(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 102365385 B
(45) 授权公告日 2014.07.30

(21) 申请号 201080014062.8
(22) 申请日 2010.03.26
(30) 优先权数据
2009-078264 2009.03.27 JP
2009-238112 2009.10.15 JP
(85) PCT国际申请进入国家阶段日
2011.09.27

(86) PCT国际申请的申请数据
PCT/JP2010/055329 2010.03.26

(87) PCT国际申请的公布数据

(73) 专利权人 吉田和一日本株式会社
地址 日本东京

(72) 发明人 高见英生 矢作政隆

(74) 专利代理机构 中原信达知识产权代理有限责任公司 11219
代理人 王海川 穆德骏

(51) Int. Cl.
G23C 14/34 (2006.01)
C246 35/46 (2006.01)
G11B 7/24 (2013.01)
G11B 7/2548 (2013.01)
G11B 7/2578 (2013.01)
G11B 7/26 (2006.01)

(56) 对比文件
JP 特开 2005-256087 A, 2005.09.22,
KR 1020060083863 A, 2006.07.21,
CN 101496104 A, 2009.07.19,
US 2008/0271988 A1, 2008.11.06,

审查员 刘化然

(54) 发明名称
Ti-Nb系氧化物烧结体激光射靶、Ti-Nb系氧化物薄膜及该薄膜的制造方法

(57) 摘要
本发明涉及一种Ti-Nb系氧化物烧结体激光射靶，其特征在于，含有钛（Ti）、铌（Nb），其余为氧和不可避免的杂质。Ti与Nb的原子比为0.39≤（Nb/(Ti+Nb)）≤0.79。本发明的主要课题在于高折射率且具有低光系数的Ti-Nb系氧化物烧结体激光射靶、使用该靶得到Ti-Nb系氧化物薄膜，以及可以进行高速成膜。该薄膜的透射率优良，反射率下降及变动少，作为在光信息记录介质的干涉膜，保护膜或光记录介质的构成层的一部分中使用的薄膜有用，并且也可以应用于玻璃衬底，即作为热射线反射膜、防反射膜、干涉滤光片使用。
1. 一种 Ti-Nb 系氧化物烧结体溅射靶，其特征在于，含有钛 (Ti)、铌 (Nb)，其余为氧和不可避免的杂质，可以通过 XRD 测定确认 TiO_2 和 Nb_2O_5 的中间化合物 TiNb_2O_5 的存在，Ti 与 Nb 的原子比为 0.39 ≤ (Nb/(Ti+Nb)) ≤ 0.79，相对密度为 90% 以上。

2. 一种 Ti-Nb 系氧化物烧结体溅射靶，其特征在于，含有钛 (Ti)、铌 (Nb)，其余为氧和不可避免的杂质，可以通过 XRD 测定确认 TiO_2 和 Nb_2O_5 的中间化合物 TiNb_2O_5 的存在，Ti 与 Nb 的原子比为 0.57 ≤ (Nb/(Ti+Nb)) ≤ 0.75，相对密度为 90% 以上。

3. 一种 Ti-Nb 系氧化物薄膜，其特征在于，含有钛 (Ti)、铌 (Nb)，其余为氧和不可避免的杂质，Ti 与 Nb 的原子比为 0.39 ≤ (Nb/(Ti+Nb)) ≤ 0.79，在 400～410nm 波长范围中的折射率超过 2.5，并且消光系数为 0.01 以下。

4. 一种 Ti-Nb 系氧化物薄膜，其特征在于，含有钛 (Ti)、铌 (Nb)，其余为氧和不可避免的杂质，Ti 与 Nb 的原子比为 0.46 ≤ (Nb/(Ti+Nb)) ≤ 0.79，在 400～410nm 波长范围中的折射率超过 2.5，并且消光系数为 0.01 以下。

5. 一种 Ti-Nb 系氧化物薄膜，其特征在于，含有钛 (Ti)、铌 (Nb)，其余为氧和不可避免的杂质，Ti 与 Nb 的原子比为 0.57 ≤ (Nb/(Ti+Nb)) ≤ 0.75，在 400～410nm 波长范围中的折射率超过 2.5，并且消光系数为 0.01 以下。

