(12) STANDARD PATENT

(11) Application No. AU 2011255477 B2

(19) AUSTRALIAN PATENT OFFICE

(54) Title

Bug clearing house

(61)
GO6F 11/30 (2006.01)
GO6F 11/07 (2006.01)
GOG6F 15/16 (2006.01)

Application No:
WIPO No: WO11/146750
Priority Data

Number
61/346,453

Publication Date:
Accepted Journal Date:

Applicant(s)
Google Inc.

Inventor(s)

2011255477

International Patent Classification(s)

G06Q 10/00 (2012.01)
G06Q 50/00 (2012.01)

(22) Date of Filing: 2011.05.19

(32) Date (33) Country
2010.05.19 us

2011.11.24
2015.04.02

Surazski, Jacek;Parks, Jason B.;Duda, Dawid

(74) Agent/ Attorney

Pizzeys, PO Box 291, WODEN, ACT, 2606

(56) Related Art
US 2007/0168343 A1

US 2002/0049962 A1

20117146750 A3 | |11 000 10000 0 0

Q
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date L
24 November 2011 (24.11.2011) PCT WO 2011/146750 A3

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 11/30 (2006.01) G060 50/00(2006.01) kind of national protection available): AE, AG, AL, AM,
GOG6F 11/07 (2006.01) G060 10/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GOG6F 15/16 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
. A DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number:) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
PCT/US2011/037210 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
19 May 2011 (19.05.2011) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (g4) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
61/346,453 19 May 2010 (19.05.2010) Us GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(71) Applicant (for all designated States except US): TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
GOOGLE INC. [US/US]; 1600 Amphitheatre Parkway, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Mountain View, California 94043 (US). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

(72) Inventors; and SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,

(75) Inventors/Applicants (for US only): SURAZSKI, Jacek GW, ML, MR, NE, SN, TD, TG).
[PL/PL]; ul. Rydla 45A/35, PL-30-087 Krakow (PL). Declarations under Rule 4.17:
PARKS, Jason B. [US/US] 4076 Lick Mill Blvd., Santa
Clara, California 95054 (US). DUDA, Dawid [PL/PL];
ul. Do Wilgi 22/63, PL-30-419 Krakow (PL).

(74) Agent: DRAGSETH, John A.; Fish & Richardson P.C.,
P.O. Box 1022, Minneapolis, Minnesota 55440-1022
(US).

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: BUG CLEARING HOUSE

Dev A
User Developer
\ Center Center
112 114
User A npp 2| App 11
Store Manager @ @
07—— oo T pug I
Collector Reporter bevB
ev
User B
Application Center
&é 102
\ 7 S @

User C
104 FIG. 1A 106

(57) Abstract: A computer-implemented system for managing software problem reports includes a registration sub-system to reg-
ister software developers from multiple different developer organizations; an application store that makes a plurality of applica-
tions from a plurality of application developers available for acquisition by members of the public; an application bug tracker pro-
grammed to receive reports of problems with applications distributed using the application store, to receive data regarding the
problems, and to associate the data with a particular application or developer of the particular application; and a report generator
to produce one or more problem reports for a developer that has provided one or more applications, the problem reports including
information about the data regarding the problems relating to particular applications submitted to the application store by the de-
veloper.

WO 2011/146750 A3 1IN0 0000 0O O

Published: (88) Date of publication of the international search report:
26 January 2012

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2011/146750 PCT/US2011/037210

Bug Clearing House

CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority to U.S. Provisional Application Serial
No. 61/346,453, filed on May 19, 2010, entitled “Bug Clearing House,” the entire

contents of which are hereby incorporated by reference.

TECHNICAL FIELD
[0002] This document relates to management and distribution of information

about problems with software applications.

BACKGROUND
[0003] Software development is a difficult business. A prospective software
developer must first train himself or herself in architecting and programming
software. He or she must then stay up-to-date on ever-changing programming
languages and technologies. And he or she must have an idea. The developer then
needs to figure out how to implement the idea through programming within the
resources that are available on the target computing platform, and within their own
time and financial constraints. In addition, he or she needs to have people test the
program in different settings, and make corrections to fix bugs in the program. The
developer must then figure out how to price and distribute the software and get
people interested in it.
[0004] Advanced programming environments helps to resolve some of these
problems — i.e., they make the organization and typing of code more automated . In
addition, the recent advent of on-line app stores for wireless computing devices such

as smart phones and netbooks has made it much easier for small developers to
1

WO 2011/146750 PCT/US2011/037210

market and sell software. Both of these developments have made life better for
software developers and for the people who buy their software. Still, the life of a
software developer is a hard one. For example, it can still be difficult to obtain
feedback from users of a program and to analyze that feedback in an effective
manner. For example, many developers provide an email link with an application by

which customers can provide feedback.

SUMMARY
[0005] This document discusses systems and techniques for managing
reports of problems, or bugs, for software developers, and particularly for software
developers who sell and distribute applications through a third-party on-line app
store for users of wireless mobile computing devices such as smart phones. For
example, a developer may be an individual programmer who is registered with a
system that provides a public app store, so that the developer may upload
applications to the app store for the distribution of the applications to members of the
public who are registered to make purchases from the app store — all in a familiar
and well-known manner. The particular software applications, and/or an operating
system that executes on one or more mobile computing devices, may be
programmed to gather information when there is a problem, or bug (e.g., the
application crashes or freezes, consumes an excessive amount of power, or a user
of a device manually reports a problem or an idea for improving the application), and
may transmit data about the problem to a reporting sub-system that is associated
with the app store and operated by the same organization that operates the app
store.
[0006] The reporting sub-system may correlate each such incoming bug

reporting submission (whether generated automatically by a device or manually by a
2

WO 2011/146750 PCT/US2011/037210

user of the device) with a computer application to which the problem was directed
(e.g., an application that was open and/or the focus of an operating system when a
freeze or crash occurred), and may store information that characterizes the problem.
The information may be stored in a manner so that it is associated with the
application, and by extension, with a developer of the application. When the
developer (which may be the individual who provided the software to the app store,
or an agent of that individual) next logs onto the system, the developer may pull up
reports regarding software applications they have uploaded, where the reports
aggregate all of the data for all the reported problems for each such software
application, and also show the nature and extent of problems with the applications.
[0007] Such reports may have certain information removed from them by the
reporting sub-system, such as to maintain privacy for users whose mobile computing
devices experienced the problems and generated the corresponding data. The level
of information that is provided by the sub-system to a developer can also depend on
the level of trust that the sub-system has with the developer. Also, users may be
notified regarding the level of information that may be shared, and may choose to
allow or disallow such use of the information.

[0008] The reports may take various familiar forms, such as summary reports
that show the frequency of occurrence of problems with an application or
applications, error reports that list all problems of a certain type with an application
and provide data that describes the problems (e.g., in what portion of the code the
problem occurred), and stack traces that show information about the status of each
computing device when the problem occurred on the device.

[0009] In addition, the system may generate data across multiple applications

that is useful more broadly for the third-party provider. For example, where the

3

WO 2011/146750 PCT/US2011/037210

organization that operates the app store also provides the operating system for the
mobile devices that access the app store, problem data for multiple applications can
be “rolled up” in various manners to create aggregate data and resulting reports to
determine whether there are problems with the operating system. For example, if
such data indicates that multiple different applications are experiencing freezes when
accessing a particular operating system service or interface, the third-party provider
may be alerted that there could be a problem with the code for the service or
interface.

[0010] Such systems and techniques may, in certain implementations,
provide one or more advantages. For example, developers may be provided with
diagnostic capabilities that may otherwise be available only to sophisticated
companies that have set up their own bug tracking systems, merely by using a
particular development environment. Users of devices may receive improved
applications from various developers, and may be allowed to report bugs in a
convenient manner that is consistent across multiple different applications from
multiple different developers. And a provider of a platform, such as an operating
system and/or an associated app store, may be able to improve the desirability of its
platform to developers and users of devices.

