(51) International Patent Classification: C12N 15/32, 15/82, A01N 63/02

(21) International Application Number: PCT/US99/24647
(22) International Filing Date: 21 October 1999 (21.10.99)
(30) Priority Data:
 60/105,408 23 October 1998 (23.10.98) US
 60/105,359 23 October 1998 (23.10.98) US

(71) Applicant: MYCOGEN CORPORATION [US/US]; 5501 Oberlin Drive, San Diego, CA 92121 (US).

(72) Inventors: CARDINEAU, Guy, A.; 17041 Cloudcroft Drive, Poway, CA 92064 (US); STELMAN, Steven, J.; 7954 Westbury Avenue, San Diego, CA 92126 (US); NARVA, Kenneth, E.; 12123 Caminito Mira Del Mar, San Diego, CA 92130 (US).

Published
With international search report.
Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PLANT-OPTIMIZED POLYNUCLEOTIDES ENCODING APPROXIMATELY 15 kDa AND APPROXIMATELY 45 kDa PESTICIDAL PROTEINS

(57) Abstract
The subject invention provides new, plant-optimized polynucleotide sequences that encode pesticidal toxins. The polynucleotide sequences of the subject invention have certain modifications, compared to wild-type sequences, for example, that make them particularly well-suited for optimized expression in plants. Using the polynucleotide sequences described herein, the transformation of plants can be accomplished, using techniques known to those skilled in the art, in order to confer pest resistance upon said plants. In preferred embodiments, the subject invention provides plant-optimized polynucleotide sequences which encode approximately 15 kDa and approximately 45 kDa pesticidal proteins.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>ES</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>EL</td>
<td>Lithuania</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>LV</td>
<td>Latvia</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Republic of Moldova</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolia</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
DESCRIPTION

PLANT-OPTIMIZED POLYNUCLEOTIDES ENCODING
APPROXIMATELY 15 kDa AND APPROXIMATELY 45 kDa

PESTICIDAL PROTEINS

Background of the Invention

Insects and other pests cost farmers billions of dollars annually in crop losses and in the expense of keeping these pests under control. The losses caused by insect pests in agricultural production environments include decrease in crop yield, reduced crop quality, and increased harvesting costs.

Chemical pesticides have provided an effective method of pest control; however, the public has become concerned about the amount of residual chemicals which might be found in food, ground water, and the environment. Therefore, synthetic chemical pesticides are being increasingly scrutinized, and correctly so, for their potential toxic environmental consequences. Synthetic chemical pesticides can poison the soil and underlying aquifers, pollute surface waters as a result of runoff, and destroy non-target life forms. Synthetic chemical control agents have the further disadvantage of presenting public safety hazards when they are applied in areas where pets, farm animals, or children may come into contact with them. They may also provide health hazards to applicants, especially if the proper application techniques are not followed. Regulatory agencies around the world are restricting and/or banning the uses of many pesticides and particularly the synthetic chemical pesticides which are persistent in the environment and enter the food chain. Examples of widely used synthetic chemical pesticides include the organochlorines, e.g., DDT, mirex, kepone, lindane, aldrin, chlordane, aldicarb, and dieldrin; the organophosphates, e.g., chlorpyrifos, parathion, malathion, and diazinon; and carbamates. Stringent new restrictions on the use of pesticides and the elimination of some effective pesticides from the market place could limit economical and effective options for controlling costly pests.

Because of the problems associated with the use of synthetic chemical pesticides, there exists a clear need to limit the use of these agents and a need to identify alternative control agents. The replacement of synthetic chemical pesticides, or combination of
these agents with biological pesticides, could reduce the levels of toxic chemicals in the environment.

A biological pesticidal agent that is being used with increasing popularity is the soil microbe *Bacillus thuringiensis* (B.t.). The soil microbe *Bacillus thuringiensis* (B.t.) is a Gram-positive, spore-forming bacterium. Most strains of B.t. do not exhibit pesticidal activity. Some B.t. strains produce, and can be characterized by, parasporal crystalline protein inclusions. These “δ-endotoxins,” which typically have specific pesticidal activity, are different from exotoxins, which have a non-specific host range. These inclusions often appear microscopically as distinctively shaped crystals. The proteins can be highly toxic to pests and are specific in their toxic activity.

Preparations of the spores and crystals of *B. thuringiensis* subsp. *kurstaki* have been used for many years as commercial insecticides for lepidopteran pests. For example, *B. thuringiensis* var. *kurstaki* HD-1 produces a crystalline δ-endotoxin which is toxic to the larvae of a number of lepidopteran insects.

