Title: METHOD FOR MANUFACTURING A METAL FILTER FOR WATER TREATMENT USING A METAL FIBER

Abstract: A method for manufacturing a metal filter for water treatment using a metal fiber according to the present invention is characterized in that it comprises: a step S1 of forming a metal fiber from metal powders or alloy powders; a step S2 of forming a synthetic polymer solution by adding metal powders or alloy powders to a solution in which a synthetic polymer compound is dissolved in a polar solvent; a step S3 of forming a filter precursor by mixing the metal fiber and the synthetic polymer solution in order to bind the metal threads with one another using the synthetic polymer solution; a step S4 of forming pores by removing the synthetic polymer solution from the filter precursor that is not used in binding the metal threads; and a step S5 of forming a metal filter for water treatment by sintering the filter precursor in which the pores are formed. The method for manufacturing the metal filter for water treatment using a metal fiber according to the present invention comprises the steps of: forming the metal fiber; forming the synthetic polymer solution; forming the filter precursor; forming the pores; and forming the metal filter for water treatment, and thus provides a metal filter for water treatment with excellent physical strength and chemical cleansing strength.
본 발명에 따른 메탈침유를 이용한 수처리용 메탈필터 제조방법은 금속분말 또는 혼금분말로부터 메탈침유를 형성하는 S1 단계와, 극성 유매에 함성고분자 화합물이 용해된 용액에 금속분말 또는 혼금분말의 분말을 첨가하여 함성고분자 솔루션(solution)을 형성하는 S2 단계와, 메탈침유와 함성고분자 솔루션을 혼합하여, 함성고분자 솔루션으로 메탈시 상호 간을 바인딩(binding)시켜 필터 전구체를 형성하는 S3 단계와, 필터 전구체의 함성고분자 솔루션 중에 마일사의 바인딩이 사라지지 않은 함성고분자 솔루션을 제거하여 공극(孔隙)을 형성하는 S4 단계와, 공극이 형성된 필터 전구체를 소결하여 수처리용 메탈필터를 형성하는 S5 단계를 포함하여 이루어지는 것을 특징으로 한다. 본 발명에 따른 메탈침유를 이용한 수처리용 메탈필터 제조방법은 메탈침유 형성단계와, 함성고분자 솔루션 형성단계, 필터 전구체 형성단계, 공극 형성단계 및 수처리용 메탈필터 형성단계로 이루어져 물리적 강도, 화학적 세척 강도가 우수한 수처리용 메탈필터 제조하는 방법을 제공할 수 있는 효과가 있다.
명세서
발명의 명칭: 메탈섬유를 이용한 수처리용 메탈필터 제조방법
기술분야
배경기술
[3] 이러한 문제를 해결하기 위해 물리적 강도 높이 뛰어난 소재인 세라믹이 사용되나, 세라믹의 경우, 취성(脆性)을 갖고 있어 사용 중 파괴되는 위험이 상존하므로 그 사용분야가 제한되는 문제가 있었다.
발명의 상세한 설명
기술적 과제
[8] 넷째, 자체 산균력을 갖고 있는 수처리용 메탈필터를 제공할 수 있도록 하고자 한다.
[10] 본 발명의 해결과제는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당연히에게 명확하게 이해되어 질 수 있을 것이다.
과제 해결 수단
[11] 본 발명에 따른 메탈섬유를 이용한 수처리용 메탈필터 제조방법은 금속분말 또는 합금분말 중 적어도 어느 하나의 분말로부터 메탈사(metal yarn)로 이루어진 메탈섬유를 형성하는 SI단계와, 극성용매에 합성고분자 화합물이 용해된 용액에 금속분말 또는 합금분말 중 적어도 어느 하나의 분말을 참가하여
합성고분자 솔루션(solution)을 형성하는 S2단계와, S1단계에서 형성된 메탈시유와 S2단계에서 형성된 합성고분자 솔루션을 혼합하여, 합성고분자 솔루션으로 메탈시 상호 간의 바인딩(binding)시켜 필터 전구체를 형성하는 S3단계와, S3단계에서 형성된 필터 전구체의 합성고분자 솔루션 중 메탈시의 바인딩에 사용되지 않은 합성고분자 솔루션을 제거하여 공극(孔隙)을 형성하는 S4단계와, S4단계에서 공극이 형성된 필터 전구체를 소결하여 수처리용 메탈필터를 형성하는 S5단계를 포함한다.