[0011] In one implementation, a computer-implemented system for managing
software problem reports is discussed. The system comprises a registration sub-
system to register software developers from multiple different developer
organizations. The system further includes an application store that makes a
plurality of applications from a plurality of application developers available for
acquisition by members of the public. The system also includes an application bug

tracker programmed to receive reports of problems with applications distributed

WO 2011/146750 PCT/US2011/037210

using the application store, to receive data regarding the problems, and to associate
the data with a particular application or developer of the particular application.
Additionally, the system includes a report generator to produce one or more problem
reports for a developer that has provided one or more applications, the problem
reports including information about the data regarding the problems relating to
particular applications submitted to the application store by the developer.

[0012] Implementations can include any, all, or none of the following features.
The reports of problems can include problems selected from the group consisting of
application crashes, application freezes, excessive battery usage, and manually-
invoked computing device user comments. The system can also include a bug
analyzer programmed to analyze reports of problems across multiple applications to
identify whether the reports of problems indicate problems with particular computing
device models or a computer operating system. The bug analyzer further can
identify that reports of problems indicate problems with particular computing device
models or a computer operating system by identifying statistically higher reporting
frequencies with a particular device model or operating system version. The system
can be arranged to limit information provided to the developer based on a trust level
that identifies how much information about users of the particular application that the
developer is authorized to obtain. The system can additionally be programmed to
limit information provided to the developer based on whether the developer is a
developer of a core application from an organization that manages an operating
system for a device on which a particular problem occurred.

[0013] Also, the system can be arranged to group information about
problems according to the type of problem. The system can be arranged to provide

information indicating a device type and operating system identifier for a device on

WO 2011/146750 PCT/US2011/037210

which a particular problem occurred. The system can further include a developer
upload interface that accepts uploads of applications from developers and correlates
each application with a developer account through which the application was
uploaded. The system can be programmed to present to a developer, bugs sorted
by a severity level that is determined from a rate at which different bugs for the
particular developer.

[0014] In one aspect, a computer-implemented method for managing
software problems includes receiving, at a central server system, a plurality of
software application problem reports from a plurality of different computing devices
that are remote from the central server system. The system further includes
associating particular ones of the problem reports with particular applications
provided by particular software developers. Additionally, the system includes
receiving identification information from one developer of the particular developers.
The system also includes, in response to receiving the identification information,
providing the one of the particular developers with information describing problem
reports for the particular applications managed with the central server system by the
one developer.

[0015] Implementations can include any, all, or none of the following features.
The software application problem reports can include reports relating to freezes,
crashes, and user-generated comments. Additionally the software application
problem reports can include trace data for a device that generated a particular
problem report, and information about configuration of the device. The system can
further include receiving software application uploads from a plurality of software
developers, correlating each application to a developer account for the application,

and correlating.

WO 2011/146750 PCT/US2011/037210

[0016] The details of one or more embodiments are set forth in the accompa-
nying drawings and the description below. Other features and advantages will be

apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS
[0017] This document discusses various systems and techniques that may be
used to provide feedback on the operation of software applications. In particular
examples, a distributed group of software developers who are independent of each
other (e.g., do not work for the same company, operate from the same domain, or
share a common software development system) may upload their software
applications to an app store from which various users of computing devices may
review and download the applications, frequently paying to purchase or license the
applications (where the respective developer will receive a share of the payment).
An operating system on the devices may perform ordinary error handling of problems
on the device, including by keeping stack traces and reporting such information to a
central server system when there is a problem, or bug, with a device. Such
information is commonly used by trained individuals in an attempt to diagnose the
source of the problem so that remedial measures may be taken and the relevant
software code may be corrected and updated.
[0018] In the examples discussed here, a portion of the data submitted from
the various computing devices may also be made available for review by the
developer who submitted the code that caused the problem or was active when the
problem occurred. Such an operation may occur by the operating system identifying
the relevant application or applications when a problem occurs, and submitting, to a
central server system, information about the problem along with information that

identifies the application or applications. The central server system may then store
7

WO 2011/146750 PCT/US2011/037210

the data in association with a software application identifier, and such an identifier
may be further used to identify a developer of the application. When such developer
(which may be a wholly different individual or organization than the operator of the
app store or operating system) logs into the system and asks for a report of
problems with his or her code, the system may query a database where the problem
data is stored, to locate all data for the particular developer, and may generate one
or more reports that filter and group the data in various ways. As one example,
personally identifiable information may be removed from the data that is provided for
the report or it may be obscured. Also, the data may be sorted according to each
application so that a developer can quickly obtain an understanding about the
relative operation of each of their applications if they have many such applications.
[0019] FIG. 1Ais a conceptual diagram showing a system 100 for distributing
software from multiple developers and collecting information about the operation of
the software. In general, the system 100 includes a central server system that sits
between a group of developers and a group of users (where, of course, certain of the
developers may also be users, and vice-versa). The central server system receives
software code uploads from developers, provides code downloads to users, receives
error or problem data from the users, and filters and organizes such data for
presentation to the developers.

[0020] Referring now more specifically to the figure, the central server system
is shown here in the form of an application center 102. The application center 102
includes physical and logical components that make up a user center 108 and a
developer center 110. Such components may include, for example, front ends or
web servers that generate user interfaces for providing services to users and

developers, respectively. The user center 108 communicates with users 104, who

8

WO 2011/146750 PCT/US2011/037210

are each individuals in this example who have acquired a mobile telephone, or app
phone, that runs a particular software operating system developed by the operator of
the application center 102. As part of the overall service provided with the operating
system, the operator makes the application center 102 available for the review and
purchase of software applications for the mobile devices. Thus, for example, User A
(e.g., a teenager) may have downloaded a number of videogames, while User B
(e.g., a businesswoman) may have downloaded various business applications that
make use of hosted cloud-based computing platforms, and User C (e.g., a college
student) may have downloaded an e-book reader application (with a number of e-
book textbooks) and a variety of test preparation application, along with a
mathematical modeling application. In each situation, the relevant user may launch
each of their downloaded applications (which may supplement applications that were
shipped with their telephone) and interact with them in familiar manners. They may
also revisit the application center 102 to locate and download additional applications,
as the need may arise.

[0021] From time to time, problems may occur on each of the users’ 104
devices. For example, a user may be running a number of applications
simultaneously, and may create a memory overflow condition that causes one of the
applications to crash. Alternatively, an application may perform an operation that
causes it to lock up, so that a user will need to close out a process in which the
application is executing. Alternatively, a user of the device may invoke a problem
submission process by which the user is allowed to fill out a form to identify an error
in an application or to suggest improved features for the application. Each of these
instances and similar instances will be described collectively here as bugs, in that

they indicate a problem with the software application for which feedback needs to be

9

WO 2011/146750 PCT/US2011/037210

given to the developer of the application (though it may be determined that the
problem is, in the end, attributable to the operating system, the device hardware, or
another application).

[0022] As shown here, the applications may be acquired from the app store
112, which may take a familiar form, such as a web site from which applications
submitted by third-parties (in addition to some first-tier applications submitted by the
operator of the app store 112) can be displayed as part of a web page on which are
also displayed controls that, when selected by a user, cause the particular selected
application to be supplied or downloaded to a device that is logged into the user’s
account with the system 100.

[0023] The user center 108 also includes a bug collector 116, which includes
components for automatically communicating with the instances of the applications
that are distributed to the users’ 104 devices either directly, or via operating system
components that report on the operation of the instances of the applications. The
bug collector may also reformat the collected information for persistent storage, such
as by arranging the data in one or more databases that include information such as
the time and date of a submission, the operating system and version on the device,
the make and model of the device, other applications that were executing on the
device when the problem event occurred, traces of recent device activity,
configuration data for the device, and other similar information.

