(86) Date de dépôt PCT/PCT Filing Date: 2001/06/15
(87) Date publication PCT/PCT Publication Date: 2002/01/10
(85) Entrée phase nationale/National Entry: 2002/10/30
(86) N° demande PCT/PCT Application No.: US 2001/019110
(87) N° publication PCT/PCT Publication No.: 2002/002641
(30) Priorités/Priorities: 2000/06/16 (60/212,210) US;
2000/10/17 (60/240,816) US; 2001/03/16 (60/276,248) US;
2001/03/21 (60/277,379) US; 2001/05/25 (60/293,499) US

(51) Cl.Int.7/Int.Cl.7 C07K 16/00
(71) Demandeurs/Applicants:
HUMAN GENOME SCIENCES, INC., US;
CAMBRIDGE ANTIBODY TECHNOLOGY GROUP PLC,
GB
(72) Inventeurs/Inventors:
RUBEN, STEVEN M., US;
BARASH, STEVEN C., US;
CHOI, GIL H., US;
VAUGHAN, TRISTAN, GB;
HILBERT, DAVID, US
(74) Agent: MBM & CO.

(54) Titre : ANTICORPS SE LIANT DE MANIERE IMMUNOSPECIFIQUE A UN STIMULATEUR DE LYMPHOCYTE B
(54) Title: ANTIBODIES THAT IMMUNOSPECIFICALLY BIND TO BLyS

(57) Abrégé/Abstract:
The present invention relates to antibodies and related molecules that immunospecifically bind to BLyS. The present invention also relates to methods and compositions for detecting or diagnosing a disease or disorder associated with aberrant BLyS expression or inappropriate function of BLyS comprising antibodies or fragments or variants thereof or related molecules that immunospecifically bind to BLyS. The present invention further relates to methods and compositions for preventing, treating or ameliorating a disease or disorder associated with aberrant BLyS expression or inappropriate BLyS function comprising administering to an animal an effective amount of one or more antibodies or fragments or variants thereof or related molecules that immunospecifically bind to BLyS.
Title: ANTIBODIES THAT IMMUNOSPECIFICALLY BIND TO BLYS

Abstract: The present invention relates to antibodies and related molecules that immunospecifically bind to BLYS. The present invention also relates to methods and compositions for detecting or diagnosing a disease or disorder associated with aberrant BLYS expression or inappropriate function of BLYS comprising antibodies or fragments or variants thereof or related molecules that immunospecifically bind to BLYS. The present invention further relates to methods and compositions for preventing, treating or ameliorating a disease or disorder associated with aberrant BLYS expression or inappropriate BLYS function comprising administering to an animal an effective amount of one or more antibodies or fragments or variants thereof or related molecules that immunospecifically bind to BLYS.
DEMANDE OU BREVET VOLUMINEUX

LA PRÉSENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND PLUS D'UN TOME.

CECI EST LE TOME 1 DE 2
omboko-tenant-les-pages 1 À 246

NOTE : Pour les tomes additionnels, veuillez contacter le Bureau canadien des brevets

JUMBO APPLICATIONS/PATENTS

THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE VOLUME

THIS IS VOLUME 1 OF 2
CONTAINING PAGES 1 TO 246

NOTE: For additional volumes, please contact the Canadian Patent Office

NOM DU FICHER / FILE NAME :

NOTE POUR LE TOME / VOLUME NOTE:
ANTIBODIES THAT IMMUNOSPECIFICALLY BIND TO BLYS

INTRODUCTION
[001] The present invention relates to antibodies and related molecules that immunospecifically bind to BLYS. The present invention also relates to methods and compositions for detecting, diagnosing, or prognosing a disease or disorder associated with aberrant BLYS or BLYS receptor expression or inappropriate function of BLYS or BLYS receptor, comprising antibodies or fragments or variants thereof, or related molecules, that immunospecifically bind to BLYS. The present invention further relates to methods and compositions for preventing, treating or ameliorating a disease or disorder associated with aberrant BLYS or BLYS receptor expression or inappropriate BLYS function or BLYS receptor function, comprising administering to an animal, preferably a human, an effective amount of one or more antibodies or fragments or variants thereof, or related molecules, that immunospecifically bind to BLYS.

BACKGROUND OF THE INVENTION
[002] B lymphocyte stimulator (BLYS) is a member of the tumor necrosis factor ("TNF") superfamily that induces both in vivo and in vitro B cell proliferation and differentiation (Moore et al., Science 285: 260-263 (1999)). BLYS is distinguishable from other B cell growth and differentiation factors such as IL-2, IL-4, IL-5, IL-6, IL-7, IL-13, IL-15, CD40L, or CD27L (CD70) by its monocyte-specific gene and protein expression pattern and its specific receptor distribution and biological activity on B lymphocytes. BLYS expression is not detected on natural killer ("NK") cells, T cells or B cells, but is restricted to cells of myeloid origin. BLYS expression on resting monocytes is upregulated by interferon-gamma (IFN-gamma). The gene encoding BLYS has been mapped to chromosome 13q34.

[003] BLYS is expressed as a 285 amino acid type II membrane-bound polypeptide and a soluble 152 amino acid polypeptide (Moore et al., 1999 supra). The membrane-bound form of BLYS has a predicted transmembrane spanning domain between amino acid residues 47 and 73. The NH2-terminus of the soluble form of BLYS begins at Ala134 of the membrane-bound form of BLYS. Soluble recombinant BLYS has
been shown to induce in vitro proliferation of murine splenic B cells and to bind to a cell-surface receptor on these cells (Moore et al., 1999 supra). Soluble BLyS administration to mice has been shown to result in an increase in the proportion of CD45R^{high}, Ly6D^{bright} (also known as ThB) B cells and an increase in serum IgM and IgA levels (Moore et al., 1999 supra). Thus, BLyS displays a B cell tropism in both its receptor distribution and biological activity.

[004] Based upon its expression pattern and biological activity, BLyS has been suggested to be involved in the exchange of signals between B cells and monocytes or their differentiated progeny. The restricted expression patterns of BLyS receptor and ligand suggest that BLyS may function as a regulator of T cell-independent responses in a manner analogous to that of CD40 and CD40L in T cell-dependent antigen activation. As such, antibodies and related molecules that immunospecifically bind to BLyS may find medical utility in, for example, the treatment of B cell disorders associated with autoimmunity, neoplasia, or immunodeficiency syndromes.

SUMMARY OF THE INVENTION

[005] The present invention encompasses antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to a polypeptide or polypeptide fragment of BLyS. In particular, the invention encompasses antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to a polypeptide or polypeptide fragment of human BLyS (SEQ ID NOS:3228 and/or 3229) or BLyS expressed on human monocytes; murine BLyS (SEQ ID NOS:3230 and/or 3231) or BLyS expressed on murine monocytes; rat BLyS (either the soluble forms as given in SEQ ID NOS:3232, 3233, 3234 and/or 3235 or in a membrane associated form, e.g., on the surface of rat monocytes); or monkey BLyS (e.g., the monkey BLyS polypeptides of SEQ ID NOS:3236 and/or 3237, the soluble form of monkey BLyS, or BLyS expressed on monkey monocytes), preferably human BLyS. The present invention also encompasses methods and compositions for detecting, diagnosing, or prognosing diseases or disorders associated with aberrant BLyS or BLyS receptor expression or inappropriate function of BLyS or BLyS receptor in an animal, preferably a mammal, and most preferably a human,
comprising, or alternatively consisting of, use of antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to BLyS. Diseases and disorders which can be detected, diagnosed, or prognosticated with the antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) of the invention include, but are not limited to, immune disorders (e.g., lupus, rheumatoid arthritis, multiple sclerosis, myasthenia gravis, Hashimoto’s disease, and immunodeficiency syndrome), inflammatory disorders (e.g., asthma, allergic disorders, and rheumatoid arthritis), infectious diseases (e.g., AIDS), and proliferative disorders (e.g., leukemia, carcinoma, and lymphoma). The present invention further encompasses methods and compositions for preventing, treating or ameliorating diseases or disorders associated with aberrant BLyS or BLyS receptor expression or inappropriate function of BLyS or BLyS receptor in an animal, preferably a mammal, and most preferably a human, comprising, or alternatively consisting of, administering to said animal an effective amount of one or more antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to BLyS. Diseases and disorders which can be prevented, treated or ameliorated by administering an effective amount of an antibody of the invention include, but are not limited to, immune disorders (e.g., lupus, rheumatoid arthritis, multiple sclerosis, myasthenia gravis, Hashimoto’s disease, and immunodeficiency syndrome), inflammatory disorders (e.g., asthma, allergic disorders, and rheumatoid arthritis), infectious diseases (e.g., AIDS), and proliferative disorders (e.g., leukemia, carcinoma, and lymphoma).

[006] Using phage display technology, the present inventors have identified single chain antibody molecules ("scFvs") that immunospecifically bind to BLyS, including scFvs that immunospecifically bind to soluble BLyS, scFvs that immunospecifically bind the membrane-bound form of BLyS, and scFvs that immunospecifically bind to both the soluble form and the membrane-bound form of BLyS. Molecules comprising, or alternatively consisting of, fragments or variants of these scFvs (e.g., including VH domains, VH CDRs, VL domains, or VL CDRs having an amino acid sequence of any one of those referred to in Table 1), that immunospecifically bind the soluble form of BLyS, the membrane-bound form of BLyS, and/or both the soluble form and membrane-bound form of BLyS, are also encompassed by the invention,
as are nucleic acid molecules that encode these scFvs, and/or molecules.

[007] In particular, the invention relates to scFvs comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 – 2128, preferably SEQ ID NOS:834 - 872, 1570 - 1595, and 1886 – 1908, and most preferably SEQ ID NOS:1 - 46, 321 - 329, 1563 - 1569, and 1881 - 1885, as referred to in Table 1 below. In specific embodiments, the present invention relates to scFvs that immunospecifically bind the soluble form of BLyS, said scFvs comprising, or alternatively consisting of, an amino acid sequence of SEQ ID NOS: 1563 - 1569, preferably SEQ ID NOS:1570 - 1595, and most preferably SEQ ID NOS: 1563 – 1569, as referred to in Table 1, below. In other embodiments, the present invention also relates to scFvs that immunospecifically bind the membrane-bound form of BLyS, said scFvs comprising, or alternatively consisting of, an amino acid sequence of SEQ ID NOS: 1881 - 2128, preferably SEQ ID NOS:1886 - 1908, and most preferably SEQ ID NOS: 1881 – 1885, as referred to in Table 1 below. The present invention further relates to scFvs that immunospecifically bind both the membrane-bound form and soluble form of BLyS, said scFvs comprising, or alternatively consisting of, an amino acid sequence of SEQ ID NOS: 1 - 1562, preferably SEQ ID NOS: 834 - 872, and most preferably SEQ ID NOS: 1 – 46, and 321 - 329, as referred to in Table 1 below. Molecules comprising, or alternatively consisting of, fragments or variants of these scFvs (e.g., including VH domains, VH CDRs, VL domains, or VL CDRs having an amino acid sequence of any one of those referred to in Table 1), that immunospecifically bind the soluble form of BLyS, the membrane-bound form of BLyS, and/or both the soluble form and membrane-bound form of BLyS, are also encompassed by the invention, as are nucleic acid molecules that encode these scFvs, and/or molecules.

[008] The present invention provides antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to a polypeptide or polypeptide fragment of BLyS, said antibodies comprising, or alternatively consisting of, a polypeptide having the amino acid sequence of any one of the variable heavy ("VH") domains referred to in Table 1, below, or any one of the variable light ("VL") domains referred to in Table 1. In a preferred embodiment, antibodies of the present invention comprise, or alternatively consist of, a polypeptide having the amino acid sequence of a VH domain contained in SEQ ID NOS:1
- 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908, as referred to in Table 1 below. In another preferred embodiment, antibodies (including molecules comprising or alternatively consisting of, antibody fragments or variants thereof) of the present invention comprise, or alternatively consist of, a polypeptide having the amino acid sequence of a VL domain contained SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908, as referred to in Table 1 below. Molecules comprising, or alternatively consisting of, fragments or variants of these antibodies (e.g., including VH domains, VH CDRs, VL domains, or VL CDRs having an amino acid sequence of any one of those referred to in Table 1), that immunospecifically bind the soluble form of BLyS, the membrane-bound form of BLyS, and/or both the soluble form and membrane-bound form of BLyS, are also encompassed by the invention, as are nucleic acid molecules that encode these antibodies, and/or molecules.

[009] The present invention also provides antibodies (including molecules comprising or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to a polypeptide or a polypeptide fragment of BLyS, said antibodies comprising, or alternatively consisting of, a polypeptide having the amino acid sequence of any one of the VH domains referred to in Table 1, below, and any one of the VL domains referred to in Table 1. In a preferred embodiment, the antibodies of the invention comprise or alternatively consist of, a polypeptide having the amino acid sequence of a VH and VL domain contained in the same scFv referred to in Table 1. In another preferred embodiment, antibodies of the present invention, comprise, or alternatively consist of, a VH domain from an scFv of SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908, as disclosed in Table 1, and a VL domain from an scFv SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908, as disclosed in Table 1. In another preferred embodiment, antibodies of the present invention comprise, or alternatively consist of, the VH and VL domain from a single scFv of SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908, as disclosed in Table 1. Molecules comprising, or alternatively consisting of, fragments or variants of these antibodies (e.g., including VH domains, VH CDRs, VL domains, or VL CDRs having an amino acid sequence of any one of those referred to in Table 1), that immunospecifically bind the soluble form of BLyS, the membrane-bound form of BLyS, and/or both the soluble form and membrane-bound form of BLyS, are also encompassed by the invention,
as are nucleic acid molecules that encode these antibodies, and/or molecules.

[010] The present invention also provides antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to a polypeptide or a polypeptide fragment of BLyS, said antibodies comprising, or alternatively consisting of, a polypeptide having the amino acid sequence of any one, two, three or more of the VH complementarity determining regions ("CDRs") (i.e., VH CDR1, VH CDR2, or VH CDR3) referred to in Table 1 and/or any one, two, three or more of the VL CDRs (i.e., VL CDR1, VL CDR2, or VL CDR3) referred to in Table 1. In one embodiment, antibodies of the present invention comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one of the VH CDR1s referred to in Table 1 and/or any one of the VL CDR1s referred to in Table 1. In another embodiment, antibodies of the present invention comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one of the VH CDR2s referred to in Table 1 and/or any one of the VL CDR2s referred to in Table 1. In a preferred embodiment, antibodies of the present invention comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one of the VH CDR3s referred to in Table 1 and/or any one of the VL CDR3s referred to in Table 1. Molecules comprising, or alternatively consisting of, fragments or variants of these antibodies (e.g., including VH domains, VH CDRs, VL domains, or VL CDRs having an amino acid sequence of any one of those referred to in Table 1), that immunospecifically bind the soluble form of BLyS, the membrane-bound form of BLyS, and/or both the soluble form and membrane-bound form of BLyS, are also encompassed by the invention, as are nucleic acid molecules that encode these antibodies, and/or molecules.

[011] In another embodiment, antibodies of the present invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) immunospecifically bind to a polypeptide or polypeptide fragment of BLyS, and comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one of the VH CDR1s referred to in Table 1, any one of the VH CDR2s referred to in Table 1, and/or any one of the VH CDR3s referred to in Table 1. In another embodiment, antibodies of the present invention comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one of the VL CDR1s referred to in Table 1, any one of the VL CDR2s referred to in Table 1, and/or any one of the VL CDR3s referred to
in Table 1. In a preferred embodiment, antibodies of the present invention comprise, or alternatively consist of, at least one, two, three, four, five, six, or more CDRs that correspond to the same scFv referred to in Table 1, more preferably where CDR1, CDR2, and CDR3 of the VL domain correspond to the same scFv or where CDR1, CDR2, and CDR3 of the VH domain correspond to the same scFv, and most preferably where all six CDRs correspond to the same scFv referred to in Table 1. Molecules comprising, or alternatively consisting of, fragments or variants of these antibodies (e.g., including VH domains, VH CDRs, VL domains, or VL CDRs having an amino acid sequence of any one of those referred to in Table 1), that immunospecifically bind the soluble form of BLyS, the membrane-bound form of BLyS, and/or both the soluble form and membrane-bound form of BLyS, are also encompassed by the invention, as are nucleic acid molecules that encode these antibodies, and/or molecules.

[012] The present invention also provides antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that: immunospecifically bind to the soluble form of BLyS (e.g., a polypeptide consisting of amino acids 134 - 285 of SEQ ID NO:3228); that immunospecifically bind to the membrane-bound form of BLyS (e.g., a polypeptide consisting of amino acids 1 - 285 of SEQ ID NO:3228 or a BLyS polypeptide expressed on the surface of monocytes) and/or that immunospecifically bind to both the soluble form and membrane-bound form of BLyS. In a preferred embodiment, antibodies of the present invention immunospecifically bind to the soluble form of BLyS and comprise, or alternatively consist of, a VH domain, VH CDR1, VH CDR2, VH CDR3, VL domain, VL CDR1, VL CDR2, and/or VL CDR3 corresponding to one or more scFvs, that immunospecifically bind to the soluble form of BLyS. In another preferred embodiment, antibodies of the present invention immunospecifically bind to the membrane-bound form of BLyS and comprise, or alternatively consist of, a VH domain, VH CDR1, VH CDR2, VH CDR3, VL domain, VL CDR1, VL CDR2, and/or VL CDR3 corresponding to one or more scFvs, that immunospecifically bind to the membrane-bound form of BLyS. In yet another preferred embodiment, antibodies of the present invention immunospecifically bind to the soluble form and membrane-bound form of BLyS and comprise, or alternatively consist of, a VH domain, VH CDR1, VH CDR2, VH CDR3, VL domain, VL CDR1, VL CDR2, and/or VL CDR3 corresponding to one or more scFvs, that immunospecifically binds to the soluble
form and membrane-bound form of BLyS. In another preferred embodiment, antibodies of the present invention comprise, or alternatively consist of, a VH domain and a VL domain corresponding to the same scFv disclosed in Table 1, which antibodies immunospecifically bind to the soluble form of BLyS, the membrane-bound form of BLyS, or both the soluble form and membrane-bound form of BLyS. Nucleic acid molecules encoding these antibodies are also encompassed by the invention. Molecules comprising, or alternatively consisting of, fragments or variants of these antibodies (e.g., including VH domains, VH CDRs, VL domains, or VL CDRs having an amino acid sequence of any one of those referred to in Table 1), that immunospecifically bind the soluble form of BLyS, the membrane-bound form of BLyS, and/or both the soluble form and membrane-bound form of BLyS, are also encompassed by the invention, as are nucleic acid molecules that encode these antibodies, and/or molecules.

[013] A VH domain of an amino acid sequence disclosed herein may be combined with

[014] a VL domain of an amino acid sequence disclosed herein, or other VL domains, to provide a VH/VL pairing representing an antigen-binding site of an antibody. Similarly, a VL domain of an amino acid sequence disclosed herein may be combined with a VH domain of an amino acid sequence disclosed herein, or other VH domains. Further, one or more CDRs disclosed herein may be taken from a VH or VL domain and incorporated into a suitable framework as discussed infra.

[015] The present invention provides antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof (including derivatives)) comprising, or alternatively consisting of, of VH domains, VL domains and/or CDRs described herein, which antibodies, immunospecifically bind to BLyS (e.g., soluble BLyS and membrane-bound BLyS) and can be routinely assayed for immunospecific binding to BLyS using methods known in the art, such as, for example, the immunoassays disclosed infra. Antibodies and antibody fragments or variants (including derivatives) of the invention may include, for example, one or more amino acid sequence alterations (addition, deletion, substitution and/or insertion of an amino acid residue). These alterations may be made in one or more framework regions and/or one or more CDR's. The antibodies of the invention (including antibody fragments, and variants and derivative thereof) can be routinely made by methods known in the art. Molecules
comprising, or alternatively consisting of, fragments or variants of any of the VH domains, VH CDRs, VL domains, and VL CDRs whose sequences are specifically disclosed herein may be employed in accordance with the present invention. Nucleic acid molecules encoding these antibodies and molecules (including fragments, variants, and derivatives) are also encompassed by the invention.

[016] The present invention also provides panels of antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants) wherein the panel members correspond to one, two, three, four, five, ten, fifteen, twenty, or more different antibodies of the invention (e.g., whole antibodies, Fabs, F(ab')2 fragments, Fd fragments, disulfide-linked Fvs (sdFvs), antiidiotypic (anti-Id) antibodies, and scFvs). The present invention further provides mixtures of antibodies, wherein the mixture corresponds to one, two, three, four, five, ten, fifteen, twenty, or more different antibodies of the invention (e.g., whole antibodies, Fabs, F(ab')2 fragments, Fd fragments, disulfide-linked Fvs (sdFvs), antiidiotypic (anti-Id) antibodies, and scFvs)). The present invention also provides for compositions comprising, or alternatively consisting of, one, two, three, four, five, ten, fifteen, twenty, or more antibodies of the present invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof). A composition of the invention may comprise, or alternatively consist of, one, two, three, four, five, ten, fifteen, twenty, or more amino acid sequences of one or more antibodies or fragments or variants thereof. Alternatively, a composition of the invention may comprise, or alternatively consist of, nucleic acid molecules encoding one or more antibodies of the invention.

[017] The present invention also provides for fusion proteins comprising an antibody (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) of the invention, and a heterologous polypeptide (i.e., a polypeptide unrelated to an antibody or antibody domain). Nucleic acid molecules encoding these fusion proteins are also encompassed by the invention. A composition of the present invention may comprise, or alternatively consist of, one, two, three, four, five, ten, fifteen, twenty or more fusion proteins of the invention. Alternatively, a composition of the invention may comprise, or alternatively consist of, nucleic acid molecules encoding one, two, three, four, five, ten, fifteen, twenty or more fusion proteins of the invention.
[018] The present invention also provides for a nucleic acid molecule, generally isolated, encoding an antibody (including molecules such as scFv's, which comprise, or alternatively consist of, an antibody fragment or variant thereof) of the invention. The present invention also provides a host cell transformed with a nucleic acid molecule of the invention and progeny thereof. The present invention also provides a method for the production of an antibody (including a molecule comprising, or alternatively consisting of, an antibody fragment or variant thereof) of the invention. The present invention further provides a method of expressing an antibody (including a molecule comprising, or alternatively consisting of, an antibody fragment or variant thereof) of the invention from a nucleic acid molecule. These and other aspects of the invention are described in further detail below.

[020] The present invention also encompasses methods and compositions for detecting, diagnosing and/or prognosing diseases or disorders associated with aberrant BLyS or BLyS receptor expression or inappropriate BLyS or BLyS receptor function in an animal, preferably a mammal, and most preferably a human, comprising using antibodies (including molecules which comprise, or alternatively consist of, antibody fragments or variants thereof) that immunospecifically bind to BLyS. Diseases and disorders which can be detected, diagnosed or prognosed with the antibodies of the invention include, but are not limited to, immune disorders (e.g., lupus, rheumatoid arthritis, multiple sclerosis, myasthenia gravis, Hashimoto's disease, and immunodeficiency syndrome), inflammatory disorders (e.g., asthma, allergic disorders, and rheumatoid arthritis), infectious diseases (e.g., AIDS), and proliferative disorders (e.g., leukemia, carcinoma, and lymphoma).

[021] In specific embodiments, the present invention encompasses methods and compositions for detecting, diagnosing and/or prognosing diseases or disorders associated with hypergammaglobulinemia (e.g., AIDS, autoimmune diseases, and some immunodeficiencies). In other specific embodiments, the present invention encompasses methods and compositions for detecting, diagnosing and/or prognosing diseases or disorders associated with hypogammaglobulinemia (e.g., an immunodeficiency).

[022] The present invention further encompasses methods and compositions for preventing, treating or ameliorating diseases or disorders associated with aberrant BLyS or BLyS receptor expression or inappropriate BLyS or BLyS receptor function in an animal, preferably a mammal, and most preferably a human, comprising administering to said
animal an effective amount of one or more antibodies (including molecules which comprise, or alternatively consist of, antibody fragments or variants thereof) that immunospecifically bind to BLyS. Diseases and disorders which can be prevented, treated or inhibited by administering an effective amount of one or more antibodies or molecules of the invention include, but are not limited to, immune disorders (e.g., lupus, rheumatoid arthritis, multiple sclerosis, myasthenia gravis, Hashimoto’s disease, and immunodeficiency syndrome), inflammatory disorders (e.g., asthma, allergic disorders, and rheumatoid arthritis), infectious diseases (e.g., AIDS), and proliferative disorders (e.g., leukemia, carcinoma, and lymphoma).

[023] In specific embodiments, the present invention encompasses methods and compositions (e.g., antagonistic anti-BLyS antibodies) for preventing, treating or ameliorating diseases or disorders associated with hypergammaglobulinemia (e.g., AIDS, autoimmune diseases, and some immunodeficiency syndromes). In other specific embodiments, the present invention encompasses methods and compositions (e.g., agonistic anti-BLyS antibodies) for preventing, treating or ameliorating diseases or disorders associated with hypogammaglobulinemia (e.g., an immunodeficiency syndrome).

[024] Autoimmune disorders, diseases, or conditions that may be detected, diagnosed, prognosed, or monitored using the antibodies of the invention include, but are not limited to, autoimmune hemolytic anemia, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, autoimmune neutropenia, autoimmunocytopenia, hemolytic anemia, antiphospholipid syndrome, dermatitis, gluten-sensitive enteropathy, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, glomerulonephritis (e.g., IgA nephropathy), Multiple Sclerosis, Neuritis, Uveitis Ophthalmia, Polyendocrinopathies, Purpura (e.g., Henloch-Schoenlein purpura), Reiter’s Disease, Stiff-Man Syndrome, Autoimmune Pulmonary Inflammation, myocarditis, IgA glomerulonephritis, dense deposit disease, rheumatic heart disease, Guillain-Barre Syndrome, insulin dependent diabetes mellitus, and autoimmune inflammatory eye, autoimmune thyroiditis, hypothyroidism (i.e., Hashimoto's thyroiditis, systemic lupus erythematosus, discoid lupus, Goodpasture's syndrome, Pemphigus, Receptor autoimmunities such as, for example, (a) Graves' Disease, (b) Myasthenia Gravis, and (c) insulin resistance, autoimmune hemolytic anemia, autoimmune thrombocytopenic purpura
rheumatoid arthritis, scleroderma with anti-collagen antibodies, mixed connective tissue disease, polymyositis/dermatomyositis, pernicious anemia, idiopathic Addison's disease, infertility, glomerulonephritis such as primary glomerulonephritis and IgA nephropathy, bullous pemphigoid, Sjögren's syndrome, diabetes mellitus, and adrenergic drug resistance (including adrenergic drug resistance with asthma or cystic fibrosis), chronic active hepatitis, primary biliary cirrhosis, other endocrine gland failure, vitiligo, vasculitis, post-MI, cardiomyopathy, syndrome, urticaria, atopic dermatitis, asthma, inflammatory myopathies, and other inflammatory, granulomatous, degenerative, and atrophic disorders).

[025] Immunodeficiencies that may be detected, diagnosed, prognosed, or monitored using the antibodies of the invention include, but are not limited to, severe combined immunodeficiency (SCID)-X linked, SCID-autosomal, adenosine deaminase deficiency (ADA deficiency), X-linked agammaglobulinemia (XLA), Bruton's disease, congenital agammaglobulinemia, X-linked infantile agammaglobulinemia, acquired agammaglobulinemia, adult onset agammaglobulinemia, late-onset agammaglobulinemia, dysgammaglobulinemia, hypogammaglobulinemia, transient hypogammaglobulinemia of infancy, unspecified hypogammaglobulinemia, agammaglobulinemia, common variable immunodeficiency (CVID) (acquired), Wiskott-Aldrich Syndrome (WAS), X-linked immunodeficiency with hyper IgM, non X-linked immunodeficiency with hyper IgM, selective IgA deficiency, IgG subclass deficiency (with or without IgA deficiency), antibody deficiency with normal or elevated Igs, immunodeficiency with thymoma, Ig heavy chain deletions, kappa chain deficiency, B cell lymphoproliferative disorder (BLPD), selective IgM immunodeficiency, recessive agammaglobulinemia (Swiss type), reticular dysgenesis, neonatal neutropenia, severe congenital leukopenia, thymic alymphoplasia-aplasia or dysplasia with immunodeficiency, ataxia-telangiectasia, short limbed dwarfism, X-linked lymphoproliferative syndrome (XLP), Nezelof syndrome-combined immunodeficiency with Igs, purine nucleoside phosphorylase deficiency (PNP), MHC Class II deficiency (Bare Lymphocyte Syndrome) and severe combined immunodeficiency.

DEFINITIONS

[026] The term "antibody," as used herein, refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that
contain an antigen binding site that immunospecifically binds an antigen. As such, the term antibody encompasses not only whole antibody molecules, but also antibody fragments as well as variants (including derivatives) of antibodies and antibody fragments. Examples of molecules which are described by the term “antibody” in this application include, but are not limited to: single chain Fv’s (scFv’s), Fab fragments, Fab’ fragments, F(ab’)_2, disulfide linked Fv’s (sFv’s), Fv’s, and fragments comprising or alternatively consisting of, either a VL or a VH domain. The term “single chain Fv” or “scFv” as used herein refers to a polypeptide comprising a VL domain of antibody linked to a VH domain of an antibody. Antibodies that immunospecifically bind to BLyS may have cross-reactivity with other antigens. Preferably, antibodies that immunospecifically bind to BLyS do not cross-react with other antigens. Antibodies that immunospecifically bind to BLyS can be identified, for example, by immunoassays or other techniques known to those of skill in the art, e.g., the immunoassays described in the Examples below.

[027] Antibodies of the invention include, but are not limited to, monoclonal, multispecific, human or chimeric antibodies, single chain antibodies, Fab fragments, F(ab’) fragments, antiidiotype (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies of the invention), and epitope-binding fragments of any of the above. The immunoglobulin molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule.

[028] Preferably, an antibody of the invention comprises, or alternatively consists of, a VH domain, VH CDR, VL domain, or VL CDR having an amino acid sequence of any one of those referred to in Table 1, or a fragment or variant thereof.

[029] An antibody of the invention “which binds the soluble form of BLyS” is one which binds the 152 amino acid soluble form of the BLyS protein (amino acids 134-285 of SEQ ID NO:3228). In specific embodiments of the invention, an antibody of the invention “which binds the soluble form of BLyS” does not also bind the membrane-bound or membrane-associated form of BLyS. Assays which measure binding to the soluble form of BLyS include, but are not limited to, receptor binding inhibition assay or capture of soluble BLyS from solution as described in Examples 8 and 9.

[030] An antibody of the invention “which binds the membrane-bound form of BLyS” is one which binds the membrane-associated (uncleaved) BLyS protein. In
specific embodiments of the invention, an antibody of the invention “which binds the membrane-bound form of BLyS” does not also bind the soluble form of BLyS. Binding to HIS-tagged BLyS (as described herein) in an ELISA is an indicator that an antibody binds the membrane-bound form of BLyS, but should not be relied upon as proof of specificity for the membrane-bound form of BLyS. Assays that may be relied upon as proof of an antibody’s specificity for membrane-bound BLyS, include, but are not limited to, binding to plasma membranes expressing BLyS as described in Example 2. An antibody of the invention “which binds the both the soluble form and the membrane-bound form of BLyS” is one which binds both the membrane-bound form and the soluble form of BLyS.

[031] The term "variant" as used herein refers to a polypeptide that possesses a similar or identical function as a BLyS polypeptide, a fragment of BLyS, an anti-BLyS antibody or antibody fragment thereof, but does not necessarily comprise a similar or identical amino acid sequence of a BLyS polypeptide, a fragment of BLyS, an anti-BLyS antibody or antibody fragment thereof, or possess a similar or identical structure of a BLyS polypeptide, a fragment of BLyS, an anti-BLyS antibody or antibody fragment thereof. A variant having a similar amino acid refers to a polypeptide that satisfies at least one of the following: (a) a polypeptide comprising, or alternatively consisting of, an amino acid sequence that is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% identical to the amino acid sequence of a BLyS polypeptide, a fragment of BLyS, an anti-BLyS antibody or antibody fragment thereof (including a VH domain, VHCDR, VL domain, or VLCDR having an amino acid sequence of any one of those referred to in Table 1) described herein; (b) a polypeptide encoded by a nucleotide sequence, the complementary sequence of which hybridizes under stringent conditions to a nucleotide sequence encoding a BLyS polypeptide (e.g., SEQ ID NO:3228), a fragment of BLyS, an anti-BLyS antibody or antibody fragment thereof (including a VH domain, VHCDR, VL domain, or VLCDR having an amino acid sequence of any one of those referred to in Table 1), described herein, of at least 5 amino acid residues, at least 10 amino acid residues, at least 15 amino acid residues, at least 20 amino acid residues, at least 25 amino acid residues, at least 30 amino acid residues, at least 40 amino acid residues, at least 50 amino acid residues, at least 60 amino residues, at least 70 amino acid residues, at least 80 amino acid residues, at least 90 amino acid
residues, at least 100 amino acid residues, at least 125 amino acid residues, or at least 150 amino acid residues; and (c) a polypeptide encoded by a nucleotide sequence that is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99%, identical to the nucleotide sequence encoding a BLyS polypeptide, a fragment of BLyS, an anti-BLyS antibody or antibody fragment thereof (including a VH domain, VHCDR, VL domain, or VLCDR having an amino acid sequence of any one of those referred to in Table 1), described herein. A polypeptide with similar structure to a BLyS polypeptide, a fragment of BLyS, an anti-BLyS antibody or antibody fragment thereof, described herein refers to a polypeptide that has a similar secondary, tertiary or quaternary structure of a BLyS polypeptide, a fragment of BLyS, an anti-BLyS antibody, or antibody fragment thereof, described herein. The structure of a polypeptide can determined by methods known to those skilled in the art, including but not limited to, X-ray crystallography, nuclear magnetic resonance, and crystallographic electron microscopy.

[032] To determine the percent identity of two amino acid sequences or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino acid or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide at the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity = number of identical overlapping positions/total number of positions x 100%). In one embodiment, the two sequences are the same length.

such an algorithm. BLAST nucleotide searches can be performed with the BLASTn program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. BLAST protein searches can be performed with the BLASTx program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. Nucleic Acids Res. 25:3389-3402(1997). Alternatively, PSI-BLAST can be used to perform an iterated search which detects distant relationships between molecules (Id.). When utilizing BLAST, Gapped BLAST, and PSI-BLAST programs, the default parameters of the respective programs (e.g., BLASTx and BLASTn) can be used. (See http://www.ncbi.nlm.nih.gov.)

[034] Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, CABIOS (1989). The ALIGN program (version 2.0) which is part of the GCG sequence alignment software package has incorporated such an algorithm. Other algorithms for sequence analysis known in the art include ADVANCE and ADAM as described in Torellis and Robotti Comput. Appl. Biosci., 10 :3-5(1994); and FASTA described in Pearson and Lipman Proc. Natl. Acad. Sci. 85:2444-8(1988). Within FASTA, k=up is a control option that sets the sensitivity and speed of the search.

[035] The term "derivative" as used herein, refers to a variant polypeptide of the invention that comprises, or alternatively consists of, an amino acid sequence of a BLyS polypeptide, a fragment of BLyS, or an antibody of the invention that immunospecifically binds to BLyS, which has been altered by the introduction of amino acid residue substitutions, deletions or additions. The term "derivative" as used herein also refers to a BLyS polypeptide, a fragment of BLyS, an antibody that immunospecifically binds to BLyS which has been modified, e.g., by the covalent attachment of any type of molecule to the polypeptide. For example, but not by way of limitation, a BLyS polypeptide, a fragment of BLyS, an anti-BLyS antibody, may be modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. A derivative of a BLyS polypeptide, a fragment of BLyS, or an anti-BLyS antibody, may be modified by chemical modifications using techniques known to those of
skill in the art, including, but not limited to, specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Further, a derivative of a BLyS polypeptide, a fragment of BLyS, or an anti-BLyS antibody, may contain one or more non-classical amino acids. A polypeptide derivative possesses a similar or identical function as a BLyS polypeptide, a fragment of BLyS, or an anti-BLyS antibody, described herein.

[036] The term "epitopes" as used herein refers to portions of BLyS having antigenic or immunogenic activity in an animal, preferably a mammal. An epitope having immunogenic activity is a portion of BLyS that elicits an antibody response in an animal. An epitope having antigenic activity is a portion of BLyS to which an antibody immunospecifically binds as determined by any method known in the art, for example, by the immunoassays described herein. Antigenic epitopes need not necessarily be immunogenic.

[037] The term "fragment" as used herein refers to a polypeptide comprising an amino acid sequence of at least 5 amino acid residues, at least 10 amino acid residues, at least 15 amino acid residues, at least 20 amino acid residues, at least 25 amino acid residues, at least 30 amino acid residues, at least 35 amino acid residues, at least 40 amino acid residues, at least 45 amino acid residues, at least 50 amino acid residues, at least 60 amino acid residues, at least 70 amino acid residues, at least 80 amino acid residues, at least 90 amino acid residues, at least 100 amino acid residues, at least 125 amino acid residues, at least 150 amino acid residues, at least 175 amino acid residues, at least 200 amino acid residues, or at least 250 amino acid residues, of the amino acid sequence of BLyS, or an anti-BLyS antibody (including molecules such as scFv's, that comprise, or alternatively consist of, antibody fragments or variants thereof) that immunospecifically binds to BLyS.

[038] The term "fusion protein" as used herein refers to a polypeptide that comprises, or alternatively consists of, an amino acid sequence of an anti-BLyS antibody of the invention and an amino acid sequence of a heterologous polypeptide (i.e., a polypeptide unrelated to an antibody or antibody domain).

[039] The term "host cell" as used herein refers to the particular subject cell transfected with a nucleic acid molecule and the progeny or potential progeny of such a cell. Progeny may not be identical to the parent cell transfected with the nucleic acid molecule due to mutations or environmental influences that may occur in succeeding
generations or integration of the nucleic acid molecule into the host cell genome.

DESCRIPTION OF THE FIGURES

[040] Figure 1. ELISA results for three scFvs, I006E07, I008D05 and I016F04, that immunospecifically bind to U937 membranes, but not to bind to or cross-react with TNF-alpha or BSA.

[041] Figure 2. The results for three scFvs, I016H07, I001C09 and I018D07, in a receptor inhibition assay.

[042] Figure 3. ELISA results for two scFvs (I022D01 and I031F02) demonstrating their ability to bind to human BLYS and to cross-react with mouse BLYS, but not to bind to or cross-react with other antigens of the TNF ligand family.

[043] Figure 4. ELISA results for three scFvs (I031F09, I050A12, and I051C04) binding to U937 plasma membranes when either BLYS or TNF-alpha is used as a competitor.

[044] Figure 5. Kinetic analysis of scFv antibody I003C02. A dilution series of I003C02 from 3nM to 825nM is shown. Association and dissociation curves were generated using a BIACore 2000 and BIAevaluation 3.0 software.

[045] Figure 6. Typical titration curves for two scFv antibodies (I007F11 and I050A07) are shown in Figure 6. Unlabelled BLYS competed for binding to its receptor with an IC_{50} value of 0.8 nM. The IC_{50} values for I007F11 and I050A07 are 7.9 nM and 17.1 nM, respectively. The assay was performed in triplicate and standard error bars are shown.

[001] Figure 7. ELISA results for three scFvs clones (I074B12, I075F12 and I075A02) that immunospecifically bind to immobilized BLYS, but not to U937 plasma membranes, TNF-alpha or BSA. As a control, a phage antibody that recognizes TNFα, is also shown in Figure 7.

[047] Figure 8. The results for two scFvs (I025B09 and I026C04) in a receptor inhibition assay.

[048] Figure 9. ELISA results for two scFvs clones (I067F05 and I078D02) demonstrating their ability to bind to immobilized human BLYS and to cross-react with
immobilized mouse BLyS, but not to bind to or cross-react with other antigens of the TNF ligand family.

[049] As a control, a phage antibody that recognizes TNFα, is also shown in Figure 7.

[050] Figure 10. Kinetic analysis of scFv antibody I002A01. A dilution series of I002A01 from 3nM to 1650nM is shown. Association and dissociation curves were generated using a BIAcore 2000 and BIAevaluation 3.0 software.

[051] Figure 11. Typical titration curves for two scFvs, I0068C06 and I074B12, are shown in Figure 11. Unlabelled BLyS competed for binding to its receptor with an inhibitory constant (IC₅₀) value of 0.66 nM. The IC₅₀ values for I0068C06 and I074B12 are 61 nM and 13 nM, respectively. The assay was performed in triplicate and standard error bars are shown.

[052] Figure 12. ELISA results for three clones (I079C01, I081C10 and I082A02) demonstrating their ability to bind histidine-tagged BLyS, U937 plasma membranes, but not to bind immobilized biotinylated BLyS.

[053] Figure 13. ELISA results for three scFvs (I079B04, I079F08, and I080B01) binding to U937 plasma membranes when either histidine-tagged BLyS or biotinylated BLyS is used as a competitor.

[054] Figure 14. An example of the dissociation section of a typical sensorgram for 8 scFvs is shown in Figure 14. An anti-TNFα antibody that does not recognize BLyS was included as a control. Of the 8 scFvs exemplified, I079F06 was identified for further study due to the relatively high numbers of RU's bound to the surface.

[055] Figure 15. A typical example of the binding curves generated for the scFv antibody I082C03 is shown in Figure 15. The off-rate for this clone was calculated as 2x10⁻³ s⁻¹. The affinity of I082C03 was calculated as 20 nM, assuming 100% activity of the scFv.

[056] Figure 16. ELISA results for three scFvs (I079B04, I079F08, and I080B01) binding to P388 plasma membranes when either histidine-tagged BLyS or biotinylated BLyS is used as a competitor.

DETAILED DESCRIPTION OF THE INVENTION

19
[057] The present invention encompasses antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to BLyS or a fragment or variant of BLyS. In particular, the invention provides antibodies such as, for example, single chain Fvs (scFvs) having an amino acid sequence of any one of SEQ ID NOS:1 - 2128, as referred to in Table 1. In particular, the present invention encompasses antibodies that immunospecifically bind to a polypeptide, a polypeptide fragment or variant, or an epitope of human BLyS (SEQ ID NOS:3228 and/or 3229) or BLyS expressed on human monocytes; murine BLyS (SEQ ID NOS:3230 and/or 3231) or BLyS expressed on murine monocytes; rat BLyS (either the soluble forms as given in SEQ ID NOS:3232, 3233, 3234 and/or 3235 or in a membrane associated form, e.g., on the surface of rat monocytes); or monkey BLyS (e.g., the monkey BLyS polypeptides of SEQ ID NOS:3236 and/or 3237, the soluble form of monkey BLyS, or BLyS expressed on monkey monocytes) (as determined by immunoassays known in the art for assaying specific antibody-antigen binding).

[058] The polypeptide sequence shown in SEQ ID NO:3228 was obtained by sequencing and translating the cDNA of the HNEDU15 clone which was deposited on October 22, 1996 at the American Type Culture Collection, 10801 University Boulevard, Manassas, Virginia 20110-2209, and assigned ATCC Accession No. 97768. The deposited clone is contained in the pBluescript SK(-) plasmid (Stratagene, La Jolla, CA). The ATCC deposits were made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure.

[059] The polypeptide sequence shown in SEQ ID NO:3229 was obtained by sequencing and translating the cDNA of the HDPMC52 clone, which was deposited on December 10, 1998 at the American Type Culture Collection, and assigned ATCC Accession No. 203518. The deposited clone is contained in the pBluescript SK(-) plasmid (Stratagene, La Jolla, CA). The ATCC deposits were made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure.

[060] The BLyS polypeptides bound by the antibodies of the invention may be in monomers or multimers (i.e., dimers, trimers, tetramers and higher multimers). Accordingly, the present invention relates to antibodies that bind monomers and multimers
of the BLYS polypeptides of the invention, their preparation, and compositions (preferably, pharmaceutical compositions) containing them. In specific embodiments, the antibodies of the invention bind BLYS monomers, dimers, trimers or tetramers. In additional embodiments, the antibodies of the invention bind at least dimers, at least trimers, or at least tetramers of BLYS.

[061] Multimeric BLYS bound by the antibodies of the invention may be homomers or heteromers. A BLYS homomer, refers to a multimer containing only BLYS polypeptides (including BLYS fragments, variants, and fusion proteins, as described herein). These homomers may contain BLYS polypeptides having identical or different amino acid sequences. In specific embodiments, the antibodies of the invention bind a BLYS homodimer (e.g., containing two BLYS polypeptides having identical or different amino acid sequences) or a BLYS homotrimer (e.g., containing three BLYS polypeptides having identical or different amino acid sequences). In a preferred embodiment, the antibodies of the invention bind homotrimers of BLYS. In additional embodiments, the antibodies of the invention bind a homomeric BLYS multimer which is at least a homodimer, at least a homotrimer, or at least a homotetramer.

[062] Heteromeric BLYS refers to a multimer containing heterologous polypeptides (i.e., polypeptides of a different protein) in addition to the BLYS polypeptides of the invention. In a specific embodiment, the antibodies of the invention bind a BLYS heterodimer, a heterotrimer, or a heterotetramer. In additional embodiments, the antibodies of the invention bind a heteromeric BLYS multimer which is at least a heterodimer, at least a heterotrimer, or at least a heterotetramer. In highly preferred embodiments, the antibodies of the invention bind a heterotrimer comprising both BLYS polypeptides and APRIL polypeptides (SEQ ID NO:3239; GenBank Accession No. AF046888; PCT International Publication Number WO97/33902; J. Exp. Med. 188(6):1185-1190) or fragments or variants thereof. In other highly preferred embodiments, the antibodies of the invention bind a heterotrimer comprising one BLYS polypeptide (including fragments or variants) and two APRIL polypeptides (including fragments or variants). In still other highly preferred embodiments, the antibodies of the invention bind a heterotrimer comprising two BLYS polypeptides (including fragments or variants) and one APRIL polypeptide (including fragments or variants). In a further
nonexclusive embodiment, the heteromers bound by the antibodies of the invention contain CD40 ligand polypeptide sequence(s), or biologically active fragment(s) or variant(s) thereof.

[063] In particularly preferred embodiments, the antibodies of the invention bind homomeric, especially homotrimeric, BLyS polypeptides, wherein the individual protein components of the multimers consist of the mature form of BLyS (e.g., amino acids residues 134-285 of SEQ ID NO:3228, or amino acids residues 134-266 of SEQ ID NO:3229) or fragments or variants thereof. In other specific embodiments, antibodies of the invention bind heteromeric, especially heterotrimeric, BLyS polypeptides such as a heterotrimer containing two BLyS polypeptides and one APRIL polypeptide or a heterotrimer containing one BLyS polypeptide and two APRIL polypeptides, and wherein the individual protein components of the BLyS heteromer consist of the mature extracellular soluble portion of either BLyS (e.g., amino acids residues 134-285 of SEQ ID NO:3228, or amino acids residues 134-266 of SEQ ID NO:3229) or fragments or variants thereof, or the mature extracellular soluble portion APRIL (e.g., amino acid residues 105-250 of SEQ ID NO:3239) or fragments or variants thereof.

[064] In specific embodiments, the antibodies of the invention bind conformational epitopes of a BLyS monomeric protein. In specific embodiments, the antibodies of the invention bind conformational epitopes of a BLyS multimeric, especially trimeric, protein. In other embodiments, antibodies of the invention bind conformational epitopes that arise from the juxtaposition of BLyS with a heterologous polypeptide, such as might be present when BLyS forms heterotrimers (e.g., with APRIL polypeptides (e.g., SEQ ID SEQ ID NO:3239)), or in fusion proteins between BLyS and a heterologous polypeptide.

