PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F 12/02 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/67711

29 December 1999 (29.12.99)

(21) International Application Number: PCT/US99/13895

(22) International Filing Date: 22 June 1999 (22.06.99)

(30) Priority Data:

09/104,426 25 June 1998 (25.06.98) us

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San
Antonio Road, MS UPALQ1-521, Palo Alto, CA 94303

us).

(72) Inventors: YELLAND, Phillip, M.; 185 Villa Terrace, San
Francisco, CA 94114 (US). UNGAR, David; 844 Driftwood
Drive, Palo Alto, CA 94303 (US).

(74) Agents: GARRETT, Arthur, S.; Finnegan, Henderson,
Farabow, Garrett & Dunner, L.L.P., 1300 I Street, NW,,
Washington, DC 20005-3315 (US) et al.

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR,KZ,L.C, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,
ARITPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SYSTEM AND METHOD FOR OPTIMIZING REPRESENTATION

PROGRAMMING ENVIRONMENTS

(57) Abstract

OF ASSOCIATIONS IN OBJECT-ORIENTED

e 3100
A system optimizes representation of asso- P Hoad //— 3120
ciations in an object—oriented programming envi- e eacer
ronment. The system includes a memory and a Pl
~ Flag
memory manager. The memory stores a table and 2320 — P
a plurality of objects. Each of the objects includes Pid 3160 — s140
a header that stores a flag. The table stores a plu- ObjectMemory |~ &
rality of entries. Each of the table entries stores s
an association and a reference identifying one of 1°°'F\
the objects in the memory. The memory man- Object 1 Data
ager periodically determines the state of the flags
in the object headers. When the flag of an object o~
is determined to be in a predetermined state, the 3200 *'\ _ S~——
memory manager selects the table entry having Object 2
a reference identifying the object and stores the 2300
association from the selected table entry intothe | [T |T—————- 3380 ~ e
: 3300 4 ——
object. \ Associat
Object 3 | Association_|
3320
Header
3380 —
\ N‘ Flag
N
3400 \\
— 3340
\ Free Space N \ Pq
N Data
N\
\
N
N
N\

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN

CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

FIL

FR
GA
GB
GE
GH
GN

KR
Kz
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslay
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
uG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/67711 ' PCT/US99/13895

SYSTEM AND METHOD FOR OPTIMIZING REPRESENTATION OF
ASSOCIATIONS IN OBJECT-ORIENTED PROGRAMMING
ENVIRONMENTS

BACKGROUND OF THE INVENTION

The present invention is directed to object-oriented programming systems, and
more particularly to optimizing the representation of associations in object-oriented
programming systems.

Conventional object-oriented programming systems often record the association
between a particular object and another object or a data structure internal to the
system. Frequently, however, the demographics (e.g., usage pattern) of such
associations cannot be predicted with accuracy ahead of time. Whether a particular
object participates in an association depends upon the activities of the applications
hosted by the system.

An example of one conventional object-oriented programming system that uses
associations is Sun Microsystems™ Java™ object-oriented programming language.
Java and Sun Microsystems are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Most implementations of the Java programming language associate a secondary
structure with an object in the event that a synchronized method (i.e., a method whose
invocation is synchronized on its receiver) is invoked on that object. This secondary
structure is called a monitor and engages a variety of mechanisms in the Java™
runtime system and the native platform for the purpose of coordinating concurrent
execution of synchronized methods. For efficiency reasons, the monitor is typically
allocated for and associated with an object only if a synchronized method is invoked
upon that object. Unfortunately, such a determination can only be made at the actual
point of method invocation.

Two conventional approaches exist for recording associations. The first approach
stores the association, which takes the form of a reference to the monitor, in a separate
data structure, such as a hash table. This approach economizes the use of space
because space in the hash table need not be allocated until actually required to record
an association, but imposes a run-time penalty in the form of the time required to

search the hash table for the location of the association.

WO 99/67711 PCT/US99/13895

2-

The second approach alleviates this run-time penalty by storing the association in
the header of the object in memory. The object header is an area of memory of fixed
size that prefixes every object. Storing the association in the object header
considerably increases the speed of retrieval of the association because the association
is available directly from the object. However, given that the association
demographics cannot be predicted ahead of time, a conservative approach would
require that every object be provided with space for the storage of an association.

