria are met by the gate-level description of the
complete circuit design; and

performing one or more iterations of the synthesizing and the generating if

the one or more criteria are not met.

17. The computer-implemented method of claim 16, wherein a maximum

number of iterations is selected by a user.

18. The computer-implemented method of claim 16, wherein the one or
more iterations are performed until the one or more criteria are met or until a user-

selected run time is reached.

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-63 -

19. One or more tangible computer-readable media storing computer-

executable instructions for causing a computer to perform the method of claim 1.

20. One or more tangible computer-readable media storing the gate-level

description of the complete circuit design generated by the method of claim 1.

21. A computer-implemented synthesis method, comprising:

selecting a plurality of synthesis engine configurations for synthesizing a
high-level description of a circuit or circuit portion;

causing the high-level description to be synthesized using at least two of the
synthesis engine configurations, thereby generating at least two lower-level
descriptions of the circuit or the circuit portion;

evaluating the at least two lower-level descriptions according to one or more
criteria; and

selecting a preferred one of the at least two lower-level descriptions based on

the evaluation.

22. The computer-implemented synthesis method of claim 21, further
comprising storing the preferred one of the lower-level descriptions in one or more

computer-readable media.

23. The computer-implemented synthesis method of claim 21, wherein
the one or more criteria comprise at least one of estimated timing behavior, area, or

power consumption of the at least two lower-level descriptions.

24. The computer-implemented synthesis method of claim 21, wherein

the one or more criteria are selected by a user.

25. The computer-implemented synthesis method of claim 21, wherein a

first of the synthesis engine configurations targets a first type of field programmable

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

- 64 -

gate array and a second of the synthesis engine configurations targets a second type

of field programmable gate array.

26. The computer-implemented synthesis method of claim 25, wherein
the one or more criteria comprise an estimated cost of the first field programmable

gate array and the second field programmable gate array.

27. The computer-implemented synthesis method of claim 21, wherein
the selecting the plurality of synthesis engine configurations comprises evaluating
and selecting candidate synthesis engine configurations according to the one or more

criteria.

28. The computer-implemented synthesis method of claim 21, further
comprising using the preferred one of the lower-level descriptions to replace a
corresponding portion of a lower-level description of the circuit, thereby creating a

modified lower-level description of the circuit.

29. The computer-implemented synthesis method of claim 28, further
comprising storing the modified lower-level description of the circuit in one or more

computer-readable media.

30. The computer-implemented synthesis method of claim 21, wherein
the causing the high-level description to be synthesized comprises:

instructing a first computing resource to perform synthesis of the high-level
description using a first synthesis engine configuration; and

instructing a second computing resource to simultancously perform synthesis

of the high-level description using a second synthesis engine configuration.

31. The computer-implemented synthesis method of claim 30, wherein
the first computing resource and the second computing resource are remote

computing resources.

10

15

20

25

WO 2010/099124

-65 -

32. The computer-implemented synthesis method of claim 30, wherein
the first computing resource and the second computing resource are local computing

resources.

33. The computer-implemented synthesis method of claim 21, wherein
the act of selecting the plurality of synthesis engine configurations comprises:

identifying one or more available synthesis resources; and

selecting the plurality of synthesis engine configurations based on the

available synthesis resources.

34, The computer-implemented synthesis method of claim 21, wherein
the act of selecting the plurality of synthesis engine configurations comprises:

allowing a user to select one or more synthesis resources; and

selecting the plurality of synthesis engine configurations based on the

synthesis resources selected by the user.

35. The computer-implemented synthesis method of claim 21, wherein a
first one of the synthesis engine configurations targets a first type of field
programmable gate array and a second one of the synthesis engine configurations

targets a second type of field programmable gate array.

36. One or more tangible computer-readable media storing computer-

executable instructions for causing a computer to perform the method of claim 21.

37. One or more tangible computer-readable media storing the preferred

one of the lower-level descriptions selected by the method of claim 21.