[065] BLyS multimers bound by the antibodies of the invention may be the result of hydrophobic, hydrophilic, ionic and/or covalent associations and/or may be indirectly linked, by for example, liposome formation. Thus, in one embodiment, BLyS multimers, such as, for example, homodimers or heterotrimers, are formed when polypeptides of the
invention contact one another in solution. In another embodiment, BLyS heteromultimers, such as, for example, BLyS heterotrimers or BLyS heterotetramers, are formed when polypeptides of the invention contact antibodies to the polypeptides of the invention (including antibodies to the heterologous polypeptide sequence in a fusion protein of the invention) in solution. In other embodiments, BLyS multimers are formed by covalent associations with and/or between the BLyS polypeptides of the invention. Such covalent associations may involve one or more amino acid residues contained in the polypeptide sequence (e.g., that recited in SEQ ID NO:3228 or SEQ ID NO:3229). In one instance, the covalent associations are cross-linking between cysteine residues located within the polypeptide sequences which interact in the native (i.e., naturally occurring) polypeptide. In another instance, the covalent associations are the consequence of chemical or recombinant manipulation. Alternatively, such covalent associations may involve one or more amino acid residues contained in the heterologous polypeptide sequence in a BLyS fusion protein. In one example, covalent associations are between the heterologous sequence contained in a fusion protein (see, e.g., US Patent Number 5,478,925). In a specific example, the covalent associations are between the heterologous sequence contained in a BLyS-Fc fusion protein. In another specific example, covalent associations of fusion proteins of the invention are between heterologous polypeptide sequence from another TNF family ligand/receptor member that is capable of forming covalently associated multimers, such as for example, osteoprotegerin (see, e.g., International Publication No. WO 98/49305, the contents of which are herein incorporated by reference in its entirety). In another specific example, covalent associations of fusion proteins of the invention are between heterologous polypeptide sequence from CD40L, or a soluble fragment thereof. In another embodiment, two or BLyS polypeptides are joined through synthetic linkers (e.g., peptide, carbohydrate or soluble polymer linkers). Examples include those peptide linkers described in U.S. Pat. No. 5,073,627 (hereby incorporated by reference). Proteins comprising multiple BLyS polypeptides separated by peptide linkers may be produced using conventional recombinant DNA technology.

[066] In one embodiment, antibodies of the invention immunospecifically bind a BLyS polypeptide having the amino acid sequence of SEQ ID NO:3228 or as encoded by the cDNA clone contained in ATCC No. 97768, or a polypeptide comprising a portion (i.e., a fragment) of the above polypeptides. In another embodiment, the invention
provides an antibody that binds an isolated BLyS polypeptide having the amino acid sequence of SEQ ID NO:3229 or the amino acid sequence encoded by the cDNA clone contained in ATCC No. 203518, or an antibody that binds polypeptide comprising a portion (i.e., fragment) of the above polypeptides.

[067] Antibodies of the present invention immunospecifically bind to polypeptides comprising or alternatively, consisting of, the amino acid sequence of SEQ ID NO:3228, encoded by the cDNA contained in the plasmid having ATCC accession number 97768, or encoded by nucleic acids which hybridize (e.g., under stringent hybridization conditions) to the nucleotide sequence contained in the deposited clone. Antibodies of the present invention also bind to fragments of the amino acid sequence of SEQ ID NO:3228, encoded by the cDNA contained in the plasmid having ATCC accession number 97768, or encoded by nucleic acids which hybridize (e.g., under stringent hybridization conditions) to the nucleotide sequence contained in the deposited clone.

[068] Additionally, antibodies of the present invention bind polypeptides comprising or alternatively, consisting of, the amino acid sequence of SEQ ID NO:3229, encoded by the cDNA contained in the plasmid having ATCC accession number 203518, or encoded by nucleic acids which hybridize (e.g., under stringent hybridization conditions) to the nucleotide sequence contained in the deposited clone. Antibodies of the present invention also bind to fragments of the amino acid sequence of SEQ ID NO:3229, encoded by the cDNA contained in the plasmid having ATCC accession number 203518, or encoded by nucleic acids which hybridize (e.g., under stringent hybridization conditions) to the nucleotide sequence contained in the deposited clone.

[069] In addition, antibodies of the invention bind polypeptides or polypeptide fragments comprising or alternatively, consisting of, an amino acid sequence contained in SEQ ID NOS: 3230 through 3237.

[070] In specific embodiments, the antibodies of the present invention immunospecifically bind polypeptide fragments including polypeptides comprising or alternatively, consisting of, an amino acid sequence contained in SEQ ID NO:3228, encoded by the cDNA contained in the deposited clone, or encoded by nucleic acids which hybridize (e.g., under stringent hybridization conditions) to the nucleotide sequence contained in the deposited clone. Protein fragments may be "free-standing," or comprised
within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments that may be bound by the antibodies of the present invention, include, for example, fragments that comprise or alternatively, consist of from about amino acid residues: 1 to 50, 51 to 100, 101 to 150, 151 to 200, 201 to 250, and/or 251 to 285 of SEQ ID NO:3228. Moreover, polypeptide fragments can be at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 175 or 200 amino acids in length.

[071] In specific embodiments, antibodies of the present invention bind polypeptide fragments comprising, or alternatively consisting of, amino acid residues: 1-46, 31-44, 47-72, 73-285, 73-83, 94-102, 148-152, 166-181, 185-209, 210-221, 226-237, 244-249, 253-265, and/or 277-285 of SEQ ID NO:3228.

[072] It will be recognized by one of ordinary skill in the art that mutations targeted to regions of a BLyS polypeptide of SEQ ID NO:3228 which encompass the nineteen amino acid residue insertion which is not found in the BLyS polypeptide sequence of SEQ ID NO:3229 (i.e., amino acid residues Val-142 through Lys-160 of the sequence of SEQ ID NO:3229) may affect the observed biological activities of the BLyS polypeptide. More specifically, a partial, non-limiting and non-exclusive list of such residues of the BLyS polypeptide sequence which may be targeted for mutation includes the following amino acid residues of the BLyS polypeptide sequence as shown in SEQ ID NO:3228: V-142; T-143; Q-144; D-145; C-146; L-147; Q-148; L-149; I-150; A-151; D-152; S-153; E-154; T-155; P-156; T-157; I-158; Q-159; and K-160. Thus, in specific embodiments, antibodies of the present invention that bind BLyS polypeptides which have one or more mutations in the region from V-142 through K-160 of SEQ ID NO:3228 are contemplated.

[073] Polypeptide fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments that may be bound by antibodies of the present invention, include, for example, fragments that comprise or alternatively, consist of from about amino acid residues: 1 to 15, 16-30, 31-46, 47-55, 56-72, 73-104, 105-163, 163-188, 186-210 and 210-284 of the amino acid sequence disclosed in SEQ ID NO:3228. Additional representative examples of polypeptide fragments that may be bound by antibodies of the present invention, include, for example, fragments that
comprise or alternatively, consist of from about amino acid residues: 1 to 143, 1-150, 47-143, 47-150, 73-143, 73-150, 100-150, 140-145, 142-148, 140-150, 140-200, 140-225, and 140-266 of the amino acid sequence disclosed in SEQ ID NO:3229. Moreover, polypeptide fragments that may be bound by antibodies of the present invention, can be at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 175 or 200 amino acids in length. In this context, "about" means the particularly recited ranges and ranges larger or smaller by several, a few, 5, 4, 3, 2 or 1 amino acid residues at either or both the amino- and carboxy-termini.

[074] Additional preferred embodiments encompass antibodies that bind polypeptide fragments comprising, or alternatively consisting of, the predicted intracellular domain of BLYS (e.g., amino acid residues 1-46 of SEQ ID NO:3228), the predicted transmembrane domain of BLYS (e.g., amino acid residues 47-72 of SEQ ID NO:3228), the predicted extracellular domain of BLYS (e.g., amino acid residues 73-285 of SEQ ID NO:3228), the mature soluble extracellular domain of BLYS (e.g., amino acids residues 134-285 of SEQ ID NO:3228), the predicted TNF conserved domain of BLYS (e.g., amino acids 191 to 284 of SEQ ID NO:3228), and a polypeptide comprising, or alternatively, consisting of the predicted intracellular domain fused to the predicted extracellular domain of BLYS (amino acid residues 1-46 fused to amino acid residues 73-285 of SEQ ID NO:3228).

[075] Further additional preferred embodiments encompass polypeptide fragments comprising, or alternatively consisting of, the predicted intracellular domain of BLYS (amino acid residues 1-46 of SEQ ID NO:3229), the predicted transmembrane domain of BLYS (amino acid residues 47-72 of SEQ ID NO:3229), the predicted extracellular domain of BLYS (amino acid residues 73-266 of SEQ ID NO:3229), the predicted TNF conserved domain of BLYS (amino acids 172 to 265 of SEQ ID NO:3229), and a polypeptide comprising, or alternatively, consisting of the predicted intracellular domain fused to the predicted extracellular domain of BLYS (amino acid residues 1-46 fused to amino acid residues 73-266 of SEQ ID NO:3229).

[076] Certain additional embodiments of the invention encompass antibodies that bind polypeptide fragments comprising, or alternatively consisting of, the predicted beta-pleated sheet regions of the BLYS polypeptides of SEQ ID NO:3228 and SEQ ID NO:3229. These polypeptide fragments comprising the beta-pleated sheets of BLYS
comprise, or alternatively consist of, amino acid residues Gln-144 to Ala-151, Phe-172 to
Lys-173, Ala-177 to Glu-179, Asn-183 to Ile-185, Gly-191 to Lys-204, His-210 to Val-
219, Leu-226 to Pro-237, Asn-242 to Ala-251, Gly-256 to Ile-263 and/or Val-276 to Leu-
284 of SEQ ID NO:3228. In another, nonexclusive embodiment, these polypeptide
fragments comprising the beta-pleated sheets of BLyS comprise, or alternatively consist
of, amino acid residues Phe-153 to Lys-154, Ala-158 to Glu-160, Asn-164 to Ile-166, Gly-
172 to Lys-185, His-191 to Val-200, Leu-207 to Pro-218, Asn-223 to Ala-232, Gly-237 to
Ile-244 and/or Val-257 to Leu-265 of SEQ ID NO:3229.

[077] A partial, non-limiting, and exemplary list of polypeptides that may be
bound by the antibodies of the invention includes polypeptides that comprise, or
alternatively consist of, combinations of amino acid sequences of the invention includes,
for example, [Met-1 to Lys-113] fused to [Leu-114 to Thr-141] fused to [Val-142 to Lys-
Leu-285] of SEQ ID NO:3228; or [Met-1 to Lys-113] fused to [Val-142 to Lys-160] fused
SEQ ID NO:3228; or [Met-1 to Lys-113] fused to [Leu-114 to Thr-141] fused to [Val-142
NO:3228. Other combinations of amino acids sequences that may be bound by the
antibodies of the invention may include the polypeptide fragments in an order other than
that recited above (e.g., [Leu-114 to Thr-141] fused to [Val-199 to Ala-248] fused to [Gly-
249 to Leu-285] fused to [Val-142 to Lys-160] of (SEQ ID NO:3228). Other
combinations of amino acids sequences that may be bound by the antibodies of the
invention may also include heterologous polypeptide fragments as described herein and/or
other polypeptides or polypeptide fragments of the present invention (e.g., [Met-1 to Lys-
113] fused to [Leu-114 to Thr-141] fused to [Val-142 to Lys-160] fused to [Gly-161 to
Gln-198] fused to [Gly-249 to Leu-285] of SEQ ID NO:3228 fused to a FLAG tag; or
[Met-1 to Lys-113] of SEQ ID NO:3228 fused to [Leu-114 to Thr-141] of SEQ ID
NO:3228 fused to [Glu-135 to Asn-165] of SEQ ID NO:39 fused to [Val-142 to Lys-160]
of SEQ ID NO:3228 fused to [Gly-161 to Gln-198] of SEQ ID NO:3228 fused to [Val-199

[078] A partial, non-limiting, and exemplary list of polypeptides that may be
bound by the antibodies of the invention includes polypeptides that comprise, or
alternatively consist of, combinations of amino acid sequences includes, for example,
[Met-1 to Lys-113] fused to [Leu-114 to Thr-141] fused to [Gly-142 to Gln-179] fused to
[Val-180 to Ala-229] fused to [Gly-230 to Leu-266] of SEQ ID NO:3229; [Met-1 to Lys-
113] fused to [Gly-142 to Gln-179] fused to [Val-180 to Ala-229] fused to [Gly-230 to
Leu-266] of SEQ ID NO:3229; or [Met-1 to Lys-113] fused to [Leu-114 to Thr-141] fused
to [Gly-142 to Gln-179] fused to [Gly-230 to Leu-266] of SEQ ID NO:3229. Other of
amino acids sequences that may be bound by the antibodies of the invention combinations
may include the polypeptide fragments in an order other than that recited above (e.g.,
[Leu-114 to Thr-141] fused to [Val-180 to Ala-229] fused to [Gly-230 to Leu-266] fused
to [Gly-142 to Gln-179] of SEQ ID NO:3229). Other combinations of amino acid
sequences that may be bound by the antibodies of the invention may also include
heterologous polypeptide fragments as described herein and/or other polypeptides or
polypeptide fragments of the present invention (e.g., [Met-1 to Lys-113] fused to [Leu-114
to Thr-141] fused to [Gly-142 to Gln-179] fused to [Gly-230 to Leu-266] of SEQ ID
NO:3229 fused to a FLAG tag (SEQ ID NO:3238) or, [Met-1 to Lys-113] of SEQ ID
NO:3229 fused to [Leu-114 to Thr-141] of SEQ ID NO:3229 fused to [Glu-135 to Asn-
165] of SEQ ID NO:39 fused to [Gly-142 to Gln-179] of SEQ ID NO:3229 fused to [Val-

[079] Additional embodiments of the invention encompass antibodies that bind
BLyS polypeptide fragments comprising, or alternatively consisting of, functional regions
of polypeptides of the invention, such as the Garnier-Robson alpha-regions, beta-regions,
turn-regions, and coil-regions, Chou-Fasman alpha-regions, beta-regions, and coil-regions,
Kyte-Doolittle hydrophilic regions and hydrophobic regions, Eisenberg alpha- and
beta-amphipathic regions, Karplus-Schulz flexible regions, Emini surface-forming regions
and Jameson-Wolf regions of high antigenic index set out in Tables 9 and 10 and as
described herein. In a preferred embodiment, the polypeptide fragments bound by the
antibodies of the invention are antigenic (i.e., containing four or more contiguous amino
acids having an antigenic index of greater than or equal to 1.5, as identified using the
default parameters of the Jameson-Wolf program) of a complete (i.e., full-length) BLyS
polypeptide (e.g., SEQ ID NOS:3228 and 3229).

[080] The data representing the structural or functional attributes of the BLyS
polypeptide of SEQ ID NO:3228 (Table 9) or the BLyS polypeptide of SEQ ID NO:3229
(Table 10), as described above, was generated using the various modules and algorithms of the DNA*STAR set on default parameters. Column I represents the results of a Garnier-Robson analysis of alpha helical regions; Column II represents the results of a Chou-Fasman analysis of alpha helical regions; Column III represents the results of a Garnier Robson analysis of beta sheet regions; Column IV represents the results of a Chou-Fasman analysis of beta sheet regions; Column V represents the results of a Garnier Robson analysis of turn regions; Column VI represents the results of a Chou-Fasman analysis of turn regions; Column VII represents the results of a Garnier Robson analysis of coil regions; Column VIII represents a Kyte-Doolittle hydrophilicity plot; Column IX represents a Hopp-Woods hydrophobicity plot; Column X represents the results of an Eisenberg analysis of alpha amphipathic regions; Column XI represents the results of an Eisenberg analysis of beta amphipathic regions; Column XII represents the results of a Karplus-Schultz analysis of flexible regions; Column XIII represents the Jameson-Wolf antigenic index score; and Column XIV represents the Emini surface probability plot.

[081] In a preferred embodiment, the data presented in columns VIII, IX, XIII, and XIV of Tables 9 and 10 can be used to determine regions of the BLyS polypeptide of SEQ ID NO:3228 (Table 9) or the BLyS polypeptide of SEQ ID NO:3229 (Table 10) which exhibit a high degree of potential for antigenicity. Regions of high antigenicity are determined from the data presented in columns VIII, IX, XIII, and/or XIV by choosing values which represent regions of the polypeptide which are likely to be exposed on the surface of the polypeptide in an environment in which antigen recognition may occur in the process of initiation of an immune response.

[082] The above-mentioned preferred regions set out in Tables 9 and 10 include, but are not limited to, regions of the aforementioned types identified by analysis of the amino acid sequence set out in SEQ ID NO:2. As set out in Tables 9 and 10, such preferred regions include Garnier-Robson alpha-regions, beta-regions, turn-regions, and coil-regions, Chou-Fasman alpha-regions, beta-regions, and turn-regions, Kyte-Doolittle hydrophilic regions, Eisenberg alpha- and beta-amphipathic regions, Karplus-Schultz flexible regions, Jameson-Wolf regions of high antigenic index and Emini surface-forming regions. Preferably, antibodies of the present invention bind BLyS polypeptides or BLyS polypeptide fragments and variants comprising regions of BLyS that combine several
structural features, such as several (e.g., 1, 2, 3, or 4) of the same or different region features set out above and in Tables 9 and 10.
<table>
<thead>
<tr>
<th>Res Position</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>1</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.73</td>
<td>-0.71</td>
<td>.</td>
<td>.</td>
<td>0.95</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>2</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>1.12</td>
<td>-0.66 *</td>
<td>.</td>
<td>.</td>
<td>1.15</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>3</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>1.62</td>
<td>-1.09 *</td>
<td>.</td>
<td>.</td>
<td>1.15</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>4</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>2.01</td>
<td>-1.51</td>
<td>.</td>
<td>.</td>
<td>1.15</td>
<td>4.19</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>5</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>2.49</td>
<td>-2.13 *</td>
<td>.</td>
<td>.</td>
<td>F</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>6</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>2.70</td>
<td>-1.73 * F</td>
<td>0.90</td>
<td>4.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>7</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>2.81</td>
<td>-1.34 * * F</td>
<td>0.90</td>
<td>4.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>8</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>2.00</td>
<td>-1.73 * * F</td>
<td>0.90</td>
<td>6.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>9</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1.99</td>
<td>-1.53 * * F</td>
<td>0.90</td>
<td>2.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>10</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>2.00</td>
<td>-1.04 * * F</td>
<td>0.90</td>
<td>2.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>11</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>1.33</td>
<td>-0.66 * * F</td>
<td>0.90</td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>12</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>0.41</td>
<td>-0.09 * * F</td>
<td>0.45</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>13</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>0.46</td>
<td>0.20 * * F</td>
<td>-0.15</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>14</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.50</td>
<td>-0.19 * * F</td>
<td>0.30</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>15</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.91</td>
<td>-0.19 * * F</td>
<td>0.30</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>16</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.80</td>
<td>-0.87 * * F</td>
<td>0.90</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>17</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>1.61</td>
<td>-1.36 * F</td>
<td>0.90</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>18</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1.32</td>
<td>-1.74 * F</td>
<td>0.90</td>
<td>4.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>19</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1.67</td>
<td>-1.70 * F</td>
<td>0.90</td>
<td>5.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>20</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1.52</td>
<td>-2.39 * F</td>
<td>0.90</td>
<td>5.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>21</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>2.38</td>
<td>-1.70 * F</td>
<td>0.90</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>22</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>2.33</td>
<td>-1.70 * F</td>
<td>0.90</td>
<td>2.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>23</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1.62</td>
<td>-1.70 * * F</td>
<td>0.90</td>
<td>2.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>24</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.66</td>
<td>-1.13 * * F</td>
<td>0.75</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>25</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.36</td>
<td>-0.49 F</td>
<td>0.45</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>26</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.53</td>
<td>-0.71 * * F</td>
<td>0.60</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>27</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.74</td>
<td>-0.03 * * F</td>
<td>0.30</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>28</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.00</td>
<td>-0.03 * * F</td>
<td>0.30</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>29</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.08</td>
<td>0.40 * * F</td>
<td>-0.30</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>30</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>-0.08</td>
<td>0.40 * * F</td>
<td>-0.30</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>31</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>-0.08</td>
<td>-0.17 * * F</td>
<td>0.45</td>
<td>1.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>32</td>
<td>.</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>C</td>
<td>.</td>
<td>0.29</td>
<td>-0.81 * * F</td>
<td>1.10</td>
<td>1.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>33</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.93</td>
<td>-0.81 * * F</td>
<td>1.50</td>
<td>2.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>34</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.93</td>
<td>-1.07 * * F</td>
<td>1.84</td>
<td>4.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>35</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>C</td>
<td>.</td>
<td>0.97</td>
<td>-1.37 * * F</td>
<td>1.98</td>
<td>4.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>36</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>C</td>
<td>1.89</td>
<td>-1.16 * * F</td>
<td>2.52</td>
<td>1.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>37</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>C</td>
<td>1.80</td>
<td>-1.16 * * F</td>
<td>2.86</td>
<td>1.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>38</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>1.39</td>
<td>-0.77 * * F</td>
<td>3.40</td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>39</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>1.39</td>
<td>-0.39 * * F</td>
<td>2.36</td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>40</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1.39</td>
<td>-0.77 * * F</td>
<td>2.46</td>
<td>1.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>41</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1.34</td>
<td>-1.20 * * F</td>
<td>2.46</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>42</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>1.60</td>
<td>-1.16 * * F</td>
<td>3.06</td>
<td>2.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>43</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>1.09</td>
<td>-1.80 * * F</td>
<td>3.06</td>
<td>2.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>44</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>1.13</td>
<td>-1.11 * * F</td>
<td>3.40</td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>45</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>0.43</td>
<td>-0.81 * * F</td>
<td>2.66</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>46</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>A</td>
<td>A</td>
<td>0.14</td>
<td>-0.70 * * F</td>
<td>1.77</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>47</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>A</td>
<td>A</td>
<td>0.13</td>
<td>-0.20 * * F</td>
<td>0.98</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>48</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>A</td>
<td>A</td>
<td>-0.72</td>
<td>0.29 * * F</td>
<td>0.04</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>49</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>A</td>
<td>A</td>
<td>-1.53</td>
<td>0.54 * * F</td>
<td>-0.60</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>50</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>A</td>
<td>A</td>
<td>-2.00</td>
<td>1.23 * * F</td>
<td>-0.60</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9 (continued)

<table>
<thead>
<tr>
<th>Res</th>
<th>Position</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr</td>
<td>51</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.63</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.19</td>
</tr>
<tr>
<td>Leu</td>
<td>52</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.63</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.19</td>
</tr>
<tr>
<td>Leu</td>
<td>53</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.63</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.15</td>
</tr>
<tr>
<td>Leu</td>
<td>54</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.34</td>
<td>1.41</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.09</td>
</tr>
<tr>
<td>Ala</td>
<td>55</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.42</td>
<td>1.31</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.14</td>
</tr>
<tr>
<td>Ala</td>
<td>56</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.78</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.09</td>
</tr>
<tr>
<td>Leu</td>
<td>57</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.78</td>
<td>1.09</td>
<td></td>
<td></td>
<td></td>
<td>-0.20</td>
<td>0.06</td>
</tr>
<tr>
<td>Ser</td>
<td>58</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>-2.28</td>
<td>1.09</td>
<td></td>
<td></td>
<td></td>
<td>-0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>Cys</td>
<td>59</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>-2.32</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td>-0.20</td>
<td>0.09</td>
</tr>
<tr>
<td>Cys</td>
<td>60</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>-2.59</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td>-0.20</td>
<td>0.08</td>
</tr>
<tr>
<td>Leu</td>
<td>61</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.08</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.04</td>
</tr>
<tr>
<td>Thr</td>
<td>62</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.11</td>
</tr>
<tr>
<td>Val</td>
<td>63</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.91</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.17</td>
</tr>
<tr>
<td>Val</td>
<td>64</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.24</td>
<td>1.39</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.33</td>
</tr>
<tr>
<td>Ser</td>
<td>65</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.43</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.40</td>
</tr>
<tr>
<td>Phe</td>
<td>66</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.21</td>
<td>1.26</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.40</td>
</tr>
<tr>
<td>Tyr</td>
<td>67</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.49</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.54</td>
</tr>
<tr>
<td>Gln</td>
<td>68</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.44</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.41</td>
</tr>
<tr>
<td>Val</td>
<td>69</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.59</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.39</td>
</tr>
<tr>
<td>Ala</td>
<td>70</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.63</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.43</td>
</tr>
<tr>
<td>Ala</td>
<td>71</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.25</td>
</tr>
<tr>
<td>Leu</td>
<td>72</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>-0.50</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.55</td>
</tr>
<tr>
<td>Gln</td>
<td>73</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>-1.09</td>
<td>0.20</td>
<td></td>
<td>F</td>
<td>0.25</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>74</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>-0.53</td>
<td>0.20</td>
<td></td>
<td>F</td>
<td>0.25</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>75</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>-0.76</td>
<td>0.09</td>
<td></td>
<td>F</td>
<td>0.25</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>76</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.06</td>
<td>0.09</td>
<td></td>
<td>F</td>
<td>-0.15</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>77</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
<td>-0.31</td>
<td></td>
<td>*</td>
<td>0.30</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>78</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
<td>-0.24</td>
<td></td>
<td>*</td>
<td>0.30</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>79</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.30</td>
<td>-0.24</td>
<td></td>
<td>*</td>
<td>0.30</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>80</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.30</td>
<td>-0.24</td>
<td></td>
<td>*</td>
<td>0.30</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>81</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
<td>-0.34</td>
<td></td>
<td>*</td>
<td>0.30</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>82</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.72</td>
<td>-0.30</td>
<td></td>
<td>*</td>
<td>0.45</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>83</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td>-0.49</td>
<td></td>
<td>*</td>
<td>0.30</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>84</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.21</td>
<td>0.01</td>
<td></td>
<td>*</td>
<td>-0.15</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>85</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.10</td>
<td>0.01</td>
<td></td>
<td>*</td>
<td>-0.30</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>86</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>0.01</td>
<td></td>
<td>*</td>
<td>-0.15</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>87</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.92</td>
<td>-0.67</td>
<td></td>
<td>*</td>
<td>0.75</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>88</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.52</td>
<td>-0.39</td>
<td></td>
<td>*</td>
<td>0.45</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>89</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td>-0.39</td>
<td></td>
<td></td>
<td>0.45</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>90</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td>-0.39</td>
<td></td>
<td>*</td>
<td>F</td>
<td>0.60</td>
<td>1.03</td>
</tr>
<tr>
<td>Leu</td>
<td>91</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>0.38</td>
<td>-0.46</td>
<td></td>
<td>*</td>
<td>0.85</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>92</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>0.07</td>
<td>-0.46</td>
<td></td>
<td>*</td>
<td>0.70</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>93</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>0.07</td>
<td>-0.03</td>
<td></td>
<td>*</td>
<td>0.70</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>94</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>-0.14</td>
<td>0.47</td>
<td></td>
<td>*</td>
<td>-0.20</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>95</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.14</td>
<td>0.21</td>
<td></td>
<td>*</td>
<td>-0.10</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>96</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td>-0.21</td>
<td></td>
<td>F</td>
<td>0.65</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>97</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.06</td>
<td>-0.21</td>
<td></td>
<td>F</td>
<td>0.65</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>98</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.28</td>
<td>-0.21</td>
<td></td>
<td>F</td>
<td>0.65</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>99</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
<td>-0.03</td>
<td></td>
<td>F</td>
<td>0.45</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>100</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.66</td>
<td>-0.46</td>
<td></td>
<td>F</td>
<td>0.60</td>
<td>1.01</td>
<td></td>
</tr>
</tbody>
</table>
Table 9 (continued)

<table>
<thead>
<tr>
<th>Res Position</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>101</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.41</td>
<td>-0.96</td>
<td>.</td>
<td>F</td>
<td>0.90</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>102</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.79</td>
<td>-0.89</td>
<td>.</td>
<td>F</td>
<td>0.75</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>103</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.41</td>
<td>-0.46</td>
<td>*</td>
<td>F</td>
<td>0.45</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>104</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.49</td>
<td>-0.46</td>
<td>*</td>
<td>F</td>
<td>0.45</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>105</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.21</td>
<td>-0.24</td>
<td>.</td>
<td>F</td>
<td>0.30</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>106</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.46</td>
<td>-0.64</td>
<td>.</td>
<td>F</td>
<td>0.30</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>107</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.01</td>
<td>0.06</td>
<td>.</td>
<td>F</td>
<td>-0.30</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>108</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.80</td>
<td>0.49</td>
<td>*</td>
<td>*</td>
<td>-0.60</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>109</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.76</td>
<td>0.67</td>
<td>*</td>
<td>*</td>
<td>-0.60</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>110</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.06</td>
<td>0.24</td>
<td>*</td>
<td>*</td>
<td>-0.30</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>111</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.54</td>
<td>0.43</td>
<td>*</td>
<td>*</td>
<td>-0.60</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>112</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.96</td>
<td>0.57</td>
<td>*</td>
<td>*</td>
<td>-0.60</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>113</td>
<td>A</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.31</td>
<td>0.09</td>
<td>*</td>
<td>*</td>
<td>-0.30</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>114</td>
<td>A</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.21</td>
<td>0.01</td>
<td>.</td>
<td>F</td>
<td>1.25</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>115</td>
<td>A</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.21</td>
<td>0.01</td>
<td>.</td>
<td>F</td>
<td>1.10</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>116</td>
<td>A</td>
<td>.</td>
<td>C</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.08</td>
<td>0.17</td>
<td>*</td>
<td>F</td>
<td>1.25</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>117</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>0.39</td>
<td>0.26</td>
<td>*</td>
<td></td>
<td>F</td>
<td>1.10</td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>118</td>
<td>.</td>
<td>.</td>
<td>C</td>
<td>0.34</td>
<td>0.00</td>
<td>.</td>
<td></td>
<td>F</td>
<td>2.20</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>119</td>
<td>.</td>
<td>T</td>
<td>C</td>
<td>0.89</td>
<td>-0.79</td>
<td>*</td>
<td></td>
<td>F</td>
<td>3.00</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>120</td>
<td>.</td>
<td>T</td>
<td>C</td>
<td>1.59</td>
<td>-0.36</td>
<td>*</td>
<td></td>
<td>F</td>
<td>2.25</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>121</td>
<td>T</td>
<td>T</td>
<td>1.29</td>
<td>-0.39</td>
<td>*</td>
<td></td>
<td>F</td>
<td>2.15</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>122</td>
<td>T</td>
<td>T</td>
<td>1.20</td>
<td>-0.43</td>
<td>.</td>
<td></td>
<td>F</td>
<td>2.00</td>
<td>1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>123</td>
<td>.</td>
<td>.</td>
<td>C</td>
<td>1.41</td>
<td>-0.54</td>
<td>.</td>
<td></td>
<td>F</td>
<td>1.60</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>124</td>
<td>.</td>
<td>T</td>
<td>C</td>
<td>2.00</td>
<td>-0.57</td>
<td>.</td>
<td></td>
<td>F</td>
<td>1.50</td>
<td>1.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>125</td>
<td>.</td>
<td>T</td>
<td>C</td>
<td>1.91</td>
<td>-0.60</td>
<td>.</td>
<td></td>
<td>F</td>
<td>1.50</td>
<td>1.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>126</td>
<td>.</td>
<td>T</td>
<td>C</td>
<td>2.37</td>
<td>-0.21</td>
<td>.</td>
<td></td>
<td>F</td>
<td>1.54</td>
<td>2.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>127</td>
<td>.</td>
<td>T</td>
<td>C</td>
<td>2.37</td>
<td>-0.64</td>
<td>.</td>
<td></td>
<td>F</td>
<td>2.18</td>
<td>3.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>128</td>
<td>.</td>
<td>C</td>
<td>2.76</td>
<td>-0.64</td>
<td>.</td>
<td></td>
<td>F</td>
<td>2.32</td>
<td>3.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>129</td>
<td>.</td>
<td>T</td>
<td>C</td>
<td>2.87</td>
<td>-1.03</td>
<td>.</td>
<td></td>
<td>F</td>
<td>2.86</td>
<td>5.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>130</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>2.58</td>
<td>-1.41</td>
<td>*</td>
<td></td>
<td>F</td>
<td>3.40</td>
<td>6.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>131</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>2.02</td>
<td>-1.31</td>
<td>*</td>
<td></td>
<td>F</td>
<td>3.06</td>
<td>3.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>132</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>2.02</td>
<td>-1.07</td>
<td>*</td>
<td></td>
<td>F</td>
<td>2.72</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>133</td>
<td>.</td>
<td>T</td>
<td>1.68</td>
<td>-1.06</td>
<td>*</td>
<td></td>
<td>F</td>
<td>2.18</td>
<td>1.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>134</td>
<td>.</td>
<td>T</td>
<td>1.77</td>
<td>-0.63</td>
<td>*</td>
<td></td>
<td>F</td>
<td>1.64</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>135</td>
<td>.</td>
<td>C</td>
<td>1.66</td>
<td>-0.60</td>
<td>*</td>
<td></td>
<td>F</td>
<td>1.49</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>136</td>
<td>.</td>
<td>C</td>
<td>1.66</td>
<td>-0.60</td>
<td>*</td>
<td></td>
<td>F</td>
<td>1.83</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>137</td>
<td>.</td>
<td>T</td>
<td>C</td>
<td>1.30</td>
<td>-0.60</td>
<td>.</td>
<td></td>
<td>F</td>
<td>2.52</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>138</td>
<td>.</td>
<td>T</td>
<td>C</td>
<td>0.33</td>
<td>-0.61</td>
<td>.</td>
<td></td>
<td>F</td>
<td>2.85</td>
<td>2.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>139</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>0.61</td>
<td>-0.61</td>
<td>.</td>
<td></td>
<td>F</td>
<td>3.40</td>
<td>1.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>140</td>
<td>A</td>
<td>.</td>
<td>T</td>
<td>1.47</td>
<td>-0.53</td>
<td>.</td>
<td></td>
<td>F</td>
<td>2.66</td>
<td>1.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>141</td>
<td>A</td>
<td>.</td>
<td></td>
<td>1.47</td>
<td>-0.56</td>
<td>.</td>
<td></td>
<td>F</td>
<td>2.12</td>
<td>1.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>142</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>1.14</td>
<td>-0.99</td>
<td>.</td>
<td></td>
<td>F</td>
<td>1.78</td>
<td>1.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>143</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>0.54</td>
<td>-0.41</td>
<td>.</td>
<td></td>
<td>F</td>
<td>1.19</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>144</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>0.54</td>
<td>0.27</td>
<td>*</td>
<td></td>
<td>F</td>
<td>0.25</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>145</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>-0.27</td>
<td>0.19</td>
<td>*</td>
<td></td>
<td>F</td>
<td>0.25</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>146</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>-0.84</td>
<td>0.23</td>
<td>*</td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>147</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.58</td>
<td>0.43</td>
<td>*</td>
<td>-0.60</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>148</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.27</td>
<td>0.53</td>
<td>*</td>
<td>-0.60</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>149</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.57</td>
<td>0.53</td>
<td>*</td>
<td>-0.30</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>150</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.57</td>
<td>0.34</td>
<td>*</td>
<td>-0.30</td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9 (continued)

<table>
<thead>
<tr>
<th>Res Position</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>151</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>-0.21</td>
<td>-0.34</td>
<td>*</td>
<td>1.40</td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>152</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.39</td>
<td>-0.26</td>
<td>*</td>
<td>2.45</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>153</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>0.08</td>
<td>-0.51</td>
<td>F</td>
<td>3.00</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>154</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>-0.00</td>
<td>-0.71</td>
<td>F</td>
<td>2.70</td>
<td>2.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>155</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>0.89</td>
<td>-0.53</td>
<td>*</td>
<td>2.40</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>156</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>1.52</td>
<td>-0.13</td>
<td>*</td>
<td>F</td>
<td>1.56</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>157</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>1.18</td>
<td>-0.51</td>
<td>*</td>
<td>F</td>
<td>1.92</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>158</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.18</td>
<td>-0.09</td>
<td>F</td>
<td>1.08</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>159</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td>-0.19</td>
<td>F</td>
<td>2.04</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>160</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td>0.14</td>
<td>*</td>
<td>F</td>
<td>1.60</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>161</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.44</td>
<td>0.14</td>
<td>*</td>
<td>F</td>
<td>1.44</td>
<td>2.38</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>162</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>-0.10</td>
<td>0.24</td>
<td>*</td>
<td>F</td>
<td>1.28</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>163</td>
<td></td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.58</td>
<td>0.49</td>
<td>*</td>
<td>0.12</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>164</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>0.29</td>
<td>0.91</td>
<td>*</td>
<td>-0.44</td>
<td>0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>165</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.57</td>
<td>1.40</td>
<td>*</td>
<td>-0.60</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>166</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.03</td>
<td>1.70</td>
<td>*</td>
<td>-0.60</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>167</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.03</td>
<td>1.63</td>
<td>*</td>
<td>-0.60</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>168</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.49</td>
<td>1.53</td>
<td>*</td>
<td>-0.60</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>169</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.13</td>
<td>1.53</td>
<td>*</td>
<td>-0.60</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>170</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.32</td>
<td>0.89</td>
<td>*</td>
<td>-0.30</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>171</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>0.19</td>
<td>0.46</td>
<td>*</td>
<td>0.20</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>172</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
<td>-0.03</td>
<td>*</td>
<td>1.80</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>173</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>-0.20</td>
<td>-0.33</td>
<td>*</td>
<td>F</td>
<td>2.60</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>174</td>
<td></td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>0.61</td>
<td>-0.21</td>
<td>F</td>
<td>2.25</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>175</td>
<td></td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
<td>-1.00</td>
<td>*</td>
<td>F</td>
<td>2.05</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>176</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>1.66</td>
<td>-1.00</td>
<td>*</td>
<td>F</td>
<td>1.35</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>178</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.61</td>
<td>-1.00</td>
<td>*</td>
<td>F</td>
<td>1.20</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>179</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.50</td>
<td>-1.43</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>180</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.89</td>
<td>-1.41</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>3.16</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>181</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.30</td>
<td>-1.91</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>7.66</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>182</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.08</td>
<td>-1.91</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>3.10</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>183</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.03</td>
<td>-1.23</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>184</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.08</td>
<td>-0.59</td>
<td>*</td>
<td>F</td>
<td>0.75</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>185</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.08</td>
<td>-0.59</td>
<td>*</td>
<td>*</td>
<td>0.60</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>186</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.72</td>
<td>-0.59</td>
<td>*</td>
<td>*</td>
<td>0.60</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>187</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.38</td>
<td>-0.50</td>
<td>*</td>
<td>*</td>
<td>0.30</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>188</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
<td>-0.07</td>
<td>*</td>
<td>*</td>
<td>0.45</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>189</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>-0.61</td>
<td>0.60</td>
<td>*</td>
<td>*</td>
<td>F</td>
<td>2.40</td>
<td>1.32</td>
</tr>
<tr>
<td>Thr</td>
<td>190</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>-0.42</td>
<td>0.10</td>
<td>*</td>
<td>F</td>
<td>0.80</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>191</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>-0.50</td>
<td>0.24</td>
<td>*</td>
<td>F</td>
<td>0.65</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>192</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.93</td>
<td>*</td>
<td>*</td>
<td>0.20</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>193</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.28</td>
<td>1.69</td>
<td>*</td>
<td>-0.60</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>194</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.28</td>
<td>1.63</td>
<td>*</td>
<td>-0.60</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>195</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.82</td>
<td>1.60</td>
<td>*</td>
<td>-0.60</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>196</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.29</td>
<td>1.49</td>
<td>*</td>
<td>-0.60</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>197</td>
<td></td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>-1.29</td>
<td>1.39</td>
<td>*</td>
<td>-0.20</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>198</td>
<td></td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>-0.90</td>
<td>1.36</td>
<td>*</td>
<td>-0.20</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>199</td>
<td></td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>-0.20</td>
<td>1.16</td>
<td>*</td>
<td>-0.40</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>200</td>
<td></td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>0.73</td>
<td>0.40</td>
<td>*</td>
<td>-0.10</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9 (continued)

<table>
<thead>
<tr>
<th>Res Position</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr</td>
<td>201</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td>0.67</td>
<td>-0.03</td>
<td></td>
<td></td>
<td>1.25</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td>0.77</td>
<td>0.06</td>
<td></td>
<td></td>
<td>F</td>
<td>0.80</td>
<td>2.06</td>
</tr>
<tr>
<td>Asp</td>
<td>203</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td>0.18</td>
<td>0.17</td>
<td></td>
<td></td>
<td>F</td>
<td>0.80</td>
<td>3.91</td>
</tr>
<tr>
<td>Lys</td>
<td>204</td>
<td>A</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>0.43</td>
<td>-0.01</td>
<td></td>
<td></td>
<td>F</td>
<td>1.00</td>
<td>2.52</td>
</tr>
<tr>
<td>Thr</td>
<td>205</td>
<td>A</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>0.90</td>
<td>-0.16</td>
<td></td>
<td></td>
<td>F</td>
<td>0.60</td>
<td>1.73</td>
</tr>
<tr>
<td>Tyr</td>
<td>206</td>
<td>A</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>1.19</td>
<td>-0.21</td>
<td></td>
<td></td>
<td>F</td>
<td>0.45</td>
<td>1.03</td>
</tr>
<tr>
<td>Ala</td>
<td>207</td>
<td>A</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>0.61</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td>-0.30</td>
<td>0.70</td>
</tr>
<tr>
<td>Met</td>
<td>208</td>
<td>A</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td>-0.28</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.40</td>
</tr>
<tr>
<td>Gly</td>
<td>209</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.32</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.18</td>
</tr>
<tr>
<td>His</td>
<td>210</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.31</td>
</tr>
<tr>
<td>Leu</td>
<td>211</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.39</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td>-0.30</td>
<td>0.61</td>
</tr>
<tr>
<td>Ile</td>
<td>212</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>1.02</td>
<td>-0.30</td>
<td></td>
<td></td>
<td></td>
<td>0.45</td>
<td>1.22</td>
</tr>
<tr>
<td>Gln</td>
<td>213</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.77</td>
<td>-0.73</td>
<td></td>
<td></td>
<td></td>
<td>0.75</td>
<td>1.80</td>
</tr>
<tr>
<td>Arg</td>
<td>214</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>1.08</td>
<td>-0.59</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>0.90</td>
</tr>
<tr>
<td>Lys</td>
<td>215</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.26</td>
<td>-0.77</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>0.90</td>
</tr>
<tr>
<td>Lys</td>
<td>216</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.57</td>
<td>-0.81</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>0.90</td>
</tr>
<tr>
<td>Val</td>
<td>217</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.91</td>
<td>-0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>His</td>
<td>218</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.91</td>
<td>-0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>Val</td>
<td>219</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td>0.80</td>
<td>-0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>Phe</td>
<td>220</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.06</td>
<td>-0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>Gly</td>
<td>221</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.40</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td>-0.30</td>
<td>0.35</td>
</tr>
<tr>
<td>Asp</td>
<td>222</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.36</td>
<td>-0.07</td>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
<td>0.63</td>
</tr>
<tr>
<td>Glu</td>
<td>223</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-1.18</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>Leu</td>
<td>224</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.63</td>
<td>-0.17</td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.45</td>
</tr>
<tr>
<td>Ser</td>
<td>225</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.74</td>
<td>-0.11</td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.39</td>
</tr>
<tr>
<td>Leu</td>
<td>226</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-1.10</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.18</td>
</tr>
<tr>
<td>Val</td>
<td>227</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.99</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.19</td>
</tr>
<tr>
<td>Thr</td>
<td>228</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-1.66</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.28</td>
</tr>
<tr>
<td>Leu</td>
<td>229</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-1.73</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.18</td>
</tr>
<tr>
<td>Phe</td>
<td>230</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-1.43</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.17</td>
</tr>
<tr>
<td>Arg</td>
<td>231</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.62</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.21</td>
</tr>
<tr>
<td>Cys</td>
<td>232</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.37</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td>-0.20</td>
<td>0.41</td>
</tr>
<tr>
<td>Ile</td>
<td>233</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.27</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td>-0.20</td>
<td>0.46</td>
</tr>
<tr>
<td>Gin</td>
<td>234</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.54</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.37</td>
</tr>
<tr>
<td>Asn</td>
<td>235</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td>0.93</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>1.19</td>
</tr>
<tr>
<td>Met</td>
<td>236</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>0.20</td>
</tr>
<tr>
<td>Pro</td>
<td>237</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td>0.47</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>0.44</td>
</tr>
<tr>
<td>Glu</td>
<td>238</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td>1.36</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>1.08</td>
</tr>
<tr>
<td>Thr</td>
<td>239</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td>1.36</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>1.12</td>
</tr>
<tr>
<td>Leu</td>
<td>240</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td>1.06</td>
<td>-0.17</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>1.96</td>
</tr>
<tr>
<td>Pro</td>
<td>241</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td>0.99</td>
<td>-0.21</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>2.40</td>
</tr>
<tr>
<td>Asn</td>
<td>242</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.96</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>1.41</td>
</tr>
<tr>
<td>Asn</td>
<td>243</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.66</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>1.22</td>
</tr>
<tr>
<td>Ser</td>
<td>244</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.38</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>1.13</td>
</tr>
<tr>
<td>Cys</td>
<td>245</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.84</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>0.74</td>
</tr>
<tr>
<td>Tyr</td>
<td>246</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.17</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>0.20</td>
</tr>
<tr>
<td>Ser</td>
<td>247</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.42</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td>-0.40</td>
<td>0.18</td>
</tr>
<tr>
<td>Ala</td>
<td>248</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.38</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.34</td>
</tr>
<tr>
<td>Gly</td>
<td>249</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.89</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td>-0.30</td>
<td>0.43</td>
</tr>
<tr>
<td>Ile</td>
<td>250</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.22</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td>-0.50</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Table 9 (continued)