This leads to a considerable waste of valuable memory space.

Therefore, a need exists for a way to record associations while alleviating the

problems of the two conventional approaches.

SUMMARY OF THE INVENTION

Systems and methods consistent with the present invention address this need by
temporarily storing associations in a table until invocation of the next automatic
memory management function, such as garbage collection, at which time the memory
management function stores the associations in the objects. The systems and methods
consistent with the present invention take advantage of the automatic memory
management function to add or remove space in the objects for the storage of
associations.

A system consistent with the present invention optimizes representation of
associations in an object-oriented programming environment. The system includes a
memory and a memory manager. The memory stores a table and a plurality of objects.
Each of the objects includes a header that stores a flag. The table stores a plurality of
entries. Each of the table entries stores an association and a reference identifying one
of the objects in the memory.

The memory manager periodically determines the state of the flags in the object
headers. When the flag of an object is determined to be in a predetermined state, the
memory manager selects the table entry having a reference identifying the object and
stores the association from the selected table entry into the object.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of

this specification, illustrate an embodiment of the invention and, together with the

WO 99/67711 PCT/US99/13895

3-

description, explain the objects, advantages, and principles of the invention. In the
drawings:

Fig. 1 is a diagram of an exemplary computer system consistent with the present
invention;

Fig. 2 is a diagram of a memory of Fig. 1 in an implementation consistent with the
present invention;

Fig. 3 is a diagram of the object memory of Fig. 2 in an implementation consistent
with the present invention;

Fig. 4 is a diagram of the table of Fig. 2 in an implementation consistent with the
present invention;

Fig. 5 is a flowchart of object creation activity consistent with the present
invention;

Fig. 6 is a flowchart of memory management activity consistent with the present
invention; and

Fig. 7 is a flowchart of program execution activity consistent with the present
invention.

DETAILED DESCRIPTION

The following detailed description of the invention refers to the accompanying
drawings. The same reference numbers in different drawings identify the same or
similar elements. Also, the following detailed description does not limit the
invention. Instead, the scope of the invention is defined by the appended claims.

Systems and methods consistent with the present invention optimize the
representation of associations by taking advantage of automatic memory management
functions, such as garbage collection mechanisms. Relocating or copying garbage
collection mechanisms relocate objects in order to reduce the fragmentation of
memory in the face of object mortality and reclamation. Relocation entails copying an
object’s header and data from one area of memory to another, and thereafter updating
all references to the object. The systems and methods consistent with the present
invention take advantage of the relocating features of the garbage collection

mechanisms to add or remove space in the object for storage of an association.

WO 99/67711 PCT/US99/13895
A-

In particular, when an object is first created, the system stores the object in

memory without space for the storage of an association. When an association is later
‘recorded for the object, the system temporarily stores the association in a data
structure, such as a table. Thereafter, when the system performs garbage collection,
the system allocates additional memory space in the object and stores the association
in this allocated memory space. As a result, systems consistent with the present
invention are an improvement over conventional object association systems, because
the systems economize the use of valuable memory space while avoiding the run-time
penalty incurred by conventional systems.
EXEMPLARY COMPUTER SYSTEM

Fig. 1 is a diagram of a system architecture for an exemplary computer system
with which the invention may be implemented. The exemplary computer system of
Fig. 1 is for descriptive purposes only. Although the description may refer to terms
commonly used in describing particular computer systems, such as an IBM PS/2
personal computer, the description and concepts equally apply to other computer
systems such as network computers, workstations, and even mainframe computers
having architectures dissimilar to Fig. 1.

Furthermore, the implementation is described with reference to a computer system
implementing the Java programming language and Java™ Virtual Machine
specifications, although the invention is equally applicable to other computer systems
having similar requirements. Specifically, the present invention may be implemented
with both object-oriented and non-object-oriented programming systems.

Computer system 1000 includes a central processing unit (CPU) 1050, which may
be implemented with a conventional microprocessor, a random access memory
(RAM) 1100 for temporary storage of information, and a read only memory (ROM)
1150 for permanent storage of information. A memory controller 1200 is provided for
controlling RAM 1100.

