

**(12) PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 199723515 B2
(10) Patent No. 728337

(54) Title
High-molecular-weight ethylene-propylene reactor blend with a broad molecular weight distribution

(51)⁷ International Patent Classification(s)
C08L 023/10 **C08F 210/06**

(21) Application No: 199723515 (22) Application Date: 1997.05.20

(30) Priority Data

(31) Number 19621022 (32) Date 1996.05.24 (33) Country DE

(43) Publication Date : 1997.11.27

(43) Publication Journal Date : 1997.11.27

(44) Accepted Journal Date : 2001.01.04

(71) **Applicant(s)**
Hoechst Aktiengesellschaft

(72) Inventor(s)
Volker Dolle; Thomas Bohm

(74) Agent/Attorney
DAVIES COLLISON CAVE, GPO Box 3876, SYDNEY NSW 2001

(56) Related Art
EP 339804

Abstract

High-molecular-weight ethylene-propylene reactor blend with a broad molecular weight distribution

The invention relates to a high-molecular-weight reactor blend comprising polypropylene and an ethylene-propylene copolymer and having an ethylene content in the range from 0.1 to 2% by weight, which has a melt flow index MFR (230/5) of \leq 5 dg/min and a molecular weight distribution M_w/M_n in the range from 6 to 20.

AUSTRALIA

Patents Act 1990

**ORIGINAL
COMPLETE SPECIFICATION
STANDARD PATENT**

Applicant(s): Hoechst Aktiengesellschaft

D-65926 Frankfurt Am Main
GERMANY

Address for Service: DAVIES COLLISON CAVE
Patent & Trade Mark Attorneys
Level 10, 10 Barrack Street
SYDNEY NSW 2000

Invention Title: High-molecular-weight ethylene-propylene reactor blend with a broad molecular weight distribution

The following statement is a full description of this invention, including the best method of performing it known to me:-

Description

5 High-molecular-weight ethylene-propylene reactor blend with a broad molecular weight distribution

The present invention relates to a high-molecular-weight reactor blend comprising ethylene and propylene units and having an ethylene content in 10 the range from 0.1 to 2% by weight.

The invention also relates to a process for preparing these polymers and for producing moldings, such as pipes, fittings, hollow articles, bars and sheets, from the abovementioned polymers.

15 DE-A-40 19 053 discloses homopolymers with a broad molecular weight distribution. These homopolymers can be converted into with great difficulty, but these pipes have the disadvantage of high brittleness and a rough surface, and therefore have no industrial use.

20 EP-A-573 862 discloses a process for preparing polypropylene with a molecular weight distribution M_w/M_n of > 20 and good processing characteristics. Its melt flow index is 2 dg/min; and its intrinsic viscosity is 280 ml/g. This polypropylene is prepared in a gas-phase polymerization.

25 Examples 1 to 4 of EP-A-573 862 describe the preparation of a homo-PP powder with a broad molecular weight distribution. Although the polydispersity M_w/M_n is not given in any of the examples, the intrinsic viscosities (800 ml/g and 67 ml/g) suggest a very large molecular weight spread in the first and second steps.

30 The processes known from the prior art (EP-A-573 862) were repeated in order to check the properties of the materials. It was found that all the polymers had high brittleness and modest processing quality, and showed

inhomogeneity. The production of PP pipes by a conventional extrusion process was on occasions impossible, because the melt viscosity was insufficient for extrusion.

5 It was an object of the present invention to find an improved molding composition with which pipes could be produced on conventional production equipment, and which, besides low brittleness and a smooth surface, possesses high toughness and excellent rigidity and creep performance.

10

This object was achieved by means of a reactor blend of the type described at the outset, the distinguishing features of which are that it has a melt flow index MFR (230/5) of ≤ 5 dg/ min and a molecular weight distribution M_w/M_n in the range from 6 to 20.

15

It was found, surprisingly, that the novel propylene-ethylene copolymer can be processed on conventional production machinery to give pipes which have smooth finished surfaces, good processing quality, and high strength together with good hardness and creep performance.

