US008787583B2

a2 United States Patent 10) Patent No.: US 8,787,583 B2
Bellare et al. 45) Date of Patent: *Jul. 22, 2014
’
(54) SYSTEMS AND METHODS FOR 4,932,057 A 6/1990 Kolbert
DISTRIBUTING AND SECURING DATA 5,010,572 A 4/1991 Bathrick et al.
5016,274 A 5/1991 Micali et al.
- . . 5,051,745 A 9/1991 Katz
(75) Inventors: Ml.hl.l‘ Bellare, San Dle?go, CA (US); 5268963 A 12/1993 Monroe et al.
Phillip Rogaway, Davis, CA (US) 5375244 A 12/1994 McNair
5,386,104 A 1/1995 Sime
(73) Assignee: Security First Corp., Rancho Santa (Continued)
Margarita, CA (US)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 EP 346180 12/1989
U.S.C. 154(b) by 0 days. EP 354774 2/1990
This patent is subject to a terminal dis- (Continued)
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 13/412,111 Barlas, “RSA’s Security Showcase”, Line56.com—The E-Business
. Executive Daily, Apr. 15, 2003.
(22) Filed: Mar. 5, 2012
(Continued)
(65) Prior Publication Data
US 2012/0163592 Al Jun. 28, 2012 Primary Examiner — Gilberto Barron, Jr.
Assistant Examiner — Malcolm Cribbs
Related U.S. Application Data (74) Attorney, Agent, or Firm — Ropes & Gray LLP
(63) Continuation of application No. 11/983,355, filed on
Nov. 7, 2007, now Pat. No. 8,155,322. (57 ABSTRACT
(60) Provisional application No. 60/857,345, filed on Nov. A robust computational secret sharing scheme that provides
7, 2006. for the efficient distribution and subsequent recovery of a
private data is disclosed. A cryptographic key may be ran-
(51) Int.ClL domly generated and then shared using a secret sharing algo-
GO6F 21/00 (2013.01) rithm to generate a collection of key shares. The private data
HO4L 9/28 (2006.01) may be encrypted using the key, resulting in a ciphertext. The
(52) U.S.CL ciphertext may then be broken into ciphertext fragments
USPC oo 380/286; 380/28; 713/180 using an Information Dispersal Algorithm. Each key share
(58) Field of Classification Search and a corresponding ciphertext fragment are provided as
None input to a committal method of a probabilistic commitment
See application file for complete search history. scheme, resulting in a committal value and a decommittal
value. The share for the robust computational secret sharing
(56) References Cited scheme may be obtained by combining the key share, the

U.S. PATENT DOCUMENTS

4,453,074 A
4,924,513 A

6/1984 Weinstein
5/1990 Herbison et al.

107

~

J 05
Bi i o User
Device System \
SL

Vendor
System [429

ciphertext fragment, the decommittal value, and the vector of
committal values.

19 Claims, 11 Drawing Sheets

Trust Engline

Authentication
Data
S8

Cortificate
Authority 115

US 8,787,583 B2
Page 2

(56)

5,485,474
5,524,073
5,615,269
5,642,508
5,666,414
5,666,416
5,682,425
5,703,907
5,717,758
5,748,735
5,761,306
5,768,382
5,768,519
5,790,677
5,823,948
5,903,652
5,903,882
5,910,987
5,940,507
5,960,083
5,966,444
5,966,448
5,991,414
6,009,177
6,023,508
6,026,163
6,073,237
6,092,201
6,094,485
6,134,550
6,229,894
6,240,183
6,240,187
6,301,659
6,314,409
6,324,650
6,336,186
6,345,101
6,345,314
6,356,941
6,363,425
6,386,451
6,424,718
6,438,690
6,449,730
6,483,921
6,553,493
6,615,347
6,625,734
6,978,367
7,069,451
7,391,865
8,108,678
2001/0001876
2001/0051902
2002/0010679
2002/0032663
2002/0046359
2002/0071566
2002/0091640
2002/0129235
2002/0162047
2003/0051054
2003/0051159
2003/0058274
2003/0070077
2003/0167408
2004/0111608
2004/0122863
2006/0177061
2006/0282681
2007/0192586
2008/0183992
2008/0199003

References Cited

U.S. PATENT DOCUMENTS

O e e e 0 3> e B 0 0 e B B 0 B 0 B B B B D D

1/1996
6/1996
3/1997
6/1997
9/1997
9/1997
10/1997
12/1997
2/1998
5/1998
6/1998
6/1998
6/1998
8/1998
10/1998
5/1999
5/1999
6/1999
8/1999
9/1999
10/1999
10/1999
11/1999
12/1999
2/2000
2/2000
6/2000
7/2000
7/2000
10/2000
5/2001
5/2001
5/2001
10/2001
11/2001
11/2001
1/2002
2/2002
2/2002
3/2002
3/2002
5/2002
7/2002
8/2002
9/2002
11/2002
4/2003
9/2003
9/2003
12/2005
6/2006
6/2008
1/2012
5/2001
12/2001
1/2002
3/2002
4/2002
6/2002
7/2002
9/2002
10/2002
3/2003
3/2003
3/2003
4/2003
9/2003
6/2004
6/2004
8/2006
12/2006
8/2007
7/2008
8/2008

Rabin
Stambler
Micali
Miyazawa
Micali

Micali

Enari

James

Micall
Ganesan
Lewis
Schneier et al.
Swift et al.
Fox et al.
Ross, Ir. et al.
Mital

Asay et al.
Ginter et al.
Cane et al.
Micali

Yuan et al.
Namba et al.
Garay et al.
Sudia
Bombard et al.
Micali
Ellison
Turnbull et al.
Weinstein et al.

Van Oorschot et al.
Van Oorschot et al.

Marchant
Lewis

Micali
Schneck et al.
Ogilvie

Dyksterhouse et al.

Shukla

Cole et al.
Cohen

Hook et al.
Sehr
Holloway
Patel et al.
Mann et al.
Harkins
Okumura et al.
de Silva et al.
Marvit et al.
Hind et al.
Ginter et al.
Orsini et al.

Boyen ...

Morgan et al.
Messner
Felsher
Messner
Boden

Kurn

Gupta
Okamoto et al.
Peters et al.
Redlich et al.
McCown et al.
Hill et al.
Redlich et al.
Fitzpatrick et al.

..... 713/176

Oom Temudo de Castro et al.

Sidman

Orsini et al.
Scheidt et al.
McNeely
Martin et al.
Hennessey et al.

2008/0244277 Al
2009/0077379 Al
2009/0097661 Al

10/2008 Orsini et al.
3/2009 Geyzel et al.
4/2009 Orsini et al.

FOREIGN PATENT DOCUMENTS

EP 0485090 A2 5/1992

EP 636259 2/1995

EP 793367 9/1997

EP 0821504 1/1998

EP 0862301 9/1998

EP 1011222 6/2000

EP 1239384 A2 9/2002

GB 2237670 A 5/1991

Jp 04297157 A 10/1992

RU 2124814 1/1999

WO WO-98/47091 Al 10/1998
WO WO0-99/19845 Al 4/1999

WO WO0-99/46720 Al 9/1999

WO WO0-99/65207 Al 12/1999

WO WO-00/36786 Al 6/2000

WO WO-00/76118 Al 12/2000

WO WO0-00/79367 Al 12/2000

WO WO0-01/22201 Al 3/2001

WO WO0-01/22319 Al 3/2001

WO WO-01/22322 A2 3/2001

WO WO-01/22650 A2 3/2001

WO WO-01/22651 A2 3/2001

WO WO-02/21283 Al 3/2002

WO WO-02/21761 A2 3/2002

OTHER PUBLICATIONS

Cachin, “On-Line secret Sharing,” Cryptography and Coding. IMA
Conference, Proceedings, Dec. 18, 1995, pp. 190-198,
XP002137681.

Chan et. al., “Distributed Server Networks for Secure Multicast”,
GLOBCOM’01: IEEE Global Telecommunications Conference
(IEEE, Piscataway, NJ) 3:1974-1978 (2001).

Chan et. al.,, “Distributed Servers Approach for Large-Scale
Multicast”, IEEE Journal on Selected Areas in Communications
(IEEE, Piscataway, NJ) Oct. 2002, 20(8):1500-1510.

Crescenzo et al.,, “Non-Interactive and Non-Malleable Commit-
ment,” Proceedings of the 30th Annual ACM Symposium on Theory
of Computing. Dallas, TX, May 23-26, 1998, [Proceedings of the
30th Annual ACM Symposium on Theory of Computing], New York,
NY: ACM, US, pp. 141-150; XP000970902; ISBN: 978-0-89791-
962-3.

Damgard et. al., “Non-interactive and Reusable Non-malleable Com-
mitment Schemes,” ACM STOC ’03; pp. 427-428; Jun. 9-11, 2003.
Decru Unveils Security Appliances for Storage Networks; Decru
DataFort (TM) Security Alliances Protect SAN and NAS Environ-
ments with Wire-Speed Encryption and Transparent Deployment, PR
Newswire (PR Newswire Association. Inc.), Oct. 14, 2002.

Doyle, “RSA Splits Data to Stop Hackers”, vnunet.com, Apr. 16,
2003.

Fisher, “RSA Looks to Lock Down Personal Data”, eWeek—Enter-
prise News & Reviews, Apr. 14, 2003.

Garay et. al., “Secure distributed storage and retrieval,” Theoretical
Comput. Sci., 243(1-2):363-389, Jul. 2000.

Gibson, “Opinion”, eWeek—Enterprise News & Reviews, Apr. 14,
2003.

Grant et. al., “Secret Sharing and Splitting”, (White Paper) Notre
Dame, Indiana, Dec. 16, 2002.

Hunter, “Simplifying PKI Usage Through a Client-Server Architec-
ture and Dynamic Propagation of Certificate Paths and Repository
Addresses”, Proceedings 13th International Workshop on Database
and Expert Systems Applications (IEEE Computer Soc., Los
Alamitos, CA), Sep. 2-6, 2002, p. 505-510.

International Search Report—International Application No. PCT/
US/06/45066, dated Jul. 17, 2008.

International Search Report dated Dec. 16, 2008, International Appli-
cation No. PCT/US07/023626.

Krawcezyk, “Distributed Fingerprints and Secure Information Dis-
persal,” 12" ACM, Symposium on Principles on Distributed Com-
puting, Ithaca, NY, ACM 0-89191-613-1/93/0008/0207, 1993, pp.
207-218.

US 8,787,583 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Lancope Announces Stealthwatch 3.0 for Enhanced Enterprise-Wide
Security and Improved Manageability, Business Wire (Newswire
Association, Inc.), Apr. 14, 2003.

Loutrel et. al. “An EAP-BT Smartcard for Authentication in the Next
Generation of Wireless Communications”, Conference on Network
Control and Engineering for QoS Security and Mobility (Kluwer
Academic Publishers, Norwell, MA) Oct. 23-25, 2002, pp. 1-4-114.
Mayer et. al., “Generalized Secret Sharing and Group-Key Distribu-
tion Using Short Keys,” Compression and Complexity of Sequences
1997, Proceedings Salerno, Italy, Jun. 11-13, 1997, Los Alamitos,
CA, USA, IEEE Comput,. Soc, US, Jun. 11, 1997, pp. 30-44,
XP010274905, ISBN: 978-0-8186-8132-5.