A bus 1300 interconnects the components of computer system 1000. A bus
controller 1250 is provided for controlling bus 1300. An interrupt controller 1350 is
used for receiving and processing various interrupt signals from the system

components.

WO 99/67711 PCT/US99/13895

-5-

Mass storage may be provided by diskette 1420, CD ROM 1470, or hard drive
1520. Data and software may be exchanged with computer system 1000 via
‘removable media such as diskette 1420 and CD ROM 1470. Diskette 1420 is
insertable into diskette drive 1410 which is, in turn, connected to bus 1300 by a
controller 1400. Similarly, CD ROM 1470 is insertable into CD ROM drive 1460
which is, in turn, connected to bus 1300 by controller 1450. Hard disk 1520 is part of
a fixed disk drive 1510 which is connected to bus 1300 by controller 1500.

User input to computer system 1000 may be provided by a number of devices. For
example, a keyboard 1560 and mouse 1570 are connected to bus 1300 by controller
1550. It will be obvious to those reasonably skilled in the art that other input devices,
such as a pen, a tablet, and/or a speech recognition device may be connected to bus
1300 and an appropriate controller and software, as required. DMA controller 1600 is
provided for performing direct memory access to RAM 1100. A visual display is
generated by video controller 1650 which controls video display 1700.

Computer system 1000 also includes a communications adaptor 1900 which
allows the system to be interconnected to additional computing resources via a local
area network (LAN) or a wide area network (WAN), such as the Internet,
schematically illustrated by bus 1910 and network 1950. Signals traveling through
network 1950 can generally be referred to as "carrier waves," which transport
information. Methods necessary to implement the present invention can be
transported via the carrier waves to or from the additional computing resources.

Operation of computer system 1000 is generally controlled and coordinated by
operating system software. The operating system controls allocation of system
resources and performs tasks such as memory management, process scheduling,
networking, and services, among other things.

An important concept in memory management is the manner in which memory is
allocated to a task, deallocated, and then reclaimed. Memory deallocation and
reclamation may be explicit and controlled by an executing program, or may be
carried out by another special purpose program which locates and reclaims memory
which is unused, but has not been explicitly deallocated. "Garbage collection” is the

term used in technical literature and the relevant arts to refer to a class of algorithms

WO 99/67711 PCT/US99/13895

-6-

utilized to carry out storage management, specifically automatic memory reclamation.
There are many known garbage collection algorithms, including reference counting,
mark-sweep, and generational garbage collection algorithms. These, and other
garbage collection techniques, are described in detail in a book entitled "Garbage
Collection, Algorithms For Automatic Dynamic Memory Management" by Richard
Jones and Raphael Lins, John Wiley & Sons, 1996.

An object may be located by a "reference," or a small amount of information that
can be used to access the object. One way to implement a reference is by means of a
"pointer" or "machine address," which uses multiple bits of information, however,
other implementations are possible. General-purpose programming languages and
other programmed systems often use references to locate and access objects. Such
objects can themselves contain references to data, such as integers or floating-point
numbers, and to yet other objects. In this manner, a chain of references can be
created, each reference pointing to an object which, in turn, points to another object.

A subclass of garbage collectors known as "relocating" or "copying" garbage
collectors, relocates objects that are still reachable by an executing program.
Relocation of an object is accomplished by making a copy of the object to another
region of memory, then replacing all reachable references to the original object with
references to the new copy. The memory occupied by the original object may then be
reclaimed and reused. Relocating garbage collectors have the desirable property that
they compact the memory used by the executing program and thereby reduce memory
fragmentation, which is typically caused by non-compacting garbage collectors.

Fig. 2 is a diagram of memory 2000 containing a garbage collector in an
implementation consistent with the present invention. Memory 2000 preferably
includes system RAM 1100 (Fig. 1), but may alternatively include other types of
memories, including any of the memories shown in Fig. 1.

Memory 2000 includes runtime system 2100, applications 2200, and data memory
2300. At the core of runtime system 2100 is Java Virtual Machine (JVM) 2120. JVM
2120 is a microprocessor implemented in software that runs using the capabilities

provided by the operating system and the computer hardware. The JVM is described,

WO 99/67711 PCT/US99/13895

-7-

for example, in a text entitled "The Java Virtual Machine Specification," by Tim
Lindholm and Frank Yellin, Addison Wesley, 1996.

