

[54] PRINT CONTROL LOGIC CIRCUITRY FOR ON-THE-FLY PRINTERS

[75] Inventor: Detlef A. Brodrueck, Northbrook, Ill.

[73] Assignee: Teletype Corporation, Skokie, Ill.

[22] Filed: Oct. 2, 1973

[21] Appl. No.: 402,864

[52] U.S. Cl..... 101/93.14, 340/172.5

[51] Int. Cl..... B41j 7/08

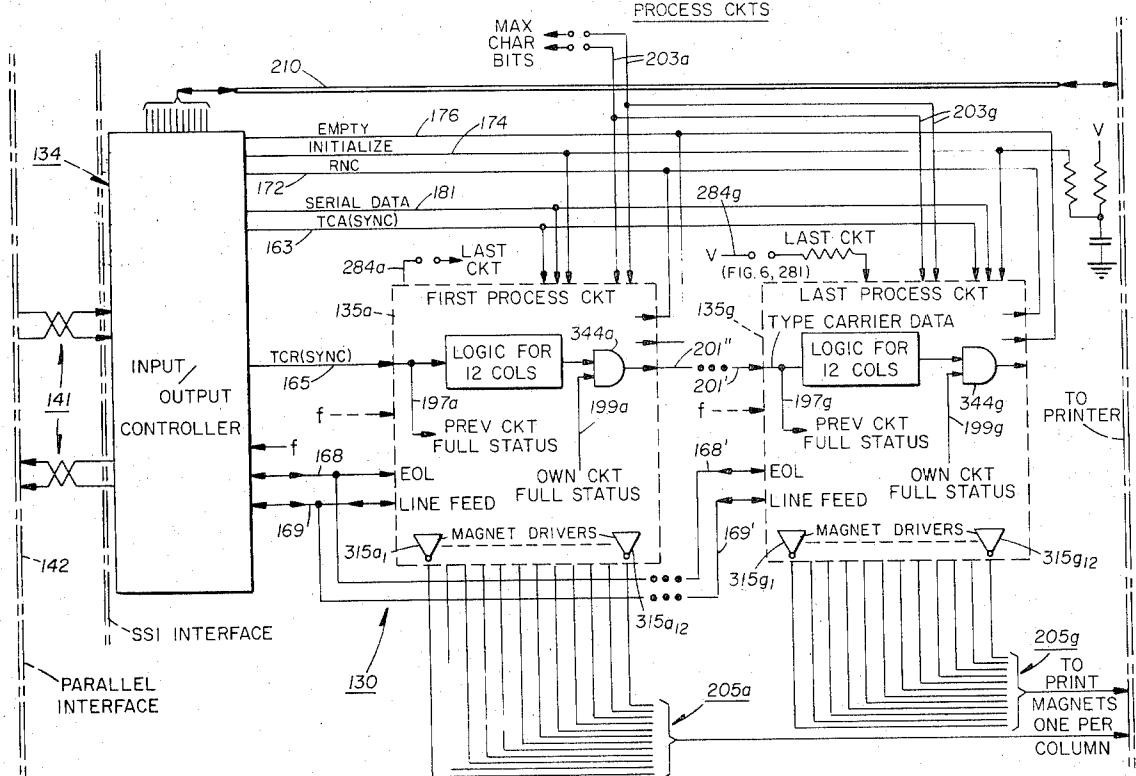
[58] Field of Search..... 101/93 C; 340/172.5

[56] References Cited

UNITED STATES PATENTS

2,993,437	7/1961	Demer et al.	101/93 C
3,289,576	12/1966	Bloom et al.	101/93 C
3,430,210	2/1969	Foure et al.	101/93 C X
3,463,081	8/1969	Levine	101/93 C
3,633,496	1/1972	Kearns	101/930
3,728,688	4/1973	Elmhurst et al.	101/93 C X
3,732,408	5/1973	Bettin	101/93 C X

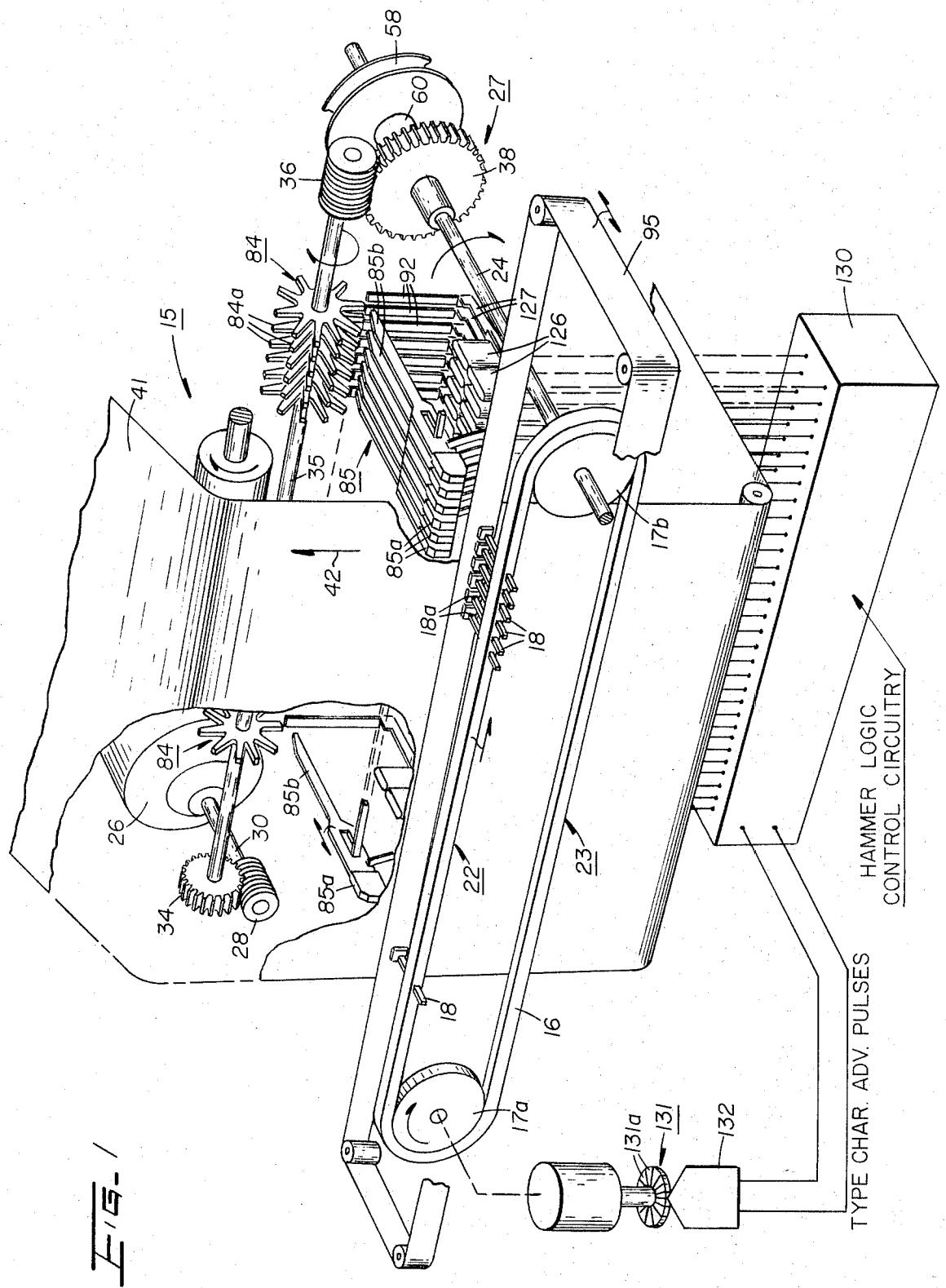
Primary Examiner—Robert E. Pulfrey


Assistant Examiner—Edward M. Coven

Attorney, Agent, or Firm—K. R. Bergum; J. L. Landis

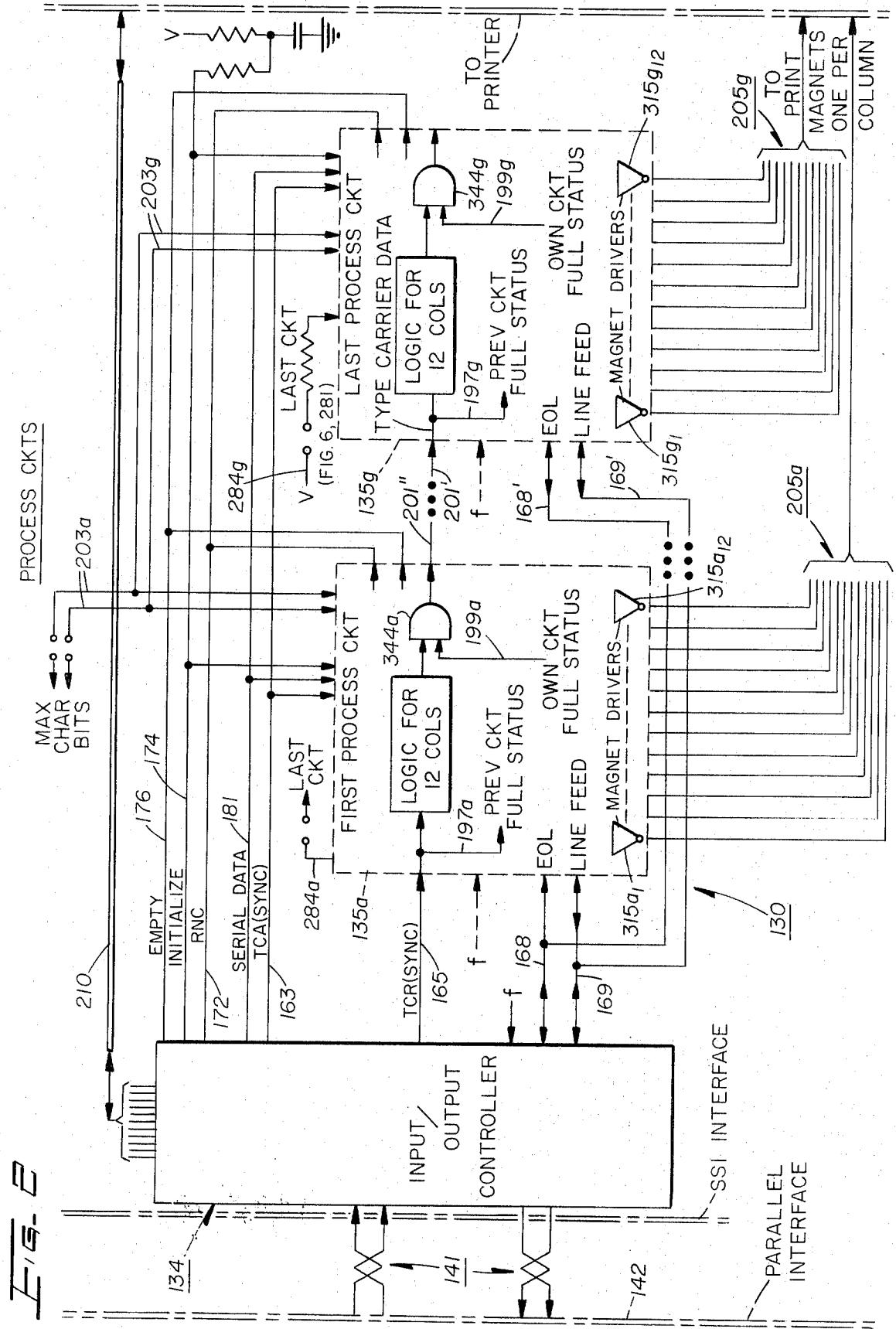
[57] ABSTRACT

Print control logic circuitry for use in high speed "on-the-fly" impact printers, wherein at least one, but preferably a plurality of independent, but interconnected data processing circuit modules, each including a separate free-running memory with logic controlled dual line storage areas, effects sequential character printing in a given line as the print data is being received, and simultaneous therewith allows for the temporary storage of print data for the next adjacent line, when required. Through the utilization of modular construction, each circuit module may advantageously be of identical design, and formed on a single integrated circuit chip, preferably using inexpensive MOS-FET'S exhibiting relatively slow switching speeds, with no sacrifice in printer performance.


