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The present invention provides a method and appara-
tus for tessellating three-dimensional spline surfaces, which
are separated into columns having a series of subpatches,
into shards. This is accomplished by undertaking a series
of evaluations upon each of the subpatches of a selected
column. The intermediate results of such evaluations are
stored within caches. Such evaluations include continuity
between subpatches, visibility of subpatches and granular-
ity for discretization of the subpatches. Once the evalu-
ations are completed, a grid which holds the discretized
points of each subpatch, is computed by dynamic selec-
tion of an algorithm. Thereafter, any crack between sub-
patches of the selected column or the selected column and
the previously selected column are removed. Ultimately,
the previously selected column is rendered for illustration.
Each of the columns is handled in the same manner so as
to ultimately render a set of adjacent columns that form the
two-dimensional representation.
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TESSELLATION SYSTEM

COPYRIGHT NOTIFICATION
Portions of this patent application contain materials that are
subject to copyright protection. The copyright owner has no
objection to the facsimile reproduction by anyone of the patent
document or the patent disclosure, as it appears in the Patent and
Trademark Office patent file or records, but otherwise reserves all
copyright rights whatsoever.

CROSS-REFERENCE TO RELATED PATENT APPLICATION
This patent application is related to the patent application entitled Object
Oriented Framework System, by Debra L. Orton, David B. Goldsmith,
Christopher P. Moeller, and Andrew G. Heninger, filed 12/23/92, and assigned
to Taligent, the disclosure of which is hereby incorporated by reference.

FIELD OF THE INVENTION
This invention generally relates to a system which converts three-
dimensional surfaces into two-dimensional illustrations, and more particularly,
to a system which economically converts three-dimensional spline surfaces into
a series of shards that represent a two-dimensional figure.

BACKGROUND OF THE INVENTION

Tessellation is the process of decomposing a three-dimensional curved
surface into small discrete triangles which are referred to as shards. The size of
each shard is determined by the screen space projection of the representation.

Tessellation refers to the process of breaking a high level surface
description, such as a curved surface, mesh or fractal, into simple two-
dimensional representations. A tessellator for a particular type of geometry
contains routines for separating that particular geometry into renderable shards.

Samples are actual points on the surface of an object which is being
tessellated. Each sample is one of three types of points: (i) a three-dimensional
point on the surface, (ii) a normal, and (iii) a parametric coordinate of the object.
Device specific samples contain additional information such as color and fixed
point screen coordinates. A shard is formed by simply linking a set of three

samples for a given area of a surface.

Current graphic systems undertake a complex and lengthy process,
usually involving the large amounts of computation, in order to convert a three-
dimensional surface into a two-dimensional display. This follows since current
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methods employ approaches that result in the creation and utilization of
different and redundant code for various geometric primitives. Such graphic
systems also may depict cracks or require costly computationally intensive
techniques to remove the cracks between different areas of the same surface
areas and between similar surfaces which are joined together. Thus, the prior
art that applicant is aware of provides a graphic system that is inefficient for
rendering two-dimensional representations from three-dimensional surfaces.

SUMMARY OF THE INVENTION

The present invention overcomes the aforementioned deficiencies of the
prior art by providing a method and apparatus for converting three-
dimensional surfaces into two-dimensional representations through the
formation and execution of specified conversion programs.

The present invention consists of a system that converts three-
dimensional spline surfaces, which are separated into columns having a series
of subpatches, into shards. This is accomplished by undertaking a series of
evaluations upon each of the subpatches of a selected column. The intermediate
results of such evaluations are stored within caches. Such evaluations include
continuity between subpatches, visibility of subpatches and granularity for
discretization of the subpatches. Once the evaluations are completed, a grid
which holds the discretized points of each subpatch, is computed by dynamic
selection of an algorithm. Thereafter, any crack between subpatches of the
selected column or between the selected column and the previously selected
column are removed. Ultimately, the previously selected column is rendered for
illustration. Each of the columns is handled in the same manner so as to
ultimately render a set of adjacent columns that form the two-dimensional

representation.

The invention also provides a method for removing portions of a surface
that is either facing away from a viewer or outside of the display screen. This
method only requires the examination of the basic surface specification.

Unlike the methods employed by the prior art, the present invention
renders a two-dimensional representation that is free of cracks and redundant

operations.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a block diagram of a computer system in accordance with the

present invention;
Figure 2A illustrates a two-dimensional illustration of a NURB having

twelve subpatches in accordance with the subject invention;
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Figure 2B illustrates the surface parameter space of a NURB surface
having twelve subpatches in accordance with the subject invention;

Figure 3A illustrates a two-dimensional surface with control points and a
control mesh in accordance with the subject invention;

Figure 3B illustrates a two-dimensional surface with a shard, discretized
point, grid and subpatch in accordance with the subject invention;

Figure 4 illustrates a flowchart of the logic operation of the present
invention.

Figure 5 illustrates a three-dimensional surface with its accompanying
control mesh;

Figure 6 illustrates adjacent tessellation grids of different densities before
crack prevention occurs in accordance with the present invention; and

Figure 7 illustrates adjacent tessellation grids of different densities after
crack prevention has occurred in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION
COMPUTER SYSTEM

A representative hardware environment is depicted in Figure 1, which
illustrates a suitable hardware configuration of a workstation 40 in accordance
with the present invention. The workstation 40 has a central processing unit 10,
such as a conventional microprocessor, and a number of other units
interconnected via a system bus 12. The illustrated workstation 40 shown in
Figure 1 includes a Random Access Memory 14 (RAM), a Read Only Memory 16
(ROM), an I/O adapter 18 for connecting peripheral devices such as disk units
to the bus 12, a user interface adapter 22 for connecting a keyboard 24, a mouse
26, a speaker 28, a microphone 32, and/or other user interface devices such as a
touch screen device (not shown) to the bus 12. The workstation 40 may also
have a communications adapter 34 for connecting the workstation 40 to a data
processing network 30 and a display adapted 36 for connecting the bus 12 to a

display device 38.
INPUT PARAMETERS

The present invention operates on Non-Uniform Rational B-Spline
(hereinafter "NURB") surfaces. The tessellator operates on NURB surfaces. A
NURB surface is defined by the formula:

z_oz;o ij ,ku)B],(v)
2:02”0 ij ,k(u 1’ v)

F(u,v)
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The variables u and v denote the parameters of the surface. The variables
Vv, and w, ; represent the nxm array of control points and rational weights,

respectively. The functions B, ,(u),B;,(v) are the B-spline blending functions of
order k and I having knot vectors {u,}’*;™" and {vq}["’:‘[{”‘, respectively.

The present invention operates by dividing each NURB surface into
subpatches. Each NURB surface is divided into subpatches by the positioning
of the knot vectors. A subpatch is defined as the parametric interval in the knot
vector extending from u; to uj+] (where uj < uj41) and extending from vj to vj4]
(where vj < v{4+1).

For instance, a NURB surface may have a knot vector in u of

{0,0,0,1,1,2,3,3,3} and a knot vector in v of {0,0,0,1,2,344,4]. Referring to Figure
2A, such a NURB surface is illustrated. The resulting twelve subpatches are
referred to with reference numerals 200, 202, 204, 206, 208, 210, 212, 214, 216,
218, 220, and 222. It should be noted that a parametric discontinuity, such as
discontinuity 230, can only occur at subpatch boundaries.

Referring to Figure 2B, the surface parameter space of the NURB surface is
graphically illustrated. Since the knot vector in u reaches four, five knot vectors
are formed in parallel to the u vector. Accordingly, four rows of subpatches are
formed in perpendicular to the u vector, that is, in the v direction. The four rows
of subpatches across in the v direction have intervals between 0 and 1,1 and 2, 2
and 3, and 3 and 4. In contrast, four knot vectors are formed in perpendicular to
the v vector direction since the knot vector in v reaches three. This translates
into the formation of three columns of subpatches in perpendicular to the v
vector, that is, in the u direction. The resulting three columns of subpatches
across the u direction have intervals between 0 and 1, 1 and 2, and 2 and 3. The
combinations of four rows and three columns yields the aforementioned twelve
subpatches.

In addition to the surface input parameters, the present invention also
accepts the following input parameters: (a) the resolution of the display screen;
(b) a three-dimensional transformation matrix to convert the three-dimensional
surface coordinates into two-dimensional screen coordinates; (c) clipping
information to determine if a three-dimensional coordinate will be outside of the
two-dimensional screen display area; and (d) a flag indicating whether or not
backfacing portions of surfaces may be culled.
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GENERAL LOGIC OPERATION

The present invention operates by analyzing the three-dimensional
surface in a number of steps. First, a column of subpatches is selected.
Columns are selected from left to right in the parameter space of the surface.
Second, each subpatch within the column is analyzed. The result of the
analysis is the computation of a set of grids which correspond to the set of
subpatches within the column. A grid is a rectangular array of discretized
points on a surface. A crack is a separation or gap between a mesh of shards. A
shard is a triangular portion of a surface with a set of vertices defined by a set of
discretized points on the surface. The set of grids are subsequently removed of
any: (i) cracks as between each subpatch in the column, and (ii) cracks as
between the selected column and the previously selected column (the column to
the left of the currently selected column). Since the present invention generates
columns of grids from left to right, a particular column of grids can only be
drawn when its neighboring column(s) have been computed. Thus, after
computation of the grids for the selected column, the previous column of gridsis -
drawn. Thereafter, the adjacent right column of subpatches is selected and the

entire process is repeated.
Figure 3A illustrates a two-dimensional surface with control points

and a control mesh and Figure 3B illustrates a two-dimensional surface with a
shard, discretized point, grid and subpatch in accordance with the subject
invention. The control points 300 and 302 define the dimensions of the control
mesh 310 and the control mesh facets 320. Examples of subpatches are also
provided at 330. A shard is presented at 340 and is defined by a set of
discretized points 342. A grid of discretized points is also illustrated at 350.

Referring to Figure 4, a flowchart of the logic operation of the present
invention is illustrated. Initially, as indicated by logic block 400, caches are
allocated for storing intermediate results. Thereafter, as indicated by block 402,
an interval in the u direction is selected. Intervals in the u direction are selected
from left to right, that is, in order in which they appear from the origin of the u
vector. For instance, the NURB surface shown in figures 2 and 3 would first be
selected and analyzed with respect to the interval between 0 and 1. Such
interval contains subpatches 200, 202, 204 and 206. The NURB surface would
subsequently be selected and analyzed with respect to the interval between 1
and 2, and then ultimately with respect to the interval between 2 and 3.

Once a column composing an interval in the u direction has been selected, |
each interval in the v direction which exists within the selected interval in the u
direction is analyzed. Accordingly, a subpatch within the selected column is
selected in incremental order from the v vector. This is denoted by block 408. For
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instance, subpatch 200 of the NURB surface shown in figures 2 and 3 would
first be selected and analyzed when the interval in the u direction between 1 and
2 of the NURB surface has been selected. Subsequently, subpatches 202, 204
and 206, in that order, would be analyzed. Hence, the selection of subpatches is
a nested loop within the selection of an interval in the u direction.