JVM 2120 includes garbage collector 2140. Garbage collector 2140 performs
memory management functions, such as automatic allocation and deallocation of
memory resources as they are needed by applications 2200. Garbage collector 2140
typically runs as a separate, low-priority background process that executes when no
other processes are active. It checks object references and frees those objects that are
no longer in use. Garbage collector 2140 also performs relocating functions to
relocate objects that are still reachable by applications 2200.

Applications 2200 include programs executed by CPU 1050 and interpreted by
JVM 2120. The programs include object-oriented programs, such as programs written
in the Java programming language, as well as multiplatform programs, secure
programs, distributed networking programs, multithreaded programs, web programs,
etc. Some of the programs operate on objects stored in data memory 2300.

Data memory 2300 stores data used by CPU 1050 and JVM 2120, and includes
object memory 2320 and table 2340. Fig. 3 is a diagram of object memory 2320.
Object memory 2320 stores multiple objects 3100, 3200, and 3300, and free space
3400.

Object 3100, for example, includes header portion 3120 and data portion 3140.
Header 3120 stores flag 3160. Flag 3160 is a two bit flag that distinguishes between
three states: (1) a state where there is no association for the object; (2) a state where an
association for the object is stored in table 2340; and (3) a state where an association
for the object is stored in the object.

In some instances, such as in the third state above, an object stores an association.
Object 3300, for example, includes header portion 3320, data portion 3340, and
association portion 3380. As shown in Fig. 3, association 3380 is stored prior to
header 3320 in object 3300. Alternatively, association 3380 may be stored at the end
of object 3300. Header 3320 stores a two bit flag 3360. As will be discussed below,
flag 3360 is set in this case to indicate that there is an association for object 3300

stored in the object.

WO 99/67711 PCT/US99/13895
-8-

Table 2340 temporarily stores associations as entries in a table format, such as a
hash table format. Fig. 4 is a diagram of table 2340 in an implementation consistent
with the present invention. Table 2340 includes several entries 4100 through 4600
recorded on an as-needed basis. Each entry (entry 4100, for example) stores an
association 4120 and a pointer 4140. Pointer 4140 identifies the object in object
memory 2320 to which association 4120 belongs. Pointer 4140 may be implemented
by a machine address that identifies the location of the object in object memory 2320,
but other implementations are possible.

EXEMPLARY SYSTEM PROCESSING

Fig. 5 is a flowchart of object creation activity consistent with the present
invention. In executing an object-oriented programming language, such as the Java
programming language, JVM 2120 performs many operations, including the creation
of new objects [step 5100]. While JVM 2120 will be described as performing the
object creation activity, the activity is actually performed by CPU 1050 through
runtime system 2100.

When JVM 2120 creates the new object, for example, object 3100 (Fig. 3), it
stores object 3100 in object memory 2320 [step 5200]. JVM 2120 allocates only
enough space within object memory 2320 for storing data 3140 and header 3120,
including flag 3160. JVM 2120 does not allocate space within object 3100 for
recording an association. JVM 2120 sets flag 3160 to indicate that there is no
association recorded for the new object [step 5200].

At some point, JVM 2120 may need to record an association for object 3100 [step
5300]. In this case, JVM 2120 stores the association in table 2340, as table entry 4100
(Fig. 4), for example, and sets pointer 4140 to identify object 3100 in object memory
2320 [step 5400]. JVM 2120 then sets flag 3160 in header 3120 to indicate that there
is an association for the new object stored in table 2340 [step 5500].

As a memory manager, garbage collector 2140 periodically performs memory
management functions, such as object relocation, to reduce the fragmentation in object
memory 2320. Fig. 6 is a flowchart of memory management activity consistent with

the present invention. As part of the memory management functions, garbage

WO 99/67711 PCT/US99/13895
-9-

collector 2140 performs certain operations on the objects stored in object memory
2320 [step 6100].

Garbage collector 2140 examines the flag in the header of an object to determine
whether an association for the object is stored in table 2340 [step 6200]. When the
object’s flag indicates that either there is no association for the object or that the
association is stored in the object, garbage collector 2140 relocates the object
according to conventional memory management techniques [step 6300].