본 발명에 따른 S5단계에는 S5단계에서 형성된 수처리용 메탈필터를 가압하여 편평화시키는 S6단계를 더 포함하는 것이 바람직하다.

본 발명에 따른 S5단계에는 이산화티타늄(TiO₂) 입자를 알콕사이드(alkoxide) 솔루션에 용해시켜 수처리용 메탈필터의 표면에 분사하는 단계 또는 알콕사이드 솔루션에 이산화티타늄을 용해시킨 후 이산화티타늄이 용해된 알콕사이드 솔루션에 수처리용 메탈필터를 침지하는 단계를 거친 후 건조하는 과정에 입자 부착단계를 더 포함하는 것이 바람직하다.

본 발명에 따른 S2단계에서 형성된 합성고분자 솔루션에 용해되는 금속분말 또는 합금분말은 100 중심부 당 1/19 ~ 0.25 중심부의 합성고분자 화합물로 이루어지는 것이 바람직하다.

본 발명에 따른 S1단계에서의 분말이 금속분말인 경우, 금속분말은 스테인리스 스틸(stainless steel), 알루미늄(aluminium), 구리(copper), 니켈(nickel), 티타늄(titanium) 및 마그네슘(magnesium)으로 이루어진 군 중에서 선택되는 어느 하나의 소재인 것을 특징으로 하며, S1단계에서 분말이 합금분말인 경우, 합금분말은 스테인리스 스틸(stainless steel), 알루미늄(aluminium), 구리(copper), 니켈(nickel), 티타늄(titanium) 및 마그네슘(magnesium)으로 이루어진 군 중에서 선택되는 적어도 두 이상의 소재로 이루어진 것이 바람직하다.

본 발명에 따른 S2단계에서 극성용매에 용해되는 합성고분자 화합물은 나이론, 폴리에스테르, 비닐 폴리머, 폴리oluene 및 셀룰로오즈 아세트이트계로 이루어진 군 중에서 선택되는 어느 하나의 합성고분자 화합물인 것이 바람직하다.

본 발명에 따른 S4단계에서 형성된 공극은 S3단계에서 형성된 필터 전구체를 물에 침지시켜 합성고분자 솔루션을 물에 용해시키고, 필터 전구체를 350 ~ 650°C의 온도로 가열 및 산화시켜 형성되는 것이 바람직하다.

본 발명에 따른 S5단계에서 필터 전구체의 소결은 수소가스와 질소가스 또는 아르곤가스 중 어느 하나의 가스로 이루어진 혼합가스를 분위기 기체로 사용하여 1000 ~ 1500°C 사이의 온도에서 이루어지고, 분위기 기체의 수소가스와 질소가스 또는 아르곤가스 중 어느 하나의 가스의 비피리는 1:7/3 ~ 1: 49를 만족하는 것이 바람직하다.

발명의 효과
본 발명에 따른 메탈섬유를 이용한 수처리용 메탈필터 제조방법은 메탈섬유 형성단계, 합성고분자 솔루션 형성단계, 필터 전구체 형성단계, 공극형성단계 및 수처리용 메탈필터 형성단계로 이루어져 물리적 강도, 화학적 세척 강도가 우수한 수처리용 메탈필터를 제조하는 방법을 제공할 수 있는 효과가 있으며, 저온 및 고온에서 손상되지 않는 수처리용 메탈필터를 제조하는 방법을 제공할 수 있는 효과가 있다.

본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당연히에게 명확하게 이해되어 질 수 있을 것이다.

도면의 간단한 설명

도 1은 본 발명의 일실시예에 따른 메탈섬유를 이용한 수처리용 메탈필터 제조방법의 순서도이다.

도 2는 본 발명의 다른 일실시예에 따른 메탈섬유를 이용한 수처리용 메탈필터 제조방법의 순서도이다.

도 3은 본 발명의 또 다른 일실시예에 따른 메탈섬유를 이용한 수처리용 메탈필터 제조방법의 순서도이다.

도 4는 본 발명의 또 다른 일실시예에 따른 메탈섬유를 이용한 수처리용 메탈필터 제조방법의 순서도이다.