The selected subpatch is first analyzed to determine whether the subpatch
is visible. That is, determination is made as to whether (i) the subpatch is
backface culled, or (ii) whether the subpatch is clipped from the display. This is
indicated by block 410. An affirmative determination of backface culling or
clipping leads the flow of control to block 408 wherein a subsequent subpatch is
selected and thereafter analyzed.

When it is determined that the selected subpatch is not backface culled or
clipped, then, the flow of control leads to further analysis of the already selected
subpatch by block 412 through block 428. Block 412 represents a determination
of granularity for the discretization of the selected subpatch. Once granularity is
determined, the continuity of the subpatch with its adjacent subpatch within the
selected column is determined. This is indicated by block 414. Continuity is
determined as between the selected subpatch and the adjacent subpatch in the v
direction. In other words, continuity is determined between the selected
subpatch and the next subpatch to be selected within the logic of block 408.
Upon a determination of continuity, the cache basis functions of the subpatch
are determined as indicated by block 416.

Still further analysis of the selected subpatch includes determination of (i)
the existence of a high granularity of discretization as indicated by block 418,
and (ii) the position of the subpatch with respect to the edges of the surface as
indicated by block 424. A determination of a high granularity of discretization
directs that the grid of discretized points for the subpatch be computed by a
forward differencing algorithm. Such is indicated by block 422. In contrast, a
determination that the granularity of discretization is low results in the grid of
discretized points of the subpatch being determined by a direct evaluation
algorithm. This is denoted by block 420.

Once the grid of discretized points of the selected subpatch has been
computed, either by forward differencing or direct evaluation, a determination
of the position of the subpatch with respect to the edges of the surface is
undertaken. This is indicated by block 424. If the subpatch is on the edge of the
surface, then the edge is computed independently as indicated by block 426 and
control passes to function block 428. If no portion of the subpatch is determined
to be along the surface, then the flow of control leads directly to block 428.
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Block 428 calls for the sealing of all cracks existing between the grid
formed from the selected subpatch and the grid formed from the previously
selected subpatch. That is, the sealing of any crack as determined by block 414
is implemented. Thereafter, the flow of control returns to block 408 for selection
of a subsequent subpatch within the interval selected by block 402.

Once each subpatch within the column selected by block 402 has been
analyzed, the selected interval is determined for continuity as between itself and
the adjacent interval in the u direction that was previously selected and
analyzed. This is indicated by block 404. For instance, the interval in the u
direction between 2 and 3 of the NURB surface, as illustrated in figures 2 and 3,
would be analyzed for continuity as between it and the interval in the u
direction between 1 and 2.

After a determination of continuity between the selected column and the
previously selected column, all determined cracks are sealed. This is indicated
by block 424. Since the previously selected column has now been removed of
cracks shared with both of its adjacent columns, the column of grids for the
previously selected column is drawn. In addition, the column of grids just
computed now becomes the previous column with regard to future analysis
upon a newly selected column. This is indicated by block 430. Thereafter, the
flow of control is remanded to block 402 wherein an adjacent column in the u
direction is selected for analysis.

Since the tessellator processes the subpatches one interval at a time, crack
prevention and output of the first column can only occur when at least two
columns are generated. It follows that the output is always one column behind
the computation or generation of a column of grids. Accordingly, the previously
generated column of grids, for which a rendering now exists, is flushed as
indicated by block 440.

DETAILED LOGIC OPERATION OF THE PRESENT INVENTION

Various applications invoke the present invention for tessellation of
surfaces. Three dimensional modeling and computer automated design
("CAD") applications are examples of applications that invoke a the present
invention. Such applications form a control mesh defining a three-dimensional
surface that is sought to be tessellated.

Referring to Figure 5, a three-dimensional surface is illustrated with its
control mesh. The three-dimensional surface 500 has a control mesh which has
frontal facet 502, rear facet 504, and side facet 506. Frontal facet 502 of the
control mesh is composed of lower triangle 510 and upper triangle 512. Rear
facet 504 of the control mesh has lower triangle 514 and upper triangle 516.
Side facet 506 of the control mesh has lower triangle 518 and upper triangle 520.
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Upon receiving input parameters, the present invention allocates various
information within caches. The caches are employed to store intermediate result
of various evaluations. The following caches are formed. First, a cache of integer
breakpoint intervals which are the indices into the knot vectors that mark the
boundaries between the subpatches is formed. This avoids subsequent
determinations of subpatch boundaries. Second, caches for the basis functions
of the splines in u and v, and their derivatives are also formed. Since the basis
functions are constant across the surface of a particular value of u or v,
redundant computation is avoided by formation of this cache. Third, a cache is
formed to retain the transformed control points of one subpatch. This cache will
be utilized for subsequent culling and clipping tests. Fourth, a cache is formed to
retain two columns of computed grids. Each grid is composed of the discretized
points of a subpatch. The shards, for a particular subpatch, are then rendered
from the discretized points of the grid which correspond to the subpatch.

Once all the caches are formed, the present invention transforms all of the
surface control points by the three-dimensional transformation matrix.
Thereafter, the present invention selects a first interval in the u direction. The
first interval is in essence a column. Each subpatch of the selected column is
then analyzed to ultimately generate a column of subpatches with no cracks as
between the subpatches of the column.

The present invention initially analyzes each subpatch to determine if the
subpatch is visible. A subpatch is visible unless it is backface culled or
completely clipped from the display screen. Backface refers to portions of the
surface which are facing away from a viewer after the surface has been
transformed for viewing on the display.

The evaluation of backfacing is carried out by an algorithm that examines
portions of the control mesh for backfacing elements. The existence of
backfacing is determined by initially inspecting the k x I grid of control points
that defines the particular subpatch. The triangles of each set of adjoining
control points are then examined with respect to backfacing. In the event that
all of the triangular facets of a particular control mesh are backfacing, then the
entire subpatch is regarded as backfacing. Consequently, that particular control
mesh will not be rendered if backfacing surfaces are to be culled.

During the backfacing analysis of the control mesh facets, two flags are
kept. One flag is set to true if any one of the control mesh facets are determined
to be backfacing. When any one of the control mesh facets are backfacing, a
lower level rendering code must perform backfacing analysis upon each
individual shard of the subpatch associated with the facet. The second flag is
set to true when all facets of a control mesh are backfacing. When all of the
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facets are determined to be backfacing, the entire subpatch is ignored if
backfacing surfaces are not to be rendered.

After the present invention has undertaken the backfacing analysis, the
control points of each subpatch are compared to the clipping fustrum for a
desired viewing perspective. An algorithm is employed to determine if the
convex hull for a portion of the surface is outside the bounds of the display
screen. In the event that the bounding box enclosing the usable display area is
not within the bounds of the display screen, then the subpatch is clipped and
thus not rendered. As with backfacing evaluations, the present invention
identifies and recalls the clipped subpatches so as to avoid redundant tests on
individual shards for subsequent renderings.

Subpatches that are determined to be invisible, whether because of being
backface culled or completely clipped from the display screen, are denoted by an
appropriate flag. The flagged subpatches are not further analyzed with respect
to discretization and shading.

After all invisible subpatches are determined, a determination of
granularity for discretization is undertaken. Granularity refers to the density of
discretized points in the grid. Thus, if the subpatch appears large on the display
screen and the subpatch is highly curved, it is likely that the granularity will be
high. Conversely, if the surface is relatively small and flat, the granularity will
be low.

The present invention makes a granularity determination by examining
the magnitude of the second derivative of the surface in both the u and v
directions. The measurement of magnitude is taken in a number of places to
find the maximum degree of curvature. This parameter is employed as the
number of discrete grid samples to be generated for the subpatch. A grid is then
allocated for the subpatch that is capable of storing the discretized points.

Upon a determination of granularity, a continuity analysis is performed
with regard to each subpatch in the selected column. Each subpatch is
analyzed with respect to each of its neighboring subpatch in the column for
continuity. The continuity is determined by examining the knot vector in the u
and v parameters. The results obtained from the continuity examination are
employed during the process of crack prevention to provide for a correct
formulation of the seams between the subpatches of a column.

Where the number of rows or columns of control points exceeds the order
of the surface in the u or v direction, such surface must be rendered in multiple
segments. Each segment is an individual polynomial curve. These segments

are joined together with different continuities, which are referred to by the
symbol Cp,. The variable n refers to the order of the continuity. A change in
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position is a Cg discontinuity; thus a Cq discontinuity is a break in the curve. A
change in tangent is a C1 discontinuity; thus a C1 discontinuity is an abrupt
change in the slope of a curve. A change in speed is a C discontinuity; thus a
Cp discontinuity is a change in the speed.

Surfaces having a Bézier knot vector must be treated in a different fashion
than other surfaces. This results since a knot vector may indicate a Cy joint even

though the control points are co-linear. In this instance, the subpatches should
be smoothly joined and the joint marked as Cp continuous. The continuity of

the joint is used to guide the crack suppression.

After determining whether the subpatch possessed a high or low
granularity, the grid for selected subpatch is computed by either of two
algorithms. Initially, the caches for the spline basis value are initialized for the
particular subpatch in accordance with the knot vector of the spline. If the large
number of samples is required, then a forward differencing algorithm is
undertaken. Specifically, forward differencing is employed when the number of
samples in the u or v direction, as determined by the granularity measurements,
are greater than two times the order of the direction (where k and ! are the orders.
of the u and v surfaces, respectively). Thus, if the granularity measurements
determines that the number of samples in u is greater than 2k, or the number of
samples in v is greater than 2k, then the forward differencing algorithm is
employed. Otherwise, direct evaluation algorithm is employed.

The forward differencing algorithm initially evaluates the k x [ points of
the subpatch so as to form an array of forward difference values. The points of
the array are generated by evaluating a surface column in the v direction.
Subsequent columns of points are obtained by forward differencing the forward
difference values of the evaluated surface column.

The present invention generates normal vectors from the control mesh by
averaging the normals from the triangles surrounding a particular point. The
normals of the edges of the surface are, however, computed independently by
direct evaluation.

Upon computation of the grid by selection and application of the
appropriate algorithm, a determination of whether the subpatch lies on the
perimeter of the surface is undertaken. This determination is undertaken to
prevent an equivalent edge of two adjacent subpatches from tessellating an
equivalent edge differently. Two edges are equivalent if their control points, knot
vectors and orders are the same. Thus, the sampling density for all subpatches
on the edge of a surface are computed independently.

A final step in the present invention is crack prevention wherein cracks
are removed. In the event that the knot vector indicates the existence of a C
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discontinuity (a surface break), no crack prevention is undertaken and the
discontinuity is denoted by a flag. Similarly, C1 discontinuities are denoted by a

flag so that the code which is implemented to remove cracks ignores these
discontinuities. Otherwise, the C( and C1 discontinuities would be removed to
produce an incorrect rendering.