20

The invention also relates to a process for preparing the propylene-ethylene reactor blend by copolymerization of propylene and ethylene in a first step, and polymerization of propylene or, if desired, copolymerization with another 1-olefin having from 4 to 20 carbon atoms, in suspension and 25 at a temperature in the range from 30 to 150°C, and a pressure of from 10 to 100 bar, and a reaction time of from 30 min to 6 h, in the presence of a commercially-available catalyst (e.g. catalyst FT4S of Montell, Milan, Italy), of an organoaluminum compound (B) and, if desired, of an organosilicon compound (C), in a second step. The distinguishing features of the process 30 are that in the first step the suspension medium is also the monomer, and in this step a copolymer is prepared which has a viscosity of from 500 to 1400 ml/g and forms a proportion of from 20 to 80% of the entire polymer,

and that after the second reaction step, the entire polymer has a viscosity of from 200 to 400 ml/g and a polydispersity M_w/M_n of from 6 to 20.

In the first reaction step, a high-molecular-weight ethylene-propylene

5 copolymer is prepared which has a viscosity of from 500 to 1400 ml/g and which forms a proportion of the entire polymer of from 20 to 80% by weight, preferably from 45 to 75% by weight, and particularly preferably from 48 to 65% by weight, whereas in the second reaction step a low-molecular-weight product is prepared which has a viscosity of from 200 to
10 400 ml/g and forms a proportion of the entire polymer of from 80 to 20% by weight, preferably from 55 to 25% by weight, particularly preferably from 52 to 35% by weight.

The polymerization is carried out in a bulk process in two reaction steps,

15 where the propylene monomer is simultaneously starting material and suspension medium.

The novel process is carried out in a particular embodiment as two-step

polymerization preceded by prepolymerization. Both the first and the
20 second reaction step, and the prepolymerization, may be carried out either as a discontinuous or a continuous operation, continuous operation being preferred. Before the prepolymerization, component B and component C are mixed with one another and then brought into contact with the catalyst. In the presence of these active components, propylene is prepolymerized
25 in suspension or in bulk. The prepolymerization in the liquid monomer is preferred. The reaction time is from 4 to 10 min, the prepolymerization temperature is in the range from 10 to 25°C.

The prepolymer is then transferred to the first reaction step of the

30 polymerization, and polymerized in liquid propylene at a temperature of from 55 to 100°C, with a reaction time of 0.5 to 3.5 h. A phase ratio is set of from 2.5 to 4 l of liquid propylene per kg of PP, preferably of 3.3 l of

liquid propylene per kg of PP. In the first reaction step, ethylene is metered in continuously at a rate which maintains a C₂ concentration in the liquid phase of from 0.1 to 2% by weight, preferably from 0.1 to 1.5% by weight. To regulate the molecular weight, hydrogen is metered in.

5

After the first reaction step, the multiphase system is transferred to the second reaction step and polymerized there at a temperature of from 55 to 100°C. The second reaction step takes place in a second reactor, in which a phase ratio of from 1 to 2.5 l of liquid propylene per kg of PP, preferably of 1.9 l of liquid propylene per kg of PP, is set. According to the invention, it is preferable, in the described process, to set different phase ratios in the two reactors. In the second step, no ethylene is metered in. For molecular weight regulation, hydrogen is metered in also in the second step.

10

15 The temperatures and the hydrogen concentrations in the two reactors may be the same or different. The ethylene concentration is different in the two reactors. Suitable reactors are stirred reactors and loop reactors.

20

It is possible to evaporate the monomer between the two reactors and to meter in the still polymerizationally-active catalyst/PP system into the second reactor. This also makes it possible to set a lower hydrogen concentration in the second reactor than in the first.

25

Component B is trimethylaluminum, triisobutylaluminum or triethylaluminum, triethylaluminum and triisobutylaluminum being preferred, and triethylaluminum being particularly preferred.

30

Component C is cyclohexylmethyldimethoxysilane, biscyclopentyl-dimethoxysilane or diphenyldimethoxysilane, cyclohexylmethyl-dimethoxysilane and biscyclopentylmethoxysilane being preferred.

Component B is employed in a concentration of from 0.001 to 10 mmol/l,

preferably from 0.1 to 5 mmol/l. Component C is employed in a ratio R to component B. This ratio is calculated as the quotient obtained by dividing the concentration of B by the concentration of C, each in mol /l. The ratio R is from 1 to 200, preferably from 2 to 100, and particularly preferably from

5 2.5 to 75.

According to the invention, preference is given to products with an MFR (230/5) of from 0.01 to 5 dg/min, those with an MFR (230/5) of from 0.02 to 2 dg/min being particularly preferred. The novel reactor blend consists of
10 from 0.5 to 2% by weight of ethylene units and from 99.5 to 98% by weight of propylene units.