30 Claims, 15 Drawing Figures

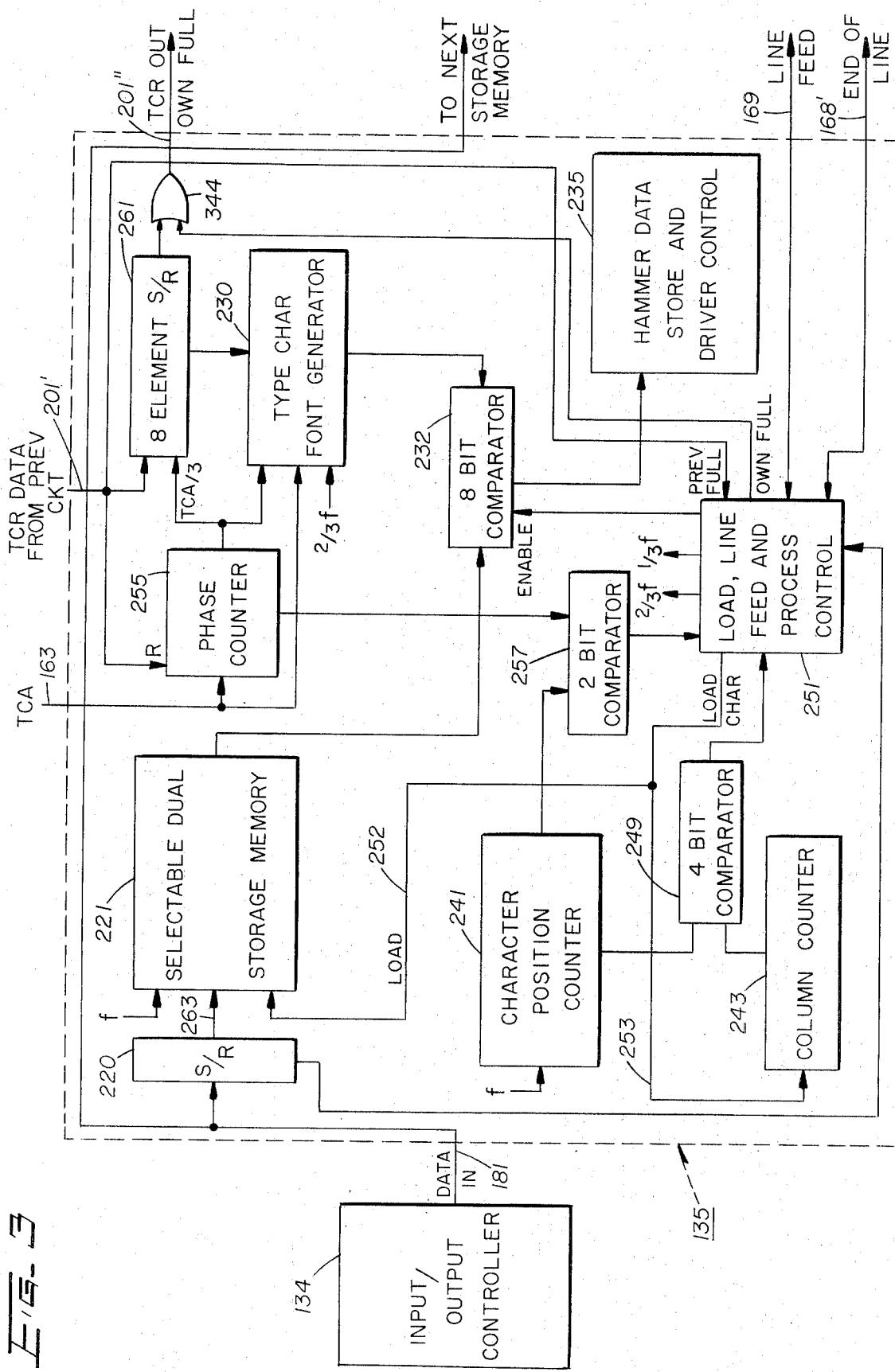
PATENTED NOV 5 1974

3,845,710


SHEET 01 OF 12

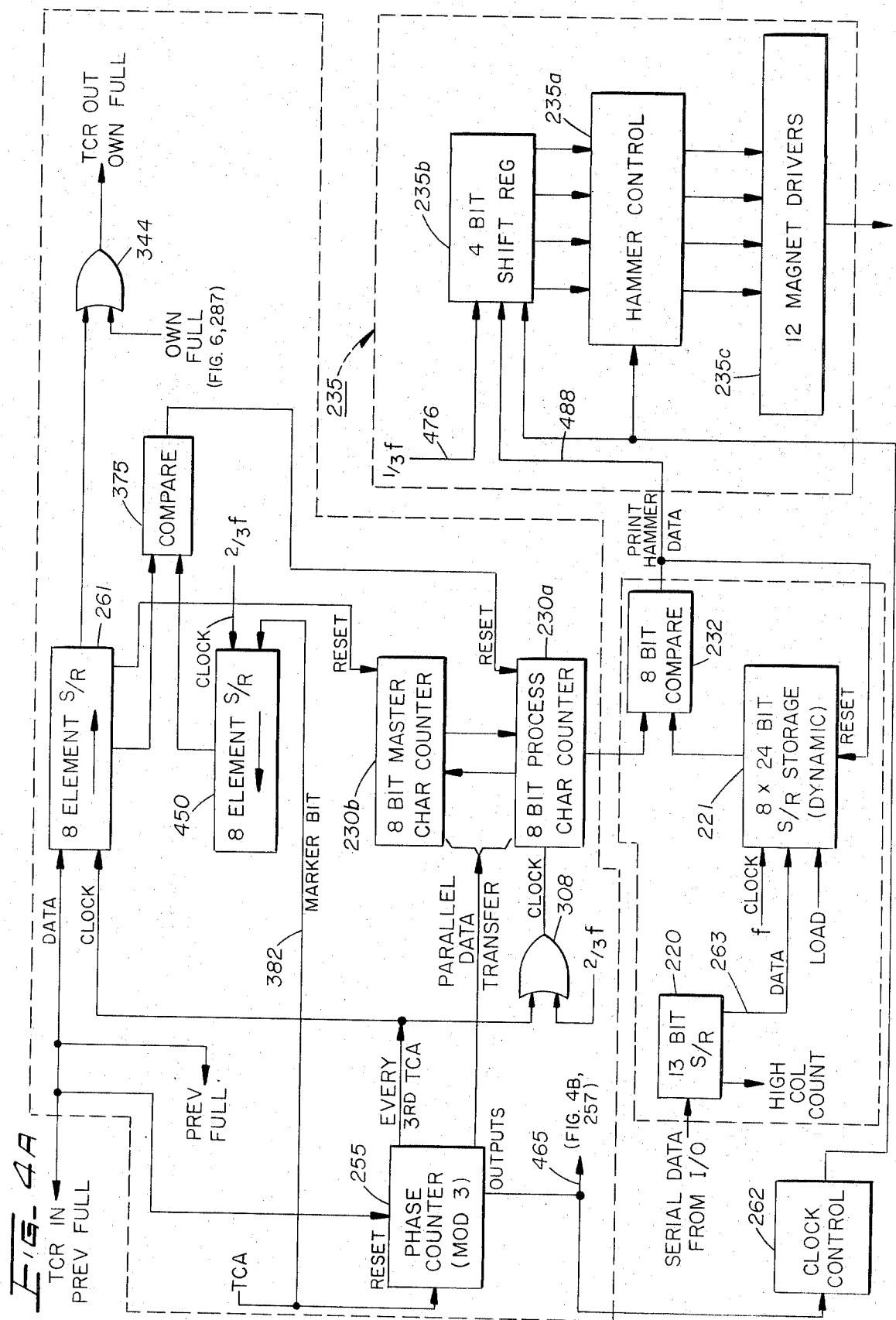
PATENTED NOV 5 1974

3,845,710


SHEET 02 OF 12

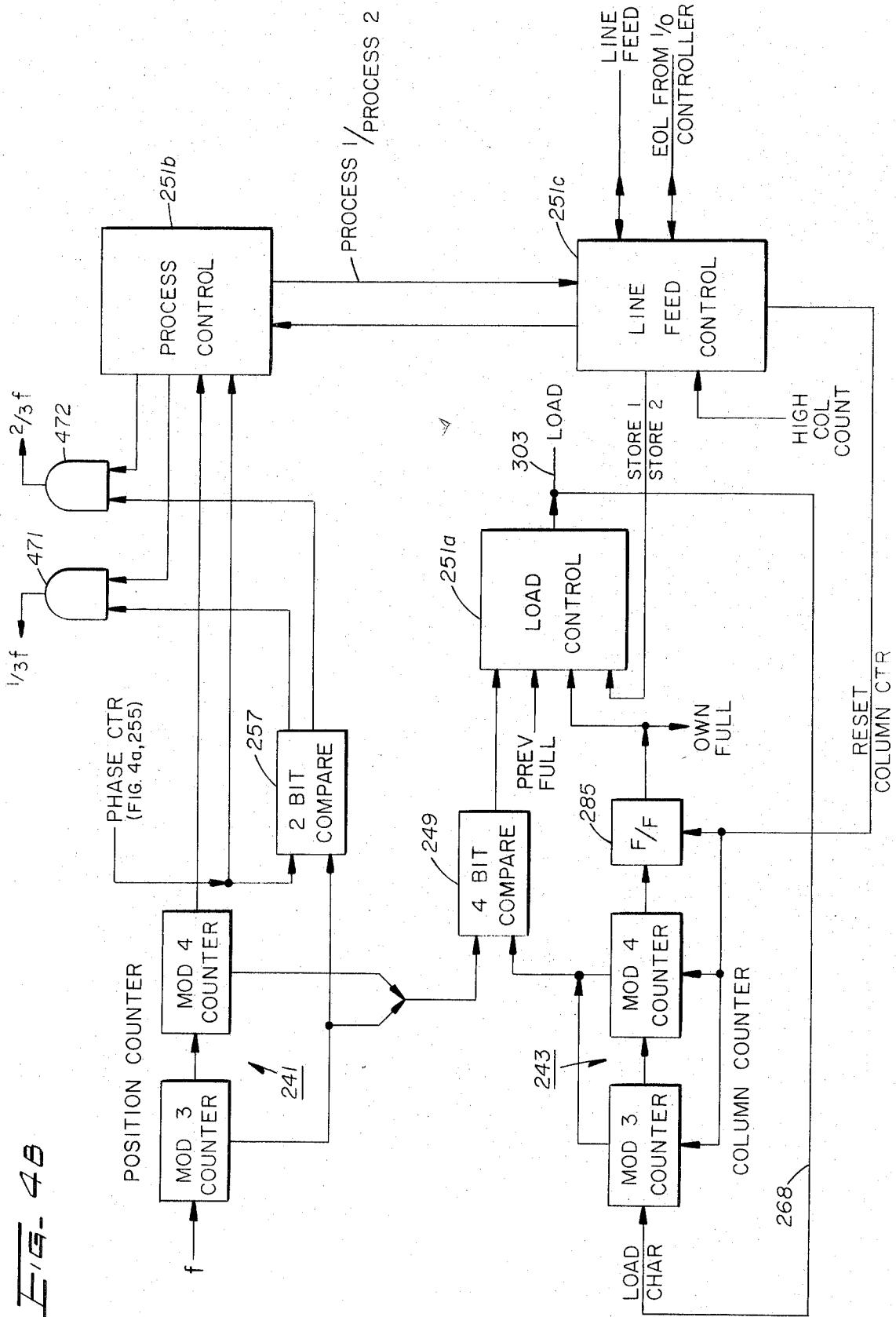
PATENTED NOV 5 1974

3,845,710


SHEET 03 OF 12

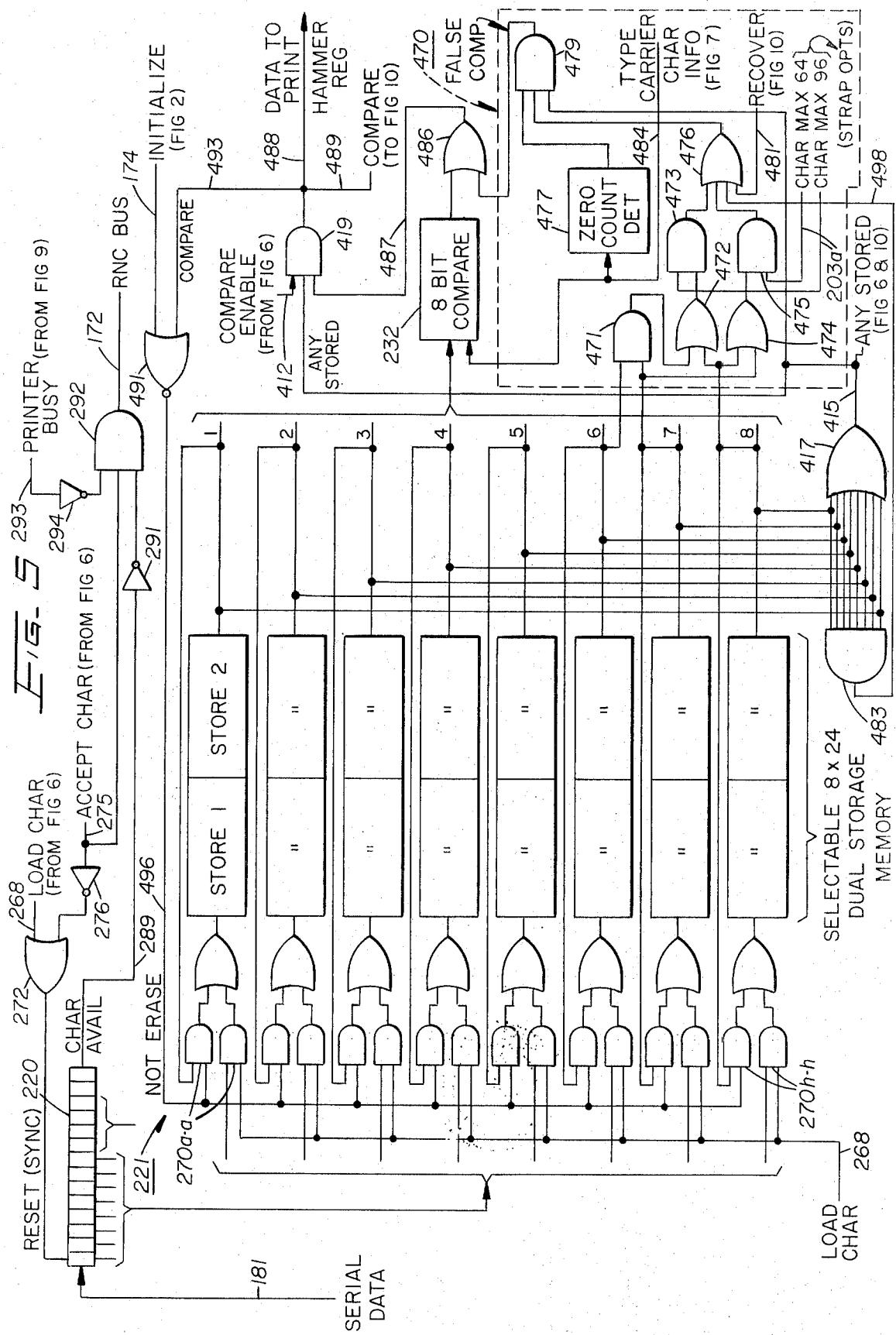
PATENTED NOV 5 1974

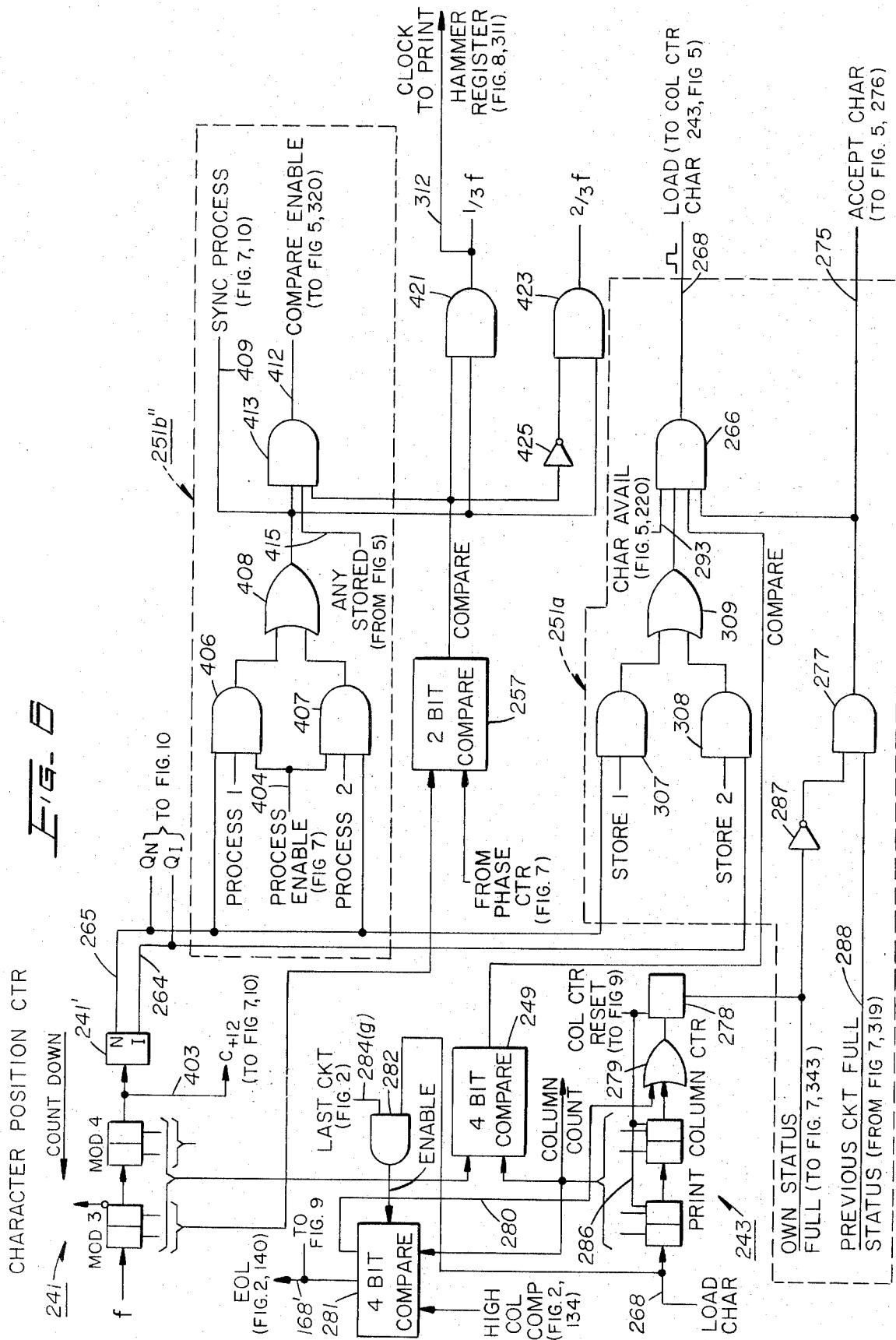
3,845,710

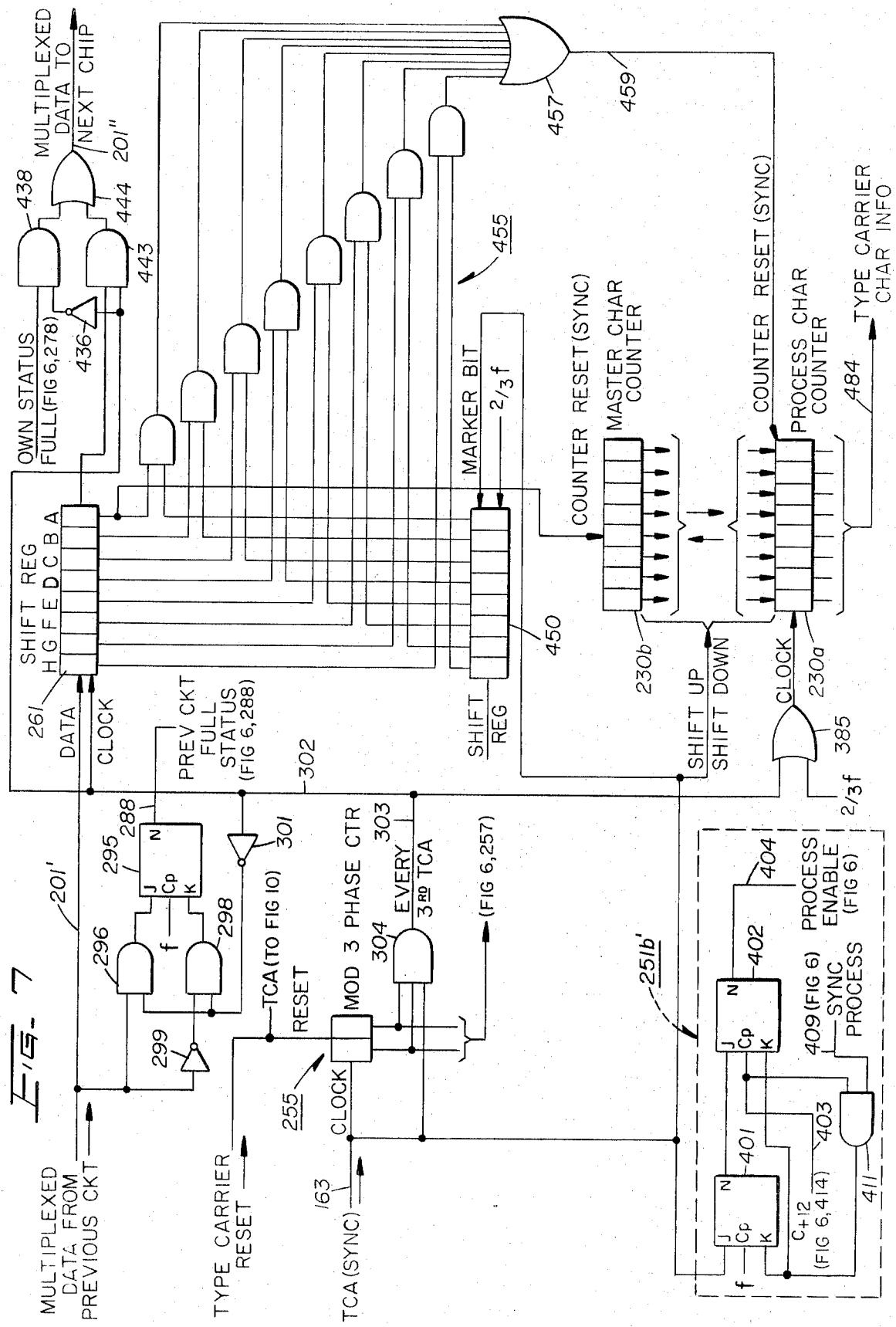

SHEET 04 OF 12

PATENTED NOV 5 1974

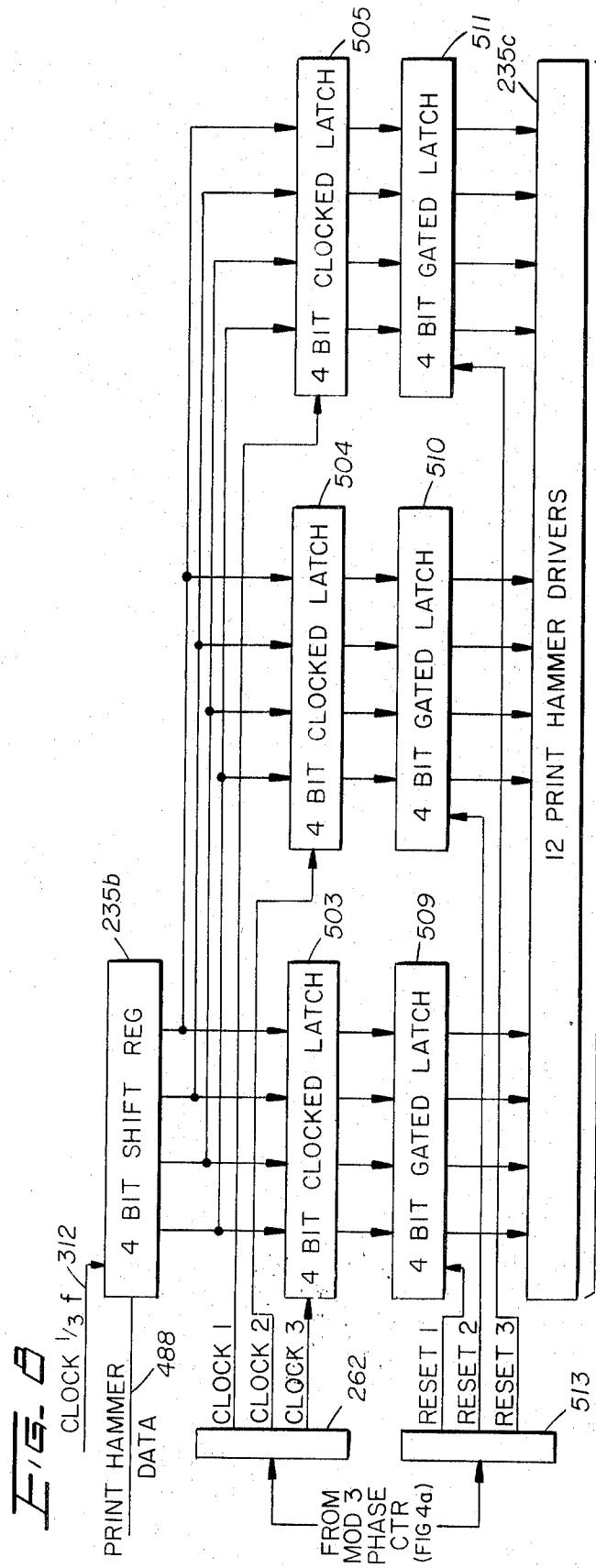
3,845,710

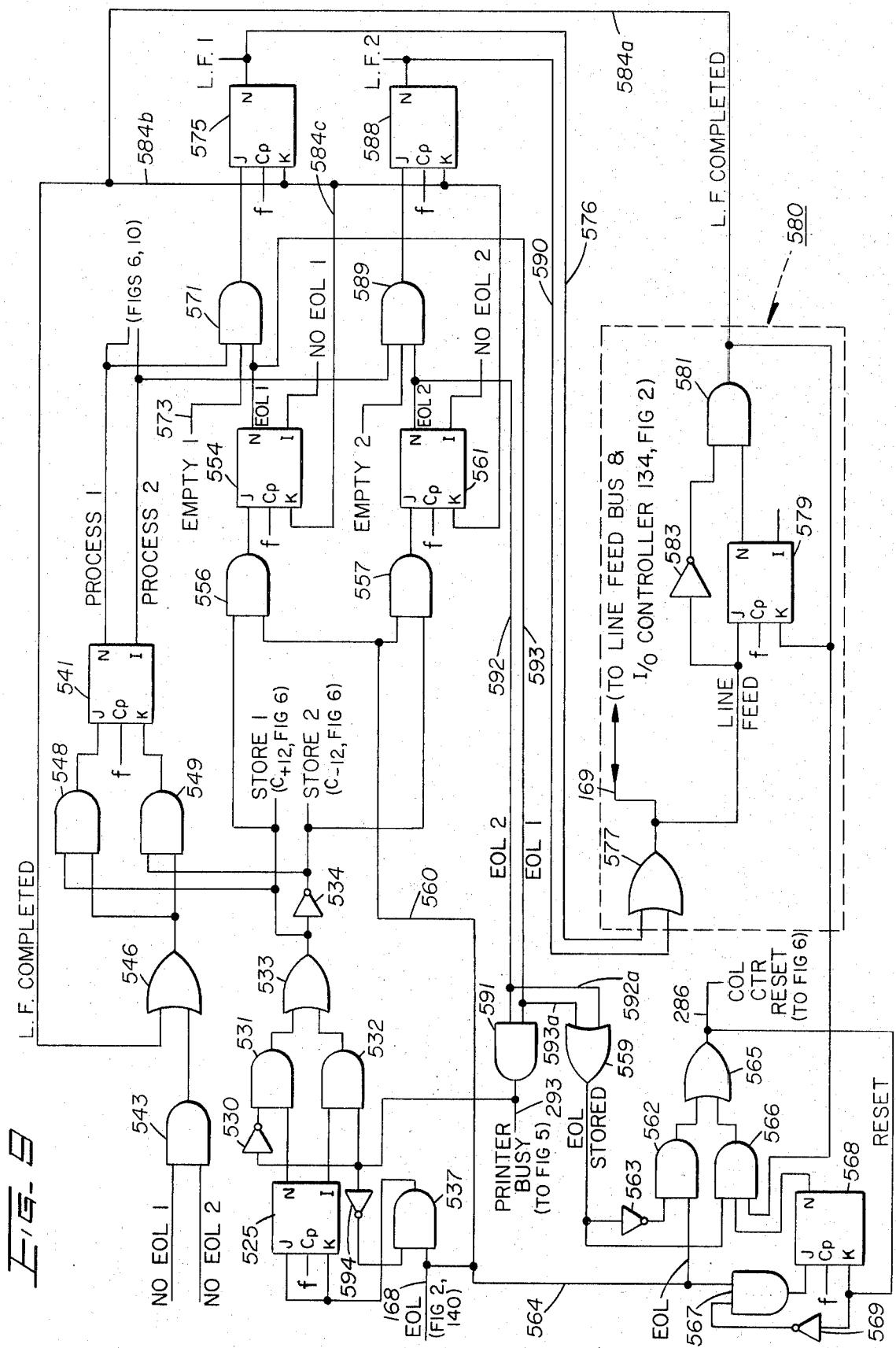

SHEET 05 OF 12

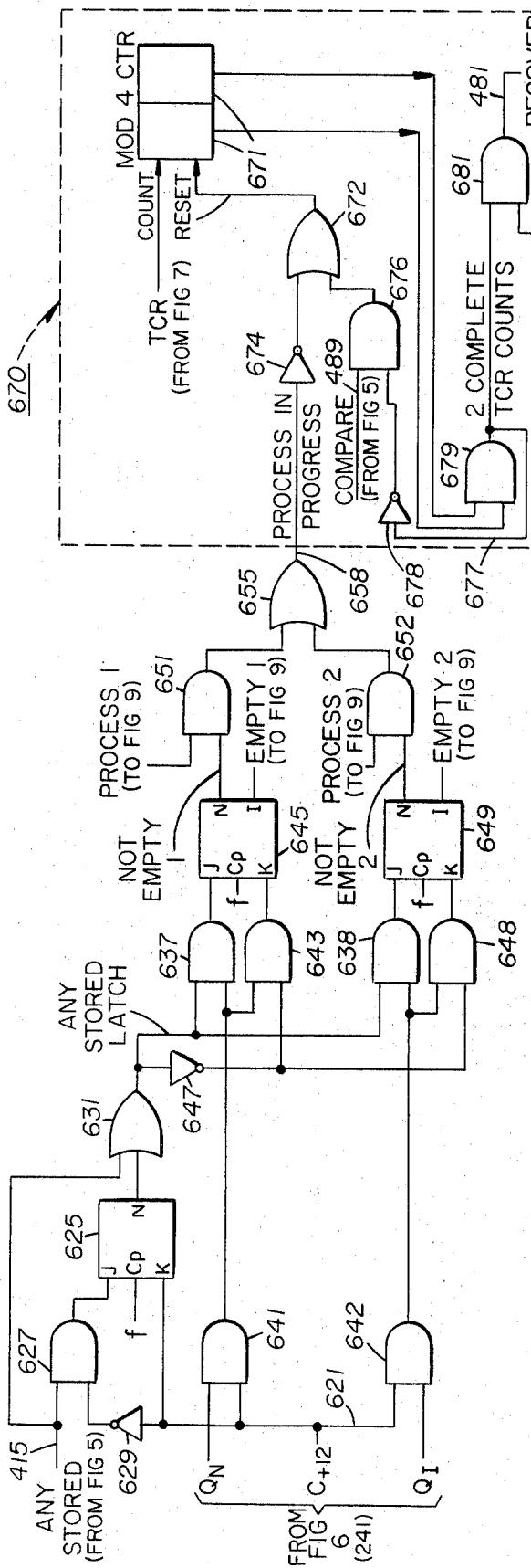



PATENTED NOV 5 1974

3,845,710


SHEET 06 OF 12


3,845,710



12 PRINT HAMMER MAGNETS(FIG 1)

FIRST CKT MODULE 35a SEVENTH CKT MODULE 35g

SUB-SCAN	COLUMN	POS	TYPE CARRIER								A			
			H	G	F	E	D	C	B	A				
1	COLUMN	POS	1	2	3	4	5	6	7	8	9	10	11	12
SUB-SCAN	1	TYPE CARRIER	{	H	G	F	E	D	C	B	A	}		
2	COLUMN	POS	1	2	3	4	5	6	7	8	9	10	11	12
SUB-SCAN	2	TYPE CARRIER	{	H	G	F	E	D	C	B	A	}		
3	COLUMN	POS	1	2	3	4	5	6	7	8	9	10	11	12
SUB-SCAN	3	TYPE CARRIER	{	H	G	F	E	D	C	B	A	}		

E-1/2

MOD 4 CTR (TO FIG 5)

SYNC PROCESS (FROM FIG 6)

2 COMPLETE TCR COUNTS (FROM FIG 6)

679

677

671

672

676

674

655

658

652

649

648

641

637

631

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

648

621

625

629

627

4/5

ANY STORED LATCH

NOT EMPTY 1 (TO FIG 9)

NOT EMPTY 2 (TO FIG 9)

643

638

649

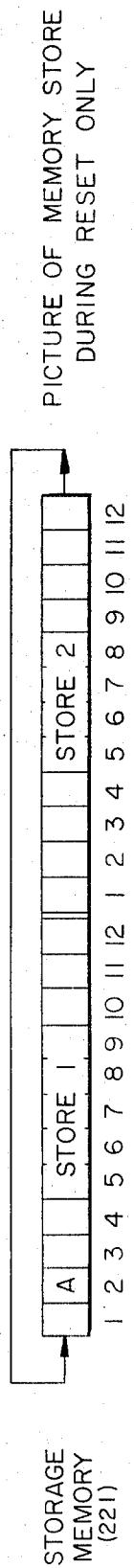
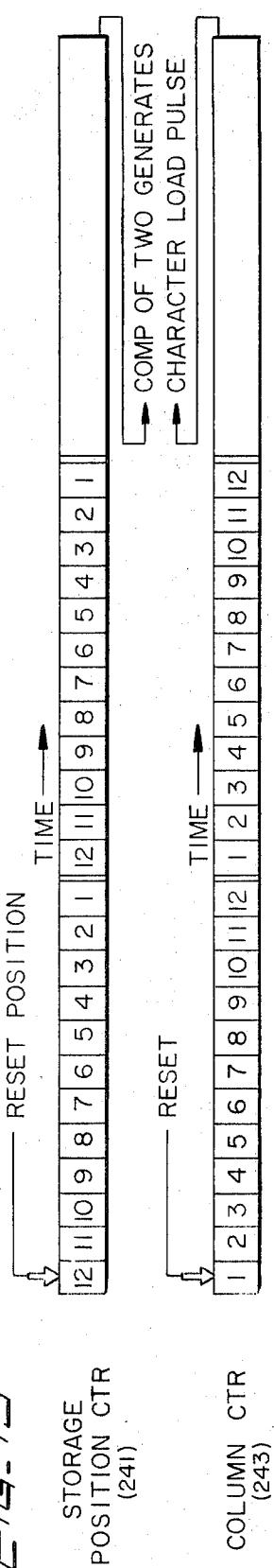
648

621

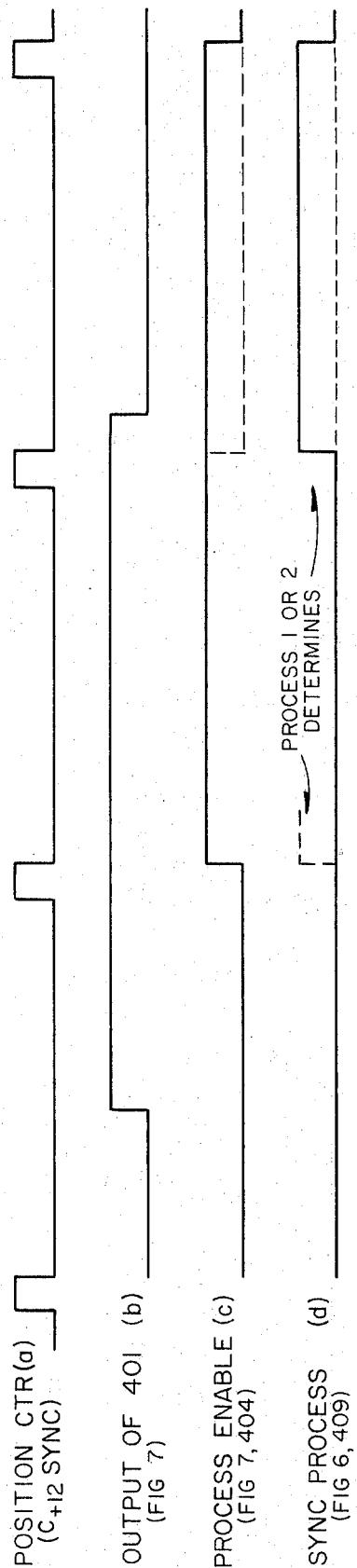
625

629

627



4/5

PATENTED NOV 5 1974


3,845,710

SHEET 12 OF 12

E-13

E-14

PRINT CONTROL LOGIC CIRCUITRY FOR ON-THE-FLY PRINTERS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to printer apparatus and, more particularly, to logic control circuitry for selectively and sequentially controlling the line printing of type characters on-the-fly in such apparatus utilizing a continuously moving, endless type carrier.