The cloning and expression of a B.t. crystal protein gene in *Escherichia coli* was described in the published literature more than 15 years ago (Schneppf, H.E., H.R. Whiteley [1981] *Proc. Natl. Acad. Sci. USA* 78:2893-2897.). U.S. Patent No. 4,448,885 and U.S. Patent No. 4,467,036 both disclose the expression of B.t. crystal protein in *E. coli*. Recombinant DNA-based B.t. products have been produced and approved for use.

Commercial use of B.t. pesticides was originally restricted to a narrow range of lepidopteran (caterpillar) pests. More recently, however, investigators have discovered B.t. pesticides with specificities for a much broader range of pests. For example, other species of B.t., namely *israelensis* and *morrisoni* (a.k.a. *tenebrionis*, a.k.a. B.t. M-7), have been used commercially to control insects of the orders Diptera and Coleoptera, respectively (Gaertner, F.H. [1989] “Cellular Delivery Systems for Insecticidal Proteins: Living and Non-Living Microorganisms,” in *Controlled Delivery of Crop Protection Agents*, R.M. Wilkins, ed., Taylor and Francis, New York and London, 1990, pp. 245-255).

New subspecies of B.t. have now been identified, and genes responsible for active δ-endotoxin proteins have been isolated and sequenced (Höfte, H., H.R. Whiteley [1989] *Microbiological Reviews* 52(2):242-255). Höfte and Whiteley classified B.t. crystal protein genes into four major classes. The classes were *cryI* (Lepidoptera-specific), *cryII*
(Lepidoptera- and Diptera-specific), cryIII (Coleoptera-specific), and cryIV (Diptera-specific). The discovery of strains specifically toxic to other pests has been reported (Feitelson, J.S., J. Payne, L. Kim [1992] Bio/Technology 10:271-275). For example, the designations CryV and CryVI have been proposed for two new groups of nematode-active toxins.

The 1989 nomenclature and classification scheme of Höfte and Whiteley was based on both the deduced amino acid sequence and the host range of the toxin. That system was adapted to cover 14 different types of toxin genes which were divided into five major classes. The number of sequenced Bacillus thuringiensis crystal protein genes currently stands at more than 50. A revised nomenclature scheme has been proposed which is based solely on amino acid identity (Crickmore et al. [1996] Society for Invertebrate Pathology, 29th Annual Meeting, IIIrd International Colloquium on Bacillus thuringiensis, University of Cordoba, Cordoba, Spain, September 1-6, 1996, abstract). The mnemonic "cry" has been retained for all of the toxin genes except cytA and cytB, which remain a separate class. Roman numerals have been exchanged for Arabic numerals in the primary rank, and the parentheses in the tertiary rank have been removed. Many of the original names have been retained, although a number have been reclassified.

With the use of genetic engineering techniques, new approaches for delivering B.t. toxins to agricultural environments are under development, including the use of plants genetically engineered with B.t. toxin genes for insect resistance and the use of stabilized, microbial cells as delivery vehicles of B.t. toxins (Gaertner, F.H., L. Kim [1988] TIBTECH 6:S4-S7). Thus, isolated B.t. endotoxin genes are becoming commercially valuable.

Various improvements have been achieved by modifying B.t. toxins and/or their genes. For example, U.S. Patent Nos. 5,380,831 and 5,567,862 relate to the production of synthetic insecticidal crystal protein genes having improved expression in plants.

Obstacles to the successful agricultural use of B.t. toxins include the development of resistance to B.t. toxins by insects. In addition, certain insects can be refractory to the effects of B.t. The latter includes insects such as boll weevil and black cutworm as well as adult insects of most species which heretofore have demonstrated no apparent significant sensitivity to B.t. δ-endotoxins.
Thus, resistance management strategies in B.t. plant technology have become of great interest, and there remains a great need for new toxin genes. For example, WO 97/40162 (published PCT application) discloses 15 kDa and 45 kDa coleopteran-active proteins obtainable from B.t. isolates PS80JJ1 and PS149B1.

As a result of extensive research and resource investment, patents continue to issue for new B.t. isolates, toxins, and genes, and for new uses of B.t. isolates. See Feitelson et al., supra, for a review. U.S. Patent No. 5,589,382 discloses B.t. isolate PS80JJ1 as having activity against nematodes. U.S. Patent No. 5,632,987 discloses B.t. isolate PS80JJ1 as having activity against corn rootworm. However, the discovery of new B.t. isolates and new uses of known B.t. isolates remains an empirical, unpredictable art.

There remains a great need for new toxin genes that can be successfully expressed at adequate levels in plants in a manner that will result in the effective control of insects and other pests.

Brief Summary of the Invention

The subject invention concerns materials and methods useful in the control of pests and, particularly, plant pests. More specifically, the subject invention provides new, plant-optimized polynucleotide sequences that encode pesticidal proteins. The polynucleotide sequences of the subject invention have certain modifications, compared to wild-type sequences, that make them particularly well-suited for optimized expression in plants. Using the polynucleotide sequences described herein, the transformation of plants can be accomplished, using techniques known to those skilled in the art, in order to confer pest resistance upon said plants. In a preferred embodiment, the subject invention provides plant-optimized polynucleotide sequences which encode approximately 15 kDa and approximately 45 kDa pesticidal proteins.