After the second reaction step, the mixture of propylene, hydrogen, and ethylene if present, is worked up. Fast evaporation of the liquid monomer in one step is preferable. The purified copolymer is then dried in an inert gas stream, and it is ensured that the copolymer is free from monomer. The resultant high-molecular-weight copolymer is mixed with stabilizers, lubricants, fillers, pigments etc., and granulated using an extruder or compounder.

20

The evaporated monomer mixture is condensed and separated by distillation into propylene, ethylene if present, and hydrogen. The distillation should be arranged so that a hydrogen concentration of < 150 ppm, particularly preferably < 40 ppm, is ensured. The monomer purified in this way is then metered back into the first reactor.

The following Examples illustrate the invention. The following polymer analysis methods were used to characterize the products which were prepared:

30

Melt flow index MFR (230/5)

according to DIN 53735

Viscosity number [ml/g]

determined at 135°C in decalin

Creep	according to DIN 53759
Impact strength	according to DIN 8078
Ratio M_w/M_n	by gel permeation chromatography in orthodichlorobenzene at 135°C on a Waters 150C chromatograph.
5	

Example 1

Continuous polymerization is carried out in two 16 l reaction vessels arranged in series. Both reactors are provided with 10 l of liquid propylene. Cocatalyst B is triethylaluminum in 1 mmol/l concentration; the stereoregulator C is cyclohexylmethyldimethoxysilane in 0.1 mmol/l concentration. The hydrogen concentration in the liquid phase is set at 40 ppm by volume.

15 In the first reactor, a mixture of propylene and ethylene is polymerized at 70°C in the presence of the Montell FT4S catalyst. Catalyst, cocatalyst, ethylene, propylene and hydrogen are continuously replenished. 3.8 g of ethylene are metered in per kg of propylene. The polymerization is continued as far as a solids content of 224 g of PP per liter of suspension, which gives a phase ratio of 3.3 l of liquid propylene per kg of PP. Hydrogen is replenished at a rate which maintains a concentration of 40 ppm in the liquid phase.

20 The copolymer obtained in the first reactor is transferred together with the catalyst into the second reactor, into which hydrogen and propylene are then metered. The hydrogen concentration in the liquid phase is 420 ppm by volume. The reaction temperature in the second reactor, as in the first, is 70°C. The polymerization is continued as far as a solids content of 324 g of PP per liter of suspension, giving a phase ratio of 1.9 l of liquid propylene per kg of PP.

The catalyst yield, calculated after isolating the polymer from the second reactor as powder, is 16 kg of PP/g of catalyst. Measurements showed a molecular weight distribution M_w/M_n of 9.0, an MFR of 0.8 dg/min and a viscosity number of 570 ml/g. IR spectroscopic measurements showed 5 0.5% by weight of C₂ units. The proportion which is soluble in cold xylene is measured as 3.3% by weight.

Comparative Example 1

The procedure was as in Example 1, but the phase ratio was set to the 10 same value in reactor 1 and reactor 2, and the same hydrogen concentration was set in both reactors. Ethylene was not metered in to either reactor. An M_w/M_n value of 4.0 was determined.

Example 2

15 The powder obtained from Example 1 was granulated under inert gas in a twin-screw extruder with a screw diameter of 53 mm at about 240°C, 0.15% of [®]Irganox 1010 and 0.15% of [®]Hostanox PAR 24 being added as stabilizers. A colorant mixture was also added. The M_w/M_n value determined for the resultant granules was 8.0.

20

Example 3

25 The granules from Example 2 were converted on a pipe extrusion unit with a 60mm grooved-barrel extruder and a vacuum spray tank, giving pipes of dimensions 32 x 4.5 mm (internal diameter = 32 mm, wall thickness = 4.5 mm). The throughput rate was 150 kg/h, and the melt temperature was set at 210°C.

30 It was established that the processing ran without difficulty and that both the internal and external pipe surfaces were very smooth. The pipe surface was characterized by comparison with pipes produced from granules with narrow molecular weight distribution (see Comparative Example 1, M_w/M_n

= 4) using the same pipe extrusion unit under the same conditions. Pipes produced from the granules of Example 2 satisfied the requirements of DIN 8078 (General Quality Requirements and Testing) with respect to the flexural impact test and the creep rupture strength test.

5

	Test temperature	Test stress	Minimum time-to-failure according to DIN 8078	Measured time-to-failure
	95°C	3.5 N/mm ²	> 1000 h	> 1200 h
10	120°C	3.0 N/mm ²	> 200 h	> 250 h

The creep rupture strength tests were carried out according to DIN 8078 (95°C, σ 3.5 N/mm²) and with reference to DIN 8078 (120°C, σ 3.0 N/mm²). The pipes produced from the granules of Example 2

15 exceeded the required minimum times-to-failure of DIN 8078, as can be seen from the values given above, and had surfaces of excellent quality. The pipes produced for comparison using granules from Comparative Example 1 failed in the creep rupture strength test.