2. Description of the Prior Art

So-called on-the-fly printers, with which the present invention is primarily concerned, are of two basic impact types. One type utilizes a rotating type character drum, and the other more recent, and generally preferred type, utilizes an endless type character chain or belt such as is described in Huntoon-Kearney U.S. Pat. No. 3,742,848, herein incorporated by reference.

In all of these versions, the type supporting member is constructed and positioned so as to carry one or more fonts of type characters past an array of print-inducing members, such as hammers, which are selectively actuated under the control of logic circuitry at the proper times, so as to effect the printing of the desired characters at the proper positions along successive print lines of an indexable imprint character receiving medium, such as paper in either roll or sheet stock form.

One significant advantage of the "belt" or "chain" type printer over the drum printer is that the two former versions do not present troublesome problems with respect to vertical registration of the printed characters (i.e., accurate alignment of the printed characters with respect to a horizontal reference line). In drum printers vertical registration is critically dependent on the timing of hammer actuation as the characters pass vertically thereby. This problem is essentially obviated in an endless carrier printer because both the carrier and the array of hammers are juxtaposed in accurate parallel, horizontal relationship across the width dimension of the paper.

Endless carriers also normally have the type characters mounted thereon in such a way that they are readily replaceable individually or as an entire font. In addition, both multiple identical and dissimilar fonts, having the same or different font lengths, may also be employed in endless carrier impact printers. This greatly increases the versatility of the printer for specialized printing applications. Such character font versatility is not possible in drum printers because the circumferentially disposed font of characters in every row must be identical.

In addition, as an endless type carrier allows the utilization of a wider spacing between type characters than between hammers, referred to herein as a pitch relationship therebetween, the so-called problem of "ghosting" may be readily eliminated. Such a type character-hammer relationship is described in the commonly assigned copending application of Egon S. Babler, Ser. No. 268,236, now U.S. Patent 3,795,187, herein incorporated by reference. Ghosting (or shadow printing) is a phenomenon which occurs as a result of a print hammer, in pressing the paper against the type character to be printed, also creating sufficient pressure to produce a slight impression on the paper of the edge of a type character adjacent to the character being printed. Such ghosting or

shadow effects are particularly troublesome in drum printers because the lateral spacing of the type characters in adjacent rows on the drum must necessarily be equal to the relatively close spacing of the associated print hammers.

Accordingly, while chain or belt type printers afford a number of significant advantages over the drum printer, this does not mean that there are no serious problems involved in obtaining precise control over 10 type character-hammer registry while the former is moving "on-the-fly." Such registry is very important, of course, if printed character impressions are to be not only uniformly spaced, but to exhibit distinct, sharp character line formations as required for esthetically 15 pleasing and easily read copy.

Compounding the timing problems involved in endless type carrier printers is the fact that with the spacing between adjacent type characters normally being purposely chosen to be greater than the spacing that exists 20 between adjacent hammers, it becomes readily apparent that at any given point in time during a print cycle, only a fractional number of the hammers will simultaneously be in exact registry with an equal number of type characters; preferably every third hammer as described in the above-cited Babler application. As such, 25 the hammer logic control circuitry must be capable of temporarily storing the incoming data to be printed on a given line in a manner that will allow the sequential read out and utilization of that information only as the proper type characters on the carrier are brought into alignment with the proper hammers (aligned with the print columns) for each line to be printed.

Thus, the logic control circuit must be capable of serially receiving encoded input data to be printed, but thereafter printing that data in a sequential rather than serial manner. Temporary memory storage of the input data is necessary, of course, in order that every hammer, at some point in time during the printing of each line, be aligned with and capable of effecting the printing of a character corresponding to every type characters of a given font (or fonts) passing thereby.

Such a time-delayed, sequential mode of hammer actuation, and the need therefor, will be considered with respect to one particular belt printer of the type embodied herein wherein adjacent type characters on the carrier having a spacing of 1.5 times the spacing between adjacent hammers as in the aforementioned Babler application. As such, every second type character may be brought into registry with every third print hammer (and column) of an array thereof at any one time. Inasmuch as the type characters are moving at a constant rate of speed past the array of hammers, it is readily seen that there are continuously changing 45 groups of type characters and print hammers brought into alignment during each print cycle. Thus, it can be readily seen that when there are a large number of characters to be printed along a given line, each print cycle may involve the printing of from 1 to the maximum number of type characters and hammers that can be aligned at any one time during a print cycle. It thus follows that the characters and hammers involved in one print cycle normally would have no particular relationship with the type characters and hammers involved in any other of the print cycles required to complete the printing of a given line.

As described herein, the logic process of successively identifying each group of characters that is sequentially

brought into alignment with an associated group of hammers is referred to as a sub-scan, with three sub-scans constituting a scan period. A scan period is required to advance the type carrier by a distance equal to the spacing between two adjacent type characters. With the spacing between hammers (or columns) being equal to only two-thirds the spacing between type characters (for a 1.5 pitch relationship therebetween), it is seen that in order to print any given character of a font in any one of the column positions of the printer, the number of sub-scans must equal $3 \times N$, where N is the number of character in the font.

It also logically follows that the shortest possible sub-scan print period for any new type character-column (hammer) alignment must necessarily encompass the time required for the carrier to be displaced one half the distance between hammers (or one-third the distance between type characters). In one illustrative embodiment, this displacement of the type carrier requires 840 microseconds.

The logic control circuitry employed to effect high-speed impact printing "on-the-fly" heretofore has generally comprised a single storage memory having a plurality of storage locations corresponding in number to the total number of print columns of the printer. Associated with the memory typically are means for identifying the characters in the sequence in which they appear on the type carrier, means for actuating the hammers as the proper characters sequentially register therewith, means for timing the various control and print functions, and means for initiating and terminating the various electrical and mechanical operations involved in connection with the operation of the printer.

With respect to the storage memory, it has generally comprised a magnetic core arranged in a particular core plane matrix having, for example, a core plane for each bit of a chosen binary code, with each plane comprising plural cores arranged in a row and column configuration. Such a core plane matrix, for example, might comprise 160 cores arranged in 16 rows of 10 cores each so as to accommodate a corresponding number of print hammers.

Disadvantageously, such core memories require rather complex and expensive (from a fabrication standpoint) X-Y read-write driver circuitry, including X-Y windings, drivers, rings and switches. Such magnetic core matrices also often impose undesirable speed-power restrictions on the associated circuitry, as well as limitations on the size and layout of the composite control circuitry.

More recently, advancements in solid state technology have resulted in very versatile and multi-faceted integrated circuitry referred to as medium or large scale integration (MSI or LSI). Particularly in applications where very high switching speeds have not been required, the active devices in such circuitry have increasingly been of the metal-oxide-semiconductor-field-effect type, hereinafter generally referred to as MOSFETs. Such devices have proven to be very effective, reliable, and readily amenable to high volume, low cost manufacture, even in rather complex, high density MSI or LSI circuitry. To that end, MOSFETs are gaining wide acceptance for use in the fabrication of diverse logic circuitry, including gates, inverters, flip-flops, counters, shift registers, and the like.

With respect to printer logic control circuitry, however, all of the required circuit logic cannot at present, at least, be economically fabricated on a single semiconductor chip. This has thus necessitated a number of different logic circuit chips heretofore, with rather complex and extensive interfacing being required therebetween in order to assemble a composite printer hammer logic control circuit. This, of course, does not lead to low cost, high yield composite circuits that would be possible if every circuit chip could be of identical construction, be capable of independently processing print data for only an assigned subgroup of print columns, and be interconnected in a simple, modular fashion so as to constitute the complete logic circuitry for an 80 column printer, for example.

Such a modular form of circuit construction would also have the advantage that it would be conducive to accommodating printers with a smaller or larger number of print columns, typically ranging from 40 to 132 columns, for example, by simply adding or subtracting one or more identical circuit modules from the composite logic circuitry. Unfortunately, with most hammer logic control circuits employed heretofore, the maximum number of print columns that can normally be controlled is fixed by unalterable circuit parameters.

Accordingly, there exists a definite need for a modular constructed hammer logic control circuit, particularly wherein the number of print columns chosen for any given application need not be divisible by any given number of identical circuit modules, each of which may be designed normally to accommodate and control the processing of print data for a given predetermined number of print columns. To that end, what is needed is circuit modules designed to be compatible with simple, switch-option circuitry that may be employed outside of the last of a series of modular circuit chips, for example, so as to accommodate and control the processing of print data for any number of print columns less than the predetermined number. In that way the need for any expensive, specially designed circuit chips would be obviated.

45 A concomitant problem affecting both circuit speed requirements and total line printing speed in endless carrier, on-the-fly printers heretofore is related to the need to first store a complete line of data before printing commences. This has generally been true whether synchronous or asynchronous storage memories were employed, and whether the hammer-type character spacings were the same or different.

Such total print line loading of characters, of course, substantially reduces the line printing speed of the apparatus. Such a mode of operation can also impose other serious constraints on the printer when, for example, input data is being received at a much faster rate than the printer is capable of printing it. An auxiliary storage memory could be employed, of course, but this is a particularly costly adjunct to the basic printer when the incoming data may be only sporadically received at a rate faster than the printer can handle it.

It is thus seen that there is a need for hammer logic control circuitry for on-the-fly "belt" printers that can fully exploit the many advantages of MOSFET circuitry, without requiring a cost-performance trade-off in the logic circuitry in order to attain the high speed printing rates desired.

SUMMARY OF THE INVENTION

It, therefore, is an object of the present invention to provide new and improved type character selection and print logic control circuitry for use in on-the-fly high speed printer apparatus.

It is a further object of the present invention to utilize the virtues of MOSFET integrated circuitry in on-the-fly printer apparatus in a manner that allows reliable, simplified, low cost fabrication thereof, through the use of selective, logic controlled, dual line character storage read out of the information to be printed.

In accordance with the principles of the present invention, these and other objects are accomplished through the utilization of a plurality of intercoupled, but independently operated data processing circuit modules. Each module includes a free-running, logic controlled dual line storage memory capable of selectively directing input encoded character data into and out of either of two discrete storage areas thereof. Both areas are associated with a specific and common subgroup of hammers (and print columns), but each storage area is associated with a different print line. Such dual line storage areas in each memory advantageously allows incoming data, often received at varying rates, to be temporarily stored for subsequent printing without having to resort to a batch process technique requiring an auxiliary main storage memory, for example.

The utilization of multiple data processing circuit modules, with each associated with a different subgroup of print hammers (and columns), advantageously allows the switching speeds of the various active integrated circuit elements embodied in each processing circuit to be lower, for a given line printing speed, than would be possible with a single storage memory having sufficient storage for all of the character data to be printed along a given line. Considered more specifically, with each circuit module controlling only a fractional number of the total print hammers employed in a given printer, the number of storage positions in the memory thereof are likewise reduced. Accordingly, the scanning (or read out) rate of the circuit can be reduced, as the limited number of encoded characters stored may be processed and printed independently of, but concurrently with the input data received in and processed by the other circuit modules.

In contrast, with a typical single shift register type of memory employed heretofore, if there are 80 columns of possible data to be stored for subsequent printing along a given line, for example, then that data must normally be shifted through 80 elements of the shift register memory every time a different type character is brought into alignment with a different column and associated hammer, until all possible alignment combinations therebetween have been compared. It thus becomes readily apparent that as the number of storage positions required in the memory increase, the circuit logic switching speed of not only the memory, but of the other associated processing circuitry must also increase for a given line printing speed.

The modular nature of the logic circuitry also has the advantage that various length print lines can easily be accommodated by simply adding or subtracting one or more of the identical data processing circuit modules

as required for a given application. Moreover, in accordance with the principles of the present invention, the number of print columns chosen need not be divisible by the standard number of columns assigned to each circuit module by design. Rather, each circuit module is designed so as to be compatible with outside strap-option circuitry so as to accommodate less than the standard number of print columns. Thus, there is no need for the last circuit module of a series, for example, to be specially designed to accommodate a non-standard number of print columns.

As all of the circuit modules may be formed on discrete chips of identical integrated circuit design, chip size may be chosen to minimize costs of both manufacture and composite circuit assembly, while simultaneously maximizing circuit chip yield and performance.

It is thus seen that the sub-divided, modular construction of the hammer logic control circuitry embodied herein advantageously allows individual data processing functions to be performed at a slower rate, for a given line printing speed. This, in turn, makes it possible to exploit the desired features and characteristics of inexpensively designed MOSFET integrated circuitry, for example, without any adverse effect on printer performance. Stated another way, the present modular logic circuitry does not necessitate the use of bi-polar active devices, or customized MOSFET devices, fabricated through special and expensive processing techniques, in order to achieve the switching speed characteristics otherwise required in prior hammer logic control circuits for a given line printing rate.

The hammer logic control circuitry embodied in the present invention, as will be discussed in greater detail hereinbelow, also exhibits a number of other features and advantages relating not only to control of the printer mechanism per se, but to the control of other important operating functions, such as error character detection, conditional processing time out, data overloads, even and odd parity checks, and test mode operations. The control circuitry is also designed to receive Standard Serial Interface (SSI) information, with the modular data processing circuits packaged on circuit cards for ease of assembly and maintenance. The outputs from the circuit cards also advantageously drive the hammer magnets directly, which simplifies the hammer actuation circuits and the wiring thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a partially broken away perspective view of a high-speed impact printer, with some parts being omitted for the purpose of illustration, together with a simplified block diagram of the associated hammer logic control circuitry for use therewith, which embodies features in accordance with the principles of the present invention;

FIG. 2 is a simplified schematic circuit diagram generally depicting the modular nature of the composite hammer logic control circuitry;

FIG. 3 is a simplified block diagram of the major associated circuits embodied in one data processing circuit module of the composite hammer logic control circuitry;

FIGS. 4A and 4B, in block diagram form, illustrate in greater detail the nature and functions of, and the inter-

connected relationship between, all of the major circuits embodied in one processing circuit module;

FIG. 5 is a more detailed block and schematic circuit diagram primarily of the logic controlled dual storage memory embodied in each of the data processing circuit modules in accordance with the principles of the present invention;

FIG. 6 is a block and schematic circuit diagram illustrating in greater detail the association of the character position and print column counters with respect to the load control circuitry disclosed only generally in block diagram form in FIG. 4B;

FIG. 7 is a more detailed block and schematic circuit diagram primarily of the character generating portion of one of the circuit modules of the composite logic control circuitry;

FIG. 8 is a block diagram of the hammer driver circuitry, including clock and reset inputs associated therewith;

FIGS. 9 and 10 are detailed schematic circuit diagrams of interrelated logic circuitry for controlling the selective storage and read out of data from the dual storage areas of one of the circuit module memories, and for effecting the erasing of erroneous data from the memory, respectively;

FIG. 11 is a symbolic representation of two typical sub-scan alignment patterns at one point in time between certain print columns and type characters, having a 1.5 pitch relationship therebetween, for the first and last of seven interconnected sub-circuit processing modules;

FIG. 12 is a timing chart depicting the time duration and sequence of three sub-scans, for each of three successive print periods, relative to the time delayed hammer firings initiated in response to each associated sub-scan;

FIG. 13 is a symbolic representation of the functional relationships, time-wise, between the slot positions in the position and column counters relative to the slot positions in the dual storage areas of one free-running storage memory; and

FIG. 14 is a timing chart illustrating certain printer control and data processing control signals generated during a single line printing cycle.

DETAILED DESCRIPTION OF THE INVENTION GENERAL DESCRIPTION OF LOGIC CONTROLLED PRINTER APPARATUS

The logic control circuitry embodied herein is particularly adapted for use in high speed, on-the-fly, impact printers of the type depicted in FIG. 1. As disclosed therein, the printer, identified generally by the reference numeral 15, is of the class that utilizes an endless type carrier 16, entrained about a pair of spaced and aligned sprockets or pulleys 17a and 17b, as described in the aforementioned Huntont-Kearney patent. The pulleys are journaled by any suitable means on the frame (not shown) of the impact printer. The carrier 16, which may comprise a chain or a toothed timing belt, is adapted to transport a plurality of type pallets 18 (only several shown in FIG. 1) in an essentially orbital path, which is oriented so as to define upper and lower line printing courses in the areas generally defined by the numerals 22 and 23, respectively.

Each of the type pallets 18 has a front face portion having a type character die (not shown) secured thereto or otherwise formed as an integral part thereof.

The pallets 18 are mounted on the carrier 16 and uniformly spaced and oriented transversely therealong by means of integral shank portions 18a that extend through suitably formed channels (not shown) formed in the carrier. As will presently be seen, in accordance with the present printer embodiment, there are normally at least twice as many type pallets-characters on the carrier than in any chosen font. This means that a given sequence of characters is repeated more than once along the entire length of the carrier. If desired, of course, several fonts of different lengths could also be employed for a special printing application. For further details as to one preferred embodiment of the carrier 16 and type pallets 18, including the mounting and driving structure associated therewith, reference is made to the aforementioned Huntont-Kearney patent.

In the illustrative embodiment of the printer depicted in FIG. 1, carrier pulleys 17a and 17b constitute idler and drive pulleys respectively. Driving torque is continuously transmitted to the pulley 17b through a shaft 24 which is coupled to a prime mover, herein shown as a motor 26, through a drive train designated generally by a reference numeral 27 in FIG. 1. The drive train includes a worm gear 28, secured to a shaft 30 of the motor 26, a gear 34, operably enmeshed with worm gear 28, and secured to one end of an elongated drive shaft 35, a worm gear 36, secured to the other end of the drive shaft 35, and a gear 38, operably enmeshed with worm gear 36. Gear 38 is secured to the same shaft 24 as the pulley 17b.

A clutch 58, which may be of conventional design, is mounted in juxtaposition with gear 38 so as to releasably couple a split shaft 60 to the coextensively aligned shaft 24. Selective actuation of the clutch 58 is effected through control signals generated by the logic control circuitry embodied herein, as will be discussed in greater detail hereinafter. Whenever the clutch 58 is operated it also supplies torque through a drive train not shown to incrementally advance a web 41, or paper on which printing is to take place in the direction shown by arrow 42, one line at a time.

For further details as to the drive trains for both the type carrier 16 and the web 41, reference is again made to the Huntont-Kearney patent.

In the illustrative impact printer embodiment depicted in FIG. 1, the character printing mechanism further comprises both an array of spoke-like impellers 84 (only several shown in FIG. 1), and a plurality of respectively associated impactors, or print hammers, designated generally by the reference numeral 85 (only several shown). There is one impeller and associated hammer for each possible printing position or column across the width of the web 41, with the spaced impellers being concentrically secured to the longitudinally extending drive shaft 35. Each impeller 84 has a plurality of radially extending, uniformly spaced spoke-like impeller teeth or elements 84a, all of which are oriented in a common plane perpendicular to the axis of the shaft 35. In a preferred embodiment of the printer, the impellers 84 are preferably arranged in a manner as disclosed in the aforementioned copending Babler application.

Each hammer 85 is mounted in a channel (not shown) forming part of the printer frame so as to be selectively driven along a rectilinear path, perpendicular to the web 41, between a normal, untensioned, or non-

printing position, and a printing position whereat an enlarged forward head portion 85a of each hammer is propelled against the back side of the web 22, as described in a second copending application of Egon S. Babler, Ser. No. 268,237, filed July 3, 1972. In order to facilitate printing at any given time, it is apparent that selective hammers must be axially aligned respectively with different type pallets 18, the latter being mounted in an array on the carrier 16, as described hereinabove. As such, the continuous movement of the pallet-type character assemblies along a path extending across the width of, and closely adjacent to, the front side of the web 41, makes it possible for each pallet 18 (with a type character die on the front face thereof), or groups thereof, to be successfully brought into momentary axial alignment with the hammers 85.

The agency through which each impeller 84 drives an aligned hammer 85 against the back side of the web 22 comprises an interponent 92 (only several shown in FIG. 1), preferably arranged in accordance with a third copending Babler application, Ser. No. 268,238, filed July 3, 1972, now U.S. Patent 3,822,641, herein incorporated by reference. Each of the interponents essentially comprises an elongated upright finger-like member, operably associated with one particular impeller 84 and hammer 85. The interponents 92 are disposed in a lateral array, extending parallel to and respectively aligned with the adjacent free rearward ends 85b of the hammers 85. Briefly described herein, each interponent can be positioned in: (1) a first or vertically raised upper position, with its upper free end portion disposed in the path of movement of a then immediately adjacent impeller spokelike element 84a (for transmitting force from the aligned impeller 84 to an aligned hammer 85), in consequence of which printing occurs; or (2) a second or vertically lowered, nonprinting position, in which the upper free end portion of the interponent 92 is displaced from the path of an impeller spoke 84a.

The manner in which the hammers 85 are mechanically driven (as distinguished from electronically controlled) against the web 41 forms no part of the present invention. For details relating to the cooperating mechanical relationship between the impellers 84, hammers 85 and interponents 92, reference is made to the three copending Babler applications previously cited.