Description of the Sequences

SEQ ID NO. 1 is a polynucleotide sequence for a gene designated 80JJ1-15-POS, which is optimized for expression in maize. This gene encodes an approximately 15 kDa protein. This gene and protein were disclosed in WO 97/40162.

SEQ ID NO. 2 is a novel polynucleotide sequence for a gene designated 80JJ1-15-PO7, which is optimized for expression in maize. This is an alternative gene that encodes an approximately 15 kDa protein.
SEQ ID NO. 3 is an amino acid sequence for a novel pesticidally active protein encoded by the gene designated 80JJ1-15-PO7.

SEQ ID NO. 4 is a polynucleotide sequence for a gene designated 80JJ1-45-PO, which is optimized for expression in maize. This gene encodes an approximately 45 kDa protein. This gene was disclosed in WO 97/40162.

SEQ ID NO. 5 is a novel polynucleotide sequence for a gene designated 149B1-15-PO, which is optimized for expression in Zea mays. This gene encodes an approximately 15 kDa protein obtainable from PS149B1 that is disclosed in WO 97/40162.

SEQ ID NO. 6 is a novel polynucleotide sequence for a gene designated 149B1-45-PO, which is optimized for expression in Zea mays. This gene encodes an approximately 45 kDa protein obtainable from PS149B1 that is disclosed in WO 97/40162.

Detailed Disclosure of the Invention

The subject invention concerns materials and methods useful in the control of pests and, particularly, plant pests. More specifically, the subject invention provides new, plant-optimized polynucleotide sequences that encode pesticidal proteins. The polynucleotide sequences of the subject invention have certain modifications, compared to wild-type sequences, that make them particularly well-suited for optimized expression in plants. Using the polynucleotide sequences described herein, the transformation of plants can be accomplished, using techniques known to those skilled in the art, in order to confer pest resistance upon said plants. In a preferred embodiment, the subject invention provides plant-optimized polynucleotide sequences which encode approximately 15 kDa and approximately 45 kDa pesticidal proteins.

Using techniques such as computer- or software-assisted sequence alignments, differences can be noted in the nucleotide sequence of the subject plant-optimized genes as compared to the wild-type genes or to previously known genes. Similarly, differences in the unique amino acid sequences of the subject invention can be noted as compared to wild-type toxins or to previously known toxins.

It should be apparent to a person skilled in this art that, given the sequences of the genes as set forth herein, the genes of the subject invention can be obtained through several means. In preferred embodiments, the subject genes may be constructed
synthetically by using a gene synthesizer, for example. The specific genes exemplified herein can also be obtained by modifying, according to the teachings of the subject invention, certain wild-type genes (for example, by point-mutation techniques) from certain isolates deposited at a culture depository as discussed below.

Certain cultures discussed in this application have been deposited in the Agricultural Research Service Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, USA. The deposited strains listed below are disclosed in the patent references as discussed above in the section entitled “Background of the Invention.”

<table>
<thead>
<tr>
<th>Subculture</th>
<th>Accession Number</th>
<th>Deposit Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.t. PS80JJ1</td>
<td>NRRL B-18679</td>
<td>July 17, 1990</td>
</tr>
<tr>
<td>E. coli (NM522) (pMYC2421)</td>
<td>NRRL B-21555</td>
<td>March 28, 1996</td>
</tr>
<tr>
<td>(PS80JJ1 14 kDa & 45 kDa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli (NM522) (pMYC2426)</td>
<td>NRRL B-21671</td>
<td>March 26, 1997</td>
</tr>
<tr>
<td>(PS80JJ1 14 kDa & 45 kDa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.t. PS149B1</td>
<td>NRRL B-21553</td>
<td>April 8, 1996</td>
</tr>
<tr>
<td>E. coli (NM522) (pMYC2429)</td>
<td>NRRL B-21673</td>
<td>March 26, 1997</td>
</tr>
<tr>
<td>(PS149B1 15 kDa & 45 kDa)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It should be understood that the availability of a deposit does not constitute a license to practice the subject invention in derogation of patent rights granted by governmental action.

Genes and toxins. The subject invention includes, in preferred embodiments, polynucleotide sequences optimized for expression in plants, wherein said sequences are selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 5, and SEQ ID NO. 6. SEQ ID NO. 2 encodes a preferred protein that is shown in SEQ ID NO. 3.