38. A computer-implemented synthesis method, comprising:

PCT/US2010/025104

10

15

20

25

WO 2010/099124 PCT/US2010/025104

- 66 -

performing a synthesis run on a high-level description of a circuit design in
order to generate a lower-level description and one or more performance reports, the
synthesis run being performed using a first synthesis engine configuration;

identifying one or more sections of the high-level description to be
synthesized using a synthesis engine configuration different than the first synthesis
engine by evaluating at least one of the high-level description or the one or more
performance reports according to one or more criteria;

generating indications of the identified one or more sections for use with the
high-level description of the circuit design; and

storing the indications of the identified one or more sections in a computer-

readable medium.

39. The computer-implemented synthesis method of claim 38, wherein
the one or more criteria comprise at least one of estimated timing behavior, area, or

power consumption.

40. The computer-implemented synthesis method of claim 38, wherein

the one or more criteria are selected by a user.

41. The computer-implemented synthesis method of claim 38, wherein
the one or more criteria include timing behavior, and wherein the evaluating
comprises:

identifying one or more paths in the circuit design that fail a timing
constraint;

identifying one or more portions of the circuit design that are traversed by
the one or more paths; and

including at least one of the portions of the circuit design traversed by the

one or more paths as at least one of the sections identified.

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-67 -

42. The computer-implemented synthesis method of claim 38, wherein
the one or more criteria include the existence of proprictary IP, and wherein the
evaluating comprises:

identifying a section of the high-level description as being proprietary IP;
and

including the section as at least one of the sections identified.

43. The computer-implemented synthesis method of claim 38, wherein
the generating the indications of the identified one or more sections comprises
generating one or more HDL wrappers corresponding to the identified one or more

sections.

44. The computer-implemented synthesis method of claim 38, wherein
the indications enable interfaces to the identified one or more sections to be

preserved during synthesis.

45. One or more tangible computer-readable media storing computer-

executable instructions for causing a computer to perform the method of claim 38.

46. One or more tangible computer-readable media storing the
indications of the identified one or more sections generated by the method of claim

38.

47. A computer-implemented synthesis method, comprising:

causing a first synthesis run to be performed using a first synthesis tool from
a first vendor, the first synthesis run generating a first netlist portion for a first
portion of a circuit design;

causing a second synthesis run to be performed using a second synthesis tool
from a second vendor, the second synthesis run generating a second netlist portion

for a second portion of the circuit design; and

10

15

20

25

30

WO 2010/099124

PCT/US2010/025104

- 68 -

generating a full netlist for the circuit design, the full netlist comprising the

first netlist portion and the second netlist portion.

48. The computer-implemented synthesis method of claim 47, wherein at
least one of the first synthesis run or the second synthesis run is performed using a

remote computing resource.

49. The computer-implemented synthesis method of claim 47, wherein

the first netlist portion is part of a full netlist generated by the first synthesis run.

50. The computer-implemented synthesis method of claim 47, further
comprising:

performing a preliminary synthesis run for a high-level description of the
circuit design; and

identifying the first portion of the circuit design and the second portion of the

circuit design using results of the preliminary synthesis run.

51. The computer-implemented synthesis method of claim 50, further
comprising identifying a first synthesis engine configuration for the first synthesis
run and a second synthesis engine configuration for the second synthesis run using

the results of the preliminary synthesis run.

52. One or more tangible computer-readable media storing computer-

executable instructions for causing a computer to perform the method of claim 47.

53. One or more tangible computer-readable media storing the full netlist

for the circuit design generated by the method of claim 47.

54. A computer-implemented synthesis method, comprising:

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

- 69 -

partitioning a high-level description of a circuit design into at least a first
partition corresponding to a first portion of the circuit design and a partition
corresponding to a remainder of the circuit design;

synthesizing the high-level description of the circuit design using a first
synthesis engine configuration, thereby generating a first gate-level description of
the circuit design; and

synthesizing a portion of the high-level description corresponding to the first
partition together with a portion of the first gate-level description corresponding to
the remainder of the circuit design using a second synthesis engine configuration,

thereby generating a second gate-level description of the circuit design.