An inked ribbon 95, as depicted in only fragmentary form in FIG. 1, is continuously driven in one direction or the other between, and in alignment with, the array of type pallets 18 and the web 41. One preferred embodiment of an improved ribbon spool driving, reversing and tensioning mechanism for use with a printer of the type depicted in FIG. 1 is disclosed in a copending application of A. F. Riley, Ser. No. 345,407, filed Mar. 27, 1973, also assigned to the assignee of the present invention, and incorporated herein by reference.

For the purposes of understanding the logic control circuitry of the present invention, and its significance in an on-the-fly, endless carrier type of impact printer, it will suffice to simply state at this point that the printer 15, as thus far described, constitutes a line-at-a-time printer, i.e., a plurality of characters are normally sequentially printed across the width dimension of the web 41 during each of a plurality of print cycles that occur between successive index advancements of the web 41. The printing of actual images on the back or rear side of the web 41, as viewed in FIG. 1, is accomplished, of course, by

the impellers 84 generating, and transferring through the respectively associated and selectively actuated interponents 92, sufficient force against the respectively associated hammers 85 to cause the latter to be driven against the back side of the web 41. The discrete hammer-propelled areas of the web 41 are then, in turn, driven against correspondingly aligned areas of the aligned inked ribbon 95, and then driven against the particular type characters on the pallets 18 aligned therewith with sufficient force to effect controlled impact printing of character images on the front side of the web 41.

The logic control circuitry required to selectively and sequentially actuate the interponent-hammer combinations through the energization of respectively associated electromagnets 126 will now be described in greater detail. Mechanically, each electromagnet 126, when energized, serves to pivot a corresponding armature 127 such that it elevates a selected interponent 92 into the path of an oncoming impeller tooth 84a. This propels the associated hammer against the backside of the web 41 and thereby effects the printing of a character. The armatures 127 are preferably arranged in accordance with a fourth copending Babler application, Serial No. 292,003, filed September 18, 1972, now issued as U.S. Patent 3,805,695, herein incorporated by reference. The electromagnets are also preferably constructed, arranged, and energized through physical circuit connections in the manner described in the commonly assigned copending application of James F. Kearney, Ser. No. 290,192, filed Sept. 18, 1972, now U.S. Patent 3,785,283, and herein incorporated by reference.

As simply represented in block diagram form in FIG. 1, a unique and improved composite hammer logic control circuit, identified generally by the reference numeral 130, is employed for sequentially energizing the hammer associated electromagnets 126 at the proper times, with respect to desired type character registration, in order to effect the printing of stored characters along each successive print line sequentially, but ultimately positioned in the serial order in which they were initially received. It is to be understood, of course, that the hammer logic control circuitry 130 described and claimed herein produces type character-associated control signals, relative to selected column positions, that may be employed to actuate any type of print-inducing means, whether of the solenoid or magnet-driven hammer type, or of the non-hammer type, wherein selectively pulsed magnetic fields, for example, are utilized to inductively impact magnetic type characters mounted on a nonmagnetic carrier, or disk, against a print medium.

CARRIER CONTROLLED TIMING CIRCUIT FOR COMPOSITE LOGIC CIRCUITRY

As also depicted in FIG. 1, timing pulses for the logic circuitry are derived directly from the actual speed of the type carrier 16. More specifically, through the utilization of a code disk 131, with appropriately sensed markings 131a thereon, and a suitable conventional transducer 132, shown only symbolically, the basic timing signals, designated herein as a TYPE CARRIER ADVANCE (TCA) and a TYPE CARRIER ADVANCE THREE (TCA-3) are generated to synchronize movement of the type carrier 16 relative to the firing times of selected ones of the array of hammers 85. Precise synchronization is very important, of course, if

accurate type character-hammer registration is to be established as required for high quality printing.

Each TCA pulse senses when a new type carrier-print column alignment has occurred, and conditions the logic circuitry to start a new process cycle. Three TCA pulses occur while the type carrier moves the distance between two adjacent type pallets 18 (0.150 inch in one embodiment). Stated another way, a single TCA pulse occurs each time a type pallet has moved a third of the distance between adjacent type pallets, which corresponds to each possible printing instant as described in the Babler application Ser. No. 268,236.

Each type carrier generated TCA pulse is thus employed to provide an indication to the hammer logic circuitry 130 (FIG. 1) that there is a new alignment of font type characters and print columns of the printer. Each TCA-3 pulse is normally generated during every third TCA pulse time slot and when it is missing from its customary third slot position, this provides an indication to the logic circuit that the first type character of a given font on the carrier is aligned with the first, or some other chosen print column position of the printer. A TYPE CHARACTER RESET (TCR) pulse is then generated and indicates that the first type character of a font on the carrier 16 (represented by a 0, for example), aligns with the first (or some other reference) column position of the printer.

GENERAL DESCRIPTION OF I/O CONTROLLER AND OF LOGIC CONTROL CIRCUITRY

With particular reference now to FIG. 2, it is seen that an I/O controller 134 essentially functions as a buffer between a conventional Standard Serial Interface (SSI) and the composite hammer logic control circuit, which actually comprises a plurality of essentially identical and uniquely interconnected data processing circuit modules 135. In conjunction with one illustrative 80 column printer, the logic control circuitry, in accordance with one illustrative embodiment, employs seven of such circuit modules 135 (only the first 135a and last 135g being shown in FIG. 2), with each of the first six performing the necessary logic and data processing functions to effect the desired printing along twelve respectively associated columns of an eighty column printer. This, of course, results in the seventh sub-circuit module 135g being associated with only the last eight columns constituting a print line. It is to be understood that each circuit module 135 can be readily constructed to process the necessary print data and control the firing of either a larger or a smaller number of print hammers, and that there is no limit on the number of circuit modules that may be utilized in the interconnected manner depicted in FIG. 2.

As also seen in FIG. 2, each of the circuit modules 135 has a number of control leads connected to the input/output (I/O) controller 134, which may be of conventional design. The purpose of the controller is to receive incoming encoded data to be printed, such as from the aforementioned conventional Standard Serial Interface (SSI), and to transform that data into the desired binary encoded form, including the necessary control information to operate the printer mechanism.

Considered more specifically, the input data to be processed for printing, when of a common format known as the American Standard Code for Information Interchange (ASCII), for example, wherein the binary numbers 1 through 32 constitute special commands for

non-printable characters, and the numbers 33 through 126 constituted printable character data, is changed into a format of weighted binary order so as to be compatible with the logic circuitry embodied herein.

5 This data is received by and transmitted from the I/O controller 134, as depicted in FIG. 2, over a four wire (double twisted pairs) input/output connection designated generally by the reference numeral 141, from a conventional parallel interface 142, which serves no part of the present invention and, thus, is shown only symbolically. The data transmitted over the two twisted pairs of leads 141 is accomplished, for example, by switching the operating signal currents, between voltage levels of 0 and -5 volts DC, supplied from a voltage source (not shown). A conventional differential receiver (not shown) in the I/O controller 134, may be used to detect the resulting voltage shifts.

In one preferred embodiment, all print data (i.e., ASCII print data and message control characters), as 20 well as other necessary control information for the printer, is sent to the logic control circuitry 130 in the form of an 18-bit word, with such data being transmitted serially at 56 k baud. Only control information is sent from the printer to the I/O controller 134.

25 As depicted in FIG. 2, the most significant non-printable command signals, identified by their respectively associated leads, comprise the TYPE CARRIER ADVANCE (TCA) sync lead 163, TYPE CARRIER RESET (TCR) sync lead 165, END OF LINE (EOL) lead 168, LINE FEED lead 169, REQUEST NEXT CHARACTER (RNC) lead 172, INITIALIZE lead 174, and EMPTY lead 176. As will be described in greater detail in connection with FIG. 10, the EOL lead 168 actually includes what essentially constitutes a 30 common OR-buss on which EOL signals may be sent from the I/O controller 134 or from circuit module 135g to all other circuit modules 135, under specified circumstances. Similarly, the LINE FEED lead 169 also includes what essentially constitutes an AND-buss, in 35 that all of the circuit modules must send a LINE FEED signal (-1) to the I/O controller before the latter, after a specified time duration, forces the bus to a NO LINE FEED state (-0). The circuit modules 135 then detect 40 this latter state and release the LINE FEED lead 169. 45 The significance of all of the control signals will be described in greater detail hereinafter.

The printable character data, as distinguished from the non-printable command signals, is transmitted over Serial Data lead 181, and generally comprises encoded 50 alphanumeric characters, punctuation marks, etc.

As is also readily seen in FIG. 2, all of the input-output leads of the controller 134, with the exception of the TCR lead 165, are directly connected to each of the logic circuit modules 135a-g. The TCR signal is 55 successively passed from one sub-circuit module 135 to the next after some internal logic functions are carried out. Considered only briefly at this point, before each circuit module 135 is ready to process print data and to selectively actuate any of the proper hammers 85 associated therewith, after it has been INITIALIZED, it 60 must have received a TCR signal and passed it through its own circuit module to the next one.

A given circuit module 135 accepts coded input data to be printed only if the immediately preceding circuit 65 module has the proper 12 column storage area full, and if its own proper 12 column memory storage area is not full. This, of course, does not mean that there has to be a printing character stored in every slot position of a

given storage area, as there may be one or more columns where no data is to be printed (as represented by SPACE characters), or where a character has already been printed and the memory slot therefore is empty. In such cases, the circuitry simply recognizes this fact and acts as if the memory were full.

A PREV CKT FULL STATUS signal is shown only symbolically in FIG. 2 by leads 197a and g within the outline of the first and seventh circuit modules 135a and g. The OWN CKT FULL STATUS signal is similarly only shown symbolically by leads 199a and g in the same circuit modules. The logic circuits for these signals and their significance will be described in greater detail in connection with a description of the composite hammer logic circuitry depicted in FIGS. 3-10.

A signal lead 201 connects each successive circuit module to the next, and actually comprises an extension of the TCR lead 165 depicted in FIG. 2. As the lead 201 actually interconnects successive modules 135, it is shown symbolically in FIG. 2 as having both an output portion 201'' and an input portion 201'. In actual operation, two different encoded signals are multiplexed on the intercoupling lead 201, one signal comprises OWN CKT FULL STATUS information with respect to a particular preceding adjacent one of the circuit modules 135b-g (excluding 135a), and the other signal comprises TYPE CARRIER RESET (TCR) information. The TYPE CARRIER RESET (TCR) information is shifted into and out of each of the seven circuit modules 135a-g in succession.

Considered more specifically, the TCR signal transmitted over the lead 201 is actually shifted through an eight element shift register 261 (not shown in FIG. 2, but described below in connection with FIGS. 3 and 4), at a rate corresponding to the periodic alignment of type characters with print column positions (or hammers) of the printer. As mentioned hereinabove, the generation of the LINE FEED (lead 169) and EOL (lead 168) signals between the I/O controller and circuit modules controls the processing of each new line of binary encoded information, and the ultimate printing of the characters represented thereby.

Two additional inputs to each circuit module 135, which are identified by leads 203a and 203g in FIG. 2, provide information as to the number of characters in the largest character font on the type carrier. The significance of these inputs will become more apparent hereinbelow.

As also generally depicted in FIG. 2, each circuit module 135 produces a maximum of 12 possible output print signals for respectively driving directly, and selectively, 12 hammers 85 (FIG. 1), or any other type of print-inducing means, out of the total array thereof, which total is equal to the number of print columns of the printer. These signals are respectively sent over 12 output leads designated generally by the reference numerals 205a and 205g in FIG. 2.

A plurality of printer signal control leads, forming a part of a cable 210 in FIG. 2, also interconnect the I/O controller 134 with the printer. Such printer control leads transmit the necessary control signals to effect, or provide information of, by way of example, the following printer conditions; forms versus roll paper, single versus double line feed, low paper, paper out, local line feed versus form feed, end of forms, line feed magnet energization, and motor on/off. These signals are nor-

mally not binary encoded and may be generated as simple voltage level changes in a conventional manner and, thus, will not be considered in further detail herein. The previously mentioned TCA and TCA-3 signals, produced for carrier hammer synchronization, are also transmitted between the I/O controller 134 and the transducer 132, associated with the printer carrier 16, over separate leads in the group forming the cable 210 in FIG. 2.

10 Before considering the basic logic circuitry in greater detail, it is believed beneficial to describe at this point the nature of the font(s) carried by the carrier 16, as well as the manner in which they are positioned on the type pallets 18 in two illustrative impact printers. In an 15 80 column printer, for example, the type carrier has 192 type pallets mounted within a corresponding number of slots spaced equidistant therealong, whereas in a 132 column printer, there are 288 type pallets mounted within a corresponding number of slots.

20 Every font of type characters on the carrier 16 must begin with a SPACE character and have the subsequent characters positioned in increasing binary order (according to the ASCII code, for example). When two or more fonts are employed, each font may be terminated on any character, as long as every slot of the carrier 16 25 has a type pallet mounted therein. As a SPACE is not a printing character (although it is assigned a type pallet slot), the type pallet for a predetermined ERROR symbol is inserted in that slot. This ERROR pallet also 30 identifies the particular font set, if two are employed, by means of two peculiar alpha characters, for example, formed on the face of the type pallet in question.

When two or more fonts are employed, they may be 35 of equal or different lengths, with each being repeated as often as is required in order to completely fill the slots in the type carrier 16. As each of the character fonts, as previously mentioned, must begin with a SPACE, all of the characters of the shorter font are 40 necessarily contained in the longer font. The 64 (including SPACE) and 96 (including SPACE and DELETE) character fonts are most commonly used, as three fonts of the former and two of the latter will evenly fill the 192 pallet slots in the carrier of an 80 column printer. To fit a 64 character font on the carrier 45 for a 132 column printer of the type embodied herein, four complete fonts plus the first 32 characters of a fifth font would be required to fill the 288 slots in the carrier with pallet-characters.

OVERVIEW OF INDIVIDUAL CIRCUITS FORMING ONE COMPLETE CIRCUIT MODULE

Attention is now directed to FIG. 3, which discloses in simplified form the basic hammer logic circuitry as embodied in just one of the essentially identical data processing circuit modules 135a-g depicted only symbolically in FIG. 2. A more detailed description of the circuitry and of the various functions thereof will be described in connection with a discussion of FIGS. 4-10 hereinbelow.

Starting at the point of data entry in FIG. 3, the print data initially is typically received in preferably converted ASCII data format from the output of the I/O controller 134 in serial format, and then supplied through a shift register 220 to a dual storage free-running memory 221. As previously mentioned, the memory is effectively sub-divided into two distinct 12

element storage areas, designated stores 1 and 2 herein, by logic control circuitry (to be described in greater detail hereinbelow) associated with the input and output thereof. Such dual storage areas advantageously allow data previously stored in one storage area for one print line to be read out and further processed (so as to effect the printing of characters represented thereby), while data for the next print line is being received in the other storage area.

The binary encoded character data read-out of each memory store together with the character data generated in a type character font generator 230, are compared in an 8-bit comparator 232. The binary encoded font characters are generated in successive groupings (of eight character-numbers each), with each group starting with the next higher order character as they appear on the carrier 16. The character font generator 230 is driven at two-third the frequency f of the storage memory 221, and with a TCA/3 ENABLE control signal applied to an input thereof, only every third output encoded character from the memory is effectively compared with every other encoded type character generated by the font generator 230. This selective sequence of signal comparisons thus satisfies the 1.5 pitch relationship between the type characters and hammer-print columns, as best illustrated in FIG. 11. In that figure, it is readily seen that only every other type character on the carrier 16 registers with every third print column at any one instant.

The output of the comparator 232 comprises serialized, binary encoded data for selectively energizing the drive magnets 126 for the print hammers in sequential groupings, after such data has been time-delayed and selectively routed through a hammer data store and drive control circuit 235, described in greater detail hereinafter.

A type character position counter 241 and a print column counter 243 are employed, together with a 4-bit comparator 249, to gate the input binary encoded data into a given one of the stores of the memory 221 on an assigned basis. More specifically, the position counter 241, as in the case of the memory 221, is free-running at the frequency f , which in one illustrative embodiment is 56 KHZ. As such, the position counter 241 successively counts through the 12 positions or elements associated with one of the two stores of the memory 221, before being recycled to count through the 12 positions or elements of the other store. The column counter 243, on the other hand, successively counts the number of encoded characters that are actually loaded into each respective store of the memory.

The outputs of the position counter 241 and the column counter 243 are then compared in the 4-bit comparator 249, with each equal comparison output signal therefrom controlling the selective loading of encoded characters into the proper slots of each store of the memory 221 on an assigned basis. Such selective loading is accomplished, in part, by a load, line feed and process control circuit 251, which supplies LOAD signals over leads 252 and 253 to the memory 221 and column counter 243, respectively. The nature and functions of the control circuit 251 will be described in greater detail hereinbelow.

A phase counter 255 and a 2-bit comparator 257, in conjunction with the composite control circuit 251, are employed to generate the one-third and the two-third

control frequencies. These clock frequencies are necessary for ascertaining which one of the three sub-scans or phase sequences at any given time should be processing binary encoded data to be printed, and for synchronizing and controlling the data storing, read-out and comparing operations involved during each of the sub-scans.

An 8-bit shift register 261 is employed to keep track of each received TYPE CHARACTER RESET (TCR) pulse, which indicates a beginning of character font, and to reset the type character font generator 230 so that the latter will start a new count sequence for stored signal comparisons in the comparator 232 at such times. This is accomplished by feeding each TCR pulse in succession from the first processing circuit module 135a (FIG. 2) to the second, and from the second to the third, etc., over the interconnecting lead 201, depicted in FIG. 2.

FIGS. 4A and 4B disclose the various sub-circuits comprising one circuit module in somewhat greater detail than depicted in FIG. 3. In particular, it is seen in FIG. 4A that the phase counter 255 drives a clock 262 which gates the firing of a hammer control circuit 235a, which forms part of the circuit 235 depicted in FIG. 3. A 4-bit shift register 235b and 12 magnetic drive circuits 235c completes the simplified hammer driver circuit 235 of FIG. 3.

With reference to the storage memory 221, the output thereof, as depicted in FIG. 4A, is compared with the type character data supplied from the process character counter 230a in the 8-bit comparator 232. The counter 230a, together with a parallel connected master character counter 230b, comprises the simplified type character font generator 230 depicted in FIG. 3. The process counter 230a, when enabled, generates eight successive binary encoded output signals, with alternate ones being representative of the four font characters that selectively align with the particular four (out of twelve) print columns associated therewith during each sub-scan period.

Any equal signal comparison that is subsequently made in the 8-bit comparator 232, as depicted in FIG. 4A, produces an output binary encoded character signal that is fed to the 4-bit shift register 235b. Circuits 235a-c together direct the print signals successively applied thereto to the particular ones (up to four) of the 12 print hammer magnets 86 (FIG. 1) having the proper type characters respectively in register therewith during any particular one of the aforementioned sub-scan periods (each being defined by a TCA pulse, with adjacent pulses having a time duration of 840 us therebetween). Further details as to how the print hammer signals are stored, stretched in time duration, and routed will be discussed hereinafter in connection with FIG. 8.

FIG. 4B depicts in somewhat greater detail the nature of the load, line feed and process control circuit 251 of FIG. 3. To that end, the latter circuit is shown in FIG. 4B as being subdivided into a load control circuit 251a, a process control circuit 251b and a line feed control circuit 251c. The nature and function of the load control circuit 251a will be considered in greater detail in connection with FIG. 6, whereas circuits 251b and 251c will be considered in greater detail in connection with a description of the circuits depicted in FIGS. 9 and 10, respectively, hereinbelow.

DETAILED DESCRIPTION OF ONE CIRCUIT MODULE RELATIVE TO COMPOSITE LOGIC CONTROL CIRCUITRY

In considering certain of the various block diagram circuits depicted in FIGS. 3, 4A and B now in greater detail, from both a circuit construction and a functional standpoint, reference will be made to FIGS. 4-10 in particular. In the interest of clarity, like reference numerals will be used to identify corresponding circuit elements in all of the drawings whenever applicable. It should also be understood that the detailed descriptions hereinbelow of the various circuit elements and associated circuitry will be made with reference to a typical rather than specific one of the circuit modules 135a-g, unless otherwise indicated.

The code converted output from the shift register 220, (FIG. 4A), is fed over a lead 263 to the input of the dual storage memory 221 which, in one preferred embodiment, comprises an 8 x 24 bit dynamic shift register of the type depicted in greater detail in FIG. 5. The data in this dynamic memory is recirculated at a frequency f and is accessed, so as to allow input data to be stored serially therein, but then sub-divided, positionwise, into two distinct storage areas, generally referred to hereinafter as STORES 1 and 2. Each storage area in accordance with the principles of the present invention is capable of storing character data for 12 columns of the associated printer for a given one of two adjacent lines to be printed. As the storage memory is free-running, selective storage in and read-out of data from the two discrete stores thereof is made possible by input and output logic control circuitry described in greater detail hereinbelow.

As best seen in FIG. 4A, the dynamic, free-running storage memory 221 is not only supplied with a (56 KHZ) clock signal, having the frequency designated f herein, but with a load signal. The manner in which the load signal is generated and its significance will become more readily apparent after a description of some of the logic processing and frequency generating circuits.

With the memory 221 being subdivided into dual (12 slot) storage areas, it becomes readily apparent that after every 24 advancements of encoded character data therethrough (e. g., at a rate of 17.85 microseconds per bit, based on the clock rate of 56 KHZ), each successive loaded character will reappear (i.e., be recirculated, unless erased after printing), at the output of the memory. Thus, as best seen in the timing diagram depicted in FIG. 12, the actual data processing time for each sub-scan period only encompasses approximately 214 us out of the total of 840 us allotted for each sub-scan period. The non-scan portion of each sub-scan period is required primarily for electromechanical functions of the printer, for energization of the print hammer magnets, and for resetting some of the logic circuitry associated with mechanical functions of the printer. Such functions will be described in greater detail hereinbelow.

During the data processing portion of each sub-scan period, any encoded characters stored in the proper third of the 12 slots of one store are actually compared with the four particular type characters — pallets that are then momentarily respectively aligned with four (out of 12) of the print columns (and hammers) of the printer. As previously mentioned, for each TCA pulse-

initiated sub-scan period, the carrier 16 advances the type pallets 18 one half the distance (0.050 inch in one illustrative embodiment) between print columns, with three such sub-scans coinciding with the spacing between adjacent type pallets.

It thus becomes readily apparent that for the 1.5 pitch relationship between type pallets and print columns that exists in the illustrative printer embodiment, that three sub-scan periods are required in order for every print column (and hammer) to become aligned with a type character on the carrier 16. This can best be seen from an examination of the type character print column registration sequences symbolically depicted in FIG. 11.

Advantageously, by utilizing a plurality of subdivided dual storage memories 221, each forming a part of a discrete circuit module 135, incoming encoded data to be printed may be received, and printing commenced in the print columns associated with that memory, independently of all of the other memories. This advantageously allows the process logic circuitry scanning rate to be considerably less than would be the case with only one large memory.

In addition, the modular construction of the logic control circuitry, by utilizing independent circuit modules 135 interconnected and controlled in the unique manner depicted in FIG. 2, advantageously allows the processing of print data concurrently (as well as selectively) therein. It thus follows that processing may start in any particular circuit module as soon as a data character has been stored therein, without having to wait for all of the data characters to be stored either with respect to a given memory 221, or with respect to all of the memories, as required for a full print line.

Also as previously mentioned, the utilization of dual memory stores advantageously allows the incoming data to be received and processed over an appreciable variable rate of transmission, as one line may be temporarily stored, if necessary, until the previously stored line of encoded character data has been printed.