<table>
<thead>
<tr>
<th>Res Position</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>251</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.02</td>
<td>-0.20</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>0.30</td>
<td>0.46</td>
</tr>
<tr>
<td>Lys</td>
<td>252</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.02</td>
<td>-0.70</td>
<td>.</td>
<td>.</td>
<td>0.60</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>253</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.57</td>
<td>-0.70</td>
<td>.</td>
<td>F</td>
<td>0.90</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>254</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.91</td>
<td>-1.39</td>
<td>.</td>
<td>F</td>
<td>0.90</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>255</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.99</td>
<td>-1.89</td>
<td>.</td>
<td>F</td>
<td>0.90</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>256</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1.58</td>
<td>-1.20</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>257</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.72</td>
<td>-1.49</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>258</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.94</td>
<td>-0.80</td>
<td>*</td>
<td>*</td>
<td>F</td>
<td>0.75</td>
<td>0.77</td>
</tr>
<tr>
<td>Leu</td>
<td>259</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.06</td>
<td>-0.30</td>
<td>*</td>
<td>*</td>
<td>F</td>
<td>0.30</td>
<td>0.79</td>
</tr>
<tr>
<td>Gin</td>
<td>260</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.16</td>
<td>-0.04</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>0.30</td>
<td>0.33</td>
</tr>
<tr>
<td>Leu</td>
<td>261</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.30</td>
<td>0.39</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Ala</td>
<td>262</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.30</td>
<td>0.39</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>0.30</td>
<td>0.70</td>
</tr>
<tr>
<td>Ile</td>
<td>263</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.30</td>
<td>-0.30</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>0.30</td>
<td>0.70</td>
</tr>
<tr>
<td>Pro</td>
<td>264</td>
<td>A</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.52</td>
<td>-0.30</td>
<td>*</td>
<td>F</td>
<td>1.00</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>265</td>
<td>A</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.52</td>
<td>-0.49</td>
<td>*</td>
<td>F</td>
<td>1.00</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>266</td>
<td>A</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.44</td>
<td>-0.59</td>
<td>*</td>
<td>F</td>
<td>1.30</td>
<td>3.38</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>267</td>
<td>A</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.73</td>
<td>-0.59</td>
<td>*</td>
<td>F</td>
<td>1.30</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>268</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.81</td>
<td>-0.63</td>
<td>*</td>
<td>*</td>
<td>.</td>
<td>0.95</td>
<td>1.05</td>
</tr>
<tr>
<td>Gin</td>
<td>269</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1.02</td>
<td>0.06</td>
<td>*</td>
<td></td>
<td>.</td>
<td>-0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>Ile</td>
<td>270</td>
<td>A</td>
<td>.</td>
<td>C</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.57</td>
<td>0.06</td>
<td>*</td>
<td></td>
<td>.</td>
<td>0.15</td>
<td>0.52</td>
</tr>
<tr>
<td>Ser</td>
<td>271</td>
<td>.</td>
<td>.</td>
<td>C</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.57</td>
<td>0.09</td>
<td>*</td>
<td></td>
<td>.</td>
<td>0.60</td>
<td>0.51</td>
</tr>
<tr>
<td>Leu</td>
<td>272</td>
<td>.</td>
<td>.</td>
<td>C</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.29</td>
<td>-0.41</td>
<td>*</td>
<td>F</td>
<td>1.60</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>273</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>.</td>
<td>.</td>
<td>-0.01</td>
<td>-0.17</td>
<td>*</td>
<td>F</td>
<td>2.25</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>274</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>.</td>
<td>.</td>
<td>-0.71</td>
<td>-0.37</td>
<td>*</td>
<td>F</td>
<td>2.50</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>275</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>.</td>
<td>.</td>
<td>-0.52</td>
<td>0.03</td>
<td>*</td>
<td>F</td>
<td>1.65</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>276</td>
<td>A</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.57</td>
<td>0.13</td>
<td>*</td>
<td>F</td>
<td>1.00</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>277</td>
<td>A</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.34</td>
<td>0.56</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>Phe</td>
<td>278</td>
<td>A</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.16</td>
<td>0.63</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>-0.35</td>
<td>0.18</td>
</tr>
<tr>
<td>Phe</td>
<td>279</td>
<td>A</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.77</td>
<td>1.31</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>-0.60</td>
<td>0.20</td>
</tr>
<tr>
<td>Gly</td>
<td>280</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.58</td>
<td>0.67</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>-0.60</td>
<td>0.28</td>
</tr>
<tr>
<td>Ala</td>
<td>281</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.53</td>
<td>0.87</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>-0.60</td>
<td>0.28</td>
</tr>
<tr>
<td>Leu</td>
<td>282</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.61</td>
<td>0.77</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>-0.60</td>
<td>0.26</td>
</tr>
<tr>
<td>Lys</td>
<td>283</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.30</td>
<td>0.41</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>-0.60</td>
<td>0.33</td>
</tr>
<tr>
<td>Leu</td>
<td>284</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.99</td>
<td>0.41</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>-0.60</td>
<td>0.42</td>
</tr>
<tr>
<td>Leu</td>
<td>285</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.03</td>
<td>0.34</td>
<td>*</td>
<td>.</td>
<td>.</td>
<td>-0.30</td>
<td>0.65</td>
</tr>
<tr>
<td>Res Position</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td>VII</td>
<td>VIII</td>
<td>IX</td>
<td>X</td>
<td>XI</td>
<td>XII</td>
<td>XIII</td>
<td>XIV</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Met</td>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.73</td>
<td>-0.71</td>
<td>*</td>
<td></td>
<td>0.95</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.12</td>
<td>-0.66</td>
<td>*</td>
<td></td>
<td>1.15</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>3</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.62</td>
<td>-1.09</td>
<td>*</td>
<td></td>
<td>1.15</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>4</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.01</td>
<td>-1.51</td>
<td></td>
<td></td>
<td>1.15</td>
<td>4.19</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>5</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.40</td>
<td>-2.13</td>
<td></td>
<td></td>
<td>1.30</td>
<td>4.35</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>6</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.70</td>
<td>-1.73</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>4.51</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>7</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.81</td>
<td>-1.34</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>4.51</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>8</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td>-1.73</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>6.12</td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>9</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.99</td>
<td>-1.53</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>2.91</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>10</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td>-1.04</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>11</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.33</td>
<td>-0.66</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>1.66</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>12</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.41</td>
<td>-0.09</td>
<td>*</td>
<td>F</td>
<td>0.45</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>13</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.46</td>
<td>0.20</td>
<td>*</td>
<td>F</td>
<td>-0.15</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>14</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
<td>-0.19</td>
<td>*</td>
<td></td>
<td>0.30</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>15</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
<td>-0.19</td>
<td>*</td>
<td></td>
<td>0.30</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>16</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
<td>-0.87</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>17</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.61</td>
<td>-1.36</td>
<td></td>
<td></td>
<td>0.90</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>18</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.32</td>
<td>-1.74</td>
<td></td>
<td></td>
<td>0.90</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>19</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.67</td>
<td>-1.70</td>
<td></td>
<td></td>
<td>0.90</td>
<td>5.33</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>20</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.52</td>
<td>-2.39</td>
<td></td>
<td></td>
<td>0.90</td>
<td>5.33</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>21</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.38</td>
<td>-1.70</td>
<td></td>
<td></td>
<td>0.90</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>22</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.33</td>
<td>-1.70</td>
<td></td>
<td></td>
<td>0.90</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>23</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.62</td>
<td>-1.70</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>24</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.66</td>
<td>-1.13</td>
<td>*</td>
<td>F</td>
<td>0.75</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>25</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.36</td>
<td>-0.49</td>
<td></td>
<td></td>
<td>0.45</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>26</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.53</td>
<td>-0.71</td>
<td></td>
<td></td>
<td>0.60</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>27</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.74</td>
<td>-0.03</td>
<td>*</td>
<td></td>
<td>0.30</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>28</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.00</td>
<td>-0.03</td>
<td>*</td>
<td></td>
<td>0.30</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>29</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.08</td>
<td>0.40</td>
<td>*</td>
<td></td>
<td>-0.30</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>30</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.08</td>
<td>0.40</td>
<td>*</td>
<td></td>
<td>-0.30</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>31</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.08</td>
<td>-0.17</td>
<td></td>
<td></td>
<td>0.45</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>32</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>0.29</td>
<td>-0.81</td>
<td>*</td>
<td>F</td>
<td>1.10</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>33</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td>-0.81</td>
<td></td>
<td></td>
<td>1.50</td>
<td>2.66</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>34</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td>-1.07</td>
<td></td>
<td></td>
<td>1.84</td>
<td>4.98</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>35</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>0.97</td>
<td>-1.37</td>
<td>*</td>
<td>F</td>
<td>1.98</td>
<td>4.32</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>36</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td>C</td>
<td></td>
<td>1.89</td>
<td>-1.16</td>
<td>*</td>
<td>F</td>
<td>2.52</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>37</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td>C</td>
<td></td>
<td>1.80</td>
<td>-1.16</td>
<td>*</td>
<td>F</td>
<td>2.86</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>38</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>1.39</td>
<td>-0.77</td>
<td>*</td>
<td>F</td>
<td>3.40</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>39</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>1.39</td>
<td>-0.39</td>
<td>*</td>
<td>F</td>
<td>2.36</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>40</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>1.39</td>
<td>-0.77</td>
<td>*</td>
<td>F</td>
<td>2.46</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>41</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>1.34</td>
<td>-1.20</td>
<td>*</td>
<td>F</td>
<td>2.46</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>42</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>1.60</td>
<td>-1.16</td>
<td></td>
<td></td>
<td>3.06</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>43</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>1.09</td>
<td>-1.80</td>
<td>*</td>
<td>F</td>
<td>3.06</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>44</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>1.13</td>
<td>-1.11</td>
<td>*</td>
<td>F</td>
<td>3.40</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>45</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
<td>-0.81</td>
<td>*</td>
<td>F</td>
<td>2.66</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>46</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>-0.70</td>
<td></td>
<td></td>
<td>1.77</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>47</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
<td>-0.20</td>
<td></td>
<td></td>
<td>0.98</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>48</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>-0.72</td>
<td>0.29</td>
<td></td>
<td></td>
<td>0.04</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>49</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>-1.53</td>
<td>0.54</td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>50</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>-2.00</td>
<td>1.23</td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Res Position</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td>VII</td>
<td>VIII</td>
<td>IX</td>
<td>X</td>
<td>XI</td>
<td>XII</td>
<td>XIII</td>
<td>XIV</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Thr</td>
<td>51</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.63</td>
<td>1.23</td>
<td></td>
<td>-0.60</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>52</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.63</td>
<td>1.04</td>
<td></td>
<td>-0.60</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>53</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.63</td>
<td>1.23</td>
<td></td>
<td>-0.60</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>54</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.34</td>
<td>1.41</td>
<td></td>
<td>-0.60</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>55</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.42</td>
<td>1.31</td>
<td></td>
<td>-0.60</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>56</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.78</td>
<td>1.20</td>
<td></td>
<td>-0.60</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>57</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>-2.78</td>
<td>1.09</td>
<td></td>
<td>-0.20</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>58</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>-2.28</td>
<td>1.09</td>
<td></td>
<td>-0.20</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>59</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>-2.32</td>
<td>1.07</td>
<td></td>
<td>-0.20</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>60</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>-2.59</td>
<td>1.03</td>
<td></td>
<td>-0.20</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>61</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-2.08</td>
<td>0.99</td>
<td></td>
<td>-0.60</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>62</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.97</td>
<td>0.99</td>
<td></td>
<td>-0.60</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>63</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.91</td>
<td>1.20</td>
<td></td>
<td>-0.60</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>64</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.24</td>
<td>1.39</td>
<td></td>
<td>-0.60</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>65</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.43</td>
<td>1.10</td>
<td></td>
<td>-0.60</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>66</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.21</td>
<td>1.26</td>
<td></td>
<td>-0.60</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>67</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.49</td>
<td>1.11</td>
<td></td>
<td>-0.60</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>68</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.44</td>
<td>0.97</td>
<td></td>
<td>-0.60</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>69</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.59</td>
<td>1.27</td>
<td></td>
<td>-0.60</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>70</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.63</td>
<td>0.89</td>
<td></td>
<td>-0.60</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>71</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
<td>0.56</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>72</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.50</td>
<td>0.16</td>
<td></td>
<td>0.10</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>73</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.09</td>
<td>0.20</td>
<td></td>
<td>F</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>74</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.53</td>
<td>0.20</td>
<td></td>
<td>F</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>75</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.76</td>
<td>0.09</td>
<td></td>
<td>F</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>76</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.06</td>
<td>0.09</td>
<td></td>
<td>F</td>
<td>-0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>77</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
<td>0.31</td>
<td></td>
<td>*</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>78</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
<td>-0.24</td>
<td>*</td>
<td>F</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>79</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.30</td>
<td>-0.24</td>
<td>*</td>
<td>F</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>80</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.30</td>
<td>-0.24</td>
<td>*</td>
<td>F</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>81</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
<td>-0.34</td>
<td>*</td>
<td>F</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>82</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.72</td>
<td>-0.30</td>
<td>*</td>
<td>F</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>83</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td>-0.49</td>
<td>*</td>
<td>F</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>84</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.21</td>
<td>0.01</td>
<td>*</td>
<td>F</td>
<td>-0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>85</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.10</td>
<td>0.01</td>
<td>*</td>
<td>F</td>
<td>-0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>86</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>0.01</td>
<td>*</td>
<td>F</td>
<td>-0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>87</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.92</td>
<td>-0.67</td>
<td>*</td>
<td>F</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>88</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.52</td>
<td>-0.39</td>
<td>*</td>
<td>F</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>89</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td>-0.39</td>
<td>*</td>
<td>F</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>90</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td>-0.39</td>
<td>*</td>
<td>F</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>91</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.38</td>
<td>-0.46</td>
<td>*</td>
<td>F</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>92</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
<td>-0.46</td>
<td></td>
<td></td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>93</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
<td>-0.03</td>
<td></td>
<td></td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>94</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.14</td>
<td>0.47</td>
<td></td>
<td></td>
<td>-0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>95</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.14</td>
<td>0.21</td>
<td></td>
<td></td>
<td>-0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>96</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td>-0.21</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>97</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.06</td>
<td>-0.21</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>98</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.28</td>
<td>-0.21</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>99</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
<td>-0.03</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>100</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.66</td>
<td>-0.46</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Res Position</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td>VII</td>
<td>VIII</td>
<td>IX</td>
<td>X</td>
<td>XI</td>
<td>XII</td>
<td>XIII</td>
<td>XIV</td>
</tr>
<tr>
<td>--------------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Gly</td>
<td>101</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.41</td>
<td>-0.96</td>
<td>F</td>
<td>0.90</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>102</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.79</td>
<td>-0.89</td>
<td>F</td>
<td>0.75</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>103</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.41</td>
<td>-0.46</td>
<td>*</td>
<td>0.45</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>104</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.49</td>
<td>-0.46</td>
<td>*</td>
<td>0.45</td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>105</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.21</td>
<td>-0.24</td>
<td></td>
<td>0.30</td>
<td>0.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>106</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.46</td>
<td>-0.44</td>
<td></td>
<td>0.30</td>
<td>0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>107</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.61</td>
<td>0.06</td>
<td></td>
<td>0.30</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>108</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.80</td>
<td>0.49</td>
<td>*</td>
<td>-0.60</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>109</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.76</td>
<td>0.67</td>
<td></td>
<td>-0.60</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>110</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.06</td>
<td>0.24</td>
<td>*</td>
<td>-0.30</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>111</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.54</td>
<td>0.43</td>
<td>*</td>
<td>-0.60</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>112</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.96</td>
<td>0.57</td>
<td>*</td>
<td>-0.60</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>113</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.31</td>
<td>0.09</td>
<td>*</td>
<td>-0.30</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>114</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.21</td>
<td>0.91</td>
<td>*</td>
<td>-0.30</td>
<td>0.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>115</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.21</td>
<td>0.01</td>
<td></td>
<td>0.15</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>116</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.08</td>
<td>-0.17</td>
<td>*</td>
<td>1.25</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>117</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.39</td>
<td>0.26</td>
<td>*</td>
<td>1.10</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>118</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.34</td>
<td>0.00</td>
<td>*</td>
<td>2.20</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>119</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.89</td>
<td>-0.79</td>
<td>*</td>
<td>3.00</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>120</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.59</td>
<td>-0.36</td>
<td>*</td>
<td>2.25</td>
<td>0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>121</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.29</td>
<td>-0.39</td>
<td>*</td>
<td>2.15</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>122</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.20</td>
<td>-0.43</td>
<td></td>
<td>2.00</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>123</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>-0.54</td>
<td></td>
<td>1.60</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>124</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td>-0.57</td>
<td></td>
<td>1.50</td>
<td>1.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>125</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.91</td>
<td>-0.60</td>
<td>*</td>
<td>1.50</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>126</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.37</td>
<td>-0.21</td>
<td></td>
<td>1.54</td>
<td>2.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>127</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.37</td>
<td>-0.64</td>
<td>*</td>
<td>2.18</td>
<td>3.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>128</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.76</td>
<td>-0.64</td>
<td></td>
<td>2.32</td>
<td>3.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>129</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.87</td>
<td>-1.03</td>
<td></td>
<td>2.86</td>
<td>5.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>130</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.58</td>
<td>-1.41</td>
<td>*</td>
<td>3.40</td>
<td>6.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>131</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.02</td>
<td>-1.31</td>
<td>*</td>
<td>3.06</td>
<td>3.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>132</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.02</td>
<td>-1.07</td>
<td>*</td>
<td>2.72</td>
<td>2.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>133</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.68</td>
<td>-1.06</td>
<td>*</td>
<td>2.18</td>
<td>1.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>134</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.77</td>
<td>-0.63</td>
<td>*</td>
<td>1.64</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>135</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.66</td>
<td>-0.60</td>
<td>*</td>
<td>1.15</td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>136</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.66</td>
<td>-0.60</td>
<td>*</td>
<td>1.49</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>137</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.30</td>
<td>-0.60</td>
<td>*</td>
<td>2.18</td>
<td>1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>138</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.84</td>
<td>-0.61</td>
<td>*</td>
<td>2.52</td>
<td>2.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>139</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.13</td>
<td>-0.83</td>
<td>*</td>
<td>2.86</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>140</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.74</td>
<td>-0.84</td>
<td></td>
<td>3.40</td>
<td>2.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>141</td>
<td>T</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.43</td>
<td>-0.51</td>
<td></td>
<td>2.86</td>
<td>2.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>142</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.08</td>
<td>-0.46</td>
<td></td>
<td>2.42</td>
<td>1.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>143</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.33</td>
<td></td>
<td>1.33</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>144</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.22</td>
<td>0.97</td>
<td></td>
<td>0.54</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>145</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.07</td>
<td>0.91</td>
<td></td>
<td>0.20</td>
<td>0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>146</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.57</td>
<td>1.40</td>
<td></td>
<td>-0.60</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>147</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.03</td>
<td>1.70</td>
<td></td>
<td>-0.60</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>148</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.03</td>
<td>1.63</td>
<td></td>
<td>-0.60</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>149</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.49</td>
<td>1.53</td>
<td>*</td>
<td>-0.60</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>150</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.13</td>
<td>1.53</td>
<td>*</td>
<td>-0.60</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Res Position</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td>VII</td>
<td>VIII</td>
<td>IX</td>
<td>X</td>
<td>XI</td>
<td>XII</td>
<td>XIII</td>
<td>XIV</td>
</tr>
<tr>
<td>--------------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Leu</td>
<td>151</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>-0.32</td>
<td>0.89*</td>
<td>.</td>
<td>.</td>
<td>-0.30</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>152</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.19</td>
<td>0.46*</td>
<td>.</td>
<td>.</td>
<td>0.20</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>153</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>.</td>
<td>0.10</td>
<td>-0.03*</td>
<td>.</td>
<td>.</td>
<td>1.80</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>154</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>-0.20</td>
<td>-0.33*</td>
<td>F</td>
<td>2.60</td>
<td>1.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>155</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>-0.20</td>
<td>-0.51</td>
<td>.</td>
<td>F</td>
<td>3.00</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>156</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>0.61</td>
<td>-0.21</td>
<td>.</td>
<td>F</td>
<td>2.28</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>157</td>
<td>A</td>
<td>C</td>
<td>T</td>
<td>0.91</td>
<td>-1.00*</td>
<td>F</td>
<td>2.05</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>158</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>1.66</td>
<td>-1.00*</td>
<td>F</td>
<td>1.35</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>159</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>1.61</td>
<td>-1.00*</td>
<td>F</td>
<td>1.20</td>
<td>1.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>160</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>1.50</td>
<td>-1.43*</td>
<td>F</td>
<td>0.90</td>
<td>1.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>161</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>1.89</td>
<td>-1.41*</td>
<td>F</td>
<td>0.90</td>
<td>3.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>162</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>1.30</td>
<td>-1.91*</td>
<td>F</td>
<td>0.90</td>
<td>7.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>163</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>1.08</td>
<td>-1.91*</td>
<td>F</td>
<td>0.90</td>
<td>3.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>164</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>1.03</td>
<td>-1.23*</td>
<td>F</td>
<td>0.90</td>
<td>1.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>165</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>1.08</td>
<td>-0.59*</td>
<td>F</td>
<td>0.75</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>166</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>0.72</td>
<td>-0.59*</td>
<td>*</td>
<td>0.66</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>167</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>0.38</td>
<td>-0.50*</td>
<td>*</td>
<td>0.92</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>168</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>0.13</td>
<td>-0.07*</td>
<td>*</td>
<td>F</td>
<td>0.93</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>169</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>T</td>
<td>0.61</td>
<td>0.00*</td>
<td>F</td>
<td>1.64</td>
<td>1.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>170</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>-0.42</td>
<td>0.10*</td>
<td>*</td>
<td>F</td>
<td>1.60</td>
<td>1.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>171</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>-0.50</td>
<td>0.24*</td>
<td>F</td>
<td>1.29</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>172</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.11</td>
<td>0.93*</td>
<td>*</td>
<td>0.68</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>173</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>-0.28</td>
<td>1.69*</td>
<td>*</td>
<td>-0.28</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>174</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>-0.28</td>
<td>1.63*</td>
<td>*</td>
<td>-0.44</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>175</td>
<td>B</td>
<td>B</td>
<td>T</td>
<td>-0.82</td>
<td>1.60*</td>
<td>*</td>
<td>-0.60</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>176</td>
<td>B</td>
<td>B</td>
<td>T</td>
<td>-1.29</td>
<td>1.49*</td>
<td>*</td>
<td>-0.60</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>177</td>
<td>B</td>
<td>T</td>
<td>T</td>
<td>-1.29</td>
<td>1.39*</td>
<td>*</td>
<td>-0.20</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>178</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>-0.90</td>
<td>1.36*</td>
<td>*</td>
<td>-0.20</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>179</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>0.73</td>
<td>0.40*</td>
<td>*</td>
<td>-0.10</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>180</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.67</td>
<td>-0.03*</td>
<td>*</td>
<td>1.25</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>181</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.77</td>
<td>0.06*</td>
<td>F</td>
<td>0.80</td>
<td>2.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>182</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.18</td>
<td>0.17*</td>
<td>F</td>
<td>0.80</td>
<td>3.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>183</td>
<td>A</td>
<td>.</td>
<td>T</td>
<td>0.43</td>
<td>-0.01*</td>
<td>F</td>
<td>1.00</td>
<td>2.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>184</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>0.90</td>
<td>-0.16*</td>
<td>F</td>
<td>0.60</td>
<td>1.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>185</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>1.11</td>
<td>-0.21*</td>
<td>*</td>
<td>0.45</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>186</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>0.61</td>
<td>0.29*</td>
<td>*</td>
<td>-0.30</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>187</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>-0.28</td>
<td>0.97*</td>
<td>*</td>
<td>-0.60</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>188</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>-0.32</td>
<td>1.17*</td>
<td>*</td>
<td>-0.60</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>189</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>0.10</td>
<td>0.81*</td>
<td>*</td>
<td>-0.60</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>190</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>0.39</td>
<td>0.31*</td>
<td>*</td>
<td>-0.30</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>191</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>1.02</td>
<td>-0.30*</td>
<td>*</td>
<td>0.45</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>192</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>0.77</td>
<td>-0.73*</td>
<td>*</td>
<td>0.75</td>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>193</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>1.08</td>
<td>-0.59*</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>1.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>194</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>0.26</td>
<td>-0.77*</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>3.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>195</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>0.37</td>
<td>-0.81*</td>
<td>*</td>
<td>F</td>
<td>0.90</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>196</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>0.91</td>
<td>-0.43*</td>
<td>*</td>
<td>0.30</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>197</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>0.91</td>
<td>0.00*</td>
<td>*</td>
<td>0.30</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>198</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>0.80</td>
<td>0.00*</td>
<td>*</td>
<td>0.30</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Res Position</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td>VII</td>
<td>VIII</td>
<td>IX</td>
<td>X</td>
<td>XI</td>
<td>XII</td>
<td>XIII</td>
<td>XIV</td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Phe</td>
<td>201</td>
<td></td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.06</td>
<td>0.00</td>
<td>*</td>
<td>0.30</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>202</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.40</td>
<td>0.04</td>
<td>*</td>
<td>-0.30</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>203</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.36</td>
<td>-0.07</td>
<td>*</td>
<td>0.50</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>204</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.18</td>
<td>-0.03</td>
<td>*</td>
<td>0.50</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>205</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.63</td>
<td>-0.17</td>
<td>*</td>
<td>0.30</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>206</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.74</td>
<td>-0.11</td>
<td>*</td>
<td>0.30</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>207</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.10</td>
<td>0.57</td>
<td>*</td>
<td>-0.60</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>208</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.99</td>
<td>1.36</td>
<td>*</td>
<td>-0.60</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>209</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.66</td>
<td>0.67</td>
<td>*</td>
<td>-0.60</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>210</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.73</td>
<td>0.86</td>
<td>*</td>
<td>-0.60</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>211</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-1.43</td>
<td>0.86</td>
<td>*</td>
<td>-0.60</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>212</td>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>-0.62</td>
<td>0.61</td>
<td>*</td>
<td>-0.60</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>213</td>
<td>A</td>
<td></td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.37</td>
<td>0.53</td>
<td>*</td>
<td>-0.20</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>214</td>
<td>A</td>
<td></td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>-0.27</td>
<td>0.46</td>
<td>*</td>
<td>-0.20</td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>215</td>
<td>A</td>
<td></td>
<td>B</td>
<td>T</td>
<td></td>
<td></td>
<td>0.54</td>
<td>0.10</td>
<td>*</td>
<td>0.10</td>
<td>0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>216</td>
<td>A</td>
<td></td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td>0.93</td>
<td>0.10</td>
<td>*</td>
<td>0.05</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>217</td>
<td>A</td>
<td></td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>*</td>
<td>F</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>218</td>
<td>A</td>
<td></td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td>0.47</td>
<td>0.01</td>
<td>*</td>
<td>F</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>219</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>1.36</td>
<td>0.04</td>
<td>*</td>
<td>F</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>220</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>1.36</td>
<td>0.04</td>
<td>*</td>
<td>F</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>221</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>1.06</td>
<td>-0.17</td>
<td>*</td>
<td>F</td>
<td>1.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>222</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td>-0.21</td>
<td>*</td>
<td>F</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>223</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
<td>0.36</td>
<td>*</td>
<td>F</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>224</td>
<td>A</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td>0.66</td>
<td>0.63</td>
<td>*</td>
<td>F</td>
<td>1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>225</td>
<td>A</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td>0.38</td>
<td>0.35</td>
<td>*</td>
<td>F</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>226</td>
<td>A</td>
<td></td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td>0.84</td>
<td>0.40</td>
<td>*</td>
<td>F</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>227</td>
<td>A</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
<td>0.43</td>
<td>*</td>
<td>F</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>228</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.42</td>
<td>0.71</td>
<td></td>
<td>-0.40</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>229</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.38</td>
<td>0.83</td>
<td></td>
<td>-0.60</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>230</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.89</td>
<td>0.26</td>
<td></td>
<td>-0.30</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>231</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.22</td>
<td>0.19</td>
<td></td>
<td>-0.30</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>232</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>-0.20</td>
<td></td>
<td>0.30</td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>233</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.02</td>
<td>-0.70</td>
<td></td>
<td>0.60</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>234</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.57</td>
<td>-0.70</td>
<td></td>
<td>F</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>235</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
<td>-1.39</td>
<td></td>
<td>F</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>236</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td>-1.89</td>
<td></td>
<td>F</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>237</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.58</td>
<td>-1.20</td>
<td></td>
<td>F</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>238</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.72</td>
<td>-1.49</td>
<td></td>
<td>F</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>239</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.94</td>
<td>-0.80</td>
<td></td>
<td>F</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>240</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.06</td>
<td>-0.30</td>
<td></td>
<td>F</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>241</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.16</td>
<td>-0.04</td>
<td></td>
<td>0.30</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>242</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.39</td>
<td></td>
<td>-0.30</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>243</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.39</td>
<td></td>
<td>-0.30</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>244</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>-0.30</td>
<td></td>
<td>0.30</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>245</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52</td>
<td>-0.30</td>
<td></td>
<td>F</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>246</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52</td>
<td>-0.49</td>
<td></td>
<td>F</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>247</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.44</td>
<td>-0.59</td>
<td></td>
<td>F</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>248</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.73</td>
<td>-0.59</td>
<td></td>
<td>F</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>249</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.81</td>
<td>-0.63</td>
<td></td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>250</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.02</td>
<td>0.06</td>
<td></td>
<td>-0.10</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10 (continued)

<table>
<thead>
<tr>
<th>Res Position</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile</td>
<td>251</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0.57</td>
<td>0.06</td>
<td>*</td>
<td></td>
<td>0.15</td>
<td>0.52</td>
</tr>
<tr>
<td>Ser</td>
<td>252</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>C</td>
<td>0.57</td>
<td>0.09</td>
<td>*</td>
<td></td>
<td>0.60</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>253</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>C</td>
<td>-0.29</td>
<td>-0.41</td>
<td>*</td>
<td>F</td>
<td>1.60</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>254</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>.</td>
<td>-0.01</td>
<td>-0.17</td>
<td>*</td>
<td>F</td>
<td>2.25</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>255</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>.</td>
<td>-0.71</td>
<td>-0.37</td>
<td>*</td>
<td>F</td>
<td>2.50</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>256</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>T</td>
<td>.</td>
<td>-0.52</td>
<td>0.03</td>
<td>*</td>
<td>F</td>
<td>1.65</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>257</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>-0.57</td>
<td>0.13</td>
<td>*</td>
<td>F</td>
<td>1.00</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>258</td>
<td>A</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.34</td>
<td>0.56</td>
<td>*</td>
<td></td>
<td>-0.10</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>259</td>
<td>A</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.16</td>
<td>0.63</td>
<td>*</td>
<td></td>
<td>-0.35</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>260</td>
<td>A</td>
<td>.</td>
<td>B</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.77</td>
<td>1.31</td>
<td>*</td>
<td></td>
<td>-0.60</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>261</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.58</td>
<td>0.67</td>
<td>*</td>
<td></td>
<td>-0.60</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>262</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.53</td>
<td>0.87</td>
<td>*</td>
<td></td>
<td>-0.60</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>263</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.61</td>
<td>0.77</td>
<td>*</td>
<td></td>
<td>-0.60</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>264</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.30</td>
<td>0.41</td>
<td>*</td>
<td></td>
<td>-0.60</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>265</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-0.99</td>
<td>0.41</td>
<td></td>
<td></td>
<td>-0.60</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>266</td>
<td>A</td>
<td>A</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-1.03</td>
<td>0.34</td>
<td>*</td>
<td></td>
<td>-0.30</td>
<td>0.65</td>
<td></td>
</tr>
</tbody>
</table>
In another embodiment, the invention provides antibodies that bind a polypeptide comprising, or alternatively consisting of, an epitope-bearing portion of a polypeptide of the invention. The epitope of this polypeptide portion may be an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).

As to the selection of polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shimnick, T. M., Green, N. and Learner, R. A. (1983) "Antibodies that react with predetermined sites on proteins", Science, 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777.

In specific embodiments, antibodies of the present invention bind antigenic epitope-bearing peptides and polypeptides of BLyS and preferably contain a sequence of at least 4, at least 5, at least 6, at least 7, more preferably at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, and, most preferably, between about 15 to about 30 amino acids contained within the amino acid sequence of a BLyS polypeptide. Preferred polypeptides comprising immunogenic or antigenic epitopes are at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acid residues in length. Additional non-exclusive preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as portions thereof.
Non-limiting examples of antigenic polypeptides or peptides that can be used to generate BLyS-specific antibodies and which may be bound by the antibodies of the invention include: a polypeptide comprising, or alternatively consisting of, amino acid residues from about Phe-115 to about Leu-147 in SEQ ID NO:3228; a polypeptide comprising, or alternatively consisting of, amino acid residues from about Ile-150 to about Tyr-163 in SEQ ID NO:3228; a polypeptide comprising, or alternatively consisting of, amino acid residues from about Ser-171 to about Phe-194 in SEQ ID NO:3228; a polypeptide comprising, or alternatively consisting of, amino acid residues from about Glu-223 to about Tyr-246 in SEQ ID NO:3228; and a polypeptide comprising, or alternatively consisting of, amino acid residues from about Ser-271 to about Phe-278 in Figures 1A and 1B (SEQ ID NO:3228). In this context, "about" means the particularly recited ranges and ranges larger or smaller by several, a few, 5, 4, 3, 2 or 1 amino acid residues at either or both the amino- and carboxy-termini. These polypeptide fragments have been determined to bear antigenic epitopes of the BLyS polypeptide by the analysis of the Jameson-Wolf antigenic index, as disclosed Table 9, above.

Non-limiting examples of antigenic polypeptides or peptides that can be used to generate BLyS-specific antibodies and which may be bound by the antibodies of the invention include: a polypeptide comprising, or alternatively consisting of, amino acid residues from about Pro-32 to about Leu-47 in SEQ ID NO:3229; a polypeptide comprising, or alternatively consisting of, amino acid residues from about Glu-116 to about Ser-143 in SEQ ID NO:3229; a polypeptide comprising, or alternatively consisting of, amino acid residues from about Phe-153 to about Tyr-173 in SEQ ID NO:3229; a polypeptide comprising, or alternatively consisting of, amino acid residues from about Pro-218 to about Tyr-227 in SEQ ID NO:3229; a polypeptide comprising, or alternatively consisting of, amino acid residues from about Ala-232 to about Gln-241 in SEQ ID NO:3229; a polypeptide comprising, or alternatively consisting of, amino acid residues from about Ile-244 to about Ala-249 in SEQ ID NO:3229; and a polypeptide comprising, or alternatively consisting of, amino acid residues from about Ser-252 to about Val-257 in SEQ ID NO:3229. In this context, "about" means the particularly recited ranges and ranges larger or smaller by several, a few, 5, 4, 3, 2 or 1 amino acid residues at either or both the amino- and carboxy-termini. These polypeptide fragments have been determined to bear antigenic epitopes of the BLyS polypeptide by the analysis of the Jameson-Wolf
antigenic index, as disclosed in Table 10 generated by the Protean component of the DNA*STAR computer program (as set forth above).

[089] The present invention encompasses antibodies that bind polypeptides comprising, or alternatively consisting of, an epitope of the polypeptide having an amino acid sequence of SEQ ID NO:3228, or an epitope of the polypeptide sequence encoded by a polynucleotide sequence contained in ATCC deposit No. 97768, or encoded by a polynucleotide that hybridizes to cDNA sequence contained in ATCC deposit No. 97768 (e.g., under hybridization conditions described herein).

[090] The present invention also encompasses antibodies that bind polypeptides comprising, or alternatively consisting of, an epitope of the polypeptide having an amino acid sequence of SEQ ID NO:3229, or an epitope of the polypeptide sequence encoded by a polynucleotide sequence contained in ATCC deposit No. 203518, or encoded by a polynucleotide that hybridizes to the cDNA sequence contained in ATCC deposit No. 203518 (e.g., under hybridization conditions described herein).

[091] The term "epitopes," as used herein, refers to portions of a polypeptide having antigenic or immunogenic activity in an animal, preferably a mammal, and most preferably in a human. In a preferred embodiment, the present invention encompasses antibodies that bind a polypeptide comprising an epitope. An "immunogenic epitope," as used herein, is defined as a portion of a protein that elicits an antibody response in an animal, as determined by any method known in the art, for example, by the methods for generating antibodies described infra. (See, for example, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983)). The term "antigenic epitope," as used herein, is defined as a portion of a protein to which an antibody can immunospecifically bind its antigen as determined by any method well known in the art, for example, by the immunoassays described herein. Immunospecific binding excludes non-specific binding but does not necessarily exclude cross-reactivity with other antigens. Antigenic epitopes need not
necessarily be immunogenic.

[093] In the present invention, antibodies of the present invention bind antigenic epitopes preferably containing a sequence of at least 4, at least 5, at least 6, at least 7, more preferably at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, and, most preferably, between about 15 to about 30 amino acids. Preferred polypeptides comprising immunogenic or antigenic epitopes that may be bound by antibodies of the present invention are at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acid residues in length. Additional non-exclusive preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as portions thereof. Antigenic epitopes are useful, for example, to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. Preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these antigenic epitopes. Antigenic epitopes can be used as the target molecules in immunoassays. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe et al., Science 219:660-666 (1983)).

[094] Similarly, immunogenic epitopes can be used, for example, to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle et al., J. Gen. Virol. 66:2347-2354 (1985). Preferred immunogenic epitopes include the immunogenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these immunogenic epitopes. The polypeptides comprising one or more immunogenic epitopes of BLyS may be presented for eliciting an antibody response together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse), or, if the polypeptide is of sufficient length (at least about 25 amino acids), the polypeptide may be presented without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting).
Epitope-bearing BLyS polypeptides may be used to induce antibodies according to methods well known in the art including, but not limited to, in vivo immunization, in vitro immunization, and phage display methods. See, e.g., Sutcliffe et al., supra; Wilson et al., supra, and Bittle et al., J. Gen. Virol., 66:2347-2354 (1985). If in vivo immunization is used, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling the peptide to a macromolecular carrier, such as keyhole limpet hemocyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine residues may be coupled to a carrier using a linker such as maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carriers using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 micrograms of peptide or carrier protein and Freund's adjuvant or any other adjuvant known for stimulating an immune response. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

As one of skill in the art will appreciate, and as discussed above, the antibodies of the present invention may bind polypeptides comprising an immunogenic or antigenic epitope fused to other polypeptide sequences. For example, the BLyS polypeptides may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM), or portions thereof (CH1, CH2, CH3, or any combination thereof and portions thereof), or albumin (including but not limited to recombinant human albumin or fragments or variants thereof (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No. 5,766,883, issued June 16, 1998, herein incorporated by reference in their entirety)), resulting in chimeric polypeptides. Such fusion proteins may facilitate purification and may increase half-life in vivo. This has been shown for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of
mammalian immunoglobulins. See, e.g., EP 394,827; Traunecker et al., Nature, 331:84-86 (1988). Enhanced delivery of an antigen across the epithelial barrier to the immune system has been demonstrated for antigens (e.g., insulin) conjugated to an FcRn binding partner such as IgG or Fc fragments (see, e.g., PCT Publications WO 96/22024 and WO 99/04813). IgG Fusion proteins that have a disulfide-linked dimeric structure due to the IgG portion disulfide bonds have also been found to be more efficient in binding and neutralizing other molecules than monomeric polypeptides or fragments thereof alone. See, e.g., Fountoulakis et al., J. Biochem., 270:3958-3964 (1995). Nucleic acids encoding the above epitopes can also be recombined with a gene of interest as an epitope tag (e.g., the hemagglutinin ("HA") tag or flag tag) to aid in detection and purification of the expressed polypeptide. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-897). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the open reading frame of the gene is translationally fused to an amino-terminal tag consisting of six histidine residues. The tag serves as a matrix-binding domain for the fusion protein. Extracts from cells infected with the recombinant vaccinia virus are loaded onto Ni2+-nitriloacetic acid-agarose column and histidine-tagged proteins can be selectively eluted with imidazole-containing buffers.

In another embodiment, the antibodies of the present invention bind BLyS polypeptides and/or the epitope-bearing fragments thereof that are fused with a heterologous antigen (e.g., polypeptide, carbohydrate, phospholipid, or nucleic acid). In specific embodiments, the heterologous antigen is an immunogen.

In a more specific embodiment, the heterologous antigen is the gp120 protein of HIV, or a fragment thereof.

In another embodiment, antibodies of the present invention bind BLyS polypeptides and/or the epitope-bearing fragments thereof that are fused with polypeptide sequences of another TNF ligand family member (or biologically active fragments or variants thereof). In a specific embodiment, the antibodies of the present invention bind BLyS polypeptides of the present invention are fused with a CD40L polypeptide sequence. In a preferred embodiment, the CD40L polypeptide sequence is soluble.

In another embodiment, antibodies of the present invention bind mutant
BLyS polypeptides that have been generated by random mutagenesis of a polynucleotide encoding the BLyS polypeptide, by error-prone PCR, random nucleotide insertion or other methods prior to recombination. In another embodiment, antibodies of the present invention bind one or more components, motifs, sections, parts, domains, fragments, etc., of BLyS recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules. In preferred embodiments, the heterologous molecules are, for example, TNF-alpha, lymphotoxin-alpha (LT-alpha, also known as TNF-beta), LT-beta (found in complex heterotrimer LT-alpha2-beta), OPGL, FasL, CD27L, CD30L, CD40L, 4-1BBL, DcR3, OX40L, TNF-gamma (International Publication No. WO 96/14328), AIM-I (International Publication No. WO 97/33899), AIM-II (International Publication No. WO 97/34911), APRIL (J. Exp. Med. 188(6):1185-1190), endokine-alpha (International Publication No. WO 98/07880), OPG, OX40, and nerve growth factor (NGF), and soluble forms of Fas, CD30, CD27, CD40 and 4-IBB, TR2 (International Publication No. WO 96/34095), DR3 (International Publication No. WO 97/33904), DR4 (International Publication No. WO 98/32856), TR5 (International Publication No. WO 98/30693), TR6 (International Publication No. WO 98/30694), TR7 (International Publication No. WO 98/41629), TRANK, TR9 (International Publication No. WO 98/56892), TR10 (International Publication No. WO 98/54202), 312C2 (International Publication No. WO 98/06842), TR12, CAD, and v-FLIP. In further embodiments, the heterologous molecules are any member of the TNF family.

[0101] In another preferred embodiment, antibodies of the present invention bind BLyS polypeptides of the invention (including biologically active fragments or variants thereof), that are fused with soluble APRIL polypeptides (e.g., amino acid residues 105 through 250 of SEQ ID NO:3239), or biologically active fragments or variants thereof.

[0102] To improve or alter the characteristics of BLyS polypeptides, protein engineering may be employed. Recombinant DNA technology known to those skilled in the art can be used to create novel mutant proteins or "mutemus" including single or multiple amino acid substitutions, deletions, additions or fusion proteins. Such modified polypeptides can show, e.g., enhanced activity or increased stability. In addition, they may be purified in higher yields and show better solubility than the corresponding natural polypeptide, at least under certain purification and storage conditions. For instance, for many proteins, including the extracellular domain or the mature form(s) of a secreted
protein, it is known in the art that one or more amino acids may be deleted from the N-terminus or C-terminus without substantial loss of biological function. For instance, Ron et al., J. Biol. Chem., 268:2984-2988 (1993) reported modified KGF proteins that had heparin binding activity even if 3, 8, or 27 amino-terminal amino acid residues were missing. Accordingly, antibodies of the present invention may bind BLyS polypeptide mutants or variants generated by protein engineering.

[0103] In the present case, since the protein of the invention is a member of the TNF polypeptide family, deletions of N-terminal amino acids up to the Gly (G) residue at position 191 in SEQ ID NO:3228 may retain some biological activity such as, for example, the ability to stimulate lymphocyte (e.g., B cell) proliferation, differentiation, and/or activation, and cytotoxicity to appropriate target cells. Polypeptides having further N-terminal deletions including the Gly (G) residue would not be expected to retain biological activities because it is known that this residue in TNF-related polypeptides is in the beginning of the conserved domain required for biological activities. However, even if deletion of one or more amino acids from the N-terminus of a protein results in modification or loss of one or more biological functions of the protein, other functional activities may still be retained. Thus, the ability of the shortened protein to induce and/or bind to antibodies which recognize the complete or extracellular domain of the protein generally will be retained when less than the majority of the residues of the complete or extracellular domain of the protein are removed from the N-terminus. Whether a particular polypeptide lacking N-terminal residues of a complete protein retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art.

[0104] Accordingly, the present invention further provides antibodies that bind polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence of the BLyS of SEQ ID NO:3228, up to the glycine residue at position 191 (Gly-191 residue from the amino terminus). In particular, the present invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, the amino acid sequence of residues n1-285 of SEQ ID NO:3228, where n1 is an integer in the range of the amino acid position of amino acid residues 2-190 of the amino acid sequence in SEQ ID NO:3228. More in particular, the invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group

Furthermore, since the predicted extracellular domain of the BLYS polypeptides of the invention may itself elicit biological activity, deletions of N- and C-terminal amino acid residues from the predicted extracellular region of the polypeptide (spanning positions Gln-73 to Leu-285 of SEQ ID NO:3228) may retain some biological activity such as, for example, ligand binding, stimulation of lymphocyte (e.g., B cell) proliferation, differentiation, and/or activation, and modulation of cell replication or modulation of target cell activities. However, even if deletion of one or more amino acids from the N-terminus of the predicted extracellular domain of a BLYS polypeptide results
in modification or loss of one or more biological functions of the polypeptide, other functional activities may still be retained. Thus, the ability of the shortened polypeptides to induce and/or bind to antibodies which recognize the complete or mature or extracellular domains of the polypeptides generally will be retained when less than the majority of the residues of the complete or mature or extracellular domains of the polypeptides are removed from the N-terminus. Whether a particular polypeptide lacking N-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art.

[0106] Accordingly, the present invention further provides antibodies that bind polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence of BLyS shown in SEQ ID NO:3228, up to the glycine residue at position number 280. In particular, the present invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, the amino acid sequence of residues n²-285 of SEQ ID NO:3228, where n² is an integer in the range of the amino acid position of amino acid residues 73-280 in SEQ ID NO:3228, and 73 is the position of the first residue from the N-terminus of the predicted extracellular domain of the BLyS polypeptide (disclosed in SEQ ID NO:3228). More in particular, in certain embodiments, the invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues of Q-73 to L-285; G-74 to L-285; D-75 to L-285; L-76 to L-285; A-77 to L-285; S-78 to L-285; L-79 to L-285; R-80 to L-285; A-81 to L-285; E-82 to L-285; L-83 to L-285; Q-84 to L-285; G-85 to L-285; H-86 to L-285; H-87 to L-285; A-88 to L-285; E-89 to L-285; K-90 to L-285; L-91 to L-285; P-92 to L-285; A-93 to L-285; G-94 to L-285; A-95 to L-285; G-96 to L-285; A-97 to L-285; P-98 to L-285; K-99 to L-285; A-100 to L-285; G-101 to L-285; L-102 to L-285; E-103 to L-285; E-104 to L-285; A-105 to L-285; P-106 to L-285; A-107 to L-285; V-108 to L-285; T-109 to L-285; A-110 to L-285; G-111 to L-285; L-112 to L-285; K-113 to L-285; I-114 to L-285; F-115 to L-285; E-116 to L-285; P-117 to L-285; P-118 to L-285; A-119 to L-285; P-120 to L-285; G-121 to L-285; E-122 to L-285; G-123 to L-285; N-124 to L-285; S-125 to L-285; S-126 to L-285; Q-127 to L-285; N-128 to L-285; S-129 to L-285; R-130 to L-285; N-131 to L-285; K-132 to L-285; R-133 to L-285; A-134 to L-285; V-135 to L-285; Q-136 to L-285; G-137 to L-285; P-138 to L-285; E-139 to L-285; E-140 to L-285; T-141 to L-285; V-142 to L-285;

[0107] Highly preferred embodiments of the invention are directed to antibodies that bind polypeptides comprising, or alternatively consisting of, a polypeptide having an
amino acid sequence at least 80%, 85%, 90% identical and more preferably at least 95%, 96%, 97%, 98%, 99% or 100% identical to BLyS polypeptide having the amino acid sequence at positions 134-285 of SEQ ID NO:3228.

[0108] Preferred embodiments of the invention are directed to antibodies that bind polypeptides comprising, or alternatively consisting of, a polypeptide having an amino acid sequence at least 90% identical to a BLyS polypeptide having the amino acid sequence at positions 134-285 of SEQ ID NO:3228. More preferred embodiments of the invention are directed to antibodies that bind polypeptides comprising, or alternatively consisting of, a polypeptide having an amino acid sequence at least 95% identical to a BLyS polypeptide having the amino acid sequence at positions 134-285 of SEQ ID NO:3228. More preferred embodiments of the invention are directed to antibodies that bind polypeptides comprising, or alternatively consisting of, a polypeptide having an amino acid sequence at least 96% identical to a BLyS polypeptide having the amino acid sequence at positions 134-285 of SEQ ID NO:3228.

[0109] Additionally, more preferred embodiments of the invention are directed to antibodies that bind polypeptides comprising, or alternatively consisting of, a polypeptide having an amino acid sequence at least 97% to a BLyS polypeptide having the amino acid sequence at positions 134-285 of SEQ ID NO:3228. Additionally, more preferred embodiments of the invention are directed to antibodies that bind polypeptides comprising, or alternatively consisting of, a polypeptide having an amino acid sequence at least 98% to a BLyS polypeptide having the amino acid sequence at positions 134-285 of SEQ ID NO:3228. Additionally, more preferred embodiments of the invention are directed to antibodies that bind polypeptides comprising, or alternatively consisting of, a polypeptide having an amino acid sequence at least 99% identical to BLyS polypeptide having the amino acid sequence at positions 134-285 of SEQ ID NO:3228.

[0110] In specific embodiments, antibodies of the present invention bind polypeptides comprising, or alternatively consisting of, one of the following N-terminally deleted polypeptide fragments of BLyS: amino acid residues Ala-71 through Leu-285, amino acid residues Ala-81 through Leu-285, amino acid residues Leu-112 through Leu-285, amino acid residues Ala-134 through Leu-285, amino acid residues Leu-147 through Leu-285, and amino acid residues Gly-161 through Leu-285 of SEQ ID NO:3228.

[0111] Similarly, many examples of biologically functional C-terminal deletion
polypeptides are known. For instance, Interferon gamma shows up to ten times higher activities by deleting 8-10 amino acid residues from the carboxy terminus of the protein (Döbeli et al., *J. Biotechnology* 7:199-216 (1988). Since the present protein is a member of the TNF polypeptide family, deletions of C-terminal amino acids up to the leucine residue at position 284 are expected to retain most if not all biological activity such as, for example, ligand binding, the ability to stimulate lymphocyte (e.g., B cell) proliferation, differentiation, and/or activation, and modulation of cell replication. Polypeptides having deletions of up to about 10 additional C-terminal residues (i.e., up to the glycine residue at position 274) also may retain some activity such as receptor binding, although such polypeptides would lack a portion of the conserved TNF domain which extends to about Leu-284 of SEQ ID NO:3228. However, even if deletion of one or more amino acids from the C-terminus of a protein results in modification or loss of one or more biological functions of the protein, other functional activities may still be retained. Thus, the ability of the shortened protein to induce and/or bind to antibodies which recognize the complete or mature protein generally will be retained when less than the majority of the residues of the complete or mature protein are removed from the C-terminus. Whether a particular polypeptide lacking C-terminal residues of a complete protein retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art.