[0024] The other “side” of the application center 102 points toward
developers 106, which, like the users 104, may be very large in number and
geographically dispersed. In particular, the users 104 and developers 106 may be
spread across the world and may access the application center 102 through various

networks, including the internet. As one example, the system 100 may have

10

WO 2011/146750 PCT/US2011/037210

thousands or tens of thousands of active developers 106, and hundreds of
thousands or millions (or even hundreds of millions) of active users 104. The
techniques described here work particularly well in such systems with large
developer bases, as more user data may be supplied to each developer, and
developers in such systems are more likely to be small, and not able to develop bug
reporting systems of their own.

[0025] The first main component in the developer center 110 is an app
manager 114. This component may be the flip-side of the app store 112 for users.
In particular, the app manager 114 can include a web server and associated software
that developers may access, and interact with, in order to register themselves as
legitimate developer members of the system 100, and to subsequently upload code
for applications that they have authored or for which they are managing the
commercial distribution. The app manager 114 may also provide a number of
additional services, which are generally well known, for interacting with developers
and allowing the developers to conveniently manage their applications

[0026] The bug reporter 118 serves as the developer-side counterpart to the
bug collector 116, and completes the software distribution and feedback cycle that
starts at the developers 106, moves to the app manager 114 and the app store 112,
then to the users 104 who acquire and execute the applications, and back to the bug
collector 116, bug reporter 118, and developers 106, when a problem arises with the
software (though optimistic developers would refer to them as opportunities).

[0027] The bug reporter 118 in particular may provide for a web server
system to interact with the developers 106 and a report generating facility to provide
data about problems experienced by the users’ 104 devices, with respect to

applications that correspond to the respective developers. The reports may be of a

11

WO 2011/146750 PCT/US2011/037210

standard or custom format. Standard reports may be developed by the operator of
the application center 102 (which is shown as a single entity here, but could be
operated by multiple different organizations working in cooperation with each other)
and may be accessed and generated easily by developers looking to see how their
respective applications are performing. Custom reports may be formed by each
individual developer, and may use graphical report development tools that are well
known. For example, a developer may select particular fields of data they would like
to see in their reports, and may define the visual look of their reports. They may also
receive reports in the form of raw data (both in batch form and in real time as
reporting incidents occur among the users 104), and may use their own facilities to
manipulate and report on the data. In addition, developers 106 may define
aggregate reports that they would like to see. For example, if they have developed a
suite of products (e.g., a business productivity suite), they may want a report that
includes a section for parameters that are common to each component of the suite,
and separate sections for each of the components and data that is specific to the
particular component.

[0028] In these manners, the system 100 may provide developers 106 with
extensive and helpfully formatted data concerning bugs in their software that may
need attention. A particular developer may need to do nothing with respect to their
software in order to get certain data (other than providing a mechanism by which an
operating system can identify the application when it is executing). In certain
instances, developers may cause additional data to be reported, such as via an API,
but again, the developer would not need to implement a full system for receiving bug
submissions, for gathering data on the client devices, and for otherwise
implementing a full application maintenance system. As a result, entry level

12

WO 2011/146750 PCT/US2011/037210

developers may gain the benefit of a program for improving their applications, and
consumers of the applications may in turn benefit.

[0029] FIG. 1B is a flow diagram showing operations for providing feedback
on the operation of software applications. In general, a graphical timeline is shown
here, starting in the upper left corner and ending in the lower right, to explain an
example by which an application developer can make his or her software application
available to the public and may receive feedback on the operation of the application,
and may thereby readily and quickly improve the application.

[0030] At operation 120, an application developer submits an application to a
mobile application market. The submission may occur in a variety of appropriate
manners, and the developer may provide the application with a self-signed certificate
that helps to legitimize the application and provide security in the system. Operation
122 shows the presence of the application in the mobile application market, along
with three other applications that may have been previously uploaded by the same
developer or by other developers. The “ownership” of the applications may be
maintained by correlating the application to an account of the user who uploaded the
application, which would ordinarily be the actual developer or someone working on
behalf of the developer.

[0031] At operation 124, a user of a mobile computing device (e.g., a smart
phone or app phone) has visited the mobile application market and has identified
himself or herself, by being logged into the system under his or her account. The
user has then selected the application that was uploaded at operation 120, and the
application has been installed and made ready for execution by the user of the

mobile device, in a manner that is well known.

WO 2011/146750 PCT/US2011/037210

[0032] At operation 126, an icon of an explosion indicates the occurrence of
an error while the application is running on the mobile device. The error may involve
a crash or locking situation, or could result from a user of the device manually
indicating an intent to provide feedback regarding the application. Such an event
may cause diagnostic information about the event to be gathered on the device,
such as by an operating system component that executes on the device.

[0033] At operation 128, a report regarding the error is generated on the
mobile device 128 — an action that may occur under the control of an operating
system that managed the operation of the mobile device and the various applications
on the device. For example, an operating system may be programmed to recognize
when a process ends unsuccessfully on the device, and such an event may trigger a
number of data gathering and formatting operations by the operating system. For
example, the current contents of traces, stacks, resisters, or other entities may be
determined, as may identifiers for all software components that were executing on
the device when the error occurred. Such information may then be gathered
together into a predefined packet of information according to an agreed-upon
standard.

[0034] At operation 130, the report or submission is shown as it may exist, at
least conceptually, on a central server system that is tasked with tracking and
reporting on such reports. In this example, the report has been classified as
corresponding to a particular bug for the application, where three different bugs have
been identified. Such classification may occur, for example, by identifying which
piece of code was executing when the relevant error occurred, and providing an
identifier for that piece of code, so that the particular reports may be joined together

in producing a bug report. Identification of bugs to be assigned to particular error

14

WO 2011/146750 PCT/US2011/037210

submissions may be performed in other ways also, including by manual classification
by a user of the bug tracing system. As shown here, two other bugs have been
identified, and there have been two and three error submissions, respectively, for
those bugs. Thus, in this example, over a period of time, the initial application has
been identified as corresponding to eight different error submissions.

[0035] Such information may be important for the developer of the application
to know. For example, one of the three bugs may be important to the satisfaction of
users of the application. [f the developer could quickly see the nature of such a bug,
the developer might be able to correct it quickly and supply a “patch” for the code
(and the patch may be pushed out automatically to all users who have downloaded
the application (though they may be given the opportunity to reject such an update).
[0036] At operations 132 and 134, such a developer has chosen to see a
report regarding all that developer’s bug submissions. In this example, there are
three bugs being tracked in the entire system, but as shown in operation 134, only
two of the bugs were associated with the application from operation 120. The mobile
application market or similar sub-system, in this example, may thus readily generate
a report that shows information about the particular errors and information that
identifies to the developer the nature of the bug that is being tracked by the system.
[0037] In certain instances, the data provided in the final report may be
substantially different than the data uploaded in the submissions from the mobile
devices. For example, personally identifiable information may be stripped from the
uploaded data, so that developers cannot make particular determinations about the
users of devices. In one example, only stack traces and similar information about
the device at the time of the crash may be provided but other information (e.g.,

information that might reflect the data the user was manipulating when the problem

15

WO 2011/146750 PCT/US2011/037210

occurred), will not be passed. Also, certain levels of detail may be relevant to the
central system, but may be irrelevant to most developers, and may thus be stripped
out of the report at operation 134.

[0038] FIG. 2 is a schematic diagram of a system 200 for tracking
submissions from computing devices regarding the operation of software
applications on those devices. The system 200 may be used to carry out actions like
those discussed with respect to FIGs. 1A and 1B above. The system 200 is shown
for clarity in a highly simplified form, and in a particular physical implementation may
include a large number of additional components.

[0039] Referring now to the figure, there is shown a system 200 by which
various developers 212, shown by example using laptop and desktop computers,
may submit applications to an app server system 202, and may receive in return
money and feedback about the operation of their particular respective submitted
applications. Such applications may be purchased or otherwise obtained by a
variety of users 210 who are shown here via wireless mobile devices that are
capable of downloading and executing the applications.