55. The computer-implemented synthesis method of claim 54, further

comprising storing the second gate-level netlist in a computer-readable medium.

56. The computer-implemented synthesis method of claim 54, wherein
the synthesizing the high-level description of the circuit design using the first
synthesis engine configuration is performed so that input and output interfaces
between the first partition and the partition corresponding to the remainder of the

circuit design are preserved.

57. The computer-implemented synthesis method of claim 54, wherein
the partitioning comprises adding a wrapper to the high-level description of the

circuit design.

58. The computer-implemented synthesis method of claim 54, wherein
the first synthesis engine configuration is configured to improve a first performance
criteria for the remainder of the circuit design and the second synthesis engine
configuration is configured to improve a second performance criteria for the first

portion of the circuit design.

10

15

20

25

30

WO 2010/099124 PCT/US2010/025104

-70 -

59. One or more tangible computer-readable media storing computer-

executable instructions for causing a computer to perform the method of claim 54.

60. One or more tangible computer-readable media storing the second

gate-level description of the circuit design generated by the method of claim 54.

61. A computer-implemented synthesis method, comprising:

partitioning a high-level description of a circuit design into at least a first
partition corresponding to a first portion of the circuit design and a partition
corresponding to a remainder of the circuit design;

synthesizing at least a part of the high-level description of the circuit design
using a first synthesis engine configuration, thereby generating a first gate-level
description of the circuit design;

synthesizing at least a part of the high-level description of the circuit design
using a second synthesis engine configuration, thereby generating a second gate-
level description of the circuit design; and

assembling a portion of the first gate-level description corresponding to the
first partition with a portion of the second gate-level description corresponding to
the remainder of the circuit design to create a third gate-level description of the

circuit design.

62. The computer-implemented synthesis method of claim 61, further

comprising storing the third gate-level netlist in a computer-readable medium.

63. The computer-implemented synthesis method of claim 61, wherein
the synthesizing the high-level description of the circuit design using the first
synthesis engine configuration and the synthesizing the high-level description of the
circuit design using the second synthesis engine configuration are both performed so
that input and output interfaces between the first partition and the partition

corresponding to the remainder of the circuit design are preserved.

WO 2010/099124 PCT/US2010/025104

-71 -

64. The computer-implemented synthesis method of claim 61, wherein
the first synthesis engine configuration is configured to improve a first performance
criteria for the first portion of the circuit design and the second synthesis engine
configuration is configured to improve a second performance criteria different than

5 the first performance criteria for the second portion of the circuit design.

65. The computer-implemented synthesis method of claim 61, wherein
the first partition is not synthesized by the second synthesis engine configuration and
the second partition is not synthesized by the first synthesis engine configuration.

10
66. One or more tangible computer-readable media storing computer-

executable instructions for causing a computer to perform the method of claim 61.

67. One or more tangible computer-readable media storing the third gate-

15 level description of the circuit design created by the method of claim 61.

PCT/US2010/025104

WO 2010/099124

l Old

S30IA3A O/l

€21l 30IA3A

JOV4H3ILNI

L2l LINN A

XLbH 0ss3noNd

\ 611
£el AHOWIN
®

¢l
S30IA3A O/l

€21 30IA3A

JOV443ILNI

L2l 1LINN A
0SS3004dd

AHOWIN

S30IA3A O/l

€¢l 30IA3A

JOV4H3LNI

L2l LINN ™

alll 0SS300Yd

12l 611
AHOWIW

S30IA3a O/l

€21 30IA3A

JOV4H3ILNI

L2l 1LINN A

Al 0SS300dd

\ 611
£el AHOWIN

€Ll
330IA3A
JOV443LNI

LLL LINN
J0SS300dd

LLE LINN
Jd0SS300dd

LLL LINN
J0SS300dd

LLLLINN
JdOSS300dd

LLL LINN
d0SS300dd

LLL LINN
J0SS300dd

.))
g601
01
S301A3a
SN 1NdLNo
/LNdNI
V601
L0}
AHOW3N)