[0112] Accordingly, the present invention further provides antibodies that bind polypeptides having one or more residues deleted from the carboxy terminus of the amino acid sequence of the BLyS polypeptide of SEQ ID NO:3228, up to the glycine residue at position 274 (Gly-274). In particular, the present invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, the amino acid sequence of residues 1-n of the amino acid sequence in SEQ ID NO:3228, where n is any integer in the range of the amino acid position of amino acid residues 274-284 in SEQ ID NO:3228. More in particular, the invention provides antibodies that bind BLyS polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues 1-274, 1-275, 1-276, 1-277, 1-278, 1-279, 1-280, 1-281, 1-282, 1-283 and 1-284 of SEQ ID NO:3228. The present invention is also directed to antibodies that bind BLyS polypeptides comprising, or alternatively, consisting of, a contiguous sequence of amino acid residues at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or
99% identical to the amino acid sequence of BLyS polypeptides described above.

Also provided are antibodies that bind BLyS polypeptides comprising, or alternatively consisting of, BLyS polypeptides with one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues n\(^1\)-m\(^1\) of SEQ ID NO:3228, where n\(^1\) and m\(^1\) are integers as defined above. Also included are antibodies that bind a polypeptide comprising, or alternatively consisting of, a portion of the complete BLyS amino acid sequence encoded by the deposited cDNA clone contained in ATCC Accession No. 97768 where this portion excludes from 1 to 190 amino acids from the amino terminus or from 1 to 11 amino acids from the C-terminus of the complete amino acid sequence (or any combination of these N-terminal and C-terminal deletions) encoded by the cDNA clone in the deposited plasmid.

Similarly, deletions of C-terminal amino acid residues of the predicted extracellular domain of BLyS up to the leucine residue at position 79 of SEQ ID NO:3228 may retain some biological activity, such as, for example, ligand binding, stimulation of lymphocyte (e.g., B cell) proliferation, differentiation, and/or activation, and modulation of cell replication or modulation of target cell activities. Polypeptides having further C-terminal deletions including Leu-79 of SEQ ID NO:3228 would not be expected to retain biological activities.

However, even if deletion of one or more amino acids from the C-terminus of a polypeptide results in modification or loss of one or more biological functions of the polypeptide, other functional activities may still be retained. Thus, the ability of the shortened polypeptide to induce and/or bind to antibodies which recognize the complete, mature or extracellular forms of the polypeptide generally will be retained when less than the majority of the residues of the complete, mature or extracellular forms of the polypeptide are removed from the C-terminus. Whether a particular polypeptide lacking C-terminal residues of the predicted extracellular domain retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art.

Accordingly, the present invention further provides antibodies that bind polypeptides having one or more residues deleted from the carboxy terminus of the amino acid sequence of the predicted extracellular domain of BLyS polypeptide shown in SEQ ID NO:3228, up to the leucine residue at position 79 of SEQ ID NO:3228. In particular,
the present invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, the amino acid sequence of residues 73-m² of the amino acid sequence in SEQ ID NO:3228, where m² is any integer in the range of the amino acid position of amino acid residues 79 to 285 in the amino acid sequence in SEQ ID NO:3228, and residue 78 is the position of the first residue at the C-terminus of the predicted extracellular domain of the BLyS polypeptide (disclosed in SEQ ID NO:3228). More in particular, in certain embodiments, the invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues Q-73 to Leu-285; Q-73 to L-284; Q-73 to K-283; Q-73 to L-282; Q-73 to A-281; Q-73 to G-280; Q-73 to F-279; Q-73 to F-278; Q-73 to T-277; Q-73 to V-276; Q-73 to D-275; Q-73 to G-274; Q-73 to D-273; Q-73 to L-272; Q-73 to S-271; Q-73 to I-270; Q-73 to Q-269; Q-73 to A-268; Q-73 to N-267; Q-73 to E-266; Q-73 to R-265; Q-73 to P-264; Q-73 to I-263; Q-73 to A-262; Q-73 to L-261; Q-73 to Q-260; Q-73 to L-259; Q-73 to E-258; Q-73 to D-257; Q-73 to G-256; Q-73 to E-255; Q-73 to E-254; Q-73 to L-253; Q-73 to K-252; Q-73 to A-251; Q-73 to I-250; Q-73 to G-249; Q-73 to A-248; Q-73 to S-247; Q-73 to Y-246; Q-73 to C-245; Q-73 to S-244; Q-73 to N-243; Q-73 to N-242; Q-73 to P-241; Q-73 to L-240; Q-73 to T-239; Q-73 to E-238; Q-73 to P-237; Q-73 to M-236; Q-73 to N-235; Q-73 to Q-234; Q-73 to I-233; Q-73 to C-232; Q-73 to R-231; Q-73 to F-230; Q-73 to L-229; Q-73 to T-228; Q-73 to V-227; Q-73 to L-226; Q-73 to S-225; Q-73 to L-224; Q-73 to E-223; Q-73 to D-222; Q-73 to G-221; Q-73 to F-220; Q-73 to V-219; Q-73 to H-218; Q-73 to V-217; Q-73 to K-216; Q-73 to K-215; Q-73 to R-214; Q-73 to Q-213; Q-73 to I-212; Q-73 to L-211; Q-73 to H-210; Q-73 to G-209; Q-73 to M-208; Q-73 to A-207; Q-73 to Y-206; Q-73 to T-205; Q-73 to K-204; Q-73 to D-203; Q-73 to T-202; Q-73 to Y-201; Q-73 to L-200; Q-73 to V-199; Q-73 to Q-198; Q-73 to G-197; Q-73 to Y-196; Q-73 to I-195; Q-73 to F-194; Q-73 to F-193; Q-73 to Y-192; Q-73 to G-191; Q-73 to T-190; Q-73 to E-189; Q-73 to K-188; Q-73 to V-187; Q-73 to L-186; Q-73 to I-185; Q-73 to K-184; Q-73 to N-183; Q-73 to E-182; Q-73 to K-181; Q-73 to E-180; Q-73 to E-179; Q-73 to L-178; Q-73 to A-177; Q-73 to S-176; Q-73 to G-175; Q-73 to R-174; Q-73 to K-173; Q-73 to F-172; Q-73 to S-171; Q-73 to L-170; Q-73 to L-169; Q-73 to W-168; Q-73 to P-167; Q-73 to V-166; Q-73 to F-165; Q-73 to T-164; Q-73 to Y-163; Q-73 to S-162; Q-73 to G-161; Q-73 to K-160; Q-73 to Q-159; Q-73 to I-158; Q-73 to T-157; Q-73 to P-156;
Q-73 to T-155; Q-73 to E-154; Q-73 to S-153; Q-73 to D-152; Q-73 to A-151; Q-73 to I-150; Q-73 to L-149; Q-73 to Q-148; Q-73 to L-147; Q-73 to C-146; Q-73 to D-145; Q-73 to Q-144; Q-73 to T-143; Q-73 to V-142; Q-73 to T-141; Q-73 to E-140; Q-73 to E-139; Q-73 to P-138; Q-73 to G-137; Q-73 to Q-136; Q-73 to V-135; Q-73 to A-134; Q-73 to R-133; Q-73 to K-132; Q-73 to N-131; Q-73 to R-130; Q-73 to S-129; Q-73 to N-128; Q-73 to Q-127; Q-73 to S-126; Q-73 to S-125; Q-73 to N-124; Q-73 to G-123; Q-73 to E-122; Q-73 to G-121; Q-73 to P-120; Q-73 to A-119; Q-73 to P-118; Q-73 to P-117; Q-73 to E-116; Q-73 to F-115; Q-73 to I-114; Q-73 to K-113; Q-73 to L-112; Q-73 to G-111; Q-73 to A-110; Q-73 to T-109; Q-73 to V-108; Q-73 to A-107; Q-73 to P-106; Q-73 to A-105; Q-73 to E-104; Q-73 to E-103; Q-73 to L-102; Q-73 to G-101; Q-73 to A-100; Q-73 to K-99; Q-73 to P-98; Q-73 to A-97; Q-73 to G-96; Q-73 to A-95; Q-73 to G-94; Q-73 to A-93; Q-73 to P-92; Q-73 to L-91; Q-73 to K-90; Q-73 to E-89; Q-73 to A-88; Q-73 to H-87; Q-73 to H-86; Q-73 to G-85; Q-73 to Q-84; Q-73 to L-83; Q-73 to E-82; Q-73 to A-81; Q-73 to R-80; and Q-73 to L-79 of SEQ ID NO:3228. The present invention is also directed to antibodies that bind BLyS polypeptides comprising, or alternatively, consisting of, a contiguous sequence of amino acid residues at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of BLyS polypeptides described above.

[0117] The invention also provides antibodies that bind polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini of the predicted extracellular domain of BLyS, which may be described generally as having residues \(n^2 \cdot m^2 \) of SEQ ID NO:3228 where \(n^2 \) and \(m^2 \) are integers as defined above.

[0118] In another embodiment, antibodies of the present invention bind polypeptides consisting of a portion of the extracellular domain of the BLyS amino acid sequence encoded by the cDNA plasmid contained in the deposit having ATCC accession no. 97768, where this portion excludes from 1 to about 206 amino acids from the amino terminus of the extracellular domain of the amino acid sequence encoded by the cDNA plasmid contained in the deposit having ATCC accession no. 97768, or from 1 to about 206 amino acids from the carboxy terminus of the extracellular domain of the amino acid sequence encoded by the cDNA plasmid contained in the deposit having ATCC accession no. 97768, or any combination of the above amino terminal and carboxy terminal deletions, of the entire extracellular domain of the amino acid sequence encoded by the
cDNA plasmid contained in the deposit having ATCC accession no. 97768.

[0119] As mentioned above, even if deletion of one or more amino acids from the N-terminus of a polypeptide results in modification or loss of one or more functional activities (e.g., biological activity) of the polypeptide, other functions or biological activities may still be retained. Thus, the ability of a shortened BLyS mutein to induce and/or bind to antibodies which recognize the full-length or mature forms or the extracellular domain of the polypeptide generally will be retained when less than the majority of the residues of the full-length or mature or extracellular domain of the polypeptide are removed from the N-terminus. Whether a particular polypeptide lacking N-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that a BLyS mutein with a large number of deleted N-terminal amino acid residues may retain some functional (e.g., biological or immunogenic) activities. In fact, peptides composed of as few as six BLyS amino acid residues may often evoke an immune response.

[0120] Accordingly, the present invention further provides antibodies that bind polypeptides having one or more residues deleted from the amino terminus of the predicted full-length amino acid sequence of the BLyS shown in SEQ ID NO:3228, up to the glycine residue at position number 280 of the sequence shown SEQ ID NO:3228 and polynucleotides encoding such polypeptides. In particular, the present invention provides antibodies that bind polypeptides comprising the amino acid sequence of residues n³-285 of the sequence shown in SEQ ID NO:3228, where n³ is an integer in the range of the amino acid position of amino acid residues 1 to 280 of the amino acid sequence in SEQ ID NO:3228.

[0121] More in particular, the invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues of D-2 to L-285; D-3 to L-285; S-4 to L-285; T-5 to L-285; E-6 to L-285; R-7 to L-285; E-8 to L-285; Q-9 to L-285; S-10 to L-285; R-11 to L-285; L-12 to L-285; T-13 to L-285; S-14 to L-285; C-15 to L-285; L-16 to L-285; K-17 to L-285; K-18 to L-285; R-19 to L-285; E-20 to L-285; E-21 to L-285; M-22 to L-285; K-23 to L-285; L-24 to L-285; K-25 to L-285; E-26 to L-285; C-27 to L-285; V-28 to L-285; S-29 to L-285; I-30 to L-285; L-31 to L-285; P-32 to L-285; R-33 to L-285; K-34 to L-285; E-35
L-285; M-208 to L-285; G-209 to L-285; H-210 to L-285; L-211 to L-285; I-212 to L-285; Q-213 to L-285; R-214 to L-285; K-215 to L-285; K-216 to L-285; V-217 to L-285; H-218 to L-285; V-219 to L-285; F-220 to L-285; G-221 to L-285; D-222 to L-285; E-223 to L-285; L-224 to L-285; S-225 to L-285; L-226 to L-285; V-227 to L-285; T-228 to L-285; L-229 to L-285; F-230 to L-285; R-231 to L-285; C-232 to L-285; I-233 to L-285; Q-234 to L-285; N-235 to L-285; M-236 to L-285; P-237 to L-285; E-238 to L-285; T-239 to L-285; L-240 to L-285; P-241 to L-285; N-242 to L-285; N-243 to L-285; S-244 to L-285; C-245 to L-285; Y-246 to L-285; S-247 to L-285; A-248 to L-285; G-249 to L-285; I-250 to L-285; A-251 to L-285; K-252 to L-285; L-253 to L-285; E-254 to L-285; E-255 to L-285; G-256 to L-285; D-257 to L-285; B-258 to L-285; L-259 to L-285; Q-260 to L-285; L-261 to L-285; A-262 to L-285; L-263 to L-285; P-264 to L-285; R-265 to L-285; E-266 to L-285; N-267 to L-285; A-268 to L-285; Q-269 to L-285; I-270 to L-285; S-271 to L-285; L-272 to L-285; D-273 to L-285; G-274 to L-285; D-275 to L-285; V-276 to L-285; T-277 to L-285; F-278 to L-285; F-279 to L-285; and G-280 to L-285 of SEQ ID NO:3228. The present invention is also directed to antibodies that bind BLyS polypeptides comprising, or alternatively, consisting of, a contiguous sequence of amino acid residues at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of BLyS polypeptides described above.

[0122] Also as mentioned above, even if deletion of one or more amino acids from the C-terminus of a protein results in modification or loss of one or more functional activities (e.g., biological activity) of the protein, other functional activities may still be retained. Thus, the ability of a shortened BLyS mutein to induce and/or bind to antibodies which recognize the complete or mature form or the extracellular domain of the polypeptide generally will be retained when less than the majority of the residues of the complete or mature form or the extracellular domain of the polypeptide are removed from the C-terminus. Whether a particular polypeptide lacking C-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that a BLyS mutein with a large number of deleted C-terminal amino acid residues may retain some functional (e.g., biological or immunogenic) activities. In fact, peptides composed of as few as six BLyS amino acid residues may often evoke an immune response.

[0123] Accordingly, the present invention further provides in another embodiment,
antibodies that bind polypeptides having one or more residues deleted from the carboxy terminus of the amino acid sequence of the BLyS shown in SEQ ID NO:3228, up to the glutamic acid residue at position number 6, and polynucleotides encoding such polypeptides. In particular, the present invention provides antibodies that bind polypeptides comprising the amino acid sequence of residues 1-m³ of SEQ ID NO:3228, where m³ is an integer in the range of the amino acid position of amino acid residues 6-284 of the amino acid sequence in SEQ ID NO:3228.

[0124] More in particular, the invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues M-1 to L-284; M-1 to K-283; M-1 to L-282; M-1 to A-281; M-1 to G-280; M-1 to F-279; M-1 to F-278; M-1 to T-277; M-1 to V-276; M-1 to D-275; M-1 to G-274; M-1 to D-273; M-1 to L-272; M-1 to S-271; M-1 to I-270; M-1 to Q-269; M-1 to A-268; M-1 to N-267; M-1 to E-266; M-1 to R-265; M-1 to P-264; M-1 to I-263; M-1 to A-262; M-1 to L-261; M-1 to Q-260; M-1 to L-259; M-1 to E-258; M-1 to D-257; M-1 to G-256; M-1 to E-255; M-1 to E-254; M-1 to L-253; M-1 to K-252; M-1 to A-251; M-1 to I-250; M-1 to G-249; M-1 to A-248; M-1 to S-247; M-1 to Y-246; M-1 to C-245; M-1 to S-244; M-1 to N-243; M-1 to N-242; M-1 to P-241; M-1 to L-240; M-1 to T-239; M-1 to E-238; M-1 to P-237; M-1 to M-236; M-1 to N-235; M-1 to Q-234; M-1 to I-233; M-1 to C-232; M-1 to R-231; M-1 to F-230; M-1 to L-229; M-1 to T-228; M-1 to V-227; M-1 to L-226; M-1 to S-225; M-1 to L-224; M-1 to E-223; M-1 to D-222; M-1 to G-221; M-1 to F-220; M-1 to V-219; M-1 to H-218; M-1 to V-217; M-1 to K-216; M-1 to K-215; M-1 to R-214; M-1 to Q-213; M-1 to I-212; M-1 to L-211; M-1 to H-210; M-1 to G-209; M-1 to M-208; M-1 to A-207; M-1 to Y-206; M-1 to T-205; M-1 to K-204; M-1 to D-203; M-1 to T-202; M-1 to Y-201; M-1 to L-200; M-1 to V-199; M-1 to Q-198; M-1 to G-197; M-1 to Y-196; M-1 to I-195; M-1 to F-194; M-1 to F-193; M-1 to Y-192; M-1 to G-191; M-1 to T-190; M-1 to E-189; M-1 to K-188; M-1 to V-187; M-1 to L-186; M-1 to I-185; M-1 to K-184; M-1 to N-183; M-1 to E-182; M-1 to K-181; M-1 to E-180; M-1 to E-179; M-1 to L-178; M-1 to A-177; M-1 to S-176; M-1 to G-175; M-1 to R-174; M-1 to K-173; M-1 to F-172; M-1 to S-171; M-1 to L-170; M-1 to L-169; M-1 to W-168; M-1 to P-167; M-1 to V-166; M-1 to F-165; M-1 to T-164; M-1 to Y-163; M-1 to S-162; M-1 to G-161; M-1 to K-160; M-1 to Q-159; M-1 to I-158; M-1 to T-157; M-1 to P-156; M-1 to T-155; M-1 to E-154; M-1 to S-153; M-1 to D-152; M-1 to A-151; M-1 to I-150; M-1 to L-149; M-1 to
Q-148; M-1 to L-147; M-1 to C-146; M-1 to D-145; M-1 to Q-144; M-1 to T-143; M-1 to V-142; M-1 to T-141; M-1 to E-140; M-1 to E-139; M-1 to P-138; M-1 to G-137; M-1 to Q-136; M-1 to V-135; M-1 to A-134; M-1 to R-133; M-1 to K-132; M-1 to N-131; M-1 to R-130; M-1 to S-129; M-1 to N-128; M-1 to Q-127; M-1 to S-126; M-1 to S-125; M-1 to N-124; M-1 to G-123; M-1 to E-122; M-1 to G-121; M-1 to P-120; M-1 to A-119; M-1 to P-118; M-1 to P-117; M-1 to E-116; M-1 to F-115; M-1 to I-114; M-1 to K-113; M-1 to L-112; M-1 to G-111; M-1 to A-110; M-1 to T-109; M-1 to V-108; M-1 to A-107; M-1 to P-106; M-1 to A-105; M-1 to E-104; M-1 to E-103; M-1 to L-102; M-1 to G-101; M-1 to A-100; M-1 to K-99; M-1 to P-98; M-1 to A-97; M-1 to G-96; M-1 to A-95; M-1 to G-94; M-1 to A-93; M-1 to P-92; M-1 to L-91; M-1 to K-90; M-1 to E-89; M-1 to A-88; M-1 to H-87; M-1 to H-86; M-1 to G-85; M-1 to Q-84; M-1 to L-83; M-1 to E-82; M-1 to A-81; M-1 to R-80; M-1 to L-79; M-1 to S-78; M-1 to A-77; M-1 to L-76; M-1 to D-75; M-1 to G-74; M-1 to Q-73; M-1 to L-72; M-1 to A-71; M-1 to A-70; M-1 to V-69; M-1 to Q-68; M-1 to Y-67; M-1 to F-66; M-1 to S-65; M-1 to V-64; M-1 to V-63; M-1 to T-62; M-1 to L-61; M-1 to C-60; M-1 to C-59; M-1 to S-58; M-1 to L-57; M-1 to L-56; M-1 to A-55; M-1 to L-54; M-1 to L-53; M-1 to L-52; M-1 to T-51; M-1 to A-50; M-1 to A-49; M-1 to L-48; M-1 to L-47; M-1 to K-46; M-1 to G-45; M-1 to D-44; M-1 to K-43; M-1 to S-42; M-1 to S-41; M-1 to R-40; M-1 to V-39; M-1 to S-38; M-1 to P-37; M-1 to S-36; M-1 to E-35; M-1 to K-34; M-1 to R-33; M-1 to P-32; M-1 to L-31; M-1 to I-30; M-1 to S-29; M-1 to V-28; M-1 to C-27; M-1 to E-26; M-1 to K-25; M-1 to L-24; M-1 to K-23; M-1 to M-22; M-1 to E-21; M-1 to E-20; M-1 to R-19; M-1 to K-18; M-1 to K-17; M-1 to L-16; M-1 to C-15; M-1 to S-14; M-1 to T-13; M-1 to L-12; M-1 to R-11; M-1 to S-10; M-1 to Q-9; M-1 to E-8; M-1 to R-7; and M-1 to E-6 of SEQ ID NO:3228. The present invention is also directed to antibodies that bind BLYS polypeptides comprising, or alternatively, consisting of, a contiguous sequence of amino acid residues at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of BLYS polypeptides described above.

[0125] The invention also provides antibodies that bind polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini of a BLYS polypeptide, which may be described generally as having residues n³-m³ of SEQ ID NO:3228, where n³ and m³ are integers as defined above.

[0126] Furthermore, since the predicted extracellular domain of the BLYS
polypeptide of SEQ ID NO:3229 may itself elicit functional activity (e.g., biological activity), deletions of N- and C-terminal amino acid residues from the predicted extracellular region of the polypeptide at positions Gln-73 to Leu-266 of SEQ ID NO:3229 may retain some functional activity, such as, for example, ligand binding, to stimulation of lymphocyte (e.g., B cell) proliferation, differentiation, and/or activation, modulation of cell replication, modulation of target cell activities and/or immunogenicity. However, even if deletion of one or more amino acids from the N-terminus of the predicted extracellular domain of a BlyS polypeptide results in modification or loss of one or more functional activities of the polypeptide, other functional activities may still be retained. Thus, the ability of the shortened polypeptides to induce and/or bind to antibodies which recognize the complete or mature or extracellular domains of the polypeptides generally will be retained when less than the majority of the residues of the complete or mature or extracellular domains of the polypeptides are removed from the N-terminus. Whether a particular polypeptide lacking N-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art.

[0127] Accordingly, the present invention further provides antibodies that bind polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence of BlyS shown in SEQ ID NO:3229, up to the glycine residue at position number 261. In particular, the present invention provides antibodies that bind polypeptides comprising the amino acid sequence of residues n⁴-266 of SEQ ID NO:3229, where n⁴ is an integer in the range of the amino acid position of amino acid residues 73-261 of the amino acid sequence in SEQ ID NO:3229, and 261 is the position of the first residue from the N-terminus of the predicted extracellular domain BlyS polypeptide (shown in SEQ ID NO:3229).

[0128] More in particular, in certain embodiments, the invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues Q-73 to L-266; G-74 to L-266; D-75 to L-266; L-76 to L-266; A-77 to L-266; S-78 to L-266; L-79 to L-266; R-80 to L-266; A-81 to L-266; E-82 to L-266; L-83 to L-266; Q-84 to L-266; G-85 to L-266; H-86 to L-266; H-87 to L-266; A-88 to L-266; E-89 to L-266; K-90 to L-266; L-91 to L-266; P-92 to L-266; A-93 to L-266; G-94 to L-266; A-95 to L-266; G-96 to L-266; A-97 to
L-266; P-98 to L-266; K-99 to L-266; A-100 to L-266; G-101 to L-266; L-102 to L-266; E-103 to L-266; E-104 to L-266; A-105 to L-266; P-106 to L-266; A-107 to L-266; V-108 to L-266; T-109 to L-266; A-110 to L-266; G-111 to L-266; L-112 to L-266; K-113 to L-266; I-114 to L-266; F-115 to L-266; E-116 to L-266; P-117 to L-266; P-118 to L-266; A-119 to L-266; P-120 to L-266; G-121 to L-266; E-122 to L-266; G-123 to L-266; N-124 to L-266; S-125 to L-266; S-126 to L-266; Q-127 to L-266; N-128 to L-266; S-129 to L-266; R-130 to L-266; N-131 to L-266; K-132 to L-266; R-133 to L-266; A-134 to L-266; V-135 to L-266; Q-136 to L-266; G-137 to L-266; P-138 to L-266; E-139 to L-266; E-140 to L-266; T-141 to L-266; G-142 to L-266; S-143 to L-266; Y-144 to L-266; T-145 to L-266; F-146 to L-266; V-147 to L-266; P-148 to L-266; W-149 to L-266; L-150 to L-266; L-151 to L-266; S-152 to L-266; F-153 to L-266; K-154 to L-266; R-155 to L-266; G-156 to L-266; S-157 to L-266; A-158 to L-266; L-159 to L-266; E-160 to L-266; E-161 to L-266; K-162 to L-266; E-163 to L-266; N-164 to L-266; K-165 to L-266; L-166 to L-266; L-167 to L-266; V-168 to L-266; K-169 to L-266; E-170 to L-266; T-171 to L-266; G-172 to L-266; Y-173 to L-266; F-174 to L-266; F-175 to L-266; I-176 to L-266; Y-177 to L-266; G-178 to L-266; Q-179 to L-266; V-180 to L-266; L-181 to L-266; Y-182 to L-266; T-183 to L-266; D-184 to L-266; K-185 to L-266; T-186 to L-266; Y-187 to L-266; A-188 to L-266; M-189 to L-266; G-190 to L-266; H-191 to L-266; L-192 to L-266; I-193 to L-266; Q-194 to L-266; R-195 to L-266; K-196 to L-266; K-197 to L-266; V-198 to L-266; H-199 to L-266; V-200 to L-266; F-201 to L-266; G-202 to L-266; D-203 to L-266; E-204 to L-266; L-205 to L-266; S-206 to L-266; L-207 to L-266; V-208 to L-266; T-209 to L-266; L-210 to L-266; F-211 to L-266; R-212 to L-266; C-213 to L-266; I-214 to L-266; Q-215 to L-266; N-216 to L-266; M-217 to L-266; P-218 to L-266; E-219 to L-266; T-220 to L-266; L-221 to L-266; P-222 to L-266; N-223 to L-266; N-224 to L-266; S-225 to L-266; C-226 to L-266; Y-227 to L-266; S-228 to L-266; A-229 to L-266; G-230 to L-266; L-231 to L-266; A-232 to L-266; K-233 to L-266; L-234 to L-266; E-235 to L-266; E-236 to L-266; G-237 to L-266; D-238 to L-266; E-239 to L-266; L-240 to L-266; Q-241 to L-266; L-242 to L-266; A-243 to L-266; L-244 to L-266; P-245 to L-266; R-246 to L-266; E-247 to L-266; N-248 to L-266; A-249 to L-266; Q-250 to L-266; I-251 to L-266; S-252 to L-266; L-253 to L-266; D-254 to L-266; G-255 to L-266; D-256 to L-266; V-257 to L-266; T-258 to L-266; F-259 to L-266; F-260 to L-266; and G-261 to L-266 of SEQ ID NO:3229. The present invention is also directed to antibodies.
that bind BLyS polypeptides comprising, or alternatively, consisting of, a contiguous sequence of amino acid residues at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of BLyS polypeptides described above.

[0129] Similarly, deletions of C-terminal amino acid residues of the predicted extracellular domain of BLyS up to the leucine residue at position 79 of SEQ ID NO:3229 may retain some functional activity, such as, for example, ligand binding, the ability to stimulate lymphocyte (e.g., B cell) proliferation, differentiation, and/or activation, modulation of cell replication, modulation of target cell activities and/or immunogenicity. Polypeptides having further C-terminal deletions including Leu-79 of SEQ ID NO:3229 would not be expected to retain biological activities.

[0130] However, even if deletion of one or more amino acids from the C-terminus of a polypeptide results in modification or loss of one or more functional activities (e.g., biological activity) of the polypeptide, other functional activities may still be retained. Thus, the ability of the shortened polypeptide to induce and/or bind to antibodies which recognize the complete, mature or extracellular forms of the polypeptide generally will be retained when less than the majority of the residues of the complete, mature or extracellular forms of the polypeptide are removed from the C-terminus. Whether a particular polypeptide lacking C-terminal residues of the predicted extracellular domain retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art.

[0131] Accordingly, the present invention further provides antibodies that bind polypeptides having one or more residues from the carboxy terminus of the amino acid sequence of the predicted extracellular domain of BLyS shown in SEQ ID NO:3229, up to the leucine residue at position 79 of SEQ ID NO:3229. In particular, the present invention provides antibodies that bind polypeptides having the amino acid sequence of residues 73-\(m^4\) of the amino acid sequence in SEQ ID NO:3229, where \(m^4\) is any integer in the range of the amino acid position of amino acid residues 79-265 of the amino acid sequence in SEQ ID NO:3229.

[0132] More in particular, in certain embodiments, the invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues Q-73 to L-265; Q-73 to K-264; Q-73 to L-263; Q-73 to A-262; Q-73 to G-261; Q-73 to F-260; Q-73 to F-259; Q-73 to
T-258; Q-73 to V-257; Q-73 to D-256; Q-73 to G-255; Q-73 to D-254; Q-73 to L-253;
Q-73 to S-252; Q-73 to I-251; Q-73 to Q-250; Q-73 to A-249; Q-73 to N-248; Q-73 to
E-247; Q-73 to R-246; Q-73 to P-245; Q-73 to I-244; Q-73 to A-243; Q-73 to L-242; Q-73
to Q-241; Q-73 to L-240; Q-73 to E-239; Q-73 to D-238; Q-73 to G-237; Q-73 to E-236;
Q-73 to E-235; Q-73 to L-234; Q-73 to K-233; Q-73 to A-232; Q-73 to I-231; Q-73 to
G-230; Q-73 to A-229; Q-73 to S-228; Q-73 to Y-227; Q-73 to C-226; Q-73 to S-225;
Q-73 to N-224; Q-73 to N-223; Q-73 to P-222; Q-73 to L-221; Q-73 to T-220; Q-73 to
E-219; Q-73 to P-218; Q-73 to M-217; Q-73 to N-216; Q-73 to Q-215; Q-73 to I-214;
Q-73 to C-213; Q-73 to R-212; Q-73 to F-211; Q-73 to L-210; Q-73 to T-209; Q-73 to
V-208; Q-73 to L-207; Q-73 to S-206; Q-73 to L-205; Q-73 to E-204; Q-73 to D-203;
Q-73 to G-202; Q-73 to F-201; Q-73 to V-200; Q-73 to H-199; Q-73 to V-198; Q-73 to
K-197; Q-73 to K-196; Q-73 to R-195; Q-73 to Q-194; Q-73 to I-193; Q-73 to L-192;
Q-73 to H-191; Q-73 to G-190; Q-73 to Q-7389; Q-73 to A-188; Q-73 to Y-187; Q-73 to
T-186; Q-73 to K-185; Q-73 to D-184; Q-73 to T-183; Q-73 to Y-182; Q-73 to L-181;
Q-73 to V-180; Q-73 to Q-179; Q-73 to G-178; Q-73 to Y-177; Q-73 to I-176; Q-73 to
F-175; Q-73 to F-174; Q-73 to Y-173; Q-73 to G-172; Q-73 to T-171; Q-73 to E-170;
Q-73 to K-169; Q-73 to V-168; Q-73 to L-167; Q-73 to I-166; Q-73 to K-165; Q-73 to
N-164; Q-73 to E-163; Q-73 to K-162; Q-73 to E-161; Q-73 to E-160; Q-73 to L-159;
Q-73 to A-158; Q-73 to S-157; Q-73 to G-156; Q-73 to R-155; Q-73 to K-154; Q-73 to
F-153; Q-73 to S-152; Q-73 to L-151; Q-73 to L-150; Q-73 to W-149; Q-73 to P-148;
Q-73 to V-147; Q-73 to F-146; Q-73 to T-145; Q-73 to Y-144; Q-73 to S-143; Q-73 to
G-142; Q-73 to T-141; Q-73 to E-140; Q-73 to E-139; Q-73 to P-138; Q-73 to G-137;
Q-73 to Q-136; Q-73 to V-135; Q-73 to A-134; Q-73 to R-133; Q-73 to K-132; Q-73 to
N-131; Q-73 to R-130; Q-73 to S-129; Q-73 to N-128; Q-73 to Q-127; Q-73 to S-126;
Q-73 to S-125; Q-73 to N-124; Q-73 to G-123; Q-73 to E-122; Q-73 to G-121; Q-73 to
P-120; Q-73 to A-119; Q-73 to P-118; Q-73 to P-117; Q-73 to E-116; Q-73 to F-115;
Q-73 to I-114; Q-73 to K-113; Q-73 to L-112; Q-73 to G-111; Q-73 to A-110; Q-73 to
T-109; Q-73 to V-108; Q-73 to A-107; Q-73 to P-106; Q-73 to A-105; Q-73 to E-104;
Q-73 to E-103; Q-73 to L-102; Q-73 to G-101; Q-73 to A-100; Q-73 to K-99; Q-73 to
P-98; Q-73 to A-97; Q-73 to G-96; Q-73 to A-95; Q-73 to G-94; Q-73 to A-93; Q-73 to
P-92; Q-73 to L-91; Q-73 to K-90; Q-73 to E-89; Q-73 to A-88; Q-73 to H-87; Q-73 to
H-86; Q-73 to G-85; Q-73 to Q-84; Q-73 to L-83; Q-73 to E-82; Q-73 to A-81; Q-73 to
R-80; Q-73 to L-79; and Q-73 to S-78 of SEQ ID NO:3229. The present invention is also
directed to antibodies that bind BLyS polypeptides comprising, or alternatively, consisting of,
a contiguous sequence of amino acid residues at least 80%, 85%, 90%, 92%, 95%,
96%, 97%, 98% or 99% identical to the amino acid sequence of BLyS polypeptides
described above.

[0133] The invention also provides polypeptides having one or more amino acids
deleted from both the amino and the carboxyl termini of the predicted extracellular domain
of BLyS, which may be described generally as having residues n^4-m^4 of SEQ ID NO:3229
where n^4 and m^4 are integers as defined above.

[0134] In another embodiment, antibodies of the present invention bind
polypeptides consisting of a portion of the extracellular domain of the BLyS amino acid
sequence encoded by the cDNA clone contained in the deposit having ATCC Accession
No. 203518, where this portion excludes from 1 to about 260 amino acids from the amino
terminus of the extracellular domain of the amino acid sequence encoded by cDNA clone
contained in the deposit having ATCC Accession No. 203518, or from 1 to about 187
amino acids from the carboxy terminus of the extracellular domain of the amino acid
sequence encoded by cDNA clone contained in the deposit having ATCC Accession No.
203518, or any combination of the above amino terminal and carboxy terminal deletions,
of the entire extracellular domain of the amino acid sequence encoded by the cDNA clone
contained in the deposit having ATCC Accession No. 203518.

[0135] As mentioned above, even if deletion of one or more amino acids from the
N-terminus of a polypeptide results in modification or loss of one or more functional
activities (e.g., biological activity) of the polypeptide, other functional activities may still
be retained. Thus, the ability of a shortened BLyS polypeptide to induce and/or bind to
antibodies which recognize the full-length or mature forms or the extracellular domain of
the polypeptide generally will be retained when less than the majority of the residues of
the full-length or mature or extracellular domain of the polypeptide are removed from the
N-terminus. Whether a particular polypeptide lacking N-terminal residues of a complete
polypeptide retains such immunologic activities can readily be determined by routine
methods described herein and otherwise known in the art. It is not unlikely that a BLyS
mutein with a large number of deleted N-terminal amino acid residues may retain
functional (e.g., immunogenic) activities. In fact, peptides composed of as few as six
BLyS amino acid residues may often evoke an immune response.

Accordingly, the present invention further provides antibodies that bind polypeptides having one or more residues deleted from the amino terminus of the predicted full-length amino acid sequence of the BLyS polypeptide shown in SEQ ID NO:3229, up to the glycine residue at position number 261 of the sequence shown SEQ ID NO:3229 and polynucleotides encoding such polypeptides. In particular, the present invention provides antibodies that bind polypeptides comprising the amino acid sequence of residues n^5-266 of the sequence shown in SEQ ID NO:3229, where n^5 is an integer in the range of the amino acid position of amino acid residues 1 to 261 of the amino acid sequence in SEQ ID NO:3229.

More in particular, the invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, amino acid sequence selected from the group consisting of residues of D-2 to L-266; D-3 to L-266; S-4 to L-266; T-5 to L-266; E-6 to L-266; R-7 to L-266; E-8 to L-266; Q-9 to L-266; S-10 to L-266; R-11 to L-266; L-12 to L-266; T-13 to L-266; S-14 to L-266; C-15 to L-266; L-16 to L-266; K-17 to L-266; K-18 to L-266; R-19 to L-266; E-20 to L-266; E-21 to L-266; M-22 to L-266; K-23 to L-266; L-24 to L-266; K-25 to L-266; E-26 to L-266; C-27 to L-266; V-28 to L-266; S-29 to L-266; I-30 to L-266; L-31 to L-266; P-32 to L-266; R-33 to L-266; K-34 to L-266; E-35 to L-266; S-36 to L-266; P-37 to L-266; S-38 to L-266; V-39 to L-266; R-40 to L-266; S-41 to L-266; S-42 to L-266; K-43 to L-266; D-44 to L-266; G-45 to L-266; K-46 to L-266; L-47 to L-266; L-48 to L-266; A-49 to L-266; A-50 to L-266; T-51 to L-266; L-52 to L-266; L-53 to L-266; L-54 to L-266; A-55 to L-266; L-56 to L-266; L-57 to L-266; S-58 to L-266; C-59 to L-266; C-60 to L-266; L-61 to L-266; T-62 to L-266; V-63 to L-266; V-64 to L-266; S-65 to L-266; F-66 to L-266; Y-67 to L-266; Q-68 to L-266; V-69 to L-266; A-70 to L-266; A-71 to L-266; L-72 to L-266; Q-73 to L-266; G-74 to L-266; D-75 to L-266; L-76 to L-266; A-77 to L-266; S-78 to L-266; L-79 to L-266; R-80 to L-266; A-81 to L-266; E-82 to L-266; L-83 to L-266; Q-84 to L-266; G-85 to L-266; H-86 to L-266; H-87 to L-266; A-88 to L-266; E-89 to L-266; K-90 to L-266; L-91 to L-266; P-92 to L-266; A-93 to L-266; G-94 to L-266; A-95 to L-266; G-96 to L-266; A-97 to L-266; P-98 to L-266; K-99 to L-266; A-100 to L-266; G-101 to L-266; L-102 to L-266; E-103 to L-266; E-104 to L-266; A-105 to L-266; P-106 to L-266; A-107 to L-266; V-108 to L-266; T-109 to L-266; A-110 to L-266; G-111 to L-266; L-112 to L-266; K-113 to
L-266; I-114 to L-266; F-115 to L-266; E-116 to L-266; P-117 to L-266; P-118 to L-266; A-119 to L-266; P-120 to L-266; G-121 to L-266; E-122 to L-266; G-123 to L-266; N-124 to L-266; S-125 to L-266; S-126 to L-266; Q-127 to L-266; N-128 to L-266; S-129 to L-266; R-130 to L-266; N-131 to L-266; K-132 to L-266; R-133 to L-266; A-134 to L-266; V-135 to L-266; Q-136 to L-266; G-137 to L-266; P-138 to L-266; E-139 to L-266; E-140 to L-266; T-141 to L-266; G-142 to L-266; S-143 to L-266; Y-144 to L-266; T-145 to L-266; F-146 to L-266; V-147 to L-266; P-148 to L-266; W-149 to L-266; L-150 to L-266; L-151 to L-266; S-152 to L-266; F-153 to L-266; K-154 to L-266; R-155 to L-266; G-156 to L-266; S-157 to L-266; A-158 to L-266; L-159 to L-266; E-160 to L-266; E-161 to L-266; K-162 to L-266; E-163 to L-266; N-164 to L-266; K-165 to L-266; I-166 to L-266; L-167 to L-266; V-168 to L-266; K-169 to L-266; E-170 to L-266; T-171 to L-266; G-172 to L-266; Y-173 to L-266; F-174 to L-266; F-175 to L-266; I-176 to L-266; Y-177 to L-266; G-178 to L-266; Q-179 to L-266; V-180 to L-266; L-181 to L-266; Y-182 to L-266; T-183 to L-266; D-184 to L-266; K-185 to L-266; T-186 to L-266; Y-187 to L-266; A-188 to L-266; M-189 to L-266; G-190 to L-266; H-191 to L-266; L-192 to L-266; L-193 to L-266; Q-194 to L-266; R-195 to L-266; K-196 to L-266; K-197 to L-266; V-198 to L-266; H-199 to L-266; V-200 to L-266; F-201 to L-266; G-202 to L-266; D-203 to L-266; E-204 to L-266; L-205 to L-266; S-206 to L-266; L-207 to L-266; V-208 to L-266; T-209 to L-266; L-210 to L-266; F-211 to L-266; R-212 to L-266; C-213 to L-266; L-214 to L-266; Q-215 to L-266; N-216 to L-266; M-217 to L-266; P-218 to L-266; E-219 to L-266; T-220 to L-266; L-221 to L-266; P-222 to L-266; N-223 to L-266; N-224 to L-266; S-225 to L-266; C-226 to L-266; Y-227 to L-266; S-228 to L-266; A-229 to L-266; G-230 to L-266; I-231 to L-266; A-232 to L-266; K-233 to L-266; L-234 to L-266; E-235 to L-266; E-236 to L-266; G-237 to L-266; D-238 to L-266; E-239 to L-266; L-240 to L-266; Q-241 to L-266; L-242 to L-266; A-243 to L-266; I-244 to L-266; P-245 to L-266; R-246 to L-266; E-247 to L-266; N-248 to L-266; A-249 to L-266; Q-250 to L-266; I-251 to L-266; S-252 to L-266; L-253 to L-266; D-254 to L-266; G-255 to L-266; D-256 to L-266; V-257 to L-266; T-258 to L-266; F-259 to L-266; F-260 to L-266; and G-261 to L-266 of SEQ ID NO:3229. The present invention is also directed to antibodies that bind BLyS polypeptides comprising, or alternatively, consisting of, a contiguous sequence of amino acid residues at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of BLyS polypeptides described above.
[0138] Also as mentioned above, even if deletion of one or more amino acids from the C-terminus of a protein results in modification or loss of one or more functional activities (e.g., biological activities) of the protein, other functional activities may still be retained. Thus, the ability of a shortened BLyS mutein to induce and/or bind to antibodies which recognize the complete or mature form or the extracellular domain of the polypeptide generally will be retained when less than the majority of the residues of the complete or mature form or the extracellular domain of the polypeptide are removed from the C-terminus. Whether a particular polypeptide lacking C-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that a BLyS mutein with a large number of deleted C-terminal amino acid residues may retain some functional (e.g., immunogenic) activities. In fact, peptides composed of as few as six BLyS amino acid residues may often evoke an immune response.

[0139] Accordingly, the present invention further provides in another embodiment, antibodies that bind polypeptides having one or more residues deleted from the carboxy terminus of the amino acid sequence of the BLyS shown in SEQ ID NO:3229, up to the glutamic acid residue at position number 6, and polynucleotides encoding such polypeptides. In particular, the present invention provides antibodies that bind polypeptides comprising the amino acid sequence of residues 1-m^5 of SEQ ID NO:3229, where m^5 is an integer in the range of the amino acid position of amino acid residues 6 to 265 in the amino acid sequence of SEQ ID NO:3229.

[0140] More in particular, the invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues M-1 to L-265; M-1 to K-264; M-1 to L-263; M-1 to A-262; M-1 to G-261; M-1 to F-260; M-1 to F-259; M-1 to T-258; M-1 to V-257; M-1 to D-256; M-1 to G-255; M-1 to D-254; M-1 to L-253; M-1 to S-252; M-1 to I-251; M-1 to Q-250; M-1 to A-249; M-1 to N-248; M-1 to E-247; M-1 to R-246; M-1 to P-245; M-1 to L-244; M-1 to A-243; M-1 to L-242; M-1 to Q-241; M-1 to L-240; M-1 to E-239; M-1 to D-238; M-1 to G-237; M-1 to E-236; M-1 to E-235; M-1 to L-234; M-1 to K-233; M-1 to A-232; M-1 to I-231; M-1 to G-230; M-1 to A-229; M-1 to S-228; M-1 to Y-227; M-1 to C-226; M-1 to S-225; M-1 to N-224; M-1 to N-223; M-1 to P-222; M-1 to L-221; M-1 to T-220; M-1 to E-219; M-1 to P-218; M-1 to M-217; M-1 to N-216; M-1 to Q-215; M-1 to I-214; M-1 to
C-213; M-1 to R-212; M-1 to F-211; M-1 to L-210; M-1 to T-209; M-1 to V-208; M-1 to L-207; M-1 to S-206; M-1 to L-205; M-1 to E-204; M-1 to D-203; M-1 to G-202; M-1 to F-201; M-1 to V-200; M-1 to H-199; M-1 to V-198; M-1 to K-197; M-1 to K-196; M-1 to R-195; M-1 to Q-194; M-1 to I-193; M-1 to L-192; M-1 to H-191; M-1 to G-190; M-1 to M-189; M-1 to A-188; M-1 to Y-187; M-1 to T-186; M-1 to K-185; M-1 to D-184; M-1 to T-183; M-1 to Y-182; M-1 to L-181; M-1 to V-180; M-1 to Q-179; M-1 to G-178; M-1 to Y-177; M-1 to I-176; M-1 to F-175; M-1 to F-174; M-1 to Y-173; M-1 to G-172; M-1 to T-171; M-1 to E-170; M-1 to K-169; M-1 to V-168; M-1 to L-167; M-1 to I-166; M-1 to K-165; M-1 to N-164; M-1 to E-163; M-1 to K-162; M-1 to E-161; M-1 to E-160; M-1 to L-159; M-1 to A-158; M-1 to S-157; M-1 to G-156; M-1 to R-155; M-1 to K-154; M-1 to F-153; M-1 to S-152; M-1 to L-151; M-1 to L-150; M-1 to W-149; M-1 to P-148; M-1 to V-147; M-1 to F-146; M-1 to F-145; M-1 to Y-144; M-1 to S-143; M-1 to G-142; M-1 to T-141; M-1 to E-140; M-1 to E-139; M-1 to P-138; M-1 to G-137; M-1 to Q-136; M-1 to V-135; M-1 to A-134; M-1 to R-133; M-1 to K-132; M-1 to N-131; M-1 to R-130; M-1 to S-129; M-1 to N-128; M-1 to Q-127; M-1 to S-126; M-1 to S-125; M-1 to N-124; M-1 to G-123; M-1 to E-122; M-1 to G-121; M-1 to P-120; M-1 to A-119; M-1 to P-118; M-1 to P-117; M-1 to E-116; M-1 to F-115; M-1 to I-114; M-1 to K-113; M-1 to L-112; M-1 to G-111; M-1 to A-110; M-1 to T-109; M-1 to V-108; M-1 to A-107; M-1 to P-106; M-1 to A-105; M-1 to E-104; M-1 to E-103; M-1 to L-102; M-1 to G-101; M-1 to A-100; M-1 to K-99; M-1 to P-98; M-1 to A-97; M-1 to G-96; M-1 to A-95; M-1 to G-94; M-1 to A-93; M-1 to P-92; M-1 to L-91; M-1 to K-90; M-1 to E-89; M-1 to A-88; M-1 to H-87; M-1 to H-86; M-1 to G-85; M-1 to Q-84; M-1 to L-83; M-1 to E-82; M-1 to A-81; M-1 to R-80; M-1 to L-79; M-1 to S-78; M-1 to A-77; M-1 to L-76; M-1 to D-75; M-1 to G-74; M-1 to Q-73; M-1 to L-72; M-1 to A-71; M-1 to A-70; M-1 to V-69; M-1 to Q-68; M-1 to Y-67; M-1 to F-66; M-1 to S-65; M-1 to V-64; M-1 to V-63; M-1 to T-62; M-1 to L-61; M-1 to C-60; M-1 to C-59; M-1 to S-58; M-1 to L-57; M-1 to L-56; M-1 to A-55; M-1 to L-54; M-1 to L-53; M-1 to L-52; M-1 to T-51; M-1 to A-50; M-1 to A-49; M-1 to L-48; M-1 to L-47; M-1 to K-46; M-1 to G-45; M-1 to D-44; M-1 to K-43; M-1 to S-42; M-1 to S-41; M-1 to R-40; M-1 to V-39; M-1 to S-38; M-1 to P-37; M-1 to S-36; M-1 to E-35; M-1 to K-34; M-1 to R-33; M-1 to P-32; M-1 to L-31; M-1 to I-30; M-1 to S-29; M-1 to V-28; M-1 to C-27; M-1 to E-26; M-1 to K-25; M-1 to L-24; M-1 to K-23; M-1 to M-22; M-1 to E-21; M-1 to E-20; M-1 to R-19; M-1 to K-18; M-1 to K-17; M-1 to L-16; M-1 to C-15;
M-1 to S-14; M-1 to T-13; M-1 to L-12; M-1 to R-11; M-1 to S-10; M-1 to Q-9; M-1 to E-8; M-1 to R-7; and M-1 to E-6 of SEQ ID NO:3229. The present invention is also directed to antibodies that bind BLyS polypeptides comprising, or alternatively, consisting of, a contiguous sequence of amino acid residues at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of BLyS polypeptides described above.