McNamara, “Strong Crypto Freeware” (Secret Sharer Version 1.0)
Jul. 11, 1995.

Myers et. al., “A secure, publisher-centric Web caching infrastruc-
ture” In: INFOCOM 2001 Proceedings. IEEE Twentieth Annual
Joint Conference of the IEEE Computer and Communications Soci-
eties [online], vol. 3 p. 1235-1243. Published Apr. 22, 2001.
[retrieved on Jul. 8, 2008]. Retrieved from the internet <URL:http://
people.ischool.berekeley.edu/-chuang/pubs/gemini.pdf>.
Nightingale, The New Secret-Splitting Technology from RSA . . .
NGBK DS 0403 http://developer.rsasecurity.com/labs/nightingale/
developer.rsasecurity.com/labs/nightingale/files/nightingale-bro-
chure.pdf, Apr. 13, 2003.

Rabin, “Efficient Dispersal of Information for Security, Load Bal-
ancing and Fault Tolerance,” Journal of the Association for Comput-
ing Machinery, vol. 36, No. 2, pp. 335-348, Apr. 1989.

RSA SureFile: Software Powered by PKZIP . . . BSSF DS 0103
Authorized Reseller: Technical Specifications Platforms Microsoft®
Windows® 98 Second Edition ME NT 4.0 Workstation SP6A 2000
Professional SP2 www.rsasecurity.com/products/bsafe/
datasheets/BSSF__DS__103.pdf, Apr. 17, 2003.

Savage, “RSA Unveils Nightingale Technology”, CRN.com, Apr. 14,
2003.

Shamir, “How to Share a Secret,” Communications of the Association
for Computing Machinery, ACM, New York, NY, US, vol. 22, No. 11,
Nov. 1, 1979, pp. 1-4, XP002241399; ISSN: 0001-0782.

Shin et. al., “Design a Working Model of Secure Data Transfer Using
a Data Mart”, Proceedings of the ISCA 14th International Confer-
ence Computer Applications in Industry and Engineering (ISCA,
Cary, NC) Nov. 27-29, 2001, p. 66-69.

Tactilesense TM White Paper—A Breakthrough in Fingerprint
Authentication, Ethentica, Inc. by Security First Corporation, Jan.
2003.

Trustengine TM White Paper—Enthentication Services, Secure Stor-
age and Authentication Solutions, Ethentica, Inc. by Security First
Corporation, Jun. 2002.

Vijayan, “RSA unveils Management, Encryption Products”,
Computerworld, Apr. 15, 2003.

Waldman et al., “Publius: A robust, tamper-evident, censorship-re-
sistant web publishing sytem,” Proceedings of the 9" USENIX Secu-
rity Symposum, Aug. 2000.

Waters, “RSA Integrates ID Management; discloses ‘Nightingale’ ”,
ADTmag.com, Apr. 21, 2003.

* cited by examiner

US 8,787,583 B2

Sheet 1 of 11

Jul. 22, 2014

U.S. Patent

Il 'Old
/
sl | Auoyny weysA
8yedliiey / hom:om
s
ju
sZ1 uopes|unwwo)
$s
ejeq
uopesjjuayiny sheo) welsAs
Josn
sujbuz isnaj /)
o_.ﬂ} S0l

CLITG T

sujewolg

L0l

US 8,787,583 B2

Sheet 2 of 11

Jul. 22, 2014

U.S. Patent

¢ "Old

obeiso)g ssely

1

eied shoy|
suibuy suibug uopeopusiny suibug
oydesBoydAin uopesnusyIny uoyoBSURI| Nl
Aioyisode(
)
0ie
omwp S &U goc

suibug ysna)

AU
—-18S-P UoiEIUNWWLIOD

ol

A

US 8,787,583 B2

Sheet 3 of 11

Jul. 22, 2014

U.S. Patent

aberio)g ssey 0] <«

€ "Olid

sujbug osydesboydiin o) <

aujBug uopeopuUaYINy 01 <

Alojisodeg o) <«

MU UOHEDIUNWIWOD O] €—

1ss

wiaysAg
Bupessdop

J

S0¢

]
4+ 7ISS ¢
——

sujbug ojydesboydAipn wios4

suibug uonespUaYINY WOl

L U] UOHEBDUNWIWOD WOoJ

S0¢

sulbug uopoesuel

US 8,787,583 B2

Sheet 4 of 11

Jul. 22, 2014

U.S. Patent

Sly

aulbugy aydesboydAis o) «

suibug uopespusyIny O] <«

ofielolg ssey 0] «-

¥ "Old
‘E_«S_Emﬁé |
oLy~
ejeg | ejeq
Upny Aeyj
<l >
410} 4
\ 4 \ S 4
<+—oujbug uopoesues] wold
ISS [wsysdg Bupesedp [— TISS +—-aujbug ospydesBoyd i woag
[—suibug uopespuLYINY WOl
orml\ Aioysodeq

US 8,787,583 B2

Sheet 5 of 11

Jul. 22, 2014

U.S. Patent

S "'Old

aujBug uopoesuel] 0] <«

SinpoN

7~ 49w sdweyy

Aojisodeq o) ¢

suibBug oydesboydAin o) «

\\/
Gle

S : GES
526 Bujquiessy ejeq
/] SOonsSuMNaH
Bumiids ejeq
02
Yan Jojeseduwion
§l¢g
1ss |4 woysAg ¢
s ~ Buneredp 88 ————]
S0S
71 Aoy sjeAld
oLg

— Alojjsodeq] wiod4

— aulBug uonosesues] woid

sulbug uopespusyINyY

US 8,787,583 B2

Sheet 6 of 11

Jul. 22, 2014

U.S. Patent

9 "Old

sujbuzn

uoREDUSYINY WO

— Asojjsodeq wol4

auibuzg uonoesue.] woi4

/) ajnpoy Buypuey ojydeiboidAin
Ge9

A.I.
Kioysodag o) < L i — m%_w.ww.%%o] 85 j¢——o

-5) _)

09
suibugy <
uogoesuel] 01
S[NpPoR 3NPON
0zo | Bullqwessy eeq o6 | Bumuds eeq

0zZ L euibuzg oydesboydAin

US 8,787,583 B2

Sheet 7 of 11

Jul. 22, 2014

T eInBI
0 02 7~ 004
§84 =~
spi~ uls it IBAIDG fed s 004
: 22L~ .
shi~y [ZLE la g ionsg Zls oz
pid lils | SAIDS g ils poz
R, s24~ g0
L 202
s SAO0SY soon®IBUS
Lid~
| pleAU] g
s g

U.S. Patent

US 8,787,583 B2

Sheet 8 of 11

Jul. 22, 2014

U.S. Patent

ywwog

a0g -

US 8,787,583 B2

Sheet 9 of 11

Jul. 22, 2014

U.S. Patent

Ul SR S 5 M — wlo | luly
i % AN e
e £es -~ _, . gz6 <8
{2l 2 | e - izlo YV
Zp6~ 1" il N AT
266 < \. 225
{1l [|] it bl 1y
Lp6- N b ™ 016
156 e 126
£26
Ul Zhafifily
w 106
pugy
- 008

US 8,787,583 B2

Sheet 10 of 11

Jul. 22, 2014

U.S. Patent

Wiy | ulw
iz |12l
i iy

JUWOD)

Wiy

2oy

[Lloy

w oot

puey

f.mgm

200"
2&f
M . pg01 004

wwumumrmm

M <~ 0001

US 8,787,583 B2

Sheet 11 of 11

Jul. 22, 2014

U.S. Patent

E2Lin

ELifr~

N g

EGLE

z
v

g
¥

¥
'

Lesiny

gao!@M008Y

~0ELE

<, ot

US 8,787,583 B2

1
SYSTEMS AND METHODS FOR
DISTRIBUTING AND SECURING DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 11/983,355, filed on Nov. 7, 2007, which claims
the benefit of U.S. provisional application No. 60/857,345,
filed on Nov. 7, 2006, each of which is hereby incorporated by
reference herein in its entirety.

FIELD OF THE INVENTION

The present invention relates in general to a system for
securing data from unauthorized access or use. The present
invention also relates generally to cryptographic techniques
for the construction of secret sharing schemes, and more
particularly to systems and methods for supporting a secret
sharing scheme that can tolerate damage to one or more
shares.

BACKGROUND OF THE INVENTION

In today’s society, individuals and businesses conduct an
ever-increasing amount of activities on and over computer
systems. These computer systems, including proprietary and
non-proprietary computer networks, are often storing,
archiving, and transmitting all types of sensitive information.
Thus, an ever-increasing need exists for ensuring data stored
and transmitted over these systems cannot be read or other-
wise compromised.

One common solution for securing computer systems is to
provide login and password functionality. However, pass-
word management has proven to be quite costly with a large
percentage of help desk calls relating to password issues.
Moreover, passwords provide little security in that they are
generally stored in a file susceptible to inappropriate access,
through, for example, brute-force attacks.

Another solution for securing computer systems is to pro-
vide cryptographic infrastructures. Cryptography, in general,
refers to protecting data by transforming, or encrypting, it
into an unreadable format. Only those who possess the key(s)
to the encryption can decrypt the data into a useable format.
Cryptography is used to identify users, e.g., authentication, to
allow access privileges, e.g., authorization, to create digital
certificates and signatures, and the like. One popular cryptog-
raphy system is a public key system that uses two keys, a
public key known to everyone and a private key known only
to the individual or business owner thereof. Generally, the
data encrypted with one key is decrypted with the other and
neither key is recreatable from the other.

Unfortunately, even the foregoing typical public-key cryp-
tographic systems are still highly reliant on the user for secu-
rity. For example, cryptographic systems issue the private key
to the user, for example, through the user’s browser. Unso-
phisticated users then generally store the private key on a hard
drive accessible to others through an open computer system,
such as, for example, the Internet. On the other hand, users
may choose poor names for files containing their private key,
such as, for example, “key.” The result of the foregoing and
other acts is to allow the key or keys to be susceptible to
compromise.

In addition to the foregoing compromises, a user may save
his or her private key on a computer system configured with
an archiving or backup system, potentially resulting in copies
of the private key traveling through multiple computer stor-

20

25

30

35

40

45

50

55

60

2

age devices or other systems. This security breach is often
referred to as “key migration.” Similar to key migration, many
applications provide access to a user’s private key through, at
most, simple login and password access. As mentioned in the
foregoing, login and password access often does not provide
adequate security.

One solution for increasing the security of the foregoing
cryptographic systems is to include biometrics as part of the
authentication or authorization. Biometrics generally include
measurable physical characteristics, such as, for example,
finger prints or speech that can be checked by an automated
system, such as, for example, pattern matching or recognition
of finger print patterns or speech patterns. In such systems, a
user’s biometric and/or keys may be stored on mobile com-
puting devices, such as, for example, a smartcard, laptop,
personal digital assistant, or mobile phone, thereby allowing
the biometric or keys to be usable in a mobile environment.

The foregoing mobile biometric cryptographic system still
suffers from a variety of drawbacks. For example, the mobile
user may lose or break the smartcard or portable computing
device, thereby having his or her access to potentially impor-
tant data entirely cut-off. Alternatively, a malicious person
may steal the mobile user’s smartcard or portable computing
device and use it to effectively steal the mobile user’s digital
credentials. On the other hand, the portable-computing
device may be connected to an open system, such as the
Internet, and, like passwords, the file where the biometric is
stored may be susceptible to compromise through user inat-
tentiveness to security or malicious intruders.