6. 如权利要求 3～5 中任一项所述的 Ti-Nb 系氧化物薄膜，其特征在于，将在玻璃衬底上溅射成膜的样品在 80℃、80% 环境下保存 200 小时，由该环境保存前后的折射率差求出的折射率变动为 0.012 以下，消光系数为 0.01 以下。

7. 如权利要求 3～5 中任一项所述的 Ti-Nb 系氧化物薄膜，其特征在于，将在玻璃衬底上溅射成膜的样品在 80℃、80% 环境下保存 200 小时，由该环境保存前后的折射率差求出的折射率变动为 0.01 以下，消光系数为 0.001 以下。

8. 如权利要求 3～5 中任一项所述的 Ti-Nb 系氧化物薄膜，其特征在于，为在光干涉膜、保护膜或光记录介质的构成层的一部分中使用的薄膜。

9. 权利要求 3～8 中任一项所述的 Ti-Nb 系氧化物薄膜的制造方法，其特征在于，使用混合有 0.5～5% 氧气的包含氢气和氧气的混合溅射气体进行溅射，由此在基板上形成膜。
Ti-Nb 系氧化物烧结体溅射靶，Ti-Nb 系氧化物薄膜及该薄膜的制造方法

技术领域
[0001] 本发明涉及能够高速形成高折射率、并且具有低消光系数的薄膜的 Ti-Nb 系氧化物烧结体溅射靶、Ti-Nb 系氧化物薄膜及该薄膜的制造方法。

背景技术
[0002] 近年来，开发了作为在不需要磁头的情况下可以擦写的高密度光信息记录介质的高密度记录光盘技术，并将其迅速商品化。特别是 CD-RW，作为可以擦写的 CD 于 1977 年上市，目前已成为最为普及的相变型光盘。该 CD-RW 的擦写次数为约 1000 次。
[0003] 另外，作为 DVD 用开发的 DVD-RW 也已商品化，该光盘的层结构基本上与 CD-RW 相同或类似，其擦写次数为约 1000 次～约 10000 次。
[0004] 这些光盘通过照射光束使记录材料的透射率、反射率等产生光学变化，从而进行信息的记录、复制、写入，并且是迅速普及的电子部件。
[0005] 一般而言，CD-RW 或 DVD-RW 等使用的相变型光盘，具有如下四层结构：用 ZnS • SiO₂ 等高熔点电介质的保护层夹住 Ag-In-Sb-Te 系或 Ge-Sb-Te 系等的记录薄膜层的两侧，并进一步设置有银或银合金或者铝合金反射膜。另外，为了提高重复次数，根据需要在存储层和保护层之间加有界面层。
[0006] 反射层和保护层除了要求使记录层的非晶部与结晶部的反射率差增大的光学功能以外，还要求记录薄膜的耐湿性或防止热变形的功能，以及记录时的热条件控制的功能（参考非专利文献 1）。
[0007] 最近，为了可以实现大容量、高密度的记录，提出了单面双层光记录介质（参考专利文献 1）。在该专利文献 1 中，沿激光的入射方向具有在衬底 1 上形成的第一信息层和在衬底 2 上形成的第二信息层，两信息层由中间层以信息膜相互面对的方式粘贴在一起。
[0008] 此时，第一信息层包括记录层和第一金属反射层，第二信息层由第一保护层、第二保护层、记录层和第二金属反射层构成。此外，也可以任选形成用于免受划伤、污垢等的硬涂层、热扩散层等层。另外，对于这些保护层、记录层、反射层等，提出了多种材料。
[0009] 由高熔点电介质形成的保护层需要；对升温冷却而产生的反复热应变具有耐受性，并且这些热影响不会影响反射膜和其它部件，并且其本身薄，低反射率并且具有不变质的韧性。在这种意义上，电介质保护层具有重要性。另外，当然，记录层、反射层、干涉膜等也在上述的 CD、DVD 等电子部件中发挥各自的功能，在该意义上它们同样重要，这一点是毫无疑问的。
[0010] 这些多层结构的各薄膜，通常通过溅射法形成。该溅射法使用的原理如下：将由正极和负极组成的衬底与靶相对，在惰性气体氛围下在这些衬底与靶间施加高电压以产生电场，此时电离的电子与惰性气体撞击形成等离子体，该等离子体中的阳离子撞击到靶（负极）表面而击出靶构成原子，该飞出的原子附着到相对的衬底表面形成膜。
[0011] 在该方面，提出了使用氧化钛（TiOx）的靶作为用于形成热射线反射膜、防反射膜
的溅射靶（参考专利文献 2）。此时，为了使溅射时的放电稳定，将电阻率值设定为 0.35 Ω cm 以下，可以进行 DC 溅射，可以得到高折射率的薄膜。但是，由于膜的透射率降低，因此采取了进一步引入氧将氧的含量调节为 35 重量%以上的方案。