With reference now to the character position counter 241, previously identified in FIG. 3, but best seen in FIGS. 4B and 6, it also is free-running with the storage memory 221 (at f). This counter is preferably of the type wherein a modulo three counter drives a modulo four counter so as to produce repetitive 12 count outputs. Each stage of the counter 241 (excluding a final stage) is employed to identify a distinct slot or position in one of the two stores of the memory 221. The counter 241 is adapted to count down rather than up primarily because of the direction in which the type characters are transported by the carrier 16 past the array of print columns (and hammers), and because of the manner in which the encoded type characters are loaded and recirculated in the dual storage memory 221. This will become more readily apparent in a more detailed description of the composite logic circuitry hereinafter.

The position counter 241, as depicted in FIG. 6 not only produces repetitive 12 count sequences alternately for each store of the memory 221, but is wired so that the last stage thereof, such as a flip-flop 241', toggles over after every 12th count generated by the counter. This provides an indication over leads 264 and 265 of, and conditions other related circuits to be described hereinbelow with respect to, which of the two

memory stores are to be scanned, loaded, compared and otherwise utilized at any point in time.

The column counter 243, initially identified in FIG. 3 and depicted more specifically in FIGS. 4B and 6, is preferably constructed as a modulo 12 counter in the same fashion as the character position counter 241, and is advanced by a LOAD CHAR signal once for every character that is actually loaded in the memory 221, up to a maximum of 12 characters for any one line printing cycle. By comparing the outputs of the character position counter 241 and the column counter 243 in the 4-bit comparator 249 (briefly identified in FIG. 3 and disclosed more specifically with associated circuitry in FIGS. 4B and 6), the next empty slot for storage in the memory 221 is determined.

This is accomplished in the following manner. With particular reference to FIG. 6, in response to each equal signal comparison detected in comparator 249, an output signal is produced, applied to, and partially enables an AND-gate 266 which conditionally provides an output signal designated LOAD CHAR On a lead 268. This signal is applied to and controls the loading of characters into the particular memory 221 by periodically conditionally enabling one of each pair of a plurality of input AND-gates 270a-a to 270h-h (FIG. 5), each pair respectively being associated with a different one of the eight vertical planes of the memory. The LOAD CHAR signal is also applied as a clock pulse input to the column counter 243, as seen in both FIGS. 4B and 6.

In addition, the LOAD CHAR signal, on lead 268, is applied to an OR-gate 272 (FIG. 5), which forms part of a reset circuit for the (13 bit) shift register 220 (also depicted in FIGS. 3 and 4A). Considered more specifically, after each binary encoded character has been loaded into the associated memory 221, there is no further need to store the character in register 220. When characters are not to be accepted by this particular circuit module 135, the negative of an ACCEPT CHAR signal on a lead 275, will also cause the shift register 220 to be reset. Since the LOAD CHAR signal is only one clock pulse wide, each such signal also only advances the column counter 243 (as best seen in FIGS. 3 and 4B) up by one count and, as previously mentioned, only allows the loading of one encoded character in one particular store of the memory 221 at a time. The manner in which the ACCEPT CHAR signal is derived at the output of an AND-gate 277 in FIG. 6 will be described in greater detail hereinbelow.

It is also seen in FIG. 6 that an actuatable latch 278, driven by the output of the column counter 243, through an OR-gate 279, is set to an OWN STATUS FULL state each time the column counter counts to 12. This indicates that a given store of the associated memory 221 is full. Latch 278 may also be set to an OWN STATUS FULL state by means of a second input to the OR-gate 279, connected through a lead 280 to one output of a 4-bit comparator 281. Thus, regardless of how the latch 278 is set, it is capable of producing an OWN STATUS FULL signal, but only when: (1) data characters have either been loaded into all 12 slot positions of the proper one of the dual stores of each memory 221 (as indicated by the output of the column counter 243), or (2) when an equal signal comparison has been detected in, and an output is produced by, the 4-bit comparator 281 of the last circuit module. The latter output indicates that the last stage memory 221 (g) as

been loaded with a data character to be printed in the highest column of the printer.

Considering the significance of the 4-bit comparator 281 (FIG. 6) used in only the last circuit module 135g in greater detail, it is needed because the highest print column assigned for processing therein need not be the same as for the other circuit modules. For example, in an 80 column printer of the type illustrated herein, the sub-dividing of the print columns into groups of 12 results in the last group not being assigned twelve print columns, but rather, only eight. The last circuit module 135g in the present case therefor obviously has some unused print column processing capacity. This is most clearly indicated by the type character-print column alignment associated with the 7th circuit module 135g depicted in FIG. 11, where it is seen that print data for only print columns 73 to 80 is actually being processed therein. As such, it is readily appreciated that there must be logic circuitry for ascertaining when the output of the column counter 243 in circuit module 135g corresponds numerically with the highest column of the printer.

To that end, and as seen in FIG. 6, the output of the column counter 243 is continuously compared with a HIGH COL. COMP signal, generated by the I/O controller 134, in the 4-bit comparator 281. The latter signal is representative of the highest column number of the printer, and is transmitted on the SERIAL DATA lead 181 (FIG. 2) as part of each encoded data character, which typically comprises eight ASCII coded data bits and four high column data bits. Thus, each sensed column count comparison in the last circuit module 135g is indicative of the fact that the associated memory 221 has stored a character therein for the highest print column available in the printer. As such, it is appreciated that the 4-bit comparator 281 (FIG. 6) is only used in the last circuit module 135g.

A second output of the 4-bit comparator 281 in the last circuit module 135g not only transmits an EOL signal back to the I/O controller 134, but to every other circuit module (135a-f), over its lead portion 168', which is connected to a common bus represented as part of lead 168 in FIG. 2. An EOL signal appearing on this lead 168 indicates to all of the circuit modules 135 that all data for the present line has been received and that any data characters subsequently appearing on the SERIAL DATA lead 181 are to be printed on the next line. Generally, the I/O controller 134 sends an EOL signal to all of the circuit modules on the lead (or bus) 168 in response to a new line command from the SSI Interface. As previously noted, the last circuit module 135g may also output on the EOL lead 168 whenever data has been stored in the memory slot associated with the highest print column of the printer. It should also be noted that it is because of the two-way communications that takes place over the EOL leads 168, 168' in the last circuit module 135g (FIG. 2), that bi-directional arrows are shown relative to the input of only that module.

From the foregoing, it is seen that only the last circuit module 135g utilizes the HIGH COL COMP signal to initiate an EOL signal at the output of the comparator 281, and then only when the latter is enabled by AND-gate 282 (FIG. 6). One input to the AND-gate comprises the previously described LOAD CHAR signal, with the other input comprising a LAST CKT signal. The latter signal is actually generated in the illustrative

embodiment by a simple strap option connection which, as shown, may ground (or otherwise change the signal level on) a LAST CKT lead 284g depicted in FIG. 2. It should be understood, of course, that a LAST CKT condition may be established in any one of a number of conventional ways, to indicate to the last circuit module (whether 135g or some other one) that it is to perform the high column comparison.

As also depicted in FIG. 6, the ACCEPT CHAR signal on lead 275 is produced at the output of the AND-gate 277 whenever an OWN STATUS FULL signal is not present, which results in one enabling input thereto by reason of an inverter 287, and a PREVIOUS CKT FULL STATUS signal on a lead 288 being active. These operating conditions indicate that a particular circuit module 135 is in an operating state wherein it can accept and subsequently store data characters applied thereto on the SERIAL DATA lead 181.

Attention will now be directed as to how signals transmitted on the ACCEPT CHAR lead 275, and on the previously identified RNC bus 172, control data character transfer between the I/O controller 134 and the circuit modules 135a-g. As seen in FIG. 2, all of the circuit modules 135a-g output on the RNC bus 172, which essentially functions as an OR-bus. More specifically, and with particular reference to FIG. 5, only one particular circuit module 135 at any given point in time has an active ACCEPT CHAR signal appearing on the associated lead 275.

This signal will output onto the RNC bus 172 and, thereby, request the I/O controller 134 to send a data character to be printed back to the circuit module 135 in question on the SERIAL DATA lead 181. When such a data character is received by the circuit module, 35 a CHAR AVAIL signal is produced at the output of the shift register 220.

The RNC bus 172 is released by each circuit module 135 in response to the receipt of a CHAR AVAIL signal on a lead 289 (FIG. 5), which signal in passing through an inverter 291 disables an AND-gate 292. The subsequent loading of a data character in a given store of each circuit module memory 221 then resets the shift register 220 by reason of a LOAD CHAR signal being applied to the input of the previously identified OR-gate 272. This results in a CHAR AVAIL signal level change over lead 289 so as to enable the AND-gate 292 and results in a REQUEST NEW CHARACTER (RNC) signal being sent over the similarly designated bus 172.

As will be described in greater detail hereinbelow, when two EOL command signals have been received without either one having been executed in conjunction with a new line feed command by the printer, a PRINTER BUSY signal is supplied over a lead 293 to the input of an inverter 294, which signal turns the RNC bus 172 off, indicating that no more characters are requested from the I/O controller 134. The PRINTER BUSY signal is generated by circuitry depicted in FIG. 9 which will be described in detail hereinbelow.

Considering at this point the PREV CKT FULL STATUS signal for each circuit module 135 in greater detail, it is generated by the flip-flop 295 (FIG. 7), which is selectively enabled by a pair of AND-gates 296 and 298 respectively connected to the J and K inputs thereof. One input to the AND-gate 298 is connected

through an inverter 299 to the incoming data lead 201'.

The other input of each AND-gate in question is connected through an inverter 301 and leads 302 and 303 to every 3rd TCA pulse output of an AND-gate 304. The latter gate has two inputs connected to the two lower order bit outputs of the modulo 3 phase counter 255, with a third input being connected to the TCA pulse input to the logic circuitry.

Before considering the circuit function of the flip-flop 295 in greater detail, it might prove beneficial to review briefly the significance of the input and output lead portions 201' and 201'', respectively, which are associated with each of the circuit modules 135 as depicted in FIGS. 2 and 7. The incoming lead portion 201' is actually a continuation of the output lead 201'' of the immediately preceding circuit module 135. As previously mentioned, there are two multiplexed signals transmitted on each lead portion 201, one being the PREV CKT FULL STATUS signal and the other being TYPE CARRIER RESET (TCR) information. At all times other than during every third TCA pulse, a PREV CKT FULL STATUS signal (or the absence thereof) is detected on the lead 201'.

Thus, each flip-flop 295 of each circuit module 135 effectively follows the signal state of the associated lead portion 201', thereby sampling and storing information relative to the full status of the previous circuit module 135. Upon receipt of every third TCA pulse, the flip-flop 295 is disabled and, thus, prevented from following the signal state of lead portion 201'. As a result, the shift register 261 associated with the flip-flop 295 is advanced one slot, causing the output thereof to be fed to the input of the next succeeding shift register over the continuous lead portions 201'', 201'.

BRIEF DESCRIPTION OF MEMORY LOAD CONTROL CIRCUIT

With reference again to FIG. 6, between the position counter output stage 241' and the AND-gate 266, there is a memory load control circuit defined within the dash-lined box 251a. This circuit forms a part of the load, line feed and process control circuit 251 in FIG. 3, and is disclosed by the similarly numbered box 251a in FIG. 4B. With particular reference to FIG. 6, circuit 251a, in addition to the previously described AND-gates 266, 277, and inverter 287, further includes a pair of AND-gates 307, 308 each having an input connected to a different one of the previously identified leads 264 and 265. The other ends of these leads are respectively connected to opposite sides of the last-stage (e.g., flip-flop) logic element 241' of the position counter 241. It will be recalled that it is the toggled position of logic element 241' after every 12th count that determines, in part, whether STORE 1 or 2 of each memory 221 has its output available for either the storing or processing of data. The other two inputs to the AND-gates 307, 308, respectively designated STORE 1 and 2, are connected to logic control circuitry of the type depicted in FIG. 9, described in greater detail hereinbelow.

It will suffice to simply state at this point that a STORE 1 or 2 signal indicates that data is to be stored in either correspondingly numbered STORE of the associated memory 221. The presence of either STORE signal results in an output from an OR-gate 309 being applied to an input of the AND-gate 266. When an ACCEPT CHAR signal is present on lead 275 (indicating

that the associated circuit module 135 is the one to accept data characters), and when a CHAR AVAIL signal is present on lead 293 (indicating that a character has been received on the SERIAL DATA lead 181), and when an output COMPARE signal is also provided by the 4-bit comparator 249 (indicating that the proper slot in the proper store of the memory 221 into which the next data character is to be loaded is available at that memory output), a previously described LOAD CHAR signal is sent over lead 268 to gate the input 10 AND-gates 270a-a to 270h-h depicted in FIG. 5.

BRIEF DESCRIPTION OF MEMORY PROCESS CONTROL CIRCUIT

Consideration will now be directed in greater detail to the process control circuit 251b depicted in only block diagram form in FIG. 4B. That circuit is shown in greater detail in two parts, namely, within the dash-lined boxes designated 251b' and 251b'' in FIGS. 7 and 6, respectively. With particular reference first to FIG. 7, it is seen that every TCA(SYNC) signal received on the lead 163 (from the I/O controller 134, FIG. 2) is an indication that a new type carrier/print column alignment has occurred, as described hereinabove, and that a new process cycle is to be initiated. The process cycle cannot, however, be started immediately since synchronism with the free-running position counter 241 and the memory 221 of each circuit module 135 must first be achieved. This is accomplished by circuit portion 251b' (FIG. 7) in the following manner. Upon receipt of each TCA pulse on lead 163, a flip-flop or latch 401 acquires an operating state indicative of that fact. With the latch 401 enabled, the output thereof, in turn, enables a latch 402, and as it is clocked by the 12 count output of the position counter 241 (FIG. 6) over a lead 403, the latch 402 produces a synchronized output PROCESS ENABLE signal on a lead 404 (see FIG. 14 timing diagram).

Referring now to the processing circuit portion depicted in FIG. 6, and defined within the dash-lined box designated 251b'', it is seen that the PROCESS ENABLE signal generated at the output of the latch 402 in FIG. 7 is applied over the lead 404 as a common gated input enable to two AND-gates 406 and 407. The PROCESS 1 and 2 input signals are correlated with the STORE 1 and 2 input signals applied to AND-gates 307 and 308 described hereinabove, in that the former signals respectively indicate whether the data stored in STORE 1 or 2 of the associated memory 221 is to be processed. By gating the AND-gates 406, 407 with the high order bit output of the position counter 241, applied through lead 265, control is provided over whether STORE 1 or 2 of the memory 221 is available for access (either storing or processing). An output from either AND-gate 406 or 407 enables an OR-gate 408, the output of which produces a SYNC PROCESS signal on a lead 409. The latter signal provides lead 412, 12 count interval at the proper time, during which the data available at the output of the memory 221 is to be processed. At the conclusion of this process interval (sub-scan cycle), the circuit portion 251b' (FIG. 7), which is still generating the PROCESS ENABLE signal on lead 404, is reset by means of the SYNC PROCESS signal applied to the latch 401 through an AND-gate 411.

The manner in which the COMPARE ENABLE signal is generated and used will now be discussed in greater detail. As depicted in FIG. 6, that signal appear-

ing on a lead 412, is generated at the output of an AND-gate 413 which forms a part of the previously identified PROCESS CONTROL circuit portion 251b''. Gate 413 has three inputs applied thereto, namely, a 5 COMPARE signal from the 2-bit comparator 257, an ANY STORED signal transmitted on a lead 415 from a multi-input OR-gate 417 (FIG. 5), connected to the output of the associated memory 221, and the previously identified SYNC PROCESS signal derived at the output of the OR-gate 408.

As described hereinabove, the SYNC PROCESS signal on lead 409 provides one 12 count interval for every TCA pulse (i.e., a timed interval for every new type character/print column alignment) at the time the character data that is to be processed is accessible at the output of the memory 221. The ANY STORED signal on lead 415 (FIGS. 5 and 6) is produced, and applied as an input to the AND-gate 413, only when a character is actually stored in the memory 221.

In connection with the function of the 2-bit comparator 257, it will be recalled that the MOD 3 phase counter 255 (FIG. 7) is clocked once for each TCA pulse in a modulo 3 fashion and, thus, determines for 25 any one sub-scan which four of the 12 slots in the associated memory 221 (each slot associated with a particular print column) are indicative of four particular print column-type character alignments, and are to be reviewed in the process cycle initiated by each TCA pulse.

Concomitantly, the position counter 241, whose first two elements also count in a modulo 3 fashion (at the same free-running rate f at which data in the memory 221 is circulated), counts in an order such that each of 35 its 12 counts (excluding the last stage 241') is associated with one of the 12 slots in the memory 221. Comparison of the outputs of these two last-mentioned counters in the 2-bit comparator 257 (FIG. 6) then generates the proper 4 out of 12 signals required to 40 gate the AND-gate 413 (FIG. 6) and, thereby, partially effect the generation of the COMPARE ENABLE signal, which is employed to control the proper phasing of the character data read out of each associated memory 221.

The actual effect of the COMPARE ENABLE signal is that it only allows a comparison of character data that is not only read out of the proper one of the two distinct free-running memory storage areas, but also 50 only during the times that the particular 4 out of 12 memory slots thereof correspond with the four type character-print column alignments for that particular process print cycle.

As also depicted in FIG. 6, the COMPARE signal 55 generated at the output of the 2-bit comparator 257 is applied to one input of each of two AND-gates 421 and 423, with the input to the latter being inverted by an inverter 425. By utilizing the SYNC PROCESS signal as a gating input, the one-third f and two-third f clock frequencies are generated at the outputs of the AND-gates 421 and 423, respectively.

From the foregoing, it is readily seen that upon receipt of each TCA pulse, the logic control circuitry is conditioned to go through a sub-scan print cycle. In such a process, there must be generated serial, binary encoded numbers for each of the eight characters carried by the type pallets that at any given time are in juxtaposed relationship with the 12 print columns associ-

ated with each circuit module 135 (depicted only in outline form in FIG. 2).

MODE OF OPERATION OF TYPE CHARACTER FONT GENERATOR

The type character font generator 230 depicted in simplified form in FIG. 3, is shown in greater detail in FIGS. 4A and 7 as comprising an 8-bit process character counter 230a and an 8-bit master character counter 230b. Attention will now be directed to the manner in which these counters relate to the shift register 261, and to a shift register 450 in performing the character generating function, with particular reference to FIG. 7.

The master character counter 230b always contains the binary encoded number representative of the character/type pallet that is at any given time associated with the high order print column (12th) that is assigned to a particular circuit module 135. Thus, when the TCR signal, as described above, is shifted into the high order A slot position (8th) of the shift register 261, as depicted in FIG. 7, the master counter 230b is reset to a 0 state. This state of the counter 230b thus indicates that the first or beginning of font character on the carrier 16 has been moved into a position which is aligned with the 12th hammer 85 controlled by that circuit module.

On receipt of every TCA pulse applied to the phase counter 255 (as best seen in FIG. 7), that pulse in the form of a binary encoded character is shifted into the process counter 230a (while also remaining in the master counter 230b) in preparation for a sub-scan print cycle. On every 3rd TCA pulse, the pulse also in the form of a binary encoded character is also counted up 1, and then shifted back up to the master counter 230b to reflect the next binary encoded character that has now been moved into the high order position. In this connection, it should be noted that in the illustrative embodiment, the type carrier 16 moves the type characters in each font from left-to-right, while the binary encoded numbers representative thereof are generated in increasing binary order from right-to-left.

In order to provide selective character signal comparisons in the comparator 232, (FIG. 5) of only the four type characters (every other one out of eight) and the four print columns (every third out of 12) that are in register during any one subscan period (see FIG. 11), the process counter 230a clocks the output data therefrom at two-thirds the frequency of the associated free-running memory 221. The output of the comparator 232 is gated by the input COMPARE ENABLE signal applied to an AND-gate 419 (FIG. 5) in producing print hammer data signals which are transmitted over lead 488 to the HAMMER DATA STORE AND CONTROL circuitry 235 depicted generally in FIG. 3, and disclosed in greater detail in FIGS. 4A and 8.

As a result, the process counter 230a, clocked at two-thirds f , counts upwardly eight counts, each being respectively representative of the eight consecutive type characters then positioned adjacent the twelve associated print columns of the printer, but with only four type characters being in actual alignment with print columns at any one time.

As also depicted in FIG. 7, a logic circuit is associated with the output of each shift register 261, and includes two parallel paths, one comprising an inverter 436 and an AND-gate 438, and the other comprising an AND-gate 443. The output of both AND-gates are coupled through an OR-gate 444 to the output lead 201''.

previously identified in connection with FIG. 2. Either an OWN STATUS FULL signal together with an inverted 3rd TCA pulse must be applied to the input of the AND-gate 438, or a 3rd TCA pulse — and the output of the shift register 261 must be applied to the input of the AND-gate 443 in order to transmit data over the lead portion 201'' to the next processing circuit module 135. The OWN STATUS FULL input to the inverter 436 is derived from the output of the previously described latch 278 depicted in FIG. 6.

With particular reference now to FIGS. 4A and 7, an 8-bit shift register 450 is associated with the 8-bit shift register 261, and together provide conditional enabling signals to an 8-bit AND-gate compare circuit designated generally by the reference numeral 455 (shown only in block diagram form in FIG. 4A). These three logic circuits are employed to reset the process counter 230a every time a 0 character (or some other beginning of font character), for example, is present in one or more of the eight type characters that are associated with a particular circuit module 135 during any particular subscan period.

Considering the significance of the shift register 450 in greater detail, at the beginning of a process cycle, a TCA marker bit is applied as an input to that register as depicted in FIG. 7. At that time, the first slot position of the shift register 450 coincides with the high order or 8th slot position of the shift register 261. The marker bit is thereafter shifted through the shift register 450 (right-to-left, i.e., in the same direction as the process cycle proceeds) at a frequency of two-thirds f which, in effect, allows successive slot position comparisons to be made between the shift registers 261 and 450.

If a beginning of font character (such as 0 in one particular illustrative embodiment) appears at any particular slot position in the shift register 261, in advancing from right-to-left through the eight positions thereof, and at a time when it coincides position-wise with the continuously shifted marker bit in register 450, the common dual outputs from such coincident storage positions will enable the associated one of the plurality of AND-gates in a logic array 455. This, in turn, will produce a Reset signal that is transmitted through a multi-input OR-gate 457 and a lead 459 to, and will reset, the process counter 230a. The binary encoded output of the counter 230a then corresponds to the first or start of font character on the carrier 16. The count up of counter 230a then proceeds at a two-third f rate for the remainder of the sub-scan (process cycle), generating the proper binary encoded characters corresponding to the type characters that successively and sequentially are brought into alignment with the print columns and hammers that are assigned to the associated circuit module 135.

With each successive shift register 261 shifting only TYPE CARRIER RESET (TCR) information through the respectively associated circuit modules 135 at the same rate, and in the same direction, as the type carrier 16 moves across the front of the printer, there advantageously is no need to shift the 8-bit binary encoded character representations through the circuit modules 135a-g. If the latter approach were undertaken, eight shift registers analogous to shift register 261 would be required per circuit module, for each of the eight character bits, and would also require either 14 additional input/outputs to accommodate such data, or would require a complex scheme of multiplexing. Inasmuch as the circuit modules 135 are advantageously implemented as an LSI package, the additional pinouts

would require a subdivision of the circuit logic into a larger number of circuit modules (each driving less than 12 columns), while the multiplexing scheme would entail a substantial increase in logic complexity. As such, either solution would add substantially to the cost of the composite hammer logic control circuitry.

STRAP-OPTION RECOVERY CIRCUIT FOR PURGING MEMORY OF INVALID CHARACTERS

There are two different recovery circuits and associated modes of operation embodied in the present hammer logic control circuitry for purging the memory 221 of any invalid or erroneous character data. Such data could be generated and stored, for example, as a result of spurious noise transmitted in a given message, or generated locally. Special recovery techniques are required since erroneous data characters may typically never compare with a generated binary representation of a type character and would, therefore, never be removed from a given memory 221.