The polynucleotides of the subject invention can be used to form complete “genes” to encode proteins or peptides in a desired host cell. For example, as the skilled artisan would readily recognize, SEQ ID NO. 2, SEQ ID NO. 5, and SEQ ID NO. 6 are shown without stop codons. SEQ ID NO. 2, SEQ ID NO. 5, and/or SEQ ID NO. 6 can
be appropriately placed under the control of a promoter in a host of interest, as is readily known in the art.

As the skilled artisan would readily recognize, DNA can exist in a double-stranded form. In this arrangement, one strand is complementary to the other strand and vice versa. The “coding strand” is often used in the art to refer to the strand having a series of codons (a codon is three nucleotides that can be read three-at-a-time to yield a particular amino acid) that can be read as an open reading frame (ORF) to form a protein or peptide of interest. In order to express a protein in vivo, a strand of DNA is typically translated into a complementary strand of RNA which is used as the template for the protein. As DNA is replicated in a plant (for example) additional, complementary strands of DNA are produced. Thus, the subject invention includes the use of either the exemplified polynucleotides shown in the attached sequence listing or the complementary strands. RNA and PNA (peptide nucleic acids) that are functionally equivalent to the specifically exemplified, novel DNA molecules are included in the subject invention.

Certain DNA sequences of the subject invention have been specifically exemplified herein. These sequences are exemplary of the subject invention. It should be readily apparent that the subject invention includes not only the genes and sequences specifically exemplified herein but also equivalents and variants thereof (such as mutants, fusions, chimerics, truncations, fragments, and smaller genes) that exhibit the same or similar characteristics relating to expressing toxins in plants, as compared to those specifically disclosed herein. As used herein, “variants” and “equivalents” refer to sequences which have nucleotide (or amino acid) substitutions, deletions (internal and/or terminal), additions, or insertions which do not materially affect the expression of the subject genes, and the resultant pesticidal activity, in plants. Fragments of polynucleotide proteins retaining pesticidal activity, and “pesticidal portions” of full-length proteins, are also included in this definition.

Genes can be modified, and variations of genes may be readily constructed, using standard techniques. For example, techniques for making point mutations are well known in the art. In addition, commercially available exonucleases or endonucleases can be used according to standard procedures, and enzymes such as Bal31 or site-directed
mutagenesis can be used to systematically cut off nucleotides from the ends of these genes. Useful genes can also be obtained using a variety of restriction enzymes.

It should be noted that equivalent genes will encode toxins that have high amino acid identity or homology with the toxins encoded by the subject genes. The amino acid homology will be highest in critical regions of the toxin which account for biological activity or are involved in the determination of three-dimensional configuration which ultimately is responsible for the biological activity. In this regard, certain substitutions are acceptable and can be expected if these substitutions are in regions which are not critical to activity or are conservative amino acid substitutions which do not affect the three-dimensional configuration of the molecule. For example, amino acids may be placed in the following classes: non-polar, uncharged polar, basic, and acidic. Conservative substitutions whereby an amino acid of one class is replaced with another amino acid of the same type fall within the scope of the subject invention so long as the substitution does not materially alter the biological activity of the compound. Table 1 provides a listing of examples of amino acids belonging to each class.

<table>
<thead>
<tr>
<th>Class of Amino Acid</th>
<th>Examples of Amino Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonpolar</td>
<td>Ala, Val, Leu, Ile, Pro, Met, Phe, Trp</td>
</tr>
<tr>
<td>Uncharged Polar</td>
<td>Gly, Ser, Thr, Cys, Tyr, Asn, Gln</td>
</tr>
<tr>
<td>Acidic</td>
<td>Asp, Glu</td>
</tr>
<tr>
<td>Basic</td>
<td>Lys, Arg, His</td>
</tr>
</tbody>
</table>

In some instances, non-conservative substitutions can also be made. The critical factor is that these substitutions must not significantly detract from the ability of plants to express the subject DNA sequences or from the biological activity of the toxin.

As used herein, reference to “isolated” polynucleotides and/or “purified” toxins refers to these molecules when they are not associated with the other molecules with which they would be found in nature and would include their use in plants. Thus, reference to “isolated” and/or “purified” signifies the involvement of the “hand of man” as described herein.
Recombinant hosts. The toxin-encoding genes of the subject invention can be introduced into a wide variety of microbial or plant hosts. In some embodiments of the subject invention, transformed microbial hosts can be used in preliminary steps for preparing precursors, for example, that will eventually be used to transform, in preferred embodiments, plant cells and plants so that they express the toxins encoded by the genes of the subject invention. Microbes transformed and used in this manner are within the scope of the subject invention. Recombinant microbes may be, for example, a B.t., E. coli, or Pseudomonas. Transformations can be made by those skilled in the art using standard techniques. Materials necessary for these transformations are disclosed herein or are otherwise readily available to the skilled artisan.