*부호의 설명*

S1: 메탈섬유 형성단계
S2: 합성 고분자 솔루션 형성단계
S3: 필터 전구체 형성단계
S4: 공극형성단계
S5: 수처리용 메탈필터 형성단계
S5a: 광촉매 입자 부착단계
S6: 펴평화 단계

발명의 실시를 위한 최선의 형태

이하에서는 도면을 참조하면서 본 발명에 따른 메탈섬유를 이용한 수처리용 메탈필터 제조방법(이하 '메탈필터 제조방법'이라 한다)에 관하여 구체적으로 설명하겠다.

도 1은 본 발명에 따른 메탈필터 제조방법의 일 실시예의 순서도이다.

본 발명에 따른 메탈필터 제조방법은 메탈섬유 형성단계(S1), 합성고분자 솔루션 형성단계(S2), 필터 전구체 형성단계(S3), 공극형성단계(S4) 및 수처리용 메탈필터 형성단계(S5)로 이루어진다.

메탈섬유 형성단계(S1)는 금속분말 또는 합금분말 중 적어도 어느 하나의 분말로부터 메탈사(metal yarn)로 이루어진 메탈섬유를 형성하는 단계로,

...
스테인리스 스틸(stainless steel), 알루미늄(aluminium), 구리(copper), 니켈(nickel), 티타늄(titanium) 및 마그네슘(magnesium)으로 이루어진 군 중에서 선택되는 어느 하나의 소재로 이루어질 수도 있으며, 이러한 금속의 함금분말로 이루어질 수도 있다.

이러한 금속분말 중 스테인리스 스틸, 알루미늄, 구리의 금속분말의 경우, 부식이 잘 발생되지 않는 특성이 있으며, 특히 구리 금속분말을 사용하는 경우, 구리 자체의 항균성을 이용할 수 있는 장점이 있다.

이러한 금속분말, 함금분말 또는 금속분말과 함금분말을 이용한 메탈섬유는 다양한 공정을 통해 제작될 수 있으며, 특히 금속 또는 함금분말을 물에 용해한 뒤 소성변형이 가능한 염(salt) 분말과 혼합하여 염간 압출을 수행한 뒤 염을 물에 용해시키는 분말압출법을 이용하여 제작될 수 있다.

이때 메탈섬유를 구성하는 메탈사의 다양한 형태와 입경을 갖도록 제작될 수 있으나, 약 10~100㎛의 입경을 갖도록 제작되는 것이 바람직하다.

합성고분자 슬루션 형성단계(S2)는 메탈사와 메탈사 상호간을 바인딩(binding)시키는 합성고분자 슬루션을 형성하는 단계로, 합성고분자 슬루션 형성단계(S2)에서 형성된 합성고분자 슬루션은 극성용매에 합성고분자 화합물을 용해시킨 뒤 금속분말, 함금분말 또는 금속분말과 함금분말을 침투하여 형성된다.

이때 극성용매에 침투되는 합성고분자 화합물은 극성용매에 용해되는 합성고분자 화합물인 경우, 어떠한 합성고분자 화합물도 사용될 수 있으나, 특히 나이론계, 폴리에스테르계, 비닐 폴리머계, 폴리클로로페닐 아세테이트계로 이루어진 군 중에서 선택되는 어느 하나의 합성고분자 화합물을 이용하는 것이 바람직하다.

또한, 합성고분자 슬루션에 침투되는 금속분말 또는 함금분말은 메탈섬유를 형성할 때 사용된 금속분말 또는 함금분말과 동일하다.

함성고분자 슬루션을 용해되는 금속분말(또는 함금분말)은 100 중량부 당 1/19 ~ 0,25 중량부의 합성고분자 화합물로 이루어지는 것이 바람직하다.

함성고분자 화합물이 금속분말(또는 함금분말)의 금속분말(또는 함금분말) 100 중량부 당 1/19 무단부 미만인 경우, 최종생산물인 메탈hamster의 강도가 현저하게 떨어지는 문제가 있으며, 합성고분자 화합물이 금속분말(또는 함금분말) 100 중량부 당 0,25 중량부 초과인 경우, 합성고분자 슬루션 내에서 금속분말 또는 합성고분자 화합물의 분산이 잘되지 않는 문제가 있다.