One circuit, depicted in FIG. 5, is adapted for use with standard length character fonts, and incorporates two selectable strap options in a manner that allows erroneous data to be compared for printing, erased from the memory and an ERROR symbol printed therefor, in a manner very similar to that described hereinabove for valid data, and advantageously within the normal sub-scan process cycle. An auxiliary invalid character recovery circuit depicted in FIG. 10, and described in detail hereinbelow, is adapted for use with non-standard character font lengths. That circuit necessarily employs a pre-determined print cycle time delay before the memory is purged of any erroneous data.

Considering at this point only the strap option controlled recovery circuit associated with each memory 221, as depicted in FIG. 5, it is seen that within the dash-lined box 470 is a dual strap option circuit comprising a plurality of AND/OR-gates 471 through 476, a zero count detector 477, and a three-input AND-gate 479.

Considering circuit 470 more specifically, the AND-gate 471 is connected to the 6th and 7th parallel-by-bit outputs of the associated memory 221 so as to be enabled and provide a binary encoded output whenever stored data characters register at those designated memory outputs. The OR-gate 472, by having one input connected to the output of the AND-gate 471, and the other input connected to the 8th bit output of the memory 221, provides an output whenever 6th and 7th bit outputs are detected, or when an 8th bit output is similarly detected. Considered another way, an output from the OR-gate 472 is produced whenever a binary representation of a data character equal to or greater in numerical serial order than 96 is detected at the output of the memory 221 in the illustrative embodiment. In a similar manner, the OR-gate 474 provides an output whenever a binary representation of a data character greater in numerical serial order than 64 is detected at the output of the associated memory 221.

It is thus seen that when either the AND-gate 473 or 65 475 is enabled, which one depending upon the strap option chosen, the resulting output from either gate will enable the OR-gate 476. It will be noted that the third input to the OR-gate 476 is a Recover signal ap-

plied thereto over a lead 481 that originates at the output of the other erroneous character detection circuit mentioned hereinabove, and depicted in FIG. 10. As will presently be seen, if the latter auxiliary circuit is not employed, the RECOVER input to the OR-gate 476 is not required. The output of a multi-input AND-gate 483 is also connected to an input of the AND-gate 476, and is used to effect the printing of an ERROR symbol for special characters, as described further hereinbelow.

Referring again to the OR-gate 476, any 1 input applied thereto will result in a 1 output which provides a conditional input signal to the previously identified three-input AND-gate 479. The center input to the latter gate is connected to the zero count detector 477. This detector effectively interrogates the type carrier character encoded data appearing on an eight wire cable 484 connected to the output of the process counter counter 230a (FIG. 7), and determines when the latter is set at a 0 count. The third input to the AND-gate 479 comes from the ANY STORED output of the previously identified multi-input OR-gate 417 (FIG. 5). This latter gate as previously mentioned is connected to all eight parallel-by-bit outputs of the storage memory 221, and produces an output whenever any data is stored in any of the 12 slots of a given store of the memory being interrogated.

Thus, the AND-gate 479 is only enabled by three coincident input signals supplied thereto. When enabled, the resultant output from the AND-gate 479 is applied to an OR-gate 486. Either that input, or an input thereto from the 8-bit comparator 232 will, of course, provide an output therefrom on a lead 487 which can 30 partially enable the previously identified inhibiting AND-gate 419.

Thus, upon the AND-gate 419 having both a COMPARE ENABLE signal and an ANY STORED signal (indicating a stored character other than a SPACE) applied thereto, then, even in the absence of an output signal from the 8-bit comparator 232 (required for the printing of valid characters), an output ERROR signal for actuating the appropriate print hammer will be produced on a lead 488, provided a FALSE COMP signal 40 is produced at the output of the AND-gate 479. The output on lead 488 also serves as a COMPARE signal which is sent over a lead 489 to control circuitry depicted in FIG. 10, for reasons discussed in greater detail later.

50 The ERROR symbol is printed in the following manner: It will be recalled that the 0 count, by definition, is the first character of each character font on the carrier 16. Thus, by placing the ERROR symbol on the type pallet 18 occupying that particular slot position along the carrier 16 (which actually constitutes an otherwise non-printing SPACE slot), the ERROR symbol will be printed in the same manner as any other valid type character whenever a FALSE COMPARE signal (from the AND-gate 479) is simultaneously applied with the COMPARE ENABLE and ANY STORED signals as inputs to the AND-gate 419.

The ERROR symbol is prevented from being printed when the SPACE character is stored in the normal message text because in being a binary 0 character, it cannot result in an ANY STORED signal being generated for it. Accordingly, in that instance, the AND-gate 419 is disabled and, hence, inhibits any print hammer out-

put signal representative of a SPACE character from being generated on lead 488.

However, when a print signal does appear on lead 488, regardless how generated, it is employed to effect the erasure of the stored data in the memory 221 that gave rise to it, upon such character being printed. Such operation is effected by enabling a NOR-gate 491 by either a COMPARE signal applied thereto over a lead 493, or the previously identified INITIALIZE signal applied thereto over the lead 174 (see FIG. 2). With the NOR-gate 491 enabled, an ERASE signal is sent over a lead 496 to the common inputs of the array of AND-gates 270a-a to 270h-h. The INITIALIZE signal applied to the NOR-gate 491 allows the associated memory 221 to be erased from an initial POWER ON RESET condition.

From the foregoing it is seen that the strap option circuit depicted within the dash-lined box 470 in FIG. 5 provides an effective way to rapidly detect the presence of any invalid data characters, or characters having a binary number higher than the chosen strap option font length, and to effect the erasing thereof from the memory 221 with no time loss being incurred in the process cycle. As mentioned hereinabove, an optional recovery circuit for purging the memory 221 of erroneous character data, by generating a RECOVER signal on the input lead 481 applied to the OR-gate 476 will be described in detail hereinbelow in reference to FIG. 10.

DESCRIPTION OF ERROR SYMBOL PRINTING FOR SPECIAL CHARACTERS

The capability is provided in each of the circuit modules 135 of the illustrative logic control circuit to allow the I/O controller 134 to access the ERROR symbol included in each font of type characters, and to effect the printing thereof at any selected print column in place of any type character. For example, the I/O controller 134 can make a vertical parity check and choose to have incorrect vertical parity characters printed as the ERROR symbol.

Considered more specifically, and in reference to FIG. 5, the previously defined multi-input AND-gate 483 is connected to all eight parallel-by-bit outputs of each memory 221, and thus detects an all bit 1 condition, and provides a 1 output whenever the binary representation of character 255, for example, is detected at the output of the memory. This output from the AND-gate 483 is transmitted over a lead 498 to the input of the OR-gate 476. As described hereinabove in connection with purging each memory 221 of invalid characters, any 1 input to the OR-gate 476 will result in the ERROR symbol being printed for the associated binary representation(s) of any given type character(s) which would otherwise be printed.

HAMMER MAGNET DRIVE CIRCUITRY

Attention will now be directed to the active utilization of the PRINT HAMMER DATA derived at the output of the inhibiting AND-gate 419 on lead 488 (FIG. 5). As best seen in FIG. 8, that data comprises all of the serial information required to actuate the proper print hammers 85. Considered more specifically, the serial encoded data on lead 488 is applied to the 4-bit shift register 235b, previously identified in connection with FIG. 4A. As there can never be more than four print hammers in registry with different type pallet-

characters in any one sub-scan or process cycle (for a 1.5 pitch relationship therebetween), there will never be more than four discrete hammer actuation signals supplied to the shift register 235b at any one time. This data is advanced to the latter shift register at the one-third f clock frequency which, of course, is the rate at which the type character data is advanced through the inhibiting AND-gate 419 (FIG. 5), and controlled by the COMPARE ENABLE signal discussed hereinabove.

The information successively stored in the shift register 235b is thereafter shifted out of that register, upon receipt of each successive TCA pulse, and applied selectively to the particular one of three 4-bit latches designated 503, 504, and 505 in FIG. 8. Which one of the three latches receives information at any given point in time is controlled by three precisely phase clock inputs derived from clock source 262 (FIG. 4A). These clock pulses are phase-controlled by the MOD 3 phase counter CTR 255 (FIG. 7) which, of course, determines which third of the print hammers (or columns) are aligned with type characters on the carrier 16 for that particular sub-scan process cycle.

Three additional 4-bit latches 509, 510, and 511 are respectively parallel coupled to the latches 503, 504, and 505, with the former latches effectively functioning as pulse stretchers. More specifically, through the utilization of the latches 509-511, which are respectively and sequentially actuated by appropriately timed RESET pulses numbered 1-3, generated by a conventional multi-phase clock source 513, the hammer magnets 126 (FIG. 1) may be actually energized for the time encompassed by four, rather than by three TCA pulse periods. This expanded time period is normally desired, if not required, for line printing speeds of the order of three or more lines per second. The pulse stretching effect is clearly illustrated in the sub-scan and print cycle timing diagrams depicted in FIG. 12.

DESCRIPTION OF TIMING AND CHARACTER SLOT POSITION DIAGRAMS

In order to better understand the operating relationship of the dual storage memory 221, relative to the position counter 241 and column counter 243 in each circuit module 135, attention will now be directed to the pictorial diagrams depicted in FIG. 13, and to the timing waveforms depicted in FIG. 14. Starting with the bottom pictorial representation of STORES 1 and 2 of the memory 221 in FIG. 13, it is seen that the slots or elements of each STORE are numbered in increasing order from left-to-right so that they will correspond spatially with the print column positions of the printer. It should also be noted that the slot numbers associated with each STORE are depicted with respect to one instant in time and, in particular, during a reset period, which, by definition, is the time when any data character to be printed in the 12th column of a given line is accessible at the memory store output. The particular storage slot that is available at the output of the memory will change, of course, at the rate of the clock frequency (f) 56 KHZ, or once for every 17.85 microseconds in the illustrative embodiment.

Looking at the position counter slot position diagram at the top of FIG. 13, it is important to note that rather than showing a picture thereof at one instant in time (as the memory 221 is illustrated), time is measured on the horizontal axis, increasing from left-to-right. As such,

that diagram represents each successive count, starting with the 12th, generated by the position counter 241 at the frequency f . Arranged in this manner, it is seen that during time slot 12 of each position count (reset position) of the position counter 243, storage slot 12 of a given STORE is accessible at the memory store output. Similarly, each succeeding position count is associated with a corresponding storage slot upon becoming accessible at the memory store output. In contrast to the position counter 241, the slot positions of the column counter 243 are numbered in the same order as the slots in the two STORES of each memory 221 for reasons which will become apparent by several illustrative examples.

First, let it be assumed that the data character A is to be loaded in slot 2 of STORE 1 of the memory 221, as pictorially depicted in FIG. 13. This implies that the column counter 243 is now at count 2. As previously described, the loading of characters in each memory 221 is effected by comparing the outputs of the position counter 241 and the column counter 243 in the 4-bit comparator 249, as best seen in FIGS. 4B and 6. If an equal signal comparison is effected in the comparator 249, the particular data character to be printed in the then identifiable print column is loaded in the correspondingly numbered slot, namely, slot 2 of STORE 1 of the memory 221. In order to accomplish this, the free-running position counter 241 must count downward until a count 2 output is generated therefrom, which will coincide in time with the count 2 output from the column counter.

At that point, the data character to be printed in column 2 is loaded into slot 2 of STORE 1 of the memory, because the latter is operated in synchronism with the position counter 241. The same load pulse or signal employed to effect the storing of a data character in a given memory 221 also effects the counting upward of the associated column counter 243 from count 2 to 3. As will be described hereinbelow, the logic circuits of FIGS. 9 and 10, which generate the necessary PROCESS 1 and 2 and STORE 1 and 2 control signals, control the timing of the LOAD, SYNC PROCESS and COMPARE ENABLE signals so as to insure that each data character received for printing is stored in and read out from the proper store of each memory 221 at the proper times.

With the position and column counters 241 and 243 respectively operated in the manner just described, a very beneficial result is realized. Specifically, as soon as a data character is received in the STORE (1 or 2) being processed, printing may commence in the appropriate one of the 12 print columns associated with that memory as soon as the loaded character is read out and compared, even though all of the data characters to be stored in that memory have not yet been received.

One somewhat complicating effect of such sequential printing is that in a typical operating case, there will often be a number of empty slots in the accessed STORE of a given memory, because characters previously stored therein have already been printed, which results in those stored characters being erased. If the printing rate and the rate at which the data is received are closely matched, it is readily possible, and in fact often happens, that about half the slots in a given store would be empty to receive new data characters at most times during a given print cycle. It thus becomes apparent that with printing taking place in a sequential rather

than serial manner, successive data characters cannot always be stored in the next available empty slot position of a given store of the memory.

By way of further illustrating this operating condition, assume that the first five data characters received in a given message are to be printed in the first five print columns and, thus, stored in the first five slots of memory STORE 1, for example, and that before the sixth data character is received for storing the third data character is printed, and thereafter immediately erased from the memory in the manner described hereinabove. Under these conditions, it would be possible without the particular use of the position and column counters 241 and 243 (associated with each circuit module 135), to have the sixth data character inadvertently loaded in the then empty third slot of the associated STORE, as that slot next presented itself in a free-running manner.

It thus becomes imperative that the position counter 241 continuously identify the rapidly changing output-input memory slot positions as they become available in a synchronous manner, and that the column counter 243 constantly keep track of each data character loaded in a given STORE, up to the maximum number of 12, and relative to a particular time in the illustrative printer embodiment. Only in this manner can the outputs of the position and column counters be compared and effectively utilized to correlate the slot positions in the memory with the print columns in the illustrative printer embodiment.

Reference is now made to the particular timing waveforms depicted in FIG. 14. These waveforms illustrate how the circuit depicted within the dash-lined box 251b' (described hereinabove) of FIG. 7 provides synchronous timing intervals in response to successive asynchronous TCA pulses received from the printer mechanism (transducer 132, FIG. 1) so as to precisely define the duration of each process cycle. The position counter C_{+12} output waveform (a) is simply representative of each successive high order output count (12th) of a given position counter 241 (see FIG. 6), and is the signal that is used to achieve synchronism. As described hereinabove, the output of the flip-flop 401 (FIG. 7) is enabled, producing the output waveform (b), whenever a TCA pulse occurs and, thereby, sets the associated flip-flop 402. The necessary PROCESS ENABLE signal (waveform c) to effect a synchronous process cycle, however, is not produced on lead 404 until the flip-flop 402 receives a C_{+12} clock pulse (waveform a), as evidenced by a comparison of the waveforms a-c in FIG. 14.

The dotted line in the timing waveform (d) in FIG. 14 simply indicates that the SYNC PROCESS signal may occur simultaneously with the PROCESS ENABLE signal, or be delayed up to 12 counts of the position counter 241 in order to commence a print cycle in a synchronous manner. Whether a delay is necessary or not is dependent upon when the initial type carrier advance (TCA) pulse was generated relative to the accessibility at the memory output of the particular STORE (1 or 2) then being processed.

DETAILED DESCRIPTION OF STORE 1, 2 (AND PROCESS 1, 2) SIGNAL GENERATING CIRCUIT

Attention will now be directed to the manner in which the necessary STORE and PROCESS signals are generated for use in the circuitry previously described

and depicted in FIG. 6. It will be recalled that the STORE 1 and 2 signals are employed to produce the LOAD CHAR signals for each associated memory 221, and the PROCESS 1 and 2 signals are employed to effect the processing of stored data at the proper times and out of the proper one of the two memory storage areas. With particular reference to FIG. 9, it is seen that a flip-flop 525, together with an associated array of output gates 530-534 produce the STORE 1 and 2 output signals for use in loading the associated dual storage memory 221 (best seen in FIG. 5). Considering first the case when there is no PRINTER BUSY signal appearing on the previously identified lead 293, it is seen that the gating array at the output of the flip-flop 525 is functionally transparent since AND-gate 531 is enabled, AND-gate 532 is disabled, and thus the N (normal) output of the flip-flop 525 is transmitted to the output of the OR-gate 533.

Considered more specifically, whatever logic states appear at the N/I outputs of the flip-flop 525, these outputs will also appear at the outputs of the OR-gate 533 and inverter 534, respectively. The condition when the PRINTER BUSY signal on lead 293 is present is considered hereinbelow in connection with a description of a data stacking feature incorporated in the illustrative composite logic control circuit.

Flip-flop 525 switches state upon receipt of each END OF LINE (EOL) signal applied to the J and K inputs thereof through an AND-gate 537. If the flip-flop 525 is initially in a 1 output state, for example, this indicates that the data is presently being stored in STORE 1, whereas if the flip-flop is in a 0 output state, data is being stored in STORE 2. A free-running clock input f controls the switching rate of the flip-flop 525, as well as all the other flip-flops in FIG. 9.

The primary function of a process signal generating flip-flop 541 is to insure that the stored data is processed for printing in the same order as the data is initially received in the memory 221. These are several possible storing and processing conditions that make the proper time-related operating sequences of the flip-flop 541 imperative.

For example, on an initial POWER ON RESET condition, which is a point in time when no data is stored in the memory 221, there would be a NO EOL 1 and a NO EOL 2 signal applied to the associated inputs of an AND-gate 543. The presence of both of these signals is indicative of the fact that neither memory STORE 1 or 2 is full, and that both storage and processing of data characters should be taking place out of the same STORE initially. The manner in which the NO EOL 1 and 2 signals are generated will be described shortly.

Referring now to the output of the AND-gate 543, it is seen that it is applied to one input of an OR-gate 546, with the output thereof applied to an input of each of two AND-gates 548 and 549. Thus any 1 input applied to the OR-gate 546 will result in a 1 output causing both AND-gates 548 and 549 to be conditionally enabled. The other input to each of these AND-gates has an associated STORE 1 or STORE 2 signal applied thereto. The flip-flop 541 will thus follow or track the STORE 1 and/or STORE 2 output state of the flip-flop 525 by a one single pulse delay, and will thus cause the loading and processing of data to occur out of the same STORE whenever a 1 signal is applied to either input of the OR-gate 546.

Consider now the case where, after a POWER ON RESET condition, loading and processing is occurring out of STORE 1 and an EOL signal is subsequently applied to the J and K inputs of the flip-flop 525 through 5 AND-gate 537, which is enabled as long as a printer busy signal is not present. This causes the flip-flop 525 to switch from a STORE 1 to a STORE 2 operating state, which results in a STORE 2 signal appearing at the output of the inverter 534. Receipt of an EOL command signal on lead 168 (from the I/O controller 134), of course, indicates that the line of character data that was being stored is to be terminated, and that subsequent data received is to be printed on the following print line.

15 This same EOL signal also causes a flip-flop 554 to be set by means of an enabled AND-gate 556, with an associated AND-gate 557 remaining disabled. As a result, an active EOL 1 signal is produced and the previous active NO EOL 1 signal is changed to a 0 level at 20 the respective outputs of the flip-flop 554. The OR-gate 546 therefore loses its 1 input, since the AND-gate 543 has lost its NO EOL 1 (= 1) signal. Thus, the flip-flop 541 remains frozen in the PROCESS 1 output state. This, of course, is the desired result which 25 allows the storage of character data to commence in STORE 2 while the processing of data is still taking place in STORE 1.

However, before data can be loaded in STORE 2 of a given memory 221, the associated column counter 243 must be reset, which is accomplished in the following manner. Both inputs to an OR-gate 559 are initially at a 0 signal level, indicating that neither an EOL 1 nor 30 2 signal is at that time applied thereto, because an EOL signal has not yet been received on lead 168. The latter signal is required in order to conditionally enable the AND-gates 556 and 557 through lead 560 and, thereby, effect a change in the output state of either flip-flop 554 or a flip-flop 561. As such, an AND-gate 562 is initially conditionally enabled through an inverter 563, so that upon receipt of the next EOL pulse, which is applied to the other input of the AND-gate 562, through a lead 564, a COL CTR RESET signal will be produced at the output of an OR-gate 565, and sent over the previously identified lead 286 to the counter 243 (see FIG. 6). Two AND-gates 566, 567, a flip-flop 40 568 and an inverter 569 are employed in conjunction with the aforementioned data stacking feature which 45 will be described shortly.

50 Referring again to the generated STORE 1 and 2 and PROCESS 1 and 2 signals, when the first EOL signal is received on lead 168, an EOL 1 signal is generated and the PROCESS 1 signal remains active so as to conditionally enable an AND-gate 571. Processing of data in STORE 1 of the memory then continues until it is empty, as indicated by an EMPTY 1 signal supplied on a lead 573 to an input of the AND-gate 571. Only at that time is a line feed (L. F. 1) command signal generated at the N output of a flip-flop 575, as called for by the previously received EOL signal.

55 The flip-flop 575, of course, is set in response to the AND-gate 571 being enabled, with the resultant L. F. 1 output signal being sent over a lead 576 to an input of an OR-gate 577. The resulting output from the OR-gate 577 causes the associated circuit module 135 to "release" the line feed lead 169. As described hereinabove, lead 169 essentially functions as an AND-bus, in that all of the circuit modules 135a-g must "release"

that bus before it changes to the line feed state. Once a LINE FEED signal appears on the lead 169, the I/O controller 134 detects this signal level state and causes the printer to perform a mechanical line feed.

It is also seen in FIG. 9 that the presence of a LINE FEED signal on line 169 enables a flip-flop 579, which forms part of a LINE FEED COMPLETED signal generating circuit 580. The resulting N output of the flip-flop 579 is applied to an input of an AND-gate 581, with the other input thereto being a conditionally disabling LINE FEED signal produced by an inverter 583.

When the I/O controller 134 has completed a line feed of data, it will force the LINE FEED signal appearing on the bus 169 to a O (NO LINE FEED) signal level, such as by a simple switching voltage level change (not shown). The output of the inverter 583 is then at a 1 signal level. The flip-flop 579 remains in the 1 state for one clock cycle, and is then reset by the O level of the LINE FEED bus 169. As such, the AND-gate 581 is momentarily enabled, and provides a one clock period (17.85 microseconds in the illustrative embodiment) L. F. COMPLETED output pulse. This pulse, transmitted selectively over lead portions 584a, b and c, resets both the L. F. 1 generating flip-flop 575 and the EOL 1 generating flip-flop 554, and enables the OR-gate 546, the output of which switches the flip-flop 541 to a PROCESS 2 output state so as to follow or track the then STORE 2 output state of the flip-flop 525. Accordingly, both the loading and processing of character data will then take place relative to the same STORE (2) of the associated memory 221.

It is also seen that the L. F. COMPLETED pulse, by having reset the EOL 1 flip-flop 554 (with the EOL 2 flip-flop 561 having not yet been set), will also result in both inputs to the AND-gate 543 being at a 1 signal level, thereby, causing a 1 signal to be applied to an input of the OR-gate 546. This, of course, results in the process flip-flop 541 remaining in a PROCESS 2 output state, even after the removal of a L. F. COMPLETED pulse to the OR-gate 546, until the next EOL is received. Until that time, the loading of character data into STORE 2 and the processing of such data out of STORE 2 will continue in the same manner as previously described with respect to the loading and processing of data in STORE 1.