The invention also provides antibodies that bind polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini of a BLyS polypeptide, which may be described generally as having residues \(n^5 \cdot m^5 \) of SEQ ID NO:3229, where \(n^5 \) and \(m^5 \) are integers as defined above.

In additional embodiments, the present invention provides antibodies that bind polypeptides comprising the amino acid sequence of residues 134-\(m^6 \) of SEQ ID NO:3228, where \(m^6 \) is an integer from 140 to 285, corresponding to the position of the amino acid residue in SEQ ID NO:3228. For example, the invention provides antibodies that bind polypeptides comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues A-134 to Leu-285; A-134 to L-284; A-134 to K-283; A-134 to L-282; A-134 to A-281; A-134 to G-280; A-134 to F-279; A-134 to F-278; A-134 to T-277; A-134 to V-276; A-134 to D-275; A-134 to G-274; A-134 to D-273; A-134 to L-272; A-134 to S-271; A-134 to I-270; A-134 to Q-269; A-134 to A-268; A-134 to N-267; A-134 to E-266; A-134 to R-265; A-134 to P-264; A-134 to I-263; A-134 to A-262; A-134 to L-261; A-134 to Q-260; A-134 to L-259; A-134 to E-258; A-134 to D-257; A-134 to G-256; A-134 to E-255; A-134 to E-254; A-134 to L-253; A-134 to K-252; A-134 to A-251; A-134 to I-250; A-134 to G-249; A-134 to A-248; A-134 to S-247; A-134 to Y-246; A-134 to C-245; A-134 to S-244; A-134 to N-243; A-134 to N-242; A-134 to P-241; A-134 to L-240; A-134 to T-239; A-134 to E-238; A-134 to P-237; A-134 to M-236; A-134 to N-235; A-134 to Q-234; A-134 to I-233; A-134 to C-232; A-134 to R-231; A-134 to F-230; A-134 to L-229; A-134 to T-228; A-134 to V-227; A-134 to L-226; A-134 to S-225; A-134 to L-224; A-134 to E-223; A-134 to D-222; A-134 to G-221; A-134 to F-220; A-134 to V-219; A-134 to H-218; A-134 to V-217; A-134 to K-216; A-134 to K-215; A-134 to R-214; A-134 to Q-213; A-134 to I-212; A-134 to L-211; A-134 to H-210; A-134 to G-209; A-134 to M-208; A-134 to A-207; A-134 to Y-206; A-134 to T-205; A-134 to K-204; A-134 to
D-203; A-134 to T-202; A-134 to Y-201; A-134 to L-200; A-134 to V-199; A-134 to Q-198; A-134 to G-197; A-134 to Y-196; A-134 to I-195; A-134 to F-194; A-134 to F-193; A-134 to Y-192; A-134 to G-191; A-134 to T-190; A-134 to E-189; A-134 to K-188; A-134 to V-187; A-134 to L-186; A-134 to I-185; A-134 to K-184; A-134 to N-183; A-134 to E-182; A-134 to K-181; A-134 to E-180; A-134 to E-179; A-134 to L-178; A-134 to A-177; A-134 to S-176; A-134 to G-175; A-134 to R-174; A-134 to K-173; A-134 to F-172; A-134 to S-171; A-134 to L-170; A-134 to L-169; A-134 to W-168; A-134 to P-167; A-134 to V-166; A-134 to F-165; A-134 to T-164; A-134 to Y-163; A-134 to S-162; A-134 to G-161; A-134 to K-160; A-134 to Q-159; A-134 to I-158; A-134 to T-157; A-134 to P-156; A-134 to T-155; A-134 to E-154; A-134 to S-153; A-134 to D-152; A-134 to A-151; A-134 to I-150; A-134 to L-149; A-134 to Q-148; A-134 to L-147; A-134 to C-146; A-134 to D-145; A-134 to Q-144; A-134 to T-143; A-134 to V-142; A-134 to T-141; and A-134 to E-140 of SEQ ID NO:3228. The present invention is also directed to antibodies that bind BLyS polypeptides comprising, or alternatively, consisting of, a contiguous sequence of amino acid residues at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of BLyS polypeptides described above.

[0143] In additional embodiments, antibodies of the present invention may bind polypeptide fragments comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues: M-1 to C-15; D-2 to L-16; D-3 to K-17; S-4 to K-18; T-5 to R-19; E-6 to E-20; R-7 to E-21; E-8 to M-22; Q-9 to K-23; S-10 to L-24; R-11 to K-25; L-12 to E-26; T-13 to C-27; S-14 to V-28; C-15 to S-29; L-16 to I-30; K-17 to L-31; K-18 to P-32; R-19 to R-33; E-20 to K-34; E-21 to E-35; M-22 to S-36; K-23 to P-37; L-24 to S-38; K-25 to V-39; E-26 to R-40; C-27 to S-41; V-28 to S-42; S-29 to K-43; I-30 to D-44; L-31 to G-45; P-32 to K-46; R-33 to L-47; K-34 to L-48; E-35 to A-49; S-36 to A-50; P-37 to T-51; S-38 to L-52; V-39 to L-53; R-40 to L-54; S-41 to A-55; S-42 to L-56; K-43 to L-57; D-44 to S-58; G-45 to C-59; K-46 to C-60; L-47 to L-61; L-48 to T-62; A-49 to V-63; A-50 to V-64; T-51 to S-65; L-52 to F-66; L-53 to Y-67; L-54 to Q-68; A-55 to V-69; L-56 to A-70; L-57 to A-71; S-58 to L-72; C-59 to Q-73; C-60 to G-74; L-61 to D-75; T-62 to L-76; V-63 to A-77; V-64 to S-78; S-65 to L-79; F-66 to R-80; Y-67 to A-81; Q-68 to E-82; V-69 to L-83; A-70 to Q-84; A-71 to G-85; L-72 to H-86; Q-73 to H-87; G-74 to A-88; D-75 to E-89; L-76 to K-90; A-77 to L-91; S-78 to P-92; L-79 to
A-93; R-80 to G-94; A-81 to A-95; E-82 to G-96; L-83 to A-97; Q-84 to P-98; G-85 to K-99; H-86 to A-100; H-87 to G-101; A-88 to L-102; E-89 to E-103; K-90 to E-104; L-91 to A-105; P-92 to P-106; A-93 to A-107; G-94 to V-108; A-95 to T-109; G-96 to A-110; A-97 to G-111; P-98 to L-112; K-99 to K-113; A-100 to I-114; G-101 to F-115; L-102 to E-116; E-103 to P-117; E-104 to P-118; A-105 to A-119; P-106 to P-120; A-107 to G-121; V-108 to E-122; T-109 to G-123; A-110 to N-124; G-111 to S-125; L-112 to S-126; K-113 to Q-127; I-114 to N-128; F-115 to S-129; E-116 to R-130; P-117 to N-131; P-118 to K-132; A-119 to R-133; P-120 to A-134; G-121 to V-135; E-122 to Q-136; G-123 to G-137; N-124 to P-138; S-125 to E-139; S-126 to E-140; Q-127 to T-141; N-128 to V-142; S-129 to T-143; R-130 to Q-144; N-131 to D-145; K-132 to C-146; R-133 to L-147; A-134 to Q-148; V-135 to L-149; Q-136 to I-150; G-137 to A-151; P-138 to D-152; E-139 to S-153; E-140 to E-154; T-141 to T-155; V-142 to P-156; T-143 to T-157; Q-144 to I-158; D-145 to Q-159; C-146 to K-160; L-147 to G-161; Q-148 to S-162; L-149 to Y-163; I-150 to T-164; A-151 to F-165; D-152 to V-166; S-153 to P-167; E-154 to W-168; T-155 to L-169; P-156 to L-170; T-157 to S-171; I-158 to F-172; Q-159 to K-173; K-160 to R-174; G-161 to G-175; S-162 to S-176; Y-163 to A-177; T-164 to L-178; F-165 to E-179; V-166 to E-180; P-167 to K-181; W-168 to E-182; L-169 to N-183; L-170 to K-184; S-171 to I-185; F-172 to L-186; K-173 to V-187; R-174 to K-188; G-175 to E-189; S-176 to T-190; A-177 to G-191; L-178 to Y-192; E-179 to F-193; E-180 to F-194; K-181 to I-195; E-182 to Y-196; N-183 to G-197; K-184 to Q-198; I-185 to V-199; L-186 to L-200; V-187 to Y-201; K-188 to T-202; E-189 to D-203; T-190 to K-204; G-191 to T-205; Y-192 to Y-206; F-193 to A-207; F-194 to M-208; I-195 to G-209; Y-196 to H-210; G-197 to L-211; Q-198 to I-212; V-199 to Q-213; L-200 to R-214; Y-201 to K-215; T-202 to K-216; D-203 to V-217; K-204 to H-218; T-205 to V-219; Y-206 to F-220; A-207 to G-221; M-208 to D-222; G-209 to E-223; H-210 to L-224; L-211 to S-225; I-212 to L-226; Q-213 to V-227; R-214 to T-228; K-215 to L-229; K-216 to F-230; V-217 to R-231; H-218 to C-232; V-219 to I-233; F-220 to Q-234; G-221 to N-235; D-222 to M-236; E-223 to P-237; L-224 to E-238; S-225 to T-239; L-226 to L-240; V-227 to P-241; T-228 to N-242; L-229 to N-243; F-230 to S-244; R-231 to C-245; C-232 to Y-246; I-233 to S-247; Q-234 to A-248; N-235 to G-249; M-236 to I-250; P-237 to A-251; E-238 to K-252; T-239 to L-253; L-240 to E-254; P-241 to E-255; N-242 to G-256; N-243 to D-257; S-244 to E-258; C-245 to L-259; Y-246 to Q-260; S-247 to L-261; A-248 to A-262; G-249 to I-263; I-250 to P-264;
A-251 to R-265; K-252 to E-266; L-253 to N-267; E-254 to A-268; E-255 to Q-269; G-256 to I-270; D-257 to S-271; E-258 to L-272; L-259 to D-273; Q-260 to G-274; L-261 to D-275; A-262 to V-276; I-263 to T-277; P-264 to F-278; R-265 to F-279; E-266 to G-280; N-267 to A-281; A-268 to L-282; Q-269 to K-283; I-270 to L-284; and S-271 to L-285 of SEQ ID NO:3228. The present invention is also directed to antibodies that bind BLyS polypeptides, or alternatively, consisting of, a contiguous sequence of amino acid residues at least 80%, 95%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of BLyS polypeptides described above.

[0144] In additional embodiments, antibodies of the present invention may bind polypeptide fragments comprising, or alternatively consisting of, an amino acid sequence selected from the group consisting of residues: M-1 to C-15; D-2 to L-16; D-3 to K-17; S-4 to K-18; T-5 to R-19; E-6 to E-20; R-7 to E-21; E-8 to M-22; Q-9 to K-23; S-10 to L-24; R-11 to K-25; L-12 to E-26; T-13 to C-27; S-14 to V-28; C-15 to S-29; L-16 to I-30; K-17 to L-31; K-18 to P-32; R-19 to R-33; E-20 to K-34; E-21 to E-35; M-22 to S-36; K-23 to P-37; L-24 to S-38; K-25 to V-39; E-26 to R-40; C-27 to S-41; V-28 to S-42; S-29 to K-43; I-30 to D-44; L-31 to G-45; P-32 to K-46; R-33 to L-47; K-34 to L-48; E-35 to A-49; S-36 to A-50; P-37 to T-51; S-38 to L-52; V-39 to L-53; R-40 to L-54; S-41 to A-55; S-42 to L-56; K-43 to L-57; D-44 to S-58; G-45 to C-59; K-46 to C-60; L-47 to L-61; L-48 to T-62; A-49 to V-63; A-50 to V-64; T-51 to S-65; L-52 to F-66; L-53 to Y-67; L-54 to Q-68; A-55 to V-69; L-56 to A-70; L-57 to A-71; S-58 to L-72; C-59 to Q-73; C-60 to G-74; L-61 to D-75; T-62 to L-76; V-63 to A-77; V-64 to S-78; S-65 to L-79; F-66 to R-80; Y-67 to A-81; Q-68 to E-82; V-69 to L-83; A-70 to Q-84; A-71 to G-85; L-72 to H-86; Q-73 to H-87; G-74 to A-88; D-75 to E-89; L-76 to K-90; A-77 to L-91; S-78 to P-92; L-79 to A-93; R-80 to G-94; A-81 to A-95; E-82 to G-96; L-83 to A-97; Q-84 to P-98; G-85 to K-99; H-86 to A-100; H-87 to G-101; A-88 to L-102; E-89 to E-103; K-90 to E-104; L-91 to A-105; P-92 to P-106; A-93 to A-107; G-94 to V-108; A-95 to T-109; G-96 to A-110; A-97 to G-111; P-98 to L-112; K-99 to K-113; A-100 to I-114; G-101 to F-115; L-102 to E-116; E-103 to P-117; E-104 to P-118; A-105 to A-119; P-106 to P-120; A-107 to G-121; V-108 to E-122; T-109 to G-123; A-110 to N-124; G-111 to S-125; L-112 to S-126; K-113 to Q-127; I-114 to N-128; F-115 to S-129; E-116 to R-130; P-117 to N-131; P-118 to K-132; A-119 to R-133; P-120 to A-134; G-121 to V-135; E-122 to Q-136; G-123 to G-137; N-124 to P-138; S-125 to E-139; S-126 to E-140; Q-127 to T-141; N-128 to G-142;
S-129 to S-143; R-130 to Y-144; N-131 to T-145; K-132 to F-146; R-133 to V-147; A-
134 to P-148; V-135 to W-149; Q-136 to L-150; G-137 to L-151; P-138 to S-152; E-139
to F-153; E-140 to K-154; T-141 to R-155; G-142 to G-156; S-143 to S-157; Y-144 to A-
158; T-145 to L-159; F-146 to E-160; V-147 to E-161; P-148 to K-162; W-149 to E-163;
L-150 to N-164; L-151 to K-165; S-152 to I-166; F-153 to L-167; K-154 to V-168; R-155
to K-169; G-156 to E-170; S-157 to T-171; A-158 to G-172; L-159 to Y-173; E-160 to F-
174; E-161 to F-175; K-162 to I-176; E-163 to Y-177; N-164 to G-178; K-165 to Q-179;
I-166 to V-180; L-167 to L-181; V-168 to Y-182; K-169 to T-183; E-170 to D-184; T-171
to K-185; G-172 to T-186; Y-173 to Y-187; F-174 to A-188; F-175 to M-189; I-176 to G-
190; Y-177 to H-191; G-178 to L-192; Q-179 to I-193; V-180 to Q-194; L-181 to R-195;
Y-182 to K-196; T-183 to K-197; D-184 to V-198; K-185 to H-199; T-186 to V-200; Y-
187 to F-201; A-188 to G-202; M-189 to D-203; G-190 to E-204; H-191 to L-205; L-192
to S-206; I-193 to L-207; Q-194 to V-208; R-195 to T-209; K-196 to L-210; K-197 to F-
211; V-198 to R-212; H-199 to C-213; V-200 to I-214; F-201 to Q-215; G-202 to N-216;
D-203 to M-217; E-204 to P-218; L-205 to E-219; S-206 to T-220; L-207 to L-221; V-208
to P-222; T-209 to N-223; L-210 to N-224; F-211 to S-225; R-212 to C-226; C-213 to Y-
227; I-214 to S-228; Q-215 to A-229; N-216 to G-230; M-217 to I-231; P-218 to A-232;
E-219 to K-233; T-220 to L-234; L-221 to E-235; P-222 to E-236; N-223 to G-237; N-224
to D-238; S-225 to E-239; C-226 to L-240; Y-227 to Q-241; S-228 to L-242; A-229 to A-
243; G-230 to I-244; I-231 to P-245; A-232 to R-246; K-233 to E-247; L-234 to N-248; E-
235 to A-249; E-236 to Q-250; G-237 to I-251; D-238 to S-252; E-239 to L-253; L-240 to
D-254; Q-241 to G-255; L-242 to D-256; A-243 to V-257; I-244 to T-258; P-245 to F-
259; R-246 to F-260; E-247 to G-261; N-248 to A-262; A-249 to L-263; Q-250 to K-264;
I-251 to L-265; and S-252 to L-266 of SEQ ID NO:3229. The present invention is also
directed to antibodies that bind BLyS polypeptides comprising, or alternatively, consisting
of, a contiguous sequence of amino acid residues at least 80%, 85%, 90%, 92%, 95%,
96%, 97%, 98% or 99% identical to the amino acid sequence of BLyS polypeptides
described above.

[0145] In additional embodiments, antibodies of the present invention may bind
polypeptide fragments comprising, or alternatively consisting of, an amino acid sequence
selected from the group consisting of residues: M-1 to F-15; D-2 to C-16; E-3 to S-17; S-4
to E-18; A-5 to K-19; K-6 to G-20; T-7 to E-21; L-8 to D-22; P-9 to M-23; P-10 to K-24;
P-11 to V-25; C-12 to G-26; L-13 to Y-27; C-14 to D-28; F-15 to P-29; C-16 to I-30; S-17 to T-31; E-18 to P-32; K-19 to Q-33; G-20 to K-34; E-21 to E-35; D-22 to E-36; M-23 to G-37; K-24 to A-38; V-25 to W-39; G-26 to F-40; Y-27 to G-41; D-28 to I-42; P-29 to C-43; I-30 to R-44; T-31 to D-45; P-32 to G-46; Q-33 to R-47; K-34 to L-48; E-35 to L-49; E-36 to A-50; G-37 to A-51; A-38 to T-52; W-39 to L-53; F-40 to L-54; G-41 to L-55; I-42 to A-56; C-43 to L-57; R-44 to L-58; D-45 to S-59; G-46 to S-60; R-47 to S-61; L-48 to F-62; L-49 to T-63; A-50 to A-64; A-51 to M-65; T-52 to S-66; L-53 to L-67; L-54 to Y-68; L-55 to Q-69; A-56 to L-70; L-57 to A-71; L-58 to A-72; S-59 to L-73; S-60 to Q-74; S-61 to A-75; F-62 to D-76; T-63 to L-77; A-64 to M-78; M-65 to N-79; S-66 to L-80; L-67 to R-81; Y-68 to M-82; Q-69 to E-83; L-70 to L-84; A-71 to Q-85; A-72 to S-86; L-73 to Y-87; Q-74 to R-88; A-75 to G-89; D-76 to S-90; L-77 to A-91; M-78 to T-92; N-79 to P-93; L-80 to A-94; R-81 to A-95; M-82 to A-96; E-83 to G-97; L-84 to A-98; Q-85 to P-99; S-86 to E-100; Y-87 to L-101; R-88 to T-102; G-89 to A-103; S-90 to G-104; A-91 to V-105; T-92 to K-106; P-93 to L-107; A-94 to L-108; A-95 to T-109; A-96 to P-110; G-97 to A-111; A-98 to A-112; P-99 to P-113; E-100 to R-114; L-101 to P-115; T-102 to H-116; A-103 to N-117; G-104 to S-118; V-105 to S-119; K-106 to R-120; L-107 to G-121; L-108 to H-122; T-109 to R-123; P-110 to N-124; A-111 to R-125; A-112 to R-126; P-113 to A-127; R-114 to F-128; P-115 to Q-129; H-116 to G-130; N-117 to P-131; S-118 to E-132; S-119 to E-133; R-120 to T-134; G-121 to E-135; H-122 to Q-136; R-123 to D-137; N-124 to V-138; R-125 to D-139; R-126 to L-140; A-127 to S-141; F-128 to A-142; Q-129 to P-143; G-130 to P-144; P-131 to A-145; E-132 to P-146; E-133 to C-147; T-134 to L-148; E-135 to P-149; Q-136 to G-150; D-137 to C-151; V-138 to R-152; D-139 to H-153; L-140 to S-154; S-141 to Q-155; A-142 to H-156; P-143 to D-157; P-144 to D-158; A-145 to N-159; P-146 to G-160; C-147 to M-161; L-148 to N-162; P-149 to L-163; G-150 to R-164; C-151 to N-165; R-152 to I-166; H-153 to I-167; S-154 to Q-168; Q-155 to D-169; H-156 to C-170; D-157 to L-171; D-158 to Q-172; N-159 to L-173; G-160 to I-174; M-161 to A-175; N-162 to D-176; L-163 to S-177; R-164 to D-178; N-165 to T-179; I-166 to P-180; I-167 to A-181; Q-168 to L-182; D-169 to E-183; C-170 to E-184; L-171 to K-185; Q-172 to E-186; L-173 to N-187; I-174 to K-188; A-175 to I-189; D-176 to V-190; S-177 to V-191; D-178 to R-192; T-179 to Q-193; P-180 to T-194; A-181 to G-195; L-182 to Y-196; E-183 to F-197; E-184 to F-198; K-185 to I-199; E-186 to Y-200; N-187 to S-201; K-188 to Q-202; I-189 to V-203; V-190 to L-204; V-191 to Y-205; R-192 to T-
206; Q-193 to D-207; T-194 to P-208; G-195 to I-209; Y-196 to F-210; F-197 to A-211; F-198 to M-212; I-199 to G-213; Y-200 to H-214; S-201 to V-215; Q-202 to I-216; V-203 to Q-217; L-204 to R-218; Y-205 to K-219; T-206 to K-220; D-207 to V-221; P-208 to H-222; I-209 to V-223; F-210 to F-224; A-211 to G-225; M-212 to D-226; G-213 to E-227; H-214 to L-228; V-215 to S-229; I-216 to L-230; Q-217 to V-231; R-218 to T-232; K-219 to L-233; K-220 to F-234; V-221 to R-235; H-222 to C-236; V-223 to I-237; F-224 to Q-238; G-225 to N-239; D-226 to M-240; E-227 to P-241; L-228 to K-242; S-229 to T-243; L-230 to L-244; V-231 to P-245; T-232 to N-246; L-233 to N-247; F-234 to S-248; R-235 to C-249; C-236 to Y-250; I-237 to S-251; Q-238 to A-252; N-239 to G-253; M-240 to I-254; P-241 to A-255; K-242 to R-256; T-243 to L-257; L-244 to E-258; P-245 to E-259; N-246 to G-260; N-247 to D-261; S-248 to E-262; C-249 to I-263; Y-250 to Q-264; S-251 to L-265; A-252 to A-266; G-253 to I-267; I-254 to P-268; A-255 to R-269; R-256 to E-270; L-257 to N-271; E-258 to A-272; E-259 to Q-273; G-260 to I-274; D-261 to S-275; E-262 to R-276; I-263 to N-277; Q-264 to G-278; L-265 to D-279; A-266 to D-280; I-267 to T-281; P-268 to F-282; R-269 to F-283; E-270 to G-284; N-271 to A-285; A-272 to L-286; Q-273 to K-287; I-274 to L-288; and S-275 to L-289 of SEQ ID NO:38. The present invention is also directed to antibodies that bind BLyS polypeptides comprising, or alternatively, consisting of, a contiguous sequence of amino acid residues at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of BLyS polypeptides described above.

[0146] It will be recognized by one of ordinary skill in the art that some amino acid sequences of the BLyS polypeptides can be varied without significant effect of the structure or function of the polypeptide. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the polypeptide which determine activity.

[0147] Thus, the invention further includes antibodies that bind variations of BLyS polypeptides which show BLyS polypeptide functional activity (e.g., biological activity) or which include regions of BLyS polypeptide such as the polypeptide fragments described herein. Such mutants include deletions, insertions, inversions, repeats, and type substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., "Deciphering the Message in Protein
Sequences: Tolerance to Amino Acid Substitutions, "Science 247:1306-1310 (1990), wherein the authors indicate that there are two main approaches for studying the tolerance of an amino acid sequence to change. The first method relies on the process of evolution, in which mutations are either accepted or rejected by natural selection. The second approach uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene and selections or screens to identify sequences that maintain functionality.

As the authors state, these studies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at a certain position of the protein. For example, most buried amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Other such phenotypically silent substitutions are described in Bowie, J. U. et al., supra, and the references cited therein. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gln, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.

Thus, antibodies of the present invention may bind fragments, derivatives or analogs of the polypeptide of SEQ ID NO:3228, or that encoded by the deposited cDNA plasmid, such as (i) polypeptides in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) polypeptides in which one or more of the amino acid residues includes a substituent group, or (iii) polypeptides in which the extracellular domain of the polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) polypeptides in which the additional amino acids are fused to the extracellular domain of the polypeptide, such as an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the extracellular domain of the polypeptide or a proprotein sequence.

Antibodies of the present invention may bind fragments, derivatives or analogs of the polypeptide of SEQ ID NO:3229, or that encoded by the deposited cDNA
plasmid, such as (i) polypeptides in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) polypeptides in which one or more of the amino acid residues includes a substituent group, or (iii) polypeptides in which the extracellular domain of the polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) polypeptides in which the additional amino acids are fused to the extracellular domain of the polypeptide, such as, a soluble biologically active fragment of another TNF ligand family member (e.g., CD40 Ligand), an IgG Fc fusion region peptide or leader or secretory sequence or a sequence which is employed for purification of the extracellular domain of the polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

[0151] Thus, the antibodies of the invention may bind BLyS polypeptides that include one or more amino acid substitutions, deletions or additions, either from natural mutations or human manipulation. As indicated, changes are preferably of a minor nature, such as conservative amino acid substitutions that do not significantly affect the folding or activity of the protein (see Table 13).

| TABLE 13. Conservative Amino Acid Substitutions. |
|-----------------------------|-----------------------------|-----------------------------|
| [0153] Aromatic | phenylalanine | tyrosine |
| [0154] Hydrophobic | leucine | isoleucine |
| [0155] Polar | glutamine | asparagine |
| [0156] Basic | arginine | lysine |
| [0157] Acidic | aspartic acid | glutamic acid |
In one embodiment of the invention, antibodies of the present invention bind polypeptides comprising, or alternatively consisting of, the amino acid sequence of a BLyS polypeptide having an amino acid sequence which contains at least one conservative amino acid substitution, but not more than 50 conservative amino acid substitutions, even more preferably, not more than 40 conservative amino acid substitutions, still more preferably, not more than 30 conservative amino acid substitutions, and still even more preferably, not more than 20 conservative amino acid substitutions. In one embodiment of the invention, antibodies of the present invention bind polypeptides comprising, or alternatively consisting of, the amino acid sequence of a BLyS polypeptide having an amino acid sequence which contains at least one conservative amino acid substitution; but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservative amino acid substitutions.

For example, site directed changes at the amino acid level of BLyS can be made by replacing a particular amino acid with a conservative substitution. Antibodies of the present invention may bind BLyS amino acid sequences containing conservative substitution mutations of the polypeptide of SEQ ID NO:3228 including: M1 replaced with A, G, I, L, S, T, or V; D2 replaced with E; D3 replaced with E; S4 replaced with A, G, I, L, T, M, or V; T5 replaced with A, G, I, L, S, M, or V; E6 replaced with D; R7 replaced with H, or K; E8 replaced with D; Q9 replaced with N; S10 replaced with A, G, I, L, T, M, or V; R11 replaced with H, or K; L12 replaced with A, G, I, S, T, M, or V; T13 replaced with A, G, I, L, S, M, or V; S14 replaced with A, G, I, L, T, M, or V; L16 replaced with A, G, I, S, T, M, or V; K17 replaced with H, or R; K18 replaced with H, or R; R19 replaced with H, or K; E20 replaced with D; E21 replaced with D; M22 replaced with A, G, I, L, S, T, or V; K23 replaced with H, or R; L24 replaced with A, G, I, S, T, M, or V; K25 replaced with H, or R; E26 replaced with D; V28 replaced with A, G, I, L, S, T, or M; S29 replaced with A, G, I, T, M, or V; I30 replaced with A, G, L, S, T, M, or V; L31 replaced with A, G, I, S, T, M, or V; R33 replaced with H, or K; K34 replaced with H, or R; E35 replaced with D; S36 replaced with A, G, I, L, T, M, or V; S38 replaced with
A, G, I, L, T, M, or V; V39 replaced with A, G, I, L, S, T, or M; R40 replaced with H, or K; S41 replaced with A, G, I, L, T, M, or V; S42 replaced with A, G, I, L, T, M, or V; K43 replaced with H, or R; D44 replaced with E; G45 replaced with A, I, L, S, T, M, or V; K46 replaced with H, or R; L47 replaced with A, G, I, L, T, M, or V; L48 replaced with A, G, I, L, T, M, or V; A49 replaced with G, I, L, S, T, M, or V; A50 replaced with G, I, L, S, T, M, or V; T51 replaced with A, G, I, L, S, T, M, or V; L52 replaced with A, G, I, L, S, T, M, or V; L53 replaced with A, G, I, L, S, T, M, or V; L54 replaced with A, G, I, L, S, T, M, or V; A55 replaced with A, G, I, L, S, T, M, or V; L56 replaced with A, G, I, L, S, T, M, or V; L57 replaced with A, G, I, L, S, T, M, or V; S58 replaced with A, G, I, L, T, M, or V; L61 replaced with A, G, I, L, S, T, M, or V; T62 replaced with A, G, I, L, S, M, or V; V63 replaced with A, G, I, L, S, T, or M; V64 replaced with A, G, I, L, S, T, or M; S65 replaced with A, G, I, L, T, M, or V; F66 replaced with W, or Y; Y67 replaced with F, or W; Q68 replaced with N; V69 replaced with A, G, I, L, S, T, or M; A70 replaced with G, I, L, S, T, M, or V; A71 replaced with G, I, L, S, T, M, or V; L72 replaced with A, G, I, S, T, M, or V; Q73 replaced with N; G74 replaced with A, I, L, S, T, M, or V; D75 replaced with E; L76 replaced with A, G, I, L, S, T, M, or V; A77 replaced with G, I, L, S, T, M, or V; S78 replaced with A, G, I, L, S, T, M, or V; L79 replaced with A, G, I, S, T, M, or V; R80 replaced with H, or K; A81 replaced with G, I, L, S, T, M, or V; E82 replaced with D; E83 replaced with A, G, I, L, S, T, M, or V; Q84 replaced with N; G85 replaced with A, I, L, S, T, M, or V; H86 replaced with K, or R; H87 replaced with K, or R; A88 replaced with G, I, L, S, T, M, or V; E89 replaced with D; K90 replaced with H, or R; L91 replaced with A, G, I, S, T, M, or V; A93 replaced with G, I, L, S, T, M, or V; G94 replaced with A, I, L, S, T, M, or V; A95 replaced with G, I, L, S, T, M, or V; G96 replaced with A, I, L, S, T, M, or V; A97 replaced with G, I, L, S, T, M, or V; K99 replaced with H, or R; A100 replaced with G, I, L, S, T, M, or V; G101 replaced with A, I, L, S, T, M, or V; L102 replaced with A, G, I, L, S, T, M, or V; E103 replaced with D; E104 replaced with D; A105 replaced with G, I, L, S, T, M, or V; A105 replaced with G, I, L, S, T, M, or V; V108 replaced with A, G, I, L, S, T, M, or V; T109 replaced with A, G, I, L, S, M, or V; A110 replaced with G, I, L, S, T, M, or V; G111 replaced with A, I, L, S, T, M, or V; L112 replaced with A, G, I, S, T, M, or V; K113 replaced with H, or R; L114 replaced with A, G, L, S, T, M, or V; F115 replaced with W, or Y; E116 replaced with D; A119 replaced with G, I, L, S, T, M, or V; G121 replaced with A, I, L, S, T, M, or V; E122 replaced with D; G123 replaced with A,
I, L, S, T, M, or V; N124 replaced with Q; S125 replaced with A, G, I, L, T, M, or V; S126 replaced with A, G, I, L, T, M, or V; Q127 replaced with N; N128 replaced with Q; S129 replaced with A, G, I, L, T, M, or V; R130 replaced with H, or K; N131 replaced with Q; K132 replaced with H, or R; R133 replaced with H, or K; A134 replaced with G, I, L, S, T, M, or V; V135 replaced with A, G, I, L, S, T, or M; Q136 replaced with N; G137 replaced with A, I, L, S, T, M, or V; E139 replaced with D; E140 replaced with D; T141 replaced with A, G, I, L, S, M, or V; V142 replaced with A, G, I, L, S, T, or M; T143 replaced with A, G, I, L, S, M, or V; Q144 replaced with N; D145 replaced with E; L147 replaced with A, G, I, S, T, M, or V; Q148 replaced with N; L149 replaced with A, G, I, S, T, M, or V; I150 replaced with A, G, I, L, S, T, M, or V; A151 replaced with G, I, L, S, T, M, or V; D152 replaced with E; S153 replaced with A, G, I, L, T, M, or V; E154 replaced with D; T155 replaced with A, G, I, L, S, M, or V; T157 replaced with A, G, I, L, S, M, or V; I158 replaced with A, G, L, S, T, M, or V; Q159 replaced with N; K160 replaced with H, or R; G161 replaced with A, I, L, S, T, M, or V; S162 replaced with A, G, I, L, T, M, or V; Y163 replaced with F, or W; T164 replaced with A, G, I, L, S, M, or V; F165 replaced with W, or Y; V166 replaced with A, G, I, L, S, T, or M; W168 replaced with F, or Y; L169 replaced with A, G, I, S, T, M, or V; L170 replaced with A, G, I, S, T, M, or V; S171 replaced with A, G, I, L, T, M, or V; F172 replaced with W, or Y; K173 replaced with H, or R; R174 replaced with H, or K; G175 replaced with A, I, L, S, T, M, or V; S176 replaced with A, G, I, L, T, M, or V; A177 replaced with G, I, L, S, T, M, or V; L178 replaced with A, G, I, S, T, M, or V; E179 replaced with D; E180 replaced with D; K181 replaced with H, or R; E182 replaced with D; N183 replaced with Q; K184 replaced with H, or R; I185 replaced with A, G, L, S, T, M, or V; L186 replaced with A, G, I, S, T, M, or V; V187 replaced with A, G, I, L, S, T, or M; K188 replaced with H, or R; E189 replaced with D; T190 replaced with A, G, I, L, S, M, or V; G191 replaced with A, I, L, S, T, M, or V; Y192 replaced with F, or W; F193 replaced with W, or Y; F194 replaced with W, or Y; I195 replaced with A, G, L, S, T, M, or V; Y196 replaced with F, or W; G197 replaced with A, I, L, S, T, M, or V; Q198 replaced with N; V199 replaced with A, G, I, L, S, T, M, or V; L200 replaced with A, G, I, S, T, M, or V; Y201 replaced with F, or W; T202 replaced with A, G, I, L, S, M, or V; D203 replaced with E; K204 replaced with H, or R; T205 replaced with A, G, I, L, S, M, or V; Y206 replaced with F, or W; A207 replaced with G, I, L, S, T, M, or V; M208 replaced with A, G, I, L, S, T, or V;
G209 replaced with A, I, L, S, T, M, or V; H210 replaced with K, or R; L211 replaced with A, G, I, S, T, M, or V; I212 replaced with A, G, L, S, T, M, or V; Q213 replaced with N; R214 replaced with H, or K; K215 replaced with H, or R; K216 replaced with H, or R; V217 replaced with A, G, I, L, S, T, or M; H218 replaced with K, or R; V219 replaced with A, G, I, L, S, T, or M; F220 replaced with W, or Y; G221 replaced with A, I, L, S, T, M, or V; D222 replaced with E; E223 replaced with D; L224 replaced with A, G, I, S, T, M, or V; S225 replaced with A, G, I, L, T, M, or V; L226 replaced with A, G, I, S, T, M, or V; V227 replaced with A, G, I, L, S, T, or M; T228 replaced with A, G, I, L, S, M, or V; L229 replaced with A, G, I, S, T, M, or V; F230 replaced with W, or Y; R231 replaced with H, or K; I233 replaced with A, G, L, S, T, M, or V; Q234 replaced with N; N235 replaced with Q; M236 replaced with A, G, I, L, S, T, or V; E238 replaced with D; T239 replaced with A, G, I, L, S, M, or V; L240 replaced with A, G, I, S, T, M, or V; N242 replaced with Q; N243 replaced with Q; S244 replaced with A, G, I, L, T, M, or V; Y246 replaced with F, or W; S247 replaced with A, G, I, L, T, M, or V; A248 replaced with G, I, L, S, T, M, or V; G249 replaced with A, I, L, S, T, M, or V; I250 replaced with A, G, L, S, T, M, or V; A251 replaced with G, I, L, S, T, M, or V; K252 replaced with H, or R; L253 replaced with A, G, I, S, T, M, or V; E254 replaced with D; E255 replaced with D; G256 replaced with A, I, L, S, T, M, or V; D257 replaced with E; E258 replaced with D; L259 replaced with A, G, I, S, T, M, or V; Q260 replaced with N; L261 replaced with A, G, I, S, T, M, or V; A262 replaced with G, I, L, S, T, M, or V; I263 replaced with A, G, L, S, T, M, or V; R265 replaced with H, or K; E266 replaced with D; N267 replaced with Q; A268 replaced with G, I, L, S, T, M, or V; Q269 replaced with N; I270 replaced with A, G, L, S, T, M, or V; S271 replaced with A, G, I, L, T, M, or V; L272 replaced with A, G, I, S, T, M, or V; D273 replaced with E; G274 replaced with A, I, L, S, T, M, or V; D275 replaced with E; V276 replaced with A, G, I, L, S, M, or V; F278 replaced with W, or Y; F279 replaced with W, or Y; G280 replaced with A, I, L, S, T, M, or V; A281 replaced with G, I, L, S, T, M, or V; L282 replaced with A, G, I, S, T, M, or V; K283 replaced with H, or R; L284 replaced with A, G, I, S, T, M, or V; and/or L285 replaced with A, G, I, S, T, M, or V.

[0179] In another embodiment, site directed changes at the amino acid level of BLyS can be made by replacing a particular amino acid with a conservative substitution. Antibodies of the present invention may bind BLyS amino acid sequences containing
conservative substitution mutations of the polypeptide of SEQ ID NO:3229 including: M1 replaced with A, G, I, L, S, T, or V; D2 replaced with E; D3 replaced with E; S4 replaced with A, G, I, L, T, M, or V; T5 replaced with A, G, I, L, S, M, or V; E6 replaced with D; R7 replaced with H, or K; E8 replaced with D; Q9 replaced with N; S10 replaced with A, G, I, L, T, M, or V; R11 replaced with H, or K; L12 replaced with A, G, I, S, T, M, or V; T13 replaced with A, G, I, S, M, or V; S14 replaced with A, G, I, L, T, M, or V; L16 replaced with A, G, I, S, T, M, or V; K17 replaced with H, or R; K18 replaced with H, or R; R19 replaced with H, or K; E20 replaced with D; E21 replaced with D; M22 replaced with A, G, I, L, S, T, or V; K23 replaced with H, or R; L24 replaced with A, G, I, S, T, M, or V; K25 replaced with H, or R; E26 replaced with D; V28 replaced with A, G, I, L, S, T, or M; S29 replaced with A, G, I, L, T, M, or V; I30 replaced with A, G, L, S, T, M, or V; L31 replaced with A, G, I, S, T, M, or V; R33 replaced with H, or K; K34 replaced with H, or R; E35 replaced with D; S36 replaced with A, G, I, L, T, M, or V; S38 replaced with A, G, I, L, T, M, or V; V39 replaced with A, G, I, L, S, T, or M; R40 replaced with H, or K; S41 replaced with A, G, I, L, T, M, or V; S42 replaced with A, G, I, L, T, M, or V; K43 replaced with H, or R; D44 replaced with E; G45 replaced with A, I, L, S, T, M, or V; K46 replaced with H, or R; L47 replaced with A, G, I, S, T, M, or V; L48 replaced with A, G, I, S, T, M, or V; A49 replaced with G, I, L, S, T, M, or V; A50 replaced with G, I, L, S, T, M, or V; T51 replaced with A, G, I, L, S, M, or V; L52 replaced with A, G, I, S, T, M, or V; L53 replaced with A, G, I, S, T, M, or V; L54 replaced with A, G, I, S, T, M, or V; A55 replaced with G, I, L, S, T, M, or V; L56 replaced with A, G, I, S, T, M, or V; L57 replaced with A, G, I, S, T, M, or V; S58 replaced with A, G, I, L, T, M, or V; L61 replaced with A, G, I, S, T, M, or V; T62 replaced with A, G, I, L, S, M, or V; V63 replaced with A, G, I, L, S, T, or M; V64 replaced with A, G, I, L, S, T, or M; S65 replaced with A, G, I, L, T, M, or V; F66 replaced with W, or Y; Y67 replaced with F, or W; Q68 replaced with N; V69 replaced with A, G, I, L, S, T, or M; A70 replaced with G, I, L, S, T, M, or V; A71 replaced with G, I, L, S, T, M, or V; L72 replaced with A, G, I, S, T, M, or V; Q73 replaced with N; G74 replaced with A, I, L, S, T, M, or V; D75 replaced with E; L76 replaced with A, G, I, S, T, M, or V; A77 replaced with G, I, L, S, T, M, or V; S78 replaced with A, G, I, L, T, M, or V; L79 replaced with A, G, I, S, T, M, or V; R80 replaced with H, or K; A81 replaced with G, I, L, S, T, M, or V; E82 replaced with D; L83 replaced with A, G, I, S, T, M, or V; Q84 replaced with N; G85 replaced with A, I, L, S,
T, M, or V; H86 replaced with K, or R; H87 replaced with K, or R; A88 replaced with G, I, L, S, T, M, or V; E89 replaced with D; K90 replaced with H, or R; L91 replaced with A, G, I, L, S, T, M, or V; A93 replaced with G, I, L, S, T, M, or V; G94 replaced with A, I, L, S, T, M, or V; A95 replaced with G, I, L, S, T, M, or V; G96 replaced with A, I, L, S, T, M, or V; A97 replaced with G, I, L, S, T, M, or V; K99 replaced with H, or R; A100 replaced with G, I, L, S, T, M, or V; G101 replaced with A, I, L, S, T, M, or V; L102 replaced with A, G, I, L, S, T, M, or V; E103 replaced with D; E104 replaced with D; A105 replaced with G, I, L, S, T, M, or V; A107 replaced with G, I, L, S, T, M, or V; V108 replaced with A, G, I, L, S, T, M, or V; T109 replaced with A, G, I, L, S, M, or V; A110 replaced with G, I, L, S, T, M, or V; G111 replaced with A, I, L, S, T, M, or V; L112 replaced with A, G, I, S, T, M, or V; K113 replaced with H, or R; I114 replaced with A, G, L, S, T, M, or V; F115 replaced with W, or Y; E116 replaced with D; A119 replaced with G, I, L, S, T, M, or V; G121 replaced with A, I, L, S, T, M, or V; E122 replaced with D; G123 replaced with A, I, L, S, T, M, or V; N124 replaced with Q; S125 replaced with A, G, I, L, T, M, or V; S126 replaced with A, G, I, L, T, M, or V; Q127 replaced with N; N128 replaced with Q; S129 replaced with A, G, I, L, T, M, or V; R130 replaced with H, or K; N131 replaced with Q; K132 replaced with H, or R; R133 replaced with H, or K; A134 replaced with G, I, L, S, T, M, or V; V135 replaced with A, G, I, L, S, T, or M; Q136 replaced with N; G137 replaced with A, I, L, S, T, M, or V; E139 replaced with D; E140 replaced with D; T141 replaced with A, G, I, L, S, M, or V; G142 replaced with A, I, L, S, T, M, or V; S143 replaced with A, G, I, L, T, M, or V; Y144 replaced with F, or W; T145 replaced with A, G, I, L, S, T, or M; W149 replaced with F, or Y; Y150 replaced with A, G, I, L, S, T, M, or V; L151 replaced with A, G, I, S, T, M, or V; S152 replaced with A, G, I, L, T, M, or V; F153 replaced with W, or Y; K154 replaced with H, or R; R155 replaced with H, or K; G156 replaced with A, I, L, S, T, M, or V; S157 replaced with A, G, I, L, T, M, or V; A158 replaced with G, I, L, S, T, M, or V; L159 replaced with A, G, I, S, T, M, or V; E160 replaced with D; E161 replaced with D; K162 replaced with H, or R; E163 replaced with D; N164 replaced with Q; K165 replaced with H, or R; I166 replaced with A, G, L, S, T, M, or V; L167 replaced with A, G, I, S, T, M, or V; V168 replaced with A, G, I, L, S, T, M, or V; K169 replaced with H, or R; E170 replaced with D; T171 replaced with A, G, I, L, S, M, or V; G172 replaced with A, I, L, S, T, M, or V; Y173 replaced with F, or W; F174
with W, or Y; G261 replaced with A, I, L, S, T, M, or V; A262 replaced with G, I, L, S, T, M, or V; L263 replaced with A, G, I, S, T, M, or V; K264 replaced with H, or R; L265 replaced with A, G, I, S, T, M, or V; and/or L266 replaced with A, G, I, S, T, M, or V.

[0180] In another embodiment, site directed changes at the amino acid level of BLyS can be made by replacing a particular amino acid with a conservative substitution. Antibodies of the present invention may bind BLyS amino acid sequences containing conservative substitution mutations of the polypeptide of any one of SEQ ID NOS: 3230-3237.

[0181] Amino acids in the BLyS polypeptides that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for functional activity, such ligand binding and the ability to stimulate lymphocyte (e.g., B cell) as, for example, proliferation, differentiation, and/or activation. Accordingly, antibodies of the present invention may bind amino acids in the BLyS polypeptides that are essential for function. In preferred embodiments, antibodies of the present invention bind amino acids in the BLyS polypeptides that are essential for function and inhibit BLyS polypeptide function. In other preferred embodiments, antibodies of the present invention bind amino acids in the BLyS polypeptides that are essential for function and enhance BLyS polypeptide function.

[0182] Of special interest are substitutions of charged amino acids with other charged or neutral amino acids which may produce proteins with highly desirable improved characteristics, such as less aggregation. Aggregation may not only reduce activity but also be problematic when preparing pharmaceutical formulations, because aggregates can be immunogenic (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).

[0183] In another embodiment, the invention provides for antibodies that bind polypeptides having amino acid sequences containing non-conservative substitutions of the amino acid sequence provided in SEQ ID NO: 3228. For example, non-conservative substitutions of the BLyS protein sequence provided in SEQ ID NO: 3228 include: M1 replaced with D, E, H, K, R, N, Q, F, W, Y, P, or C; D2 replaced with H, K, R, A, G, I, L,

[0184] In an additional embodiment, antibodies of the present invention bind BLyS polypeptides comprising, or alternatively consisting of, a BLyS amino acid sequence in which more than one amino acid (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30 and 50) is replaced with the substituted amino acids as described above (either conservative or nonconservative).