[0012] 不过，该氧的引入存在变种，存在成膜速度降低的缺点。因此，尝试添加其它物质以提高成膜速度，不过，作为要求折射率高、吸收率波动的精密光学部件或电子部件的应用，特别是在 400nm 附近的短波长侧成为问题。因此，氧化钛靶的成膜速度降低仍未解决。

[0013] 此外，提出了形成由氧化钛和氧化镍或氧化铝构成的膜作为高折射率电介质膜的技术（参考专利文献 3）。但是，此时，将镍与镍的合金或混合物作为靶，通过在含氧化气氛中（反应性）进行溅射而形成。结果，据记载所得高折射率电介质膜的折射率为 2.5 以下。此时，产生通过反应溅射难以得到稳定的膜特性的问题，以及在光记录介质中很重要的消光系数提高的问题。

[0014] 对此，公开了氧化钛系（氧化钛和氧化铝）薄膜的光记录介质用薄膜中，将折射率调节为 2.5 以上的技术（参考专利文献 3）。此时，采取了通过添加氧化铝降低电阻率，而实现 DC 溅射的方法，但是，即使这样作为光记录介质用途仍然不充分。

[0015] 此外，在光记录介质用薄膜中，存在记载了许多氧化物组合的专利文献（专利文献 4、专利文献 5）。这些情况下，光记录介质用薄膜的折射率被认为是重要的，但是对其完全没有涉及。即使考虑许多的组合，折射率也根据组合多种多样，从而推测未进行充分的研究。另外，这些文献中使用溅射靶制作薄膜，薄膜的性质受到靶成分组成及该靶特性的影响。但是，这些文献中未对其进行公开，仅仅是简单的组合列，因此其技术内容的公开对于作为参考资料而言仍不充分。

[0016] 现有技术文献
[0017] 专利文献
[0018] 专利文献 1：日本特开 2006-79710 号公报
[0019] 专利文献 2：日本专利第 3836163 号公报
[0020] 专利文献 3：日本特开 2002-277630 号公报
[0021] 专利文献 4：日本特开 2003-13201 号公报
[0022] 专利文献 5：日本特开 2004-158145 号公报
[0023] 专利文献 6：日本特开 2009-157990 号公报
[0024] 非专利文献
[0025] 非专利文献 1：技术杂志《光学》26 卷第 1 期，9 ～ 15 页

发明内容

[0026] 鉴于上述问题，本发明以提高 Ti 系氧化物烧结体溅射靶的成膜速度为主要目的，课题在于通过使用该改良靶在衬底上溅射形成 Ti 系氧化物薄膜，得到高折射率，具有低消光系数，并且透射率优良，反射率的下降少，作为光信息记录介质的干涉膜或保护膜有用的薄膜。另外，可以应用于玻璃衬底，即作为热射线反射膜、防反射膜、干涉滤光片使用。

[0027] 为了解决上述课题，本发明人进行了广泛深入的研究，结果发现，在氧化钛中添加氧化铝是极其有效的，由此能够得到可以显著提高 Ti 系氧化物烧结体靶的溅射成膜速度，并且不损害作为光信息记录介质的干涉膜或保护膜的特性，可以保持透射率，防止反射率
说明书