[0040] The developers 212 and users 210 (or more technically, their devices)
generally do not communicate with each other directly, but may instead
communicate through the app server system 202, using a network 204 such as the
internet. Such open communication may allow a wide variety of developer types and
users to make use of the system 200.

[0041] Particular components in the app server system 202 may provide for
functionality in deploying and tracking the use of software applications by the system
200. For example, a marketplace front end 214 may generate a user interface that

displays available applications to the users 210, and allows the users to review, try,

16

WO 2011/146750 PCT/US2011/037210

and download such applications. A marketplace manager 218 may provide back
end support for the marketplace front end 214, such as by tracking purchases,
generating billing to the users 210 and remittance to the developers 212, and other
well-known functions of an app store implementation.

[0042] A developer front end 216 may generate a user interface that permits
developers to register with the system 200, upload applications, manage their
applications (e.g., update ,add, and delete applications, and see how much money
they have made selling applications), and receive feedback on the operation of their
applications, as described above and below. In providing such feedback, the front
end 216 may access a bug report generator 220, which may manage the uploading
of data from mobile device on which bugs have occurred (e.g., as identified by
crashes, freezes, and manual user reports). For example, the bug report generator
may be responsible for receiving bug report data from the user devices, formatting it
appropriately for storage, such as in bug repository 222, and then retrieve all or part
of the stored data when a developer requests to see reports regarding his particular
applications.

[0043] The bug report generator 220 or the developer front end 216, or a
combination of the two, may filter and format such data appropriately for delivery to a
developer. For example, the two components can cooperate to generate a web
page and send the page to the developer in response to a developer’s request for a
report. Likewise, the data may be effectively streamed to a developer who has
asked for a syndicated feed of data, so that the developer may see bug reports in
real time as they arrive at the system 200. Such real time reporting may occur in

various manners, such as SMS messages to the developer, XML transfers (so that,

WO 2011/146750 PCT/US2011/037210

e.g., the developer may use analysis tools in its own system to organize the various
bug reports), and other such mechanisms.

[0044] Various data stores are also shown in the figure to exemplify forms of
data that may be stored, accessed, and managed by the system 200. For example,
as noted above, a bug repository may store information about bug reports that have
come up from users 210. The bug information may include diagnostic information
that would allow a developer or other technical person to infer (at least in part, and at
least some of the time, or in combination with other bug reports) what went wrong
when the bug event occurred. The bug repository may also, in certain
circumstances, include information that should be accessible internally to the system
200, but not to developers 212. Such information may be filtered in appropriate
manners by, for example, bug report generator 220 and/or developer front end 216.
[0045] A credentials database 224 may store credentialing information for the
developers 212 and users 210. The credentials may allow the various people to
access relevant information that is associated with their accounts, and to pay or
receive money for the purchasing and selling of applications through the system 200.
Also, credentials may be used to determine an appropriate level of access by a
particular user to certain data. For example, a third-party developer may have their
credentials associated with a limited access level, so that when they request reports
on bugs with their applications, personal information is filtered out so as to maintain
anonymity for the users of the applications. In contrast, inside users may have
greater access to data about faults on the user devices.

[0046] Finally, an apps data store 226 stores applications that are made

available to the users 210, including apps that have been uploaded by the

WO 2011/146750 PCT/US2011/037210

developers 212, and apps that may have been placed on the marketplace initially by
the operator of the system 200.

[0047] Outside of the server system 202, a local developer 206 is also shown
in this example, and may be within the same domain as the app server system 202,
and communicate over a private network 208 with the app server system 202. The
local developer is a programmer who is trusted by the app server system 202
operator, such as an employee of the organization that runs the app server system.
Such a user may be identified by the app server system 202 in a variety of manners,
and the developer front end 216 may thus provide the developer 206 with greater
access to error data and access to more powerful tools for analyzing the data. In
other words, the developer 206 may be treated by the system 200 as a developer,
but as being different than the other developers 212.

[0048] As one example, certain of the users 210 may have consented to
having certain personally identifiable data provided to the organization that provided
the app server system 202, but may have declined to have such information shared
with third-parties. The local developer 206 would be able to access more information
in such a situation than would developers 212. Such a situation may be particularly
desirable from the viewpoint of the users 210, because frequently the local developer
206 generates some of the most useful and universally deployed applications in a
system (e.g., word processing and electronic mail), and users may want to give such
developers everything they need to improve the programs.

[0049] FIG. 3 is a flowchart of a process for managing software problem
reports. In general, the process involves receiving computer code for various
computer applications from developers of the applications, and making the

applications available for download and perhaps for purchase by members of the

19

WO 2011/146750 PCT/US2011/037210

public at an application marketplace. After the various applications are installed on
various computers for registered users of the system, the applications may begin to
generate alerts (e.g., when there is a crash or other problem), information about
such alerts may be relayed back to the operator of the application marketplace, and
the information may be made available to the corresponding developer who
submitted the particular applications that had the events, so that that developer may
improve and edit the code for his or her applications.

[0050] The process begins at box 302, where the process receives an upload
of applications by a developer. The developer may be, for example, an individual
programmer working out of his home, who has written a simple application to solve a
particular niche problem in a particular field, such as a calculator for carpenters, a
search tool for a particular profession, or other similar applications that may be
executed on a mobile computing device. The developer may alternatively include a
group of individuals, such as a small software company that makes its business out
of developing applications such as those sold on the application marketplace.
Generally, the developer is the party who has a rightful claim to revenue generated
by selling the application, or benefit derived from otherwise distributing the
application to various users.

[0051] At box 304, the application is made available on the marketplace.
Such operation may occur in a familiar manner, and may include the posting of an
icon and a textual description of the application, both of which will have been
provided to the marketplace by the developer. The application may be made
available for purchase for payment, or may be made available for free download,

which is also well-known in the art.

WO 2011/146750 PCT/US2011/037210

[0052] At box 306, instances of the application are delivered to buyers who
communicate an interest in receiving a copy of the application. As a result, a copy of
the application may be downloaded to a mobile device associated with the user
account of the user who is accessing the application store or marketplace. The user
may then take appropriate actions to install the application and to get it executing on
their device, either at the same time they purchased it, or at a later time or times.
Thus, the user of a device who has downloaded a particular application, and other
users who have downloaded the application, may access the applications and
interact with it as they see fit.

[0053] Such interaction with the application may raise problematic issues with
the operation of the application. One such issue includes a malfunction of the
application that may lead to a crash or a hang up of the application (or the process in
which the application is executing). Another issue may be a dis-satisfaction with the
application by the user, either because the application is performing incorrectly or
because the user believes that the application could perform better with certain
improvements. In such a situation, a particular client device for the user may gather
data either automatically from the device or manually from the user to characterize
the parameters of the event. The various data described above may be gathered, in
certain implementations, by a component of the operating system or the application,
and include information like that discussed above, in addition to other data such as a
current screenshot of the device at the time of the event, and also information that
might be input to the device by the user of the device, such as words indicating the
sort of feature that a user would like added to the application. Once such diagnostic

information has been gathered, it may be transmitted from the client device to a

WO 2011/146750 PCT/US2011/037210

server system, which may then format and save the information about the alerts and
other alerts received from other client devices (box 310).

[0054] In performing such formatting and filtering, the central server system
may also identify common parameters between data for different events in an effort
to identify events that represent the same bug occurring for an application. For
example, if trace information for two different events matches very closely to each
other, the system may infer that both events were the result of a common bug.
Certain parameters for determining whether two events result from the same bug
may be weighted, while other parameters may be determinative of whether the bug
to which the event is classified relates to a particular parameter. Each of such
identified bugs may be assigned an identification number that may be used
subsequently to create a correlation between different alert data that is determined to
have a common bug, and to provide for group recording of alerts and bugs to
developers of software in the system.