Thus, in preferred embodiments, expression of a gene of this invention results, directly or indirectly, in the intracellular production and maintenance of the protein of interest. When transformed plants are ingested by the pest, the pests will ingest the toxin. The result is a control of the pest.

The B.t. toxin gene can be introduced via a suitable vector into a host, preferably a plant host. There are many crops of interest, such as corn, wheat, rice, cotton, soybeans, and sunflowers. The genes of the subject invention are particularly well suited for providing stable maintenance and expression, in the transformed plant, of the gene expressing the polypeptide pesticide, and, desirably, provide for improved protection of the pesticide from environmental degradation and inactivation.

Thus, the subject invention includes recombinant hosts comprising a polynucleotide sequence optimized for expression in a plant, wherein said sequence is selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 5, and SEQ ID NO. 6. The recombinant host can be, for example, a plant cell. Entire plants comprising the subject polynucleotides are also within the scope of the subject invention. In particularly preferred embodiments, a plant can be made resistant to corn rootworm damage by being transformed to express a polynucleotide, such as SEQ ID NO. 2, that encodes an approximately 15 kDa protein, together with a second polynucleotide, such as SEQ ID NO. 4, which encodes a 45 kDa protein. Likewise, SEQ ID NO. 5 and SEQ ID NO. 6 can be used together, under one promoter or separate promoters, such as the ubiquitin promoter. For that matter, the polynucleotide of SEQ ID NO. 2 and SEQ ID NO. 6 can be used together, or SEQ ID NO. 4 and SEQ ID NO. 5 can be used, for example.
While the subject invention provides specific embodiments of synthetic genes, other genes that are functionally equivalent to the genes exemplified herein can also be used to transform hosts, preferably plant hosts. Additional guidance for the production of synthetic genes can be found in, for example, U.S. Patent No. 5,380,831.

All of the publications and patent references referred to or cited herein are hereby incorporated by reference in their entirety to the extent that they are not inconsistent with the explicit teachings of this specification.

Following is an example which illustrates procedures for practicing the invention.

This example should not be construed as limiting.

Example 1 – Insertion of Toxin Genes Into Plants

One aspect of the subject invention is the transformation of plants with the subject polynucleotide sequences encoding insecticidal toxins. The transformed plants are resistant to attack by the target pest. The genes of the subject invention are optimized for use in plants.

Obviously, a promoter region capable of expressing the gene in a plant is needed. Thus, for in planta expression, the DNA of the subject invention is under the control of an appropriate promoter region. Techniques for obtaining in planta expression by using such constructs is known in the art. A preferred promoter region used for expression of both 15 kDa and 45 kDa transgenes is the Zea mays ubiquitin promoter plus Z. mays exon 1 and Z. mays intron 1 (Christensen, A.H., et al. 1992 Plant Mol. Biol. 18:675-689). A preferred transcriptional terminator for both transgenes is the potato proteinase inhibitor II (PinII) terminator (An, G. et al. 1989 Plant Cell 1:115-22).

Genes encoding pesticidal toxins, as disclosed herein, can be inserted into plant cells using a variety of techniques which are well known in the art. For example, in preferred embodiments, maize plants containing 14 kDa and 44 kDa transgenes were obtained by microprojectile bombardment using the Biolistics® PDS-100He particle gun manufactured by Bio-Rad, essentially as described by Klein et al. (1987).

A large number of cloning vectors comprising a replication system in E. coli and a marker that permits selection of the transformed cells are available for preparation for the insertion of foreign genes into higher plants. The vectors comprise, for example,
pBR322, pUC series, M13mp series, pACYC184, etc. Accordingly, the sequence encoding the B.t. toxin can be inserted into the vector at a suitable restriction site. The resulting plasmid is used for transformation into E. coli. The E. coli cells are cultivated in a suitable nutrient medium, then harvested and lysed. The plasmid is recovered. Sequence analysis, restriction analysis, electrophoresis, and other biochemical-molecular biological methods are generally carried out as methods of analysis. After each manipulation, the DNA sequence used can be cleaved and joined to the next DNA sequence. Each plasmid sequence can be cloned in the same or other plasmids.

Depending on the method of inserting desired genes into the plant, other DNA sequences may be necessary. If, for example, the Ti or Ri plasmid is used for the transformation of the plant cell, then at least the right border, but often the right and the left border of the Ti or Ri plasmid T-DNA, has to be joined as the flanking region of the genes to be inserted. The use of T-DNA for the transformation of plant cells has been intensively researched and sufficiently described in EP 120 516; Hoekema (1985) In: *The Binary Plant Vector System*, Offset-durkkerij Kanters B.V., Alblaserdam, Chapter 5; Fraley et al., *Crit. Rev. Plant Sci.* 4:1-46; and An et al. (1985) *EMBO J.* 4:277-287.

