发明名称
一种制备纳米纤维的多喷头封闭式喷气静电纺丝装置

摘要
本发明公开了一种制备纳米纤维的多喷头封闭式喷气静电纺丝装置，该装置主要包括流气泉、气室、导气管、溶液室、喷头、定量供液系统、高压静电发生器和接收装置，所处的溶液室和气室可为圆柱体、三角柱体、长方体或立方体等形状，溶液室通过阀门和导气管与储液池相连接，气室通过阀门和导气管与流气室相连接。本发明的多喷头封闭式喷气静电纺丝装置，溶液处于封闭的体系中，这样减少了溶液中溶剂的挥发，可以保持稳定的溶液浓度；本发明的静电纺丝装置喷头孔径大，通过喷气管的连续通气，气体的流动可避免喷头的堵塞现象出现，该装置不仅具有生产效率高、设备简单等优点，并可实现纳米纤维的连续化、规模化制备。
1. 一种制备纳米纤维的多喷头封闭式喷气静电纺丝装置，包括横流气泵(1)、气室(10)、导气管(7)、溶液室(8)、喷头(6)、定量供给系统、高压静电发生器(2)和接收装置(4)，其特征在于：所述的溶液室(8)和气室(10)为圆柱体，三角柱体，长方体；溶液室(8)通过阀门(12)和导气管(13)与储液池(14)相连接，气室(10)通过阀门(16)和导气管(11)与横流气泵(1)相连接；所述的溶液室(8)通过中间连接体(9)与气室(10)相连接，中间连接体(9)上设置有垂直向上的喷气管(7)，溶液室(8)的上方设置有垂直向上的喷头(6)。

2. 根据权利要求1所述的制备纳米纤维的多喷头封闭式喷气静电纺丝装置，其特征在于：所述的喷头(6)和喷气管(7)至少为一个，每个喷头(6)对应一个喷气管(7)与其通气，喷头(6)和喷气管(7)同一轴心。

3. 根据权利要求2所述的制备纳米纤维的多喷头封闭式喷气静电纺丝装置，其特征在于：所述的喷头(6)的内径为1-50mm，高度为1-200mm，喷头(6)之间的间距为0.1-15cm；喷气管(7)的外径小于喷头(6)的内径，喷气管(7)的内径为喷头(6)内径的0.1-0.8倍，喷气管(7)的高度低于喷头(6)的上端面，高于溶液室(8)的上表面。

4. 根据权利要求1所述的制备纳米纤维的多喷头封闭式喷气静电纺丝装置，其特征在于：所述的定量供给系统包括储液池(14)和与储液池出口相连的加压装置(15)构成，加压装置为气压、液压或机械加压。

5. 根据权利要求1所述的制备纳米纤维的多喷头封闭式喷气静电纺丝装置，其特征在于：所述喷头(6)和接收装置(4)之间的距离调节范围为：0.1~100cm，所述横流气泵(1)的气流流速范围为10~100m/s，所述高压静电发生器(2)的输出电压为1~200kV，所述接收装置(4)为接收板、履带式或滚筒式。
一种制备纳米纤维的多喷头封闭式喷气静电纺丝装置

技术领域
[0001] 本发明属于聚合物纺丝设备领域，涉及一种多喷头喷气静电纺丝装置，具体涉及一种规模化制备纳米纤维的多喷头封闭式喷气静电纺丝装置。

背景技术
[0002] 静电纺丝是制备纳米纤维常用的一种方法，能纺制多种聚合物纳米纤维。纳米纤维及其制品具有比表面积大，孔径尺寸小，透气性好，适用范围广等优点。静电纺纳米纤维因其科学价值和应用领域，得到了国内外各领域研究者的重视。传统的单喷头静电纺丝装置，用注射器推动溶液，通过针头形成纺丝锥体纺丝，在几千伏电压形成的电场作用下，射流被拉伸形成纳米级的纤维。传统的静电纺丝中由于喷头的直径小，只能形成较小的锥体，产率限制在0.1~1.0g/h之间，严重影响了纳米纤维规模化生产的进程，阻碍了纳米纤维应用领域的进一步扩展。从目前的研究来看，提高静电纺丝产量的主要途径是设计多喷头静电纺丝装置，如中国专利CN200910031948.2，CN20072076954.6，CN200610157106.8等，通过增加喷头的数量增加纳米纤维的产率，不过这些装置喷头的内径一般不超过1mm，因此纳米纤维产量并不能显著提高，此外，由于喷头之间的静电斥力作用，形成的纤维网厚度不均匀，并且针头的堵塞现象十分棘手，提高静电纺丝产量的另一个重要途径是设计无喷头静电纺丝装置，主要以滚筒式、振动式、磁场扰动式、气泡式、多孔管、激光式等，如中国专利CN200610117671.1，CN200710036447.4，CN200910056750.X等。无喷头静电纺丝装置是通过各种原理在液纺液表面形成多个纺丝锥体，避免了喷头堵塞问题，但是由于泰勒锥突起的大小和形状很难控制，出现了纳米纤维直径不均匀等新的问题，大部分无喷头静电纺丝装置泰勒锥形成在自由的液面上，易造成溶剂的挥发，导致纺丝液浓度的变化。