Cracks of each subpatch within a selected column are initially removed.
Thereafter, the cracks between the selected column and the previously selected
column are determined and removed. |

Cracks occur in a rendering when two adjacent subpatches are sampled |
at different densities. To prevent the cracks, the present invention matches each
point of the less dense grid with the points of the dense grid. Points of the more
dense grid which are unable to be matched are forced to remain on the line
between the edges of the grids.

Referring to Figure 6, adjacent tessellation grids of different densities are
illustrated before crack prevention occurs. The edge line 650 which separates
the edges of the two grids contains thirteen points. The edge line 650 contains a
top shared end point, a bottom shared end point and a shared mid-point, which |
are referred to by reference numerals 600, 602, and 604 respectively. Four points |
on the edge line 650, which are referred to by reference numerals 606, 608, 610,
and 612, are the unshared edge points of the less dense grid. Six points on the
edge line 650, which are referred to by reference numerals 614, 616, 618, 620,
622, and 624, are the unshared edge points of the more dense grid.

Referring to Figure 7, adjacent tessellation grids of different densities are
illustrated after crack prevention occurs. After the crack prevention procedure
has been undertaken, four shared points are formed upon the edge line 650.
Namely, points 606, 608, 610, and 612, which were formerly the unshared edge
points of the less dense grid, have been joined with points 614, 618, 620, and
624, which were formerly the unshared edge points of the more dense grid.
Accordingly, joined points 702, 704, 706, and 708 are illustrated. Points 616 and
622 are projected to a line as the unshared edge points of the more dense grid.

Given arrays of points "left" and "right" having "numleft” and "numright”
points, respectively, the following algorithm is employed for eliminating cracks

between these set of points:
procedure linkup (left, right: pt_array_t; numleft, numright: integer);
var 4

i, j, curInd, lastind, minpts: integer;
curDist, ratio: float;
minside, maxside: pt_array_t;
tmp: point_t;

begin
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if numleft < numright then
begin
ratio := (numright - 1.0) / (numleft - 1.0);
minside := left;
maxside := right;
minpts := numleft;
end
else
begin
ratio := (numleft - 1.0) / (numright - 1.0);
minside := right;
maxside := left;
minpts := numright;

end;
curDist := 0.0;
curlnd :=0;

maxside[0] := minside[0];
fori:=1to minpts-1do
begin
curDist := curDist + ratio;
lastInd := curlnd;
curlnd := round(curDist);
for j := lastind + 1 to curind - 1 do
begin
tmp := maxside[j];
ProjectToLine(minSide[i - 1], minSideli], tmp);
maxside[j] := tmp;
end;
maxside[curInd] := minsidel[i];
end;
end;

The crack prevention procedure initially examines the edge line between a
first column of grids, which has only one neighboring column, and a second
generated column. Once the crack prevention examination has been completed
as between the first and second columns, the first column of tessellation grids is
rendered. Thereafter, the third column is generated and the edge line between
the second column and the third column is examined. Once crack prevention
has been completed as between the second and third columns, the second
column of grids is rendered. This continues until all edge lines have been

examined for crack prevention.

In addition to crack prevention between grids, crack prevention
procedures is also employed as between adjacent NURB surfaces. The
procedure for examining cracks between NURB surfaces is similar to the
aforementioned procedure of crack prevention between grids. Since the surfaces
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are rendered independently of one another, it is possible for two adjacent
surfaces that have an identical edge to tessellate the edge differently.

Ultimately, the previously selected column is rendered. This follows since
a column can only be rendered upon generation of itself as well as upon the
generation of adjacent columns. Otherwise, crack prevention between the
adjacent columns could not take place. The last generated column then replaces
the previously generated column for utilization within the evaluation of the next
selected column. The aforementioned process is then repeated upon the next
column selected. Such repetition continues until all columns have been

rendered.
An embodiment of the invention developed by the inventor to render

three-dimensional surfaces is provided below to clarify the detailed logic of the

present invention.

#ifndef _ PIPELINE3D__

#include <Pipeline3D.h>

. #endif

#ifndef _ TESSELATION__
#include <Tesselation.h>

#endif

#ifndef _ PRSPLINEROUTINES__
#include "prSplineRoutines.h”
#endif

#ifndef _ STDLIB__

#include <StdLib.h>

#endif

// for gprintf only:

#ifndef _ RUNTIME_ _

#include <RunTime.h>

#endif

#ifndef _ MATH__

#include <Math.h> / / For fabs
#endif

#ifndef _ STORAGE__

#include <Storageh>  // for tracking memory leaks
#endif '

#ifndef _ KERNELCALLS__
#include <kernelCalls.h> / / For OpusBug()

#endif

#ifndef _ SURFACE3D__

#include <Surface3D.h> // for TGSurface3D
#endif

///11/////// Generic TPipeline3D defs ////////////1/////
TPipeline3D::TPipeline3D( Boolean cullBackFaces )

{
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/1111111177171 // TSampleGrid defs //////////////11//

TGridEdge::TGridEdge()
{
fSamples = NIL;
fEdgeMax = 0;
}
TGridEdge::~TGridEdge()
{
delete fSamples;
fEdgeMax = 0;
}
Boolean TGridEdge::IsSet()

{

)
TSampleGrid:: TSampleGrid()

{

return (fSamples != NIL);

fMaxU = fMaxV = 0;
fSamples = NIL;
J
TSampleGrid::~TSampleGrid()
{
delete fSamples;
fSamples = NIL;
}
//

// Allocate a subgrid of sampled points. If the orginal
/ / storage is too small, extend it.

//

void TSurfaceTessellator::AllocSampleGrid( TSampleGridé& grid, long newV,

long newU )

{

long n = (newV + 1) * (newU + 1);

if (! grid.fSamples)
{

}

else

grid.fSamples = new TSurfaceSample[n];

if ((grid.fMaxU + 1) * (grid.fMaxV + 1) <n)

{

grid.fSamples = (TSurfaceSample *)
realloc( grid.fSamples,

TSurfaceSample ) * n ));

(size_t) (sizeof(
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}
grid.fMaxU = newU;

grid. fMaxV = newV;
)
/////1///// Constructor/Destructor ////////////7/
TSurfaceTessellator:: TSurfaceTessellator( const TGSurface3Dé& surface,
TPipeline3D * tessInfo,
GCoordinate resolution,
GCoordinate ClTolerence,
long minSteps )

register long i, brkPoint;

fTessInfo = tessInfo;
fResolution = resolution;
fC1Tolerence = C1Tolerence;
fMinSteps = minSteps;

// disgorge the surface

fNumPointsU = surface.GetNumberPoints( TGSurface3D::kuDirection );
fNumPointsV = surface.GetNumberPoints( TGSurface3D::kvDirection );
fOrderU = surface.GetOrder( TGSurface3D::kuDirection );

fOrderV = surface.GetOrder( TGSurface3D::kvDirection );
fKnotsU = surface.CopyKnots( TGSurface3D::kuDirection );

fKnotsV = surface.CopyKnots( TGSurface3D::kvDirection );

fPoints = surface.CopyPoints();

// Re-scale the parameter range to 0..1

u0 = fKnotsU[0];

ul = fKnotsU[fNumPointsU];

ulnc = 1.0 / (ul - u0);

for (i = 0; i < fNumPointsU + fOrderU; i++)
fKnotsU[i] = (fKnotsU[i] - u0) * ulnc;

v0 = fKnotsV[0];

v1 = fKnotsV[fNumPointsV];

vinc=1.0 / (vl -v0);

for (i = 0;i < fNumPointsV + fOrderV; i++)
fKnotsV[i] = (fKnotsV[i] - v0) * vInc;

// Flag basis caches as empty
maxGranV = -1; maxGranU = -1;
basisCacheV = basisCacheDV = NIL;

// Temp arrays used for vertical curves, forward diff scratch
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i = max( fNumPointsU, fNumPointsV ) + 1;
temp = new TGRPoint3D[i];
dtemp = new TGRPoint3D[i};

// :

/ / Make a cache for the screen space
// ctl points to do the test.

//
fMeshSubPatch = new TGPoint3D[fOrderU * fOrderV};

/7

/ / Precalculate the breakpoint intervals in U and V
// (should add flags to record c0 discontinuties)
// Size of KV is worst case size.

//

brkPointsU = new long[fNumPointsU + fOrderU];
brkPointsV = new long[fNumPointsV + fOrderV];

brkPoint = FindInterval( fKnotsU[fOrderU - 1], fKnotsU, fNumPointsU,
fOrderU );

numBrksU = 0;

while( fKnotsU[brkPoint] < fKnotsU[fNumPointsU] )

{
brkPointsU[numBrksU] = brkPoint;

brkPoint = FindNextInterval( brkPoint, fKnotsU, fNumPointsU );
numBrksU++;

}

brkPoint = FindInterval( fKnotsV[fOrderV - 1}, fKnotsV, fNumPointsV,
fOrderV );
numBrksV = 0;
while( fKnotsV[brkPoint] < fKnotsV[f{NumPointsV] )
{
brkPointsV[numBrksV] = brkPoint;
brkPoint = FindNextInterval( brkPoint, fKnotsV, fNumPointsV );

numBrksV++;

}
// For caching the basis functions in U

basisCacheU = new GCoordinate[fOrderU + 1};
basisCacheDU = new GCoordinate[fOrderU + 1];

// The forward difference matrix
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deltas = new TGRPoint3D*[fOrderU];
for (i = 0;i < fOrderU; i++)
deltas[i] = new TGRPoint3D[fOrderV];

/7

/ / For each subpatch of the surface, a "subgrid” of points is computed.
// We keep the last column of subgrids around, so any potential cracks
// can be patched up if the two grids are sampled at different densities.