One way to secure data from unauthorized access or unau-
thorized use is to use a secret sharing scheme. A secret sharing
scheme is a method to split a sensitive piece of data (e.g.,
confidential files, an encryption key, or any type of commu-
nication), sometimes called the secret, into a collection of
pieces, called shares, such that that possession of a sufficient
number of shares enables recovery of the secret, but posses-
sion of an insufficient number of shares provides little or no
information about the secret that was shared. Such schemes
are important tools in cryptography and information security.

Formally, a secret sharing scheme consists of a pair of
algorithms, the sharing algorithm Share and the recovery
algorithm Recover. The sharing algorithm is typically proba-
bilistic (meaning that it makes randomized choices), and the
recovery algorithm is typically deterministic. The sharing
algorithm may be used to disassemble, or split, the secret into
acollection of shares, and the recovery algorithm may be used
to reassemble those shares. At reassembly time, each share
may be present, in which case a string may be provided to the
recovery algorithm, or a share may be missing, in which case
a designated value (referred to as “ <& ™ herein) may be pro-
vided to the recovery algorithm. A set of players that is autho-
rized to recover the secret is called an authorized set, and the
set of all such players is sometimes called an access structure.

Secret sharing schemes have been designed to work on
various access structures, but the most common access struc-
ture is a threshold access structure, where any subset of m or
more players, out of a total of n players in all, are said to be
authorized. A secret sharing scheme for a threshold access
structure is sometimes called a threshold scheme. There are
two security properties for any secret sharing scheme: a pri-
vacy property and a recoverability property. The privacy
property ensures that unauthorized coalitions of players do
not learn anything useful about the secret. The recoverability
property ensures that authorized coalitions of players can
ultimately recover the underlying secret.

Shamir’s secret sharing scheme is said to be a perfect secret
sharing (PSS) scheme. The term “perfect” refers to the pri-

US 8,787,583 B2

3

vacy guarantee being information theoretic and without any
error; thus, unauthorized coalitions of players may learn noth-
ing useful about the underlying secret in PSS schemes.

One limitation with PSS schemes is that the size of each
share must be at least as long as the size of the secret that is
being shared. When the secret includes a large file or long
string of characters, however, this limitation can become
unwieldy, increasing overall complexity of the system. In
response to this limitation, schemes for computational secret
sharing (CSS) have been developed.

Krawczyk’s CSS scheme, for example, permits the shares
to be shorter than the secret. For example, in a 2-out-of-3
threshold scheme (meaning that any two of three shares are
adequate for recovering the secret), the secret S can be
divided into shares of size about |SI/2 bits, where |S| denotes
the length of S. Shares this short are not possible in the PSS
setting. In CSS schemes, however, the privacy property may
no longer be absolute and information theoretic; rather, an
unauthorized coalition of players may obtain a small amount
of information about the shared secret from their shares. But,
under a computational complexity assumption, the amount of
information will be negligible and therefore, in practice, not
much of a concern.

A second limitation of PSS schemes concerns the lack of
mandated robustness. Robustness means that a faulty or
adversarial participant is unable to force the recovery of an
incorrect secret. The model for PSS assumes that each share
is either “correct” or “missing”, but it may never be wrong
(e.g., corrupt or intentional altered). In practice, this is a
highly unreasonable assumption because shares may be
wrong due to any number of factors, including, for example,
errors in storage, noise in a communications channel, or due
to genuinely adversarial activities. In addition, the lack of
robustness is not just a theoretical possibility, but a genuine
problem for typical PSS schemes, including Shamir’s secret
sharing scheme. With Shamir’s scheme, an adversary can in
fact force the recovery of any desired secret by appropriately
changing just one share. Practical applications of secret shar-
ing schemes typically require robustness.

SUMMARY OF THE INVENTION

Based on the foregoing, robust computational secret shar-
ing schemes that are simultaneously efficient and have strong
provable-security properties under weak cryptographic
assumptions are needed.

Accordingly, one aspect of the present invention is to pro-
vide a method for securing virtually any type of data from
unauthorized access or use. The method comprises one or
more steps of parsing, splitting and/or separating the data to
be secured into two or more parts or portions. The method
also comprises encrypting the data to be secured. Encryption
of'the data may be performed prior to or after the first parsing,
splitting and/or separating of the data. In addition, the
encrypting step may be repeated for one or more portions of
the data. Similarly, the parsing, splitting and/or separating
steps may be repeated for one or more portions of the data.
The method also optionally comprises storing the parsed,
split and/or separated data that has been encrypted in one
location or in multiple locations. This method also optionally
comprises reconstituting or re-assembling the secured data
into its original form for authorized access or use. This
method may be incorporated into the operations of any com-
puter, server, engine or the like, that is capable of executing
the desired steps of the method.

Another aspect of the present invention provides a system
for securing virtually any type of data from unauthorized

20

25

30

35

40

45

50

55

60

65

4

access or use. This system comprises a data splitting module,
a cryptographic handling module, and, optionally, a data
assembly module. The system may, in one embodiment, fur-
ther comprise one or more data storage facilities where secure
data may be stored.

Another aspect of the invention includes using any suitable
parsing and splitting algorithm to generate shares of data.
Either random, pseudo-random, deterministic, or any combi-
nation thereof may be employed for parsing and splitting
data.

In yet other embodiments, an n-party secret sharing
scheme with message space S is provided. A family of adver-
saries, A, may be defined. The n-party secret sharing scheme
may include one or more of the following five primitives: (1)
a symmetric encryption algorithm with k-bit keys and mes-
sage space S; (2) an n-party PSS algorithm over adversaries A
with a message space {0,1}%; (3) an n-party information dis-
persal algorithm (IDA); (4) an n-party error correction code
(ECC) over adversaries A with a message space {0,1}”; and
(5) a randomized (or probabilistic) commitment scheme.
Data may be secured by first applying a computational secret
sharing algorithm to the data to be secured. A random or
pseudo-random value may then be generated. From the out-
put of the secret sharing algorithm and the random or pseudo-
random value, a set of committal values and decommital
values may be computed. A plurality of shares may then be
formed by combining a share output from the secret sharing
algorithm, a decommittal value, and one or more committal
values. The shares may then be stored at one or more physical
locations (e.g., on a magnetic hard disk drive), or one or more
geographic locations (e.g., different data repositories or serv-
ers).

Insome embodiments, a probabilistic commitment scheme
may be used to compute the set of committal values and a set
of decommittal values. Each share may be defined by a share
output from a computational secret sharing algorithm, a
decommittal value, and one or more committal values from
the set of committal values.

In some embodiments, a cryptographic key may be gener-
ated and used to encrypt user data to create a ciphertext
portion. A set of n key shares may be created by applying a
secret sharing algorithm to the cryptographic key. A set of n
ciphertext chunks may then be created by applying an infor-
mation dispersal algorithm (IDA) to the ciphertext. A set of n
committal values and n decommittal values may be computed
by applying a probabilistic commitment scheme to each of
the nkey shares and ciphertext chunks. N data fragments may
be formed, where each data fragment may be a function of a
key share, a ciphertext, a decommittal value, and one or more
committal values. Finally, the data fragments may be stored
on one or more logical storage devices (e.g., n logical storage
devices). One or more of these logical storage devices may be
situated at different geographic or physical locations. The
user data may then be reconstituted by combining at least a
predefined number of data fragments. In some embodiments,
various error-correcting codes may be used to provide an
adequate collection of committal values for each player.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described in more detail below in
connection with the attached drawings, which are meant to
illustrate and not to limit the invention, and in which:

FIG. 1 illustrates a block diagram of a cryptographic sys-
tem, according to aspects of an embodiment of the invention;

US 8,787,583 B2

5

FIG. 2 illustrates a block diagram of the trust engine of
FIG. 1, according to aspects of an embodiment of the inven-
tion;

FIG. 3 illustrates a block diagram of the transaction engine
of FIG. 2, according to aspects of an embodiment of the
invention;

FIG. 4 illustrates a block diagram of the depository of FIG.
2, according to aspects Of an embodiment of the invention;

FIG. 5 illustrates a block diagram of the authentication
engine of FIG. 2, according to aspects of an embodiment of
the invention;

FIG. 6 illustrates a block diagram of the cryptographic
engine of FIG. 2, according to aspects of an embodiment of
the invention;

FIG. 7 is an illustrative block diagram depicting the overall
structure of a robust computational secret sharing (RCSS)
scheme in accordance with one embodiment of the invention;

FIG. 8 illustrates the secret sharing process in accordance
with one embodiment of the invention;

FIG. 9 illustrates more detail of the committal steps shown
in FIG. 8 in accordance with one embodiment of the inven-
tion;

FIG. 10 illustrates the sharing process based on a different
abstraction of building an RCSS scheme from a CSS scheme
and a commitment scheme; and

FIG. 11 illustrates more detail of the verification steps in
the probabilistic committal scheme shown in FIG. 10.

DETAILED DESCRIPTION OF THE INVENTION

One aspect of the present invention is to provide a crypto-
graphic system where one or more secure servers, or a trust
engine, stores cryptographic keys and user authentication
data. Users access the functionality of conventional crypto-
graphic systems through network access to the trust engine,
however, the trust engine does not release actual keys and
other authentication data and therefore, the keys and data
remain secure. This server-centric storage ofkeys and authen-
tication data provides for user-independent security, portabil-
ity, availability, and straightforwardness.

Because users can be confident in, or trust, the crypto-
graphic system to perform user and document authentication
and other cryptographic functions, a wide variety of function-
ality may be incorporated into the system. For example, the
trust engine provider can ensure against agreement repudia-
tion by, for example, authenticating the agreement partici-
pants, digitally signing the agreement on behalf of or for the
participants, and storing a record of the agreement digitally
signed by each participant. In addition, the cryptographic
system may monitor agreements and determine to apply vary-
ing degrees of authentication, based on, for example, price,
user, vendor, geographic location, place of use, or the like.

To facilitate a complete understanding of the invention, the
remainder of the detailed description describes the invention
with reference to the figures, wherein like elements are ref-
erenced with like numerals throughout.

FIG. 1 illustrates a block diagram of a cryptographic sys-
tem 100, according to aspects of an embodiment of the inven-
tion. As shown in FIG. 1, the cryptographic system 100
includes a user system 105, a trust engine 110, a certificate
authority 115, and a vendor system 120, communicating
through a communication link 125.