따라서 합성고분자 슬루션에 용해되는 금속분말(또는 함금분말)은 100 중량부 당 1/19 ~ 0,25 중량부의 합성고분자 화합물로 이루어지는 것이 바람직하다.

필터 전구체 형성단계(S3)는 S1단계에서 형성된 메탈섬유와 S2단계에서
형성된 합성고분자 솔루션을 혼합하여, 합성고분자 솔루션을 메개로 메탈사 상호 간을 바인딩(binding)시키는 것이다. 합성고분자 솔루션과 메탈심유를 혼합하면 합성고분자 솔루션은 메탈심유의 메탈사 사이에 개개이고, 개개된 합성고분자 심유를 메개로 메탈사는 상호 바인딩 되어 필터 전구체를 형성하게 된다.

[51]

공극형성단계(S4)는 S3단계에서 형성된 필터 전구체의 합성고분자 솔루션 중 메탈사의 바인딩에 사용되지 않고 메탈사에 개개된 합성고분자 솔루션을 제거하여 공극(孔隙)을 형성하는 것이다. 공극형성단계(S4)에서 형성된 공극은 필터 전구체를 물에 침지시켜 메탈사의 바인딩에 관여하지 않은 합성고분자 솔루션을 물에 용해시킨 뒤, 가열 및 산화시켜 형성한다.

[52]

합성고분자 솔루션에 포함된 합성고분자는 앞에서 살펴본 바와 같이 극성용액에 용해되기 쉬운 물성을 갖고 있으므로, 필터 전구체를 물에 침지시키는 경우, 물에서 용해된다.

[53]

이때, 필터 전구체를 물에 오래 침지시키는 경우 메탈사의 바인딩에 관여한 합성고분자도 용해될 수 있으므로 적절한 시간 내에서 필터 전구체를 물에 침지시켜야 한다.

[54]

물에 필터 전구체를 침지시키는 경우, 바인딩에 관여하지 않은 합성고분자가 남아 있을 수 있다. 이러한 메탈사에 남아 있는 합성고분자는 공극을 형성할 수 없으므로, 물에 침지시킨 필터 전구체는 가열하는 것이 바람직하다.

[55]

이때 필터 전구체가 가열하는 온도가 350°C 미만인 경우, 합성고분자의 제거가 불완전할 수 있으며, 합성고분자 제거에 걸리는 시간이 오래 걸릴 수 있는 문제가 있다.

[56]

반면에 필터 전구체를 가열하는 온도가 650°C를 초과하는 경우, 합성고분자의 급속한 산화로 인하여 메탈사 또는 필터 전구체의 변성이 발생되는 문제가 있다.

[57]

따라서 필터 전구체는 350 ~ 650°C 사이에서 공기를 분위기 가스로 사용하여 산화시키는 것이 바람직하다.

[58]

수처리용 메탈필터 형성단계(S5)에서 형성된 수처리용 메탈필터는 S4단계에서 공극이 형성된 필터 전구체를 소결하여 형성된다.

[59]

공극형성단계(S4)를 거친 필터 전구체는 합성고분자에 의해 바인딩된 상태이므로 필터로 이용할 수 있는 강도를 갖지 못한다. 따라서 필터로 이용할 수 있도록 메탈사와 메탈사 사이를 건고하게 결합시키는 것이 바람직하며, 이러한 방법으로 소결을 이용하는 것이 보다 바람직하다.

[60]

필터 전구체의 소결시 젖조가스와 수조가스의 혼합가스를 분위기 기체로 사용하여 1000°C에서 1500°C의 온도범위 내에서 20분 내지 40분의 시간 내에서 소결하는 것이 바람직하다.
이때 사용되는 분위기 기체는 질소가스와 수소가스의 혼합가스를 사용하여도 무방하나 질소가스는 불활성 가스의 하나인 아르곤 가스로 대체할 수 있다.

분위기 기체의 질소가스 또는 아르곤가스 중 어느 하나의 가스와 수소가스의 혼합시 부피비는 수소가스와 질소가스(또는 아르곤가스)의 부피가 1:7/3 ~ 1:49의 범위 내에서 혼합하는 것이 바람직하다.