//

lastGrids = new TSampleGrid[numBrksV];
curGrids = new TSampleGrid[numBrksV];  // Calls constructors

/ / Destructor

//

TSurfaceTessellator::~TSurfaceTessellator()

{

register long i;

delete brkPointsU;
delete brkPointsV;
delete temp;
delete dtemp;

delete[numBrksV] curGrids;
delete[numBrksV] lastGrids;
delete fMeshSubPatch;

for (i=0;i < fOrderU; i++)
delete deltas][i];
delete deltas;

for (i = 0; i <= maxGranV; i++)
{
delete basisCacheV[i];
delete basisCacheDV[i];
}
delete basisCacheV;
delete basisCacheDV;

delete basisCacheU;
delete basisCacheDU;

delete fPoints;
delete fKnotsU;
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delete fKnotsV;

l .
////////// Granularity determination //////////////////

//

/ / Determine if the current subpatch of a surface is visible

//
Boolean
TSurfaceTessellator::SubPatchVisible(
long Vbase,
long Ubase,
unsigned longé& clipInCode,
eFrontFace& frontFaceCode )

register long vi, ui;
unsigned long clipCode, outCode = OxFF; /* All out */

TGPoint3D meshPt;
Boolean frontFace, anyFrontFace, allFrontFace;

clipinCode =0; /*Allin*/

for (vi = 0; vi < fOrderV; vi++)
for (ui = 0; ui < fOrderU; ui++)
{

ui)].DivW();

meshPt = fPoints[(Vbase + vi)*fNumPointsU+(Ubase +

clipCode = fTessInfo->GetClippingCode( meshPt );
outCode &= clipCode;
clipInCode | = clipCode;
if (fMeshSubPatch) fMeshSubPatch{vi * fOrderU + ui] =
meshPt;
}

if (! (outCode == 0)) /* if code == 0, then something was visible

*/
return( FALSE );
/ / Determine back/front facing of surface by looking at the

/ / facets formed by the control mesh

allFrontFace = TRUE;
anyFrontFace = FALSE;
// Find plane equations for all facets of the mesh...
for (vi = 0; vi < fOrderV-1; vi++)
for (ui = 0; ui < fOrderU-1; ui++)
{
frontFace = fTessInfo->IsFrontSurface(
fMeshSubPatch[vi * fOrderU + ui],
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fMeshSubPatch[(vi+1) * fOrderU +

ui,
fMeshSubPatch[vi * fOrderU + ui +
11);
allFrontFace = (allFrontFace && frontFace);
anyFrontFace = (anyFrontFace | | frontFace);
frontFace = fTessInfo->IsFrontSurface(
fMeshSubPatch[(vi+1) * fOrderU + ui
+1],
fMeshSubPatch|vi * fOrderU + ui +
11,
fMeshSubPatch[(vi+1) * fOrderU +
ui] );
allFrontFace = (allFrontFace && frontFace);
anyFrontFace = (anyFrontFace | | frontFace);
}
if (allFrontFace) frontFaceCode = TSampleGrid::kAllFront;
else
if (lanyFrontFace) frontFaceCode = TSampleGrid::kAllBack;
else
frontFaceCode = TSampleGrid::kSomeFront;
return( anyFrontFace | | !(fTessInfo->fCullBackFaces) );
)
//
// Find the 2nd derivative, used for computing deviation tolerance
//
GCoordinate

TSurfaceTessellator::GetDerivMag(
- GCoordinate u,

long brkPoint,

long order,

const GCoordinate * const kv,

long rowOrCol, // The row or column index

Boolean rowflag )

const kMaxLocal = 6;
GCoordinate local_bvals[kMaxLocal], local_dvals[kMaxLocal];

GCoordinate * bvals, * dvals;
TGPoint d, cp;
long i;
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if (order > kMaxLocal)

{
bvals = new GCoordinate[order];
dvals = new GCoordinate[order];

bvals = local_bvals;
dvals = local_dvals;

}

/* Note: splinevals should be rigged so that if bvals

* aren't needed (i.e., just use the deriv) then they

* aren't computed.

*/

ComputeSplineValues( u, brkPoint, order, kv, bvals, NULL, dvals );

d = TGPoint::kOrigin;
for (i=0;1i < order; i++)
{
/ / Project the 3D control points to 2D to find the "curvature”
// of the projected surface along this isoline. What should
// this do with W???
if (rowflag)
cp = fTessInfo->DeviceProjection(
fPoints[rowOrCol*fNumPointsU+(brkPoint-i)] );
~else
cp = fTessInfo->DeviceProjection( fPoints[(brkPoint -
i)*fNumPointsU+rowOrCol] );
d.fX += cp.fX * dvals[i];
d.fY += cp.fY * dvals[i];
// d.fW += cp.fW * dvals|i];
}

if (bvals != local_bvals)
| delete bvals;
delete dvals;
:}retum( sqri( d.EX* dfX + dfY *d.fY ) );
//

// Determine the step size for a given breakpoint interval on the curve.
// This uses a crude bounds on the second derivative. Needs More Thought.

//
long
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TSurfaceTessellator::GetGran(
long brkPointV,
long brkPointU,
Boolean rowflag )

GCoordinate * kv;
long brkPoint, index, numRows, row, i, order;

GCoordinate u, mag, maxMag;

kv = (rowflag ? fKnotsU : fKnotsV),
if (rowflag)
{

order = fOrderU;

brkPoint = brkPointU;

index = brkPointV - (fOrderV - 1);
~ numRows = fOrderV;

else

order = fOrderV;

brkPoint = brkPointV;

index = brkPointU - (fOrderU - 1);
numRows = fOrderU;

}
maxMag = -1e30;

/* Need special case for twisted bi-linears... */
if (order == 2) /* Linear, interval is flat */
return( 2 );

for (row = 0; row < numRows; row++)
for (i=0; i < order-2; i++)

{

if (order == 3)
u = kv[brkPoint};
else
u = kv[brkPoint] + (kv[brkPoint + 1] - kv[brkPoint]) * (i /
(order-3));
mag = GetDerivMag( u, brkPoint, order, kv, index + row,
rowflag );

maxMag = max( mag, maxMag );

| |
i = (long)sqrt( maxMag / fResolution );
i = max( fMinSteps ? fMinSteps : (rowflag ? fOrderU : fOrderV),i);
return(i);
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//

// Like GetGran, but only measures along the edge. Assuming edges that meet
// are exactly the same, measuring just the edge curve should ensure like
// edges Tessellate the same, and thus don't crack.
//
long
TSurfaceTessellator::GetEdgeGran(
long brkPoint,
long rowOrCol,
Boolean rowflag )

GCoordinate mag, backmag;
long gran, order;

order = rowflag ? fOrderU : fOrderV;
/* Special case for linear */
if (order == 2)

return 2;

if (rowflag)
mag = GetDerivMag( fKnotsU[brkPoint], brkPoint, fOrderU,
fKnotsU, rowOrCol, TRUE );
else
mag = GetDerivMag( fKnotsV[brkPoint], brkPoint, fOrderV,

fKnotsV, rowOrCol, FALSE );

// 2nd derivative is constant for quadratic and less, but may
// change for cubic and larger. Need to measure both ends in
// case two opposing curves are next to each other.
backmag = 0.0;
if (order >=4)
{
if (rowflag)
backmag = GetDerivMag( fKnotsU[brkPoint+1L], brkPoint,
fOrderU, fKnotsU, rowOrCol, TRUE );
else
backmag = GetDerivMag( fKnotsV[brkPoint+1L], brkPoint,
fOrderV, fKnotsV, rowOrCol, FALSE );

}

mag = fmax( mag, backmag );

gran = (long)sqrt( mag / fResolution );

gran = max( rowflag ? fOrderU : fOrderV, gran );
return gran;

}
[1117177717177171/17///] Evaluation ///////////////]]/
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// |
// Given a position (step index, actually) along the subpatch in U,

// compute a curve with orderV control points going down. The control
// points (and derivs) are placed in temp (dtemp). Points that lie
// on this curve are also on the surface.
//
void
TSurfaceTessellator:ComputeVCurve(
long stepU,
long deriv )

GCoordinate u;
register long stepV, j;

u = ul + stepU * ulnc;
ComputeSplineValues( u, curBrkU, fOrderU, fKnotsU, basisCacheU,
(deriv ? basisCacheDU : NULL), NULL );
: /* Find control points of a curve going down surface from those going
across */

j = curBrkV-(fOrderV-1);

if (deriv)
for (stepV = 0; stepV < fOrderV; stepV++)
{
BasisMul( curBrkU, fOrderU, basisCacheU,
fPoints+(j + stepV)*fNumPointsU,

temp[stepV + il );
BasisMul( curBrkU, fOrderU, basisCacheDU,
fPoints+(j + stepV)*fNumPointsU,
dtemp[stepV +i] );
}
else

for (stepV = 0; stepV < fOrderV; stepV++)
BasisMul( curBrkU, fOrderU, basisCacheU,
fPoints+(j + stepV)*fNumPointsU,

temp([stepV +j} );
}

//
// Allocate the cache for the basis functions. If it's already

// there, make sure it's big enough, enlarging if not.
//
void
TSurfaceTessellator:: AllocBasisCache(
GCoordinate ** & cachePtr,
long order,
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long newSteps,
long& maxSteps )

long i;

if (! cachePtr)
{
cachePtr = new GCoordinate*[newSteps + 1];
for (i = 0; i <= newSteps; i++)
cachePtr]i] = new GCoordinate[order];

}

else /* must enlarge cache */

{
cachePtr = (GCoordinate **) realloc( cachePtr,
(size_t)
(sizeof( GCoordinate * ) * (newSteps + 1)) );
for (i = maxSteps+1L; i <= newSteps; i++)
cachePtr[i] = new GCoordinate[order];

}

maxSteps = newSteps;

}
////1/111/1/1////// Crack Prevention ///////////1//11]/

//
// Return TRUE if the points rp0, rpl & rp2 are colinear "enough”.

//

Boolean

TSurfaceTessellator:: TestColinear(
const TGRPoint3Dé& rp0,
const TGRPoint3D& rpl,
const TGRPoint3Dé& rp2 )

const GCoordinate EPSILON = 1.0e-12;
TGPoint3D p0, p1, p2;

TGPoint3D perp, vec, vecl;
GCoordinate dist0, dist1, costheta;

p0 = rp0.DivW();
pl = rpl.DivW();
p2 = rp2.DivW();

vec0 = p0 - p1;
vecl =p2-pl;
/*

* Normalize by hand. If the vectors are zero length, then return true
* (co-located == co-linear)

*/
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dist1 = vecl.Normalize();
if (distl < EPSILON)
return( TRUE );

dist0 = vec0.Normalize();

if (dist0 < EPSILON)
return( TRUE );

costheta = vec0.DotProduct( vecl );

if (fabs( costheta + 1.0 ) > fC1Tolerence)
return( FALSE );

else
return( TRUE );

}

//

// This is a sad story. StitchEdges needs to know if a curve is

// cl or c2 at a seam between subgrids. If it's c2, then both the

// normals and the points on the seam must be aligned. If it's

// just c1 continous, then only the points should be aligned.

// Unfortunatly, many piecewise Bézier curves are cl according to
// the knot vector, but really c2 because the control points are

// colinear. This needs to be checked for so that StitchEdges can

// do the right thing.

//

long

TSurfaceTessellator::IsReallyC1(
long brkPtU,
long brkPtV,
Boolean rowflag )

{

long i;

Boolean isColinear = TRUE;

if (rowflag)
{
for (i = 0; isColinear && i < fOrderV; i++)
isColinear = TestColinear( fPoints[(brkPtV-
i)*fNumPointsU+(brkPtU - 1)],
fPoints[(brkPtV-
i)*fNumPointsU+(brkPtU)],
fPoints[(brkPtV-
i)*fNumPointsU+(brkPtU + 1)] );
}

else

{
for (i = 0; isColinear && i < fOrderU; i++)
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isColinear = TestColinear( fPoints[(brkPtV -
1*fNumPointsU+(brkPtU-i)],
fPoints[(brkPtV)

*fNumPointsU+(brkPtU-i)],
fPoints[(brkPtV +

1)*fNumPointsU+(brkPtU-i)] );
}
return( isColinear ?2:1);
}

//
// Given a line defined by firstPt and lastPt, project midPt onto

// that line.