[0055] At box 312, the process formats and delivers, to a developer of a
particular application or applications, bug information about their corresponding
application or applications. As discussed above, a report may take a variety of
forms, including a printed report on the webpage, a block of data such as in XML
format, or a stream of data that involves a data transmission every time an event is
reported or a group of events are reported to the process by various client devices
that are running an application. In this manner, a developer may obtain, and a user
and/or user’s device may provide, information about bug-created events that occur
on the user’s device.

[0056] FIG. 4 is a swim lane diagram of a process for managing submissions

of problems with software from multiple developers, where the software is installed

22

WO 2011/146750 PCT/US2011/037210

across multiple mobile computing devices. This process is similar to the process of
FIG. 3, but shows more detail about particular example operations that may be
performed by particular components in a system. The process begins at box 402,
where a developer develops a software application. Such development may include
architecting the application, drafting code for the application and packaging and
otherwise arranging portions of code for the application. Once the application is
ready to be used, the developer may register and login (box 404) to an application
store server system in a familiar manner, and the server system may start an
interactive session with the developer in this manner (box 406). After providing
appropriate forms of metadata regarding the application, such as a title for the
application, a price to be charged for the application, it is textual description of the
application, the icon for the application to be presented on a user's device and on
applications store, and other appropriate data, the user or developer may upload
their application or applications with the necessary metadata (box 408).

[0057] At box 410, the applications store servers register the application,
create a space for storing it, along with the data that describes parameters of the
application, and host the application in an available manner on the applications
store.

[0058] At some later point in time, a user who is browsing the applications
store finds the application and wants to purchase it. At box 414, the user registers
and logs in with the applications store, which in turn starts a session with the user
(box 416).

[0059] At box 418, the user supplies a command to download the application,
such as by clicking on an icon for the application, and then selecting a particular on-

screen selectable control to confirm that the user wants to purchase and obtain the

23

WO 2011/146750 PCT/US2011/037210

application. At box 420, the application store checks the user's credentials to ensure
that the user has an account with the applications store, and then provides the
application to the user if the user does have such an account. Alternatively, the
servers may determine that the user does not have an account, and may request
such information from the user in a conventional manner, including by requesting
credit card information from the user for paying for downloaded applications in the
future.

[0060] Once the user has downloaded the application, they may begin using
it, and such use may, in certain circumstances, generate an error or problem event,
as shown at box 422. Examples of error events are provided above, and may
include freezing of the device, crashing of the device, or manual reports from a user
regarding suggested improvements or problems with an application. The user's
device then reports such an event, along with diagnostic information for the event, to
a bug server at box 424, where the data may be received and recorded. Such
transmission from the client device may occur via operating system components, by
the particular application suffering the event, or by a different application that is
resident on the device. The particular interaction between the device and the bug
servers may be established by an API standard, and may follow that standard so that
the data is transferred appropriately.

[0061] The process may then wait for a while, and other users may execute
applications on their devices, which may in turn report data about problems on those
devices. At some later point, however, the developer may wish to see if the
application is operating properly, and may thus login (box 226) at the end, though
this time, he may be provided with information from the bug servers, which may start

a session at box 428. One common interaction may include a request for one or

24

WO 2011/146750 PCT/US2011/037210

more reports (box 430) made by a computing device operated by the developer, and
the bug servers, at box 432, may serve the requested report back to the developer.
Such serving may include organizing error events data according to particular posts
that have been identified by the bug servers, and filtering data so that the developer
receives only the data they need in order to make an informed decision, and so they
do not receive data that they should not have access to. Finally, at box 434, the
developer’s device displays the records or reports, such as on a web page, so that
the developer may review them and may make decisions about whether and how to
update their software in order to address errors that may have been occurring on
one or more devices.

[0062] FIGs. 5A and 5B are example screen shots of a mobile computing
device experiencing operational problems with a software application. In general,
these screenshots show two examples of screens that may be generated on a client
device, such as by an operating system component or by an application, when an
error event occurs. The screen shot in FIG. 5A shows a warning screen that has
been generated because a particular process has stopped unexpectedly. The
screen shot instructs the user about what has happened, and then gives the user
two options for responding. In particular, the user can select “force close” to shut
down the process, and by extension shut down the application, with the
understanding that they could lose data doing so. The user may also select to report
information about the problem, where the user is open-minded and wishes to help
the developer of the application or the operating system improve the software so that
similar unexpected stoppages do not occur in the future.

[0063] The user’s selection of the “report” option causes the screen shot of

FIG. 5B to be displayed. Here, the user is shown parameters that control how the

25

WO 2011/146750 PCT/US2011/037210

problem will be reported to a central server system. In particular, the appropriate
privacy policy to be applied to the transmission may be displayed for the user’'s
review, and the user may be provided with appropriate controls for correcting or
updating the privacy policy. In addition, the user is presented with an empty text box
where he or she can optional describe the context of the problem — e.g., “l was
typing xyz into the abc application, while simultaneously talking on the phone,
converting a video with Handbrake, doing number-crunching for SETI, and playing a
full res first person shooter, when for no good reason, the application hung up on
me”. Such text may be passed as a field with other diagnostic information about the
problem. In certain circumstances, a user could be given the opportunity to have
their contact information provided to the developer in case the bug is particularly
thorny and the developer needs to email or call the user. Alternatively, the user may
not be asked initially to provide any contact information, but the developer, upon
reviewing the comment, could place a request for contact information, and the
system would then generate a message that thew user could respond to.

[0064] The user may then select the “preview” button to be given a view of all
the data that will be uploaded about the problem, or “send” to cause such upload of
the information.

[0065] FIGs. 6A-6C are example screen shots of developer reports
generated by a software tracking system. FIG. 6A shows summary statistics about
bugs for the application com.android.launcher2. For example, the total number of
reports or submissions from client devices is show, as is the current rate of
submissions — both for freezes and crashes.

[0066] In another instance, information about device battery power and

usage may be reported with information about executing applications. For example,

26

WO 2011/146750 PCT/US2011/037210

if a battery falls in power suddenly, diagnostic information may be uploaded from the
device so that a central researcher can determine the source of the electoral
demand. For example, if a particular application is frequently shown as being active
whenever such events occur, a central system might infer that that application is the
source o the battery drain.

[0067] FIG. 6B is a similar summary report, though for a number of different
applications or code files. For example, the name of the code is shown along with its
context when it failed, the number of reports for such failing, and current rate of such
events.

[0068] FIG. 6C shows a more detailed report about a particular failure of a
particular application, and shows much more information about the context of the
failure. For example, the stack traces for the device are shown in the report, as is
certain other helpful information. Some of the information may be hyperlinked so
that a user may see additional source data for what is displayed here.

[0069] FIG. 7 shows an example of a generic computer device 700 and a
generic mobile computer device 750, which may be used with the techniques
described here. Computing device 700 is intended to represent various forms of
digital computers, such as laptops, desktops, workstations, personal digital
assistants, servers, blade servers, mainframes, and other appropriate computers.
Computing device 750 is intended to represent various forms of mobile devices,
such as personal digital assistants, cellular telephones, smartphones, and other
similar computing devices. The components shown here, their connections and
relationships, and their functions, are meant to be exemplary only, and are not meant

to limit implementations of the inventions described and/or claimed in this document.

WO 2011/146750 PCT/US2011/037210

[0070] Computing device 700 includes a processor 702, memory 704, a
storage device 706, a high-speed interface 708 connecting to memory 704 and high-
speed expansion ports 710, and a low speed interface 712 connecting to low speed
bus 714 and storage device 706. Each of the components 702, 704, 706, 708, 710,
and 712, are interconnected using various busses, and may be mounted on a
common motherboard or in other manners as appropriate. The processor 702 can
process instructions for execution within the computing device 700, including
instructions stored in the memory 704 or on the storage device 706 to display
graphical information for a GUI on an external input/output device, such as display
716 coupled to high speed interface 708. In other implementations, multiple
processors and/or multiple buses may be used, as appropriate, along with multiple
memories and types of memory. Also, multiple computing devices 700 may be
connected, with each device providing portions of the necessary operations (e.g., as
a server bank, a group of blade servers, or a multi-processor system).