When the next succeeding EOL signal is received on lead 168 from the I/O controller 134, the sequence of events described above for STORE 1 will now occur again for STORE 2. More specifically, the second EOL signal will cause the EOL 2 generating flip-flop 561 to be set by the previously identified and enabled AND-gate 557. The EOL 2 output of the flip-flop 561 will, in turn, switch a flip-flop 588 to its L. F. 2 output state, through an enabled AND-gate 589, upon an EMPTY 2 and a PROCESS 2 signal being applied thereto. This, of course, will result in the L. F. 2 signal being sent over a lead 590 to the other input of the aforementioned OR-gate 577, which again causes the associated circuit module 135 to "release" the line feed lead 169, and subsequently effect a new LINE FEED COMPLETED signal at the output of the AND-gate 581. As such, the loading and processing of character data will subsequently once again take place relative to the same common STORE (1) of the associated memory 221, in accordance with an operating logic sequence identical to

that described above after the AND-gate 537 was enabled.

DATA STACKING FEATURE

In the above examples describing how data may be loaded in and processed out of different stores of each memory 221, the processing of a given line of print data was always completed before the EOL signal for the next print line was received. More specifically, only one circuit module-generated EOL 1 or EOL 2 signal was stored and generated by the associated one of flip-flops 554 and 561 at any one time and, consequently, a PRINTER BUSY signal was not produced on the previously identified lead 293 (FIG. 5), as a result of an AND-gate 591 being enabled by both EOL 1 and 2 input signals applied thereto over leads 592 and 593 respectively.

Consideration will now be directed, therefore, to the case where both EOL 1 and 2 command signals are stored and generated, and a data stacking mode of operation is effected.

Starting with a POWER ON RESET condition, let it be assumed that the loading and processing of character data both occur initially relative to STORE 1 of a given memory 221. When the first EOL signal is then received, under the operating conditions described hereinabove, the EOL 1 generating flip-flop 554 is set, the associated column counter 243 is reset and the received character data will begin to be loaded in STORE 2 of the memory. The L. F. 1 flip-flop 575 is not yet set, however, because the processing of character data in STORE 1 has not been completed (i.e., an EMPTY 1 signal has not yet been received on lead 573 to enable the AND-gate 571 and, thereby, effect the generation of an L. F. 1 signal).

Since the flip-flop 554 is now latched to the EOL 1 output state, that output is applied over leads 592 and 592a as an input to the OR-gate 559 which, in turn, results in an EOL STORED output signal that is passed through the inverter 563 so as to produce a disabling signal at an input of the AND-gate 562. The previously identified AND-gate 566 is, however, conditionally enabled by the presence of the EOL STORED signal being applied to one of the three inputs thereof.

In response to a second EOL signal at this time, the EOL 2 flip-flop 561 is also set as a result of the enabled AND-gate 557, and both inputs to the AND-gate 591 then comprise EOL 1 and 2 1 signals. As such, a PRINTER BUSY signal is generated on the lead 293. The printer is considered "busy" at this time because two full print lines of character data have been stored with processing still continuing out of STORE 1, hence, no more character data can be accepted.

The RNC bus 172 (FIGS. 2, 5) is then turned OFF by means of the PRINTER BUSY signal appearing on lead 293 being applied to the inverter 294 (FIG. 5), the output of which is applied as an input to the AND-gate 292, previously described and shown in the latter figure. This latter input disables the AND-gate 292 and causes a "stop" condition in the transfer of data over serial data lead 181 between the I/O controller 134 and the circuit modules 135a-g. This is a desirable result so that no character data is lost while processing in STORE 1 continues.

Consider now the case where the printer and, therefore, the I/O controller 134, are connected to a data

source that is sending data at some fixed rate, rather than on a character-by-character basis, as controlled by the RNC bus 172 depicted in FIGS. 2 and 5. This is a very common situation for either mobile or fixed teleprinters, where the receiving printer does not control data transfer on a character-by-character basis, but rather, is a slave to the incoming data rate. Since the data source cannot know exactly how long it takes each individual printer to print each given line, (since that is the function of the position of the type carrier at that instant in time), the problem of not over-running the printer has typically been resolved in one of two ways: One technique is to limit the data source to some maximum line per second rate, which is determined by the maximum time it can take the printer to print any possible print line. The other technique is to utilize a buffer store, larger than the maximum message length, as an adjunct to the printer.

In either of the above cases, if the data source violates the set requirements by sending character data faster than the printer can print it, data is lost. When looking at the printed copy subsequent to that event, of course, it is very difficult to tell why the data was lost, and often impossible to ascertain the context of the lost data.

Typically, character data is received faster than it can be printed when short lines are sent, that is, the print line has been terminated by an END OF LINE character(s) from the data source before many of the possible print positions (or columns) are filled. This arises, of course, since it can take the printer as long to print a short line as a long line, whereas it takes the data source much less time to send short lines of data compared to long lines filling every possible print column.

From the foregoing, the importance of and definite need for a data stacking feature in a printer becomes very apparent. Both the mode of operation involved in and the unique logic circuitry embodied in the present invention for implementing such a feature will now be described in detail.

Consider first the situation referred to hereinabove where the flip-flop 554 (FIG. 9) is initially latched to its EOL 2 output state, and where a second EOL signal has just been received, which results in the flip-flop 561 also being latched to its EOL 2 output state so as to produce a PRINTER BUSY signal on the lead 293. As will be recalled, this signal results in the RNC bus 172 being turned OFF by the disabling of the AND-gate 292 (FIG. 5).

Thereafter, any additional print characters received by the I/O controller 134 will continue to be sent to the circuit modules 135 on the serial data lead 181. These data characters, actually assignable to a separate line, will not be lost, but rather, be stored in STORE 2 of the memory, and subsequently printed in the next print line (such as line 2) up to the point where either that line has been completely filled with print characters, or the processing in STORE 1 has been completed. In the latter case, subsequent print characters for the following line (such as line 3) are then loaded in STORE 1 and subsequently printed in line 3. Line format is thus sacrificed before print characters are lost whenever the maximum printing rate of the printer is exceeded. This can be very useful from not only the system troubleshooting point of view, but also can be advantageous even in the normal operation of the printer so as to

avoid having to provide an expensive, auxilliary data buffer for use in connection with the occasional printing of short lines.

With reference again to the receipt of the second EOL signal, it does not produce a COL CTR RESET signal on lead 286 (FIG. 9) since, as described above, the EOL 1 signal previously generated disables the AND-gate 562 by reason of the input applied thereto through the inverter 563. The second EOL signal does, however, set the flip-flop 568 to the 1 output state, thereby providing a stored indication that a second EOL signal has, in fact, been received, and also provides an operating condition that allows the column counter 243 to be reset at a later point in time. Accordingly, until the column counter 243 has been reset, data characters will be received for loading in the memory 221 by the proper circuit module 135 (assuming that line 2 for example, has not yet been filled with print characters) as if no EOL 2 signal had been received. This is evident from the load control circuit 251a depicted in FIG. 6, wherein it is seen that only the OWN STATUS FULL and the PREV CKT STATUS FULL signals determine whether a given data character is accepted for loading in the memory or not.

Although the second EOL signal in question appearing on lead 168 (FIG. 9) at this point in time has toggled STORE flip-flop 525 from a STORE 2 to a STORE 1 output state, the PRINTER BUSY signal then appearing on lead 293 would cause that output to be inverted to a STORE 2 output signal. This is achieved by the inverter 530 preventing the N (normal) output of the flip-flop 525 from enabling the AND-gate 531, while the I (inverted) output of the flip-flop is allowed to enable the AND-gate 532 and the OR-gate 533. This is, of course, the desired result so that any data characters received at this time are still loaded into STORE 2, as if no EOL 2 signal had been received.

This "stacking" of character data in STORE 2 (e.g., for line 2) is terminated by either print line 2 being filled with print characters, or by the processing of character data in line 1 (STORE 1) being completed.

With respect to the first case, and with reference to FIG. 6, it is seen that when a HIGH COL COMP signal is applied to the 4-bit comparator 281, which indicates that a character has just been loaded into the high order print column of a particular memory store, the resulting output signal on lead 280 sets the flip-flop or latch 278 to its OWN STATUS FULL output state through the enabled OR-gate 279. Any additional data characters sent on the serial data lead 181 are then lost since the ACCEPT CHAR signal has been removed from lead 275.

The fact that an EOL signal is also sent on the bus 168 by the last circuit module 135g is irrelevant, since this signal is prevented from passing through the AND-gate 537 (Fig. 9) by the disabling output of the inverter 594. As a result, the EOL signal is prevented from actuating the flip-flop 525.

The more typical sequence of events occurs when processing of data in line 1, for example, and the associated line feed, are both completed before STORE 2 (for the next line) is filled. In this condition, the resulting L. F. COMPLETED pulse will perform the following functions. All three inputs to the AND-gate 566 are then at a 1 signal level for the one clock cycle (17.85 microseconds in the illustrative embodiment) duration

of the L. F. COMPLETED pulse, resulting in a COL CTR RESET signal appearing on lead 286. This signal, in addition to resetting the associated column counter 243, also resets the flip-flop 568.

As will be recalled, the OR-gate 546 is also enabled by the L. F. COMPLETED pulse, which causes the PROCESS flip-flop 541 to change to a PROCESS 2 output state, since the gate array 530-534 still effects the generation of a STORE 2 output signal. However, the L. F. COMPLETED signal, by resetting the EOL 1 and L. F. 1 flip-flops 544 and 575, respectively, results in a loss of the PRINTER BUSY signal on lead 293. This results in the gates 530-534 again becoming logically transparent, and as the flip-flop 525 has already been set to a STORE 1 output state (by the second EOL signal), a STORE 1 output signal will be produced. A new data character received on the serial data lead 181 from the I/O controller 134 will thereafter correctly be stored in the first empty slot of STORE 1 (e.g., line 3) of the associated memory 221.

In briefly considering the purpose of the aforementioned AND-gate 567 and inverter 569 also depicted in FIG. 9, it will be recalled that when the first EOL signal is received, the AND-gate 562 is still enabled and a COL CTR RESET signal is generated. This EOL signal will thus attempt to set the flip-flop 568, but the COL CTR RESET signal will prevent this from happening by the action of the inverter 569 and, thus, will result in the flip-flop 568 being reset by a signal being applied to the K (clear) input thereof. This is, of course, the correct logical function desired since the flip-flop 568 is to store only EOL command signals that have not yet caused a COL CTR RESET signal to be established.

INITIALIZE AND EMPTY CONTROL SIGNALS

Referring now in greater detail to the aforementioned POWER ON RESET (POR) signal, which will be present on the INITIALIZE lead 174 (FIG. 2) it is employed to initialize all of the logic in each of the process circuit modules 135. As such, that signal is employed, for example, to effect the purging of the storage memory 221 of any invalid data after power has been applied to the module, and to automatically reset the various data processing shift registers and counters of each circuit module 135. In addition, the INITIALIZE signal affords protection against a loss of synchronism between the mechanical and electrical logic portions of the printer. More specifically, any time at the end of a message, for example, when the drive motor for the type carrier 16 would normally be shut off, the process circuit logic loses synchronism with the type carrier generated TCR and TCR pulses.

As a result, there must be some way of regaining the loss in the electrical-mechanical synchronism of the printer when the motor is subsequently turned on and brought up to proper speed. This is accomplished in the present printer by having the I/O controller 134 momentarily activate (e.g., by a simple voltage level change) the INITIALIZE lead 174 (FIGS. 2 and 5) any time a new message is received. This signal condition effectively resets all of the registers and counters of the data processing circuit modules 135a-g. Thereafter, the I/O controller 134 generates a control signal over a lead not specifically shown, but included in the multi-lead cable 210 depicted in FIG. 2, to turn on the motor 26 (FIG. 1) which drives the endless belt type carrier 16. Two other leads (shown at the output of the trans-

ducer 132 in FIG. 1) included in the multi-lead cable 210 provide the TCA and TCR signal information to the I/O controller 134 from the printer mechanism. The remaining leads in the cable 210 are associated with other mechanical control functions of the printer and are not of interest with respect to understanding the logic control circuitry disclosed herein.

Thus, it is seen that the I/O controller 134 performs the following "handshaking" function between the parallel interface 142 and the logic control leads connected to the data processing circuit modules 135, as depicted in FIG. 2. When a message turn-on command is received by the controller 134, all of the logic elements of the process circuit modules 135a-g are reset, 15 the carrier drive motor 26 is then turned on, TCA pulses from the printer sensor 132 are regenerated by the I/O controller 134 and passed to the circuit modules 135a-g over the lead 163 (see FIG. 2), and when the motor is brought up to speed (as ascertained by the controller in a conventional manner), the controller passes the first TCR signal to module 135a. Thereafter, the I/O controller will continue transmitting the TCR pulses over the lead 165 to the first circuit module 135a, as depicted in FIG. 2, and subsequently in a multiplexed and time-delayed manner over the interconnecting leads 201 to each of the remaining circuit modules 135 in succession.

Each of the seven circuit modules 135 in the illustrative embodiment is not ready to print any data characters supplied thereto until a TCR pulse has been received, and the beginning of font marker bit has been shifted into the eighth element of the associated shift register 261 (best seen in FIG. 7). Only at that point in time is the first circuit module 135a, for example, prepared to process, compare, and commence the printing of encoded data characters. The I/O controller 134 detects readiness of a given circuit module 135 to receive print data over the lead 181 (FIG. 2), by the circuit module in question activating the previously identified 40 REQUEST NEXT CHARACTER (RNC) lead 172 in response to the AND-gate 292 (FIG. 5) being enabled. As also previously described, printing may then take place in a non-serial fashion, depending upon the order of alignment between the 45 successive type characters on the carrier 16 and the data characters received for printing. Advantageously, printing in the first 12 print columns associated with the circuit module 135a (as well as in other random 12 column groups associated with other 50 respective circuit modules) in the illustrative printer embodiment may commence, and actually may be completed, before all of the print data to be printed in a given line has been received and/or processed in the other circuit modules 135.

The EMPTY signal lead 176 is actually an AND-bus on which all of the circuit modules 135 provide an output. The bus becomes active when all of the circuit modules 135a-g have no data or EOR command signals stored. When a message turnoff command is received 60 by the controller, this signal must go to the EMPTY state, indicating that all printing and processing has been completed, before the motor is turned off by the I/O controller 134.

DETAILED DESCRIPTION OF EMPTY MEMORY STORE SENSING CIRCUIT

In order to ascertain when all of the characters within a given store of the memory 221 have been printed, the

circuitry depicted on the left side of FIG. 10 is employed. Since parallel access to all of the bit positions in the memory is, of course, not provided, a logic circuit-controlled technique is desired to serially monitor the outputs of the memory 221. This circuitry is designed to generate EMPTY and NOT EMPTY storage signals for both STORE 1 and 2 conditions, such that after an EOL signal has been received, a LINE FEED signal can be generated in response to the EMPTY state of the memory.

Considered more specifically, and with particular reference to FIG. 10, at the end of a given 12 count period of the position counter 241, the previously described C_{+12} signal is produced at the output thereof (best seen in FIG. 6), applied over a lead 621 to the K input of a flip-flop 625, and resets the latter. A new 12 count period then begins, which means that the other of the two STORES of the associated memory 221 is then accessible at the output thereof.

For purposes of discussion, let it be assumed that STORE 1 is then being accessed. If any data is stored in STORE 1 in the first 11 slots thereof, the flip-flop 625 will be set by an enabled AND-gate 627, which will then have both an ANY STORED signal and an inactive C_{+12} signal applied thereto, the latter being inverted to a 1 signal level after passing through an inverter 629.

The ANY STORED signal is received on lead 415 from the previously identified OR-gate 417 of FIG. 5, and constitutes a sampling of the 8-bit output of the associated memory 221. This sampling simply provides a free-running indication of the fact that there is one or more bits of character data stored in the specific STORE-defined group of memory slots then being accessed at the output of the memory. The resulting 1 output from the flip-flop 625 is applied to an OR-gate 631 which, in turn, provides an active ANY STORED LATCH signal that is applied as one input to both an AND-gate 637 and an AND-gate 638. After this 12 count period in question, and regardless whether any data had been stored in STORE 1 prior thereto or not, the next C_{+12} signal from the position counter 241 is again received on lead 621 and resets the flip-flop 625. If an ANY STORED signal is received during this C_{+12} time interval, which, of course, is still associated with a STORE 1 non-empty condition, the other input to the OR-gate 631 assures that an active ANY STORED LATCH signal is provided independently of the state of flip-flop 625. The flip-flop 625 is reset in any case since the presence of the second C_{+12} signal results in a 0 input signal being applied to the AND-gate 627 through the inverter 629, so as to assure that the J input of the flip-flop 625 remains at a 0 signal level, while the K input is at a 1 signal level.

During the second C_{+12} signal interval, the presence or absence of an ANY STORED LATCH signal thus respectively indicates whether the previously interrogated half of the associated memory 221 (STORE 1 in this example), has any character data bits stored therein, or is empty at that time.

A Q_N and a Q_I signal are respectively applied as inputs to two AND-gates 641 and 642. These signals, as seen in FIG. 6, constitute the normal and inverse outputs of the last stage 241' of the free-running position counter 241, and respectively indicate, when at a 1 signal level, whether STORE 1 or 2 of the dual storage memory 221 is then accessible at the memory output.

When the AND-gates 641 and 642 are further gated with the 12th count signal C_{+12} , the particular one of these gates, when enabled, provides an output pulse to interrogate or sample the state of the ANY STORED LATCH signal and, thereby, ascertain whether the memory store that has been interrogated during the previous 12 count interval is empty.

This is accomplished in the following manner. The AND-gate 637, and a complementary AND-gate 643 are conditionally enabled by the AND-gate 641, whenever both a Q_N and the second C_{+12} signals are applied to the inputs thereof. A flip-flop 645 is then set to a 1 (NOT EMPTY) output state whenever the ANY STORED LATCH signal is active during the proper sampled pulse period, and is set to a 0 (EMPTY 1) output state by means of an inverter 647 whenever the ANY STORED LATCH signal is not present. The aforementioned AND-gates 638 and 642, and AND-gate 648, and an associated flip-flop 649 similarly ascertain the storage status of STORE 2 of the memory.

The flip-flops 645 and 649 are thus seen to constantly monitor the dual storage areas of the memory 221 and, thereby, selectively and respectively provide EMPTY 1 (or 2) and (NOT EMPTY 1 or 2) output signals indicative of the storage status of the associated STORES (1 or 2) as they alternately become accessible at the output of the memory. The EMPTY 1 and EMPTY 2 signals, of course, are employed as conditionally enabling inputs to the respective AND-gates 571 and 589 depicted in FIG. 9.

An AND-gate 651, when enabled, provides an active 1 output signal whenever data in STORE 1 of the memory 221 is being processed, and when that store is not yet empty, whereas an AND-gate 652 performs the same function relative to STORE 2.

An OR-gate 655 has an input connected to the output of each of the AND-gates 651 and 652 and, thus, provides an output PROCESS IN PROGRESS signal on a lead 658 whenever a particular one of the two STORES that is being processed contains character data that is to be processed and printed. The significance of this latter signal appearing on lead 658 will now be considered in connection with an auxiliary circuit portion of FIG. 10.

OPTIONAL RECOVERY CIRCUIT FOR PURGING MEMORY OF INVALID CHARACTERS

The circuitry depicted within the dash-lined box 670 in FIG. 10 essentially comprises an auxiliary invalid character recovery circuit for purging the associated memory 221. This circuit functions essentially as an adjunct to the invalid character strap option recovery circuit 470 described hereinabove in connection with FIG. 5. It will be recalled that the strap option circuit is employed with common font lengths of 64 or 96 characters, for example, and effects the purging of the memory of any erroneous characters with no time-out delays being required, and with no restrictions being placed on the maximum number of different length character fonts that may be employed.

The recovery circuit depicted within the dash-lined box 670 in FIG. 10, however, is designed for use with non-conventional font lengths, and purges the memory 221 of any erroneous characters only after a predetermined time-out period has elapsed. In such cases, neither the CHAR MAX 64 or 96 leads depicted in FIG.

5 are activated and, thus, the associated strap-option circuit within the dash-lined box 470 is effectively disabled.

As briefly pointed out hereinabove, in situations where the strap-option recovery circuit is not effective because of an uncommon font length, the presence of any erroneous characters in a given memory, which could be created somewhere in the control circuitry due to electrical noise, for example, could not be printed, as there would be no data comparisons possible with any of the generated encoded signals representative of the type characters in a given font on the carrier 16. It is thus important to have special logic circuitry for detecting the presence of invalid characters, and for purging them from the storage memory after a predetermined time has elapsed, otherwise the printer would simply continue operating in an attempt to print the invalid characters. The circuit 670 in FIG. 10 performs this function in a manner to be described in detail after a brief initial explanation of some of the salient factors involved.

If it is assumed for one particular operating condition that all of the character fonts on the type carrier 16 are identical, it can be seen that the maximum time required to print any type character in any print column is the time required for one character font to completely pass a given fixed reference point on the printer. During this time, every type character has aligned itself with every print column position since the type carrier moves continuously, and each of the type pallet-supporting slots in it are associated with a different type character of a given font.

Consider now an alternative operating condition wherein a maximum of two different length character fonts are allowed (remembering that no such limitation applies if the fonts are of the more common 64 and 96 strap-option character lengths). In this latter case, a time-out for two TYPE CARRIER RESET (TCR) pulses is sufficient to assure that every type character has aligned itself with every print column. This time-out period is performed in the present logic control circuit 670 by a modulo (MOD) 4 CTR 671 being held out of its reset state.

More specifically, after an initial POWER ON RESET condition occurs, i.e., when no character data is stored in either STORE of a given memory, the PROCESS IN PROGRESS signal on lead 658 is then at a 0 signal level which, in turn, results in a 1 input signal being applied to an OR-gate 672 through an inverter 674. As such, the counter 671 is held in its then existing reset state.

When the first data character to be printed has been stored, the PROCESS IN PROGRESS signal becomes active (i.e., changes to a 1 level), and results in a 0 signal being applied to the OR-gate 672. As described hereinabove, the PROCESS IN PROGRESS signal provides an indication that character data remains in a specific STORE of the dual storage memory 221, and that such data is presently being processed. At the same time that the latter signal is received, a non-active 0 level COMPARE signal is applied to an input of an AND-gate 676 and, thus, results in a 0 output signal from that AND-gate being applied at the other input of the OR-gate 672. It will be recalled that the COMPARE signal is derived from the output of the inhibiting AND-gate 419 depicted in FIG. 5, and is always at a 0 signal level when no valid data character comparisons are taking place. With both inputs to the OR-gate

672 being at a 0 signal level, the resulting output thereof allows the counter 671 to begin its time-out.

It should be appreciated, however, that the counter 671 cannot simply time-out for two TCR pulse intervals starting from the time that the first data character is loaded into a particular STORE of the associated memory 221. This follows from the fact that if data characters are received at some very slow rate, a 12th character, for example, may not be loaded into a given 10 STORE of the memory in time to be compared with the type characters of the two full (and different) fonts while making a single pass past the print columns of the printer in the illustrative example presently being considered.

This problem is resolved in accordance with the principles of the present invention by resetting the counter 671 whenever a data character comparison has occurred, and that character is about to be printed, as indicated by the presence of a COMPARE signal applied 20 to the input of the AND-gate 676. This 1 signal input, together with another 1 (0 inverted) signal input supplied thorough a lead 677 and an inverter 678, results in the output of the OR-gate 672 resetting the counter 671. The input to the AND-gate 676 through lead 677 is at a 1 signal level since two complete TCR pulses have not yet been received, which would otherwise produce a pair of output signals from the counter 671 to enable an AND-gate 679.

30 It is thus seen that the AND-gate 679 is employed to provide an output whenever: (1) two complete type character fonts have passed every column position of the printer, (2) data is still stored in the memory to be printed, and (3) no valid comparison has occurred between any binary representation of a character stored in the memory and any of the type characters on the type carrier 16.