//

void

TSurfaceTessellator::ProjectToLine(
const TGPoint3D& firstPt,
const TGPoint3D& lastPt,
TGPoint3Dé& midPt )

TGPoint3D base, v0, vim;
GCoordinate fraction, denom;

base = firstPt;

v0 = lastPt - base;

vm = midPt - base;

denom = v0.DotProduct( v0 );

fraction = (denom == 0.0) ? 0.0 : (v0.DotProduct( vin ) / denom);

midPt = base + v0 * fraction;

)
//

// The side with more samples (the "maxSide") has its points
// set to the side with fewer samples (the "minSide"). Points
// on the maxSide that fall in between are projected onto the line
// defined by the two nearby minSide points.
//
void
TSurfaceTessellator::StitchSide(
TSurfaceSample * minSide,
TSurfaceSample * maxSide,
long minStep,
long maxStep,
long minPts,
GCoordinate ratio,
long cont )
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GCoordinate curDist = 0.0;
long lastind, curlnd = 0;
register long i, j;
/* .
*If CO, don't do this. If C1, just copy point. If C2, copy normal too.
*/
if (! cont) /* C0 discontinous means two separate surfaces... */

return;
if (cont >= 2)
/* C2 continous, so force normals, parameters, etc. to be the same */
*maxSide = *minSide;
else
{
maxSide->fPoint = minSide->{Point; /* Just C1 continous,
don't copy normals */
maxSide->fUV = minSide->fUV;
)

for (i = 1; i <= minPts; i++)
{
curDist += ratio;
lastind = curlnd;
curlnd = (long) (curDist + 0.5);
for (j = lastind+1; j < curlnd; j++)

ProjectToLine( minSide[(i- 1) * minStep].fPoint,
minSide[i * minStep].fPoint,
maxSidelj * maxStep].fPoint );

if (cont >= 2)

maxSide[curInd * maxStep] = minSide[i * minStep};
else
{

maxSide[curlnd * maxStep].fPoint = minSide[i *

minStep].fPoint;

}

maxSide[curInd * maxStep].fUV = minSide[i * minStep].fUV;

}

//

/ / Stitch together a column (or two) of subgrids. Since the subpatchs of

// a surface can be sampled at different rates, the samples may not connect
// at the edges. If this is the case, then the edge of a grid with more

// samples than its neighbor has its points forced onto the edge defined

// by that neighbor. Much like the crack prevention in subdivision.

//

void
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TSurfaceTessellator::StitchEdges(
- TSampleGrid * curcol,

TSampleGrid * lastcol,
long colsize )

TSampleGrid * top, * bottom, * left, * right;
long ¢, minPts, minStep, maxStep, cont;
GCoordinate ratio;

TSurfaceSample * minSide, * maxSide;

top = curcol;
bottom = curcol;
bottom++;

/>(-
* Stitch tops to bottoms
*/

for (c = 1; ¢ < colsize; c++)

{
if ((top->flsVisible) && (bottom->flsVisible) && (top->fMaxU !=
bottom->fMaxU))

{
cont = top->fContV;

if (top->fMaxU < bottom->fMaxU)
{
/* Note: All these assignments can go away, and just
be passed ’
* straight to StitchSide. But for now, this makes
debugging easier.
*
/
minSide = &(top->fSamples[top->fMaxV]);
maxSide = bottom->fSamples;
minStep = top->fMaxV + 1;
maxStep = bottom->fMaxV + 1;
minPts = top->fMaxU;
ratio = (double)bottom->fMaxU / (double)top->fMaxU;

else

minSide = bottom->fSamp]es;
- maxSide = &(top->fSamples[top->fMaxV]);
minStep = bottom->fMaxV + 1;
maxStep = top->fMaxV +1;
minPts = bottom->fMaxU;
ratio = (double)top->fMaxU / (double)bottom->fMaxU;
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StitchSide( minSide, maxSide, minStep, maxStep, minPts,
ratio, cont );
}
top++;
bottom-++;

}

if (! lastcol)
return;

left = lastcol;
right = curcol;
for (c = 0; ¢ < colsize; c++)

{
if ((left->fIsVisible) &é& (right->fIsVisible) && (left->fMaxV != right-

>fMaxV)) -
{
minStep = 1;
maxStep = 1;
cont = left->fContU;
if (left->fMaxV < right->fMaxV)
{
minSide = &(left->fSamples{left->fMaxU * (left->fMaxV
+ 1)]);
maxSide = right->fSamples;
minPts = left->fMaxV;
ratio = (double)right->fMaxV / (double)left->fMaxV;
| .
else
{
minSide = right->fSamples;
maxSide = &(left->fSamples|[left->fMaxU * (left-
>fMaxV + 1)]);

minPts = right->fMaxV;
ratio = (double)left->fMaxV / (double)right->fMaxV;
}
StitchSide( minSide, maxSide, minStep, maxStep, minPts,
ratio, cont );
}
left++;
right++;
}

}
/ / Interpolate samples along the edge

static void
Samplelnterp(
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const TSurfaceSampleé& p0,
const TSurfaceSampleé& p1,
GCoordinate u,
TSurfaceSampleé: result )

result.fNormal = (p1.fNormal - p0.fNormal) * u + p0.fNormal;
result.fTangentU = (p1.fTangentU - p0.fTangentU) * u + p0.fTangentU;
result.fTangentV = (pl.fTangentV - p0.fTangentV) * u + p0.fTangentV;

}
//

// If two adjacent surfaces that meet have exactly the same control points
// and knot vectors along the edge, they should Tessellate to the same point,
// even if the over-all surfaces require different Tessellations along those

/ / subpatches. To ensure this, the granularity along the edge is measured

/ / separately. If it's different, then the edge is discretized and triangulated
// to the internal Tessellation.

// :

void TSurfaceTessellator: AddEdge(
TSampleGrid& grid,
/* TGridEdge::*/eEdgelnd edge,
long gran,
long rowOrCol,

Boolean rowflag )

GCoordinate Inc, val;

long maxorder = max( fOrderU, fOrderV );
TGCoordinateStash bvals( maxorder );
register long i, j, samplnd;
TSurfaceSample * edgePts;

GCoordinate gridStep, gridPos;
TGRPoint3D p;

edgePts = new TSurfaceSample[ gran + 1 |;
if (rowflag)
{
Inc = (ul - u0) / ((double) gran);
gridStep = ((double) grid.fMaxU) / ((double) gran);
gridPos = 0.0;
for (i =0; i <= gran; i++)

{

val =u0 +1* Inc;
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ComputeSplineValues( val, curBrkU, fOrderU, fKnotsU, bvals
);

fNumPointsU}, p );
edgePts[i].fPoint = p.DivW();
// We already have points on the curve from computing the

BasisMul( curBrkU, fOrderU, bvals, &fPoints[rowOrCol'*

subgrid
// points. These already have normals, tangents, etc. Rather

than
// compute a whole new set of normals, we interpolate the

ones already
// available on the subgrid.

samplnd = (rowOrCol) ? grid.fMaxV : OL;
if ((long)gridPos == grid.fMaxU)

{
edgePts|i].fNormal = grid.fSamples[sampInd +

grid.fMaxU * (grid.fMaxV + 1L)].fNormal;
edgePts[i].fTangentU = grid. fSamples[sampInd +

grid.fMaxU * (grid.fMaxV + 1L)].fTangentU;
edgePts[i].fTangentV = grid.fSamples[sampInd +

grid.fMaxU * (grid.fMaxV + 1L)].fTangentV;
}

else
Samplelnterp( grid.fSamples[sampInd + ((long)
gridPos) * (grid.fMaxV + 1)],
grid.fSamples[sampInd + ((long) gridPos
+1) * (grid.fMaxV + 1)],

gridPos - (long)gridPos,
edgePts[i} );

edgePts[i]. AdjustNormal();
edgePts[i]fUV.X = val;
edgePts[i].fUV.fY = rowOrCol ? v1: v0;

gridPos += gridStep;

else

Inc = (vl -v0) / ((double) gran);
gridStep = ((double) grid.fMaxV) / ((double) gran);
gridPos = 0.0;

for (i =0; 1 <= gran; i++)

{
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val=v0+1*Inc;

ComputeSplineValues( val, curBrkV, fOrderV, fKnotsV, bvals

/ / Fetch the column of control points
for (j = 0; j < fNumPointsV; j++)
templj] = fPoints[j * fNumPointsU + rowOrCol]

BasisMul( curBrkV, fOrderV, bvals, temp, p );

edgePts[i].fPoint = p.DivW();
/* Grab normal from existing samples rather than recompute

it*/
samplnd = (rowOrCol) ? grid. fMaxU * (grid.fMaxV + 1) : 0;
if (long)gridPos == grid.fMaxV)
{
: edgePts[i].fNormal = grid.fSamples[sampInd +
grid.fMaxV].fNormal;

edgePts[i].fTangentU = grid.fSamples[sampInd +
grid.fMaxV].fTangentU; '
edgePts[i].fTangentV = grid.fSamples[sampInd +
grid.fMaxV].fTangentV;
}
else
Samplelnterp( grid.fSampIes[sampInd + ((long)
gridPos)],
grid.fSamples[samplInd + ((long) gridPos
+ 1),
gridPos - (long)gridPos,
edgePts[i] );
edgePts[i]. AdjustNormal();
edgePts[i].fUV.fX = rowOrCol ? ul : u0;
edgePts[i].fUV.fY = val;

gridPos += gridStep;
}
}
grid.fEdges[edge].fSamples = edgePts;
grid .fEdges[edge].fEdgeMax = gran;

}
//17/117/17177771/7//77//// Normal Computations
[111777777717711777

//
// If a normal has collapsed to zero (dist == 0.0) then try
// and fix it by looking at its neighbors. If all the neighbors
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// are sick, then re-compute them from the plane they form.
// If that fails too, then we give up...
//
void
TSurfaceSample::FixNormals(
TSurfaceSampleé& s0,
TSurfaceSample& s1,
TSurfaceSampleé s2 )

Boolean goodnorm;

long i, j, ok;

double dist;

TSurfaceSample * V[3];
TGPoint3D norm;

V[0] = &s0; V[1] = &s1; V[2] = &s2;

/* Find a reasonable normal */
for (ok = 0, goodnorm = FALSE; (ok < 3L) && !(goodnorm = (V[ok]->fDist
> 0.0)); ok++);

if (! goodnorm) /* All provided normals are zilch, try and invent
one */ '

{
norm.fX = 0.0; norm.fY = 0.0; norm.fZ = 0.0;

for (i=0;i<3L;i++)
{
j =1+ 1L) % 3L;
norm.fX += (V[i]->fPoint.fY - V[j]->fPoint.fY) * (V[i]->fPoint.fZ
+ V[j]->fPoint.fZ);
. norm.fY += (V[i}->fPoint.fZ - V[j]->fPoint.fZ) * (V[i}->fPoint.fX
+ V[j]->fPoint.fX);
norm.fZ += (V[i]->fPoint.fX - V[j]->fPoint.fX) * (V[i}->fPoint.fY
+ V[j}->fPoint.fY);
)
dist = norm.Normalize();
if (dist == 0.0)
return; /* This sucker's hopeless... */
for(i=0;i<3;i++)
{
VJ[i]->fNormal = norm;
V[i]->fDist = dist;

else /* Replace a sick normal with a healthy one nearby */
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for (i=0;i<3;i++)
if ((i != ok) && (V][i]->fDist == 0.0))
V[i]->fNormal = V]ok}->fNormal;
}
return;
}
//

// Normalize the normal in a sample. If it's degenerate,
/ / flag it as such by setting the dist to 0.0

//

void

TSurfaceSample::AdjustNormal()

{

/* If it's not degenerate, to the normalization now */
fDist = fNormal.Normalize();
if (fDist < 0.005) /* VALUE NEEDS FIGURING OUT... */
fDist = 0.0;
}

//

// Given the point's w and the tangents du and dv, compute
// the normal, taking care of the w's (uses division rule
// of derivatives).