[0071] The memory 704 stores information within the computing device 700.
In one implementation, the memory 704 is a volatile memory unit or units. In another
implementation, the memory 704 is a non-volatile memory unit or units. The memory
704 may also be another form of computer-readable medium, such as a magnetic or
optical disk.

[0072] The storage device 706 is capable of providing mass storage for the
computing device 700. In one implementation, the storage device 706 may be or
contain a computer-readable medium, such as a floppy disk device, a hard disk
device, an optical disk device, or a tape device, a flash memory or other similar solid
state memory device, or an array of devices, including devices in a storage area

network or other configurations. A computer program product can be tangibly

28

WO 2011/146750 PCT/US2011/037210

embodied in an information carrier. The computer program product may also contain
instructions that, when executed, perform one or more methods, such as those
described above. The information carrier is a computer- or machine-readable
medium, such as the memory 704, the storage device 706, memory on processor
702, or a propagated signal.

[0073] The high speed controller 708 manages bandwidth-intensive
operations for the computing device 700, while the low speed controller 712
manages lower bandwidth-intensive operations. Such allocation of functions is
exemplary only. In one implementation, the high-speed controller 708 is coupled to
memory 704, display 716 (e.g., through a graphics processor or accelerator), and to
high-speed expansion ports 710, which may accept various expansion cards (not
shown). In the implementation, low-speed controller 712 is coupled to storage
device 706 and low-speed expansion port 714. The low-speed expansion port,
which may include various communication ports (e.g., USB, Bluetooth, Ethernet,
wireless Ethernet) may be coupled to one or more input/output devices, such as a
keyboard, a pointing device, a scanner, or a networking device such as a switch or
router, e.g., through a network adapter.

[0074] The computing device 700 may be implemented in a number of
different forms, as shown in the figure. For example, it may be implemented as a
standard server 720, or multiple times in a group of such servers. It may also be
implemented as part of a rack server system 724. In addition, it may be
implemented in a personal computer such as a laptop computer 722. Alternatively,
components from computing device 700 may be combined with other components in

a mobile device (not shown), such as device 750. Each of such devices may contain

WO 2011/146750 PCT/US2011/037210

one or more of computing device 700, 750, and an entire system may be made up of
multiple computing devices 700, 750 communicating with each other.

[0075] Computing device 750 includes a processor 752, memory 764, an
input/output device such as a display 754, a communication interface 766, and a
transceiver 768, among other components. The device 750 may also be provided
with a storage device, such as a microdrive or other device, to provide additional
storage. Each of the components 750, 752, 764, 754, 766, and 768, are
interconnected using various buses, and several of the components may be
mounted on a common motherboard or in other manners as appropriate.

[0076] The processor 752 can execute instructions within the computing
device 750, including instructions stored in the memory 764. The processor may be
implemented as a chipset of chips that include separate and multiple analog and
digital processors. The processor may provide, for example, for coordination of the
other components of the device 750, such as control of user interfaces, applications
run by device 750, and wireless communication by device 750.

[0077] Processor 752 may communicate with a user through control interface
758 and display interface 756 coupled to a display 754. The display 754 may be, for
example, a TFT LCD (Thin-Film-Transistor Liquid Crystal Display) or an OLED
(Organic Light Emitting Diode) display, or other appropriate display technology. The
display interface 756 may comprise appropriate circuitry for driving the display 754 to
present graphical and other information to a user. The control interface 758 may
receive commands from a user and convert them for submission to the processor
752. In addition, an external interface 762 may be provide in communication with
processor 752, so as to enable near area communication of device 750 with other

devices. External interface 762 may provide, for example, for wired communication

30

WO 2011/146750 PCT/US2011/037210

in some implementations, or for wireless communication in other implementations,
and multiple interfaces may also be used.

[0078] The memory 764 stores information within the computing device 750.
The memory 764 can be implemented as one or more of a computer-readable
medium or media, a volatile memory unit or units, or a non-volatile memory unit or
units. Expansion memory 774 may also be provided and connected to device 750
through expansion interface 772, which may include, for example, a SIMM (Single In
Line Memory Module) card interface. Such expansion memory 774 may provide
extra storage space for device 750, or may also store applications or other
information for device 750. Specifically, expansion memory 774 may include
instructions to carry out or supplement the processes described above, and may
include secure information also. Thus, for example, expansion memory 774 may be
provide as a security module for device 750, and may be programmed with
instructions that permit secure use of device 750. In addition, secure applications
may be provided via the SIMM cards, along with additional information, such as
placing identifying information on the SIMM card in a non-hackable manner.

[0079] The memory may include, for example, flash memory and/or NVRAM
memory, as discussed below. In one implementation, a computer program product
is tangibly embodied in an information carrier. The computer program product
contains instructions that, when executed, perform one or more methods, such as
those described above. The information carrier is a computer- or machine-readable
medium, such as the memory 764, expansion memory 774, memory on processor
752, or a propagated signal that may be received, for example, over transceiver 768

or external interface 762.

31

WO 2011/146750 PCT/US2011/037210

[0080] Device 750 may communicate wirelessly through communication
interface 766, which may include digital signal processing circuitry where necessary.
Communication interface 766 may provide for communications under various modes
or protocols, such as GSM voice calls, SMS, EMS, or MMS messaging, CDMA,
TDMA, PDC, WCDMA, CDMA2000, or GPRS, among others. Such communication
may occur, for example, through radio-frequency transceiver 768. In addition, short-
range communication may occur, such as using a Bluetooth, WiFi, or other such
transceiver (not shown). In addition, GPS (Global Positioning System) receiver
module 770 may provide additional navigation- and location-related wireless data to
device 750, which may be used as appropriate by applications running on device
750.

[0081] Device 750 may also communicate audibly using audio codec 760,
which may receive spoken information from a user and convert it to usable digital
information. Audio codec 760 may likewise generate audible sound for a user, such
as through a speaker, e.g., in a handset of device 750. Such sound may include
sound from voice telephone calls, may include recorded sound (e.g., voice
messages, music files, etc.) and may also include sound generated by applications
operating on device 750.

[0082] The computing device 750 may be implemented in a number of
different forms, as shown in the figure. For example, it may be implemented as a
cellular telephone 780. It may also be implemented as part of a smartphone 782,
personal digital assistant, or other similar mobile device.

[0083] Various implementations of the systems and techniques described
here can be realized in digital electronic circuitry, integrated circuitry, specially

designed ASICs (application specific integrated circuits), computer hardware,

32

WO 2011/146750 PCT/US2011/037210

firmware, software, and/or combinations thereof. These various implementations
can include implementation in one or more computer programs that are executable
and/or interpretable on a programmable system including at least one programmable
processor, which may be special or general purpose, coupled to receive data and
instructions from, and to transmit data and instructions to, a storage system, at least
one input device, and at least one output device.

[0084] These computer programs (also known as programs, software,
software applications or code) include machine instructions for a programmable
processor, and can be implemented in a high-level procedural and/or object-oriented
programming language, and/or in assembly/machine language. As used herein, the

terms “machine-readable medium” “computer-readable medium” refers to any
computer program product, apparatus and/or device (e.g., magnetic discs, optical
disks, memory, Programmable Logic Devices (PLDs)) used to provide machine
instructions and/or data to a programmable processor, including a machine-readable
medium that receives machine instructions as a machine-readable signal. The term
“‘machine-readable signal” refers to any signal used to provide machine instructions
and/or data to a programmable processor.

[0085] To provide for interaction with a user, the systems and techniques
described here can be implemented on a computer having a display device (e.g., a
CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying
information to the user and a keyboard and a pointing device (e.g., a mouse or a
trackball) by which the user can provide input to the computer. Other kinds of

devices can be used to provide for interaction with a user as well; for example,

feedback provided to the user can be any form of sensory feedback (e.g., visual

33

WO 2011/146750 PCT/US2011/037210

feedback, auditory feedback, or tactile feedback); and input from the user can be
received in any form, including acoustic, speech, or tactile input.