20 Example 4

Propylene is polymerized to PP in a pilot polymerization plant. The catalyst (FT4S from Montell), triethylaluminum and cyclohexylmethyldimethoxysilane are mixed with one another, and prepolymerization is carried out continuously in liquid propylene in the prepolymerization reactor. The

25 mixture of catalyst, triethylaluminum, cyclohexylmethyldimethoxysilane, propylene and polypropylene is metered into the first reactor. Propylene is additionally added to the first reactor via a storage vessel. Hydrogen and ethylene are dissolved in the liquid propylene and are metered into the reactor via this stream. A concentration of 40 ppm of hydrogen in the liquid

30 propylene is set. 17 metric tons per hour of propylene are supplied in the first reactor, and 1.8 kg of ethylene per metric ton of propylene is metered in. In the reactor, propylene is converted to PP in the presence of the FT4S

catalyst. The reaction mixture is continuously removed from the first reactor and metered into the second reactor. A further 7 metric tons per hour of propylene are metered into the second reactor. In this propylene stream, a hydrogen concentration of 420 ppm is set. No ethylene is

5 metered into the second reactor. After passing through the second reactor, the reaction mixture is worked up in a flash-distillation vessel, by reducing the pressure to 18 bar, and the PP is separated from the gaseous components. The gaseous propylene is condensed, distilled and then conducted back to the storage tank. 0.9 mmol of Al, 0.18 mmol of donor

10 and 5 mmol of catalyst (measured as mmol of Ti) are metered in per liter of liquid propylene metered into the first reactor.

In the first reactor, a phase ratio of 3.3 l of liquid propylene per kg of PP is set; in the second reactor, this ratio is set at 1.9 l of liquid propylene per kg of PP. The amounts of heat extracted from the reactors were in the ratio 1.4 : 1 (1st reactor:2nd reactor). The resultant PP product has a polydispersity M_w/M_n of 7.0.

Comparative Example 2

20 The procedure of Example 4 was followed, but a phase ratio of 3.3 l of liquid propylene per kg of PP was set in both the first and the second reactors. The amounts of heat extracted from the two reactors were in the ratio of 3.4 : 1 (1st reactor:2nd reactor).

25 The resultant PP product has a polydispersity M_w/M_n of 4.8. The PP powder obtained in this manner was granulated as in Example 2, pipes were produced from the granulate as in Example 3 and were subjected to a pipe creep test as in Example 3. The pipes have a very rough surface and do not fulfil the requirements of section 3.5 of DIN 8078.

30 The pipes were subjected to various creep tests corresponding to DIN 53759: the required values were not achieved.

Example 5

The procedure of Example 4 was followed, but dicyclopentylmethoxy-silane was used as stereoregulator at a concentration of 0.036 mmol of dicyclopentylmethoxysilane per l of liquid propylene. 40 ppm of hydrogen were metered into the first reactor. In the gas stream entering the second reactor, a concentration of 3500 molar ppm of hydrogen was set. The catalyst yield achieved was 20 kg pf PP/g of catalyst. The end product had a molecular weight distribution M_w/M_n of 10.5 and an MFR (230/5) of 0.8 dg/min. 1.8 kg of ethylene were metered into the first reactor per tonne of propylene.

Granulation and pipe production were carried out as in Examples 2 and 3. In the pipe test, the requirements of section 3.5 of DIN 8078 were satisfied. The pipes were subjected to various creep performance tests corresponding to DIN 53759: The requirements of DIN 8078 (creep rupture strength and flexural impact test on the pipe) were satisfied.

	Test temperature	Test stress	Minimum time-to-failure	Measured time-to-failure
20			according to DIN 8078	
	95°C	3.5 N/mm ²	> 1000 h	> 2000 h
	120°C	3.0 N/mm ²	> 200 h	> 320 h

The minimum times-to-failure for PP-R pipes required in DIN 8078 were significantly exceeded. The pipes have very good creep rupture strength and extremely smooth surfaces.

Example 6

The procedure of Example 4 was followed, but diphenyldimethoxysilane was used as stereoregulator. An M_w/M_n value of 6.1 was measured for the powder. The DIN creep test was passed and the pipe surface was smooth.