//
void
TSurfaceTessellator::RatNormal(
const TGRPoint3D& r,
const TGRPoint3D& du,
const TGRPoint3Dé& dv,
TSurfaceSample * samp )
{
GCoordinate wsqrdiv;
/>(-

* If coords are rational then the division rule must be carried
* out. Possible optimization: do test at a higher level

*/

if ((r.fW == 1.0) && (du.fW == 0.0) && (dv.fW == 0.0))

{
samp->fTangentU = du.DropW();

samp->fTangentV = dv.DropW();

else

wsqrdiv =1.0 / (r.fW * r.fW);
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samp->fTangentU.fX = (r.fW * du.fX - du.fW * r.fX) * wsqrdiv;
samp->fTangentU.fY = (r.fW * du.fY - du.fW * r.fY) * wsqrdiv;
samp->fTangentU.fZ = (r.fW * du.fZ - du.fW * r.fZ) * wsqrdiv;

samp->fTangentV.fX = (r.fW * dv.fX - dv.fW * r.fX) * wsqrdiv;
samp->fTangentV.fY = (rfW * dv.fY - dv.fW * r.fY) * wsqrdiv;
samp->fTangentV.fZ = (rfW * dv.fZ - dv.fW * r.fZ) * wsqrdiv;
}
samp->fNormal = samp->fTangentV.CrossProduct( samp->fTangentU );
samp->AdjustNormal();
}
//

// Forward diff can't easily find the normals, so compute them
// from the mesh of points generated. The normals around the
/ / edge of the mesh are found via evaluation.
//
void
TSurfaceTessellator::ComputelnteriorNormals( TSampleGrid& sg )
{
register long i, j;
TSurfaceSample * c00, * c10, * c11, * c01;
TGPoint3D vO0, v1;

/* Compute the normals of the plane formed by each
* square in the grid.

*/

/* <00 --- c01
*/
c01 = &(sg.fSamples[sg.fMaxV+1]); /* I /1 A */
c10 = &(sg.fSamples[1]); /* L/ | vl */
cll = &(c01[1]); /* c10 --- c11 */

/* <v(0

*/
for (i=1;i <= sg.fMaxU; i++)
{
for (j = 1;j <= sg.fMaxV; j++)
{
v0 = c10->fPoint - c11->fPoint;
v1 = c01->fPoint - c11->fPoint;
c11->fNormal = v1.CrossProduct( v0 );
c01++; c10++; c11++;

}

c01++; c10++; c11++;

/3(-



WO 94/17486 PCT/US94/00194

-36-

* Find the normal for each sample by averaging the normals
* of the four planes surrounding it.

*/

c00 = &(sg.fSamples[sg.fMaxV+2]);
c01 = &(c00[sg.fMaxV+1]);

c10 = &(c00[1]);

c11 = &(c01[1]);

for (i=1;1 < sg.fMaxU; i++)
{
for (j = 1;j < sg.fMaxV; j++)
{
c00->fNormal = (c00->fNormal + c01->fNormal + c10-
>fNormal + c11->fNormal)
*0.25;
c00->AdjustNormal();
c00++; c01++; c10++; cl1++;
}
c00++; c01++; c10++; c11++;
c00++; c01++; c10++; c11++;

}
//

// The interior normals for forward differencing are approximated via
// plan normals, but we can't do this for normals at the edges (not enough
// facets to average). So they are computed directly via evaluation.
/7
void
TSurfaceTessellator::ComputeEdgeNormals()
{

TGRPoint3D rp, rdu, rdv;

TSurfaceSample * smplPtr;

long stepU, stepV;

for (stepU = 0; stepU <= granU; stepU++)

{

ComputeVCurve( stepU, 1);

smplPtr = &(curGrids[baseV].fSamples|[stepU * (granV + 1)]);

/* Do whole column at the left and right edge */
if ((stepU ==0) | | (stepU == granU))
{

for (stepV = 0; stepV <= granV; stepV++)

{
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BasisMul( curBrkV, fOrderV, basisCacheV|stepV],
temp, rp );

BasisMul( curBrkV, fOrderV, basisCacheV|stepV],
dtemp, rdu );

BasisMul( curBrkV, fOrderV, basisCacheDV({stepV],
temp, rdv );

RatNormal( rp, rdu, rdv, smplPtr );

smplPtr++;

}

else /* Compute top and bottom in between the edges */

BasisMul( curBrkV, fOrderV, basisCacheV][0], temp, rp );

BasisMul( curBrkV, fOrderV, basisCacheV[0], dtemp, rdu );

BasisMul( curBrkV, fOrderV, basisCacheDV/[0], temp, rdv );

RatNormal( rp, rdu, rdv, smplPtr );

smplPtr = &(smplPtr[granV]);

BasisMul( curBrkV, fOrderV, basisCacheV[granV], temp, rp );

BasisMul( curBrkV, fOrderV, basisCacheV[granV], dtemp,
rdu);

BasisMul( curBrkV, fOrderV, basisCacheDV[granV], temp,
rdv );

RatNormal( rp, rdu, rdv, smplPtr )

}

}

////1/////////] Forward Differencing //////////////////
//

// Take an orderV x orderU set of samples in deltas and

// turn them into a forward difference matrix for the surface.

//

void

TSurfaceTessellator::ComputeDeltas()

{
long i, j, stepU, stepV;

/* First, find the deltas in V for each Ku sample of them */

for (stepU = 0; stepU < fOrderU; stepU++)
{
for (stepV = 0; stepV < fOrderV; stepV++)
temp|[stepV] = deltas[stepU][stepV];

for (i=1;1 < fOrderV;i++)

{
for (j=0;j < fOrderV -i;j++)
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templj].£X = templ[j + 1].£X - temp[j].£X;
templ[j].fY = temp[j + 1].fY - temp][j].fY;
templj].fZ = temp|j + 1].f{Z - templj].fZ;
templj].fW = temp][j + 1].fW - templ[j].fW;
}

deltas[stepU][i] = temp][0];

}
/ *
* Now make the "forward differences of forward differences”
* used to step down the patch. (See Cook's "Patch Work" paper)..
*/
for (stepV = 0; stepV < fOrderV; stepV++)
{

- for (stepU = 0; stepU < fOrderU; stepU++)

temp|stepU] = deltas[stepU][stepV];

for (i=1;1 < fOrderU; i++)
[

for (j =0;j < fOrderU -i; j++)

{

templj].fX = temp]j + 1].£X - temp[j].£X;

templj].fY = temp]j + 1].fY - temp[j].fY;
templj].fZ = templj + 1].fZ - temp][j].fZ;

temp[j].fW = templj + 1].fW - temp][j].fW;
}
deltas[i][stepV] = temp[0];

}

//

/ / Forward difference one column of the patch

/]

void

TSurfaceTessellator::ForwardStepCol(
TSurfaceSample * sptr,
GCoordinate u )

long i,j, stepV;
GCoordinate v = v0;
/* Now forward difference the surface */

for (i=0;i < fOrderV; i++)
templi] = deltas[0][i];
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sptr->fPoint = temp->DivW();
sptr->fUV.fX = u;
sptr->fUV LY = v;

sptr++;

for (stepV = 0; stepV < granV; stepV++)

{
/* Step down the patch */

for (j=0;j < fOrderV - 1;j++)

{
templj].£X += temp][j + 1.£X;
templ[j].fY += temp][j + 1].fY;
templ[j].fZ += temp]j + 1].{Z;
templ[j].fW += templj + 11.fW;

)

v += ving;

sptr->fPoint = temp->DivW();
sptr->fUV.fX = u;
sptr->fUV.fY = v;

sptr++;

}

/* Step across patch (note we only use granU-1 steps) */

for (stepV = 0; stepV < fOrderV; stepV++)
for (j=0;j < fOrderU - 1; j++)
{
deltasfj][stepV].fX += deltas[j + 1][stepV].fX
deltaslj][stepV].fY += deltas[j + 1][stepV].fY
deltaslj][stepV].fZ += deltas|j + 1][stepV]. fZ
deltas[j][stepV].fW += deltas|j + 1][stepV].fW;

}
//
// Triangulate between an edge and the subgrid.

//
void
TSurfaceTessellator::DrawSealedEdge( const TSampleGrid& grid,
/* TGridEdge::*/ eEdgelnd

edge,
{

long gridBase )

register long i, curInd;
register GCoordinate curDist, ratio, nudge;



WO 94/17486 PCT/US94/00194
-40-

TSurfaceSample * sp[3];

long ind2, ind3;

long maxEdge = grid.fEdges[edge].fEdgeMax;
TSurfaceSample * edgeSamp = grid.fEdges[edge].fSamples;
TSurfaceSample * gridSamp = &(grid.fSamples[gridBase]);

long gridSkip = (edge < TGridEdge:kEdgeOv) ? 1 : grid.fMaxV +1;
long maxGrid = (edge < TGridEdge:kEdge0v) ? grid.fMaxV : grid.fMaxU;

if (maxEdge > maxGrid )

nudge = 1.0 / (maxEdge + 1L);
else

nudge = 1.0 / (maxGrid + 1L);

if ((edge == TGridEdge::kEdgeOu) | | (edge == TGridEdge:kEdgelv))
{

ind2=1; // Goofy indexing because triangle orientation
switches '
ind3 =0; // if we're on the left or bottom.
}
else
{
ind2 = 0;
ind3=1;

}

ratio = ((GCoordinate) maxEdge) / ((GCoordinate) maxGrid);
curDist = ratio + nudge;
curlnd = (long) curDist;

for (i = 1; i <= maxGrid; i++)

{
sp[0] = &(gridSamp](i - 1) * gridSkip]);
sp[1 + (1-ind2)] = &(edgeSamp[curlnd]);
sp[1 + (1-ind3)] = &(gridSampli * gridSkip]);
TSurfaceSample::FixNormals( *(sp[0]), *(sp[1]), *(sp[2]) );
fTessInfo->RenderShard( sp, 3, grid.fClipInCode, grid.fFrontFace );
curDist += ratio;
curlnd = (long) curDist;