119

WO 2010/099124 PCT/US2010/025104

PROCESSOR UNIT 111
PROCESSOR CORE 201 PROCESSOR CORE 202
COMPUTING ENGINE| | ®®® | |comPUTING ENGINE
203 204
MEMORY CACHE 205 MEMORY CACHE 206
INTERCONNECT 207
INPUT/OUTPUT
il edisll MEMORY CONTROLLER 210
A A
TO SYSTEM
TOBUS 113 MEMORY 107
\ \

FIG. 2

2/19

WO 2010/099124

300
X

PCT/US2010/025104

TRANSLATION
MODULE 310
PARTITION
MODULE 312
EXPLORATION
MODULE 314
SYNTHESIS
MODULE 316
EVALUATION
MODULE 318
vy
ASSEMBLY
MODULE 320

!

NETLIST EVALUATION
MODULE 322

!

PLACE AND ROUTE
MODULE 324

FIG. 3

3/19

WO 2010/099124 PCT/US2010/025104

DESIGN RESOURCES CONSTRAINTS
404 406 408

N W et e S

TRANSLATION MODULE 310

TRANSLATE DESIGN, RESOURCE, AND
CONSTRAINT DATA 402

F I G . 4 PARTITION MODULE 312
y

PERFORM INITIAL RUN(S) 410

v v

ENGINE E; 000 ENGINE E,

USER'S -<> EVALUATE INITIAL RUN(S) 412

| CRITERIA 420 |
PARTITION DESIGN 414

DESIGN D

| BLOCKD, | 00 @® | BLOCK D,
\\/\

4119

WO 2010/099124 PCT/US2010/025104

500
T

EXPLORATION MODULE 314

BLOCK Dy 000 BLOCK D,

_,]/\

Y Y

SELECT SYNTHESIS S?,ETLEE;S
<P ENGINE 000 ENGINE

CONFIGURATION(S)

CONFIGURATION(S)
— 510 512

\J L
ENGINE '
CHARACTERISTIC
DATABASE 520 Eiir o Exe 000 Enty .., Eny
\\/\ \\/\

5/19

PCT/US2010/025104

WO 2010/099124

9 Old

M__Wmn_u._xzm coe nﬂwmn_u._xzm 215N |lese| 1SN A SN ooo_/zMz) 19N ||eee | ‘1SN
3 ooo 3 “3 Y 3 = eoe '3 3 PPPS '3
A A A A A A A A
929 vvwm%mmmh_,_%% 229 'a HO- 029 'a ¥O4
(SINNY do"aMOve (SINAY SISTHLNAS (SINNY SISTHINAS | @ @® | (S)INNY SISTHLNAS
HOLVdSIa HOLVASIA HOLVdSIa HOLVdSIa
* ’ »
NDIS3A 40 1S3 NDIS3A 40 NOIS3Ad NDIS3A
+'a+ T +'a 1834 + SOgINOD 40 1834 + . o0 40 1834 +.'A
1 1
A A A A
819 919
W o2 v19 219
‘a+ +a SOdINOD .
gM00T19HO4 | eee 'a Y0079 HOA
SYO0Td T1V 5O A0 19 ANV 5O SYIMYYIN ILYIHD SYIMYYIN ILYIHD
SYIMYYIN ILYIHD SHIMYYIN ILYIHD

019 SNNY SISTHLINAS FHVdIdd

91€ TNAOIN SISTFHLNAS

(/ 009

6/19

PCT/US2010/025104

WO 2010/099124

/L 9Old

1SITN
dOodaMd
13S

L4 SLISITLIN
dOddMd 31VNIVA3

*1SIIN
d0daMg

“P1SIIN

doyaxg |[*®*®

“1SIIN

“1SITN

“1SIIN
a3aLroan3as

¢lZ S1SITLAN
‘a Y0079 ILVNIVAT

MISIIN ||ees| “1SITN || eee 4] Q1N :.34 L SN :

81€ ITNAOCIN NOILYNIVAT

*1SITN
a3atroanss

012 SLISITLAN
'd Y0019 ILVNIVAT

(/ 004

719

WO 2010/099124

800
T

PCT/US2010/025104

ASSEMBLY MODULE 320

SELECTED
NLIST,

BKDROP

ASSEMBLE NETLIST
FROM SELECTED

SEL.