[0086] The systems and techniques described here can be implemented in a
computing system that includes a back end component (e.g., as a data server), or
that includes a middleware component (e.g., an application server), or that includes
a front end component (e.g., a client computer having a graphical user interface or a
Web browser through which a user can interact with an implementation of the
systems and techniques described here), or any combination of such back end,
middleware, or front end components. The components of the system can be
interconnected by any form or medium of digital data communication (e.g., a
communication network). Examples of communication networks include a local area
network (“LAN"), a wide area network (“WAN"), and the Internet.

[0087] The computing system can include clients and servers. A client and
server are generally remote from each other and typically interact through a
communication network. The relationship of client and server arises by virtue of
computer programs running on the respective computers and having a client-server
relationship to each other.

[0088] A number of embodiments have been described. Nevertheless, it will
be understood that various modifications may be made without departing from the
spirit and scope of the invention. For example, much of this document has been
described with respect to a telephone dialing application, but other forms of
applications and keypad layouts may also be addressed, such as keypads involving
graphical icons and macros, in addition to alphanumeric characters.

[0089] In addition, the logic flows depicted in the figures do not require the

particular order shown, or sequential order, to achieve desirable results. In addition,

34

16 Apr 2013

2011255477

other steps may be provided, or steps may be eliminated, from the described flows,
and other components may be added to, or removed from, the described systems.
Accordingly, other embodiments are within the scope of the following claims.

[0090] Throughout this specification and the claims which follow, unless the
context requires otherwise, the word "comprise”, and variations such as "comprises”
and "comprising”, will be understood to imply the inclusion of a stated integer or step
or group of integers or steps but not the exclusion of any other integer or step or
group of integers or steps.

[0091] The reference to any prior art in this specification is not, and should
not be taken as, an acknowledgement or any form of suggestion that the prior art

forms part of the common general knowledge in Australia.

35

19 Feb 2015

2011255477

WHAT IS CLAIMED IS:

1. A computer-implemented method for managing software problem
reports, the method comprising:

receiving, at a central server system, a plurality of software application
problem reports from a plurality of different computing devices that are remote
from the central server system, the plurality of different computing devices
associated with users other than individuals associated with developer
organizations that develop particular ones of the plurality of software
applications, and the problem reports having been generated automatically by
plurality of computing devices from applications executing on the plurality of
computing devices;

associating particular ones of the problem reports with particular
applications provided by particular software developers;

receiving identification information from one developer of the particular
developers;

and in response to receiving the identification information, providing the
one of the particular developers with information describing problem reports for
the particular applications managed with the central server system by the one
developer,

wherein the central server system manages problem reports for a
plurality of developers that are independent of each other in association with an
on-line application store through which the particular applications are available
for download and purchase by members of the public, including by the users
other than individuals associated with the developer organizations.

2. The method of claim 1, wherein the software application problem

reports comprise reports relating to freezes, crashes, and user-generated

comments.

36

19 Feb 2015

2011255477

3. The method of claim 1, wherein the software application problem
reports include trace data for a device that generated a particular problem
report, and information about configuration of the device.

4. The method of claim 1, further comprising receiving software
application uploads from a plurality of software developers, correlating each
uploaded application to a developer account for the application, and correlating
received problem reports with particular ones of the uploaded applications.

5. The method of claim 1, further comprising receiving identification
information from each of a plurality of developers, and in response, correlating
applications distributed by the on-line application store for particular developers
with accounts for the particular developers, and delivering the information
describing problem reports to the particular developers for the particular
applications corresponding to the particular developers.

6. A computer-implemented system for managing software problem
reports, the system comprising:
one or more computer processors; and
one or more computer-readable devices storing instructions that, when
executed by the one or more computer processors, implements:
a registration sub-system arranged to register software
developers from multiple different developer organizations;
an on-line application store that makes a plurality of finished
applications from a plurality of application developers available for
download and purchase by members of the public, including by users
other than individuals associated with the developer organizations;
an application bug tracker programmed to receive reports of
problems with applications distributed using the on-line application store,
to receive data regarding the problems, and to associate the data with a
particular application or developer of the particular application, the

37

19 Feb 2015

2011255477

reports of problems being generated automatically by distributed
computing devices that are running the applications; and

a report generator to produce one or more problem reports for a
developer that has provided one or more applications, the problem
reports including information about the data regarding the problems
relating to particular applications submitted to the on-line application
store by the developer.

7. The system of claim 6, wherein the reports of problems include
problems selected from the group consisting of application crashes, application
freezes, excessive battery usage, and manually-invoked computing device user

comments.

8. The system of claim 6, further comprising a bug analyzer
programmed to analyze reports of problems across multiple applications to
identify whether the reports of problems indicate problems with particular
computing device models or a computer operating system.

9. The system of claim 6, wherein the bug analyzer identifies that
reports of problems indicate problems with particular computing device models
or a computer operating system, by identifying statistically higher reporting
frequencies with a particular device model or operating system version.

10. The system of claim 6, wherein the system is arranged to limit
information provided to the developer based on a trust level that identifies how
much information about users of the particular application that the developer is
authorized to obtain.

11. The system of claim 6, wherein the system is programmed to limit
information provided to the developer based on whether the developer is a
developer of a core application from an organization that manages an operating

system for a device on which a particular problem occurred.

38

19 Feb 2015

2011255477

12. The system of claim 6, wherein the system is arranged to group
information about problems according to the type of problem.

13. The system of claim 6, wherein the system is arranged to provide,
in problem reports, information indicating a device type and operating system
identifier for a device on which a particular problem occurred.

14. The system of claim 6, further comprising a developer upload
interface that accepts uploads of applications from developers and correlates
each application of the uploaded applications with a developer account through
which the application was uploaded.

15. The system of claim 6, wherein the system is programmed to
present to a developer, bugs sorted by a severity level that is determined from a
rate at which different bugs for the particular developer occur.

16. One or more non-transitory tangible, recordable media having
recorded thereon instructions, that when executed by one or more processors,
perform operations comprising:

receiving, at a central server system, a plurality of software application
problem reports from a plurality of different computing devices that are remote
from the central server system, the plurality of different computing devices
associated with users other than individuals associated with developer
organizations that develop particular ones of the plurality of software
applications, and the problem reports having been generated automatically by
plurality of computing devices from applications executing on the plurality of
computing devices;

associating particular ones of the problem reports with particular
applications provided by particular software developers;

receiving identification information from one developer of the particular

developers; and

39

19 Feb 2015

2011255477

in response to receiving the identification information, providing the one
of the particular developers with information describing problem reports for the
particular applications managed with the central server system by the one
developer,

wherein the central server system manages problem reports for a
plurality of developers that are independent of each other in association with an
on-line application store through which the particular applications are available
for download and purchase by members of the public, including by the users
other than individuals associated with the developer organizations.

17. The non-transitory tangible media of claim 16, wherein the software
application problem reports comprise reports relating to freezes, crashes, and
user-generated comments.

18. The non-transitory tangible media of claim 16, wherein the software
application problem reports include trace data for a device that generated a
particular problem report, and information about configuration of the device.

19. The non-transitory tangible media of claim 16, wherein the
operations further comprise receiving software application uploads from a
plurality of software developers, correlating each uploaded application to a
developer account for the application, and correlating received problem reports
with particular ones of the uploaded applications.

20. The non-transitory tangible media of claim 16, wherein the
operations further comprise receiving identification information from each of a
plurality of developers, and in response, correlating applications distributed by
the on-line application store for particular developers with accounts for the
particular developers, and delivering the information describing problem reports
to the particular developers for the particular applications corresponding to the
particular developers.