Once the inserted DNA has been integrated in the genome, it is relatively stable there and, as a rule, does not come out again. It normally contains a selection marker that confers on the transformed plant cells resistance to a biocide or an antibiotic, such as kanamycin, G 418, bleomycin, hygromycin, or chloramphenicol, *inter alia*. The individually employed marker should accordingly permit the selection of transformed cells rather than cells that do not contain the inserted DNA.

A large number of techniques are available for inserting DNA into a plant host cell. Those techniques include transformation with T-DNA using *Agrobacterium tumefaciens* or *Agrobacterium rhizogenes* as transformation agent, fusion, injection, biolistics (microparticle bombardment), or electroporation as well as other possible methods. If Agrobacteria are used for the transformation, the DNA to be inserted has to be cloned into special plasmids, namely either into an intermediate vector or into a binary vector. The intermediate vectors can be integrated into the Ti or Ri plasmid by homologous recombination owing to sequences that are homologous to sequences in the T-DNA. The Ti or Ri plasmid also comprises the vir region necessary for the transfer of the T-DNA. Intermediate vectors cannot replicate themselves in Agrobacteria. The
intermediate vector can be transferred into *Agrobacterium tumefaciens* by means of a helper plasmid (conjugation). Binary vectors can replicate themselves both in *E. coli* and in Agrobacteria. They comprise a selection marker gene and a linker or polylinker which are framed by the right and left T-DNA border regions. They can be transformed directly into Agrobacteria (Holsters *et al.* [1978] *Mol. Gen. Genet.* 163:181-187). The *Agrobacterium* used as host cell is to comprise a plasmid carrying a *vir* region. The *vir* region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be contained. The bacterium so transformed is used for the transformation of plant cells. Plant explants can advantageously be cultivated with *Agrobacterium tumefaciens* or *Agrobacterium rhizogenes* for the transfer of the DNA into the plant cell. Whole plants can then be regenerated from the infected plant material (for example, pieces of leaf, segments of stalk, roots, but also protoplasts or suspension-cultivated cells) in a suitable medium, which may contain antibiotics or biocides for selection. The plants so obtained can then be tested for the presence of the inserted DNA. No special demands are made of the plasmids in the case of injection and electroporation. It is possible to use ordinary plasmids, such as, for example, pUC derivatives.

The transformed cells grow inside the plants in the usual manner. They can form germ cells and transmit the transformed trait(s) to progeny plants. Such plants can be grown in the normal manner and crossed with plants that have the same transformed hereditary factors or other hereditary factors. The resulting hybrid individuals have the corresponding phenotypic properties.

It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the following claims.
Claims

1. A polynucleotide having a nucleotide sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:5, and SEQ ID NO:6.

2. The polynucleotide according to claim 1 wherein said nucleotide sequence is SEQ ID NO:2.

3. The polynucleotide according to claim 1 wherein said nucleotide sequence is SEQ ID NO:5.

4. The polynucleotide according to claim 1 wherein said nucleotide sequence is SEQ ID NO:6.

5. A recombinant host that expresses a polynucleotide according to claim 1.

6. The host according to claim 5 wherein said nucleotide sequence is SEQ ID NO:2.

7. The host according to claim 5 wherein said nucleotide sequence is SEQ ID NO:5.

8. The host according to claim 5 wherein said nucleotide sequence is SEQ ID NO:6.

9. The host according to claim 5 wherein said host is a plant cell.

10. The host according to claim 5 wherein said host is a plant.

11. The host according to claim 5 wherein said host is maize.

13. The method according to claim 12 wherein said host is a plant cell.

14. The method according to claim 12 wherein said host is a plant.

15. The method according to claim 12 wherein said host is maize.

16. A method for controlling a plant pest wherein said method comprises contacting said pest with a first protein encoded by a polynucleotide according to claim 1 wherein said first protein is produced by a recombinant host expressing said polynucleotide.

17. The method according to claim 16 wherein said host is a plant.

18. The method according to claim 16 wherein said host is a Zea mays plant.

19. The method according to claim 18 wherein said nucleotide sequence is SEQ ID NO:2.

20. The method according to claim 18 wherein said nucleotide sequence is SEQ ID NO:5.

21. The method according to claim 18 wherein said nucleotide sequence is SEQ ID NO:6.

22. The method according to claim 19 wherein said method further comprises contacting said pest with a second protein of approximately 45kDa.

23. The method according to claim 20 wherein said method further comprises contacting said pest with a second protein of approximately 45kDa.
24. The method according to claim 21 wherein said method further comprises contacting said pest with a second protein of approximately 15kDa.