NLIST;,

NETLISTS 810
ASSMB'D
NLIST;,

NETLIST Y
EVALUATION PERFORM
MODULE 322 EVALUATE ASSEMBLED | TERATION 811

NETLIST 812
PLACE AND Y
ROUTE MODULE
324 PLACE AND ROUTE

NETLIST 816

FINAL

NETLIST

FIG. 8

8/19

WO 2010/099124 PCT/US2010/025104

" PARTITION MODULE 912

J DISPATCH INITIAL RUNS ¢
DESIGND || In CONSTRAINTS C
EVALUATE &

ENGINE Eq k
ANALYZE
‘ BLOCK D4 || < | PARTITION BLOCKS I > BLOCK D, |||

v EXPLORATION MODULE 914 v X
SELECT ENGINE SELECT ENGINE
E EZ; E3r ES E3r E4r ES
SYNTHESIS MODULE 916 " BACKDROP }i{ ASSEMBLY-FREE '
SYNTHESIS 930 SYNTHESIS 932

A

— > WRAP D; TO Dy] WRAP D, TO D,’] WRAPTO D,'+D,] [WRAP TO D,'+D,’]
) v) v v ¥

(D1'+D2')+BKDRP)
NLIST FOR REST
OF DESIGN

(D1'+Dy) +
REST OF DESIGN

D,"+ REST OF
DESIGN

D," + REST OF
DESIGN

' ' {)
DISPATCH H
DISPATCH RUN
DISPATCH RUNS] DISPATCH RUNS] BACKDROP RUN] [
. -~ J
Y
BACKDROP
E E
\ . N""‘"‘ ’ \ ’
EVAL MODULE 918 N
Y Y
EVALUATE EVALUATE

D; NETLIST D, NETLIST
\J
ASSEMBLY 920 D-(D,+D>) | | I—

{ NETLIST EVALUATION MODULE 922 ¥

FIG. 9

FINAL NETLIST §

4
H

H
fad
y

9/19

WO 2010/099124

PCT/US2010/025104

U —
e R A N R ARy

3 PARTITION MODULE 1012

|

DESIGN D

i

H
[JS——

BLOCK D, I

DISPATCH
INITIAL RUNS

U ————

A

CONSTRAINTSC

[

L]

EVALUATE &
ANALYZE

»

v

< | PARTITION BLOCKS

Y

BLOCK D,

~

.
e’ 4 -

I S,

.

\ EXPLORATION MODULE 1014

SELECT E4, E; FOR
ARCHITECTURE;

SELECT E3, E4 FOR
ARCHITECTURE;

SELECT E,, Eg FOR
ARCHITECTURE,

SELECT Es, Eg FOR
ARCHITECTURE;

»
I3

-

T

S

7
[

D, ARCH;
NETLIST

D; ARCH;
NETLIST

SYNTHESIS MODULE 1016 / :
1 ARCH; SYNTH. 1030 < BKDRP. ":' ARCH, SYNTH. 1032 3
s SYNTH. 1034] -
WRAP D, TOD;’ WRAP D, TOD,’ WRAPTO D,'+D,’] WRAP D; TOD{ WRAP D, TO D,’
¥ ¥ — ¥ —
1 . 1 . | 1 . 1
D, +REST OF D,” + REST OF (Dy"+Dy") + D," +REST OF D, + REST OF
DESIGN DESIGN REST OF DESIGN DESIGN DESIGN
- N “\ r N 7 \
v !| DISPATCH RUNS DISPATCH RUNS DISPATCH DISPATCH RUNS DISPATCH RUNS
FOR ARCH, FOR ARCH; BACKDROP RUNS FOR ARCH, FOR ARCH,
\. J \ J \ \ J \ J
v
BACKDROP
E E E E ' E E E E
1 2 5 Ls |\ RUNS ’J ; 3 L4 7//| 8
\ o, N =] K \:\.q T e /’_,
ek T -
' EVAL. MOD. 1018 3
v) J \ i \i \i \/ \ i \ i
[EVALUATE] [EVALUATE] [EVALUATE EVALUATE]
v v v v