According to one embodiment of the invention, the user
system 105 comprises a conventional general-purpose com-
puter having one or more microprocessors, such as, for
example, an Intel-based processor. Moreover, the user system
105 includes an appropriate operating system, such as, for

—

5

20

25

30

35

40

45

50

55

60

65

6

example, an operating system capable of including graphics
or windows, such as Windows, Unix, Linux, or the like. As
shown in FIG. 1, the user system 105 may include a biometric
device 107. The biometric device 107 may advantageously
capture a user’s biometric and transfer the captured biometric
to the trust engine 110. According to one embodiment of the
invention, the biometric device may advantageously com-
prise a device having attributes and features similar to those
disclosed in U.S. patent application Ser. No. 08/926,277, filed
on Sep. 5, 1997, entitled “RELIEF OBJECT IMAGE GEN-
ERATOR,” U.S. patent application Ser. No. 09/558,634, filed
on Apr. 26, 2000, entitled “IMAGING DEVICE FOR A
RELIEF OBJECT AND SYSTEM AND METHOD OF
USING THE IMAGE DEVICE,” U.S. patent application Ser.
No. 09/435,011, filed on Nov. 5, 1999, entitled “RELIEF
OBJECT SENSOR ADAPTOR,” and U.S. patent application
Ser.No. 09/477,943, filed on Jan. 5, 2000, entitled “PLANAR
OPTICAL IMAGE SENSOR AND SYSTEM FOR GENER-
ATING AN ELECTRONIC IMAGE OF A RELIEF OBJECT
FOR FINGERPRINT READING,” all of which are owned by
the instant assignee, and all of which are hereby incorporated
by reference herein.

In addition, the user system 105 may connect to the com-
munication link 125 through a conventional service provider,
such as, for example, a dial up, digital subscriber line (DSL),
cable modem, fiber connection, or the like. According to
another embodiment, the user system 105 connects the com-
munication link 125 through network connectivity such as,
for example, a local or wide area network. According to one
embodiment, the operating system includes a TCP/IP stack
that handles all incoming and outgoing message traffic passed
over the communication link 125.

Although the user system 105 is disclosed with reference to
the foregoing embodiments, the invention is not intended to
be limited thereby. Rather, a skilled artisan will recognize
from the disclosure herein, a wide number of alternatives
embodiments of the user system 105, including almost any
computing device capable of sending or receiving informa-
tion from another computer system. For example, the user
system 105 may include, but is not limited to, a computer
workstation, an interactive television, an interactive kiosk, a
personal mobile computing device, such as a digital assistant,
mobile phone, laptop, or the like, a wireless communications
device, a smartcard, an embedded computing device, or the
like, which can interact with the communication link 125. In
such alternative systems, the operating systems will likely
differ and be adapted for the particular device. However,
according to one embodiment, the operating systems advan-
tageously continue to provide the appropriate communica-
tions protocols needed to establish communication with the
communication link 125.

FIG. 1 illustrates the trust engine 110. According to one
embodiment, the trust engine 110 comprises one or more
secure servers for accessing and storing sensitive informa-
tion, which may be any type or form of data, such as, but not
limited to text, audio, video, user authentication data and
public and private cryptographic keys. According to one
embodiment, the authentication data includes data designed
to uniquely identify a user of the cryptographic system 100.
For example, the authentication data may include a user iden-
tification number, one or more biometrics, and a series of
questions and answers generated by the trust engine 110 or
the user, but answered initially by the user at enrollment. The
foregoing questions may include demographic data, such as
place of birth, address, anniversary, or the like, personal data,
such as mother’s maiden name, favorite ice cream, or the like,
or other data designed to uniquely identify the user. The trust

US 8,787,583 B2

7

engine 110 compares a user’s authentication data associated
with a current transaction, to the authentication data provided
at an earlier time, such as, for example, during enrollment.
The trust engine 110 may advantageously require the user to
produce the authentication data at the time of each transac-
tion, or, the trust engine 110 may advantageously allow the
user to periodically produce authentication data, such as at the
beginning of a string of transactions or the logging onto a
particular vendor website.

According to the embodiment where the user produces
biometric data, the user provides a physical characteristic,
such as, but not limited to, facial scan, hand scan, ear scan, iris
scan, retinal scan, vascular pattern, DNA, a fingerprint, writ-
ing or speech, to the biometric device 107. The biometric
device advantageously produces an electronic pattern, or bio-
metric, of the physical characteristic. The electronic pattern is
transferred through the user system 105 to the trust engine
110 for either enrollment or authentication purposes.

Once the user produces the appropriate authentication data
and the trust engine 110 determines a positive match between
that authentication data (current authentication data) and the
authentication data provided at the time of enrollment (enroll-
ment authentication data), the trust engine 110 provides the
user with complete cryptographic functionality. For example,
the properly authenticated user may advantageously employ
the trust engine 110 to perform hashing, digitally signing,
encrypting and decrypting (often together referred to only as
encrypting), creating or distributing digital certificates, and
the like. However, the private cryptographic keys used in the
cryptographic functions will not be available outside the trust
engine 110, thereby ensuring the integrity of the crypto-
graphic keys.

According to one embodiment, the trust engine 110 gen-
erates and stores cryptographic keys. According to another
embodiment, at least one cryptographic key is associated with
each user. Moreover, when the cryptographic keys include
public-key technology, each private key associated with a
user is generated within, and not released from, the trust
engine 110. Thus, so long as the user has access to the trust
engine 110, the user may perform cryptographic functions
using his or her private or public key. Such remote access
advantageously allows users to remain completely mobile
and access cryptographic functionality through practically
any Internet connection, such as cellular and satellite phones,
kiosks, laptops, hotel rooms and the like.

According to another embodiment, the trust engine 110
performs the cryptographic functionality using a key pair
generated for the trust engine 110. According to this embodi-
ment, the trust engine 110 first authenticates the user, and
after the user has properly produced authentication data
matching the enrollment authentication data, the trust engine
110 uses its own cryptographic key pair to perform crypto-
graphic functions on behalf of the authenticated user.

A skilled artisan will recognize from the disclosure herein
that the cryptographic keys may advantageously include
some or all of symmetric keys, public keys, and private keys.
In addition, a skilled artisan will recognize from the disclo-
sure herein that the foregoing keys may be implemented with
awide number of algorithms available from commercial tech-
nologies, such as, for example, RSA, ELGAMAL, or the like.

FIG. 1 also illustrates the certificate authority 115. Accord-
ing to one embodiment, the certificate authority 115 may
advantageously comprise a trusted third-party organization
or company that issues digital certificates, such as, for
example, VeriSign, Baltimore, Entrust, or the like. The trust
engine 110 may advantageously transmit requests for digital
certificates, through one or more conventional digital certifi-

20

25

30

40

45

50

55

60

65

8

cate protocols, such as, for example, PKCS10, to the certifi-
cate authority 115. In response, the certificate authority 115
will issue a digital certificate in one or more of a number of
differing protocols, such as, for example, PKCS7. According
to one embodiment of the invention, the trust engine 110
requests digital certificates from several or all of the promi-
nent certificate authorities 115 such that the trust engine 110
has access to a digital certificate corresponding to the certifi-
cate standard of any requesting party.

According to another embodiment, the trust engine 110
internally performs certificate issuances. In this embodiment,
the trust engine 110 may access a certificate system for gen-
erating certificates and/or may internally generate certificates
when they are requested, such as, for example, at the time of
key generation or in the certificate standard requested at the
time of the request. The trust engine 110 will be disclosed in
greater detail below.

FIG. 1 also illustrates the vendor system 120. According to
one embodiment, the vendor system 120 advantageously
comprises a Web server. Typical Web servers generally serve
content over the Internet using one of several Internet markup
languages or document format standards, such as the Hyper-
Text Markup Language (HTML) or the Extensible Markup
Language (XML). The Web server accepts requests from
browsers like Netscape and Internet Explorer and then returns
the appropriate electronic documents. A number of server or
client-side technologies can be used to increase the power of
the Web server beyond its ability to deliver standard elec-
tronic documents. For example, these technologies include
Common Gateway Interface (CGI) scripts, Secure Sockets
Layer (SSL) security, and Active Server Pages (ASPs). The
vendor system 120 may advantageously provide electronic
content relating to commercial, personal, educational, or
other transactions.

Although the vendor system 120 is disclosed with refer-
ence to the foregoing embodiments, the invention is not
intended to be limited thereby. Rather, a skilled artisan will
recognize from the disclosure herein that the vendor system
120 may advantageously comprise any of the devices
described with reference to the user system 105 or combina-
tion thereof.

FIG.1also illustrates the communication link 125 connect-
ing the user system 105, the trust engine 110, the certificate
authority 115, and the vendor system 120. According to one
embodiment, the communication link 125 preferably com-
prises the Internet. The Internet, as used throughout this dis-
closure is a global network of computers. The structure of the
Internet, which is well known to those of ordinary skill in the
art, includes a network backbone with networks branching
from the backbone. These branches, in turn, have networks
branching from them, and so on. Routers move information
packets between network levels, and then from network to
network, until the packet reaches the neighborhood of its
destination. From the destination, the destination network’s
host directs the information packet to the appropriate termi-
nal, or node. In one advantageous embodiment, the Internet
routing hubs comprise domain name system (DNS) servers
using Transmission Control Protocol/Internet Protocol (TCP/
IP) as is well known in the art. The routing hubs connect to
one or more other routing hubs via high-speed communica-
tion links.

One popular part of the Internet is the World Wide Web.
The World Wide Web contains different computers, which
store documents capable of displaying graphical and textual
information. The computers that provide information on the
World Wide Web are typically called “websites.” A website is
defined by an Internet address that has an associated elec-

US 8,787,583 B2

9

tronic page. The electronic page can be identified by a Uni-
form Resource Locator (URL). Generally, an electronic page
is a document that organizes the presentation of text, graphi-
cal images, audio, video, and so forth.

Although the communication link 125 is disclosed in terms
of its preferred embodiment, one of ordinary skill in the art
will recognize from the disclosure herein that the communi-
cation link 125 may include a wide range of interactive com-
munications links. For example, the communication link 125
may include interactive television networks, telephone net-
works, wireless data transmission systems, two-way cable
systems, customized private or public computer networks,
interactive kiosk networks, automatic teller machine net-
works, direct links, satellite or cellular networks, and the like.

FIG. 2 illustrates a block diagram of the trust engine 110 of
FIG. 1 according to aspects of an embodiment of the inven-
tion. As shown in FIG. 2, the trust engine 110 includes a
transaction engine 205, a depository 210, an authentication
engine 215, and a cryptographic engine 220. According to
one embodiment of the invention, the trust engine 110 also
includes mass storage 225. As further shown in FIG. 2, the
transaction engine 205 communicates with the depository
210, the authentication engine 215, and the cryptographic
engine 220, along with the mass storage 225. In addition, the
depository 210 communicates with the authentication engine
215, the cryptographic engine 220, and the mass storage 225.
Moreover, the authentication engine 215 communicates with
the cryptographic engine 220. According to one embodiment
of'the invention, some or all of the foregoing communications
may advantageously comprise the transmission of XML
documents to IP addresses that correspond to the receiving
device. As mentioned in the foregoing, XML documents
advantageously allow designers to create their own custom-
ized document tags, enabling the definition, transmission,
validation, and interpretation of data between applications
and between organizations. Moreover, some or all of the
foregoing communications may include conventional SSL
technologies.

According to one embodiment, the transaction engine 205
comprises a data routing device, such as a conventional Web
server available from Netscape, Microsoft, Apache, or the
like. For example, the Web server may advantageously
receive incoming data from the communication link 125.
According to one embodiment of the invention, the incoming
data is addressed to a front-end security system for the trust
engine 110. For example, the front-end security system may
advantageously include a firewall, an intrusion detection sys-
tem searching for known attack profiles, and/or a virus scan-
ner. After clearing the front-end security system, the data is
received by the transaction engine 205 and routed to one of
the depository 210, the authentication engine 215, the cryp-
tographic engine 220, and the mass storage 225. In addition,
the transaction engine 205 monitors incoming data from the
authentication engine 215 and cryptographic engine 220, and
routes the data to particular systems through the communica-
tion link 125. For example, the transaction engine 205 may
advantageously route data to the user system 105, the certifi-
cate authority 115, or the vendor system 120.