下降的材料。
[0028] 基于该发现，本发明提供如下发明。
[0029] 1) 一种 Ti-Nb 系氧化物烧结体溅射靶，其特征在于，含有钛 (Ti)、铌 (Nb)，其余
为氧和不可避免的杂质，含氧化 TiO₂ 和 Nb₂O₅ 的中间化合物 TiNb₂O₇，Ti 与 Nb 的原子比为
0.39 ≤ (Nb/(Ti+Nb)) ≤ 0.79。
[0030] 2) 一种 Ti-Nb 系氧化物烧结体溅射靶，其特征在于，含有钛 (Ti)、铌 (Nb)，其余
为氧和不可避免的杂质，含氧化 TiO₂ 和 Nb₂O₅ 的中间化合物 TiNb₂O₇，Ti 与 Nb 的原子比为
0.57 ≤ (Nb/(Ti+Nb)) ≤ 0.75。
[0031] 本发明还提供如下发明。
[0032] 3) 一种 Ti-Nb 系氧化物薄膜，其特征在于，含有钛 (Ti)、铌 (Nb)，其余为氧和不可
避免的杂质，Ti 与 Nb 的原子比为 0.39 ≤ (Nb/(Ti+Nb)) ≤ 0.79，在 400 ～ 410nm 波长范围
中的折射率大于 2.5，并且消光系数为 0.01 以下。
[0033] 4) 一种 Ti-Nb 系氧化物薄膜，其特征在于，含有钛 (Ti)、铌 (Nb)，其余为氧和不可
避免的杂质，Ti 与 Nb 的原子比为 0.46 ≤ (Nb/(Ti+Nb)) ≤ 0.79，在 400 ～ 410nm 波长范围
中的折射率大于 2.5，并且消光系数为 0.01 以下。
[0034] 5) 一种 Ti-Nb 系氧化物薄膜，其特征在于，含有钛 (Ti)、铌 (Nb)，其余为氧和不可
避免的杂质，Ti 与 Nb 的原子比为 0.57 ≤ (Nb/(Ti+Nb)) ≤ 0.75，在 400 ～ 410nm 波长范围
中的折射率大于 2.5，并且消光系数为 0.01 以下。
[0035] 6) 上述 3) ～ 5) 中任一项所述的 Ti-Nb 系氧化物薄膜，其特征在于，折射率变动为
0.012 以下，消光系数为 0.01 以下。
[0036] 7) 上述 3) ～ 5) 中任一项所述的 Ti-Nb 系氧化物薄膜，其特征在于，折射率变动为
0.01 以下，消光系数为 0.001 以下。
[0037] 8) 上述 3) ～ 7) 中任一项所述的 Ti-Nb 系氧化物薄膜，其特征在于，其为在光干涉
膜、保护膜或光记录介质的构成层的一部分中使用的薄膜。
[0038] 9) 上述 3) ～ 8) 中任一项所述的 Ti-Nb 系氧化物薄膜的制造方法，其特征在于，使
用混合有 0.5 ～ 5%氧的包含氢气和氧气的混合溅射气体进行溅射，由此在基板上形成
膜。
[0039] 发明效果
[0040] 如上所述，本发明可以得到高折射率，并且具有低消光系数的 Ti-Nb 系氧化物薄
膜，该薄膜通过使用 Ti-Nb 系氧化物烧结体靶进行溅射，具有可以提高成膜速度的优良特
性。通过本发明得到的薄膜作为光信息存储介质的膜，层具有显著效果。本发明的薄膜的
透射率优良，反射率的下降少，作为光信息存储介质的干涉膜或保护膜特别有用。
[0041] 高熔点电介质的保护层需要，对升温和冷却产生的反复热应力具有耐受性，并且
这些热影响不会影响反射膜和其它部位，并且其自身薄，低反射率并且具有不变质的韧性，
本申请发明的 Ti-Nb 系氧化物薄膜具备能够应用于这种材料的特性。

具体实施方式
[0042] 本发明的 Ti-Nb 系氧化物烧结体溅射靶，含有钛 (Ti)、铌 (Nb)，其余为氧和不可
避免的杂质，含氧化 TiO₂ 与 Nb₂O₅ 的中间化合物 TiNb₂O₇，Ti 与 Nb 的原子比为 0.39 ≤ (Nb/

(Ti+Nb) \leq 0.79。由此，可以得到比抵抗为 100Ωcm 以下的 Ti–Nb 系氧化物烧结体靶。靶中的中间化合物 TiNb_2O_7 可以通过 XRD 测定进行确认。

[0043] 在靶的制造阶段，钛为 TiO_2 形式，铌为 Nb_2O_5 形式，调节它们的摩尔比制作具有上述原子比率的靶。而且，生成氧化物的中间化合物 TiNb_2O_7。因此，氧含量成为这些靶制作阶段中的成分比率。在靶的制造阶段，有时产生氧空位，这些氧空位是降低电阻率的重要因素，为优选的形式。但是，当然并非是期待该氧空位的成分比率。