D, ARCH;
NETLIST

D; ARCH;
NETLIST

ARCH;
BKDRP NLIST

BKDRP

ARCH;

NLIST

FULL ARCH,
NETLIST

N

FULL ARCH,

ETLIST

j
J

[EVALUATE

FINAL NETLIST

S

]_.

10/19

WO 2010/099124

,,,,,,,,,,
[
t

DESIGN D

:
!
!
!
!
!
!
!

,
[S———
H

CONSTRAINTS C

L —

PCT/US2010/025104

EXPLORATION MOD. 1114

SELECT E4, E; FOR
ARCHITECTURE;

SELECT Es, Es FOR
ARCHITECTURE;

SYNTHESIS MOD. 1116

" ARCH,
A A

DESIGN D

" ARCH,
\ J

DESIGN D

DISPATCH RUNS FOR
ARCH;

p
DISPATCH RUNS FOR
ARCH,

ARCH;
NETLIST

ARCH,
NETLIST

E E E; E,
R Y T, ;
EVALUATION B y . | y
MOD. 1118 EVALUATE] EVALUATE]
v v

MOD. 1120

NETLIST EVALUATION

FINAL NETLIST

t
M. I

FIG.

1119

11

WO 2010/099124

FIG. 12

1200
U

SERVER

1204

CLIENT

’//—1206

1219

PCT/US2010/025104

CLIENT

-///—1208

1202

WO 2010/099124 PCT/US2010/025104

1./?:,02 1;,02 11302
COMPUTER COMPUTER LA COMPUTER

soncncnnnn,

Scocccssaae

CLIENT h.1308 CLIENT N 1308

13/19

WO 2010/099124 PCT/US2010/025104

FIG. 14

CLIENT SERVER

1402\

SEND CIRCUIT
DESCRIPTION \

1404
N\ oAb creurT f

DESCRIPTION

!

1406
PERFORM SYNTHESIS I

v

1410\

1408
/ SEND NETLIST I

RECEIVE NETLIST ‘/

14/19

WO 2010/099124

FIG. 15

CLIENT

1502\

SEND REQUEST

1508\

RECEIVE COMPUTER-
EXECUTABLE
INSTRUCTIONS

15/19

PCT/US2010/025104

SERVER

RECEIVE REQUEST

/1504

I

SEND COMPUTER-
EXECUTABLE
INSTRUCTIONS

WO 2010/099124

1600
X

AAAAAAA
BERS

e

PCT/US2010/025104

1630 1620

Lnadfmmﬁle \f.ffff : E'ia{'@:%:zx-s EFlsa\j:txsuTFFsss ! SPang_aggg____}_?gggq____ Md
oy | sws avstn EPASGRIODRESC | e
1610
-
L3
ok | cancet |

FIG. 16

16/19

WO 2010/099124

1700
T

PCT/US2010/025104

1720

Input

SyHDL

: Werilogs Sy stemerilog
Dewice Setup
Computing Resources
Global Constraints

Y
- Precision RTL
- Leonarda Spectrurn

1710~

LJ Laarard. £] Presisia 77 Frectheds Fhysical duare] 740

{ Ry Pla s e Fiots

Hesuur e Ghakng .Auto
H it “D\

Pk Optimizations ‘:g\

S ot St RFregquency B - '| 73 O
- Berickimark Setig 'T—T?FFF'?UF,Y, ,,,,,,,,,,, < 'I 7 3 2