- 10a -

Apart from a correction at page 1, the foregoing description is as originally lodged – and is retained in this form to preserve the fullness of the initial disclosure. The restricted scope of the invention is as defined in the proposed amended claims immediately below.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
997
998
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
18

The Claims defining the invention are as follows:

1. A process for preparing a high-molecular-weight reactor blend comprising polypropylene and an ethylene-propylene copolymer and having an ethylene content in the range from 0.1 to 2% by weight, a melt flow index MFR (230/5) of ≤ 5 dg/min and a molecular weight distribution M_w/M_n in the range from 6 to 20 by copolymerization of propylene and ethylene in a first step, and polymerization of propylene or, if desired, copolymerization with another 1-olefin having from 4 to 20 carbon atoms, in suspension and at a temperature in the range from 30 to 150°C, and a pressure of from 10 to 100 bar, and with a reaction time of from 30 min to 6 h, in the presence of a catalyst, of an organoaluminum compound (B) and of an organosilicon compound (C), in a second step, wherein, in the first step, the suspension medium is also the monomer, and in this step an ethylene-propylene copolymer is prepared which has a viscosity of from 500 to 1400 ml/g and forms a proportion of from 20 to 80% of the entire polymer, and that after the second reaction step, the entire polymer has a viscosity of from 200 to 400 ml/g and a polydispersity M_w/M_n of from 6 to 20 and wherein a prepolymerization is carried out, where component B and component C are mixed with one another before the prepolymerization and are then brought into contact with the catalyst, and where propylene is prepolymerized in the presence of these active components and in suspension, with a reaction time of 4 to 15 min, and at a temperature in the range from 10 to 25°C.
2. A process as claimed in claim 1, which has an MFR (230/5) in the range from 0.02 to 2 dg/min and a molecular weight distribution M_w/M_n in the range from 7 to 18, and which includes from 0.1 to 1.5% by weight of ethylene units.
3. The process as claimed in claim 1, wherein, in the first reaction step, a polypropylene is prepared which forms a proportion by weight of from 45 to 75% by weight of the entire polymer.
4. The process as claimed in claim 1, wherein, in the second reaction step, a low-molecular-weight polypropylene is prepared which has a viscosity of from 200 to 400 ml/g

and forms a proportion of from 55 to 25% by weight of the entire polymer.

5. The process as claimed in claim 1, wherein, in the second reaction step, a low-molecular-weight polypropylene is prepared which has a viscosity of from 200 to 400 ml/g and which forms a proportion of from 52 to 35% by weight of the entire polymer.

6. The process as claimed in any one of claims 1 to 5, wherein, in the first reaction step, the polymerization is carried out in liquid propylene at a temperature of from 55 to 100°C and with a reaction time of from 0.5 to 3.5 h.

10

7. The process as claimed in any one of claims 1 to 6, wherein, in the first reaction step, a phase ratio in the range from 2.5 to 4 l of liquid propylene per kg of PP is set.

15

8. The process as claimed in any one of claims 1 to 7, wherein, in the first reaction step, an ethylene concentration in the liquid phase of from 0.1 to 2% by weight is set.

20

9. The process as claimed in any one of claims 1 to 8, wherein, in the second reaction step, the polymerization is carried out at a temperature in the range from 55 to 100°C, where a phase ratio is set of from 1 to 2.5 l of liquid propylene per kg of PP.

25

10. The process as claimed in any one of claims 1 to 9, wherein different phase ratios are set in the first and in the second reaction step.

30

11. The process as claimed in any one of claims 1 to 10, wherein trimethylaluminum, triisobutylaluminum or triethylaluminum is employed as component B.

12. The process as claimed in any one of claims 1 to 11, wherein cyclohexylmethyldimethoxysilane, biscyclopentyldimethoxysilane or diphenyldimethoxysilane is employed as component C.

35

13. The process as claimed in any one of claims 1 to 12, wherein component B is

- 13 -

employed in a concentration of from 0.001 to 10 mmol/l, preferably from 0.1 to 5 mmol/l.

14. The process as claimed in any one of claims 1 to 13, wherein component C is employed in a ratio R to component B which is calculated as the quotient obtained by 5 dividing the concentration of B by the concentration of C, each in mol/l, and which is in the range from 1 to 200.

15. A high molecular weight reactor blend prepared in accordance with any one of the preceding claims.

10

DATED this 26th day of October 2000.

HOECHST AKTIENGESELLSCHAFT

By Its Patent Attorneys

15 DAVIES COLLISON CAVE