수소가스와 질소가스(또는 아르곤가스)의 부피비가 1:49 미만인 경우, 즉 수소가스의 부피에 비하여 질소가스의 부피가 49배 미만인 경우, 소결처리가 불완전하고, 수소가스의 부피에 비하여 질소가스의 부피가 7/3 미만인 경우 수소가스의 폭발이 발생될 수 있다.

따라서 소결시 분위기 기체의 혼합비는 수소가스와 질소가스(또는 아르곤가스)의 부피비가 1:7/3 ~ 1:49의 범위 내에서 혼합하는 것이 바람직하다.

본 발명에 따른 메탈펄터 제조방법의 다른 실시예인 도 2를 참조하면, 앞에서 설명한 메탈펄터 제조방법에 편평화 단계(S6)가 더 포함될 수 있다.

편평화단계(S6)는 수처리용 메탈펄터 형성단계(S5)에서 형성된 수처리용 메탈펄터의 표면을 편평화하는 것으로, 2개의 쌍리 사이에 수처리용 메탈펄터를 통과시켜 그 표면을 편평화시키거나, 메탈펄터를 편평한 플레이트로 가압하여 편평화시킨다.

또한, 본 발명에 따른 메탈펄터 제조방법의 또 다른 실시예인 도 3 및 도 4를 참조하면 수처리용 메탈펄터 형성단계(S5)에서 형성된 수처리용 메탈펄터의 표면에 광촉매 입자를 부착시키는 광촉매입자 부착단계(S5a)를 추가할 수도 있다. 또한, 수처리용 메탈펄터 형성단계(S5)와 편평화 단계(S6) 사이에 광촉매 입자를 부착시키는 광촉매 입자 부착단계(S5a)를 추가할 수도 있다.

이러한 광촉매 입자 부착단계(S5a)는 이산화티타늄(TiO2)과 같은 광촉매를 메탈펄터의 표면에 부착하는 것이다. 광촉매는 알코사이드(alkoxide) 솔루션에 이산화티타늄 분말을 용해시켜 수처리용 메탈펄터의 표면에 분산하는 단계 또는 이산화티타늄이 용해된 알코사이드 솔루션에 수처리용 메탈펄터를 침지하는 단계를 거친 후 건조하여 메탈펄터의 표면에 부착된다.

본 명세서에서 설명되는 실시예와 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 예시적으로 설명하는 것에 불과하다. 따라서 본 명세서에 개시된 실시예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아님을 자명하다. 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 수용할 수 있는 변형 예와 구체적인 실시 예는 모두 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
청구범위

[청구항 1] 금속분말 또는 합금분말 중 적어도 어느 하나의 분말로부터 메탈사(metal yarn)로 이루어진 메탈섬유를 형성하는 S1단계;
극성용매에 합성고분자 화합물이 용해된 용액에 금속분말 또는 합금분말 중 적어도 어느 하나의 분말을 첨가하여 합성고분자 솔루션(solution)을 형성하는 S2단계;
상기 S1단계에서 형성된 메탈섬유와 상기 S2단계에서 형성된 합성고분자 솔루션을 혼합하여, 상기 합성고분자 솔루션으로 상기 메탈사 상호 간을 바인딩(binding)시켜 필터 전구체를 형성하는 S3단계;
상기 S3단계에서 형성된 필터 전구체의 합성고분자 솔루션 중 상기 메탈사의 바인딩에 사용되지 않은 합성고분자 솔루션을 제거하여 공극(孔隙)을 형성하는 S4단계; 및
상기 S4단계에서 공극이 형성된 필터 전구체를 소결하여 수처리용 메탈필터를 형성하는 S5단계를 포함하는 것을 특징으로 하는 메탈섬유를 이용한 수처리용 메탈필터 제조방법.

[청구항 2] 제1항에 있어서,
상기 S5단계에는
상기 S5단계에서 형성된 수처리용 메탈필터를 가압하여 펼평화시키는 S6단계를 더 포함하는 것을 특징으로 하는 메탈섬유를 이용한 수처리용 메탈필터 제조방법.