40

PCT/US2011/037210

WO 2011/146750

110

Vi Old

20T
Jajuan uoijesijddy
Jauoday L_oﬁmo:oo
Bn n
grr "8 g O
Jabeuey mmmum
pr7 99V air oV
Jauen Jauan
Jadojanaag 1/sn
ort 801

PCT/US2011/037210

2/10

WO 2011/146750

19xJepy uoneolddy o|iqo\ FET dl '9ld

Hodoay ‘_mao_w>momc|m1w:mo=aa<

Hoday

Hoday "

z# bng

JonIsg m_.mwnnmmn_ mo_>wmmmmﬁ__po_>_ mo_>m%Nm.m__po_>_
Hoday Hoday | w

Hoday poday

3

potee loneaiddy
c# bng Z# bng iy
uoneoiddy
FoT
901ned BIIG0N || ZZFesuely uoneoyddy ojiqoly Jedojeraq uoneoyddy

A

Loljeoljddy —Mm;mo__aaﬂ

Lonesiddy | poneoijddy

\qu. 10]BI8USS) \ \SIN puI oI

Joasy bng J8dojenseg

\QM sebeuEyy \mw

aoejadiaxieny

WO 2011/146750

4/10

Receive Upload of Application by
Developer

(o8]

0

—

Make Application Available on
Marketplace

(o]
(=]
IS

v

Deliver Application to Buyers

(o]
(=]
()]

v

Receive Alerts About Application
From Mobile Devices

O
(03]

0

v

Format and Save Information About
Alerts

(o)
()

1

v

Format and Deliver Report(s) to

Application Developer
31

FIG. 3

PCT/US2011/037210

WO 2011/146750 PCT/US2011/037210

5/10

Develop Application

402
v

P Start Session

Reglster/Logln r

406
Upload Application i
and Provide g ARefi;clztt(iaorn
Necessary Meta PP 410
Data —
408 L
Make Application
Available for
Download 47,

Register/Login Start Session

R A /e . 220

|
414 416
I
Y |
Receive User |
Command to |
Download | Check User
T Credentials and
Application 418 | .
e | Provide
' Application
Execute Application | 420
and Generate Error [| Record Error
| Event
Event 422 424
I
I
I
l |
Register/Login I Start Session
426 I 428
I
I
|
|
Request Report (s) :
430 | T
: Serve Report(s)
! 434
Display Report (s) :
432 I
I
|
' App Store
Developer User PP B rver
P Server(s) ug Server(s)

FIG. 4

PCT/US2011/037210

WO 2011/146750

6/10

a¢ old

2
o

v Wd

pusg MBIABId

AoTog ATeRTg

‘wie|qoud 8y asoubeiqg

Japeg o} ‘1adojana(s,uoneoyddy

SIU} Yim ejeq WislsAs aleys

8 ejeq waisAg apnjduj
_ AJEALd |

(ieuopdo) uogduoseqy

SOEqpPa9]
ddeyseso syaoel woof <

yoeqpaad poday| &

WSO DB @ VE X [69

VS Old

© © S

7 ey
Hoday _ 850|D 92104 _

‘uieby A1} asea|d "Ajpajoadxaun
paddo)g sey (ziayoune|
"PI0JPUEBWIOD SS820.1d)
Jayoune] uonedyddy ay

iAuios W/

fdeoll OB ® VE X [B

(e T

V9 OlId

PCT/US2011/037210

7/10

AJINOd AQVAIYd -FOTAYSS 30 SWEAL TT1O009 - IN

ANV -319009 010¢

(¢ Yy SIHOdIO T |
MIIWSLHOdTY 0 a100 MIIWSLHOdTY 0 a100
\v]
C > SINOdIY 120 D SIN0dIY £22 Fm
NIIWSLHOLTY 1§ MaN 72 NIIWSLHOLTN 6} TN g
STHSVU) §3733M4 ZYIHONNYTAIOUANY'WOD

Yovaa3ad ¥3sn

< IWOH

ClRECUD @

LNONDIS| WOTTIOYANY |dT3H| INOH [WOD TIVINODYIH0TIAIA LINYYIN ORIINID

WO 2011/146750

PCT/US2011/037210

WO 2011/146750

a9 oOld

8/10

A0110d AOVAIYd -TOTRTTS 90 SWIIL TTO009 N - 319009 0402
<IXaN €40} ‘
e N A:<zmm_§mmmmmﬂo.moémw%w@ NE aan
D S LMY 66 - oEoo%m%zE?m NE pan
S EETTIRToRa et S1MOdIY /S 9momé_\,_ommﬁmwwow\vf:ﬁmw,__\mﬁﬂ:@ V3N
S S 1N 667 AVmmwﬁooomom>:uw_m>w%%%_\ﬁ%_%:@ MIN
S, soa o
o - oq:mgmoémé%; NE aan
e S 18043y gl /AIHOONVINIHYANIIMLIELOTILISIHO dNOIOMIANT o
S S 1H0dTY ¢ owN_wIEz%Hﬁmo.mmxozgi NCan
D S1MOJIY S/t oﬂmm_mo%_zz.nzs:_m NU pan
Ty S LNO4IN S cz:m.o_8<mmIEmo<9wmmomwﬂmwmmwwwwzw%ﬁ:ﬂ 3N
SIXaN£40) ZYIHONNV T AIOHANVY WO NI SHOYYI HSVHD

< CYIHONNYTAIOYANY WOQ <FWOH

1MW

CloeCVUD

1NO NOIS N0 AIOYANY I T3H | 3WOH WOO IYNODYAd013AIA LINYYIN ORIANTD

PCT/US2011/037210

WO 2011/146750

29 9Ol

9/10

(QOHLIN IAILYNINIVW LHVLISIAILYN WILSAS MIATVA LY

(929:VAVI LINILODAZINIVIN LINIFLODAZ SO TYNHILNI AIOHANY WOD LV

(898: VAV LINIFLODAZINNY ¥ITIVOSOUYANYAOHLIWSLINITLOOAZ SO TYNYILNI QIOMANY WO LY

(126 VAV QOHLIN)INOANI QOHLIW LOF 1434 ONYT VAVT LY

(QOHLIN IAILYN)IAILYNINOANI QOHLIW LOFTHIH ONYTVAVF 1Y

(S09Y: VAV QYIHHLALIALLOYINIVIN QYIHHLALIALLOY ddV QIOHANY LY

(€21 YAV ¥3d00T1)d00THId00TSO QIOHANY LY

(66: YAV ¥4I TANYH)IOVSSIWHOLYCSIA HITANYH SO AIOHANY LY

(87 VAVI ¥4I TANYHATHYIAIA)IOVSSINTTANYH TdNISHITANYHOINYIAIA ZHIHONNY T AIOHANY WOD LV

(801 1:VAYI 13A0OWHIHONNYINNY 01 $AYIHHLYIAYOT$HIAYOT1$TIA0NSIHONNYT ZHIHONNY T QIOHANY OO LY
NOILd3OXFHTLINIOA TINNONYT VAV

C

1)

MIIWSLHO43Y G S140d3d Gl WNd 91:65:2} 0L0Z '2C ¥dVY A4\
S30NL v_o<.rwk

4 N\

TIWAIN04ITT, SL¥Od3Y S, INO SNXAN

SWH041VY1d |

\,

@10 SY MY S

-

ONNY 01 $QYIIHLYIAYOI$HAAYOT$TIAONNIHONNYT GOHLIW 30UNOS
NOILdFOXIHILNIOATINN'ONYTVAYF SSV1J NOILd30X3

HSVYO

CHIHONNVTAIOYANY'INOD NI NOILdIDXIUILNIOdTINN

< SHOYYT HSYYHO < 2YIHONNYT AIOYANY WO < FWOH

1@ew g

CloECUDL

1NO NOIS|NOT TIOTANY [dT3H |INOH [IN0D TIVINO@YIOT13AIA LINYYIN OI¥ANTD

WO 2011/146750 PCT/US2011/037210

10/10

FIG. 7

)
'l
TTTTOTOOooooy v

702

710