发明内容
[0003] 本发明的目的是提供一种多喷头封闭式喷气静电纺丝装置，可实现纳米纤维的规模化制备，并且克服现有较多喷头喷气纺丝装置易堵塞针头、产量低的问题，也避免了目前大部分无喷头静电纺丝装置泰勒锥形状难控制、溶剂易挥发、纤维直径不均匀等问题。
[0004] 本发明的技术方案是提供一种规模化制备纳米纤维的多喷头封闭式喷气静电纺丝装置，该装置主要包括横流气泵、气室10、导气管7、溶液室8、喷头6、定量供液系统、高压静电发生器2和接收装置4。所述的溶液室8和气室10可为圆柱体、三角柱体、长方体或立方体等各种形状，溶液室8通过阀门12和导气管13与储液池14相连，气室10通过阀门16和导气管11与横流气泵1相连接。
[0005] 所述的溶液室8通过中间连接体9与气室10相连接，中间连接体9上设置有垂直向上的喷气管7，溶液室8的上方设置有垂直向上的喷头6。
[0006] 所述的喷头6和喷气管7的数目最少为1个，最大为无数个，每个喷头6对应一个喷气管7，对其通气，喷头6和喷气管7同一轴心，它们的直径和高度可以调节，排列方式可为直线、同心圆或矩阵式等各种方式。
所述的喷头 6 的内径为 1～50mm，高度为 1～200mm，喷头 6 之间的间距为 0.1～15cm；喷气管 7 的外径小于喷头 6 的内径，喷气管 7 的内径为喷头 6 内径的 0.1～0.8 倍，喷气管 7 的高度低于喷头 6 的上端面，高于溶液室 8 的上表面。

所述的定量供给系统包括储液池 14 和与储液池出口相连的加油装置 15 构成。加油装置可采用气压、液压或机械加油等各种加油方式，保证储液池中的液面在恒定压力的作用下，稳定、连续和均匀地向溶液室 14 供给溶液，溶液的液面低于喷头 6 上端面，高于喷气管 7 的上端面。

本发明中接收装置 4 为金属材质，通过导管与高压静电发生器 2 的负极相连，溶液室 8 的上表面和喷头 6 中两者有其一为金属材质，通过导管与高压静电发生器 2 的正极相连，其余部分为绝缘材料。

本发明中喷头 6 和接收装置 4 之间的距离调节范围为 0.1～10cm，所述横流气泵 1 的气流流速范围为 10～100m/s，所述高压静电发生器 2 的输出电压为 1～200kV。所述接收装置 4 可采用接收板、履带式滚筒等混合形式。

工作时，纺丝溶液在加油装置 15 施加的恒定压力作用下从储液池 14 经油管 13 连续输入溶液室 8，溶液的液面低于喷头 6 的上端面，高于溶液室 8 的上表面。横流气泵 1 通过导气管 11 连续输出气体到气室 10，气体经喷气管 7 向上喷出，这样纺丝溶液在喷头 6 的表面形成中空的溶液凸起。打开高压静电发生器 2，调节到一定的电压，溶液室 8 的上表面或喷头 6 中的任何一者通过导管与高压静电发生器 2 的正极相连，而高压静电发生器 2 的负极通过导管与接收装置 4 相连，高压电场形成在喷头 6 和接收装置 4 之间。在高压电场作用下电荷将聚集在中空溶液凸起的顶端，形成形变，磁力在气流压力和静电的作用下中空形变破裂，喷出射出一道射流，经静电拉伸形成纳米纤维在接收装置 4 上。