When the object’s flag indicates that the association is stored in table 2340,
however, garbage collector 2140 relocates the object according to conventional
memory management techniques, while allocating sufficient space in the object, prior
to the object’s header, for storage of the association [step 6400]. Garbage collector
2140 then searches table 2340 to identify the association belonging to the object.
Garbage collector 2140 matches associations to objects using the pointers stored in the
table entries.

When garbage collector 2140 identifies the association for the object, garbage
collector 2140 removes the association from table 2340 [step 6500]. Garbage
collector 2140 deletes the entry containing the association in table 2340 to free space
for storage of subsequent associations. Garbage collector 2140 then stores the
association in the allocated space prior to the object’s header, such as object 3300 in
Fig. 3, and sets the flag to indicate that the association is stored in the object [step
6600].

Many times during execution of object-oriented programs, JVM 2120 retrieves an
object’s association data. Fig. 7 is a flowchart of program execution activity
consistent with the present invention. When JVM 2120 determines that it needs an
association during execution of a program [steps 7100 and 7200], JVM 2120 checks
the flag in the object’s header in object memory 2320 [steps 7300 and 7400]. When
the flag indicates that the association is stored in the object, JVM 2120 obtains the
association from the allocated space prior to the object’s header [step 7500]. When
the flag indicates that the association is stored in table 2340, however, JVM 2120
retrieves the association from table 2340 using the pointer in the table entry to identify

the correct association [step 7600].

WO 99/67711 PCT/US99/13895
-10-

CONCLUSION

Systems and methods consistent with the present invention optimize storage and
retrieval of associations for objects by taking advantage of automatic memory
management functions common to object-oriented programming systems.

The foregoing description of preferred embodiments of the present invention
provides illustration and description, but is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Modifications and variations are possible
in light of the above teachings or may be acquired from practice of the invention. The
scope of the invention is defined by the claims and their equivalents.

For example, an implementation consistent with the present invention has been
described as allocating no space in the object for storage of an association when an
object is created. This need not be the case, however. Space could be allocated in the
object for storage of an association when an object is created. In this case, if no
association has been recorded by the time the garbage collector performs its next
memory management functions, the space is removed when the garbage collector
relocates the object. If an association is required thereafter, the JVM stores the

association in the table and sets the flag in the object’s header, as described above.

WO 99/67711 PCT/US99/13895

-11-

WHAT IS CLAIMED IS

1. A system that represents associations in an object-oriented programming

| environment, comprising:

a memory configured to store both a plurality of objects, each of the objects
including a header storing a flag, and a table with a plurality of entries, each of the
table entries storing an association and a reference identifying one of the objects; and

a memory manager configured to periodically determine a state of the flags in the
object headers, when the flag of one of the objects is determined to be in a
predetermined state, the memory manager selects the table entry having the reference
identifying the one object and stores the association from the selected table entry in
the one object.

2. The system of claim 1, wherein the memory manager includes:

an erasing element configured to remove the selected table entry from the
table after the memory manager stores the association in the one object.

3. The system of claim 1, wherein the memory manager includes:

a memory allocator configured to allocate additional memory space to the
one object to permit the storage of the allocation when the flag of the one object is
determined to be in the predetermined state.

4. The system of claim 1, wherein the memory manager includes:

an object storage unit configured to initially store the objects in the
memory with insufficient memory space for storage of allocations.

5. The system of claim 1, wherein the memory manager includes:

an object storage unit configured to initially store the objects in the
memory with sufficient memory space for storage of allocations.

6. The system of claim 5, wherein the memory manager further includes:

a relocating unit configured to remove the memory space from the objects
when no allocation has been stored in the objects after a predetermined period of

time.

WO 99/67711 PCT/US99/13895

-12-

7. The system of claim 1, wherein the memory manager includes:

a garbage collector configured to periodically perform relocating garbage
collection functions by which the garbage collector relocates the objects stored in
the memory.

8. The system of claim 7, wherein the garbage collector includes:

a space allocator configured to allocate additional memory space to the one
object upon object relocation when the flag of the one object is determined to be in
the predetermined state.