<— 1750

| }1760

0K 1 Caneel

FIG. 17

17/19

WO 2010/099124

PCT/US2010/025104

“erilog!System'verilog
Device Setup
Computing Resources
- Global Constraints
Optimization Setup

1810

Fathi to: Precisinfi-Ibatabation: Tree:eviprecuifseratehisdodge sdodge_allidey_2009_hawki=Myc_hamebin

s Preckian: Exteral: Seript

\\\\\\

FT s Precisin: Cugtony Soriat

Esteriial Spndhiesis St

Y ShEdi Atk
< Pateter

i
w:3Farameter Walue

i
uuuuuu

iParameter Mame

>1830

FIG. 18

18/19

WO 2010/099124 PCT/US2010/025104

1900
X

1922
\\
S

- erilogfSystemYer ;.." [l T Gesl FAaEiRe

Fackine: Nare spriefiler Select Aot CRLs Allowed
Global Constraints

Ontirmization Set Znaialle: CFLs B
ptimization Setup
Synthesiz Astailable Ry AN 1 930
o Precision ATL Lo 8
- Leonardao Spectrar it Use b .\.
GHic SEtip Berpt home/aalsidemosorid csh sy
Mesirourn Mumber of dnks 20 y 8% Belctsnf CRUs Allowsd 2 o)

OK Cancel :

FIG. 19

19/19

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/025104

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

claim 1

Category" | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6 324 678 B1 (DANGELO CARLOS [US] ET 47,52,53
. AL) 27 November 2001 (2001-11-27)

Y ' abstract 1-20,38,
figures 2,6,917 45,46,
column 3, line 45 - column 4, line 15 54,
column 9, line 28 - column 10, line 25 59-61,
column 12, line 15 - column 13, line 43 66,67

A column 28; 1line 58 - column 29, line 3 21,36,37
column 31, line 22 - column 31, line 27
column 40, Tine 53 - column 40, line 63

-/

m Further documents are listed in the continuation of Box C.

E See patent family annex.

* Special categories of cited documents :

“A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O* document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
ments, such combination being obvious to a person skilled
in the ant.

"&" document member of the same patent family

Date of the actual completion of the international search

30 April 2010

Date of mailing of the international search report

10/05/2010

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Alonso Nogueiro, L

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/025104

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of document, with indication, where appropriate, of the relevant passages

Exploration of Behavioral Synthesis
Options on Area, Performance and Power
consumption”

MICROELECTRONICS, 2005. ICM 2005. THE 17TH
INTERNATIONAL CONFERENCE ON ISLAMABAD,
PAKISTAN 13-15 DEC. 2005, PISCATAWAY, NJ,
USA,IEEE LNKD-
DOI:10.1109/ICM.2005.1590039,

13 December 2005 (2005-12-13), pages
67-71, XP010890630

ISBN: 978-0-7803-9262-5

the whole document

Category* Relevant to claim No.
X US 7 181 703 B1 (BORER TERRY [CA] ET AL) 21,36,37
20 February 2007 (2007-02-20)
Y - abstract 1-20,38,
figures 1-3 45,46,
column 1, Tine 50 - column 2, line 57 54,
column 3, Tine 45 - column 6, line 57 59-61,
column 7, line 63 - column 9, line 17 66,67
A claim 1 47,52,53
A US 7 370 295 B1 (CHESAL IAN [CA] ET AL) 1-67
6 May 2008 (2008-05-06)
abstract
figures 2-4
column 1, Tine 54 - column 2, line 55
column 4, Tine 30 - column 5, line 45
A CHTOUROU S ET AL: "SystemC Space 1-67

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members ‘

International application No

US 7370295 B1

NONE

PCT/US2010/025104
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6324678 B1 27-11-2001 NONE
US 7181703 Bl 20-02-2007 US 7594208 Bl 22-09-2009
06-05-2008

Form PCT/ISA/210 (patent family annex) (Aprit 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - wo-search-report
	Page 93 - wo-search-report
	Page 94 - wo-search-report