本发明的有益效果是：本发明的多喷头封闭式喷气静电纺丝装置，溶液处于封闭的体系中，这样减少了溶液中溶剂的挥发，可以保持溶液的溶液浓度；通过控制喷气管中的气体速度和纺丝溶液的送液量，能方便地控制纺丝纤维的大小和形状，有利于形成直径均匀的纳米纤维；与传统静电纺丝相比，本发明的静电纺丝装置喷头孔径大，通过喷气管的连续通气，气体的流动可避免喷头的堵塞现象出现；该装置不仅具有生产率高、设备简单等优点，并可实现纳米纤维的连续化、规模化制备。

附图说明

图 1 为本发明实施例 1 的多喷头封闭式喷气静电纺丝装置；
图 2 为本发明实施例 2 的多喷头封闭式喷气静电纺丝装置；
图 3 为本发明实施例 3 的多喷头封闭式喷气静电纺丝装置；
图 4 为本发明实施例 1、2 和 3 中溶液室、中间体、气室、喷气管和喷头部分的结构示意图；
图 5 为本发明实施例 1、2 和 3 中喷气管和喷头同心圆排列的示意图；
图 6 为本发明实施例 4 的多喷头封闭式喷气静电纺丝装置；
图 7 为本发明实施例 5 的多喷头封闭式喷气静电纺丝装置；
图 8 为本发明实施例 6 的多喷头封闭式喷气静电纺丝装置；
图 9 为本发明实施例 4、5 和 6 中溶液室、中间体、气室、喷气管和喷头部分的结构示意
图 10 为本发明实施例 4、5 和 6 中喷气管和喷头矩阵式排列的示意图；
其中：(1) 横流气泵；(2) 高压静电发生器；(3) 导线；(4) 接收装置；(5) 纳米纤维；
(6) 喷头；(7) 喷气管；(8) 溶液池；(9) 中间连接体；(10) 气室；(11) 导气管；(12) 阀门；
(13) 导液管；(14) 储液池；(15) 加压装置；(16) 阀门。

具体实施方式
[0014] 实施例 1

由图 1、图 4 和图 5 所示，一种规模化制备纳米纤维的多喷头封闭式喷气静电纺丝装置，
包括横流气泵 1、气室 10、导气管 7、溶液室 8、喷头 6、定量供液系统、高压静电发生器 2 和接
收极板 4。
[0015] 溶液室 8 和气室 10 为圆柱体，溶液室 8 通过阀门 12 和导液管 13 与储液池 14 相
连接，气室 10 通过阀门 16 和导气管 11 与横流气泵 1 相连接。溶液室 8 通过中间连接体 9
与气室 10 相连接，中间连接体 9 上设置有垂直向上的喷气管 7，溶液室 8 的上方设置有垂
直向上的喷头 6。喷头 6 和喷气管 7 的数目为 19 个，每个喷头 6 对应一个喷气管 7 对其通
气，喷头 6 和喷气管 7 同一轴心，为同心圆排列。喷头 6 的内径为 10mm，高度为 20mm，喷头
6 之间的间距为 5cm，喷气管 7 的外径小于喷头 6 的内径，喷气管 7 的内径为喷头 6 内径的
0.2 倍，喷气管 7 的高度低于喷头 6 的上端面，高于溶液室 8 的上表面。定量供液系统包括
储液池 14 和与储液池出口相连的气动加压装置 15 构成，使储液池中的液面在恒定压力的
作用下，稳定、连续和均匀地向溶液室中供液，溶液的液面低于喷头 6 上端面，高于喷气管 7
的上端面。接收极板 4 为金属材质，通过导线与高压静电发生器 2 的负极相连。溶液室 8
的上表面为金属材质，通过导线与高压静电发生器 2 的正极相连，其余部分为绝缘材料。喷
头 6 的上端面和接收极板 4 之间的距离调节范围为 0.1~100cm，横流气泵 1 的气流流速范
围为 10~100m/s，高压静电发生器 2 的输出电压为 1~200kV。
[0016] 工作时，纺丝溶液在气动加压装置 15 施加的恒定压力作用下从储液池 14 经导液
管 13 连续输入溶液室 8，溶液的液面低于喷头 6 上端面，高于喷气管 7 的上端面。横流气泵
1 通过导气管 11 连续输出气体到气室 10，气体经喷气管 7 向上喷出，这样纺丝溶液在喷头
6 的表面形成中空的溶液凸起。打开高压静电发生器 2，调节到一定的电压，溶液室 8 的上
表面通过导线与高压静电发生器 2 的正极相连，而高压静电发生器 2 的负极通过导线与接
收极板 4 相连，高压电场形成在喷头 6 和接收极板 4 之间。在高压电场作用下极化电荷将
聚集在中空溶液凸起的顶部，形成气絮，高压电场在气流压力和静电力的作用下中空絮絮向
外，射出多股射流，经静电力的拉伸形成纳米纤维沉积在接收极板 4 上。
[0017] 实施例 2