[0044] 通过使用上述本申请发明的靶进行溅射，可以得到基本具有相同组成的 Ti–Nb 系氧化物薄膜。即，可以得到含有钛 (Ti)、铌 (Nb)，余为氧和不可避免的杂质，Ti 与 Nb 的原子比为 0.39 \leq (Nb/(Ti+Nb)) \leq 0.79 的 Ti–Nb 系氧化物薄膜。

[0045] 溅射时，作为通常的溅射气体，使用添加有氧气的氮气，因此，靶的组成和薄膜的组成有时稍有不同，但是，这并非本质的问题。即，只要得到含有钛 (Ti)、铌 (Nb)，余为氧和不可避免的杂质，Ti 与 Nb 的原子比为 0.39 \leq (Nb/(Ti+Nb)) \leq 0.79 的 Ti–Nb 系氧化物薄膜，就可以得到显示本申请发明的特性的薄膜。

[0046] 钛 (Ti) 与铌 (Nb) 的成分组成的比例，各自处于互补关系，在任一方作为主成分的情况下，都可以得到同样的特性。即，可以具有作为在干涉膜、保护膜或光信息记录介质的构成层的一部分中使用的薄膜的功能。

[0047] 关于本申请发明的 Ti–Nb 系氧化物膜溅射靶，Nb/(Ti+Nb) 的下限值为 0.39，上限值为 0.79。这是因为，下限值低于 0.39 时成膜速度下降，添加效果少。另外，上限值超过 0.70 时，溅射膜的折射率降低，不能得到具有目标特性的薄膜。成膜速度具有随 Nb 量增加而提高的倾向。

[0048] 在欲使薄膜的折射率变动更稳定的情况下，本申请发明的 Ti–Nb 系氧化物薄膜优选为：含有钛 (Ti)、铌 (Nb)，余为氧和不可避免的杂质，Ti 与 Nb 的原子比为 0.46 \leq (Nb/(Ti+Nb)) \leq 0.79 的范围。

[0049] 这是因为，下限值小于 0.46 时，折射率的变动量增大，添加效果少。另外，上限值超过 0.79 时，溅射膜的折射率降低，因此不能得到具有目标特性的薄膜。折射率的变动具有随 Nb 量增加而提高的倾向。

[0050] 在欲使薄膜的非晶稳定性进一步提高的情况下，优选：含有钛 (Ti)、铌 (Nb)，余为氧和不可避免的杂质，Ti 与 Nb 的原子比为 0.57 \leq (Nb/(Ti+Nb)) \leq 0.75 的范围。使用该成分组成的靶作为此时使用的靶进行溅射，由此可以实现。

[0051] 薄膜的非晶稳定性如此提高的理由尚不明确，考虑是中间化合物 TiNb_2O_7 难以容易地结晶的原因造成的。为了提高薄膜的非晶稳定性，靶中的中间化合物 TiNb_2O_7 的存在是重要的。

[0052] 这些薄膜可以得到在 400 ～ 410 nm 波长范围中的折射率超过 2.5，并且消光系数为 0.01 以下的膜。另外，可以得到在 400 ～ 410 nm 波长范围中的消光系数为 0.005 以下，进一步消光系数为 0.001 以下的薄膜。

[0053] 上述 400 ～ 410 nm 波长范围，是蓝色激光的波长范围，在该波长范围中，如上所述，折射率超过 2.5，优选该折射率高。另外，可以实现消光系数为 0.01 以下、0.005 以下、进一步 0.001 以下，该消光系数越低，越适合进行多层化。该 Ti–Nb 系氧化物薄膜作为干涉膜或保护膜有用，特别是作为光记录介质有用。
[0054] 此时的溅射，通过以在溅射气体中引入氧气进行调节，可以得到消光系数低的薄膜。制造 Ti-Nb 系氧化物时，期望使用混合有 0.5～5%氧气的包含氢气和氧气的混合气体进行溅射。由此，可以在衬底上形成消光系数更低的 Ti-Nb 系氧化物薄膜。