9. A computer-implemented method for representing associations in an
object-oriented programming system including a memory storing a table with a
plurality of entries and storing a plurality of objects having headers, each of the
headers storing a flag, the method comprising the steps of:

storing associations corresponding to ones of the objects as table entries in the
table;

setting the flags in the headers of the corresponding objects to a predetermined
state;

periodically determining a state of the flags; and

writing the associations from the table entries into the corresponding objects when
the flags of the corresponding objects are determined to be in the predetermined state.

10. The method of claim 9, further comprising the step of:

initially storing the objects in the memory with insufficient memory space for
storage of associations.

11. The method of claim 9, further comprising the step of:

initially storing the objects in the memory with sufficient memory space for
storage of associations.

12. The method of claim 11, wherein the initially storing step includes the
substep of:

removing the memory space when no association has been stored in the
objects after a predetermined period of time.

13. The method of claim 12, wherein the associations storing step includes the

substep of:

WO 99/67711 PCT/US99/13895
13-

storing the associations in the table only if the memory space has been

removed.

14. The method of claim 9, wherein the writing step includes the substep of:
allocating additional memory space in the corresponding objects to permit
the writing of the associations.

15. The method of claim 9, wherein the object-oriented programming system
further includes a garbage collector that periodically performs relocating garbage
collection functions by which the garbage collector relocates the objects stored in the
memory, and wherein the determining and writing steps are part of the relocating
garbage collection functions performed by the garbage collector.

16. The method of claim 15, wherein the writing step includes the substep of:

allocating additional memory space in the objects for storage of the
associations upon object relocation when the flags of the objects are determined to
be in the predetermined state.

17. A computer program product for representing associations in an object-
oriented programming system including a memory containing a table with a plurality
of entries and containing a plurality of objects having headers, each of the headers
storing a flag, the computer program product comprising:

an association storage module configured to store associations corresponding to
the objects as table entries in the table;

a flag setting module configured to set the flags in the headers of the objects to a
predetermined state when the objects have associations stored in the table;

a flag checking module configured to periodically determine a state of the flags;
and

an association writing module configured to write the associations from the table
entries into the corresponding objects when the flags of the corresponding objects are
determined to be in the predetermined state.

18. The computer program product of claim 17, further comprising:

an object storage module configured to initially store the objects in the memory

with insufficient memory space for storage of associations.

WO 99/67711 PCT/US99/13895

-14-

19. The computer program product of claim 17, further comprising:

an object storage module configured to initially store the objects in the memory
with sufficient memory space for storage of associations.

20. The computer program product of claim 19, wherein the object storage
module includes:

a space removal module configured to remove the memory space when no
association has been stored in the objects after a predetermined period of time.

21. The computer program product of claim 20, wherein the association
storage module includes:

a storing module configured to store the associations in the table only if the
memory space has been removed.

22. The computer program product of claim 17, wherein the association
writing module includes:

a memory space allocating module configured to allocate additional
memory space in the corresponding objects to permit the writing of the
associations.

23. The computer program product of claim 17, further comprising:

a garbage collector configured to periodically perform relocating garbage
collection functions by which the garbage collector relocates the objects stored in the
memory, the garbage collector executing the flag checking and the association writing
modules as part of the relocating garbage collection functions.

24. The computer program product of claim 23, wherein the garbage collector
includes:

a memory space allocator configured to allocate additional memory space
in the objects for storage of the associations upon object relocation when the flags
of the objects are determined to be in the predetermined state.

25. A memory comprising:

a first area configured to store a plurality of objects, each of the objects including a
header storing a flag;

a second area configured to store a plurality of associations corresponding to the

objects stored in the first area, the flags in the headers of the objects being set to a

WO 99/67711 PCT/US99/13895

-15-

predetermined state when the associations corresponding to the objects are stored in
the second area; and

a virtual machine configured to store the associations in the second area, the
virtual machine periodically performing garbage collection functions by which the
virtual machine determines a state of the flags in the headers of the objects stored in
the first area, when the flags are determined to be in the predetermined state, the
virtual machine writes the associations from the second area into the corresponding
objects in the first area.

26. A system that represents associations in an object-oriented programming
environment, comprising:

a memory configured to store a virtual machine and a plurality of objects, each of
the objects including a header having a flag and an area for storing an association, the
flag being set to a first state when an association is stored in the association area and
to a second state when no association is stored in the association area, the virtual
machine being configured to insert associations into the association areas of the
objects and to set the corresponding flags to the first state; and

a memory manager configured to periodically determine a state of the flags in the
object headers, when the flag of one of the objects is determined to be in the second
state, the memory manager removes the association area from the one object.