由图 2、图 4 和图 5 所示，一种规模化制备纳米纤维的多喷头封闭式喷气静电纺丝装置，
包括横流气泵 1、气室 10、导气管 7、溶液室 8、喷头 6、定量供液系统、高压静电发生器 2 和履
带式接收装置 4。
[0018] 溶液室 8 和气室 10 为圆柱体，溶液室 8 通过阀门 12 和导液管 13 与储液池 14 相
连接，气室 10 通过阀门 16 和导气管 11 与横流气泵 1 相连接。溶液室 8 通过中间连接体 9
与气室 10 相连接，中间连接体 9 上设置有垂直向上的喷气管 7，溶液室 8 的上方设置有垂
直向上的喷头 6。喷头 6 和喷气管 7 的数目为 19 个，每个喷头 6 对应一个喷气管 7 对其通气。喷头 6 和喷气管 7 同一轴心，为同心圆排列。喷头 6 的内径为 15mm，高度为 25mm，喷头 6 之间的间距为 8cm，喷气管 7 的外径小于喷头 6 的内径，喷气管 7 的内径为喷头 6 内径的 0.4 倍，喷气管 7 的高度低于喷头 6 的上端面，高于溶液室 8 的上表面。定量供液系统包括储液池 14 和与储液池出口相连的液压加压装置 15 构成，使储液池中的液面在恒定压力的作用下，稳定、连续和均匀地向溶液室中供液，溶液的液面低于喷头 6 上端面，高于喷气管 7 的上端面。履带式接收装置 4 为金属材质，通过导线与高压静电发生器 2 的负极相连，喷头 6 为金属材质，通过导线与高压静电发生器 2 的正极相连，其余部分为绝缘材料。喷头 6 的上端面和履带式接收装置 4 之间的距离调节范围为 0.1~100cm，横流气泵 1 的气流流速范围为 10~100m/s，高压静电发生器 2 的输出电压为 1~200kV。

[0019] 工作时，纺丝溶液在液压加压装置 15 施加的恒定压力作用下从储液池 14 经导液管 13 连续输入溶液室 8，溶液的液面低于喷头 6 上端面，高于喷气管 7 的上端面。横流气泵 1 通过导气管 11 连续输出气体到气室 10，气体经喷气管 7 向上喷出，这样纺丝溶液在喷头 6 的表面形成中空的溶液凸起。打开高压静电发生器 2，调节到一定的电压，喷头 6 通过导线与高压静电发生器 2 的正极相连，而高压静电发生器 2 的负极通过导线与履带式接收装置 4 相连，高压电场形成在喷头 6 和履带式接收装置 4 之间。在高压电场作用下极化电荷将聚集在中空溶液凸起的顶端，形成泰勒锥，在气流压力和静电力的作用下中空泰勒锥破裂，喷射出多股射流，经静电力的拉伸形成纳米纤维沉积在履带式接收装置 4 上。

[0020] 实施例 3

由图 3、图 4 和图 5 所示，一种规模化制备纳米纤维的多喷头封闭式喷气静电纺丝装置，包括横流气泵 1，气室 10，导气管 7，溶液室 8，喷头 6，定量供液系统、高压静电发生器 2 和滚筒式接收装置 4。

[0021] 溶液室 8 和气室 10 为圆柱体，溶液室 8 通过阀门 12 和导液管 13 与储液池 14 相连接，气室 10 通过阀门 16 和导气管 11 与横流气泵 1 相连接。溶液室 8 通过中间连接体 9 与气室 10 相连接，中间连接体 9 上设有垂直向上的喷气管 7，溶液室 8 的上方设置有垂直向上的喷头 6。喷头 6 和喷气管 7 的数目为 19 个，每个喷头 6 对应一个喷气管 7 其通气，喷头 6 和喷气管 7 同一轴心，为同心圆排列。喷头 6 的内径为 20mm，高度为 30mm，喷头 6 之间的间距为 10cm，喷气管 7 的外径小于喷头 6 的内径，喷气管 7 的内径为喷头 6 内径的 0.5 倍，喷气管 7 的高度低于喷头 6 的上端面，高于溶液室 8 的上表面。定量供液系统包括储液池 14 和与储液池出口相连的机械加压装置 15 构成，使储液池中的液面在恒定压力的作用下，稳定、连续和均匀地向溶液室中供液，溶液的液面低于喷头 6 的上端面，高于喷气管 7 的上端面。滚筒式接收装置 4 为金属材质，通过导线与高压静电发生器 2 的负极相连，溶液室 8 的上表面为金属材质，通过导线与高压静电发生器 2 的正极相连，其余部分为绝缘材料。喷头 6 的上端面和滚筒式接收装置 4 之间的距离调节范围为 0.1~100cm，横流气泵 1 的气流流速范围为 10~100m/s，高压静电发生器 2 的输出电压为 1~200kV。