}

ratio = ((double) maxGrid) / ((double) maxEdge);

curDist = ratio - nudge;

curlnd = (long) curDist;

for (i = 1; i <= maxEdge; i++)

{
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sp[0] = &(edgeSampli - 1]);

sp[1 + ind2] = &(gridSamp|curlnd * gridSkip]);

sp[1 + ind3] = &(edgeSampli]);

fTessInfo->RenderShard( sp, 3, grid fClipInCode, grid.fFrontFace );
curDist += ratio;

curlnd = (long) curDist;

}

/ / Clear edge now so it's not re-used if it's not needed
delete grid.fEdges[edge].fSamples;

grid fEdges[edge].fSamples = NIL;

grid fEdges[edge].fEdgeMax = 0;

// Draw the set of samples

//

void

. TSurfaceTessellator::DrawSubGrid( TSampleGrid& samples )

{

register long ij;

TSurfaceSample * c00, * c10, * 11, * c01;

TSurfaceSample * sp[3];

/*TGridEdge::*/eEdgelnd edge;

long startU, endU, startV, endV, nextRowBump, extraSamples;

startU = 0;

startV = 0;

endU = samples.fMaxU;
endV = samples.fMaxV;
nextRowBump = 1;

//

Orientation of the points is thus:

c00 = samples.fSamples; // <00 ~--
c01

c01 = &(samples.fSamples[samples.fMaxV+1]); // | /|

c10 = &(samples.fSamples[1]); // L/ |

c11 = &(c01[1]); // 10 ---cll

/7

/ / 1f edges must be triangulated separately, adjust the loop
// parameters.

//
if (samples.fEdges[TGridEdge::kEdgeOu].IsSet())
{

startU++;
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c00 += samples.fMaxV+1; c01 += samples.fMaxV+1;
c10 += samples.fMaxV+1; c11 += samples.fMaxV+1;

}
if (samples.fEdges[TGridEdge: kEdgelu].IsSet())

endU--;

|
if (samples.fEdges[TGridEdge: kEdgeOv].IsSet())

startV++;
nextRowBump++;
c00++; c01++;
c10++; c11++;

)
if (samples.fEdges[TGridEdge::kEdgelv].IsSet())

endV--;
nextRowBump++;

}

// Do device-specific setup (convert to screen coords, etc.)
extraSamples = 0;
for (edge = TGridEdge::kEdgeOu; edge < TGridEdge:kNumEdges; edge++)
if (samples.fEdges[edge].IsSet())
extraSamples += samples.fEdges[edge]. fEdgeMax + 1;

fTessInfo->ReallocDevSamples( (samples.fMaxU + 1) * (samples.fMaxV +

1) + extraSamples );
fTessInfo->PrepareSamples( samples.fSamples, 0,
(samples.fMaxU+1) *

(samples.fMaxV+1),
samples.fClipInCode );

// Triangulate the interior
for (i = startU; i < endU; i++)
{
for (j = startV; j <endV; j++)
{
TSurfaceSample::FixNormals( *c00, *c10, *c01 );
sp[0] = c00; sp[1] = c10; sp[2] = c01;
fTessInfo->RenderShard( sp, 3, samples.fClipInCode,
samples.fFrontFace );
TSurfaceSample::FixNormals( *c10, *c11, *c01 );
sp[0] = c10; sp[1] = c11; // spl2] = c01;
fTessInfo->RenderShard( sp, 3, samples.fClipInCode,
samples.fFrontFace );
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c00++; cO1++; c10++; c11++;

}

for (j = 0; j < nextRowBump; j++)
{
c00++; c01++;
c10++; c11++; // move to next column

}
//
// Seal edges by triangulating the "edge" strips with the
/ / row of points in the grid just in from the edge.
//
long devSampleBase = (samples.fMaxU+1) * (samples.fMaxV+1);
long gridBase;
for (edge = TGridEdge:kEdgeOu; edge < TGridEdge:kNumEdges; edge++)
if (samples.fEdges[edge].IsSet())
{
fTessInfo->PrepareSamples(
samples.fEdges[edge].fSamples,
devSampleBase,
samples.fEdges[edge] fEdgeMax + 1,
samples.fClipInCode );
devSampleBase += samples.fEdges[edge].fEdgeMax + 1;

switch (edge)
{
case TGridEdge::kEdgeOu:
gridBase = samples.fMaxV+1;
break;
case TGridEdge::kEdgelu:
gridBase = (samples.fMaxU-1) * (samples.fMaxV+1);
break;
case TGridEdge::kEdgeQv:
gridBase = 1;
break;
case TGridEdge: kEdgelv:
gridBase = samples.fMaxV-1;
break;
case TGridEdge:kNumEdges:
OpusBug( "Huh? kNumEdges is just here to shut up
Cfront");

|
DrawSealedEdge( samples, edge, gridBase );
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/1177717117 777111717777/ Tessellation ///////////1//1///
//
// Main entry point
//
void
TSurfaceTessellator::Tessellate(Boolean alwaysDirectEvaluate)
{

register long i, stepU, stepV;

long junk;

long disconU, realDisconU = 2, disconV;

GCoordinate u, v;

TGRPoint3D rp, rdu, rdv;

TSurfaceSample * smplPtr;

TSampleGrid * gridPtr;

long edgeGran;

//

// Put the points in the right space (I'd prefer to do this in the

// constructor, but C++ can't call virtual subclass functions from

// constructors. Grrrrrr...)

//
fTessInfo->TransformPoints( fPoints, fNumPointsU * fNumPointsV );
/ * .
* The curve is processed in vertical bands, one for each U interval.
* It's done in this order because it's slightly more natural to do the
* evaluations this way (simply pass rows to CalcLinePt). Each subpatch
* is done individually, to optimize step sizes.
*/
for (baseU = 0; baseU < numBrksU; baseU++)
!

curBrkU = brkPointsU[baseU]};

u0 = fKnotsU[curBrkU]};

ul = fKnotsU[curBrkU + 1];

/* Check discontinuity */
if (baseU < numBrksU - 1)
{

disconU = 1;

while ((disconU < fOrderU) && (fKnotsU[curBrkU + 1 +

disconU] == ul))
disconU++;
disconU = fOrderU - disconU;

} |
for (baseV = 0; baseV < numBrksV; baseV ++)

{
curBrkV = brkPointsV[baseV];
gridPtr = &(curGrids[baseV]);
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/*Don't bother with subpatches that are completely off
screen */

gridPtr->fIsVisible = SubPatchVisible( curBrkV-(fOrderV-1),
curBrkU-(fOrderU-1),
gridPtr->fClipInCode,

gridPtr->fFrontFace );
if (! gridPtr->flIsVisible)
continue;

v0 = fKnotsV[curBrkV];
v1 = fKnotsV[curBrkV + 1}];
/* Check discontinuity */
if (baseV < numBrksV - 1)
{
disconV = 1;
while ((disconV < fOrderV) && (fKnotsV[curBrkV + 1 +
disconV] == v1))
‘ disconV++;
disconV = fOrderV - disconV;
if (disconV == 1)
disconV = IsReallyC1( curBrkU, curBrkV, FALSE

}
if (baseU < numBrksU - 1)

{
if (disconU == 1)
realDisconU = IsReallyC1( curBrkU, curBrkV,
TRUE );
else
realDisconU = disconU;
)
granU = GetGran( curBrkV, curBrkU, TRUE );
granV = GetGran( curBrkV, curBrkU, FALSE );

/* Allocate storage for the grid of generated points */
AllocSampleGrid( *gridPtr, granV, granU );
gridPtr->fContU = realDisconU; /* realDisconU */
gridPtr->fContV = disconV;

smplPtr = gridPtr->fSamples;

/* Pre-compute and stash the basis functions in V */
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if (granV > maxGranV)
{ .
junk = maxGranV;
AllocBasisCache( basisCacheV, fOrderV, granV, junk );
/*HACK!*/
AllocBasisCache( basisCacheDV, fOrderV, granV,
maxGranV );

}

vinc = (v1-v0) / ((double) granV); // Parameterization

increments
' ulnc = (ul - u0) / ((double) granU);

for (stepV = 0; stepV <= granV; stepV++)
{
v =v0 + stepV * vInc;
ComputeSplineValues( v, curBrkV, fOrderV, fKnotsV,
basisCacheV|stepV],
basisCacheDV[stepV], NULL );
}

/’(-
* Some basic timing tests show it takes roughly(!) 2*order

samples before
* the faster speed of forward differencing pays off the cost of

setting

* up the forward difference table (the "deltas"). Thus, if fewer
samples

* are required, the surface is evaluated directly.

*/

u = ul;

if (alwaysDirectEvaluate | | (granU <= fOrderU *2) | |
(granV <= fOrderV * 2))

{
[P DIRECT EVALUATION *#/

for (stepU = 0; stepU <= granU; stepU++)
{

ComputeVCurve(stepU, 1);

v =v(;

for (stepV = 0; stepV <= granV; stepV++)
{
BasisMul( curBrkV, fOrderV,

basisCacheV[stepV], temp, rp );
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BasisMul( curBrkV, fOrderV,

basisCacheV|[stepV], dtemp, rdu );

BasisMul( curBrkV, fOrderV,

basisCacheDV|[stepV], temp, rdv );

}

smplPtr->fPoint = rp.DivW();
smplPtr->fUV £X = u;
smplPtr->fUV.fY = v;
v +=vIng;
RatNormal( rp, rdu, rdv, smplPtr );
smplPtr++;

)

u += ulnc;

}

else /**FORWARD DIFFERENCE™***/

{

computed from.