27. A method for representing associations in an object-oriented programming
system including a memory containing a virtual machine and a plurality of objects
having headers, the method, executed by the virtual machine, comprising the steps of:

storing an object in the memory with an area in the object header for storing a flag
and an area for storing an association;

setting the flag to a first state when no association is stored in the association area
of the object, and to a second state when an association is stored in the association
area of the object;

periodically determining a state of the flag; and

removing the association area from the object when the corresponding flag is

determined to be in the first state.

WO 99/67711 PCT/US99/13895

-16-

28. Inan object-oriented programming system including a memory containing
a table configured to store a plurality of entries, an object area storing a plurality of
objects having headers, each of the headers storing a flag, and a virtual machine, the
virtual machine comprising:
an association storage component configured to store associations corresponding
to the objects as table entries in the table;
a flag setting component configured to set the flags in the headers of the objects to
a predetermined state when the objects have associations stored in the table; and
a garbage collector configured to periodically determine a state of the flags, and to
write the associations from the table entries into the corresponding objects when the
flags of the corresponding objects are determined to be in the predetermined state.
29. A method that represents associations in an object-oriented programming
environment, comprising the steps of:
creating a new object;
storing the new object in a memory;
setting a flag in a header of the new object to a first predetermined state;
storing an association for the new object in a table;
setting the flag in the header of the new object to a second predetermined state;
and
periodically performing garbage collection functions, including the substeps of
determining a state of the flag in the header of the new object,
relocating the new object to another location in the memory and adding
sufficient space for storage of the association when the flag is determined to be in
the second predetermined state,
removing the association from the table, and
writing the association in the relocated object.
30. A system for representing associations in an object-oriented programming
environment, comprising:
means for storing a table with a plurality of entries;
means for storing a plurality of objects having headers, each of the headers storing

a flag;

WO 99/67711 PCT/US99/13895

-17-

means for storing associations corresponding to ones of the objects as table entries
in the table;

means for setting the flags in the headers of the corresponding objects to a
predetermined state when associations for the objects are stored in the table;

means for periodically determining a state of the flags; and

means for writing the associations from the table entries into the corresponding
objects when the flags of the corresponding objects are determined to be in the
predetermined state.

31. A system that represents associations in an object-oriented programming
environment, comprising:

means for storing an object with an area in a corresponding object header that
stores a flag and an area that stores an association;

means for setting the flag to a first state when no association is stored in the
association area of the object, and to a second state when an association is stored in
the association area of the object;

means for periodically determining a state of the flag; and

means for removing the association area from the object when the corresponding
flag is determined to be in the first state.

32. A system that represents associations in an object-oriented programming
environment, comprising:

means for creating a new object;

means for storing the new object in a memory, the new object having a header that
stores a flag;

means for setting the flag in the header of the new object to a first predetermined
state;

means for storing an association for the new object in a table;

means for setting the flag in the header of the new object to a second
predetermined state when an association for the new object is stored in the table; and

means for periodically performing garbage collection functions, including

means for determining a state of the flag in the header of the new object,

WO 99/67711 PCT/US99/13895

-18-

means for relocating the new object to another location in the memory and
adding sufficient space for storage of the association when the flag is determined
to be in the second predetermined state,

means for removing the association from the table, and

means for writing the association in the relocated object.

PCT/US99/13895

WO 99/67711

1/7

046} ———|

\| 0501

Ndo

H3TT0OHINOD
LdNYH3LNI

A
osel -/

Y3TI0OHLINOD
sng

4

0sci |\

<«——016}
0064 l/ 0851 —
X N\
y3ldvav HITIOHLINOD Y3 TIO¥INOD H3TIOULINOD
NOILVOINNINWOD 03aIA YING 3ISNOW ANV QYVOgAIN
Lt »
/I 0591 | 0091
A 4 \ 4 \ 4 \ 4
sSNg
I\4 A A
00€1 ﬁ
mm,_._%mw__mZoo HITIOHINOD YATIONINOD le
. < |\~ WYY INILSAS
\ A A 0SLi
0051 _/ 0S¥L | 0obL / 4
ook —/
3IANa
SiSIq QFXI4 3AINA WOY D JAI¥A FLLINSIA
y 'y S
0161 |\A 0otL |\4 | OLPL |\A 000t
O
_ »