[0022] 工作时，纺丝溶液在机械加压装置 15 施加的恒定压力作用下从储液池 14 经导液管 13 连续输入溶液室 8，溶液的液面低于喷头 6 的上端面，高于喷气管 7 的上端面。横流气泵 1 通过导气管 11 连续输出气体到气室 10，气体经喷气管 7 向上喷出，这样纺丝溶液在喷头 6 的表面形成中空的溶液凸起。打开高压静电发生器 2，调节到一定的电压，溶液室 8 的
上表面通过导线与高压静电发生器 2 的正极相连，而高压静电发生器 2 的负极通过导线与滚筒式接收装置 4 相连，高压电场在喷头 6 和滚筒式接收装置 4 之间。在高压电场作用下极化电荷将聚集在中空溶液凸起的顶端，形成磁场，磁场在气流电场和电场的作用下中空磁场逐渐破裂，喷射出多股射流，经过静电的拉伸形成纳米纤维沉积在滚筒式接收装置 4 上。

[0023] 实施例 4

由图 6、图 9 和图 10 所示，一种规模化制备纳米纤维的多喷头封闭式喷气静电纺丝装置，包括横向气室 1，气室 10、导气管 7，溶液室 8，喷头 6，定量供液系统、高压静电发生器 2 和接收极板 4。

[0024] 溶液室 8 和气室 10 为长方体，溶液室 8 通过阀门 12 和导液管 13 与储液池 14 相连接，气室 10 通过阀门 16 和导气管 11 与横向气室 1 相连接。溶液室 8 通过中间连接体 9 与气室 10 相连接，中间连接体 9 上设置有垂直向上的喷气管 7，溶液室 8 的上方设置有垂直向上的喷头 6。喷头 6 和喷气管 7 的数目为 20 个，每个喷头 6 对应一个喷气管 7。对其通气，喷头 6 和喷气管 7 同一轴心，为矩阵式排列。喷头 6 的内径为 16mm，高度为 28mm，喷头 6 之间的间距为 6.5cm，喷气管 7 的外径小于喷头 6 的内径，喷气管 7 的内径为喷头 6 内径的 0.25 倍，喷气管 7 的高度低于喷头 6 的上端面，高于溶液室 8 的上表面。定量供液系统包括储液池 14 和与储液池出口相连的液压加压装置 15 构成，使储液池中的溶液在恒定压力的作用下，稳定、连续和均匀地向溶液室中供液，溶液的液面低于喷头 6 的上端面，高于喷气管 7 的上端面。接收极板 4 为金属材质，通过导线与高压静电发生器 2 的正极相连。溶液室 8 的上表面为金属材质，通过导线与高压静电发生器 2 的正极相连，其余部分为绝缘材料。喷头 6 的上端面和接收极板 4 之间的距离调节范围为 0.11 1cm，横向气室 1 的气流速度范围为 101m/s，高压静电发生器 2 的输出电压为 11kV。

[0025] 工作时，纺丝溶液在液压加压装置 15 施加的恒定压力作用下从储液池 14 经导液管 13 连续输入溶液室 8，溶液的液面低于喷头 6 的上端面，高于喷气管 7 的上端面。横向气室 1 通过导气管 11 连续输出气流体到气室 10，气流经喷气管 7 向上喷出，这样纺丝溶液在喷头 6 的表面形成中空的溶液凸起。打开高压静电发生器 2，调节到一定的电压，溶液室 8 的上表面通过导线与高压静电发生器 2 的正极相连，而高压静电发生器 2 的负极通过导线与接收极板 4 相连，高压电场形成在喷头 6 和接收极板 4 之间。在高压电场作用下极化电荷将聚集在中空溶液凸起的顶端，形成磁场，在气流电场和电场的作用下中空磁场破裂，喷射出多股射流，经过静电的拉伸形成纳米纤维沉积在接收极板 4 上。