According to one embodiment, the data is routed using
conventional HTTP routing techniques, such as, for example,
employing URLs or Uniform Resource Indicators (URIs).
URIs are similar to URLs, however, URIs typically indicate
the source of files or actions, such as, for example,
executables, scripts, and the like. Therefore, according to the
one embodiment, the user system 105, the certificate author-
ity 115, the vendor system 120, and the components of the
trust engine 210, advantageously include sufficient data

20

25

30

35

40

45

50

55

60

65

10

within communication URLs or URIs for the transaction
engine 205 to properly route data throughout the crypto-
graphic system.

Although the data routing is disclosed with reference to its
preferred embodiment, a skilled artisan will recognize a wide
number of possible data routing solutions or strategies. For
example, XML or other data packets may advantageously be
unpacked and recognized by their format, content, or the like,
such that the transaction engine 205 may properly route data
throughout the trust engine 110. Moreover, a skilled artisan
will recognize that the data routing may advantageously be
adapted to the data transfer protocols conforming to particu-
lar network systems, such as, for example, when the commu-
nication link 125 comprises a local network.

According to yet another embodiment of the invention, the
transaction engine 205 includes conventional SSL. encryption
technologies, such that the foregoing systems may authenti-
cate themselves, and vise-versa, with transaction engine 205,
during particular communications. As will be used through-
out this disclosure, the term “Y2 SSL” refers to communica-
tions where a server but not necessarily the client, is SSL
authenticated, and the term “FULL SSL” refers to communi-
cations where the client and the server are SSL authenticated.
When the instant disclosure uses the term “SSL”, the com-
munication may comprise %2 or FULL SSL.

As the transaction engine 205 routes data to the various
components of the cryptographic system 100, the transaction
engine 205 may advantageously create an audit trail. Accord-
ing to one embodiment, the audit trail includes a record of at
least the type and format of data routed by the transaction
engine 205 throughout the cryptographic system 100. Such
audit data may advantageously be stored in the mass storage
225.

FIG. 2 also illustrates the depository 210. According to one
embodiment, the depository 210 comprises one or more data
storage facilities, such as, for example, a directory server, a
database server, or the like. As shown in FIG. 2, the depository
210 stores cryptographic keys and enrollment authentication
data. The cryptographic keys may advantageously corre-
spond to the trust engine 110 or to users of the cryptographic
system 100, such as the user or vendor. The enrollment
authentication data may advantageously include data
designed to uniquely identify a user, such as, user ID, pass-
words, answers to questions, biometric data, or the like. This
enrollment authentication data may advantageously be
acquired at enrollment of a user or another alternative later
time. For example, the trust engine 110 may include periodic
or other renewal or reissue of enrollment authentication data.

According to one embodiment, the communication from
the transaction engine 205 to and from the authentication
engine 215 and the cryptographic engine 220 comprises
secure communication, such as, for example conventional
SSL technology. In addition, as mentioned in the foregoing,
the data of the communications to and from the depository
210 may be transferred using URLs, URIs, HTTP or XML
documents, with any of the foregoing advantageously having
data requests and formats embedded therein.

As mentioned above, the depository 210 may advanta-
geously comprises a plurality of secure data storage facilities.
In such an embodiment, the secure data storage facilities may
be configured such that a compromise of the security in one
individual data storage facility will not compromise the cryp-
tographic keys or the authentication data stored therein. For
example, according to this embodiment, the cryptographic
keys and the authentication data are mathematically operated
on so as to statistically and substantially randomize the data
stored in each data storage facility. According to one embodi-

US 8,787,583 B2

11

ment, the randomization of the data of an individual data
storage facility renders that data undecipherable. Thus, com-
promise of an individual data storage facility produces only a
randomized undecipherable number and does not compro-
mise the security of any cryptographic keys or the authenti-
cation data as a whole.

FIG. 2 also illustrates the trust engine 110 including the
authentication engine 215. According to one embodiment, the
authentication engine 215 comprises a data comparator con-
figured to compare data from the transaction engine 205 with
data from the depository 210. For example, during authenti-
cation, a user supplies current authentication data to the trust
engine 110 such that the transaction engine 205 receives the
current authentication data. As mentioned in the foregoing,
the transaction engine 205 recognizes the data requests, pref-
erably in the URL or URI, and routes the authentication data
to the authentication engine 215. Moreover, upon request, the
depository 210 forwards enrollment authentication data cor-
responding to the user to the authentication engine 215. Thus,
the authentication engine 215 has both the current authenti-
cation data and the enrollment authentication data for com-
parison.

According to one embodiment, the communications to the
authentication engine comprise secure communications, such
as, for example, SSL technology. Additionally, security can
be provided within the trust engine 110 components, such as,
for example, super-encryption using public key technologies.
For example, according to one embodiment, the user encrypts
the current authentication data with the public key of the
authentication engine 215. In addition, the depository 210
also encrypts the enrollment authentication data with the
public key of the authentication engine 215. In this way, only
the authentication engine’s private key can be used to decrypt
the transmissions.

As shown in FIG. 2, the trust engine 110 also includes the
cryptographic engine 220. According to one embodiment, the
cryptographic engine comprises a cryptographic handling
module, configured to advantageously provide conventional
cryptographic functions, such as, for example, public-key
infrastructure (PKI) functionality. For example, the crypto-
graphic engine 220 may advantageously issue public and
private keys for users of the cryptographic system 100. In this
manner, the cryptographic keys are generated at the crypto-
graphic engine 220 and forwarded to the depository 210 such
that at least the private cryptographic keys are not available
outside of the trust engine 110. According to another embodi-
ment, the cryptographic engine 220 randomizes and splits at
least the private cryptographic key data, thereby storing only
the randomized split data. Similar to the splitting of the
enrollment authentication data, the splitting process ensures
the stored keys are not available outside the cryptographic
engine 220. According to another embodiment, the functions
of the cryptographic engine can be combined with and per-
formed by the authentication engine 215.

According to one embodiment, communications to and
from the cryptographic engine include secure communica-
tions, such as SSL technology. In addition, XML documents
may advantageously be employed to transfer data and/or
make cryptographic function requests.

FIG. 2 also illustrates the trust engine 110 having the mass
storage 225. As mentioned in the foregoing, the transaction
engine 205 keeps data corresponding to an audit trail and
stores such data in the mass storage 225. Similarly, according
to one embodiment of the invention, the depository 210 keeps
data corresponding to an audit trail and stores such data in the
mass storage device 225. The depository audit trail data is
similar to that of the transaction engine 205 in that the audit

20

25

30

35

40

45

50

55

60

65

12

trail data comprises a record of the requests received by the
depository 210 and the response thereof. In addition, the mass
storage 225 may be used to store digital certificates having the
public key of a user contained therein.

Although the trust engine 110 is disclosed with reference to
its preferred and alternative embodiments, the invention is not
intended to be limited thereby. Rather, a skilled artisan will
recognize in the disclosure herein, a wide number of alterna-
tives for the trust engine 110. For example, the trust engine
110, may advantageously perform only authentication, or
alternatively, only some or all of the cryptographic functions,
such as data encryption and decryption. According to such
embodiments, one of the authentication engine 215 and the
cryptographic engine 220 may advantageously be removed,
thereby creating a more straightforward design for the trust
engine 110. In addition, the cryptographic engine 220 may
also communicate with a certificate authority such that the
certificate authority is embodied within the trust engine 110.
According to yet another embodiment, the trust engine 110
may advantageously perform authentication and one or more
cryptographic functions, such as, for example, digital sign-
ing.

FIG. 3 illustrates a block diagram of the transaction engine
205 of FIG. 2, according to aspects of an embodiment of the
invention. According to this embodiment, the transaction
engine 205 comprises an operating system 305 having a han-
dling thread and a listening thread. The operating system 305
may advantageously be similar to those found in conventional
high volume servers, such as, for example, Web servers avail-
able from Apache. The listening thread monitors the incom-
ing communication from one of the communication link 125,
the authentication engine 215, and the cryptographic engine
220 for incoming data flow. The handling thread recognizes
particular data structures of the incoming data flow, such as,
for example, the foregoing data structures, thereby routing the
incoming data to one of the communication link 125, the
depository 210, the authentication engine 215, the crypto-
graphic engine 220, or the mass storage 225. As shown in
FIG. 3, the incoming and outgoing data may advantageously
be secured through, for example, SSL technology.

FIG. 4 illustrates a block diagram of the depository 210 of
FIG. 2 according to aspects of an embodiment of the inven-
tion. According to this embodiment, the depository 210 com-
prises one or more lightweight directory access protocol
(LDAP) servers. LDAP directory servers are available from a
wide variety of manufacturers such as Netscape, [SO, and
others. FIG. 4 also shows that the directory server preferably
stores data 405 corresponding to the cryptographic keys and
data 410 corresponding to the enrollment authentication data.
According to one embodiment, the depository 210 comprises
a single logical memory structure indexing authentication
data and cryptographic key data to a unique user ID. The
single logical memory structure preferably includes mecha-
nisms to ensure a high degree of trust, or security, in the data
stored therein. For example, the physical location of the
depository 210 may advantageously include a wide number
of conventional security measures, such as limited employee
access, modern surveillance systems, and the like. In addition
to, or in lieu of, the physical securities, the computer system
or server may advantageously include software solutions to
protect the stored data. For example, the depository 210 may
advantageously create and store data 415 corresponding to an
audit trail of actions taken. In addition, the incoming and
outgoing communications may advantageously be encrypted
with public key encryption coupled with conventional SSL,
technologies.

US 8,787,583 B2

13

According to another embodiment, the depository 210 may
comprise distinct and physically separated data storage facili-
ties, as disclosed further with reference to FIG. 7.

FIG. 5 illustrates a block diagram of the authentication
engine 215 of FIG. 2 according to aspects of an embodiment
of'the invention. Similar to the transaction engine 205 of FIG.
3, the authentication engine 215 comprises an operating sys-
tem 505 having at least a listening and a handling thread of a
modified version of a conventional Web server, such as, for
example, Web servers available from Apache. As shown in
FIG. 5, the authentication engine 215 includes access to at
least one private key 510. The private key 510 may advanta-
geously be used for example, to decrypt data from the trans-
action engine 205 or the depository 210, which was encrypted
with a corresponding public key of the authentication engine
215.

FIG. 5 also illustrates the authentication engine 215 com-
prising a comparator 515, a data splitting module 520, and a
data assembling module 525. According to the preferred
embodiment of the invention, the comparator 515 includes
technology capable of comparing potentially complex pat-
terns related to the foregoing biometric authentication data.
The technology may include hardware, software, or com-
bined solutions for pattern comparisons, such as, for example,
those representing finger print patterns or voice patterns. In
addition, according to one embodiment, the comparator 515
of the authentication engine 215 may advantageously com-
pare conventional hashes of documents in order to render a
comparison result. According to one embodiment of the
invention, the comparator 515 includes the application of
heuristics 530 to the comparison. The heuristics 530 may
advantageously address circumstances surrounding an
authentication attempt, such as, for example, the time of day,
1P address or subnet mask, purchasing profile, email address,
processor serial number or ID, or the like.