051 oLbL ozvL S —\ mu _ H_

HITIOHLINOD
AHJONWIN

A

ooci l\

WO 99/67711

2/7

2000
/—-

PCT/US99/13895

Runtime System

/—2100

/— 2200

2120 /— 2140
N 7

Java Virtual

Machine Garbage

Collector
Applications

/— 2320 /— 2340
¥ ¥
Obiject Data Table
Memory Memory

/—— 2300

FIG. 2

WO 99/67711
2320 —
Y
Object Memory
3100 —\
Object 1
3200 —\
Object 2
3300 —\
Object 3
3400 —\
Free Space

FIG. 3

PCT/US99/13895

3/7

/— 3100
— 3120

/ < Header /]

/
/
Pid Flag
s
P s 3160 —j
- p | — 3140
Data
_______ 3380 —~ e 3300
| Association |
3320
Header / o
3360 —
N \\ Flag
AN
A \

N | — 3340

N 'q

AN Data
AN
AN
AN
AN
AN

WO 99/67711 PCT/US99/13895
4/7
2340 \
4140 4120
K/_ ya 4100
"4
Pointer Association F‘/‘
/— 4200
Pointer Association
/— 4300
Pointer Association
/— 4400
Pointer Association
4500
Pointer Association r/‘
/— 4600
Pointer Association

FIG. 4

WO 99/67711 PCT/US99/13895

5/7

Object Creation Activity

‘ 5100

Create new object

l 5200

Store new object in memory without space for %
association and set flag in object's header to indicate
that there is no association for object

Record association for new object?

5400

Store association in table and /n/
set pointer to identify new object

l 5500

Set flag in header of new object to indicate that 4
association for object is stored in table

FIG. 5

WO 99/67711 PCT/US99/13895

6/7

Memory Management Activity

For each object stored in memory

6100

6200

Does the

Yes object's flag indicate that
association for object is stored
- in table?
6300
Relocate object %
6400
Relocate object and alloce}te. space 4
to accommodate association
Y 6500
Remove association from table //
l 6600
Store association in object and set flag to indicate /1/
that association is stored in object

FIG. 6

WO 99/67711 PCT/US99/13895

7/7

Program Execution Activity

7100

Execute program(s) Y

Retrieval of association required?

7300

Check flag of object o

Yes
Does flag indicate that
association is stored in table?

7500

Obtain association from object /
7600

b—> Obtain association from table v

FIG. 7

INTERNATIONAL SEARCH REPORT

Inte “‘ional Application No

PCT/US 99/13895

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F12/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

column 2, 1line 17 - line 43

A MAYES A ET AL: "Implementing Associations 1,9,17,
between Objects" 25-32
MICROPROCESSING AND MICROPROGRAMMING,
vol. 40, no. 10,

1 December 1994 (1994-12-01), page 811-814
XP004014261

ISSN: 0165-6074
page 811

A US 5 423 043 A (FITZPATRICK GREGORY P ET 1,9,17,
AL) 6 June 1995 (1995-06-06) 25-32

-/—=

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

‘&" document member of the same patent family

Date of the actual completion of the intemational search

13 October 1999

Date of mailing of the international search report

20/10/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL ~ 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Nielsen, O

Form PCT/ASA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Int tional Application No

PCT/US 99/13895

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation ot document, with indication,where appropriate, of the relevant passages Relevant to claim No.

A AGESEN O ET AL: "GARBAGE COLLECTION AND 1,9,17,
LOCAL VARIABLE TYPE-PRECISION AND LIVENESS 25-32

IN JAVA TM VIRTUAL MACHINES"
ACM SIGPLAN NOTICES,
vol. 33, no. 5, 1 May 1998 (1998-05-01),
pages 269-279, XP000766276

ISSN: 0362-1340
page 269

Fom PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Inte “jonal Application No

PCT/US 99/13895

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5423043 A 06-06-1995 NONE

Fom PCT/ASA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