Kv samples

basisCacheV{stepV],

/x-
* Compute the initial points that the deltas are

* Each subpatch (i.e., one span in U and V) needs Ku *

* to work from.
*/
for (stepU = 0; stepU < fOrderU; stepU++)

{
ComputeVCurve( stepU, 0 );

/* Find points on the surface */

for (stepV = 0; stepV < fOrderV; stepV++)
BasisMul( curBrkV, fOrderV,

temp, deltas[stepU][stepV] );
}

ComputeDeltas();

/* Now forward difference the surface */
for (stepU = 0; stepU <= granU; stepU++)
{

ForwardStepCol( smplPtr, u );

u += ulng;

smplPtr = &(smplPtr[granV + 1]);
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/ *
* Find the normals - interior via averaging facet
normals,
* edges via evaluation. Interior must be done first
because
* it uses the edges as temp storage.
*
/
ComputelnteriorNormals( *gridPtr );
ComputeEdgeNormals();
}
//
. // 1f a subpatch is at the boundary of the surface, then seal
the edge
// of the surface.
/7
if ((baseU == 0)
&& (granV != (edgeGran = GetEdgeGran( curBrkV, 0, FALSE
)
AddEdge( *gridPtr, TGridEdge::kEdge0u, edgeGran, 0,
FALSE); . '

if ((baseU == numBrksU-1)
&& (granV != (edgeGran = GetEdgeGran( curBrkV,
fNumPointsU-1, FALSE ))))
AddEdge( *gridPtr, TGridEdge::kEdgelu, edgeGran,
fNumPointsU-1, FALSE );

if ((baseV == 0)
&& (granU != (edgeGran = GetEdgeGran( curBrkU, 0, TRUE

AddEdge( *gridPtr, TGridEdge::kEdge0v, edgeGran, 0,

if ((baseV == numBrksV-1)
&& (granU != (edgeGran = GetEdgeGran( curBrkU,
fNumPointsV-1, TRUE ))))
AddEdge( *gridPtr, TGridEdge::kEdgelv, edgeGran,
fNumPointsV-1, TRUE );
}

/* Fill in the cracks between the two columns of subgrids, and
* output the previous column. */

StitchEdges( curGrids, (baseU ? lastGrids : NULL), numBrksV );
if (baseU != 0)
{
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gridPtr = lastGrids;
for (i = 0;1 < numBrksV; i++, gridPtr++)
if (gridPtr->flsVisible)
DrawSubGrid( *gridPtr );

}
gridPtr = lastGrids;

lastGrids = curGrids;
curGrids = gridPtr;}
gridPtr = lastGrids; /* Flush the last column */
for (i = 0; i < numBrksV; i++, gridPtr++)
if (gridPtr->fIsVisible)
DrawSubGrid( *gridPtr );

While the invention has been described in terms of a preferred
embodiment in a specific system environment, those skilled in the art recognize
that the invention can be practiced, with modification, in other and different
hardware and software environments within the spirit and scope of the
appended claims.
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CLAIMS
Having thus described our invention, what we claim as new, and desire

to secure by Letters Patent is:

A method for tessellating a surface having a plurality of subpatches,

comprising the steps of: ‘

(a) selecting a column of subpatches;

(b) selecting a subpatch from the selected column of subpatches;

()  determining whether the selected subpatch is visible;

(d) computing a grid of discretized points if the selected subpatch is
visible; and

(¢) removing any cracks between the selected subpatch and a
previously selected subpatch.

A method as recited in claim 1, including the steps of:

(a) removing any cracks between the selected column of grids and a
previously selected column of grids; and

(b) rendering the previously selected column of grids.

A method for tessellating a surface having a plurality of subpatches

organized within columns, comprising the steps of:

(a) selecting a column and a subpatch within the column;

(b)  determining whether the selected subpatch is visible;

()  computing a grid of discretized points for the selected subpatch by
dynamic selection of an algorithm; and

(d) removing any crack between the computed grid and a grid
computed immediately before.

The method as recited in claim 3, including the step of repeating steps (a)
through (e) for each subpatch within the selected column to form a
computed column of grids.

The method as recited in claim 4, including the steps of:

(a) removing any crack between the computed column of grids and a
column of grids computed immediately before; and

(b) rendering the column of grids computed immediately before.
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A method for téssellating a surface having a plurality of subpatches

organized within columns, comprising the steps of:

(a) selecting a column and a subpatch within the column;

(b)  determining whether the selected subpatch is visible;

() computing a grid of discretized points for the selected subpatch by
dynamic selection of an algorithm, the algorithm selection being
dependent upon a determination of granularity; and

(d) removing any crack between the computed grid and a grid
computed immediately before.

A method as recited in claim 4, including the step of repeating steps (a)
through (e) for each subpatch within the selected column so as to form a

computed column of grids.

A method as recited in claim 4, including the steps of:

(@) removing any cracks between the computed column of grids and a
column of grids computed immediately before; and

(b) rendering the column of grids computed immediately before.

A method for tessellating a surface having a plurality of subpatches

organized within columns, comprising the steps of:

(@) selecting a column and a subpatch within the column;

(b)  determining whether the selected subpatch is visible;

() computing a grid of discretized points for the selected subpatch by
selection of either a direct evaluation algorithm or a forward
differencing algorithm, the selection being dependent upon a
granularity value;

(d) removing any crack between the computed grid and a grid
computed immediately before;

(e)  repeating steps (a) through (e) for each subpatch within the selected
column so as to form a computed column of grids;

()’  removing any crack between the computed column of grids and a
column of grids computed immediately before;

(g)  rendering the column of grids computed immediately before; and

(h) repeating steps (a) through (g) for a column adjacent to the selected
column that was not selected.
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A method for tessellating a surface having a plurality of subpatches

organized within columns, comprising the steps of:

(a) selecting a column and a subpatch within the column;

(b) determining whether the selected subpatch is visible;

() computing a grid of discretized points for the selected subpatch by
dynamic selection of an algorithm;

(d) removing any crack between the computed grid and a grid
computed immediately before;

(e)  repeating steps (a) through (e) for each subpatch within the selected
column so as to form a computed column of grids;

()  removing any crack between the computed column of grids and a
column of grids computed immediately before;

(2 rendering the column of grids computed immediately before; and

(h)  repeating steps (a) through (g) for a column adjacent to the selected
column that was not selected.

A method for tessellating a surface having a plurality of subpatches

organized within columns, comprising the steps of:

(a) selecting a column and a subpatch within the column;

(b) determining whether the selected subpatch is visible;

()  computing a grid of discretized points for the selected subpatch by
dynamic selection of an algorithm;

(d) removing any crack between the computed grid and a grid
computed immediately before;

(e)  repeating steps (a) through (e) for each subpatch within the selected
column so as to form a computed column of grids;

(ff  removing any crack between the computed column of grids and a

~ column of grids computed immediately before;

(g rendering the column of grids computed immediately before;

(h) maintaining the grid of columns for the selected column; and

(i)  repeating steps (a) through (h) for a column adjacent to the selected
column that was not selected.

A method for tessellating a surface having a plurality of subpatches

organized within columns, comprising the steps of:

(a) selecting a column and a subpatch within the column;

(b) determining whether the selected subpatch is visible;

()  computing a grid of discretized points for the selected subpatch by
dynamic selection of an algorithm;
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(d) removing any crack between the computed grid and a grid
computed immediately before; and
(e) displaying the rendered surface on a display.

An apparatus for tessellating a surface having a plurality of subpatches,

comprising:

(a) processor means for selecting a column of subpatches;

(b)  processor means for selecting a subpatch from the selected column
of subpatches;

()  processor means for determining whether the selected subpatch is
visible;

(d)  processor means for computing a grid of discretized points if the
selected subpatch is visible; and

(¢)  processor means for removing any cracks between the selected
subpatch and a previously selected subpatch.

An apparatus as recited in claim 13, including:

(a)  processor means for removing any cracks between the selected
column of grids and a previously selected column of grids; and

(b) processor means for rendering the previously selected column of
grids.

An apparatus for tessellating a surface having a plurality of subpatches

organized within columns, comprising:

(a) processor means for selecting a column and a subpatch within the
column;

(b)  processor means for determining whether the selected subpatch is
visible;

(c)  processor means for computing a grid of discretized points for the
selected subpatch by dynamic selection of an algorithm; and

(d) processor means for removing any crack between the computed
grid and a grid computed immediately before.

The apparatus as recited in claim 15, including the step of repeating steps
(a) through (e) for each subpatch within the selected column to form a

computed column of grids.

The apparatus as recited in claim 16, including:
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processor means for removing any crack between the computed

column of grids and a column of grids computed immediately

before; and
processor means for rendering the column of grids computed

immediately before.

An apparatus for tessellating a surface having a plurality of subpatches
organized within columns, comprising:

(a)
()
(©)

(d)

processor means for selecting a column and a subpatch within the
column;

processor means for determining whether the selected subpatch is
visible;

processor means for computing a grid of discretized points for the
selected subpatch by dynamic selection of an algorithm, the
algorithm selection being dependent upon a determination of
granularity; and |

processor means for removing any crack between the computed
grid and a grid computed immediately before.

An apparatus as recited in claim 18, including processor means for
repeating steps (a) through (d) for each subpatch within the selected
column so as to form a computed column of grids.

An apparatus as recited in claim 19, including;:

(a)

(b)

processor means for removing any cracks between the computed
column of grids and a column of grids computed immediately
before; and

processor means for rendering the column of grids computed
immediately before.

An apparatus for tessellating a surface having a plurality of subpatches
organized within columns, comprising:

(a)
(b)
(c)

processor means for selecting a column and a subpatch within the
column;

processor means for determining whether the selected subpatch is
visible;

processor means for computing a grid of discretized points for the
selected subpatch by selection of either a direct evaluation
algorithm or a forward differencing algorithm, the selection being
dependent upon a granularity value;
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processor means for removing any crack between the computed
grid and a grid computed immediately before;

processor means for repeating steps (a) through (e) for each
subpatch within the selected column so as to form a computed
column of grids;

processor means for removing any crack between the computed
column of grids and a column of grids computed immediately
before;

processor means for rendering the column of grids computed
immediately before; and

processor means for repeating steps (a) through (g) for a column
adjacent to the selected column that was not selected.

An apparatus for tessellating a surface having a plurality of subpatches
organized within columns, comprising:

(a)

(&

(h)

processor means for selecting a column and a subpatch within the
column;

processor means for determining whether the selected subpatch is
visible;

processor means for computing a grid of discretized points for the
selected subpatch by dynamic selection of an algorithm;
processor means for removing any crack between the computed
grid and a grid computed immediately before;

processor means for repeating steps (a) through (e) for each
subpatch within the selected column so as to form a computed
column of grids;

processor means for removing any crack between the computed
column of grids and a column of grids computed immediately
before;

processor means for rendering the column of grids computed
immediately before; and

processor means for repeating steps (a) through (g) for a column
adjacent to the selected column that was not selected.

An apparatus for tessellating a surface having a plurality of subpatches
organized within columns, comprising:

(a)

processor means for selecting a column and a subpatch within the
column;
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processor means for determining whether the selected subpatch is
visible;

processor means for computing a grid of discretized points for the
selected subpatch by dynamic selection of an algorithm;
processor means for removing any crack between the computed
grid and a grid computed immediately before;

processor means for repeating steps (a) through (e) for each
subpatch within the selected column so as to form a computed
column of grids;

processor means for removing any crack between the computed
column of grids and a column of grids computed immediately
before;

processor means for rendering the column of grids computed
immediately before;

storage means for maintaining the grid of columns for the selected
column; and ‘
processor means for repeating steps (a) through (h) for a column
adjacent to the selected column that was not selected.

An apparatus for tessellating a surface having a plurality of subpatches
organized within columns, comprising:

(a)
(b)
(©)
(d)

(e)

processor means for selecting a column and a subpatch within the
column;

processor means for determining whether the selected subpatch is
visible; '

processor means for computing a grid of discretized points for the
selected subpatch by dynamic selection of an algorithm;

processor means for removing any crack between the computed
grid and a grid computed immediately before; and

processor means for displaying the rendered surface on a display.
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