[0055] 如此地在氩气溅射气体中引入氧气进行溅射，因此，本发明的烧结体靶有时与薄膜的成分组成相似但不相同。但是，靶与薄膜的成分组成的差异很小，只要可以得到 Ti 与 Nb 的原子比为 0.39 ≤ (Nb/(Ti+Nb)) ≤ 0.79 的 Ti-Nb 系氧化物薄膜，就可以得到显示本申请发明的特性的薄膜。

[0056] 为了提高溅射效率，需要靶的导电性，本申请发明的靶具备该条件，可以进行 DC（直流）溅射。

[0057] 烧结体溅射靶中存在的 TiN2O3 相以微粒形式均匀分散能够发挥防止破裂的效果。可以说期望平均粒径为 20 μm 以下。使用该烧结体溅射靶，在含有 0.5～5%氧气的氢气氛围中进行溅射，可以在衬底上形成 Ti-Nb 系氧化物薄膜。

[0058] 为了制造靶，作为原料，期望使用高纯度（通常 4N 以上）、平均粒径 10 μm 以下（优选平均粒径 1 μm 以下）的氧化钛（TiO2）及高纯度（通常 4N 以上）、平均粒径 10 μm 以下（优选平均粒径 5 μm 以下）的酸化铌（Nb2O5）粉末。将它们以达到本申请发明的组成比的方式进行调合。然后，将成分调节后的这些粉末使用湿式球磨机或干混机（混合机）进行混合。

[0059] 混合后，填充到碳质模具中，然后进行热压。热压的条件可以根据组成成分而变化，通常在 900 ～ 1300℃的范围内，面压力 100 ～ 500kgf/cm² 的范围内进行。但是，该条件表示代表性条件，其选择是任意的，没有特别限制。烧结后，对烧结体进行机械加工精加工为靶形状。这样制作的靶，可以具有 90%以上的相对密度。

[0060] 另外，期望使用上述湿式球磨机或干混机（混合机）混合后，在 1000 ～ 1300℃进行煅烧，再用湿式球磨机处理约 12 小时～约 25 小时，微粉碎至粒径 1 μm 以下而制作浆料，用干燥机将该浆料干燥后，进行热压。该工序是推荐用于得到均匀的靶组织的工序。通过以上操作，可以得到具有规定组成的 Ti-Nb 系氧化物烧结体溅射靶。

[0061] 实施例

[0062] 下述，基于实施例和比较例进行说明。另外，本实施例仅仅是例示的优选例子，本申请不受该例子的限制。即，本发明仅由权利要求的范围所限制，本发明中包含的实施例以外的各种变形也包括在本发明中。

[0063] （实施例 1～5）

[0064] 作为原料，准备高纯度（4N）、平均粒径 1 μm 的氧化钛（TiO2）及高纯度（4N）、平均粒径 3 μm 的酸化铌（Nb2O5）粉末，按下表所示的组成比进行调合。然后，将成分调节后的这些粉末使用干混机进行混合，然后在 1000℃煅烧。之后，再用湿式球磨机处理约 20 小时，微粉碎至粒径 1 μm 以下而制作浆料。

[0065] 然后，用干燥机将该浆料干燥，然后填充到碳质模具中进行热压。热压条件是：1200℃，面压力 300kgf/cm²。这样制作的靶，均具有 90%以上的相对密度。

[0066] 通过以上操作，可以得到具有表 1 所示组成的 Ti-Nb 系氧化物烧结体溅射靶。如表 1 所示，靶的电阻率为 0.01 ～ 0.5 Ω cm。对从本烧结体上取的样品进行 XRD 测定，确认存在 TiN2O3 相。
<table>
<thead>
<tr>
<th>部位1</th>
<th>Tl</th>
<th>Nb</th>
<th>Sr</th>
<th>O</th>
<th>Nb (Tl,Nb)</th>
<th>O</th>
<th>Sr</th>
<th>Tl</th>
<th>Nb (Tl,Nb)</th>
<th>O</th>
<th>Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl1</td>
<td>0.39</td>
<td>0.36</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>Tl2</td>
<td>0.57</td>
</tr>
<tr>
<td>Tl3</td>
<td>0.67</td>
</tr>
<tr>
<td>Tl4</td>
<td>0.75</td>
</tr>
<tr>
<td>Tl5</td>
<td>0.79</td>
</tr>
<tr>
<td>Tl6</td>
<td>0.81</td>
</tr>
</tbody>
</table>