[청구항 3] 제1항 또는 제2항에 있어서,
상기 S5단계에는
이산화티타늄(TiO₂) 입자를 알코사이드(alkoxide) 솔루션에 용해시켜 상기 수처리용 메탈필터의 표면에 분산하는 단계 또는 알코사이드 솔루션에 이산화티타늄을 용해시킨 후 이산화티타늄이 용해된 알코사이드 솔루션에 상기 수처리용 메탈필터를 침지하는 단계를 거친 후 건조하는 광촉매 입자부착단계를 더 포함하는 것을 특징으로 하는 메탈섬유를 이용한 수처리용 메탈필터 제조방법.

[청구항 4] 제1항에 있어서,
상기 S2단계에서 형성된 합성고분자 솔루션에 용해되는 금속분말 또는 합금분말은 100 중량부 당 1/19 ~ 0,25 중량부의 합성고분자 화합물로 이루어지는 것을 특징으로 하는 메탈섬유를 이용한 수처리용 메탈필터 제조방법.

[청구항 5] 제1항에 있어서,
상기 금속분말은 스테인리스 스틸(stainless steel),
알루미늄(aluminium), 구리(copper), 니켈(nickel), 티타늄(titanium) 및 마그네슘(magnesium)으로 이루어진 군 중에서 선택되는 어느 하나의 소재인 것을 특정으로 하는 메탈심유를 이용한 수처리용 메탈필터 제조방법.

[청구항 6] 제1항에 있어서,
상기 합금분말은 스테인리스 스틸(stainless steel),
알루미늄(aluminium), 구리(copper), 니켈(nickel), 티타늄(titanium) 및 마그네슘(magnesium)으로 이루어진 군 중에서 선택되는 적어도
둘 이상의 소재로 이루어진 것을 특정으로 하는 메탈심유를
이용한 수처리용 메탈필터 제조방법.

[청구항 7] 제1항에 있어서,
상기 S2단계에서 극성용매에 용해되는 합성고분자 화합물은
나이론계, 폴리에스테르계, 비닐 폴리머계, 폴리슬픈계 및
셀룰로오즈 아세트이트계로 이루어진 군 중에서 선택되는 어느
하나의 합성고분자 화합물인 것을 특정으로 하는 메탈심유를
이용한 수처리용 메탈필터 제조방법.

[청구항 8] 제1항에 있어서,
상기 S4단계에서 형성된 공극은
상기 S3단계에서 형성된 필터 전구체를 물에 침지시켜 상기
합성고분자 솔루션을 물에 용해시키고, 상기 필터 전구체를 350 ~
650℃의 온도로 가열 및 산화시켜 형성되는 것을 특정으로 하는
메탈심유를 이용한 수처리용 메탈필터 제조방법.

[청구항 9] 제1항에 있어서,
상기 S5단계에서 필터 전구체의 소결은
수소가스와 질소가스 또는 아르곤가스 중 어느 하나의 가스로
이루어진 혼합가스를 분위기 기체로 사용하여 1000 ~ 1500℃
사이의 온도에서 이루어지고,
상기 분위기 기체의 수소가스와 질소가스 또는 아르곤가스 중
 어느 하나의 가스의 부피비율 7:3 ~ 1:49를 만족하는 것을
특정으로 하는 메탈심유를 이용한 수처리용 메탈필터 제조방법.
[Fig. 1]

메탈섬유 형성단계
→
합성고분자 솔루션 형성단계
→
필터 전구체 형성단계
→
공극형성단계
→
수처리용 메탈필터 형성단계
[Fig. 2]

S1
메탈섬유 형성단계

S2
합성고분자 솔루션 형성단계

S3
필터 전구체 형성단계

S4
공극형성단계

S5
수처리용 메탈필터 형성단계

S6
편편화 단계
[Fig. 3]

S1
메탈섬유 형성단계

S2
합성고분자 솔루션 형성단계

S3
필터 전구체 형성단계

S4
공극형성단계

S5
수처리용 메탈필터 형성단계

S5a
광촉매 입자 부착단계
[Fig. 4]

1. 메탈섬유 형성단계 (S1)
2. 합성고분자 솔루션 형성단계 (S2)
3. 필터 전구체 형성단계 (S3)
4. 공극형성단계 (S4)
5. 수처리용 메탈필터 형성단계 (S5)
6. 광촉매 임자 부착단계 (S5a)
7. 편평화 단계 (S6)