An AND-gate 681 has one input connected to the output of the AND-gate 679, and provides a RECOVER output signal on the previously identified lead 481 (FIG. 5) whenever the SYNC PROCESS signal (also from FIG. 5) is at a 1 signal level. This assures, from a timing standpoint, that the purging of any erroneous data from the memory 221 will take place in the proper STORE thereof.

As also described hereinabove with reference to FIG. 5, the generation of the RECOVER signal will cause the ERROR symbol to be printed for any character(s) that remain in a given store of the memory being interrogated. While the COMPARE signal appearing on lead 489 becomes active as the ERROR symbol (or symbols) are being printed, the otherwise resetting of the counter 671 is inhibited by the now active output of the AND-gate 679, which provides a 0 level (disable) signal to the input of the AND-gate 676 through the inverter 678. Purging the memory of erroneous characters, by printing the error symbol(s), thus can continue until the particular STORE of the memory being interrogated is completely empty, as indicated by the PROCESS IN PROGRESS signal changing to a 0 signal level. The counter 671 is then reset.

The choice of limiting the type character 16 to a maximum of two different length character fonts (each of which may be repeated as often as is required to completely fill the type carrier slots is, of course, what determines how long must be the time-out of the counter 671. Considered another way, the larger the 65 number of different length character fonts allowed, the

longer will be the required time-out and, therefore, the less efficient (time-wise) will be the optional recovery circuit of FIG. 10.

In summary, a very unique and versatile composite print hammer logic control circuit has been described and claimed herein. Through the utilization of a plurality of unique, data processing circuit modules, each having its own free-running, logic controlled dual storage memory, not only may sequential printing on a given line be effected as the print data is being received (as distinguished from after a whole line of data has been received), but the printing of character data previously stored for one line may occur simultaneously with the storing of data for the next adjacent line, with character stacking in a given line also being possible on an emergency basis. Such control circuitry insures reliable high-speed on-the-fly printing, regardless of variations in the input data rate. Further, by using both built-in strap-option and auxiliary control circuits, the memories are routinely purged of any erroneous characters stored therein.

In addition, through the utilization of modular construction, wherein each circuit module is assignable to and performs the necessary data processing for a specified sub-group of print hammers and columns, inexpensive MOSFET integrated circuits with relatively slow switching speeds may be employed without any sacrifice in printer performance. Finally, through the utilization of pulse stretching, print hammer magnet energization time may also be extended over a much longer period than the print cycle scanning time. As such, logic circuit control functions need not be made dependent on the mechanical and/or electromechanical hammer actuation time periods involved in a typical impact printer.

It is obvious, of course, that various modifications may be made to the present embodiment and alternatives provided without departing from the spirit and scope of the invention.

What is claimed is:

1. A print control logic circuit for use in high speed on-the-fly printers, for selectively actuating one or more out of a plurality of character print-inducing members whenever selective type characters forming a part of a continuously moving font of type characters are momentarily brought into respectively aligned and juxtaposed relationship with said print-inducing members so as to effect sequential printing of type character images along each successive line on a medium, but with the character images ultimately being positioned in the serial order in which the input data characters to be printed were received, said logic control circuit comprising:

sub-dividable memory means for storing input binary encoded data representative of the characters to be printed at particular positions along a given print line, said memory means having at least two logic controlled and operationally distinct storage areas, and including means for selectively storing input character data in and reading said data out of said storage areas in a manner that allows incoming data intended for printing on one line to be stored in one of said distinct storage areas while any previously received data is still being read out of the other storage area, processed and printed in the preceding line,

means for generating type character font data in multiple phase sequences during each print cycle, said data being representative of and identifying the particular ones of said moving font type characters that are respectively brought into registry with associated ones of said character print-inducing members at any particular point in time during each phase sequence, and

means for processing any stored character data for printing after having been read out of said memory means, by comparing said stored data with said generated type character data, and for generating a distinct print signal, in response to each valid equal signal comparison, for use in actuating at the proper time the particular one of an associated character print-inducing member that will effect the printing of a character image representative of the compared type character at the proper position along a given print line.

2. A print control logic circuit in accordance with claim 1 wherein said memory means includes a free-running memory, and phase controlled type character position and print column counter means for logically controlling access to and sub-dividing said memory into distinct dual storage areas.

3. A print control logic circuit in accordance with claim 1 wherein said circuit is sub-divided into a plurality of essentially identical, but interconnected data processing circuit modules, each circuit module including separate ones of said memory means, character generating means and comparing means, and with each circuit module being assigned to process print data for a pre-determined number of print columns forming only a sub-group out of the total number of print columns defining the length of a given print line, with each circuit module thereby storing, processing and effecting the printing of input data characters as received in only the print columns assigned thereto.

4. A print control logic circuit in accordance with claim 2 wherein said memory means further includes memory recovery circuit means for detecting the presence of and effecting both the erasing of any invalid data characters stored in said memory during the printing of each print line, and the printing of error symbols therefore.

5. A print control logic circuit in accordance with claim 2 wherein said memory means further includes:

50 presettable strap-option circuit means coupled to said associated memory for detecting the presence of and purging said memory of any invalid data characters stored therein whenever such characters represent an encoded binary number higher than a preset number representative of the highest order character in a chosen font of type characters employed in a given application.

6. A print control logic circuit in accordance with claim 5 further comprising:

60 an auxiliary invalid character recovery circuit associated with said memory means and being capable of detecting any invalid data characters stored in said memory means, and for optionally erasing said invalid characters independently of said strap-option circuit means, regardless of the length of a given character font employed in conjunction therewith, after a predetermined time delay that is chosen to be greater than the time re-

quired for the number of different type character fonts employed to successively pass a given reference point of the printer, and for thereafter causing each equal character-signal comparison representative of an invalid data character to effect the actuation of the proper print-inducing member at the proper time when an error symbol character included in a given font of type characters is momentarily brought into register therewith and, thereby, effect the printing of an error symbol.

7. A print control logic circuit in accordance with claim 3 wherein said memory means of each of said circuit modules further includes means for selectively generating first and second storage signals and first and second processing signals for controlling the loading of encoded data characters in and the readout thereof from the first and second storage areas of said memory means in a selective manner.

8. A print control logic circuit in accordance with claim 7 wherein the generated storage and processing signals are associated with the same storage areas of the memory means unless input data characters are received for storage after one storage area of said memory means has been filled, but the processing and printing of that data has not been completed.

9. A print control logic circuit in accordance with claim 3 wherein each of said memory means includes a free-running storage memory and phase-controlled type character position and print column counter means for logically controlling selective access to and sub-dividing said memory into dual storage areas, and wherein each of said circuit modules further comprises:

memory recovery circuit means for detecting the presence of and effecting the erasing of any invalid data characters stored in said associated memory during the printing of each print line, and for effecting the printing of error symbols therefor.

10. A print control logic circuit in accordance with claim 9 wherein each of said circuit modules further comprises:

circuit means for generating line stacking control signals for over-riding the normal operation of said associated memory so as to allow character data received at a rate faster than the printer can print the data stored in a first storage area of said memory, for a given line, to be temporarily stored in the second of said storage areas for not only the adjacent print line, but for any succeeding line thereafter until said second storage area has been filled, subject to any data for any line after the adjacent line, having not been previously transferred to said first storage area in the normal manner upon the processing and printing of the previously stored character data therein having been completed.

11. A print control logic circuit in accordance with claim 9 wherein said memory recovery circuit means in each of said circuit modules comprises presettable strap-option circuit means coupled to said associated memory for detecting the presence of and purging said memory of any invalid data characters stored therein whenever such characters represent an encoded binary number higher than a preset number representative of the highest order character in a chosen font of type characters employed in a given application.

12. A print control logic circuit in accordance with claim 11 wherein each of said circuit modules further comprises:

an auxiliary invalid character recovery circuit capable of detecting any invalid data characters stored in said associated memory, and for erasing said invalid characters independently of said strap-option circuit means, regardless of the length of a given character font employed in conjunction therewith, after a predetermined time-delay that is chosen to be greater than the time required for the number of different type character fonts employed to successively pass a given reference point on the printer, and for thereafter causing each equal character signal comparison representative of an invalid data character to effect the actuation of the proper print-inducing member at the proper time when an error symbol character included in a given font of type characters is momentarily brought into register therewith, thereby effecting the printing of an error symbol.

13. A print control logic circuit in accordance with claim 9 wherein each of said processing circuit modules further includes:

pulse-stretching means associated with the comparing and print signal generating means so as to allow said print signals to be respectively and selectively generated for a longer time period than is encompassed by the predetermined number of sub-scan periods defining a given print cycle.

14. A print control logic circuit in accordance with claim 9 wherein each of said processing circuit modules further includes:

means for generating timing pulses in response to and dependent on the rate of speed at which each type character font moves past the print columns, to operate the circuitry in each circuit module in a manner which maintains a continuous synchronous relationship between the font type character signals generated and the read out of stored data characters from the associated memory during each sub-scan period, said timing pulses being transmitted in succession to the serially connected circuit modules.

15. A print control logic circuit in accordance with claim 14 wherein each of said circuit modules further includes:

means for generating an own circuit full status signal whenever a given storage area of said memory has been filled with data characters to be printed, and

shift register means, responsive to said timing pulses, for effecting the multiplexing of said timing pulses with said own full status signals, and for transmitting said pulses and signals to the next succeeding circuit module, but in a manner contingent upon all of the data characters to be stored, processed and printed by each preceding circuit module having been received and, as a result thereof, having generated its own circuit full status signal and then multiplexed that signal with a previously received timing pulse and transmitted both to the next succeeding circuit module which similarly responds thereto, in serial fashion.

16. A print control logic circuit in accordance with claim 14 wherein each of said processing circuit modules further includes:

means responsive to externally controlled signal stimulus for allowing each circuit module to receive, store and process character print data for any selected number of assigned print columns less than the maximum number of print columns that may be assigned to each circuit module by circuit design.

17. A print control logic circuit in accordance with claim 12 wherein each of said circuit modules further includes:

10 pulse-stretching means associated with the comparing and print signal generating means so as to allow said print signals to be respectively and selectively generated for a longer time period than is encompassed by the predetermined number of sub-scan 15 periods defining a given print cycle, and

means for generating timing pulses in response to and dependent on the rate of speed of each character font in moving past the print columns, to operate the circuitry in each circuit module in a manner 20 that maintains a continuous synchronous relationship between the font type character signals generated and the read out of stored data characters from the associated memory during each sub-scan 25 period, said timing pulses being transmitted in succession to the serially connected circuit modules.

18. A print control logic circuit in accordance with claim 17 wherein each of said circuit modules further includes:

30 means for generating an own circuit full status signal whenever a given storage area of said memory has been filled with data characters to be printed, shift register means, responsive to said timing pulses, 35 for effecting the multiplexing of said timing pulses with said own full status signals, and for transmitting said pulses and signals to the next succeeding circuit module, but in a manner contingent upon all of the data characters to be stored, processed and 40 printed by each preceding circuit module having been received and, as a result thereof, having generated its own circuit full status signal and then multiplexed that signal with a previously received timing pulse and transmitted both to the next succeeding circuit module which similarly responds thereto, in serial fashion, and means responsive to external signal stimulus for allowing each circuit 45 module to receive, store, and process character print data for any selected number of assigned print columns less than the maximum number of print 50 modules that may be assigned to each circuit module by circuit design.

19. A print control logic circuit for use in on-the-fly impact printers, for selectively actuating one or more out of a plurality of character print-inducing members whenever selective type characters forming a part of a continuously moving font of type characters are momentarily brought into respectively aligned and juxtaposed relationship with said print-inducing members so as to effect sequential printing of type character images along each successive line on a medium, but with the character images ultimately being positioned in the serial order in which the input data characters to be printed were received, said logic control circuit comprising:

a plurality of essentially identical, but interconnected data processing circuit modules, each one being as-

signed to process print data for a pre-determined number of print columns forming only a sub-group out of the total number of print columns defining the length of a given print line, with each circuit module thereby storing, processing and effecting the printing of input data characters as received in only the print columns assigned thereto, each of said circuit modules including:

sub-dividable memory means for storing input binary encoded data representative of the characters to be printed at particular positions along a given print line, said memory means including a free-running storage memory having two logic controlled storage areas, and further including phase controlled logic circuit means for selectively storing input character data in and reading said data out of said storage areas in a manner that allows incoming data intended for printing on one line to be stored in one of said distinct storage areas while any previously received data is still being read out of the other storage area, processed and printed in the preceding line, said phase controlled circuit means including a phase counter, a type character position counter and a print column counter to control the selective loading of data characters in and their read out from the two storage areas of said memory,

means for generating type character data in multiple phase sequences during each print cycle, said data being representative of and identifying the particular ones of said moving font type characters that are respectively brought into registry with associated ones of said character print-inducing members at any particular point in time during each phase sequence, and

means for processing said stored data for printing after it has been selectively read out of said storage areas of said memory, by comparing it with said generated type character data, and for generating a distinct print signal, in response to each valid equal signal comparison, for use in actuating at the proper time the particular one of the associated character print-inducing members that will effect the printing of a character image representative of the compared type character at the proper position along a given print line.

20. A print control logic circuit in accordance with claim 18 wherein each of said circuit modules further includes:

means for generating timing pulses in response to and dependent on the rate of speed at which each type character font moves past the print columns to operate the circuitry in each circuit module in a manner that maintains a continuous synchronous relationship between the font character signals generated and the read out of stored data characters from the associated memory during each sub-scan period, said timing pulses being transmitted in succession to the serially connected circuit modules,

memory recovery circuit means for detecting the presence of and effecting the erasing of any invalid data characters stored in said associated memory during the printing of each print line, and for effecting the printing of error symbols therefor,

means for selectively generating first and second storage signals and first and second processing sig-

nals, for controlling the loading of encoded data characters in and the read out thereof from the first and second storage areas of said memory in a selective manner, and

pulse-stretching means associated with the comparing and print signal generating means so as to allow said print signals to be respectively and selectively generated for a longer time period than is encompassed by the predetermined number of sub-scan periods defining a given print cycle. 10

21. A print control logic circuit in accordance with claim 20 wherein each of said memory recovery circuit means comprises presettable strap-option circuit means coupled to said associated memory for detecting the presence of and purging said memory of any invalid data characters stored therein whenever such characters represent an encoded binary number higher than a preset number representative of the highest order character in a chosen font of type characters employed in a given application, and wherein each of said circuit modules further comprises:

circuit means for generating line stacking control signals for over-riding the normal operation of said associated memory so as to allow character data received at a rate faster than the printer can print the data stored in a first storage area of said memory, for a given print line, to be temporarily stored in the second of said storage areas for not only the adjacent print line, but for any succeeding line thereafter until said second storage area has been filled, subject to any data for any line after the adjacent line, having not been previously transferred to said first storage area in the normal manner upon the processing and printing of the previously stored character data therein having been completed; 35

an auxiliary invalid character recovery circuit capable of detecting any invalid data characters stored in said associated memory, and for optionally erasing said invalid characters independently of said strap-option circuit means, regardless of the length of a given character font employed in conjunction therewith, after a predetermined time-delay that is chosen to be greater than the time required for the number of different type character fonts employed to successively pass a given reference point on the printer, and for thereafter causing each equal character signal comparison representative of an invalid data character proper time when an error symbol character included in a given font of type characters is momentarily brought into register therewith and, thereby, effect the printing of an error symbol, and

strap-option circuit means for allowing each circuit module to receive, store and process character print data for any selected number of assigned print columns less than the maximum number of print columns that may be assigned to each circuit module by circuit design. 55

22. In a printer mechanism including a moving type carrier having at least one font of characters positioned therealong, a plurality of actuatable print-inducing members aligned with the carrier, and an input-output controller for interfacing the incoming encoded print data with the printer, a print control logic circuit for use in generating character print signals to selectively actuate one or more of the print-inducing members out of a plurality of such members when selected ones thereof

are periodically and sequentially momentarily aligned with selected and respective ones of said type characters inducing members in accordance with the order in which input data characters are received by the control circuit for subsequent printing, said circuit comprising:

sub-divided memory means for storing input binary encoded data representative of the characters to be printed at particular positions along a given print line, said memory means having at least two logic controlled and operationally distinct storage areas, and including means for selectively storing encoded character data in and for reading said data out of said storage areas of said memory means in a manner that allows incoming data intended for printing on one line to be stored in one of said distinct storage areas, while any previously received data is still being read out of the other storage area, processed and printed in the preceding line, means for generating type character font data in a predetermined number of phase sequences during each print cycle, said data being representative of and identifying the particular ones of said font type characters on said continuously moving carrier that are respectively brought into registry with associated ones of said character print-inducing members at any particular point in time, during each phase sequence, the number of said phase sequences being dependent on the relationship between the spacing of adjacent type characters on the carrier and the spacing of print-inducing members, with the spacing of the former being wider and with the number of phase sequences being chosen so as to allow every type character to be brought into alignment with every print-inducing member during a given print cycle, and

means for processing any stored character data for printing after it has been read out of said memory means, by comparing said stored data with said generated type character data, and for generating a distinct print signal, in response to each valid equal signal comparison, for use in actuating at the proper time the particular one of the character print-inducing members that will effect the printing of the desired character image representative of the compared type character at the proper position along a given print line in accordance with the order in which the input data characters were received for printing.

23. In a printer mechanism in accordance with claim 22, said print control logic circuit being sub-divided into a plurality of essentially identical, but interconnected data processing circuit modules, each circuit module including separate ones of said memory means, character generating means and comparing means, and with each circuit module being assigned to process print data for a pre-determined number of print columns forming only a sub-group out of the total number of print columns defining the length of a given print line, with each circuit module thereby storing, processing and effecting the printing of input data characters as received in only the print columns assigned thereto. 60

24. In a printer mechanism in accordance with claim 23, said memory means of each of said circuit modules including a free-running memory, phase controlled type character position means and print column counter means for logically controlling access to and

sub-dividing said memory into distinct dual storage areas, and memory recovery circuit means for detecting the presence of and effecting the erasing of any invalid data characters stored in said memory during the printing of each print line.

25. In a printer mechanism in accordance with claim 24, each of said recovery means of said control circuit further including:

10 presettable strap-option circuit means coupled to said associated memory for detecting the presence of and purging said memory of any invalid data characters stored therein whenever such characters represent an encoded binary number higher than a preset number representative of the highest order character in a chosen font of type characters 15 employed in the printer mechanism, and for thereafter causing each equal character signal comparison representative of an invalid data character to effect the actuation of the proper print-inducing member, corresponding in position to the position 20 in which the invalid data character is stored in the memory, at the proper time when an error symbol type character included in a given font of type characters carried on the carrier is momentarily brought into registry therewith, thereby effecting 25 the printing of an error symbol.

26. In a printer mechanism in accordance with claim 25, each of said processing circuit modules of said control circuit further including:

30 an auxiliary invalid character recovery circuit capable of detecting any invalid data characters stored in said associated memory, and for optionally erasing said invalid characters independently of said strap-option circuit means, regardless of the length 35 of a given character font employed in said printer mechanism, after a predetermined time-delay that is chosen to be greater than the time required for the number of different type character fonts employed to successively pass a given reference point 40 on the printer, and for thereafter causing each equal signal comparison representative of such an invalid data character to effect the actuation of the proper print-inducing member, corresponding in 45 position to the particular position in which the invalid data character was initially stored in said memory, at the proper time when an error symbol character included in a given font of type characters carried on the carrier is momentarily brought 50 into register therewith, thereby effecting the printing of an error symbol, and

pulse-stretching means associated with the comparing and print signal generating means so as to allow said print signals to be respectively and selectively generated for a longer time period than is encompassed by the predetermined number of sub-scan periods defining a given print cycle.

27. In a printer mechanism including a moving type carrier having at least one font of type characters positioned therealong, a plurality of actuatable print-inducing members aligned with the carrier, and an input-output controller for interfacing the incoming encoded print data with the printer mechanism, a print control logic circuit for use in generating print signals to selectively actuate one or more of the print-inducing 60 members out of a plurality of such members when selected ones thereof are periodically and sequentially momentarily aligned with selected and respective ones 65

of said type characters in accordance with the order in which input data characters are received by the control circuit for subsequent printing, said circuit comprising:

5 a plurality of essentially identical, but interconnected data processing circuit modules, each one being assigned to process print data for a pre-determined number of print columns forming only a sub-group out of the total number of print columns defining the length of a given print line, with each circuit module thereby storing, processing and effecting the printing of input data characters as received in only the print columns assigned thereto, each of said circuit modules including:

sub-dividable memory means for storing input binary encoded data representative of the characters to be printed at particular positions along a given print line, said memory means including a free-running storage memory having two logic controlled storage areas, and further including phase controlled logic circuit means for selectively loading input character data in and reading said data out of said storage areas in a manner that allows incoming data intended for printing on one line to be stored in one of said distinct storage areas while any previously received data is still being read out of the other storage area, processed and printed in the preceding line, said phase controlled circuit means including a phase counter, a type character position counter and a print column counter to control the selective loading of data characters in and their read out from the two storage areas of said memory,

means for generating type character data in multiple phase sequences during each print cycle, said data being representative of and identifying the particular ones of said moving font type characters that are respectively brought into registry with associated ones of said character print-inducing members at any particular point in time during each phase sequence, and

means for processing any stored character data for printing after it has been read out of said free-running memory, by comparing said stored data with said generated type character data, and for generating a distinct print signal in response to each valid signal comparison, for use in actuating at the proper time the particular one of the character print-inducing members that will effect the printing of the desired character image representative of the compared type character at the proper position along a given print line.

28. In a printer mechanism in accordance with claim 27, each of said processing circuit modules of said control circuit further including:

means for generating timing pulses in response to and dependent on the rate of speed at which each type character font moves past the print columns, to operate the circuitry in each circuit module in a manner that maintains a continuous synchronous relationship between the font type character signals generated and the read out of stored data characters from the associated memory during each sub-scan period, said timing pulses being transmitted in succession to the serially connected circuit modules,

memory recovery circuit means coupled to said associated memory for detecting the presence of and effecting both the erasing of any invalid data characters stored in said memory during the printing of each print line, and the printing of error symbols 5 therefor, and wherein each of said memory means further includes:

means for selectively generating first and second storage signals and first and second processing signals, for controlling the loading of encoded data 10 characters in and the read out thereof from the first and second storage areas of said memory in a selective manner.

29. In a printer mechanism in accordance with claim 28, each of said memory recovery circuit means further 15 comprising presetable strap-option circuit means coupled to said associated memory for detecting the presence of and purging said memory of any invalid data characters stored therein whenever such characters represent an encoded binary number higher than a pre-set number of representative of the highest order character in a chosen font of type characters employed in a given application, and wherein each of said circuit modules further comprises:

25 pulse-stretching means associated with the comparing and print signal generating means so as to allow said print signals to be respectively and selectively generated for a longer time period than is encompassed by the predetermined number of sub-scan periods defining a given print cycle. 30

30. In a printer mechanism in accordance with claim 28, each of said circuit modules further including: an auxiliary invalid character recovery circuit capable of detecting any invalid data characters stored in said associated memory, and for optionally erasing said invalid characters independently of said strap-option circuit means, regardless of the length of a given character font employed in conjunction therewith, after a predetermined time-delay that is chosen to be greater than the time required for the number of different type character fonts employed to successively pass a given reference point on the printer mechanism, and for thereafter causing each equal character signal comparison representative of an invalid data character to effect the actuation of the proper print-inducing member at the proper time when an error symbol character included in a given font of type characters is momentarily brought into register therewith, thereby effecting the printing of an error symbol, and operable circuit means within each circuit module, responsive to an externally applied signal, for allowing each circuit module to receive, store and process character print data for any selected number of assigned print columns less than the maximum number of print columns that may be assigned to each circuit module by circuit design.

* * * * *

35

40

45

50

55

60

65