In another embodiment, site directed changes at the amino acid level of BLyS can be made by replacing a particular amino acid with a non-conservative substitution. Antibodies of the present invention may bind BLyS amino acid sequences containing non-conservative substitution mutations of the polypeptide of any one of SEQ
ID NO:3230-3237.

[0187] In an additional embodiment, antibodies of the present invention bind BLyS polypeptides comprising, or alternatively consisting of, a BLyS amino acid sequence in which more than one amino acid (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30 and 50) is replaced with the substituted amino acids as described above (either conservative or nonconservative).

[0188] Replacement of amino acids can also change the selectivity of the binding of a ligand to cell surface receptors. For example, Ostade et al., Nature 361:266-268 (1993) describes certain mutations resulting in selective binding of TNF-alpha to only one of the two known types of TNF receptors. Since BLyS is a member of the TNF polypeptide family, mutations similar to those in TNF-alpha are likely to have similar effects in BLyS polypeptides.

[0189] Sites that are critical for ligand-receptor binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899-904 (1992) and de Vos et al. Science 255:306-312 (1992)).

[0190] Since BLyS is a member of the TNF-related protein family, mutations may be made in sequences encoding amino acids in the TNF conserved domain, e.g., in positions Gly-191 through Leu-284 of SEQ ID NO:3228 or in positions Gly-172 through Leu-265 of SEQ ID NO:3229, may modulate rather than completely eliminate functional activities (e.g., biological activities) of BLyS polypeptides or fragments or variants thereof. Accordingly, antibodies of the present invention may bind BLyS polypeptides that have mutations in the TNF conserved domain. In preferred embodiments, antibodies of the present invention may bind BLyS polypeptides that have mutations in the TNF conserved domain and act as antagonists of BLyS. In other preferred embodiments, antibodies of the present invention may bind BLyS polypeptides that have mutations in the TNF conserved domain and act as agonists of BLyS.

[0191] Recombinant DNA technology known to those skilled in the art (see, for instance, DNA shuffling supra) can be used to create novel mutant proteins or muteins including single or multiple amino acid substitutions, deletions, additions or fusion proteins. Such modified polypeptides can show, e.g., enhanced activity or increased stability. In addition, they may be purified in higher yields and show better solubility than
the corresponding natural polypeptide, at least under certain purification and storage conditions.

[0192] Thus, the invention also encompasses antibodies that bind BLyS derivatives and analogs that have one or more amino acid residues deleted, added, or substituted to generate BLyS polypeptides, e.g., that are better suited for expression, scale up, etc., in the host cells. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges; N-linked glycosylation sites can be altered or eliminated to achieve, for example, expression of a homogeneous product that is more easily recovered and purified from yeast hosts which are known to hyperglycosylate N-linked sites. To this end, a variety of amino acid substitutions at one or both of the first or third amino acid positions on any one or more of the glycosylation recognition sequences in the BLyS polypeptides of the invention, and/or an amino acid deletion at the second position of any one or more such recognition sequences will prevent glycosylation of the BLyS at the modified tripeptide sequence (see, e.g., Miyajimo et al., EMBO J 5(6):1193-1197). By way of non-limiting example, mutation of the serine at position 244 to alanine either singly or in combination with mutation of the asparagine at position 242 to glutamine abolishes glycosylation of the mature soluble form of BLyS (e.g., amino acids 134-285 of SEQ ID NO:3228) when expressed in the yeast <i>Pichia pastoris</i>. A mutant BLyS polypeptide in which only the asparagine at position 242 is mutated to glutamine, is still glycosylated when expressed in <i>Pichia pastoris</i>. In this mutant, the glycosylation event may be due to the activation or unmasking of an O-linked glycosylation site at serine 244. Similar mutations affecting glycosylation could also be made in the BLyS polypeptide of SEQ ID NO:3229, i.e., asparagine-223 to glutamine and/or serine-224 to alanine of SEQ ID NO:3229. Additionally, one or more of the amino acid residues of the polypeptides of the invention (e.g., arginine and lysine residues) may be deleted or substituted with another residue to eliminate undesired processing by proteases such as, for example, furins or kexins. One possible result of such a mutation is that BLyS polypeptide of the invention is not cleaved and released from the cell surface. Accordingly, antibodies of the invention may bind BLyS derivatives and analogs that have one or more amino acid residues deleted, added, or substituted. In other embodiments, antibodies of the invention may bind BLyS derivatives, variants or analogs that are unable to be cleaved from the cell surface.
[0193] In a specific embodiment, antibodies of the invention bind BLyS polypeptides in which Lys-132 and/or Arg-133 of the BLyS sequence shown in SEQ ID NO:3228 is mutated to another amino acid residue, or deleted altogether, to prevent or diminish release of the soluble form of BLyS from cells expressing BLyS. In a more specific embodiment, antibodies of the invention bind BLyS polypeptides in which Lys-132 of the BLyS sequence shown in SEQ ID NO:3228 is mutated to Ala-132. In another, nonexclusive specific embodiment, antibodies of the invention bind BLyS polypeptides in which Arg-133 of the BLyS sequence shown in SEQ ID NO:3228 is mutated to Ala-133. These mutated proteins, and/or have uses such as, for example, in ex vivo therapy or gene therapy, to engineer cells expressing a BLyS polypeptide that is retained on the surface of the engineered cells.

[0194] In a specific embodiment, antibodies of the invention bind BLyS polypeptides in which Cys-146 of the BLyS sequence shown in SEQ ID NO:3228 is mutated to another amino acid residue, or deleted altogether, for example, to aid preventing or diminishing oligomerization of the mutant BLyS polypeptide when expressed in an expression system. In a specific embodiment, antibodies of the invention bind BLyS polypeptides in which Cys-146 is replaced with a serine amino acid residue.

[0195] In another specific embodiment, antibodies of the invention bind BLyS polypeptides in which Cys-232 of the BLyS sequence shown in SEQ ID NO:3228 is mutated to another amino acid residue, or deleted altogether, for example, to aid preventing or diminishing oligomerization of the mutant BLyS polypeptide when expressed in an expression system. In a specific embodiment, antibodies of the invention bind BLyS polypeptides in which Cys-232 is replaced with a serine amino acid residue. Polypeptides encoding these polypeptides are also encompassed by the invention.

[0196] In yet another specific embodiment, antibodies of the invention bind BLyS polypeptides in which Cys-245 of the BLyS sequence shown in SEQ ID NO:3228 is mutated to another amino acid residue, or deleted altogether, for example, to aid preventing or diminishing oligomerization of the mutant BLyS polypeptide when expressed in an expression system. In a specific embodiment, antibodies of the invention bind BLyS polypeptides in which Cys-245 is replaced with a serine amino acid residue. Polypeptides encoding these polypeptides are also encompassed by the invention.

[0197] The polypeptides of the present invention are preferably provided in an
isolated form, and preferably are substantially purified. A recombinantly produced
version of the BLyS polypeptides can be substantially purified by the one-step method

[0198] The antibodies of the present invention bind BLyS polypeptides including
the complete polypeptide encoded by the deposited cDNA (ATCC Deposit No. 97768)
including the intracellular, transmembrane and extracellular domains of the polypeptide
encoded by the deposited cDNA, the mature soluble polypeptide encoded by the deposited
cDNA, the extracellular domain minus the intracellular and transmembrane domains of the
protein, the complete polypeptide of SEQ ID NO:3228, the mature soluble polypeptide of
SEQ ID NO:3228, e.g., amino acids 134-285 of SEQ ID NO:3228, the extracellular
domain of SEQ ID NO:3228, amino acid residues 73-285 of SEQ ID NO:3228 minus the
intracellular and transmembrane domains, as well as polypeptides which have at least
80%, 85%, 90% similarity, more preferably at least 95% similarity, and still more
preferably at least 96%, 97%, 98% or 99% similarity to those described above.
Polynucleotides encoding these polypeptides are also encompassed by the invention.

[0199] The antibodies of the present invention bind BLyS polypeptides including
the complete polypeptide encoded by the deposited cDNA including the intracellular,
transmembrane and extracellular domains of the polypeptide encoded by the deposited
cDNA (ATCC Deposit No. 203518), the mature soluble polypeptide encoded by the
deposited cDNA, the extracellular domain minus the intracellular and transmembrane
domains of the protein, the complete polypeptide of SEQ ID NO:3229, the mature soluble
of SEQ ID NO:3229, e.g., amino acid residues 134-266 of SEQ ID NO:3229, the
extracellular domain of SEQ ID NO:3229, e.g., amino acid residues 73-266 of SEQ ID
NO:3229 minus the intracellular and transmembrane domains, as well as polypeptides
which have at least 80%, 85%, 90% similarity, more preferably at least 95% similarity,
and still more preferably at least 96%, 97%, 98% or 99% similarity to those described
above. Polynucleotides encoding these polypeptides are also encompassed by the
invention.

[0200] Further antibodies of the present invention bind polypeptides including
polypeptides at least 80%, or at least 85% identical, more preferably at least 90% or 95%
identical, still more preferably at least 96%, 97%, 98% or 99% identical to the polypeptide
encoded by the deposited cDNA (ATCC Deposit No. 97768) or to the polypeptide of SEQ
ID NO:3228, and also include antibodies that bind portions of such polypeptides with at least 30 amino acids and more preferably at least 50 amino acids.

[0201] Further antibodies of the present invention bind polypeptides including polypeptides at least 80%, or at least 85% identical, more preferably at least 90% or 95% identical, still more preferably at least 96%, 97%, 98% or 99% identical to the polypeptide encoded by the deposited cDNA (ATCC Deposit No. 203518) or to the polypeptide of SEQ ID NO:3229, and also include antibodies that bind portions of such polypeptides with at least 30 amino acids and more preferably at least 50 amino acids. Polynucleotides encoding these polypeptides are also encompassed by the invention.

[0202] By "% similarity" for two polypeptides is intended a similarity score produced by comparing the amino acid sequences of the two polypeptides using the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711) and the default settings for determining similarity. Bestfit uses the local homology algorithm of Smith and Waterman (Advances in Applied Mathematics 2:482-489, 1981) to find the best segment of similarity between two sequences.

[0203] By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a reference amino acid sequence of a BLyS polypeptide is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid of the BLyS polypeptide. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

[0204] As a practical matter, whether any particular polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequence of SEQ ID NO:3228, the amino acid sequence encoded by the deposited cDNA
clone HNEDU15 (ATCC Accession No. 97768), or fragments thereof, or, for instance, to
the amino acid sequence of SEQ ID NO:3229, the amino acid sequence encoded by the
deposited cDNA clone HDPMC52 (ATCC Accession No. 203518), or fragments thereof,
can be determined conventionally using known computer programs such the Bestfit
program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer
Group, University Research Park, 575 Science Drive, Madison, WI 53711). When using
Bestfit or any other sequence alignment program to determine whether a particular
sequence is, for instance, 95% identical to a reference sequence according to the present
invention, the parameters are set, of course, such that the percentage of identity is
calculated over the full length of the reference amino acid sequence and that gaps in
homology of up to 5% of the total number of amino acid residues in the reference
sequence are allowed.

[0205] In a specific embodiment, the identity between a reference (query)
sequence (a sequence of the present invention) and a subject sequence, also referred to as a
global sequence alignment, is determined using the FASTDB computer program based on
the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990)). Preferred
parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2,
Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff
Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window
Size=500 or the length of the subject amino acid sequence, whichever is shorter.

According to this embodiment, if the subject sequence is shorter than the query sequence
due to N- or C-terminal deletions, not because of internal deletions, a manual correction is
made to the results to take into consideration the fact that the FASTDB program does not
account for N- and C-terminal truncations of the subject sequence when calculating global
percent identity. For subject sequences truncated at the N- and C-termini, relative to the
query sequence, the percent identity is corrected by calculating the number of residues of
the query sequence that are N- and C-terminal of the subject sequence, which are not
matched/aligned with a corresponding subject residue, as a percent of the total bases of the
query sequence. A determination of whether a residue is matched/aligned is determined
by results of the FASTDB sequence alignment. This percentage is then subtracted from
the percent identity, calculated by the above FASTDB program using the specified
parameters, to arrive at a final percent identity score. This final percent identity score is
what is used for the purposes of this embodiment. Only residues to the N- and C-termini
of the subject sequence, which are not matched/aligned with the query sequence, are
considered for the purposes of manually adjusting the percent identity score. That is, only
query residue positions outside the farthest N- and C-terminal residues of the subject
sequence. For example, a 90 amino acid residue subject sequence is aligned with a 100
residue query sequence to determine percent identity. The deletion occurs at the
N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a
matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues
represent 10% of the sequence (number of residues at the N- and C-termini not
matched/total number of residues in the query sequence) so 10% is subtracted from the
percent identity score calculated by the FASTDB program. If the remaining 90 residues
were perfectly matched the final percent identity would be 90%. In another example, a 90
residue subject sequence is compared with a 100 residue query sequence. This time the
deletions are internal deletions so there are no residues at the N- or C-termini of the
subject sequence which are not matched/aligned with the query. In this case the percent
identity calculated by FASTDB is not manually corrected. Once again, only residue
positions outside the N- and C-terminal ends of the subject sequence, as displayed in the
FASTDB alignment, which are not matched/aligned with the query sequence are manually
corrected for. No other manual corrections are made for the purposes of this embodiment.

[0206] Antibodies that Immunospecifically bind BLyS Polypeptides

[0207] The present invention also encompasses antibodies (including molecules
comprising, or alternatively consisting of, antibody fragments or variants thereof) that
immunospecifically bind to BLyS polypeptides, which antibodies comprise, or
alternatively consist of, all or a portion of a heavy and/or light chain variable domain of
the scFvs referred to in Table 1.

[0208] The present invention also encompasses methods and compositions for
detecting, diagnosing and/or prognosing diseases or disorders associated with aberrant
BLyS or BLyS receptor expression or inappropriate BLyS or BLyS receptor function in an
animal, preferably a mammal, and most preferably a human, comprising using antibodies
(including molecules which comprise, or alternatively consist of, antibody fragments or
variants thereof) that immunospecifically bind to BLyS. Diseases and disorders which can
be detected, diagnosed or prognosed with the antibodies of the invention include, but are not limited to, immune disorders (e.g., lupus, rheumatoid arthritis, multiple sclerosis, myasthenia gravis, Hashimoto's disease, and immunodeficiency syndrome), inflammatory disorders (e.g., asthma, allergic disorders, and rheumatoid arthritis), infectious diseases (e.g., AIDS), and proliferative disorders (e.g., leukemia, carcinoma, and lymphoma).

[0209] The present invention further encompasses methods and compositions for preventing, treating or ameliorating diseases or disorders associated with aberrant BLYS or BLYS receptor expression or inappropriate BLYS or BLYS receptor function in an animal, preferably a mammal, and most preferably a human, comprising administering to said animal an effective amount of one or more antibodies (including molecules which comprise, or alternatively consist of, antibody fragments or variants thereof) that immunospecifically bind to BLYS. Diseases and disorders which can be prevented, treated or inhibited by administering an effective amount of one or more antibodies or molecules of the invention include, but are not limited to, immune disorders (e.g., lupus, rheumatoid arthritis, multiple sclerosis, myasthenia gravis, Hashimoto's disease, and immunodeficiency syndrome), inflammatory disorders (e.g., asthma, allergic disorders, and rheumatoid arthritis), infectious diseases (e.g., AIDS), and proliferative disorders (e.g., leukemia, carcinoma, and lymphoma).

[0210] **Anti-BLYS Antibodies**

[0211] The antibodies of the present invention were discovered, in part, using phage display technology. Single chain antibody molecules ("scFvs") displayed on the surface of phage particles were screened to identify those scFvs that immunospecifically bind to BLYS, including the membrane-bound form and soluble form of BLYS. The present invention encompasses the scFvs and portions thereof that were identified to immunospecifically bind to BLYS, including scFvs that immunospecifically bind to the soluble form of BLYS, scFvs that immunospecifically bind to the membrane-bound form of BLYS, and scFvs that immunospecifically bind to both the soluble form and membrane-bound form of BLYS. In particular, the present invention encompasses scFvs comprising, or alternatively consisting of, the amino acid sequence of SEQ ID NOS: 1 - 2128, as referred to in Table 1. Preferably, the scFvs of the present invention comprise, or alternatively consist of, the amino acid sequence of SEQ ID NOS:1 - 46, 321 - 329, 834 -
872, 1563 - 1595, or 1881 - 1908. The scFvs include scFvs that bind to soluble BLyS (e.g., scFvs comprising, or alternatively consisting of, an amino acid sequence of SEQ ID NOS: 1563 - 1880), scFvs that bind to the membrane-bound form of BLyS (e.g., scFvs comprising, or alternatively consisting of, an amino acid sequence of SEQ ID NOS: 1881 - 2128), and scFvs that bind to both the soluble form and the membrane-bound form of BLyS (e.g., scFvs comprising, or alternatively consisting of, an amino acid sequence of SEQ ID NOS: 1 - 1562). Molecules comprising, or alternatively consisting of, fragments or variants of these scFvs, that immunospecifically bind to BLyS are also encompassed by the invention, as are nucleic acid molecules encoding these scFvs, molecules, fragments and/or variants.

[0212] In one embodiment of the present invention, scFvs that immunospecifically bind to BLyS comprise a polypeptide having the amino acid sequence of any one of the VH domains referred to in Table 1 and/or any one of the VL domains referred to in Table 1. In preferred embodiments, scFvs of the present invention comprise the amino acid sequence of a VH domain and VL domain from the same scFv referred to in Table 1. In alternative embodiments, scFvs of the present invention comprise the amino acid sequence of a VH domain and VL domain from different scFvs referred to in Table 1. In another embodiment, scFvs that immunospecifically bind to BLyS, comprise a polypeptide having the amino acid sequence of any one, two, three, or more of the VH CDRs referred to in Table 1 and/or any one, two, three, or more of the VL CDRs referred to in Table 1. In preferred embodiments, scFvs of the present invention comprise the amino acid sequence of a VH CDR and VL CDR from the same scFv referred to in Table 1. In alternative embodiments, scFvs of the present invention comprise the amino acid sequence of a VH CDR and VL CDR from different scFvs referred to in Table 1. Molecules comprising, or alternatively consisting of, antibody fragments or variants of the scFvs referred to in Table 1 that immunospecifically bind to BLyS are also encompassed by the invention, as are nucleic acid molecules encoding these scFvs, molecules, fragments and/or variants.

[0213] (Table 1 can be found at the end of the specification just prior to the claims.)
In another embodiment of the present invention, an scFv that immunospecifically binds to a soluble form of BLyS comprises, or alternatively consists of, the amino acid sequence of SEQ ID NOS:1563 - 1880 as referred to in Table 1. In a preferred embodiment, an scFv that immunospecifically binds to a soluble form of BLyS comprises, or alternatively consists of, the amino acid sequence of SEQ ID NOS:1570 - 1595. In an even more preferred embodiment, an scFv that immunospecifically binds to a soluble form of BLyS comprises, or alternatively consists of, the amino acid sequence of SEQ ID NOS:1563 - 1569.

In another embodiment of the present invention, an scFv that immunospecifically binds to a membrane-bound form of BLyS comprises, or alternatively consists of, the amino acid sequence of SEQ ID NOS:1881 - 2128 as referred to in Table 1. In a preferred embodiment, an scFv that immunospecifically binds to a membrane-bound form of BLyS comprises, or alternatively consists of, the amino acid sequence of SEQ ID NOS:1886 - 1908. In an even more preferred embodiment, an scFv that immunospecifically binds to a membrane-bound form of BLyS comprises, or alternatively consists of, the amino acid sequence of SEQ ID NOS:1881 - 1885.

In another embodiment of the present invention, an scFv that immunospecifically binds to both the soluble form and membrane-bound form of BLyS comprises, or alternatively consists of, the amino acid sequence of SEQ ID NOS:1 - 1562 as referred to in Table 1. In a preferred embodiment, an scFv that immunospecifically binds to both the soluble form and membrane-bound form of BLyS comprises, or alternatively consists of, the amino acid sequence of SEQ ID NOS:834 - 872. In another preferred embodiment, an scFv that immunospecifically binds to both the soluble form and membrane-bound form of BLyS comprises, or alternatively consists of, any one of the amino acids sequences of SEQ ID NOS:1 - 46 or 321 - 329. Molecules comprising, or alternatively consisting of, fragments or variants of these scFvs, that immunospecifically bind to the soluble form of BLyS and/or the membrane-bound form of BLyS are also encompassed by the invention, as are nucleic acid molecules encoding these scFvs, molecules, fragments and/or variants.

In another embodiment of the present invention, scFvs that immunospecifically bind to the soluble form of BLyS, comprise a polypeptide having the amino acid sequence of any one of the VH domains contained in SEQ ID NOS:1563 -
1880 as disclosed in Table 1 and/or any one of the VL domains contained in SEQ ID NOS:1563 - 1880 as disclosed in Table 1. In preferred embodiments, scFvs of the present invention that immunospecifically bind to the soluble form of BLYs, comprise a polypeptide having the amino acid sequence of a VH CDR and VL CDR from the same scFv referred to in Table 1. In alternative embodiments, scFvs of the present invention that immunospecifically bind to the soluble form of BLYs, comprise a polypeptide having amino acid sequence of a VH CDR and VL CDR from different scFvs referred to in Table 1. In another embodiment, scFvs that immunospecifically bind to the soluble form of BLYs, comprise a polypeptide having the amino acid sequence of any one, two, three, or more of the VH CDRs SEQ ID NOS:1563 - 1880 as disclosed in Table 1 and/or any one, two, three, or more of the VL CDRs contained in SEQ ID NOS:1563 - 1880, as disclosed in Table 1. In preferred embodiments, scFvs of the present invention that immunospecifically bind to the soluble form of BLYs, comprise a polypeptide having the amino acid sequence of a VH domain and VL domain from the same scFv referred to in Table 1. In alternative embodiments, scFvs of the present invention that immunospecifically bind to the soluble form of BLYs, comprise a polypeptide having the amino acid sequence of any one of the VH CDR3s contained in SEQ ID NOS:1563 - 1880 as disclosed in Table 1 and/or any one of the VL CDR3s contained in SEQ ID NOS:1563 - 1880 as disclosed in Table 1. In preferred embodiments, scFvs of the present invention that immunospecifically bind to the soluble form of BLYs, comprise a polypeptide having the amino acid sequence of a VH CDR and VL CDR from the same scFv referred to in Table 1. In alternative embodiments, scFvs of the present invention that immunospecifically bind to the soluble form of BLYs, comprise a polypeptide having the amino acid sequence of a VH CDR and VL CDR from different scFvs referred to in Table 1. Molecules comprising, or alternatively consisting of, fragments or variants of these scFvs, that immunospecifically bind to BLYs, preferably the soluble form of BLYs, are also encompassed by the invention, as are nucleic acid molecules encoding these scFvs, molecules, fragments and/or variants.

[0218] In another embodiment of the present invention, scFvs that
immunospecifically bind to the membrane-bound form of BLyS comprise a polypeptide having the amino acid sequence of any one of the VH domains contained in SEQ ID NOS: 1881 - 2128 as disclosed in Table 1 and/or any one of the VL domains contained in SEQ ID NOS: 1881 - 2128 as disclosed in Table 1. In preferred embodiments, scFvs of the present invention that immunospecifically bind to the soluble form of BLyS, comprise a polypeptide having the amino acid sequence of a VH CDR and VL CDR from the same scFv referred to in Table 1. In alternative embodiments, scFvs of the present invention that immunospecifically bind to the membrane-bound form of BLyS, comprise a polypeptide having the amino acid sequence of a VH domain and VL domain from different scFvs referred to in Table 1. In another embodiment, scFvs that immunospecifically bind to the membrane-bound form of BLyS, comprise a polypeptide having the amino acid sequence of any one, two, three, or more of the VH CDRs contained in SEQ ID NOS: 1881 - 2128 as disclosed in Table 1 and/or any one, two, three, or more of the VL CDRs contained in SEQ ID NOS: 1881 - 2128 as disclosed in Table 1. In preferred embodiments, scFvs of the present invention that immunospecifically bind to the membrane-bound form of BLyS, comprise a polypeptide having the amino acid sequence of a VH domain and VL domain from the same scFv referred to in Table 1. In alternative embodiments, scFvs of the present invention that immunospecifically bind to the membrane-bound form of BLyS, comprise a polypeptide having the amino acid sequence of a VH domain and VL domain from different scFvs referred to in Table 1. In a preferred embodiment, scFvs that immunospecifically bind to the membrane-bound form of BLyS, comprise a polypeptide having the amino acid sequence of any one of the VH CDR3s contained in SEQ ID NOS: 1881 - 2128 as disclosed in Table 1 and/or any one of the VL CDR3s contained in SEQ ID NOS: 1881 - 2128 as disclosed in Table 1. In preferred embodiments, scFvs of the present invention that immunospecifically bind to the membrane-bound form of BLyS, comprise a polypeptide having the amino acid sequence of a VH domain and VL domain from the same scFv referred to in Table 1. In alternative embodiments, scFvs of the present invention that immunospecifically bind to the membrane-bound form of BLyS, comprise a polypeptide having the amino acid sequence of a VH CDR and VL CDR from different scFvs referred to in Table 1. Molecules comprising, or alternatively consisting of, fragments or variants of these scFvs, that immunospecifically bind to BLyS, preferably the membrane-bound form of BLyS, are
also encompassed by the invention, as are nucleic acid molecules encoding these scFvs, molecules, fragments and/or variants.

[0219] In another embodiment of the present invention, scFvs that immunospecifically bind to the soluble form and membrane-bound form of BLyS, comprise a polypeptide having the amino acid sequence of any one of the VH domains contained in SEQ ID NOS: 1 - 1562 as disclosed in Table 1 and/or any one of the VL domains contained in SEQ ID NOS: 1 - 1562 as disclosed in Table 1. In preferred embodiments, scFvs of the present invention that immunospecifically bind to the soluble and membrane-bound forms of BLyS, comprise a polypeptide having the amino acid sequence of a VH domain and VL domain from the same scFv referred to in Table 1. In alternative embodiments, scFvs of the present invention that immunospecifically bind to the soluble form and membrane-bound form of BLyS, comprise a polypeptide having the amino acid sequence of a VH domain and VL domain from different scFvs referred to in Table 1. In another embodiment, scFvs that immunospecifically bind to the soluble form and membrane-bound form of BLyS comprise a polypeptide having the amino acid sequence of any one, two, three, or more of the VH CDRs contained in SEQ ID NOS: 1 - 1562 as disclosed in Table 1 and/or any one, two, three, or more of the VL CDRs contained in SEQ ID NOS: 1 - 1562 as disclosed in Table 1. In preferred embodiments, scFvs of the present invention that immunospecifically bind to the soluble and membrane-bound forms of BLyS, comprise a polypeptide having the amino acid sequence of a VH domain and VL domain from the same scFv referred to in Table 1. In alternative embodiments, scFvs of the present invention that immunospecifically bind to the soluble and membrane-bound forms of BLyS, comprise a polypeptide having the amino acid sequence of any one of the VH CDR3s contained in SEQ ID NOS: 1 - 1562 as disclosed in Table 1 and/or any one of the VL CDR3s contained in SEQ ID NOS: 1 - 1562, as disclosed in Table 1. In preferred embodiments, scFvs of the present invention that immunospecifically bind to the soluble and membrane-bound forms of BLyS, comprise a polypeptide having the amino acid sequence of a VH CDR and VL CDR from the same scFv referred to in Table 1. In alternative embodiments, scFvs of the present invention
that immunospecifically bind to the soluble and membrane-bound forms of BLyS, comprise a polypeptide having the amino acid sequence of a VH CDR and VL CDR from different scFvs referred to in Table 1. Molecules comprising, or alternatively consisting of, fragments or variants of these scFvs or molecules, that immunospecifically bind to BLyS, preferably the soluble and membrane-bound forms of BLyS, are also encompassed by the invention, as are nucleic acid molecules encoding these scFvs, molecules, fragments and/or variants.

[0220] The present invention provides antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to a polypeptide or a polypeptide fragment of BLyS. In particular, the invention provides antibodies corresponding to the scFvs referred to in Table 1, such scFvs may routinely be “converted” to immunoglobulin molecules by inserting, for example, the nucleotide sequences encoding the VH and/or VL domains of the scFv into an expression vector containing the constant domain sequences and engineered to direct the expression of the immunoglobulin molecule, as described in more detail in Example 20, infra.

[0221] In one embodiment, the invention provides antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) wherein said antibodies comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one of the VH domains contained in the sequences referred to in Table 1. The present invention also provides antibodies that immunospecifically bind to a polypeptide, or polypeptide fragment of BLyS, wherein said antibodies comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one, two, three, or more of the VH CDRs contained in the sequences referred to in Table 1. Molecules comprising, or alternatively consisting of, these antibodies, or antibody fragments or variants thereof, that immunospecifically bind to BLyS or a BLyS fragment are also encompassed by the invention, as are nucleic acid molecules encoding these antibodies, molecules, fragments and/or variants.

[0222] In one embodiment of the present invention, antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind BLyS, comprise, or alternatively consist of, a polypeptide having the amino acid sequence of a VH CDR referred to in Table 1. In
particular, the invention provides antibodies that immunospecifically bind BLyS, comprising, or alternatively consisting of, a polypeptide having the amino acid sequence of a VH CDR1 contained in SEQ ID NOS:1 - 46, 321 - 329, 1563 - 1569, or 1881 – 1885 as disclosed in Table 1. In another embodiment, antibodies that immunospecifically bind BLyS, comprise, or alternatively consist of, a polypeptide having the amino acid sequence of a VH CDR2 contained in SEQ ID NOS:1 - 46, 321 - 329, 1563 - 1569, or 1881 – 1885 as disclosed in Table 1. In a preferred embodiment, antibodies that immunospecifically bind BLyS, comprise, or alternatively consist of a polypeptide having the amino acid sequence of a VH CDR3 contained in SEQ ID NOS:1 - 46, 321 - 329, 1563 - 1569, or 1881 – 1885 as disclosed in Table 1. In yet another embodiment, antibodies that immunospecifically bind BLyS, comprise, or alternatively consist of, a polypeptide having the amino acid sequence of a VH CDR1 contained in SEQ ID NOS:834 - 872, 1570 - 1595, or 1886 – 1908 as disclosed in Table 1; a VH CDR2 contained in SEQ ID NOS: SEQ ID NOS:834 - 872, 1570 - 1595, or 1886 – 1908; and/or a VH CDR3 contained in SEQ ID NOS: SEQ ID NOS:834 - 872, 1570 - 1595, or 1886 – 1908 as disclosed in Table 1. Preferably, antibodies of the invention comprise, or alternatively consist of, VH CDRs that are derived from the same scFv as disclosed in Table 1.

Molecules comprising, or alternatively consisting of, fragments or variants of these antibodies that immunospecifically bind to BLyS are also encompassed by the invention, as are nucleic acid molecules encoding these antibodies, molecules, fragments or variants.

[0223] The present invention provides antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants) that immunospecifically bind to a polypeptide, or polypeptide fragment of BLyS. In particular, the invention provides antibodies wherein said antibodies comprise, or alternatively consist of, a VL domain having an amino acid sequence of any one of the VL domains referred to in Table 1. The present invention also provides antibodies that immunospecifically bind to a polypeptide or polypeptide fragment of BLyS, wherein said antibodies comprise, or alternatively consist of, a VL CDR having an amino acid sequence of any one, two, three, or more of the VL CDRs contained in the sequences referred to in Table 1. Molecules comprising, or alternatively consisting of, fragments or variants of these antibodies that immunospecifically bind to BLyS are also encompassed by the
invention, as are nucleic acid molecules encoding these antibodies, molecules, fragments or variants.

[0224] In one embodiment of the present invention, antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind BLyS, comprise, or alternatively consist of, a polypeptide having the amino acid sequence of a VL CDR referred to in Table 1. In particular, the invention provides antibodies that immunospecifically bind BLyS, comprising, or alternatively consisting of, a polypeptide having the amino acid sequence of a VL CDR1 contained in SEQ ID NOS: 1 - 46, 321 - 329, 1563 - 1569, or 1881 - 1885 as disclosed in Table 1. In another embodiment, antibodies that immunospecifically bind BLyS comprise, or alternatively consist of, a polypeptide having the amino acid sequence of a VL CDR2 contained in SEQ ID NOS: 1 - 46, 321 - 329, 1563 - 1569, or 1881 - 1885 as disclosed in Table 1. In a preferred embodiment, antibodies comprise, or alternatively consist of, a polypeptide having the amino acid sequence of a VL CDR3 contained in SEQ ID NOS: in SEQ ID NOS: 1 - 46, 321 - 329, 1563 - 1569, or 1881 - 1885 disclosed in Table 1. In yet another embodiment, antibodies that immunospecifically bind BLyS comprise, or alternatively consist of: a polypeptide having the amino acid sequence of a VL CDR1 contained in SEQ ID NOS: 834 - 872, 1570 - 1595, or 1886 - 1908 as disclosed in Table 1; a VL CDR2 SEQ ID NOS: 834 - 872, 1570 - 1595, or 1886 - 1908 as disclosed in Table 1; and a VL CDR3 contained SEQ ID NOS: 834 - 872, 1570 - 1595, or 1886 - 1908 as disclosed in Table 1. Preferably, antibodies of the invention comprise, or alternatively consist of, VL CDRs that are derived from the same scFv as disclosed in Table 1. Molecules comprising, or alternatively consisting of, fragments or variants of these antibodies, that immunospecifically bind to BLyS are also encompassed by the invention, as are nucleic acid molecules encoding these antibodies, molecules, fragments or variants.

[0225] The present invention also provides antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to a polypeptide or a polypeptide fragment of BLyS, wherein said antibodies comprise, or alternatively consist of, a VH domain of one of the scFvs referred to in Table 1 combined with a VL domain of one of the scFvs referred to in Table 1, or other VL domain. The present invention further provides antibodies (including
molecules comprise, or alternatively consist of, antibody fragments or variants thereof) that immunospecifically bind to a polypeptide or a polypeptide fragment of BLyS, wherein said antibodies comprise, or alternatively consist of, a VL domain of one of the scFvs referred to in Table 1 combined with a VH domain of one of the scFvs referred to in Table 1, or other VH domain. In a preferred embodiment, antibodies that immunospecifically bind to a polypeptide or a polypeptide fragment of BLyS, comprise, or alternatively consist of, a polypeptide having the amino acid sequence of a VH domain contained SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 – 1908 as disclosed in Table 1 and a VL domain contained in contained SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 – 1908 as disclosed in Table 1. In a further preferred embodiment, the antibodies of the invention comprise, or alternatively consist of, a VH and a VL domain from the same scFv as disclosed in Table 1. Molecules comprising, or alternatively consisting of, fragments or variants of these antibodies, that immunospecifically bind to BLyS are also encompassed by the invention, as are nucleic acid molecules encoding these antibodies, molecules, fragments or variants.

[0226] The present invention also provides antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants) that immunospecifically bind to a polypeptide or polypeptide fragment of BLyS, wherein said antibodies comprise, or alternatively consist of, one, two, three, or more VH CDRs and one, two, three or more VL CDRs, as referred to in Table 1. In particular, the invention provides for antibodies that immunospecifically bind to a polypeptide or polypeptide fragment of BLyS, wherein said antibodies comprise, or alternatively consist of, a VH CDR1 and a VL CDR1, a VH CDR1 and a VL CDR2, a VH CDR1 and a VL CDR3, a VH CDR2 and a VL CDR1, VH CDR2 and VL CDR2, a VH CDR2 and a VL CDR3, a VH CDR3 and a VH CDR1, a VH CDR3 and a VL CDR2, a VH CDR3 and a VL CDR3, or any combination thereof, of the VH CDRs and VL CDRs referred to in Table 1. In a preferred embodiment, one or more of these combinations are from the same scFv as disclosed in Table 1. Molecules comprising, or alternatively consisting of, fragments or variants of these antibodies, that immunospecifically bind to BLyS are also encompassed by the invention, as are nucleic acid molecules encoding these antibodies, molecules, fragments or variants.
In a preferred embodiment the invention provides antibodies wherein the VH CDRX (where \(X = 1, 2, \) or 3) and VL CDRY (where \(Y = 1, 2, \) or 3) are from scFvs with the same specificity (i.e., from scFvs that bind soluble BLyS, from scFvs that bind membrane-bound BLyS, or from scFvs that bind both soluble and membrane-bound BLyS. Molecules comprising, or alternatively consisting of, fragments or variants of these antibodies, that immunospecifically bind to BLyS are also encompassed by the invention, as are nucleic acid molecules encoding these antibodies, molecules, fragments or variants.

The term “antibody,” as used herein, refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds an antigen. As such, the term “antibody” encompasses not only whole antibody molecules, but also antibody fragments, as well as variants (including derivatives) of antibodies and antibody fragments. Antibodies of the invention include, but are not limited to, monoclonal, multispecific, human or chimeric antibodies, single chain antibodies, single chain Fvs (scFvs), Fab fragments, F(ab')\(_2\) fragments, Fd fragments, disulfide-linked Fvs (sdFvs), antiidiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies of the invention), and epitope-binding fragments of any of the above. The immunoglobulin molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG\(_1\), IgG\(_2\), IgG\(_3\), IgG\(_4\), IgA\(_1\) and IgA\(_2\)) or subclass of immunoglobulin molecule. The antibodies of the present invention also include molecules comprising, or alternatively consisting of, a polypeptide having an amino acid sequence of a portion of an amino acid sequence contained SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908. Preferably, an antibody of the invention comprises, or alternatively consists of, a polypeptide having an amino acid sequence of a VH domain, VH CDR, VL domain, or VL CDR of any one those contained in the sequences referred to in Table 1. Antibodies of the invention also include molecules comprising, or alternatively consisting of, fragments or variants of the above antibodies that immunospecifically bind BLyS.

Most preferably the antibodies of the present invention are whole antibodies or antibody fragments that immunospecifically bind human BLyS. Antibody fragments of the invention that immunospecifically bind human BLyS include, but are not limited to, Fab, Fab' and F(ab')\(_2\), Fd fragments, single-chain Fvs (scFv), single-chain
antibodies, disulfide-linked Fvs (sdFvs), fragments comprising, or alternatively consisting of, either a VL or VH domain, and epitope binding fragments of any of the above.

[0230] BLyS-binding antibody fragments, including single-chain antibodies, may comprise, or alternatively consist of, the variable region(s) alone or in combination with the entirety or a portion of the following: hinge region, CH1, CH2, and CH3 domains. In a preferred embodiment, the antibodies of the invention comprise, or alternatively consist of, a polypeptide that immunospecifically binds to BLyS, said polypeptides comprise, or alternatively consist of, one, two, three, four, five, six or more CDRs referred to in Table 1, preferably a polypeptide having an amino acid sequence of a VH CDR3 and/or a VL CDR3 of contained SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1. Most preferably, antibodies of the invention comprise, or alternatively consist of, one, two, three, four, five, six or more CDRs from the same scFv, as referred to in Table 1. The antibodies of the invention may be from any animal origin, including birds and mammals. Preferably, the antibodies are human, murine (e.g., mouse and rat), donkey, sheep, rabbit, goat, guinea pig, camel, horse, or chicken. Most preferably, the antibodies are human antibodies. As used herein, "human" antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries and xenomice or other organisms that have been genetically engineered to produce human antibodies. For a detailed discussion of a few of the technologies for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., PCT publications WO 98/24893; WO 92/01047; WO 96/34096; WO 96/33735; European Patent No. 0 598 877; U.S. Patent Nos. 5,413,923; 5,625,126; 5,633,425; 5,569,825; 5,661,016; 5,545,806; 5,814,318; 5,885,793; 5,916,771; and 5,939,598; and Lonberg and Huszar, Int. Rev. Immunol. 13:65-93 (1995), which are incorporated by reference herein in their entirety. Human antibodies or "humanized" chimeric monoclonal antibodies can be produced using techniques described herein or otherwise known in the art. For example, methods for producing chimeric antibodies are known in the art. See, for review the following references which are hereby incorporated in their entirety: Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984);
Neuberger et al., *Nature* 314:268 (1985). In addition, companies such as Abgenix, Inc. (Freemont, CA) and Genpharm (San Jose, CA) can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

[0231] The antibodies of the present invention may be monovalent, bivalent, trivalent or multivalent. For example, monovalent scFvs can be multimerized either chemically or by association with another protein or substance. An scFv that is fused to a hexahistidine tag or a Flag tag can be multimerized using Ni-NTA agarose (Qiagen) or using anti-Flag antibodies (Stratagene, Inc.).

[0232] The antibodies of the present invention may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a BLyS polypeptide, or fragment thereof; or may be specific for both a BLyS polypeptide, or fragment thereof, and a heterologous epitope, such as a heterologous polypeptide or solid support material. See, e.g., PCT publications WO 93/17715; WO 92/08802; WO 91/00360; WO 92/05793; Tutt, et al., *J. Immunol.* 147:60-69 (1991); U.S. Patent Nos. 4,474,893; 4,714,681; 4,925,648; 5,573,920; 5,601,819; Kostelny et al., *J. Immunol.* 148:1547-1553 (1992).

[0233] The antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) may bind immunospecifically to murine BLyS (e.g., a polypeptide having the amino acid sequence of human BLyS (SEQ ID NOS:3228 and/or 3229) or BLyS expressed on human monocytes; murine BLyS (SEQ ID NOS:3230 and/or 3231) or BLyS expressed on murine monocytes; rat BLyS (either the soluble forms as given in SEQ ID NOS:3232, 3233, 3234 and/or 3235 or in a membrane associated form, e.g., on the surface of rat monocytes); or monkey BLyS (e.g., the monkey BLyS polypeptides of SEQ ID NOS:3236 and/or 3237, the soluble form of monkey BLyS, or BLyS expressed on monkey monocytes), preferably the antibodies of the invention bind immunospecifically to human BLyS. Preferably, the antibodies of the invention bind immunospecifically to human and monkey BLyS. Also preferably, the antibodies of the invention bind immunospecifically to human BLyS and murine BLyS. More preferably, antibodies of the invention, bind immunospecifically and with higher affinity to human BLyS than to murine BLyS.
Antibodies of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies that do not bind any other analog, ortholog, or homolog of a polypeptide of the present invention are included. Antibodies that bind polypeptides with at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, and at least 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. In a specific embodiment, antibodies of the present invention cross react with APRIL (SEQ ID NO:3239; GenBank Accession No. AF046888; J. Exp. Med. 188(6):1185-1190; PCT International Publication WO97/33902). In specific embodiments, antibodies of the present invention cross-react with murine, rat and/or rabbit homologs of human proteins and the corresponding epitopes thereof. Antibodies that do not bind polypeptides with less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, and less than 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. In a specific embodiment, the above-described cross-reactivity is with respect to any single specific antigenic or immunogenic polypeptide, or combination(s) of 2, 3, 4, 5, or more of the specific antigenic and/or immunogenic polypeptides disclosed herein. Further included in the present invention are antibodies which bind polypeptides encoded by polynucleotides which hybridize to a polynucleotide of the present invention under hybridization conditions (as described herein).

In preferred embodiments, the antibodies of the present invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), immunospecifically bind to BLyS and do not cross-react with any other antigens. In more preferred embodiments, the antibodies of the invention immunospecifically bind to BLyS and do not cross-react with TRAIL, APRIL, Endokine-alpha, TNF-alpha, TNF-beta, Fas-L or LIGHT.

The present invention also provides for a nucleic acid molecule, generally
[0237] isolated, encoding an antibody of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof). In one embodiment, a nucleic acid molecule of the invention encodes an antibody comprising, or alternatively consisting of, a VH domain having an amino acid sequence of any one of the VH domains referred to in Table 1. In another embodiment, a nucleic acid molecule of the present invention encodes an antibody comprising, or alternatively consisting of, a VH CDR1 having an amino acid sequence of any one of the VH CDR1s referred to in Table 1. In another embodiment, a nucleic acid molecule of the present invention encodes an antibody comprising, or alternatively consisting of, a VH CDR2 having an amino acid sequence of any one of the VH CDR2s referred to in Table 1. In yet another embodiment, a nucleic acid molecule of the present invention encodes an antibody comprising, or alternatively consisting of, a VH CDR3 having an amino acid sequence of any one of the VH CDR3s referred to in Table 1. Nucleic acid molecules encoding antibodies that immunospecifically bind BLyS and comprise, or alternatively consist of, fragments or variants of the VH domains and/or VH CDRs are also encompassed by the invention.

[0238] In another embodiment, a nucleic acid molecule of the invention encodes an antibody (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), comprising, or alternatively consisting of, a VL domain having an amino acid sequence of any one of the VL domains referred to in Table 1. In another embodiment, a nucleic acid molecule of the present invention encodes an antibody comprising, or alternatively consisting of, a VL CDR1 having amino acid sequence of any one of the VL CDR1s referred to in Table 1. In another embodiment, a nucleic acid molecule of the present invention encodes an antibody comprising, or alternatively consisting of, a VL CDR2 having an amino acid sequence of any one of the VL CDR2s referred to in Table 1. In yet another embodiment, a nucleic acid molecule of the present invention encodes an antibody comprising, or alternatively consisting of, a VL CDR3 having an amino acid sequence of any one of the VL CDR3s referred to in Table 1. Nucleic acid encoding antibodies that immunospecifically bind BLyS and comprise, or alternatively consist of, fragments or variants of the VL domains and/or VL CDR(s) are also encompassed by the invention.

[0239] In another embodiment, a nucleic acid molecule of the invention encodes an antibody (including molecules comprising, or alternatively consisting of, antibody
fragments or variants thereof), comprising, or alternatively consisting of, a VH domain having an amino acid sequence of any one of the VH domains referred to in Table 1 and a VL domain having an amino acid sequence of any one of the VL domains referred to in Table 1. In another embodiment, a nucleic acid molecule of the invention encodes an antibody comprising, or alternatively consisting of, a VH CDR1, a VL CDR1, a VH CDR2, a VL CDR2, a VH CDR3, a VL CDR3, or any combination thereof having an amino acid sequence referred to in Table 1. Nucleic acid encoding antibodies that immunospecifically bind BLyS and comprise, or alternatively consist of, fragments or variants of the VL and/or domains and/or VHCDR(s) and/or VLCDR(s) are also encompassed by the invention.

[0240] The present invention also provides antibodies that comprise, or alternatively consist of, variants (including derivatives) of the VH domains, VH CDRs, VL domains, and VL CDRs described herein, which antibodies immunospecifically bind to BLyS. Standard techniques known to those of skill in the art can be used to introduce mutations in the nucleotide sequence encoding a molecule of the invention, including, for example, site-directed mutagenesis and PCR-mediated mutagenesis which result in amino acid substitutions. Preferably, the variants (including derivatives) encode less than 50 amino acid substitutions, less than 40 amino acid substitutions, less than 30 amino acid substitutions, less than 25 amino acid substitutions, less than 20 amino acid substitutions, less than 15 amino acid substitutions, less than 10 amino acid substitutions, less than 5 amino acid substitutions, less than 4 amino acid substitutions, less than 3 amino acid substitutions, or less than 2 amino acid substitutions relative to the reference VH domain, VHCDR1, VHCDR2, VHCDR3, VL domain, VLCDR1, VLCDR2, or VLCDR3. In specific embodiments, the variants encode substitutions of VHCDR3. In a preferred embodiment, the variants have conservative amino acid substitutions at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a side chain with a similar charge. Families of amino acid residues having side chains with similar charges have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine,
isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity (e.g., the ability to bind BLyS). Following mutagenesis, the encoded protein may routinely be expressed and the functional and/or biological activity of the encoded protein, (e.g., ability to immunospecifically bind BLyS) can be determined using techniques described herein or by routinely modifying techniques known in the art.

[0241] The antibodies of the invention include derivatives (i.e., variants) that are modified, e.g., by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not affect the ability of the antibody to immunospecifically bind to BLyS. For example, but not by way of limitation, derivatives of the invention include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to, specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids.