Moreover, the nature of biometric data comparisons may
result in varying degrees of confidence being produced from
the matching of current biometric authentication data to
enrollment data. For example, unlike a traditional password
which may only return a positive or negative match, a finger-
print may be determined to be a partial match, e.g. a 90%
match, a 75% match, or a 10% match, rather than simply
being correct or incorrect. Other biometric identifiers such as
voice print analysis or face recognition may share this prop-
erty of probabilistic authentication, rather than absolute
authentication.

When working with such probabilistic authentication or in
other cases where an authentication is considered less than
absolutely reliable, it is desirable to apply the heuristics 530
to determine whether the level of confidence in the authenti-
cation provided is sufficiently high to authenticate the trans-
action which is being made.

It will sometimes be the case that the transaction at issue is
a relatively low value transaction where it is acceptable to be
authenticated to a lower level of confidence. This could
include a transaction which has a low dollar value associated
with it (e.g., a $10 purchase) or a transaction with low risk
(e.g., admission to a members-only web site).

Conversely, for authenticating other transactions, it may be
desirable to require a high degree of confidence in the authen-
tication before allowing the transaction to proceed. Such
transactions may include transactions of large dollar value
(e.g., signing a multi-million dollar supply contract) or trans-
action with a high risk if an improper authentication occurs
(e.g., remotely logging onto a government computer).

The use of the heuristics 530 in combination with confi-
dence levels and transactions values may be used as will be

20

25

30

35

40

45

50

55

60

65

14

described below to allow the comparator to provide a
dynamic context-sensitive authentication system.

According to another embodiment of the invention, the
comparator 515 may advantageously track authentication
attempts for a particular transaction. For example, when a
transaction fails, the trust engine 110 may request the user to
re-enter his or her current authentication data. The compara-
tor 515 of the authentication engine 215 may advantageously
employ an attempt limiter 535 to limit the number of authen-
tication attempts, thereby prohibiting brute-force attempts to
impersonate a user’s authentication data. According to one
embodiment, the attempt limiter 535 comprises a software
module monitoring transactions for repeating authentication
attempts and, for example, limiting the authentication
attempts for a given transaction to three. Thus, the attempt
limiter 535 will limit an automated attempt to impersonate an
individual’s authentication data to, for example, simply three
“guesses.” Upon three failures, the attempt limiter 535 may
advantageously deny additional authentication attempts.
Such denial may advantageously be implemented through,
for example, the comparator 515 returning a negative result
regardless of the current authentication data being transmit-
ted. On the other hand, the transaction engine 205 may advan-
tageously block any additional authentication attempts per-
taining to a transaction in which three attempts have
previously failed.

The authentication engine 215 also includes the data split-
ting module 520 and the data assembling module 525. The
data splitting module 520 advantageously comprises a soft-
ware, hardware, or combination module having the ability to
mathematically operate on various data so as to substantially
randomize and split the data into portions. According to one
embodiment, original data is not recreatable from an indi-
vidual portion. The data assembling module 525 advanta-
geously comprises a software, hardware, or combination
module configured to mathematically operate on the forego-
ing substantially randomized portions, such that the combi-
nation thereof provides the original deciphered data. Accord-
ing to one embodiment, the authentication engine 215
employs the data splitting module 520 to randomize and split
enrollment authentication data into portions, and employs the
data assembling module 525 to reassemble the portions into
usable enrollment authentication data.

FIG. 6 illustrates a block diagram of the cryptographic
engine 220 of the trust engine 200 of FIG. 2 according to
aspects of one embodiment of the invention. Similar to the
transaction engine 205 of FIG. 3, the cryptographic engine
220 comprises an operating system 605 having at least a
listening and a handling thread of a modified version of a
conventional Web server, such as, for example, Web servers
available from Apache. As shown in FIG. 6, the cryptographic
engine 220 comprises a data splitting module 610 and a data
assembling module 620 that function similar to those of FIG.
5. However, according to one embodiment, the data splitting
module 610 and the data assembling module 620 process
cryptographic key data, as opposed to the foregoing enroll-
ment authentication data. Although, a skilled artisan will
recognize from the disclosure herein that the data splitting
module 910 and the data splitting module 620 may be com-
bined with those of the authentication engine 215.

The cryptographic engine 220 also comprises a crypto-
graphic handling module 625 configured to perform one,
some or all of a wide number of cryptographic functions.
According to one embodiment, the cryptographic handling
module 625 may comprise software modules or programs,
hardware, or both. According to another embodiment, the
cryptographic handling module 625 may perform data com-

US 8,787,583 B2

15

parisons, data parsing, data splitting, data separating, data
hashing, data encryption or decryption, digital signature veri-
fication or creation, digital certificate generation, storage, or
requests, cryptographic key generation, or the like. Moreover,
a skilled artisan will recognize from the disclosure herein that
the cryptographic handling module 825 may advantageously
comprises a public-key infrastructure, such as Pretty Good
Privacy (PGP), an RSA-based public-key system, or a wide
number of alternative key management systems. In addition,
the cryptographic handling module 625 may perform public-
key encryption, symmetric-key encryption, or both. In addi-
tion to the foregoing, the cryptographic handling module 625
may include one or more computer programs or modules,
hardware, or both, for implementing seamless, transparent,
interoperability functions.

A skilled artisan will also recognize from the disclosure
herein that the cryptographic functionality may include a
wide number or variety of functions generally relating to
cryptographic key management systems.

A robust computational secret sharing (RCSS) scheme is
illustrated in FIG. 7. A party referred to as the dealer 700 has
a secret 701 that the dealer wishes to distribute. To this end,
the dealer 700 may apply sharing mechanism 702 of an RCSS
scheme. The sharing mechanism 702 may result in some
number, n, of shares being generated, as indicated by shares
704, 705, and 706. Collection 703 of all the shares may be a
vector S probabilistically derived from secret 701. Collection
703 of the shares may then be sent across a network or
distributed out of' band, so that each share is stored on its own
data repository (or at different physical or geographical loca-
tions on one or more data repositories). Storing the shares on
logical data repository 720 may have the benefit of increased
security, in that it may be more difficult for an adversary to
obtain access to all of the shares, which may be stored at data
servers 721, 722, and 723, than a proper subset of those
shares. One or more of servers 721, 722, and 723 may be
located at physically different sites, operated under different
administrative control, or protected by heterogeneous hard-
ware and software access controls. Logical data repository
720 may also include a distributed or networked file system.

When a party wishes to recover the secret that was distrib-
uted on logical data repository 720, entity 740 may attempt to
collect the shares. First collected share S*[1] 744 may be the
same as share 704, but it also could differ due to unintentional
modification in transmission or storage (e.g., data corrup-
tion), or intentional modification due to the activities of an
adversarial agent. Similarly, second collected share S*[2] 745
may be the same as share 705, and last share S*[n] 746 may
be the same as share 706, but these shares could also differ for
similar reasons. In addition to the possibility of being a
“wrong” share, one or more shares in collection 743 could
also be the distinguished value “missing”, represented by the
symbol “< 7. This symbol may indicate that the system (e.g.,
entity 740) is unable to find or collect that particular share.
The vector of purported shares S* may then be provided to
recovery algorithm 742 of the RCSS scheme, which may
return either recovered secret S* 741 or the value designated
as invalid 747. The shared secret 701 should equal the recov-
ered secret 741 unless the degree of adversarial activity in
corrupting shares exceeds that which the scheme was
designed to withstand.

The RCSS goal is useful across two major domains: secur-
ing data at rest and securing data in motion. In the former
scenario, a file server, for example, maintains its data on a
variety of remote servers. Even if some subset of those servers
are corrupted (for example, by dishonest administrators) or
unavailable (for example, due to a network outage), data may

20

25

30

35

40

45

50

55

60

65

16

still be both available and private. In the data-in-motion sce-
nario, the sender of a secret message and the receiver of the
message may be connected by a multiplicity of paths, only
some of which may be observed by the adversary. By sending
the shares over these different paths, the sender may securely
transmit the secret S despite the possibility of some paths
being temporarily unavailable or adversarially controlled.
For example, in some embodiments, each share may be trans-
mitted over a different logical communication channel. Sys-
tems and methods for securing data, and in particular systems
and methods for securing data in motion, are described in
more detail in U.S. patent application Ser. No. 10/458,928,
filed Jun. 11, 2003, U.S. patent application Ser. No. 11/258,
839, filed Oct. 25, 2005, and U.S. patent application Ser. No.
11/602,667, filed Nov. 20, 2006. The disclosures of each of
the aforementioned earlier-filed patent applications is hereby
incorporated by reference herein in their entireties.

Although at least one RCSS scheme with short share sizes
has been proposed by Krawczyk, the scientific study of that
scheme reveals that it is not a valid RCSS scheme under weak
assumptions on the encryption scheme, and it is not known to
be a valid scheme for all access structures (e.g., access struc-
tures other than the threshold schemes). For at least these
reasons, FIGS. 8-11 describe other approaches for secret
sharing. These other approaches are sometimes referred to
herein as ESX or HK2.

The mechanism of the ESX or HK2 approach may include
a robust computational secret sharing scheme that may be
constructed from the following five primitives: (1) a random
or pseudo-random number generator, (2) an encryption
scheme; (3) a perfect secret sharing (PSS) scheme; (4) an
information dispersal algorithm (IDA); and (5) a probabilistic
commitment scheme. These five primitives are described in
more detail below.

(1) A random or pseudo-random number generator, Rand.
Such a number generator may take a number k as input and
returns k random or pseudorandom bits. In FIGS. 8-11, the
input k is elided for ease of illustration.

(2) An encryption scheme, which may include a pair of
algorithms, one called Encrypt and the other called Decrypt.
The encryption algorithm Encrypt may take a key K ofa given
length k and an input message M that is referred to as the
plaintext. The Encrypt algorithm may return a string C that is
referred to as the ciphertext. The Encrypt algorithm may
optionally employ random bits, but such random bits are not
expressly shown in the drawings. The decryption algorithm
Decrypt may take a key K of a given length k and an input
message C that is referred to as the ciphertext. The Decrypt
algorithm may return a string M that is referred to as the
plaintext. In some cases, the decryption algorithm may return
adesignated failure value, which may indicate that the cipher-
text C does not correspond to the encryption of any possible
plaintext.

(3) A perfect secret sharing (PSS) scheme, which may
include a pair of algorithms SharePSS and RecoverPSS. The
first of these algorithms, known as the sharing algorithm of
the PSS, may be a probabilistic map that takes as input a string
K, called the secret, and returns a sequence of n strings,
K[1], ..., K[n], referred to as shares. Each K[i] may include
one share or the n shares that have been dealt, or distributed,
by the dealer (the entity carrying out the sharing process). The
number n may be a user-programmable parameter of the
secret sharing scheme, and it may include any suitable posi-
tive number. In some embodiments, the sharing algorithm is
probabilistic in that it employs random or pseudo-random
bits. Such a dependency can be realized by providing the
sharing algorithm random or pseudo-random bits, as pro-

US 8,787,583 B2

17

vided by the Rand algorithm. The second algorithm, known
as the recovery algorithm of the PSS, may take as input a
vector of n strings referred to as the purported shares. Each
purported share is either a string or a distinguished symbol
“<$” which is read as missing. This symbol may be used to
indicate that some particular share is unavailable. The recov-
ery algorithm for the perfect secret sharing scheme may
return a string S, or the recovered secret. Two properties of the
PSS scheme may be assumed. The first property, the privacy
property, ensures that no unauthorized set of users obtains any
useful information about the secret that was shared from their
shares. The second property, the recoverability property,
ensures that an authorized set of parties can always recover
the secret, assuming that the authorized parties contribute
correct shares to the recovery algorithm and that any addi-
tional party contributes either a correct share or the distin-
guished missing (“ ©) value. This PSS scheme may include
the Shamir scheme commonly referred to as “Shamir Secret
Sharing” or the Blakley secret sharing scheme.