25. A pesticidal protein having the amino acid sequence of SEQ ID NO:3.
<110> Mycogen Corporation

<120> Plant-Optimized Polynucleotides Encoding Approximately
15 kDa and Approximately 45 kDa Pesticidal Proteins

<130> MA723/4X

<140>
<141>

<150> 60/105,408
<151> 1998-10-23

<150> 60/105,359
<151> 1998-10-23

<160> 6

<170> PatentIn Ver. 2.1

<210> 1
<211> 357
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Bacillus thuringiensis toxin gene

<400> 1
atgtccgccc gcgaggtgca cctcgagatc aacaacaaga cccgccacac cctccagctc 60
gaggacaaga ccacgctccc cgagcgcaggg ggcccacct cccgaccaaa cgtgccccgc 120
gacaccatca agacgttccgt ggcggagtcg cacggcttca tgacggccgt cgagggcatc 180
atctacttcc cctgtaaccgg ccagcgcggag atctccctcc acctcgacaa ccctacatc 240
ggctccaaaca agtgccaggg tctctccgac aagccccaggt acaggtgtat cacccagttc 300
ggctcgcggag acaagtcctca cgtgaacctc acacccgca aagtgctccct ccgcctc 357

<210> 2
<211> 357
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Bacillus thuringiensis toxin gene

<400> 2
atgtcggccc gcaggtgca catcggatac aacaacaaga cccgccacac cctccagctc 60
gaggacaaga ccaagctctc ggccggcagg tggcgcacct cccccaccaaa cgtgccccgc 120
gacaccatca agaagttcgt ggccgagttcc caagggcttca tgacggcgtgc gagggcactc 180
atctactttct cctgtaacgg ggcagccgag atctccttccc acttcgacaa ccgtcacatc 240
ggctccaaaca agtccgacgg ctcctccgac aagcccgagat acaggtgatat ccctccccgtcc 300
ggctcgggca acaagttccca cgtgacctaac acatccacgac ccgtcctct ccgcctc 357

</210> 3
</211> 119
</212> PRT
</213> Artificial Sequence

</220>
</223> Description of Artificial Sequence: Toxin encoded by synthetic Bacillus thuringiensis gene

</400> 3
Met Ser Ala Arg Glu Val His Ile Glu Ile Asn Asn Lys Thr Arg His
1 5 10 15

Thr Leu Gln Leu Glu Asp Lys Thr Lys Leu Ser Gly Gly Arg Trp Arg
20 25 30

Thr Ser Pro Thr Asn Val Ala Arg Asp Thr Ile Lys Thr Phe Val Ala
35 40 45

Glu Ser His Gly Phe Met Thr Gly Val Glu Gly Ile Ile Tyr Phe Ser
50 55 60

Val Asn Gly Asp Ala Glu Ile Ser Leu His Phe Asp Asn Pro Tyr Ile
65 70 75 80

Gly Ser Asn Lys Ser Asp Gly Ser Ser Asp Lys Pro Glu Tyr Glu Val
85 90 95

Ile Thr Gln Ser Gly Ser Gly Asp Lys Ser His Val Thr Tyr Thr Ile
100 105 110

Gln Thr Val Ser Leu Arg Leu
115

</210> 4
</211> 1155
</212> DNA
</213> Artificial Sequence

</220>
</223> Description of Artificial Sequence: Synthetic
Bacillus thuringiensis toxin gene

<400> 4
atgctgaca ccacaaggt gtacgagtc tccaacctcg ccacggcct cacacacctc 60
acctactctt cctcagcga ctcggcgtgt tccctcatgt ccaagaagga cggagcatc 120
gacgactaca acctcaagtg tgttctcttc cggatgaca acaaccgta catcaacctc 180
tctacgaggc ccaccaactg caaggtgtgg aacgtgaaga acgacaagat cacagtgtcc 240
acctactctt ccaccaactccg tgcagagac agggcggatc acctcctctc 300
atcatccagt ccagcaacgg caaggtgctc acgcggggcgg tggcctgtgc cctccgcatc 360
gtgcgctcga ccagcggttt ccgcagacag tccaaccagc aatggaacct caccccggtg 420
cagacactcc agctcctccga gaagccgaag atcgcagagat cgcctcaagcc ccaccggag 480
tacctcagga cggcacaacat caacccgaag accaccaccgc agctcattgg cttgacccctc 540
gtgcgtgcgtc tctatggtgaa cgcctccaga atcgcagagat ccaccggag 600
ccgtactcaca tcttacagaa atacaagtaacc tgggaccttc ccacgggtcc cacagttgcctc 660
tctccccgc accagaagcg cagctcagcct ctacgagttgg gcacccgaga gaaccgagaag 720
accaccatac tcaaccacgt gggctcgtcg atcaacactcg acctcgggggt ggaagttcaca 780
gtgcggaggg tggcggcggg ccagggcagat cacgacccgaca gggcctgtaag 840
gtggagtact ccacccgacg caagatcagt accaagtcg aggagctc cgagatcgac 900
aaccgccacg cagcgcctcg gacccctctcct ctccttctcg ccactccggtg 960
taccgcgaca cggcggaccc gaccaagatc atggcactcg agacccgga ccacgcaacc 1020
tacaccccttc cttccttcag ccaccaacaag gaggcctgct cttgcttgac ccaccacactc 1080
tacgaggaggg tggagggagat cagcaagatc cccgaagcac ccctcctcagat gctcaagaag 1140
cacacccgaag 1155