[0242] In a specific embodiment, an antibody of the invention (including a molecule comprising, or alternatively consisting of, an antibody fragment or variant thereof), that immunospecifically binds BLyS, comprises, or alternatively consists of, an amino acid sequence encoded by a nucleotide sequence that hybridizes to a nucleotide sequence that is complementary to that encoding one of the VH or VL domains referred to in Table 1 under stringent conditions, e.g., hybridization to filter-bound DNA in 6x sodium chloride/sodium citrate (SSC) at about 45°C followed by one or more washes in 0.2xSSC/0.1% SDS at about 50-65°C, under highly stringent conditions, e.g., hybridization to filter-bound nucleic acid in 6xSSC at about 45°C followed by one or more washes in 0.1xSSC/0.2% SDS at about 68°C, or under other stringent hybridization conditions which are known to those of skill in the art (see, for example, Ausubel, F.M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing
In another embodiment, an antibody of the invention that immunospecifically binds to BLyS, comprises, or alternatively consists of, an amino acid sequence encoded by a nucleotide sequence that hybridizes to a nucleotide sequence that is complementary to that encoding one of the VH CDRs or VL CDRs referred to in Table 1 under stringent conditions, e.g., hybridization under conditions as described above, or under other stringent hybridization conditions which are known to those of skill in the art. In another embodiment, an antibody of the invention that immunospecifically binds to BLyS, comprises, or alternatively consists of, an amino acid sequence encoded by a nucleotide sequence that hybridizes to a nucleotide sequence that is complementary to that encoding one of the VH CDR3s referred to in Table 1 under stringent conditions e.g., hybridization under conditions as described above, or under other stringent hybridization conditions which are known to those of skill in the art. Nucleic acid molecules encoding these antibodies are also encompassed by the invention.

[0243] In another embodiment, an antibody (including a molecule comprising, or alternatively consisting of, an antibody fragment or variant thereof), that immunospecifically binds to BLyS comprises, or alternatively consists of, a polypeptide having an amino acid sequence that is at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical, to any one of the VH domains referred to in Table 1. In another embodiment, an antibody of the invention that immunospecifically binds to BLyS comprises, or alternatively consists of, a polypeptide having an amino acid sequence that is at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical, to any one of the VH CDRs referred to in Table 1. In another embodiment, an antibody of the invention that immunospecifically binds to BLyS comprises, or alternatively consists of, a polypeptide having an amino acid sequence that is at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to any one of the VH CDR3s referred to in Table 1. Nucleic acid molecules encoding these antibodies are also encompassed by the invention.
In another embodiment, an antibody of the invention (including a molecule comprising, or alternatively consisting of, an antibody fragment or variant thereof), that immunospecifically binds to BLyS comprises, or alternatively consists of, a polypeptide having an amino acid sequence that is at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical, to any one of the VL domains referred to in Table 1. In another embodiment, an antibody of the invention that immunospecifically binds to BLyS comprises, or alternatively consists of, a polypeptide having an amino acid sequence that is at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical, to any one of the VL CDRs referred to in Table 1. In another embodiment, an antibody of the invention that immunospecifically binds to BLyS comprises, or alternatively consists of, a polypeptide having an amino acid sequence that is at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical, to any one of the VL CDR3s referred to in Table 1. Nucleic acid molecules encoding these antibodies are also encompassed by the invention.

Antibodies of the present invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) may also be described or specified in terms of their binding affinity for to BLyS polypeptides or fragments or variants of BLyS polypeptides (e.g., to the soluble form of BLyS and/or membrane-bound form of BLyS). In specific embodiments, antibodies of the invention bind BLyS polypeptides, or fragments or variants thereof, with a dissociation constant or K_D of less than or equal to 5×10^{-2} M, 10^{-2} M, 5×10^{-3} M, 10^{-3} M, 5×10^{-4} M, 10^{-4} M, 5×10^{-5} M, or 10^{-5} M. More preferably, antibodies of the invention bind BLyS polypeptides or fragments or variants thereof with a dissociation constant or K_D less than or equal to 5×10^{-6} M, 10^{-6} M, 5×10^{-7} M, 10^{-7} M, 5×10^{-8} M, or 10^{-8} M. Even more preferably, antibodies of the invention bind BLyS polypeptides or fragments or variants thereof with a dissociation constant or K_D less than or equal to 5×10^{-9} M, 10^{-9} M, 5×10^{-10} M, 10^{-10} M, 5×10^{-11} M, 10^{-11} M, 5×10^{-12} M, 10^{-12} M, 5×10^{-13} M, 10^{-13} M, 5×10^{-14} M, 10^{-14} M, 5×10^{-15} M, or 10^{-15} M. The invention encompasses antibodies that bind BLyS polypeptides.
with a dissociation constant or K_D that is within any one of the ranges that are between each of the individual cited values.

[0246] In specific embodiments, antibodies of the invention bind BLyS polypeptides or fragments or variants thereof with an off rate (k_{off}) of less than or equal to $5 \times 10^{-2} \text{ sec}^{-1}$, 10^{-2} sec^{-1}, $5 \times 10^{-3} \text{ sec}^{-1}$ or 10^{-3} sec^{-1}. More preferably, antibodies of the invention bind BLyS polypeptides or fragments or variants thereof with an off rate (k_{off}) less than or equal to $5 \times 10^{-4} \text{ sec}^{-1}$, 10^{-4} sec^{-1}, $5 \times 10^{-5} \text{ sec}^{-1}$, 10^{-5} sec^{-1}, $5 \times 10^{-6} \text{ sec}^{-1}$, 10^{-6} sec^{-1}, $5 \times 10^{-7} \text{ sec}^{-1}$ or 10^{-7} sec^{-1}. The invention encompasses antibodies that bind BLyS polypeptides with an off rate (k_{off}) that is within any one of the ranges that are between each of the individual cited values.

[0247] In other embodiments, antibodies of the invention bind BLyS polypeptides or fragments or variants thereof with an on rate (k_{on}) of greater than or equal to $10^{3} \text{ M}^{-1} \text{ sec}^{-1}$, $5 \times 10^{3} \text{ M}^{-1} \text{ sec}^{-1}$, $10^{4} \text{ M}^{-1} \text{ sec}^{-1}$ or $5 \times 10^{4} \text{ M}^{-1} \text{ sec}^{-1}$. More preferably, antibodies of the invention bind BLyS polypeptides or fragments or variants thereof with an on rate (k_{on}) greater than or equal to $10^{5} \text{ M}^{-1} \text{ sec}^{-1}$, $5 \times 10^{5} \text{ M}^{-1} \text{ sec}^{-1}$, $10^{6} \text{ M}^{-1} \text{ sec}^{-1}$, or $5 \times 10^{6} \text{ M}^{-1} \text{ sec}^{-1}$ or $10^{7} \text{ M}^{-1} \text{ sec}^{-1}$. The invention encompasses antibodies that bind BLyS polypeptides with on rate (k_{on}) that is within any one of the ranges that are between each of the individual cited values.

[0248] The invention also encompasses antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that have one or more of the same biological characteristics as one or more of the antibodies described herein. By “biological characteristics” is meant, the in vitro or in vivo activities or properties of the antibodies, such as, for example, the ability to bind to BLyS (e.g., the soluble form of BLyS, the membrane-bound form of BLyS, the soluble form and membrane-bound form of BLyS), and/or an antigenic and/or epitope region of BLyS), the ability to substantially block BLyS/BLyS receptor (e.g., TACI - GenBank accession number AAC51790 and/or BCMA -GenBank accession number NP_001183) binding, or the ability to block BLyS mediated biological activity (e.g., stimulation of B cell proliferation and immunoglobulin production). Optionally, the antibodies of the invention will bind to the same epitope as at least one of the antibodies specifically referred to herein. Such epitope binding can be routinely determined using assays known in the art.
[0249] The present invention also provides for antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), that neutralize BlyS or a fragment thereof, said antibodies comprising, or alternatively consisting of, a portion (i.e., a VH domain, VL domain, VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, or VL CDR3) of an scFv referred to in Table 1, more preferably having an amino acid sequence contained in SEQ ID NOS:834 - 872, 1570 - 1595, or 1886 – 1908, and even more preferably having an amino acid sequence contained in SEQ ID NOS:1 - 46, 321 - 329, 1563 - 1569, or 1881 – 1885 as disclosed in Table 1, or a fragment or variant thereof. By an antibody that “neutralizes BlyS or a fragment thereof” is meant an antibody that diminishes or abolishes the ability of BlyS to bind to its receptor (e.g., TACI and BCMA) to stimulate B cell proliferation, to stimulate immunoglobulin secretion by B cells, and/or to stimulate the BlyS receptor signalling cascade. In one embodiment, an antibody that neutralizes BlyS or a fragment thereof, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VH domain contained in SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 – 1908 as disclosed in Table 1, or a fragment or variant thereof. In another embodiment, an antibody that neutralizes BlyS or a fragment thereof, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VL domain contained in SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 – 1908 as disclosed in Table 1, or a fragment or variant thereof. In another embodiment, an antibody that neutralizes BlyS or a fragment thereof, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VH CDR domain in SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 – 1908 as disclosed in Table 1, or a fragment or variant thereof. In a preferred embodiment, an antibody that neutralizes BlyS or a fragment thereof, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VH CDR3 contained in SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 – 1908 as disclosed in Table 1, or a fragment or variant thereof. In another embodiment, an antibody that neutralizes BlyS or a fragment thereof, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VL CDR domain contained in SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 – 1908 as disclosed in Table 1, or a fragment or variant thereof. In another preferred embodiment, an antibody that neutralizes BlyS or a fragment thereof, comprises, or
alternatively consists of, a polypeptide having the amino acid sequence of a VL CDR3 contained in SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. Nucleic acid molecules encoding these antibodies are also encompassed by the invention.

[0250] The present invention also provides for antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), that inhibit (i.e., diminish or abolish) BLYS mediated B cell proliferation as determined by any method known in the art such as, for example, the assays described in Examples 21 and 22, infra, said antibodies comprising, or alternatively consisting of, a portion (e.g., a VH domain, VL domain, VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, or VL CDR3) of an scFv having an amino acid sequence SEQ ID NOS:834 - 872, 1570 - 1595, 1886 - 1908, and even more preferably having an amino acid sequence SEQ ID NOS:1 - 46, 321 - 329, 1563 - 1569, 1881 - 1885 as disclosed in Table 1 or a fragment or variant thereof. In one embodiment, an antibody that inhibits BLYS mediated B cell proliferation, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VH domain contained in SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908, as disclosed in Table 1, or a fragment or variant thereof. In another embodiment, an antibody that inhibits BLYS mediated B cell proliferation, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VL domain contained in SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. In a preferred embodiment, an antibody that inhibits BLYS mediated B cell proliferation, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VH CDR3 contained in SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. In another preferred embodiment, an antibody that inhibits BLYS mediated B cell proliferation, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VL CDR3 contained SEQ ID NOS:1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. Nucleic acid molecules encoding these antibodies are also encompassed by the invention.

[0251] The present invention also provides for antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), that
enhance the activity of BLyS or a fragment thereof, said antibodies comprising, or alternatively consisting of, a portion (i.e., a VH domain, VL domain, VH CDRI, VH CDR2, VH CDR3, VL CDR1, VL CDR2, or VL CDR3) of an scFv having an amino acid sequence SEQ ID NOS: 834 - 872, 1570 - 1595, or 1886 - 1908, and preferably having an amino acid sequence of SEQ ID NOS: 1 - 46, 321 - 329, 1563 - 1569, or 1881 - 1885, as disclosed in Table 1, or a fragment or variant thereof. By an antibody that “enhances the activity of BLyS or a fragment thereof” is meant an antibody increases the ability of BLyS to bind to its receptor (e.g., TACI or BCMA), to stimulate B cell proliferation, to stimulate immunoglobulin secretion by B cells, and/or to stimulate the BLyS receptor signalling cascade. In one embodiment, an antibody that enhances the activity of BLyS or a fragment thereof, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VH domain contained in SEQ ID NOS: 1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. In another embodiment, an antibody that enhances the activity of BLyS or a fragment thereof, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VH CDR domain contained in SEQ ID NOS: 1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. In a preferred embodiment, an antibody that enhances the activity of BLyS or a fragment thereof, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VH CDR3 contained in SEQ ID NOS: 1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. In another embodiment, an antibody that enhances BLyS or a fragment thereof, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VL CDR domain contained in SEQ ID NOS: 1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. In another preferred embodiment, an antibody that enhances the activity of BLyS or a fragment thereof, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VL CDR3 contained in SEQ ID NOS: 1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a
fragment or variant thereof. Nucleic acid molecules encoding these antibodies are also encompassed by the invention.

[0252] The present invention also provides for antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), that stimulate BLyS mediated B cell proliferation as determined by any method known in the art, such as, for example, the assays described in Examples 21 and 22, infra, said antibodies comprising, or alternatively consisting of, a portion (e.g., a VH domain, VL domain, VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2, or VL CDR3) of an scFv having an amino acid sequence of SEQ ID NOS: 834 - 872, 1570 - 1595, or 1886 - 1908, and even more preferably having an amino acid sequence of SEQ ID NOS: 1 - 46, 321 - 329, 1563 - 1569, or 1881 - 1885 as disclosed in Table 1 or a fragment or variant thereof. In one embodiment, an antibody that stimulates BLyS mediated B cell proliferation, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VH domain contained in SEQ ID NOS: 1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. In another embodiment, an antibody that stimulates BLyS mediated B cell proliferation, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VL domain contained in SEQ ID NOS: 1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. In a preferred embodiment, an antibody that stimulates BLyS mediated B cell proliferation, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VH CDR3 contained in SEQ ID NOS: 1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. In another preferred embodiment, an antibody that stimulates BLyS mediated B cell proliferation, comprises, or alternatively consists of, a polypeptide having the amino acid sequence of a VL CDR3 contained in SEQ ID NOS: 1 - 46, 321 - 329, 834 - 872, 1563 - 1595, or 1881 - 1908 as disclosed in Table 1, or a fragment or variant thereof. Nucleic acid molecules encoding these antibodies are also encompassed by the invention.

[0253] The present invention also provides for fusion proteins comprising, or alternatively consisting of, an antibody (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), that immunospecifically binds to BLyS, and a heterologous polypeptide. Preferably, the heterologous polypeptide to which
the antibody is fused to is useful for B-cell function or is useful to target the antibody to B-cells. In an alternative preferred embodiment, the heterologous polypeptide to which the antibody is fused to is useful for monocyte cell function or is useful to target the antibody to a monocyte. In another embodiment, the heterologous polypeptide to which the antibody is fused is albumin (including but not limited to recombinant human serum albumin or fragments or variants thereof (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No. 5,766,883, issued June 16, 1998, herein incorporated by reference in their entirety)). In a preferred embodiment, antibodies of the present invention (including fragments or variants thereof) are fused with the mature form of human serum albumin (i.e., amino acids 1 – 585 of human serum albumin as shown in Figures 1 and 2 of EP Patent 0 322 094) which is herein incorporated by reference in its entirety. In another preferred embodiment, antibodies of the present invention (including fragments or variants thereof) are fused with polypeptide fragments comprising, or alternatively consisting of, amino acid residues 1-x of human serum albumin, where x is an integer from 1 to 585 and the albumin fragment has human serum albumin activity. In another preferred embodiment, antibodies of the present invention (including fragments or variants thereof) are fused with polypeptide fragments comprising, or alternatively consisting of, amino acid residues 1-z of human serum albumin, where z is an integer from 369 to 419, as described in U.S. Patent 5,766,883 herein incorporated by reference in its entirety. Antibodies of the present invention (including fragments or variants thereof) may be fused to either the N- or C-terminal end of the heterologous protein (e.g., immunoglobulin Fc polypeptide or human serum albumin polypeptide).

[0254] In one embodiment, a fusion protein of the invention comprises, or alternatively consists of, a polypeptide having the amino acid sequence of any one or more of the VH domains referred to in Table 1 or the amino acid sequence of any one or more of the VL domains referred to in Table 1 or fragments or variants thereof, and a heterologous polypeptide sequence. In another embodiment, a fusion protein of the present invention comprises, or alternatively consists of, a polypeptide having the amino acid sequence of any one, two, three, or more of the VH CDRs referred to in Table 1, or the amino acid sequence of any one, two, three, or more of the VL CDRs referred to in Table 1, or fragments or variants thereof, and a heterologous polypeptide sequence. In a
preferred embodiment, the fusion protein comprises, or alternatively consists of, a polypeptide having the amino acid sequence of, a VH CDR3 referred to in Table 1, or fragment or variant thereof, and a heterologous polypeptide sequence, which fusion protein immunospecifically binds to BLyS. In another embodiment, a fusion protein comprises, or alternatively consists of a polypeptide having the amino acid sequence of at least one VH domain referred to in Table 1 and the amino acid sequence of at least one VL domain referred to in Table 1 or fragments or variants thereof, and a heterologous polypeptide sequence. Preferably, the VH and VL domains of the fusion protein correspond to the same scFv referred to in Table 1. In yet another embodiment, a fusion protein of the invention comprises, or alternatively consists of a polypeptide having the amino acid sequence of any one, two, three or more of the VH CDRs referred to in Table 1 and the amino acid sequence of any one, two, three or more of the VL CDRs referred to in Table 1, or fragments or variants thereof, and a heterologous polypeptide sequence. Preferably, two, three, four, five, six, or more of the VHCDR(s) or VLCDR(s) correspond to the same scFv referred to in Table 1. Nucleic acid molecules encoding these fusion proteins are also encompassed by the invention.

[0255] The present invention also provides: antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), that immunospecifically bind to the soluble form of BLyS; antibodies that immunospecifically bind to the membrane-bound form of BLyS; and antibodies that immunospecifically bind to both the soluble form and membrane-bound form of BLyS.

[0256] In one embodiment of the present invention, antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to the soluble form of BLyS, comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one or more of the VH domains contained in SEQ ID NOS:1563 – 1880 as disclosed in Table 1 and/or the amino acid sequence of any one or more of the VL domains contained in SEQ ID NOS: 1563 - 1880 as disclosed in Table 1, or fragment(s) or variant(s) (including derivative thereof). Preferably, the VH and VL domains of the antibody correspond to the same scFv as disclosed in Table 1. In another embodiment, antibodies that immunospecifically bind to the soluble form of BLyS are provided that comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one, two,
three, or more of the VH CDRs contained SEQ ID NOS: 1563 - 1880 as disclosed in Table 1 and/or the amino acid sequence of any one, two, three, or more of the VL CDRs contained in SEQ ID NOS: 1563 - 1880 as disclosed in Table 1, or fragment(s) or variant(s) thereof. Preferably, two, three, four, five, six or more of the VH and VL CDRs of the antibody correspond to the same scFv as disclosed in Table 1. In a preferred embodiment, antibodies that immunospecifically bind to the soluble form of BLYs are provided that comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one or more of the VH CDR3s contained in SEQ ID NOS: 1563 - 1880 as disclosed in Table 1 and/or the amino acid sequence of any one or more of the VL CDR3s contained in SEQ ID NOS: 1563 - 1880 as disclosed in Table 1, or fragment(s) or variant(s) thereof. Preferably, the VH CDR3 and VL CDR3 of the antibody correspond to the same scFv, as disclosed in Table 1. Nucleic acid molecules encoding these antibodies are also encompassed by the invention.

[0257] In another embodiment of the present invention, antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to the membrane-bound form of BLYs are provided that comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one or more of the VH domains contained in SEQ ID NOS: 1881 - 2128 as disclosed in Table 1 and/or the amino acid sequence of any one or more of the VL domains contained in SEQ ID NOS: 1881 - 2128 as disclosed in Table 1, or a fragment or variant thereof. Preferably, the VH and VL domains of the antibody correspond to the same scFv as disclosed in Table 1. In another embodiment, antibodies that immunospecifically bind to the membrane-bound form of BLYs are provided that comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one, two, three, or more of the VH CDRs contained in SEQ ID NOS: 1881 - 2128 as disclosed in Table 1 and/or the amino acid sequence of any one, two, three, or more of the VL CDRs contained in SEQ ID NOS: 1881 - 2128 as disclosed in Table 1, or fragment(s) or variant(s) thereof. Preferably, two, three, four, five, six or more of the VH and VL CDRs of the antibody correspond to the same scFv as disclosed in Table 1. In a preferred embodiment, antibodies that immunospecifically bind to the membrane-bound form of BLYs are provided that comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one or more of the VH CDR3s contained in SEQ ID NOS: 1881 - 2128 as disclosed in
Table 1 and/or the amino acid sequence of any one or more of the VL CDR3s contained in SEQ ID NOS: 1881 - 2128 as disclosed in Table 1, or fragment(s) or variant(s) thereof. Preferably, the VHCDR3 and VLCDR3 of the antibody correspond to the same scFv, as disclosed in Table 1. Nucleic acid molecules encoding these antibodies are also encompassed by the invention.

[0258] In another embodiment of the present invention, antibodies (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to the soluble form and membrane-bound form of BLyS, are provided that comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one or more of the VH domains contained in SEQ ID NOS: 1 - 1562 as disclosed in Table 1 and/or the amino acid sequence of any one or more of the VL domains contained in SEQ ID NOS: 1 - 1562 as disclosed in Table 1, or a fragment or variant thereof. Preferably, the VH and VL domains of the antibody correspond to the same scFv as disclosed in Table 1. In another embodiment, antibodies that immunospecifically bind to the soluble form and membrane-bound form of BLyS are provided that comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one, two, three, or more of the VH CDRs contained in SEQ ID NOS: 1 - 1562 as disclosed in Table 1 and/or the amino acid sequence of any one, two, three, or more of the VL CDRs contained in SEQ ID NOS: 1 - 1562 as disclosed in Table 1, or fragment(s) or variant(s) thereof. Preferably, two, three, four, five, six or more of the VH and VL CDRs of the antibody correspond to the same scFv as disclosed in Table 1. In a preferred embodiment, antibodies that immunospecifically bind to the soluble form and membrane-bound form of BLyS are provided that comprise, or alternatively consist of, a polypeptide having the amino acid sequence of any one or more of the VH CDR3s contained in SEQ ID NOS: 1 - 1562, disclosed in Table 1 and/or the amino acid sequence of any one or more of the VL CDR3s contained in SEQ ID NOS: 1 - 1562, disclosed in Table 1, or fragment(s) or variant(s) thereof. Preferably, the VHCDR3 and VLCDR3 of the antibody correspond to the same scFv, as disclosed in Table 1.

[0259] The present invention also provides for mixtures of antibodies (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to BLyS, wherein the mixture has at least one, two, three, four, five or more different antibodies of the invention. In particular,
the invention provides for mixtures of different antibodies that immunospecifically bind to the soluble form of BLyS, the membrane-bound form of BLyS, and/or both the membrane-bound form and soluble form of BLyS. In specific embodiments, the invention provides mixtures of at least 2, preferably at least 4, at least 6, at least 8, at least 10, at least 12, at least 15, at least 20, or at least 25 different antibodies that immunospecifically bind to BLyS, wherein at least 1, at least 2, at least 4, at least 6, or at least 10, antibodies of the mixture is an antibody of the invention. In a specific embodiment, each antibody of the mixture is an antibody of the invention.

[0260] The present invention also provides for panels of antibodies (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to BLyS, wherein the panel has at least one, two, three, four, five or more different antibodies of the invention. In particular, the invention provides for panels of different antibodies that immunospecifically bind to the soluble form of BLyS, the membrane-bound form of BLyS, and/or both the membrane-bound form and soluble form of BLyS. In specific embodiments, the invention provides for panels of antibodies that have different affinities for BLyS, different specificities for BLyS, or different dissociation rates. The invention provides panels of at least 10, preferably at least 25, at least 50, at least 75, at least 100, at least 125, at least 150, at least 175, at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500, at least 550, at least 600, at least 650, at least 700, at least 750, at least 800, at least 850, at least 900, at least 950, or at least 1000, antibodies. Panels of antibodies can be used, for example, in 96 well plates for assays such as ELISAs.

[0261] The present invention further provides for compositions comprising, one or more antibodies (including scFvs and other molecules comprising, or alternatively consisting of antibody fragments or variants of the invention). In one embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH domains contained in SEQ ID NOS:1563 - 1880 as disclosed in Table 1, or a variant thereof. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH CDR1s contained in SEQ ID NOS:1563 - 1880 as disclosed in Table 1, or
a variant thereof. In another embodiment, a composition of the present invention comprises, one, two, three, four, five or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH CDR2s contained in SEQ ID NOS:1563 - 1880 as disclosed in Table 1, or a variant thereof. In a preferred embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH CDR3s contained in SEQ ID NOS:1563 - 1880, as disclosed in Table 1 or a variant thereof.

[0262] The present invention further provides for compositions comprising, one or more antibodies (including scFvs and other molecules comprising, or alternatively consisting of antibody fragments or variants of the invention). In one embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH domains contained in SEQ ID NOS:1881 - 2128 as disclosed in Table 1, or a variant thereof. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH CDR1s contained in SEQ ID NOS:1881 - 2128 as disclosed in Table 1, or a variant thereof. In a preferred embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH CDR3s contained in SEQ ID NOS:1881 - 2128 as disclosed in Table 1 or a variant thereof.

[0263] The present invention further provides for compositions comprising, one or more antibodies (including scFvs, or molecules comprising, or alternatively consisting of antibody fragments or variants of the invention). In one embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH domains contained in SEQ ID NOS:1 - 1562 as disclosed in Table 1, or a
variant thereof. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH CDR1s contained in SEQ ID NOS:1 - 1562 as disclosed in Table 1, or a variant thereof.

In another embodiment, a composition of the present invention comprises, one, two, three, four, five or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH CDR2s contained in SEQ ID NOS:1 - 1562 as disclosed in Table 1, or a variant thereof. In a preferred embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH CDR3s contained in SEQ ID NOS:1 - 1562 as disclosed in Table 1 or a variant thereof.

[0264] Other embodiments of the present invention providing for compositions comprising, one or more antibodies (including scFvs and other molecules comprising, or alternatively consisting of antibody fragments or variants of the invention) are listed below. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VL domains contained in SEQ ID NOS:1563 - 1880 as disclosed in Table 1, or a variant thereof. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VL CDR1s contained in SEQ ID NOS:1563 - 1880 as disclosed in Table 1, or a variant thereof. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VL CDR2s contained SEQ ID NOS:1563 - 1880 as disclosed in Table 1, or a variant thereof. In a preferred embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VL CDR3s contained in SEQ ID NOS:1563 - 1880 as disclosed in Table 1, or a variant thereof.
Other embodiments of the present invention providing for compositions comprising, one or more antibodies (including scFvs and other molecules comprising, or alternatively consisting of antibody fragments or variants of the invention) are listed below. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VL domains contained in SEQ ID NOS:1881 - 2128 as disclosed in Table 1, or a variant thereof. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VL CDR1s contained in SEQ ID NOS:1881 - 2128 as disclosed in Table 1, or a variant thereof. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VL CDR2s SEQ ID NOS:1881 - 2128 as disclosed in Table 1, or a variant thereof. In a preferred embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VL CDR3s contained in SEQ ID NOS:1881 - 2128 as disclosed in Table 1, or a variant thereof.

Other embodiments of the present invention providing for compositions comprising, one or more antibodies (including scFvs and other molecules comprising, or alternatively consisting of antibody fragments or variants of the invention) are listed below. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VL domains contained in SEQ ID NOS:1 - 1562 as disclosed in Table 1, or a variant thereof. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VL CDR1s contained in SEQ ID NOS:1 - 1562 as disclosed in Table 1, or a variant thereof. In another embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid
sequence of any one or more of the VL CDR2s SEQ ID NOS:1 - 1562 as disclosed in Table 1, or a variant thereof. In a preferred embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VL CDR3s contained in SEQ ID NOS:1 - 1562 as disclosed in Table 1, or a variant thereof.

[0267] In a preferred embodiment, a composition of the present invention comprises, one, two, three, four, five, or more antibodies that comprise, or alternatively consist of, a polypeptide having an amino acid sequence of any one or more of the VH domains in disclosed in Table 1, or a variant thereof, and an amino acid sequence of any one or more of the VL domains disclosed in Table 1, or a variant thereof wherein the VH and VL domains are from scFvs with the same specificity (i.e., from scFvs that bind soluble BLyS (SEQ ID NOS:1563 - 1880), from scFvs that bind membrane-bound BLyS (SEQ ID 1881 - 2128), or from scFvs that bind both soluble and membrane-bound BLyS (SEQ ID NOS:1 – 1562)). In a preferred embodiment the invention provides antibodies wherein the VH CDRX (where X=1,2, or 3) and VL CDRY (where Y= 1,2, or 3) are from scFvs with the same specificity (i.e., from scFvs that bind soluble BLyS (SEQ ID NOS:1563 - 1880), from scFvs that bind membrane-bound BLyS (SEQ ID NOS:1881 - 2128), or from scFvs that bind both soluble and membrane-bound BLyS (SEQ ID NOS:1 – 1562)). In yet another embodiment, a composition of the present invention comprises one or more fusion proteins.

[0268] As discussed in more detail below, a composition of the invention may be used either alone or in combination with other compositions. The antibodies (including scFvs and other molecules comprising, or alternatively consisting of antibody fragments or variants of the present invention) may further be recombinantly fused to a heterologous polypeptide at the N- or C-terminus or chemically conjugated (including covalently and non-covalently conjugations) to polypeptides or other compositions. For example, antibodies of the present invention may be recombinantly fused or conjugated to molecules useful as labels in detection assays and effector molecules such as heterologous polypeptides, drugs, radionuclides, or toxins. See, e.g., PCT publications WO 92/08495; WO 91/14438; WO 89/12624; U.S. Patent No. 5,314,995; and EP 396,387.
Antibodies of the present invention (including scFvs and other molecules comprising, or alternatively consisting of antibody fragments or variants of the present invention) may be used, for example, but not limited to, to purify and detect BLyS, and to target the polypeptides of the present invention to cells expressing membrane-bound BLyS or BLyS receptor, including both in vitro and in vivo diagnostic and therapeutic methods. For example, the antibodies have use in immunoassays for qualitatively and quantitatively measuring levels of BLyS in biological samples. See, e.g., Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988) (incorporated by reference herein in its entirety).

Methods Producing Antibodies

The antibodies of the invention (including scFvs and other molecules comprising, or alternatively consisting of antibody fragments or variants of the invention) can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or preferably, by recombinant expression techniques.

The single chain Fvs disclosed in Table 1 were generated using phage display methods known in the art. Furthermore, other scFvs that immunospecifically bind BLyS may be generated using phage display methods known in the art. In phage display methods, functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them. In particular, DNA sequences encoding VH and VL domains are amplified from animal cDNA libraries (e.g., human or murine cDNA libraries of lymphoid tissues) or synthetic cDNA libraries. The DNA encoding the VH and VL domains are joined together by an scFv linker by PCR and cloned into a phagemid vector (e.g., p CANTAB 6 or pComb 3 HSS). The vector is electroporated in *E. coli* and the *E. coli* is infected with helper phage. Phage used in these methods are typically filamentous phage including fd and M13 and the VH and VL domains are usually recombinantly fused to either the phage gene III or gene VIII. Phage expressing an antigen binding domain that binds to an antigen of interest (i.e., BLyS or a fragment thereof) can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead. Examples of phage display methods that can be used to make the antibodies of the present invention include, but are not limited to, those disclosed in Brinkman et al., J. Immunol. Methods 182:41-50 (1995);
Immunol. 24:952-958 (1994); Persic et al., Gene 187 9-18 (1997); Burton et al., Advances
in Immunology 57:191-280(1994); PCT application No. PCT/GB91/01 134; PCT
publications WO 90/02809; WO 91/10737; WO 92/01047; WO 92/18619; WO 93/1 1236;
WO 95/15982; WO 95/20401; WO97/13844; and U.S. Patent Nos. 5,698,426; 5,223,409;
5,403,484; 5,580,717; 5,427,908; 5,750,753; 5,821,047; 5,571,698; 5,427,908; 5,516,637;
5,780,225; 5,658,727; 5,733,743 and 5,969,108; each of which is incorporated herein by
reference in its entirety.

[0272] As described in the above references, after phage selection, the antibody
coding regions from the phage can be isolated and used to generate whole antibodies,
including human antibodies, or any other desired antigen binding fragment, and expressed
in any desired host, including mammalian cells, insect cells, plant cells, yeast, and
bacteria, e.g., as described below. Techniques to recombinantly produce Fab, Fab' and
F(ab')2 fragments can also be employed using methods known in the art such as those
disclosed in PCT publication WO 92/22324; Mullinax et al., BioTechniques 12(6):864-
869 (1992); Sawai et al., AJRI 34:26-34 (1995); and Better et al., Science 240:1041-1043
(1988) (said references incorporated by reference in their entireties).

[0273] To generate whole antibodies, PCR primers including VH or VL nucleotide
sequences, a restriction site, and a flanking sequence to protect the restriction site can be
used to amplify the VH or VL sequences in scFv clones. Utilizing cloning techniques
known to those of skill in the art, the PCR amplified VH domains can be cloned into
vectors expressing a VH constant region, e.g., the human gamma 4 constant region, and
the PCR amplified VL domains can be cloned into vectors expressing a VL constant
region, e.g., human kappa or lambda constant regions. Preferably, the vectors for
expressing the VH or VL domains comprise a promoter suitable to direct expression of the
heavy and light chains in the chosen expression system, a secretion signal, a cloning site
for the immunoglobulin variable domain, immunoglobulin constant domains, and a
selection marker such as neomycin. The VH and VL domains may also be cloned into one
vector expressing the necessary constant regions. The heavy chain conversion vectors and
light chain conversion vectors are then co-transfected into cell lines to generate stable or
transient cell lines that express full-length antibodies, e.g., IgG, using techniques known to
those of skill in the art.
[0274] Cell lines that express antibodies that comprise the VH and VL domains of scFvs of the invention have been deposited with the American Type Culture Collection ("ATCC") on the dates listed in Table 2 and given the ATCC Deposit Numbers identified in Table 2. The ATCC is located at 10801 University Boulevard, Manassas, VA 20110-2209, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Corresponding scFv</th>
<th>SEQ ID NO:</th>
<th>ATCC Deposit Number</th>
<th>ATCC Deposit Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSO-B11-15</td>
<td>I050B11-15</td>
<td>24</td>
<td>PTA-3238</td>
<td>March 27, 2001</td>
</tr>
<tr>
<td>NSO-anti-BLyS-6D08-18</td>
<td>I006D08</td>
<td>2</td>
<td>PTA-3239</td>
<td>March 27, 2001</td>
</tr>
<tr>
<td>NSO-anti-BLyS-116A01-60</td>
<td>I116A01</td>
<td>327</td>
<td>PTA-3240</td>
<td>March 27, 2001</td>
</tr>
<tr>
<td>IO26C04K</td>
<td>I026C04-K</td>
<td>1563</td>
<td>PTA-3241</td>
<td>March 27, 2001</td>
</tr>
<tr>
<td>IO50A12</td>
<td>I050A12</td>
<td>12</td>
<td>PTA-3242</td>
<td>March 27, 2001</td>
</tr>
<tr>
<td>IO50-B11</td>
<td>I050B11</td>
<td>9</td>
<td>PTA-3243</td>
<td>March 27, 2001</td>
</tr>
</tbody>
</table>

[0275] Accordingly, in one embodiment, the invention provides antibodies that comprise the VH and VL domains of scFvs of the invention.

[0276] In a preferred embodiment, an antibody of the invention is the antibody expressed by cell line NSO-B11-15.

[0277] In a preferred embodiment, an antibody of the invention is the antibody expressed by cell line NSO-anti-BLyS-6D08-18.

[0278] In a preferred embodiment, an antibody of the invention is the antibody expressed by cell line NSO-anti-BLyS-116A01-60.

[0279] In a preferred embodiment, an antibody of the invention is the antibody expressed by cell line IO26C04K.

[0280] In a preferred embodiment, an antibody of the invention is the antibody expressed by cell line IO50A12.

[0281] In a preferred embodiment, an antibody of the invention is the antibody expressed by cell line NSO-B11.
In other preferred embodiments, the invention provides antibodies that competitively inhibit binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide. In preferred embodiments, the invention provides antibodies that which reduce the binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide by between 1% and 10% in a competitive inhibition assay. In preferred embodiments, the invention provides antibodies that which reduce the binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide by between 1% and 10% in a competitive inhibition assay.

In preferred embodiments, the invention provides antibodies that which reduce the binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide by at least 10% and up to 20% in a competitive inhibition assay.

In preferred embodiments, the invention provides antibodies that which reduce the binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide by at least 20% and up to 30% in a competitive inhibition assay.

In preferred embodiments, the invention provides antibodies that which reduce the binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide by at least 30% and up to 40% in a competitive inhibition assay.

In preferred embodiments, the invention provides antibodies that which reduce the binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide by at least 40% and up to 50% in a competitive inhibition assay.
In preferred embodiments, the invention provides antibodies that which reduce the binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide by at least 50% and up to 60% in a competitive inhibition assay.

In preferred embodiments, the invention provides antibodies that which reduce the binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide by at least 60% and up to 70% in a competitive inhibition assay.

In preferred embodiments, the invention provides antibodies that which reduce the binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide by at least 70% and up to 80% in a competitive inhibition assay.

In preferred embodiments, the invention provides antibodies that which reduce the binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide by at least 80% and up to 90% in a competitive inhibition assay.

In preferred embodiments, the invention provides antibodies that which reduce the binding of an antibody comprising a fragment (e.g., VH domain, VL domain, VHCDR1, VHCDR2, VHCDR3, VLCDR1, VLCDR2, or VLCDR3) or variant of an scFv referred to in Table 1 to a BLyS polypeptide by at least 90% and up to 100% in a competitive inhibition assay.

In other preferred embodiments, the invention provides antibodies that competitively inhibit binding of the antibody produced by the cell line having ATCC deposit number PTA-3238 to a BLyS polypeptide.

In other preferred embodiments, the invention provides antibodies that competitively inhibit binding of the antibody produced by the cell line having ATCC deposit number PTA-3239 to a BLyS polypeptide.
[0294] In other preferred embodiments, the invention provides antibodies that
competitively inhibit binding of the antibody produced by the cell line having ATCC
deposit number PTA-3240 to a BLyS polypeptide.

[0295] In other preferred embodiments, the invention provides antibodies that
competitively inhibit binding of the antibody produced by the cell line having ATCC
deposit number PTA-3241 to a BLyS polypeptide.

[0296] In other preferred embodiments, the invention provides antibodies that
competitively inhibit binding of the antibody produced by the cell line having ATCC
deposit number PTA-3242 to a BLyS polypeptide.

[0297] In other preferred embodiments, the invention provides antibodies that
competitively inhibit binding of the antibody produced by the cell line having ATCC
deposit number PTA-3243 to a BLyS polypeptide.

[0298] For some uses, including in vivo use of antibodies in humans and in vitro
detection assays, it may be preferable to use human or chimeric antibodies. Completely
human antibodies are particularly desirable for therapeutic treatment of human patients.
See also, U.S. Patent Nos. 4,444,887 and 4,716,111; and PCT publications WO 98/46645,
91/10741; each of which is incorporated herein by reference in its entirety. In a specific
embodiment, antibodies of the present invention comprise one or more VH and VL
domains corresponding to the human scFvs of the invention and framework regions from
another immunoglobulin molecule, preferably a human immunoglobulin molecule. In a
specific embodiment, antibodies of the present invention comprise one or more CDRs
corresponding to the human scFvs of the invention and framework regions from another
immunoglobulin molecule, preferably a human immunoglobulin molecule. In other
embodiments, an antibody of the present invention comprises one, two, three, four, five,
six or more VL CDRs or VH CDRs corresponding to one or more of the human scFvs
referred to in Table 1, or fragments or variants thereof, and framework regions (and,
optionally CDRs not derived from the scFvs in Table 1) from a human immunoglobulin
molecule. In a preferred embodiment, an antibody of the present invention comprises a
VH CDR3, VL CDR3, or both, corresponding to the same scFv, or different scFvs referred
to in Table 1, or fragments or variants thereof, and framework regions from a human
immunoglobulin.

[0299] A chimeric antibody is a molecule in which different portions of the
antibody are derived from different immunoglobulin molecules such as antibodies having
a variable region derived from a human antibody and a non-human immunoglobulin
constant region. Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Gillies et
4,816,397, which are incorporated herein by reference in their entirety. Chimeric
antibodies comprising one or more CDRs from human species and framework regions
from a non-human immunoglobulin molecule (e.g., framework regions from a canine or
feline immunoglobulin molecule) can be produced using a variety of techniques known in
the art including, for example, CDR-grafting (EP 239,400; PCT publication WO
91/09967; U.S. Patent Nos. 5,225,539; 5,530,101; and 5,585,089), veneering or
resurfacing (EP 592,106; EP 519,596; Padlan, Molecular Immunology 28(4/5):489-498
(1991); Studnicka et al., Protein Engineering 7(6):805-814 (1994); Roguska et al., PNAS
91:969-973 (1994)), and chain shuffling (U.S. Patent No. 5,565,332). In a preferred
embodiment, chimeric antibodies comprise a human CDR3 having an amino acid
sequence of any one of the VH CDR3s or VL CDR3s referred to in Table 1, or a variant
thereof, and non-human framework regions or human framework regions different from
those of the frameworks in the corresponding scFv disclosed in Table 1. Often,
framework residues in the framework regions will be substituted with the corresponding
residue from the CDR donor antibody to alter, preferably improve, antigen binding. These
framework substitutions are identified by methods well known in the art, e.g., by modeling
of the interactions of the CDR and framework residues to identify framework residues
important for antigen binding and sequence comparison to identify unusual framework
residues at particular positions. (See, e.g., Queen et al., U.S. Patent No. 5,585,089;
Riechmann et al., Nature 332:323 (1988), which are incorporated herein by reference in
their entireties.)
Further, the antibodies of the invention can, in turn, be utilized to generate anti-idiotypic antibodies that "mimic" BLyS polypeptides using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, FASEB J. 7(5):437-444 (1993); and Nissinoff, J. Immunol. 147(8):2429-2438 (1991)). For example, antibodies of the invention which bind to BLyS and competitively inhibit the binding of BLyS to its receptor (as determined by assays well known in the art such as, for example, that disclosed, infra) can be used to generate antiidiotypes that "mimic" a BLyS ligand/receptor-binding domain and, as a consequence, bind to and neutralize BLyS receptors (e.g., TACI, BCMA, and TR20). Such neutralizing anti-idiotypes (including molecules comprising, or alternatively consisting of, antibody fragments or variants, such as Fab fragments of such anti-idiotypes) can be used in therapeutic regimens to neutralize BLyS. For example, such anti-idiotypic antibodies can be used to bind BLyS ligands/receptors, and thereby block BLyS mediated biological activity. Alternatively, anti-idiotypes that "mimic" a BLyS binding domain may bind to BLyS receptor(s) and induce BLyS receptor mediated signalling (e.g., activation of nuclear factor of activated T cells (NF-AT), nuclear factor-kappa B (NF-kappa B), and/or AP-1). Such agonistic anti-idiotypes (including agonistic Fab fragments of these anti-idiotypes) can be used in therapeutic regimens to induce or enhance BLyS receptor mediated signalling. For example, such anti-idiotypic antibodies can be used to bind BLyS ligands/receptors, and thereby stimulate BLyS mediated biological activity (e.g., B cell proliferation and/or immunoglobulin production).

Once an antibody molecule of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) has been chemically synthesized or recombinantly expressed, it may be purified by any method known in the art for purification of an immunoglobulin molecule, or more generally, a protein molecule, such as, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. Further, the antibodies of the present invention may be fused to heterologous polypeptide sequences described herein or otherwise known in the art, to facilitate purification.
Polynucleotides Encoding an Antibody

[0302] The invention provides polynucleotides comprising, or alternatively consisting of, a nucleotide sequence encoding an antibody of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof). The invention also encompasses polynucleotides that hybridize under high stringency, or alternatively, under intermediate or lower stringency hybridization conditions, e.g., as defined supra, to polynucleotides complementary to nucleic acids having a polynucleotide sequence that encodes an antibody of the invention or a fragment or variant thereof.

[0303] The polynucleotides may be obtained, and the nucleotide sequence of the polynucleotides determined, by any method known in the art. Since the amino acid sequences of the scFv antibodies and VH domains, VL domains and CDRs thereof, are known (as described in Table 1), nucleotide sequences encoding these antibodies can be determined using methods well known in the art, i.e., the nucleotide codons known to encode the particular amino acids are assembled in such a way to generate a nucleic acid that encodes the antibody, of the invention. Such a polynucleotide encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., BioTechniques 17:242 (1994)), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the antibody, annealing and ligating of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.

[0304] Alternatively, a polynucleotide encoding an antibody (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) may be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular antibody is not available, but the sequence of the antibody molecule is known, a nucleic acid encoding the immunoglobulin may be chemically synthesized or obtained from a suitable source (e.g., an antibody cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+ RNA, isolated from, any tissue or cells expressing the antibody, such as hybridoma cells selected to express an antibody of the invention) by PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, e.g., a cDNA clone from a cDNA library that encodes
the antibody. Amplified nucleic acids generated by PCR may then be cloned into replicable cloning vectors using any method well known in the art.

[0305] Once the nucleotide sequence of the antibody (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) is determined, the nucleotide sequence of the antibody may be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook et al., 1990, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY and Ausubel et al., eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY, which are both incorporated by reference herein in their entireties), to generate antibodies having a different amino acid sequence, for example to create amino acid substitutions, deletions, and/or insertions.

[0306] In a specific embodiment, one or more of the VH and VL domains referred to in Table 1, or fragments or variants thereof, is inserted within framework regions using recombinant DNA techniques known in the art. In a specific embodiment, one, two, three, four, five, six, or more of the CDRs referred to in Table 1, or fragments or variants thereof, is inserted within framework regions using recombinant DNA techniques known in the art. The framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia et al., J. Mol. Biol. 278: 457-479 (1998) for a listing of human framework regions, the contents of which are hereby incorporated by reference in its entirety). Preferably, the polynucleotides generated by the combination of the framework regions and CDRs encode an antibody (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that specifically binds to BLyS. Preferably, as discussed supra, polynucleotides encoding variants of antibodies or antibody fragments having one or more amino acid substitutions may be made within the framework regions, and, preferably, the amino acid substitutions improve binding of the antibody to its antigen. Additionally, such methods may be used to make amino acid substitutions or deletions of one or more variable region cysteine residues participating in an intrachain disulfide bond to generate antibody molecules, or antibody fragments or variants, lacking one or more intrachain
disulfide bonds. Other alterations to the polynucleotide are encompassed by the present invention and fall within the ordinary skill of the art.

Recombinant Expression of an Antibody

[0307] Recombinant expression of an antibody of the invention (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof (e.g., a heavy or light chain of an antibody of the invention or a portion thereof or a single chain antibody of the invention)), requires construction of an expression vector(s) containing a polynucleotide that encodes the antibody. Once a polynucleotide encoding an antibody molecule (e.g., a whole antibody, a heavy or light chain of an antibody, or portion thereof (preferably, but not necessarily, containing the heavy or light chain variable domain)), of the invention has been obtained, the vector(s) for the production of the antibody molecule may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing a protein by expressing a polynucleotide containing an antibody encoding nucleotide sequence are described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing antibody coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. The invention, thus, provides replicable vectors comprising a nucleotide sequence encoding an antibody molecule of the invention (e.g., a whole antibody, a heavy or light chain of an antibody, a heavy or light chain variable domain of an antibody, or a portion thereof, or a heavy or light chain CDR, a single chain Fv, or fragments or variants thereof), operably linked to a promoter. Such vectors may include the nucleotide sequence encoding the constant region of the antibody molecule (see, e.g., PCT Publication WO 86/05807; PCT Publication WO 89/01036; and U.S. Patent No. 5,122,464, the contents of each of which are hereby incorporated by reference in its entirety) and the variable domain of the antibody may be cloned into such a vector for expression of the entire heavy chain, the entire light chain, or both the entire heavy and light chains.

[0308] The expression vector(s) is(are) transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody of the invention. Thus, the invention includes host cells containing
polynucleotide(s) encoding an antibody of the invention (e.g., whole antibody, a heavy or light chain thereof, or portion thereof, or a single chain antibody of the invention, or a fragment or variant thereof), operably linked to a heterologous promoter. In preferred embodiments, for the expression of entire antibody molecules, vectors encoding both the heavy and light chains may be co-expressed in the host cell for expression of the entire immunoglobulin molecule, as detailed below.