然后，使用这样制造的溅射靶，在玻璃衬底上形成溅射膜。溅射条件如表1所示。

![Table Image]
为：Ar气体 -0.5～5％，气体流速：0.5Pa，气体流量：50sccm，溅射功率：500～1000W，在此条件下进行DC溅射。

[0069] 结果，可以看出没有问题地实施DC溅射，该靶确认具有导电性。另外，无溅射中的异常放电。

[0070] 在玻璃衬底上形成1μm的溅射膜。成膜速度，通过EPMA分析得到的膜组成分别如表1所示。

[0071] 测定该溅射膜的折射率和消光系数。折射率和消光系数使用光波长405nm,利用椭圆偏振计测定。

[0072] 另外，折射率变化量通过将在玻璃衬底上溅射成膜的样品在80℃、80%环境下保存200小时，由该环境保存前后的折射率差来求出。

[0073] 这些结果同样如表1所示。

[0074] 关于实施例1，靶组成和薄膜组成中的Ti与Nb的原子比均为0.39,落入本申请发明的0.39＜（Nb/(Ti+Nb)）＜0.79的范围内，为其下限值。结果，电阻率低至0.5Ωcm，成膜速度为2.1Å/秒/kW，为适合本申请发明目的的溅射靶。另外，薄膜的折射率高达2.57，折射率变动量为0.012，稍微不稳定，消光系数为0.005，稍高，可以形成合适的光记录介质的干涉膜或保护膜等。

[0075] 关于实施例2，靶组成和薄膜组成中的Ti与Nb的原子比均为0.57,落入本申请发明的0.39＜（Nb/(Ti+Nb)）＜0.79的范围内。结果，电阻率低至0.01Ωcm，成膜速度高达2.6Å/秒/kW，为适合本申请发明目的的溅射靶。另外，薄膜的折射率高达2.56，折射率变动量为0.007，稳定，消光系数低至0.0001，可以形成合适的光记录介质的干涉膜或保护膜等。

[0076] 关于实施例3，靶组成中Ti与Nb的原子比为0.67，薄膜组成中Ti与Nb的原子比为0.66,落入本申请发明的0.39＜（Nb/(Ti+Nb)）＜0.79的范围内。结果，电阻率低至0.02Ωcm，成膜速度高达2.7Å/秒/kW，为适合本申请发明目的的溅射靶。另外，薄膜的折射率高达2.55，折射率变动量为0.005，稳定，消光系数低至0.0001，可以形成合适的光记录介质的干涉膜或保护膜等。

[0077] 关于实施例4，靶组成中Ti与Nb的原子比为0.75，薄膜组成中Ti与Nb的原子比为0.75,落入本申请发明的0.39＜（Nb/(Ti+Nb)）＜0.79的范围内。结果，电阻率低至0.05Ωcm，成膜速度高达2.9Å/秒/kW，为适合本申请发明目的的溅射靶。另外，薄膜的折射率高达2.55，折射率变动量为0.005，稳定，消光系数低至0.0001，可以形成合适的光记录介质的干涉膜或保护膜等。

[0078] 关于实施例5，靶组成中Ti与Nb的原子比为0.79，薄膜组成中Ti与Nb的原子比为0.79,落入本申请发明的0.39＜（Nb/(Ti+Nb)）＜0.79的范围内。结果，电阻率低至0.03Ωcm，成膜速度高达2.7Å/秒/kW，为适合本申请发明目的的溅射靶。另外，薄膜的折射率高达2.54，折射率变动量为0.004，稳定，消光系数低至0.0001，可以形成合适的光记录介质的干涉膜或保护膜等。

[0079] 关于实施例6，靶组成中Ti与Nb的原子比为0.46，薄膜组成中Ti与Nb的原子比为0.46,落入本申请发明的0.39＜（Nb/(Ti+Nb)）＜0.79的范围内。结果，电阻率低至0.1Ωcm，成膜速度高达2.3Å/秒/kW，为适合本申请发明目的的溅射靶。另外，薄膜的折射
率高达 2.56，折射率变动量为 0.01，稳定，消光系数低至 0.0001，可以形成合适的光记录介质的干涉膜或保护膜等。