[0026] 实施例 5

由图 7、图 9 和图 10 所示，一种规模化制备纳米纤维的多喷头封闭式喷气静电纺丝装置，包括横向气室 1，气室 10、导气管 7，溶液室 8，喷头 6，定量供液系统、高压静电发生器 2 和接收极板 4 等组成。
之间的间距为7.5cm，喷气管7的外径小于喷头6的内径，喷气管7的内径为喷头6内径的0.35倍，喷气管7的高度低于喷头6的上端面，高于溶液室8的上表面。定量供液系统包括储液池14和与储液池出口相连的机械加压装置15构成，使储液池中的液面在恒定压力的作用下，稳定、连续和均匀地向溶液室中供液。溶液的液面低于喷头6的上端面，高于喷气管7的上端面。履带式接收装置4为金属材质，通过导线与高压静电发生器2的负极相连，喷头6为金属材质，通过导线与高压静电发生器2的正极相连，其余部分为绝缘材料。喷头6的上端面和履带式接收装置4之间的距离调节范围为1100cm，横流气泵1的气流速度范围为100m/s，高压静电发生器2的输出电压为200kV。

【0028】工作时，细丝溶液在机械加压装置15加的恒定压力作用下由储液池14经导液管13连续输入溶液室8，溶液的液面低于喷头6的上端面，高于喷气管7的上端面。横流气泵1、导气管11连续输出气体到气室10，气体经喷气管7向上喷出，这样细丝溶液在喷头6的表面形成中空的溶液凸起。开高压静电发生器2，调节到一定的电压，喷头6通过导线与高压静电发生器2的正极相连，而高压静电发生器2的负极通过导线与履带式接收装置4相连，高压电场形成在喷头6和履带式接收装置4之间。在高压电场作用下极化电荷将聚集成中空溶液凸起的顶端，形成泰勒锥，在气流压力和静电力的作用下中空泰勒锥破裂，喷射出多股射流，经静电力的拉伸形成纳米纤维沉积在履带式接收装置4上。

【0029】实施例6

由于图8、图9和图10所示，一种规模化制备纳米纤维的多喷头封闭式喷气静电纤维装置，包括横流气泵1，气室10，导气管7，溶液室8，喷头6，定量供液系统，高压静电发生器2和滚筒式接收装置4。

【0030】溶液室8和气室10为长方体，溶液室8通过阀门12和导液管13与储液池14相连接，气室10通过阀门16和导气管11与横流气泵1相连接。溶液室8通过中间连接体9与气室10相连接，中间连接体9上设置有垂直向上的喷气管7，溶液室8的上方设置有垂直向上的喷头6。喷头6和喷气管7的数目为20个，每个喷头6对应一个喷气管7，其通气，喷头6和喷气管7的轴心为矩阵式排列。喷头6的内径为12mm，高度为21mm，喷头6之间的间距为5.5cm，喷气管7的外径小于喷头6的内径，喷气管7的内径为喷头6内径的0.42倍，喷气管7的高度低于喷头6的上端面，高于溶液室8的上表面。定量供液系统包括储液池14和与储液池出口相连的气动加压装置15，使储液池中的液面在恒定压力的作用下，稳定、连续和均匀地向溶液室中供液。溶液的液面低于喷头6的上端面，高于喷气管7的上端面。滚筒式接收装置4为金属材质，通过导线与高压静电发生器2的负极相连，溶液室8的上表面为金属材质，通过导线与高压静电发生器2的正极相连，其余部分为绝缘材料。喷头6的上端面和滚筒式接收装置4之间的距离调节范围为0.1~100cm，横流气泵1的气流速度范围为10~100m/s，高压静电发生器2的输出电压为1~200kV。

【0031】工作时，细丝溶液在气动加压装置15加的恒定压力作用下由储液池14经导液管13连续输入溶液室8，溶液的液面低于喷头6的上端面，高于喷气管7的上端面。横流气泵1通过导气管11连续输出气体到气室10，气体经喷气管7向上喷出，这样细丝溶液在喷头6的表面形成中空的溶液凸起。开高压静电发生器2，调节到一定的电压，溶液室8的上表面通过导线与高压静电发生器2的正极相连，而高压静电发生器2的负极通过导线与滚筒式接收装置4相连接，高压电场形成在喷头6和滚筒式接收装置4之间。在高压电场作
用下极化电荷将聚集在电液中的空隙的顶端，形成电极锥，在气流压力和静电作用下
中空电极锥破裂，喷射出多股射流，静电力的拉伸形成纳米纤维沉积在滚筒式接收装置上。