(4) An information dispersal algorithm (IDA), which may
include a pair of algorithms Share]DA and RecoverIDA. The
first of these algorithms, known as the sharing algorithm of
the IDA, may include a mechanism that takes as input a string
C, the message to be dispersed, and returns a sequence of n
strings, C[1], . . ., C[n], which are referred to as the chunks of
the data that have resulted from the dispersal. The value of n
may be a user-programmable parameter of the IDA, and it
may be any suitable positive number. The sharing algorithm
of the IDA may be probabilistic or deterministic. In FIGS.
8-11, the possibility of using random bits in the IDA is not
explicitly shown; however, it should be understood that ran-
dom bits may be used in the IDA in other embodiments.

The second algorithm, known as the recovery algorithm of
the IDA, may take as input a vector of n strings, the supplied
chunks. Each supplied chunk may be a string or the distin-
guished symbol “ &7, which is read as missing and is used to
indicate that some particular data chunk is unavailable. The
recovery algorithm for the IDA may return a string S, the
recovered secret. The IDA may be assumed to have a recov-
erability property; thus, an authorized set of parties can
always recover the data from the supplied chunks, assuming
that the authorized parties contribute correct chunks to the
recovery algorithm of the IDA and that any additional party
participating in reconstruction contributes either a correct
chunk or else the distinguished missing (<) value. Unlike
the case for a PSS scheme, there may be no privacy property
associated with the IDA and, in fact, one simple and practical
IDA is to replicate the input C for n times, and to have the
recovery algorithm use the value that occurs most often as the
recovered data. More efficient IDAs are known (for example,
Rabin’s IDA).

(5) A probabilistic commitment scheme, which may
include a pair of algorithms, Ct and VT, called the committal
algorithm and the verification algorithm. The committal algo-
rithm Ct may be a probabilistic algorithm that takes a string M
to commit to and returns a committal value, H (the string that
a player can use to commit to M) and also a decommittal
value, R (the string that a player can use to decommit to the
committal H for M). The committal algorithm may be proba-
bilistic and, as such, can take a final argument, R*, which is
referred to as the algorithm’s coins. These coins may be
earlier generated by a call to a random or pseudo-random
number generator, Rand. The notation “Ct(M; R*)” is some-
times used herein to explicitly indicate the return value of the
committal algorithm Ct on input M with random coins -R*.
The verification algorithm, V{, may be a deterministic algo-
rithm that takes three input strings: a committal value H, a

20

25

30

35

40

45

50

55

60

65

18

string M, and a decommittal value R. This algorithm may
return a bit 0 or 1, with 0 indicating that the decommittal is
invalid (unconvincing) and 1 indicating that the decommittal
is valid (convincing).

In general, a commitment scheme may satisfy two proper-
ties: a hiding property and a binding property. The hiding
property entails that, given a randomly determined committal
H for an adversarially chosen message M, or M, the adver-
sary is unable to determine which message H the committal
corresponds to. The binding property entails that an adver-
sary, having committed to a message M,, by way of a com-
mittal H, and corresponding decommital R,,, is unable to find
any message M, distinct from M, and any decommital R,
such that V(H,, M, R,)=1. In most cases, the decommittal
value R produced by a commitment scheme Ct(M; R*) is
precisely the random coins R* provided to the algorithm (i.e.,
R=R*). However, this property is not required in all cases.
The most natural probabilistic commitment schemes may be
obtained by way of suitable cryptographic hash functions,
such as SHA-1. There are a variety of natural techniques to
process the value being committed to, M, and the coins, R*,
before applying the cryptographic hash functions. Any com-
mitment scheme containing a commitment mechanism Ct
and verification algorithm Vf may yield a commitment
mechanism Commit and verification mechanism Verify that
applies to vectors of strings instead of individual strings. The
commitment algorithm Commit may apply the Ct algorithm
component-wise, and the verification algorithm Verify may
apply the VT algorithm component-wise. For Ct, separate
random coins may be used for each component string in some
embodiments.

FIG. 8 shows a simplified block diagram of the sharing
mechanism of the RCSS scheme in accordance with one
embodiment of the invention. Secret, S, 800 may include the
secret that the dealer wishes to distribute or share. Secret 800
may be a file in a file system, a message arising in a commu-
nications protocol, or any other piece of sensitive data. Secret
800 may be represented as any suitable encoded string (e.g.,
a binary-encoded or ASCII string). In actual implementa-
tions, however, binary strings may be used as secret 800 for
ease of implementation. Secret S may be first encrypted using
the encryption algorithm 803 of a shared-key encryption
scheme to obtain a ciphertext C 804. The key K 802 for
performing this encryption may be obtained using the output
of random or pseudo-random number generator 801 so as to
produce the appropriate number of random or pseudo-ran-
dom bits for key 802.

Key 802 may be used for only one sharing, and can there-
fore be referred to as a one-time key. In addition to being used
to encrypt secret 800, key 802 may also be shared or distrib-
uted using perfect secret sharing (PSS) scheme 806. PSS
scheme 806 may include any perfect secret sharing scheme,
including the Shamir or Blakley secret sharing schemes. Per-
fect secret sharing scheme 806 may be randomized, requiring
its own source of random (or pseudo-random) bits. The ran-
dom or pseudo-random-bits may be provided by a separate
random or pseudo-random number generator, such as number
generator 805. PSS scheme 806 may output a vector of key
shares K=K[1], . . ., K[n] 808 which, conceptually, may be
sent out to the different “players,” one share per player. First,
though, the key shares may be combined with additional
information in some embodiments. Ciphertext C 804 may be
split up into chunks 809 using information dispersal algo-
rithm (IDA) 807, such as Rabin’s IDA mechanism. IDA 807
may output a vector of ciphertext chunks C[1], .. ., C[n] 809.
Then, commit mechanism 812 of a probabilistic commitment
scheme may be employed. A sufficient number of random bits

US 8,787,583 B2

19

are generated for the commitment process using random or
pseudo-random number generator 810, and the resulting ran-
dom string 811 is used for all committals at commit mecha-
nism 812. Commit mechanism 812 may determine a commit-
tal value H[i] and a decommital value R[i], collectively shown
in vector 813, for each message M[1]=K[i]C[i] (spread across
808 and 809). The i” share (which is not explicitly repre-
sented in FIG. 8) may encode K[i] 808, CJ[i] 809, R[i], and
H[1],...,H|[n] 813. Each party i may receive in its share the
committal H[j] for each K[j], C[j] (forjin 1. .. n) and not
simply the committal for its own share.

FIG. 9 shows the illustrative commitment process of com-
mit mechanism 812 (FIG. 8) in more detail. The Commit
process entails n different calls to the lower-level Ct mecha-
nism of the commitment scheme. Randomness is generated
by random or pseudo-random number generator 900 and the
resulting random or pseudo-random string R* is partitioned
into n segments, R¥[1]R*[2], ..., R* [n] 901. The i* portion
of the randomness (one of portions 921, 922, or 923 wheniis
1, 2, or n) is used to commit to the i message that is being
committed to, M[i]=K[i]C[i] (shown as messages 910, 911,
912) using commitment algorithms Ct 931, 932, and 933 of a
commitment scheme. Committal and decommittal pairs 941,
942, and 943 may be output by the Ct algorithm. It is likely
that each R[] is simply R*[i], but this is not strictly required
or assumed.

The algorithm labeled “Share” in Table 1, below, further
explains the sharing scheme depicted in FIGS. 8 and 9. This
algorithm takes as input a string S, the secret that is to be
shared. At line 10, a sufficient number of random coin tosses
are generated to provide an encryption key K for a symmetric
encryption scheme consisting of algorithms Encrypt and
Decrypt. At line 11, the sensitive string S that is to be shared
is encrypted using key K so as to create a ciphertext C. The
encryption may be randomized, but it need not be for the
mechanism to function correctly. Next, at line 12, the sharing
algorithm of a perfect secret sharing scheme (such as
Shamir’s scheme) may be invoked. The sharing algorithm is
probabilistic, although this is not explicitly indicated in the
code. The sharing results in a vector of key shares, K=
K[1]...K[n]. At line 13, the ciphertext C may be splitinto a
collection of chunks tram which an authorized subcollection
of chunks will be adequate to recover the secret. This may be
performed using the sharing algorithm of an IDA (e.g., IDA
807 of FIG. 8). Any valid IDA may be used, such as Rabin’s
mechanism, replication, or any ad hoc scheme with the IDA
property earlier described. Lines 15 and 16 comprise a proba-
bilistic committal of the message KC[i]=K[i]C[i], with the
needed coins being generated at line 15 and the committal
HJi] and decommittal R[i] being computed using these coins.
Line 17 computes the resultant share (sometimes referred to
as “fragment” herein) S[i] from the values already computed.
The share in the subject RCSS scheme is S[i]=R[i]K[i] C[i]
H[1] ... H]|n]. The shares may then be returned to the caller,
to be stored at different sites or transmitted over a variety of
channels, according to the caller’s intent.

The recovery algorithm of the RCSS scheme is also shown
in Table 1, below. This time, the caller provides an entire
vector of purported shares, S S[1] . . . S[n]. Each purported
share S[i] may be a string or the distinguished symbol «“ &,
which again stands for a missing share. It may also be
assumed, in some embodiments, that the caller provides the
identity of a share j, where j is between 1 and n inclusive,
which is known to be valid. At lines 20-21, each S[i] may be
parsed into its component strings R[i] C[i],and H[1] . .. H[n].
Ttis understood that the missing symbol, “{ ”, may parse into
components all of which are themselves the missing symbol

20

25

30

35

40

45

50

55

60

65

20

<. At line 23, the verification algorithm of the commitment
scheme may be executed to determine if message KC[i]=R
[1]C[1] appears to be valid. The “known valid” share j may
then be used as the “reference value” for each commitment
Whenever a K[i] C[i] value appears to be invalid, it may be
replaced by the missing symbol. The vector of K[i] values that
have been so revised may now be supplied the recovery algo-
rithm of the secret sharing scheme at line 25, while the vector
of revised C[i] values may be supplied to the recovery algo-
rithm of the IDA at line 26. At this point, one needs only to
decrypt the ciphertext C recovered from the IDA under the
key K recovered from the PSS scheme to get the value S that
is recovered by the RCSS scheme itself.

TABLE 1

Share and Recover mechanisms of the RCSS scheme.