[0080] （比较例 1～4）

[0081] 作为原料，与实施例 1 同样准备高纯度 (AN)，平均粒径 1 μm 的氧化钛 (TiO₂) 及高纯度 (AN)，平均粒径 3 μm 的酸化铌 (Nb₂O₅) 粉末，按下表所示的组成比进行调合。

[0082] 然后，将吹成调节后的这些粉末使用干研机进行混合，然后在 1000℃煅烧。之后，再用湿式研磨机处理约 20 小时，微粉碎至粒径 1 μm 而制作浆料。

[0083] 然后，用干燥机将该浆料干燥，然后填充到碳制模具中进行热压。热压条件是：1000～1300℃、压力 300kgf/cm²。这样制作的靶，均具有 90%以上的相对密度。

[0084] 通过使用以上操作，可以得到具有表 1 所示组成的 Ti-Nb 系氧化物烧结体溅射靶。如表 1 所示，靶的电阻率约为 1～100（超过）Ω cm。然后，使用这样制造的溅射靶，在玻璃衬底上形成溅射膜。溅射条件如表 1 所示为：Ar 气体；O₂ (2%) 气体气氛中，气体压力 0.5Pa，气体流量 50sccm，溅射功率 500～1000W，在此条件下进行 DC 溅射。结果，虽然可以实施 DC 溅射，但是成膜速度显著延迟。以下会记载比较例的综合评价。

[0085] 通过实施溅射，在玻璃衬底上形成 500Å 的溅射膜。成膜速度，用 EPMA 分析得到的膜组成分别如表 1 所示。另外，测定该溅射膜的折射率和消光系数。折射率和消光系数使用光波长 405nm，利用椭圆偏振计测定。它们的结果同样如表 1 所示。

[0086] 比较例 1 中，为不含铌 (Nb) 的氧化钛靶，该靶的电阻率高达 100 Ω cm，成膜速度显著降低至 0.85Å/秒/kW，为不适合本申请发明目的的溅射靶。

[0087] 比较例 2 中，Ti 与 Nb 的原子比为 0.01，在本申请发明的 0.39 ≤ (Nb/(Ti+Nb)) ≤ 0.79 的范围内。结果，电阻率高达 80 Ω cm，成膜速度显著低至 0.88Å/秒/kW，为不适合本申请发明目的的溅射靶。

[0088] 比较例 3 中，Ti 与 Nb 的原子比为 0.95，在本申请发明的 0.39 ≤ (Nb/(Ti+Nb)) ≤ 0.79 的范围以外。结果，电阻率为 1 Ω cm，成膜速度为 3.2Å/秒/kW，稍高，但是折射率为 2.48，下降，因此为不适合本申请发明目的溅射靶。

[0089] 比较例 4 中，Ti 与 Nb 的原子比为 0.1，在本申请发明的 0.39 ≤ (Nb/(Ti+Nb)) ≤ 0.79 的范围以外。电阻率为 1.5 Ω cm，成膜速度低至 1.2Å/秒/kW，为不适合本申请发明目的的溅射靶。

[0090] （实施例和比较例的总结）

[0091] 将上述实施例和比较例进行比较发现，如果落入本申请发明的范围内，则均折射率高且稳定，消光系数减小。同样地，溅射靶的各成分如果落入本申请发明的条件下，则得到靶的电阻率均为 100 Ω cm 以下，成膜速度高，膜的非晶性稳定的良好结果。

[0092] 产业实用性

[0093] 本发明涉及 Ti-Nb 系氧化物烧结体溅射靶及使用该靶进行溅射成膜而得到的 Ti-Nb 系氧化物薄膜，通过本发明得到的薄膜为高折射率，并且具有低消光系数，可以作为 Blu-Ray ディスク（注册商标）等电子部件等光信息记录介质的膜层使用。

[0094] 另外，本发明的薄膜同时透射率优良以及反射率的下降少，作为在光信息记录介质的干涉膜、保护膜或光记录介质的构成层的一部分中使用的薄膜特别有用。高熔点电介质的保护层作为需要，对升温及冷却产生的热反复压力具有耐受性，并且这些热影响不会
影响反射膜和其它部位，并且其自身薄，低反射率并且具有不变质的韧性的电介质保护层有用。

【0095】另外，具有这样的特性的材料，可以应用于建筑用玻璃、汽车用玻璃、CRT、等离子体显示器，即可以作为热射线反射膜、防反射膜、干涉滤光片使用。