<210> 5
<211> 369
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Bacillus thuringiensis toxin gene

<400> 5
atgtccgccc gcgaggtgca cactgcgctg aacaacaaga cccgcacac cctccagctg 60
gaggacaaga ccaagctcga cggccgccagg tggccgacct ccccgaccaa cggtgccaac 120

gaccagatca agaccttctg tggccgaatcc aacggcttca tgacccgacac cgagggcacc 180

atctactacct ccataacagg cgaggccgag atccagctctt acttcgacaa cccgctgcc 240

ggtcctcaaca aatagcagcg ccactccaaac aagttccagt acggacatct caccagggc 300

ggtcctcgcga accagtcctca cggtacctca accatccaga ccaacctctc ccggctacct 360

cacaagtcc

369

<210> 6
<211> 1149
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Bacillus thuringiensis toxin gene

<400> 6
atgctctgaca ccaacaagtt gtacgagatc agcaaccacg ccaacgcct ctaacgcgcc 60

acctacctct ccctgcaagca cttcgccgctgt ttccctctga acaagaacga cgacgacatc 120

gacgactaca actcaagtgc gttcctcttc cccgatcagc acggacatgt catccatcaacc 180

tctctacgcgg ccaacaactg caaggttggtg aacgctgaaca acggacaagat caacgtgctc 240

acctactcct ccaaccaactc atccagagag tggcagatca aggccacagg cttctctctac 300

gtgatcaggct tgtgagccag ccaagttcgc ccccgccgca cccggccagc cctcgccctc 360

atccgctcaca cgcagctgct ctcctccaca accgcagatgc aatgcacacct gacgctctgtg 420

cagaccatcc agctccgccca acggccgatc atccgacaca acgtcagagaa ctacccgaaa 480

tactctccga cggcacaatc cggccaggc acctccggcg aagttcctgg cttggactctc 540

gtgccgtgaca tacagtgaa cggacccgac atccgacaga aaacccgagat caagaccacc 600

ccgtactaca tctctcaagaa acctccagatc tgccagaggg cctgctcttc ccaagctcgc 660

tccgccccgct cgcagagaaa gttctatcacc tacagtggg gcacagagat cggcagaag 720

accacacatca tcaacacctc cggcctcag atcaacactc gcagcttcgat cgaaggctac 780

atccggaggg tggcgcggcgggt taccgacagc atcaagccctg acgcttcaac gcagctcagac 840

atcagactct cccaacgagc gaagatcagt gagaagctcc agggctctgc gaaagctccgac 900

aacccgaccgg accagtctcag ggtttctcctg ccatcactc ccgctgccgg cctggagccg 960
tacctaca aaggtcgcga gatcgcactc atgcagatcc agacctcgcga caacgacacc 1020
tacaacgtga cctctaccc gaaccaaccag cagccctgc tgttgtgac caaccaactcc 1080
tacgaggagg tgtgaggagat caccaacatc cccgagctca ccctcaagaa gctcaagaag 1140
tactacttc 1149
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
<th>Application No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>C12N15/32</td>
<td>A01N63/02</td>
</tr>
<tr>
<td></td>
<td>C12N15/82</td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>C12N</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>see SEQ ID NO: 32 and 44 (pp. 54 and 65) abstract; claims 24-26,109-112; examples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3,6,13,14 page 4 page 13</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>ELY S: "THE ENGINEERING OF PLANTS TO EXPRESS BACILLUS THURINGIENSIS DELTA-ENDOTOXINS"</td>
<td>1-25</td>
</tr>
<tr>
<td></td>
<td>ENTWISTLE, P. ET AL. (EDS.): 'BACILLUS THURINGIENSIS, AN ENVIRONMENTAL BIOPESTICIDE: THEORY AND PRACTICE.' , 1993, pages 105-124, XP002054693</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHICHESTER, GB, WILEY & SONS page 114 page 121</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filling date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

10 April 2000

Date of mailing of the international search report

17/04/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV RIJKWIJK
Tel. (+31-70) 340-2040, Tx. 31 651 epos nl,
Fax: (+31-70) 340-2058

Authorized officer

Oderwald, H
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 9740162 A</td>
<td>30-10-1997</td>
<td>AU 2804197 A</td>
<td>12-11-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2251560 A</td>
<td>30-10-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0914439 A</td>
<td>12-05-1999</td>
</tr>
</tbody>
</table>