Algorithm Share (S)

10 K < Rand(k)

11 C < Encryptg(S)

12 K < Share”S(K)

13 C < Share?4(C)

14 fori<-1tondo

15 R* [i] <= Rand (k")

16 (HIi], R[i]) < Ct (K[IC[i]; R¥[il)
17 S[i] < R[]K[i] C[i] H[I] . .. H[n]
18 return S

Algorithm Recover (S, j)

20 fori<-1tondo

21 R[iJK[i] C[i] H,[1] . . . Hy[n] < S[i]
22 fori<-1tondo

23 if S[i] = ¢ and VI (Hi], K[i]C[i], R[i])
24 then K[i] < ¢, C[i] < ¢

25 K < Recover™5(K)

26 C < Recover®4(C)

27 S < Decryptz(C)

28 return S

As indicated above, the Recover algorithm of Table 1
assumes that the user supplies the location of a known-valid
share. In the absence of'this, other means may be employed to
determine a consensus value for H[i]. The most natural pos-
sibility used in some embodiments is the majority vote. For
example, in lieu of H [i] at line 23 a value of H[i] may be used
that occurs most frequently among the recovered H [i] values,
for j ranging from 1 to n.

Returning briefly to FIG. 8, the portion of the figure that is
labeled 801 through 807 may be implemented or regarded as
a single process including a computational secret sharing
(CSS) of S to obtain the vector of shares KC=(K(C[1], . . .,
KCJ[n]) where KC[I]=K[i] C[i], with a probabilistic commit-
tal applied to the resulting vector of shares. FIG. 10 shows a
scheme described from this alternative embodiment. In this
embodiment, the following three primitives are employed,
rather than the earlier five primitives defined in connection
with FIGS. 8 and 9: (1) a random or pseudo-random number
generator, Rand; (2) a computational secret sharing (CSS)
scheme; and (3) a probabilistic commitment scheme.

The random or pseudo-random number generator, Rand,
may be defined as before. The computational secret sharing
scheme may include a pair of algorithms Share“*® and
Recover“®. The first of these algorithms, know as the sharing
algorithm of the CSS, may be a probabilistic map that takes as
input a string K, called the secret, and returns a sequence ofn
strings, K[1], .. ., K[n], referred to as shares. Each K[i] may
include one share or the n shares that have been dealt, or
distributed, by the dealer (the entity carrying out the sharing
process). The number n may be a parameter of the secret
sharing scheme, and it may be an arbitrary positive number.
The sharing algorithm may be probabilistic in that it may

US 8,787,583 B2

21

employ random or pseudorandom bits. Such a dependency
may be realized by providing the sharing algorithm random or
pseudorandom bits, as provided by the random or pseudo-
random number generator, Rand.

The second algorithm, knows as the recovery algorithm of
the CSS, takes as input a vector of n strings, referred to as the
purported shares. Each purported share is either a string or a
distinguished symbol “ <>, which is read as missing and is
used to indicate that some particular share is unavailable or
unknown. The recovery algorithm for the computational
secret sharing scheme may return a string S, the recovered
secret. Since the pair of algorithms make up a computational
secret sharing scheme, two properties may be assumed. The
first property, the privacy property, may ensure that no unau-
thorized set of users obtains any significant (computationally
extractable) information about the secret that was shared from
their shares. The second property, the recoverability property,
ensures that an authorized set of parties can always recover
the secret, assuming that the authorized parties contribute
correct shares to the recovery algorithm and that any addi-
tional party contributes either a correct share or else the
distinguished missing (“ <) value.

The third primitive in this embodiment is a probabilistic
commitment scheme, which may be implemented as
described above in connection with FIGS. 8 and 9.

Referring to FIG. 10, secret string S 1000 may be shared, or
distributed, using Share algorithm of a (probabilistic) com-
putational secret sharing scheme. This may result in n shares,
K(C[1],...,KC[n] 1002. A probabilistic commitment scheme
1005 may then be employed to obtain vector 1006 of com-
mittals and decommittals. The probabilistic committal may
employ coin tosses 1004 generated by some random or
pseudo-random number generator 1003. Share 1 of the RCSS
scheme, S[1], may include the share KC[1] from the CSS
scheme 1002 together with the decommittal R[1] from the
commitment scheme 1006 together with the vector of com-
mittals H[1] . . . H[n] from the commitment scheme 1006.
Share 2 of the RCSS scheme, S[2], may include the share
KCJ[2] from the CSS scheme 1002 together with the decom-
mittal R[2] from the commitment scheme 1006 together with
the vector of committals H[1] . . . H(n) from the commitment
scheme 1006. This process may continue, with share n of the
RCSS scheme, S[n], including the share KC|[n] from the CSS
scheme 1002 together with the decommittal R[n] from the
commitment scheme 1006 together with the vector of com-
mittals H[1] . . . H[n] from the commitment scheme 1006.

FIG. 11 illustrates the recovery process of the RCSS
scheme just described. Recover algorithm 1130 is provided a
vector of purported shares, which are sometimes called frag-
ments herein, to distinguish these shares from the shares of
the CSS scheme. The i fragment received by Recover algo-
rithm 1130 gets parsed to form a string KC[i], a decommittal
value R[i], and a vector of committals H=H,(1) . . . H,[n].
From the collection of vectors of committals H, (i) . . . H, (i),
Recover algorithm 1130 must determine a consensus com-
mittal H[1]. For the setting in which Recover algorithm 1130
is provided an index j for a player whose share is known to be
valid, the consensus value H[i] may be selected to be H][i].
For the case where no such share is known to be authentic, the
consensus value may be selected as a most frequently occur-
ring string value among H,[1], . . ., H, [i]. FIG. 11 depicts the
shares KC[1] 1100, KC[2] 1110, and KC[n] 1120 parsed out
of the 1%, 2" and n” fragments provided to the RCSS
Recover algorithm, respectively. The example shown in FIG.
11 likewise depicts the decommital values R[1] 1102, R[2]
1112, and R[n] 1122 the RCSS Recover algorithm, respec-
tively. FIG. 11 also depicts the consensus committal values

—

5

20

25

30

35

40

45

50

55

60

65

22

H[1] 1101, H[2] 1111, and H[n] 1121, determined in the
manner described above. Focusing on the processing of the
first fragment, verification algorithm V{1104 of the probabi-
listic commitment scheme is called on the committal H[1],
the message KC[1], and the decommital R[1]. The algorithm
may return a bit, with, for example, 0 indicating that the
message KC[1] should not be accepted as having been
decommitted, and 1 indicating that it should. Accordingly, a
demultiplexer 1106 is fed the decision bit of the verification
algorithm, with, for example, a 0 indicating that the recovered
value should be regarded as missing (“<¢) 1105 and a 1
indicating that the recovered value should be regarded as
KCJ[1] itself 1100. The output A is the first input supplied to
the Recover algorithm 1130 of a CSS scheme. Continuing in
this manner, fragment 2 is processed (shown at 1110-1116 in
the example of FIG. 11) and each additional fragment is
processed, until the n” is processed (shown at 1120-1126 in
the example of FIG. 11). The collection of shares are then
provided to Recover algorithm 1130 of the CSS scheme so as
to recover the secret. That recovered value may be the value
output by the RCSS scheme itself.

Those skilled in the art will realize that a great number of
variants are possible. For example, an error correcting code
may be used in some embodiments to provide an adequate
collection of committals H[1] . . . H[n] for each player, effec-
tively replacing the simple but somewhat inefficient replica-
tion code of the prior embodiment.

Although some common applications are described above,
it should be clearly understood that the present invention may
be integrated with any network application in order to
increase security, fault-tolerance, anonymity, or any suitable
combination of the foregoing.

Additionally, other combinations, additions, substitutions
and modifications will be apparent to the skilled artisan in
view of the disclosure herein. Accordingly, the present inven-
tion is not intended to be limited by the reaction of the pre-
ferred embodiments but is to be defined by a reference to the
appended claims.

What is claimed is:

1. A method for securing data by generating a collection of
fragments from the data, the method comprising:

applying by a hardware processor a sharing mechanism of

a computational secret sharing scheme to the data to
produce a collection of shares;

generating a random or pseudo-random value;

computing a set of committal values and a set of decom-

mittal values from the random or pseudo-random value
and the collection of shares;

producing each fragment in the collection of fragments by

combining a share, a decommittal value, and at least two
committal values of the set of committal values; and
storing each fragment on at least one data repository.

2. The method of claim 1 where in producing each frag-
ment in the collection of fragments comprises combining a
share, a decommittal value, and the entire set of committal
values.

3. The method of claim 1 wherein storing each fragment on
at least one data repository comprises storing each fragment
at different geographic locations.

4. The method of claim 1 wherein storing each fragment on
at least one data repository comprises storing each fragment
at different physical locations on the at least one data reposi-
tory.

5. The method of claim 1 wherein the at least one data
repository comprises a distributed file system.

US 8,787,583 B2

23

6. The method of claim 1 wherein the computational secret
sharing scheme is selected from the group consisting of the
Shamir, Blakley, and Krawczyk secret sharing schemes.

7. The method of claim 1 wherein computing a set of
committal values and a set of decommittal values comprises
employing a probabilistic commitment scheme.

8. The method of claim 1 further comprising transmitting
the produced fragments over a plurality of communication
channels.

9. The method of claim 8 wherein transmitting the pro-
duced fragments over a plurality of communication channels
comprises transmitting each produced fragment over a difter-
ent communication channel.

10. A method for securing data, the method comprising:

applying by a hardware processor a sharing mechanism of

a computational secret sharing scheme to the data to
produce a collection of shares;

using a probabilistic commitment scheme to compute a set

of committal values and a set of decommittal values
from the collection of shares;

producing a plurality of fragments, wherein each fragment

comprises a share of the collection of shares, a decom-

mittal value of the set of decommittal values, and at least

two committal values of the set of committal values; and
storing each fragment on at least one data repository.

11. The method of claim 10 wherein storing each fragment
on at least one data repository comprises storing each frag-
ment at different geographic locations.

12. The method of claim 10 wherein storing each fragment
on at least one data repository comprises storing each frag-
ment at different physical locations on the at least one data
repository.

13. The method of claim 10 wherein the at least one data
repository comprises a distributed file system.

20

25

30

24

14. The method of claim 10 wherein the computational
secret sharing scheme is selected from the group consisting of
the Shamir, Blakley, and Krawczyk secret sharing schemes.

15. The method of claim 10 further comprising transmit-
ting the produced fragments over a plurality of communica-
tion channels.

16. The method of claim 15 wherein transmitting the pro-
duced fragments over a plurality of communication channels
comprises transmitting each produced fragment over a differ-
ent communication channel.

17. A method for securing data comprising;

generating a cryptographic key;

encrypting by a hardware processor the data with the cryp-

tographic key to create a ciphertext;

producing a collection of key shares by applying a secret

sharing scheme to the cryptographic key;
producing a collection of ciphertext chunks by applying an
information dispersal algorithm to the ciphertext;

computing n committal values and a set of decommittal
values by applying a probabilistic commitment scheme
to each of the key shares and ciphertext chunks, where n
is an integer equal to or greater than two;

producing a collection of data fragments, wherein each

data fragment is a function of a key share, a ciphertext
chunk, a decommittal value, and at least two committal
values of the n committal values; and

storing the data fragments on different logical storage

devices, whereby the data is recoverable from a pre-
defined number of the data fragments.

18. The method of claim 17 wherein storing the data frag-
ments on different logical storage devices comprises storing
the data fragments on different logical storage devices.

19. The method of claim 17 further comprising transmit-
ting the data fragments over communication channels before
storing the data fragments.

#* #* #* #* #*