[0309] A variety of host-expression vector systems may be utilized to express the antibody molecules of the invention. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody molecule of the invention in situ. These include, but are not limited to, microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing antibody coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter). Preferably, bacterial cells such as Escherichia coli, and more preferably, eukaryotic cells, especially for the expression of whole recombinant antibody molecule, are used for the expression of a recombinant antibody molecule. For example, mammalian cells such as Chinese hamster ovary cells (CHO), in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for antibodies (Foowing et al., Gene 45:101 (1986); Cockett et al., Bio/Technology 8:2 (1990)).

[0310] In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the antibody molecule being
expressed. For example, when a large quantity of such a protein is to be produced, for the
generation of pharmaceutical compositions of an antibody molecule, vectors which direct
the expression of high levels of fusion protein products that are readily purified may be
desirable. Such vectors include, but are not limited to, the E. coli expression vector
pUR278 (Ruther et al., EMBO 1: 2:1791 (1983)), in which the antibody coding sequence
may be ligated individually into the vector in frame with the lac Z coding region so that a
fusion protein is produced; pIN vectors (Inouye & Inouye, Nucleic Acids Res. 13:3101-
pGEX vectors may also be used to express foreign polypeptides as fusion proteins with
 glutathione 5-transferase (GST). In general, such fusion proteins are soluble and can
easily be purified from lysed cells by adsorption and binding to matrix glutathione agarose
beads followed by elution in the presence of free glutathione. The pGEX vectors are
designed to include thrombin or factor Xa protease cleavage sites so that the cloned target
gene product can be released from the GST moiety.

[0311] In an insect system, Autographa californica nuclear polyhedrosis virus
(AcNPV) may be used as a vector to express foreign genes. The virus grows in
Spodoptera frugiperda cells. Antibody coding sequences may be cloned individually into
non-essential regions (for example, the polyhedrin gene) of the virus and placed under
control of an AcNPV promoter (for example, the polyhedrin promoter).

[0312] In mammalian host cells, a number of viral-based expression systems may
be utilized. In cases where an adenovirus is used as an expression vector, the antibody
coding sequence of interest may be ligated to an adenovirus transcription/translation
control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene
may then be inserted in the adenovirus genome by in vitro or in vivo recombination.
Insertion in a non-essential region of the viral genome (e.g., region El or E3) will result in
a recombinant virus that is viable and capable of expressing the antibody molecule in
infected hosts (e.g., see Logan & Shenk, Proc. Natl. Acad. Sci. USA 8 1:355-359 (1984)).
Specific initiation signals may also be required for efficient translation of inserted
antibody coding sequences. These signals include the ATG initiation codon and adjacent
sequences. Furthermore, the initiation codon must be in phase with the reading frame of
the desired coding sequence to ensure translation of the entire insert. These exogenous
translational control signals and initiation codons can be of a variety of origins, both

155
natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see, e.g., Bittner et al., Methods in Enzymol. 153:51-544 (1987)).

[0313] In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, VERY, BHK, Hela, COS, NSO, MDCK, 293, 3T3, W138, and in particular, breast cancer cell lines such as, for example, BT483, Hs578T, HTB2, BT20 and T47D, and normal mammary gland cell line such as, for example, CRL7030 and HsS78Bst.

[0314] For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the antibody may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the antibody molecule. Such engineered cell lines may be particularly useful in screening and evaluation of compositions that interact directly or indirectly with the antibody molecule.

[0315] A number of selection systems may be used, including but not limited to, the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223 (1977)),

[0316] The expression levels of an antibody molecule can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)). When a marker in the vector system expressing antibody is amplifiable, increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the coding sequence of the antibody, production of the antibody will also increase (Crouse et al., Mol. Cell. Biol. 3:257 (1983)).

[0317] The host cell may be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide. The two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides. Alternatively, a single vector may be used which encodes, and is capable of expressing,
both heavy and light chain polypeptides. In such situations, the light chain is preferably placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, Nature 322:52 (1986); Kohler, Proc. Natl. Acad. Sci. USA 77:2 197 (1980)). The coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.

Once an antibody molecule of the invention has been produced by recombinant expression, it may be purified by any method known in the art for purification of an immunoglobulin molecule, or more generally, for purification of a protein, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. Further, the antibodies of the present invention may be fused to heterologous polypeptide sequences described herein or otherwise known in the art to facilitate purification.

Antibody Characterization

Antibodies of the present invention (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) may be characterized in a variety of ways. In particular, antibodies and related molecules of the invention may be assayed for the ability to immunospecifically bind to BLyS or a fragment of BLyS (e.g., to the soluble form or the membrane-bound form of BLyS) using techniques described herein or routinely modifying techniques known in the art. BLyS or BLyS fragments that may be immunospecifically bound by the compositions of the invention include, but are not limited to, human BLyS (SEQ ID NOS:3228 and/or 3229) or BLyS expressed on human monocytes; murine BLyS (SEQ ID NOS:3230 and/or 3231) or BLyS expressed on murine monocytes; rat BLyS (either the soluble forms as given in SEQ ID NOS:3232, 3233, 3234 and/or 3235 or in a membrane associated form, e.g., on the surface of rat monocytes); or monkey BLyS (e.g., the monkey BLyS polypeptides of SEQ ID NOS:3236 and/or 3237, the soluble form of monkey BLyS, or BLyS expressed on monkey monocytes) or fragments thereof. Preferably compositions of the invention bind human BLyS (SEQ ID NOS:3228 and/or 3229) or fragments thereof. Assays for the ability of the antibodies of the invention to immunospecifically bind BLyS or a fragment of BLyS may be performed in solution (e.g., Houghten, Bio/Techniques
13:412-421(1992)), on beads (e.g., Lam, Nature 354:82-84 (1991)), on chips (e.g., Fodor, Nature 364:555-556 (1993)), on bacteria (e.g., U.S. Patent No. 5,223,409), on spores (e.g., Patent Nos. 5,571,698; 5,403,484; and 5,223,409), on plasmids (e.g., Cull et al., Proc. Natl. Acad. Sci. USA 89:1865-1869 (1992)) or on phage (e.g., Scott and Smith, Science 249:386-390 (1990); Devlin, Science 249:404-406 (1990); Cwirla et al., Proc. Natl. Acad. Sci. USA 87:6378-6382 (1990); and Felici, J. Mol. Biol. 222:301-310 (1991)) (each of these references is incorporated herein in its entirety by reference). Antibodies that have been identified to immunospecifically bind to BLyS or a fragment of BLyS can then be assayed for their specificity and affinity for BLyS or a fragment of BLyS using or routinely modifying techniques described herein or otherwise known in the art.

[0320] The antibodies of the invention may be assayed for immunospecific binding to BLyS and cross-reactivity with other antigens by any method known in the art. In particular, the ability of an antibody to immunospecifically bind to the soluble form or membrane-bound form of BLyS and the specificity of the antibody, fragment, or variant for BLyS polypeptide from a particular species (e.g., murine, monkey or human, preferably human) may be determined using or routinely modifying techniques described herein or otherwise known in art.

[0321] Immunoassays which can be used to analyze immunospecific binding and cross-reactivity include, but are not limited to, competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, and protein A immunoassays, to name but a few. Such assays are routine and well known in the art (see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, which is incorporated by reference herein in its entirety). Exemplary immunoassays are described briefly below (but are not intended by way of limitation).

[0322] Immunoprecipitation protocols generally comprise lysing a population of cells in a lysis buffer such as RIPA buffer (1% NP-40 or Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium phosphate at pH 7.2, 1% Trasylol) supplemented with protein phosphatase and/or protease inhibitors (e.g., EDTA, PMSF,
aprotinin, sodium vanadate), adding the antibody of interest to the cell lysate, incubating for a period of time (e.g., 1 to 4 hours) at 40 degrees C, adding protein A and/or protein G sepharose beads to the cell lysate, incubating for about an hour or more at 40 degrees C, washing the beads in lysis buffer and resuspending the beads in SDS/sample buffer. The ability of the antibody of interest to immunoprecipitate a particular antigen can be assessed by, e.g., western blot analysis. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the binding of the antibody to an antigen and decrease the background (e.g., pre-clearing the cell lysate with sepharose beads). For further discussion regarding immunoprecipitation protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10.16.1.

Western blot analysis generally comprises preparing protein samples, electrophoresis of the protein samples in a polyacrylamide gel (e.g., 8%-20% SDS-PAGE depending on the molecular weight of the antigen), transferring the protein sample from the polyacrylamide gel to a membrane such as nitrocellulose, PVDF or nylon, blocking the membrane in blocking solution (e.g., PBS with 3% BSA or non-fat milk), washing the membrane in washing buffer (e.g., PBS-Tween 20), blocking the membrane with primary antibody (the antibody of interest) diluted in blocking buffer, washing the membrane in washing buffer, blocking the membrane with a secondary antibody (which recognizes the primary antibody, e.g., an anti-human antibody) conjugated to an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) or radioactive molecule (e.g., 32P or 125I) diluted in blocking buffer, washing the membrane in wash buffer, and detecting the presence of the antigen. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected and to reduce the background noise. For further discussion regarding western blot protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10.8.1.

ELISAs comprise preparing antigen, coating the well of a 96-well microtiter plate with the antigen, washing away antigen that did not bind the wells, adding the antibody of interest conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) to the wells and incubating for a period of time, washing away unbound antibodies or non-specifically bound
antibodies, and detecting the presence of the antibodies specifically bound to the antigen coating the well. In ELISAs the antibody of interest does not have to be conjugated to a detectable compound; instead, a second antibody (which recognizes the antibody of interest) conjugated to a detectable compound may be added to the well. Further, instead of coating the well with the antigen, the antibody may be coated to the well. In this case, the detectable molecule could be the antigen conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase). One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected as well as other variations of ELISAs known in the art. For further discussion regarding ELISAs see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 11.2.1.

[0325] The binding affinity of an antibody (including an scFv or other molecule comprising, or alternatively consisting of, antibody fragments or variants thereof) to an antigen and the off-rate of an antibody-antigen interaction can be determined by competitive binding assays. One example of a competitive binding assay is a radioimmunoassay comprising the incubation of labeled antigen (e.g., 3H or 125I) with the antibody of interest in the presence of increasing amounts of unlabeled antigen, and the detection of the antibody bound to the labeled antigen. The affinity of the antibody of the present invention for BLyS and the binding off-rates can be determined from the data by Scatchard plot analysis. Competition with a second antibody can also be determined using radioimmunoassays. In this case, BLyS is incubated with an antibody of the present invention conjugated to a labeled compound (e.g., 3H or 125I) in the presence of increasing amounts of an unlabeled second anti-BLyS antibody.

[0326] In a preferred embodiment, BIAcore kinetic analysis is used to determine the binding on and off rates of antibodies (including an scFv or other molecule comprising, or alternatively consisting of, antibody fragments or variants thereof) to BLyS, or fragments of BLyS. BIAcore kinetic analysis comprises analyzing the binding and dissociation of BLyS from chips with immobilized antibodies on their surface as described in detail in Examples 6, 12, 17 and 18, infra.

[0327] The antibodies of the invention (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) can also be assayed for their ability to inhibit, increase, or not significantly alter, the binding of
BLyS to a BLyS receptor (e.g., TACI and BCMA) using techniques known to those of skill in the art. For example, cells expressing a receptor for BLyS (e.g., IM9, REH, ARH-77 cells, Namalwa, and RPMI-8226 B cell tumor lines as well as peripheral CD20+ B cells) can be contacted with BLyS in the presence or absence of an antibody, and the ability of the antibody to inhibit, increase, or not significantly alter, BLyS binding to the cells can be measured. BLyS binding to cells can be measured by, for example, flow cytometry or a scintillation assay. BLyS or the antibody can be labeled with a detectable compound such as a radioactive label (e.g., 32P, 35S, and 125I) or a fluorescent label (e.g., fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthalaldehyde and fluorescamine) to enable detection of an interaction between BLyS and a BLyS receptor and/or BLyS and an antibody of the invention. Alternatively, the ability of antibodies of the invention to inhibit, increase, or not significantly alter, BLyS binding to a BLyS receptor can be determined in cell-free assays. For example, native or recombinant BLyS (e.g., that having the amino acid sequence of amino acids 134 – 285 of SEQ ID NO:3228) or a fragment thereof can be contacted with an antibody and the ability of the antibody to inhibit, increase, or not significantly alter, BLyS from binding to a BLyS receptor can be determined. Preferably, the antibody is immobilized on a solid support and BLyS or a BLyS fragment is labeled with a detectable compound. Alternatively, BLyS or a BLyS fragment is immobilized on a solid support and the antibody is labeled with a detectable compound. BLyS may be partially or completely purified (e.g., partially or completely free of other polypeptides) or part of a cell lysate. Further, the BLyS polypeptide may be a fusion protein comprising BLyS or a biologically active portion thereof and a domain such as an Immunoglobulin Fc or glutathionine-S-transferase. For example, amino acid residues 1-154 of TACI (GenBank accession number AAC51790), or 1-48 of BCMA (GenBank accession number NP_001183) may be fused to the Fc region of an IgG molecule and used in a cell free assay to determine the ability of antibodies of the invention to inhibit, increase, or not significantly alter, BLyS binding to a BLyS receptor. Alternatively, BLyS can be biotinylated using techniques well known to those of skill in the art (e.g., biotinylation kit, Pierce Chemicals; Rockford, IL).

[0328] The antibodies of the invention (including scFvs or other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), can also
be assayed for their ability to inhibit, stimulate, or not significantly alter, BLyS-induced B-cell proliferation using techniques known to those of skill in the art. For example, B-cell proliferation can be assayed by \(^3 \text{H} \)-thymidine incorporation assays and trypan blue cell counts (see, \textit{e.g.}, Moore \textit{et al.}, Science 285: 260-263 (1999)). Further, the antibodies of the invention, or fragments or variants thereof, can be assayed for their ability to block, stimulate, or not significantly alter, BLyS-induced activation of cellular signaling molecules and transcription factors such as calcium-modulator and cyclophilin ligand ("CAML"), calcineurin, nuclear factor of activated T cells transcription factor ("NF-AT"), nuclear factor-kappa B ("NF-kappa B"), and AP-1 using techniques known to those of skill in the art (see, \textit{e.g.}, von Bulow and Bram, Science 278:138-141(1997)). For example, NF-AT activity can be determined by electromobility gel shift assays, by detecting the expression of a protein known to be regulated by NF-AT (\textit{e.g.}, IL-2 expression), by detecting the induction of a reporter gene (\textit{e.g.}, an NF-AT regulatory element operably linked to a nucleic acid encoding a detectable marker such as luciferase, beta-galactosidase or chloramphenicol acetyltransferase (CAT)), or by detecting a cellular response (\textit{e.g.}, cellular differentiation, or cell proliferation).

The antibodies of the invention, or fragments or variants thereof can also be assayed for their ability to neutralize, enhance, or not significantly alter, BLyS activity. For example, antibodies or fragments or variants thereof, may be routinely tested for their ability to inhibit BLyS from binding to cells expressing the receptor for BLyS (see Example 3, \textit{infra}).

Selection and Screening for Antibodies that Immunospecifically Bind to Soluble BLyS

Antibodies of the invention (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) may be screened in a variety of assays to identify those antibodies that immunospecifically bind to the soluble form of BLyS. In one particular assay, antibodies that bind to the biotinylated soluble form of BLyS in solution are captured on streptavidin coated magnetic beads. This assay may be relatively applied to identify antibodies of the invention that neutralize and/or bind to BLyS. Additionally, antibodies may be assayed in neutralization assays described herein or otherwise known in the art (see Example 3, \textit{infra}). For example,
antibodies may be tested for their ability to inhibit soluble BLyS (e.g., biotinylated BLyS) from binding to IM9 cells. In this assay, labeled soluble BLyS (e.g., biotinylated BLyS) is incubated with candidate anti-BLyS antibodies to allow for the formation of BLyS-anti-BLyS antibody complexes. Following incubation, an aliquot of the BLyS-anti-BLyS antibody sample is added to IM9 cells. The binding of soluble BLyS may be determined using techniques known in the art. For example, the binding of biotinylated BLyS to IM9 cells may be detected using a fluorimeter following the addition of streptavidin-delfia. Biotinylated BLyS, if it is not bound by antibodies that neutralize BLyS, binds to the cells is detected. Thus, an antibody that decreases the amount of bio-BLyS that binds to IM-9 cells (relative to a control sample in which the BLyS had been preincubated with an irrelevant antibody or no antibody at all) is identified as one that binds to and neutralizes the soluble form of BLyS. In another assay, antibodies are screened using ELISAs for those antibodies that bind to biotinylated soluble BLyS, but do not bind membrane-bound BLyS, such as, for example, BLyS on membranes from U937 cells (see Examples 2 and 9, infra). In these assays, soluble BLyS (e.g., biotinylated BLyS) and membrane-bound BLyS (e.g., on U937 membranes) are incubated in separate samples with the same antibodies and those antibodies that bind to the soluble BLyS (biotinylated BLyS), but not membrane-bound BLyS (e.g., on U937 membranes) are captured and identified.

Antibodies of the invention (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) may be tested to identify those antibodies that do not cross-react with APRIL, endokine-alpha, VEGI, TRAIL, TNF-alpha, TNF-beta, Fas-L, LIGHT, and PBS (see Example 4, infra). Antibodies may also be tested for their affinity for BLyS using, for example, BIACore analysis (see Examples 6, 12, 17 and 18 infra). Antibodies may also be tested for their ability to stimulate, inhibit, or not alter, BLyS-induced immunoglobulin production and/or B-cell proliferation using techniques known to those of skill in the art. For example, human B-cells, BLyS and antibodies may be incubated together in 96 well plates and \(^{3}\text{H}\)-thymidine incorporation may be measured using a scintillation counter.

Selection and Screening for Antibodies that Immunospecifically Bind to Membrane-bound BLyS
Antibodies of the invention (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) may be screened in a variety of assays to identify those antibodies that immunospecifically bind to the membrane-bound form of BLYS. In one particular assay, antibodies that bind to BLYS on U937 membranes or immobilized histidine-tagged BLYS are captured. Other cell lines that express BLYS that might be useful for testing antibody binding to membrane-bound form of BLYS include, K-562, HL-60 and THP-1 cells. In another assay, antibodies are screened using ELISAs for those antibodies (or antibody fragments or variants) that bind to BLYS on U937 membranes or to histidine-tagged BLYS. In this assay, antibodies are added to 96 well plates coated with U937 membranes or histidine-tagged BLYS and those antibodies or antibody fragments or variants that bind to the U937 membranes or histidine-tagged BLYS are captured. In another assay, antibodies are screened using ELISAs for those antibodies (or antibody fragments or variants thereof) that do not bind to biotinylated BLYS (soluble BLYS) but bind to membrane-bound BLYS, such as, for example, that on membranes from U937 cells (see Example 2, infra). In these assays, soluble BLYS (e.g., biotinylated BLYS) and membrane-bound BLYS (e.g., on U937 membranes) are incubated in separate samples with the same antibodies (or antibody fragments or variants) and those antibodies (or antibody fragments or variants) that do not bind to the soluble BLYS (biotinylated BLYS), but bind the membrane-bound BLYS (e.g., on U937 membranes) are captured and identified. In other assays, antibodies are screened using ELISAs to determine which of the antibodies (or antibody fragments or variants) that bind to histidine-tagged BLYS or membranes from U937 cells do not cross-react with APRIL, endocrine-alpha, VEGI, TRAIL, TNF-alpha, TNF-beta, Fas-L, LIGHT, and PBS (See Example 4, infra). ELISAs can also be used to determine which of the antibodies (or antibody fragments or variants) that bind to histidine-tagged BLYS or membranes from U937 cells bind to BLYS in the presence of TNF-alpha (see Example 4, infra). Antibodies or fragments or variants thereof that immunospecifically bind to the membrane-bound form of BLYS may also be tested for their affinity for histidine-tagged BLYS using high-throughput BLAcore analysis (see Example 14, infra).

Additionally, antibodies of the invention may be screened against cells engineered to express an "uncleavable" form of BLYS in order to determine their specificity for the membrane-bound form of BLYS. Mutations in BLYS which may
achieve this result include, but are not limited to, the mutation or deletion of amino acid residues Lys-132 and/or Arg-133 of the BLyS sequence shown in SEQ ID NO:3228. A typical mutagenesis might include mutation of one or both of residues Lys-132 or Arg-133 to alanine residues. Cells expressing such an "uncleavable" form of BLyS provide a profound reagent to use in assaying the ability of antibodies to bind the membrane-bound form of BLyS.

Selection and Screening for Antibodies that Immunospecifically Bind to Soluble and Membrane-bound BLyS

[0334] Antibodies of the invention (including scFvs and other molecules comprising, or alternately consisting of, antibody fragments or variants) may be screened in a variety of assays to identify those antibodies or antibody fragments or variants that immunospecifically bind to the soluble form and membrane-bound form of BLyS. In one particular assay, antibodies that bind to immobilized BLyS are captured. In another assay, antibodies are screened using ELISAs for those antibodies (or antibody fragments or variants) that inhibit the binding of soluble BLyS (e.g. soluble bio-BLyS) to IM-9 cells as described *supra*. In other assays, antibodies are screened using ELISAs for those antibodies that bind to membranes from U937 cells. Additionally, further ELISA assays may be performed using techniques known in the art to determine which antibodies do not cross-react with APRIL, endokine-alpha, VEGI, TRAIL, TNF-alpha, TNF-beta, Fas-L, LIGHT, and PBS, or those antibodies that bind to BLyS in the presence of TNF-alpha (see Example 4 *infra*). Antibodies may be assayed in neutralization assays using techniques described herein or otherwise known in the art. Antibodies that immunospecifically bind to the soluble and membrane-bound forms of BLyS may also be tested for their affinity for BLyS using high-throughput BIACore analysis.

Antibody Conjugates

[0335] The present invention encompasses antibodies (including scFvs and other molecules comprising, or alternately consisting of, antibody fragments or variants thereof), recombinantly fused or chemically conjugated (including both covalent and non-covalent conjugations) to a heterologous polypeptide (or portion thereof, preferably at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at
least 90 or at least 100 amino acids of the polypeptide) to generate fusion proteins. The fusion does not necessarily need to be direct, but may occur through linker sequences. For example, antibodies of the invention may be used to target heterologous polypeptides to particular cell types (e.g., cells of monocytic lineage and B-cells), either in vitro or in vivo, by fusing or conjugating the heterologous polypeptides to antibodies of the invention that are specific for particular cell surface antigens (e.g., membrane-bound BLyS on cells of monocytic lineage) or which bind antigens that bind particular cell surface receptors (e.g., TACI and/or BCMA located on B cells). Antibodies fused or conjugated to heterologous polypeptides may also be used in in vitro immunoassays and purification methods using methods known in the art. See e.g., Harbor et al., supra, and PCT publication WO 93/2 1232; EP 439,095; Naramura et al., Immunol. Lett. 39:91-99 (1994); U.S. Patent 5,474,981; Gillies et al., PNAS 89:1428-1432 (1992); Fell et al., J. Immunol. 146:2446-2452 (1991), which are incorporated by reference in their entireties.

[0336] In one embodiment, a fusion protein comprises a polypeptide having an amino acid sequence of any one of the VH domains referred to in Table 1, and a heterologous polypeptide. In another embodiment, a fusion protein comprises a polypeptide having the amino acid sequence of any one of the VH CDR1s referred to in Table 1, and a heterologous polypeptide. In another embodiment, a fusion protein comprises a polypeptide having the amino acid sequence of any one of the VH CDR2s referred to in Table 1, and a heterologous polypeptide. In a preferred embodiment, a fusion protein comprises a polypeptide having the amino acid sequence of any one of the VH CDR3s referred to in Table 1 (i.e., SEQ ID NOS:2129 - 3227), and a heterologous polypeptide.

[0337] In another embodiment, a fusion protein comprises a polypeptide having the amino acid sequence of any one of the VL domains referred to in Table 1, and a heterologous polypeptide. In another embodiment, a fusion protein comprises a polypeptide having the amino acid sequence of any one of the VL CDR1s referred to in Table 1, and a heterologous polypeptide. In yet another embodiment, a fusion protein comprises a polypeptide having the amino acid sequence of any one of the VL CDR2s referred to in Table 1, and a heterologous polypeptide. In a preferred embodiment, a fusion protein comprises a polypeptide having the amino acid sequence of any one of the VL CDR3s referred to in Table 1, and a heterologous polypeptide.
In another embodiment, a fusion protein comprises a polypeptide having the amino acid sequence of any one of the VH domains referred to in Table 1, and one or more VL domains referred to in Table 1, and a heterologous polypeptide. In another embodiment, a fusion protein of the present invention comprises a polypeptide having the amino acid sequence of any one of the VH CDRs referred to in Table 1, and any one of the VL CDRs referred to in Table 1, and a heterologous polypeptide.

The present invention further includes compositions comprising, or alternatively consisting of, heterologous polypeptides fused or conjugated to antibody fragments. For example, the heterologous polypeptides may be fused or conjugated to a Fab fragment, Fd fragment, Fv fragment, F(ab)\textsubscript{2} fragment, or a portion thereof. Methods for fusing or conjugating polypeptides to antibody portions are known in the art. See, e.g., U.S. Patent Nos. 5,336,603; 5,622,929; 5,359,046; 5,349,053; 5,447,851; 5,112,946; EP 307,434; EP 367,166; PCT publications WO 96/04388; WO 9 1/06570; Ashkenazi et al., Proc. Natl. Acad. Sci. USA 88: 10535-10539 (1991); Zheng et al., J. Immunol. 154: 5590-5600 (1995); and Vil et al., Proc. Natl. Acad. Sci. USA 89: 11337-11341 (1992) (said references incorporated by reference in their entireties).

Additional fusion proteins of the invention may be generated through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as "DNA shuffling"). DNA shuffling may be employed to modulate the activities of antibodies (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), such methods can be used to generate antibodies with altered activity (e.g., antibodies with higher affinities and lower dissociation rates). See, generally, U.S. Patent Nos. 5,605,793; 5,811,238; 5,830,721; 5,834,252; and 5,837,458, and Patten et al., Curr. Opinion Biotechnol. 8:724-33 (1997); Harayama, Trends Biotechnol. 16(2):76-82 (1998); Hansson, et al., J. Mol. Biol. 287:265-76 (1999); and Lorenzo and Blasco, Biotechniques 24(2):308-13 (1998) (each of these patents and publications are hereby incorporated by reference in its entirety). In one embodiment, polymers encoding antibodies of the invention may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. In another embodiment, one or more portions of a polymers encoding an antibody which portions
immunospecifically bind to BLyS may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules. Moreover, the antibodies of the present invention (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), can be fused to marker sequences, such as a polypeptides to facilitate purification. In preferred embodiments, the marker amino acid sequence is a hexa-histidine polypeptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Other peptide tags useful for purification include, but are not limited to, the hemagglutinin “HA” tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., Cell 37:767 (1984)) and the “flag” tag (DYKDDDDK, (SEQ ID No: 3238) Stratagene, La Jolla, CA).

The present invention further encompasses antibodies (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), conjugated to a diagnostic or therapeutic agent. The antibodies can be used diagnostically to, for example, monitor or prognose the development or progression of a tumor as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include, but are not limited to, various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions. The detectable substance may be coupled or conjugated either directly to the antibody or indirectly, through an intermediate (such as, for example, a linker known in the art) using techniques known in the art. See, for example, U.S. Patent No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention.

Examples of suitable enzymes include, but are not limited to, horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include, but are not limited to, streptavidin/biotin and avidin/avidin; examples of suitable fluorescent materials include, but are not limited to,
umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes, but is not limited to, luminol; examples of bioluminescent materials include, but are not limited to, luciferase, luciferin, and acerquin; and examples of suitable radioactive material include, but are not limited to, iodine (\(^{131}\)I, \(^{125}\)I, \(^{123}\)I, \(^{121}\)I), carbon (\(^{14}\)C), sulfur (\(^{35}\)S), tritium (\(^{3}\)H), indium (\(^{115}\)In, \(^{113}\)In, \(^{112}\)In, \(^{111}\)In), and technetium (\(^{99}\)Tc, \(^{99m}\)Tc), thallium (\(^{201}\)Tl), gallium (\(^{68}\)Ga, \(^{67}\)Ga), palladium (\(^{103}\)Pd), molybdenum (\(^{99}\)Mo), xenon (\(^{133}\)Xe), fluorine (\(^{18}\)F), \(^{153}\)Sm, \(^{177}\)Lu, \(^{159}\)Gd, \(^{149}\)Pm, \(^{140}\)La, \(^{175}\)Yb, \(^{166}\)Ho, \(^{90}\)Y, \(^{47}\)Sc, \(^{186}\)Re, \(^{188}\)Re, \(^{142}\)Pr, \(^{105}\)Rh, \(^{97}\)Ru, \(^{68}\)Ge, \(^{57}\)Co, \(^{65}\)Zn, \(^{85}\)Sr, \(^{32}\)P, \(^{153}\)Gd, \(^{169}\)Yb, \(^{51}\)Cr, \(^{54}\)Mn, \(^{75}\)Se, \(^{113}\)Sn, and \(^{117}\)In.

Further, an antibody of the invention (including an scFv or other molecule comprising, or alternatively consisting of, antibody fragments or variants thereof), may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytotoxic agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, \(^{212}\)Bi. In specific embodiments, antibodies of the invention are attached to macrocyclic chelators useful for conjugating radiometal ions, including but not limited to, \(^{111}\)In, \(^{177}\)Lu, \(^{90}\)Y, \(^{166}\)Ho, and \(^{153}\)Sm, to polypeptides. In preferred embodiments, the radiometal ion associated with the macrocyclic chelators attached to antibodies of the invention is \(^{111}\)In. In preferred embodiments, the radiometal ion associated with the macrocyclic chelators attached to antibodies of the invention is \(^{90}\)Y. In specific embodiments, the macrocyclic chelator is 1,4,7,10-tetraazacyclododecane-N,N',N''-N'''-tetraacetic acid (DOTA). In other specific embodiments, the DOTA is attached to the antibody of the invention via a linker molecule. Examples of linker molecules useful for conjugating DOTA to a polypeptide are commonly known in the art — see, for example, DeNardo et al., Clin Cancer Res. 4(10):2483-90, 1998; Peterson et al., Bioconjug. Chem. 10(4):553-7, 1999; and Zimmerman et al, Nucl. Med. Biol. 26(8):943-50, 1999 which are hereby incorporated by reference in their entirety.

A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells and includes such molecules as small molecule toxins and enzymatically active
toxins of bacterial, fungal, plant, or animal origin, or fragments thereof. Examples include, but are not limited to, paclitaxel, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide (VP-16), tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracyclin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucorticoids, procaine, tetracaine, lidocaine, propranolol, thymidine kinase, endonuclease, RNAse, and puromycin and fragments, variants or homologs thereof. Therapeutic agents include, but are not limited to, antimitabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioea chlorambucil, melphalan, carbustine (BSNU) and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cisplatinum platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine), imposulfan, piposulfan, benzodopa, carboquone, meturedopa, uredopa, altretamine, triethylenemelamine, triethylene phosphoramidetri methylolomelamine, chlor nthazine, chlorophosphamide, estramustine, ifosfamide, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard, chlorozotocin, fotemustine, nimustine, ranimustine, aclacinomysins, azaserine, cactinomycin, calichearnicin, carabicin, carminomycin, carzinophilin, chromomycins, detorubicin, 6-diazo-5-oxo-L-norleucine, epirubicin, esorubicin, idarubicin, marcellomyacin, mycophenicolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, quelamycin, rodorubicin, streptonigrin, tubercidin, ubenimex, zinostatin, zorubicin, denopterin, pteroeripterin, trimetrexate, fludarabine, thiamipirine, ancitabine, azacitidine, 6-azauridine, carmofur, dideoxyuridine, doxifluridine, enocitabine, floxuridine, 5-FU, calusterone, dromostanolone propionate, epitiotanol, mepithiostane, testolactone, aminogluthethimide, mitotane, trilostane, frolinic acid, aceglatone,
aldophosphamide glycoside, aminolevulinic acid, amsacrine, bestrabucil, bisantrene, edatraxate, defofamine, dermocolcine, diaziquone, elfornithine, elliptinium acetate, etoglucid, gallium nitrate, hydroxyurea, lentinan, lonidamine, mitoguazone, mopidamol, nitracrine, pentostatin, phenamet, pirarubicin, podophyllinic acid, 2-ethylhydrazide, procarbazine, PSKO, razoxane, sizofiran, spirogermanium, tenuazonic acid, triaziquone, 2, 2',2''-trichlorotriethylamine, urethan, vindesine, dacarbazine, mannustine, mitobronitol, mitolactol, pipobroman, gacytosine, arabinoside ("Ara-C"), taxoids, e.g. paclitaxel (TAXOL", Bristol-Myers Squibb Oncology, Princeton, NJ) doxetaxel (TAXOTERE", Rhône-Poulenc Rorer, Antony, France), gemcitabine, ifosfamide, vinorelbine, navelbine, novantrone, teniposide, aminopterin, xeloda, ibandronate, CPT-I 1, topoisomerase inhibitor RFS 2000, difluoromethylornithine (DMFO), retinoic acid, esperamicins, capecitabine, and pharmaceutically acceptable salts, acids or derivatives of any of the above. Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4 hydroxytamoxifen, trioxifene, keoxifene, LY 117018, onapristone, toremifene (Fareston), and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin, and pharmaceutically acceptable salts, acids or derivatives of any of the above.

[0345] Techniques known in the art may be applied to label antibodies of the invention. Such techniques include, but are not limited to, the use of bifunctional conjugating agents (see e.g., U.S. Patent Nos. 5,756,065; 5,714,631; 5,696,239; 5,652,361; 5,505,931; 5,489,425; 5,435,990; 5,428,139; 5,342,604; 5,274,119; 4,994,560; and 5,808,003; the contents of each of which are hereby incorporated by reference in its entirety) and direct coupling reactions (e.g., Bolton-Hunter and Chloramine-T reaction).

[0346] The antibodies of the invention which are conjugates can be used for modifying a given biological response, the therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such
proteins may include, but are not limited to, for example, a toxin such as abrin, ricin A, alpha toxin, pseudomonas exotoxin, or diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin; a protein such as tumor necrosis factor, alpha-interferon, beta-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF-alpha, TNF-beta, AIM I (see, International Publication No. WO 97/33899), AIM II (see, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al., Int. Immunol., 6:1567-1574 (1994)), VEGI (see, International Publication No. WO 99/23105), a thrombotic agent or an anti-angiogenic agent, e.g., angiostatin or endostatin; or, biological response modifiers such as, for example, lymphokines, interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-6 (IL-6), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), or other growth factors.

[0347] Antibodies of the invention (including scFv's and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), may also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen. Such solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.

[0349] Alternatively, an antibody of the invention can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980, which is incorporated herein by reference in its entirety.
[0350] An antibody of the invention (including an scFv or and other molecule comprising, or alternatively consisting of, an antibody fragment or variant thereof), with or without a therapeutic moiety conjugated to it, administered alone or in combination with cytotoxic factor(s) and/or cytokine(s) can be used as a therapeutic.

Use of Antibodies for Epitope Mapping

[0351] The present invention provides antibodies (including scFvs and other molecules comprising, or alternatively consisting of, antibody fragments or variants thereof), that can be used to identify epitopes of BLyS. In particular, the antibodies of the present invention can be used to identify epitopes of human BLyS (SEQ ID NOS:3228 and/or 3229) or BLyS expressed on human monocytes; murine BLyS (SEQ ID NOS:3230 and/or 3231) or BLyS expressed on murine monocytes; rat BLyS (either the soluble forms as given in SEQ ID NOS:3232, 3233, 3234 and/or 3235 or in a membrane associated form, e.g., on the surface of rat monocytes); or monkey BLyS (e.g., the monkey BLyS polypeptides of SEQ ID NOS:3236 and/or 3237, the soluble form of monkey BLyS, or BLyS expressed on monkey monocytes) using techniques described herein or otherwise known in the art. Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985), further described in U.S. Patent No. 4,631,211.)

Diagnostic Uses of Antibodies

[0352] Labeled antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor diseases and/or disorders associated with the aberrant expression and/or activity of BLyS or BLyS receptor. The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample from an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, e.g., in normal biological samples, whereby an increase or decrease in the assayed level of BLyS compared to the standard level of BLyS is indicative of aberrant expression.
[0353] By "biological sample" is intended any fluids and/or cells obtained from an individual, body fluid, body tissue, body cell, cell line, tissue culture, or other source which may contain BLyS protein or mRNA. Body fluids include, but are not limited to, sera, plasma, urine, synovial fluid, spinal fluid, saliva, and mucous. Tissues samples may be taken from virtually any tissue in the body. Tissue samples may also be obtained from autopsy material. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. Where the biological sample is to include mRNA, a tissue biopsy is the preferred source.

[0354] The invention also provides for the detection of aberrant expression of BLyS receptor comprising (a) assaying the expression of BLyS receptor in a biological sample from an individual using one or more antibodies or fragments or variants thereof that immunospecifically binds only to soluble BLyS, but does not inhibit BLyS /BLyS receptor binding. Such an antibody, by way of an example that is not to be construed as limiting, would be one that is able to capture a biotinylated BLyS from solution (see Example 8), but that would not prevent BLyS from binding to IM-9 cells (see Example 3), and (b) comparing the level of BLyS receptor with a standard level of BLyS receptor, e.g., in normal tissue or cell samples, whereby an increase or decrease in the assayed level of BLyS receptor compared to the standard level of BLyS receptor is indicative of aberrant expression.

[0355] Antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor autoimmune disorders and/or immunodeficiencies, and/or diseases or conditions associated therewith. The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample from an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, e.g., in normal biological samples, whereby an increase or decrease in the assayed level of BLyS compared to the standard level of BLyS is indicative of an autoimmune disorder or disease and/or an immunodeficiency. In specific embodiments, an increase in the assayed level of BLyS is indicative of an autoimmune disorder or disease. In other specific embodiments, a decrease in the assayed level of BLyS is indicative of an immunodeficiency.
Antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) which specifically bind to BLyS but, do not inhibit BLyS/BLyS receptor binding can be used for diagnostic purposes to detect, diagnose, prognose, or monitor autoimmune disorders and/or immunodeficiencies, and/or diseases or conditions associated therewith. The invention provides for the detection of aberrant expression of BLyS receptor comprising: (a) assaying the expression of BLyS receptor in a biological sample from an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS receptor with a standard level of BLyS receptor, e.g., in normal biological samples, whereby an increase or decrease in the assayed level of BLyS receptor compared to the standard level of BLyS receptor is indicative of an autoimmune disorder or disease and/or an immunodeficiency. In specific embodiments, an increase in the assayed level of BLyS receptor is indicative of an autoimmune disorder or disease. In other specific embodiments, a decrease in the assayed level of BLyS receptor is indicative of an immunodeficiency.

Autoimmune disorders, diseases, or conditions that may be detected, diagnosed, prognosed, or monitored using the antibodies of the invention include, but are not limited to, autoimmune hemolytic anemia, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, autoimmune neutropenia, autoimmune cytopenia, hemolytic anemia, antiphospholipid syndrome, dermatitis, gluten-sensitive enteropathy, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, glomerulonephritis (e.g., IgA nephropathy), Multiple Sclerosis, Neuritis, Uveitis Ophthalmia, Polyendocrinopathies, Purpura (e.g., Henloch-Schoenlein purpura), Reiter’s Disease, Stiff-Man Syndrome, Autoimmune Pulmonary Inflammation, myocarditis, IgA glomerulonephritis, dense deposit disease, rheumatic heart disease, Guillain-Barre Syndrome, diabetes mellitus (e.g. Type I diabetes mellitus or insulin dependent diabetes mellitus), juvenile onset diabetes, and autoimmune inflammatory eye, autoimmune thyroiditis, hypothyroidism (i.e., Hashimoto's thyroiditis, systemic lupus erythematosus, discoid lupus, Goodpasture's syndrome, Pemphigus, Receptor autoimmunities such as, for example, (a) Graves' Disease, (b) Myasthenia Gravis, and (c) insulin resistance, autoimmune hemolytic anemia, autoimmune thrombocytopenic purpura, rheumatoid arthritis, scleroderma with anti-collagen antibodies, mixed connective tissue disease,
polymyositis/dermatomyositis, pernicious anemia (Addison's disease), idiopathic Addison's disease, infertility, glomerulonephritis such as primary glomerulonephritis and IgA nephropathy, bullous pemphigoid, Sjögren's syndrome, diabetes mellitus, and adrenergic drug resistance (including adrenergic drug resistance with asthma or cystic fibrosis), chronic active hepatitis, primary biliary cirrhosis, other endocrine gland failure, vitiligo, vasculitis, post-MI, cardiomyopathy syndrome, urticaria, atopic dermatitis, asthma, inflammatory myopathies, and other inflammatory, granulomatous, degenerative, and atrophic disorders and other disorders such as inflammatory skin diseases including psoriasis and sclerosis, responses associated with inflammatory bowel disease (such as Crohn's disease and ulcerative colitis), respiratory distress syndrome (including adult respiratory distress syndrome, ARDS), meningitis, encephalitis, colitis, allergic conditions such as eczema and other conditions involving infiltration of T cells and chronic inflammatory responses, atherosclerosis, leukocyte adhesion deficiency, Reynaud's syndrome, and immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes typically found in tuberculosis, sarcoidosis, granulomatosis and diseases involving leukocyte diapedesis, central nervous system (CNS) inflammatory disorder, multiple organ injury syndrome, antigen-antibody complex mediated diseases, anti-glomerular basement membrane disease, Lambert-Eaton myasthenic syndrome, Beheet disease, giant cell arteritis, immune complex nephritis, IgA nephropathy, IgM polynuropathies or autoimmune thrombocytopenia etc.

[0358] In specific embodiments, the present invention encompasses methods and compositions for detecting, diagnosing and/or prognosing diseases or disorders associated with hypergammaglobulinemia (e.g., AIDS, autoimmune diseases, and some immunodeficiencies). In other specific embodiments, the present invention encompasses methods and compositions for detecting, diagnosing and/or prognosing diseases or disorders associated with hypogammaglobulinemia (e.g., an immunodeficiency).

[0359] Immunodeficiencies that may be detected, diagnosed, prognosed, or monitored using the antibodies of the invention include, but are not limited to, severe combined immunodeficiency (SCID)-X linked, SCID-autosomal, adenosine deaminase
deficiency (ADA deficiency), X-linked agammaglobulinemia (XLA), Bruton's disease, congenital agammaglobulinemia, X-linked infantile agammaglobulinemia, acquired agammaglobulinemia, adult onset agammaglobulinemia, late-onset agammaglobulinemia, dysagammaglobulinemia, hypogammaglobulinemia, transient hypogammaglobulinemia of infancy, unspecified hypogammaglobulinemia, agammaglobulinemia, common variable immunodeficiency (CVID) (acquired), Wiskott-Aldrich Syndrome (WAS), X-linked immunodeficiency with hyper IgM, non X-linked immunodeficiency with hyper IgM, selective IgA deficiency, IgG subclass deficiency with or without IgA deficiency, antibody deficiency with normal or elevated lgs, immunodeficiency with thymoma, Ig heavy chain deletions, kappa chain deficiency, B cell lymphoproliferative disorder (BLPD), selective IgM immunodeficiency, recessive agammaglobulinemia (Swiss type), reticular dysgenesis, neonatal neutropenia, severe congenital leukopenia, thymic alymphoplasia-aplasia or dysplasia with immunodeficiency, ataxia-telangiectasia, short limbed dwarfism, X-linked lymphoproliferative syndrome (XLP), Nezelof syndrome-combined immunodeficiency with Igs, purine nucleoside phosphorylase deficiency (PNP), MHC Class II deficiency (Bare Lymphocyte Syndrome) and severe combined immunodeficiency.

[0360] Elevated levels of soluble BLyS have been observed in the serum of patients with Systemic Lupus Erythematosus (SLE). In comparing the sera of 150 SLE patients with that of 38 control individuals, it was found that most of the SLE patients had more than 5ng/ml of serum BLyS, more than 30% of SLE patients had levels greater than 10ng/ml, and approximately 10% of SLE patients had serum BLyS levels greater than 20ng/ml. In contrast, the majority of normal controls had BLyS levels less than 5ng/ml, and less than 10% had levels higher than 10ng/ml. The elevated levels of BLyS protein in sera is present in the soluble form and has biologic activity as assayed by the ability to stimulate anti-IgM treated B cells in vitro. SLE patients with more than 15ng/ml serum BLyS were also found to have elevated levels of anti-dsDNA antibodies compared to both normal controls and SLE patients with less than 5ng/ml of serum BLyS.(unpublished data).

[0361] In addition the serum of two subgroups of patients which were positive for anti-nuclear antibodies (ANA+), but did not meet the formal requirements of the American College of Rheumatology (ACR) for classification of SLE were analyzed for BLyS levels.
The first subgroup of sera was ANA+ sera that came from patients who did not present with the clinical impression of SLE. This group had only slightly elevated levels of BLyS (\(\sim 9\text{ng/ml} \) BLyS). The second subgroup however, which was ANA+ sera from patients who presented with the clinical impression of SLE, had significantly increased BLyS levels (\(\sim 15\text{ng/ml} \)). These results suggest that an elevated level of BLyS precedes the formal fulfillment of the ACR criteria. The ACR criteria are described in Tan, E.M., et al, *Arthritis and Rheumatism* 25:1271 – 1277 (1982).

[0362] Thus in specific embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor Systemic Lupus Erythematosus or conditions associated therewith. The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, *e.g.*, in normal biological samples, whereby an increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of SLE.

[0363] In other specific embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor IgA nephropathy or conditions associated therewith. The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, *e.g.*, in normal biological samples, whereby an increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of IgA nephropathy.

[0364] In other specific embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor Sjögren's Syndrome or conditions associated therewith. The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, *e.g.*, in normal biological samples, whereby
an increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of Sjögren's Syndrome.

[0365] In other specific embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor HIV infection or conditions associated therewith (e.g. AIDS). The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, e.g., in normal biological samples, whereby an increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of HIV infection.

[0366] In other specific embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor Myasthenia Gravis or conditions associated therewith. The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, e.g., in normal biological samples, whereby an increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of Myasthenia Gravis.

[0367] In other specific embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor idiopathic thrombocytopenic purpura (ITP) or conditions associated therewith. The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, e.g., in normal biological samples, whereby an increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of idiopathic thrombocytopenic purpura (ITP).

[0368] In other specific embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor hemolytic anemia or conditions associated therewith. The invention
provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, e.g., in normal biological samples, whereby an increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of hemolytic anemia.

[0369] In other specific embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor thyroiditis or conditions associated therewith. The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, e.g., in normal biological samples, whereby an increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of thyroiditis.

[0370] In other specific embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor Goodpasture's syndrome or conditions associated therewith. The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, e.g., in normal biological samples, whereby an increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of Goodpasture's syndrome.

[0371] In other specific embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor multiple sclerosis or conditions associated therewith. The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, e.g., in normal biological samples, whereby an
increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of multiple sclerosis.

[0372] In additional embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor Rheumatoid Arthritis. The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample (e.g., serum and synovial fluid) of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, e.g., in normal biological samples, whereby an increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of Rheumatoid arthritis.

[0373] In additional embodiments, antibodies of the invention which specifically bind to BLyS can be used for diagnostic purposes to detect, diagnose, prognose, or monitor an immune-based rheumatologic disease, (e.g., SLE, rheumatoid arthritis, CREST syndrome (a variant of scleroderma characterized by calcinosis, Raynaud's phenomenon, esophageal motility disorders, sclerodactyly, and telangectasia), Seronegative spondyloarthropathy (SpA), Polymyositis/dermatomyositis, Microscopic polyangiitis, Hepatitis C-associated arthritis, Takayasu's arteritis, and undifferentiated connective tissue disorder). The invention provides for the detection of aberrant expression of BLyS comprising: (a) assaying the expression of BLyS in a biological sample (e.g., serum and synovial fluid) of an individual using one or more antibodies of the invention that immunospecifically binds to BLyS; and (b) comparing the level of BLyS with a standard level of BLyS, e.g., in normal biological samples, whereby an increase in the assayed level of BLyS compared to the standard level of BLyS is indicative of monitor an immune-based rheumatologic disease.

[0374] It has been observed, that serum BLyS levels inversely correlate with nephrotic range proteinuria (>3 gm proteinuria in a 24 hour urine collection) using a sample of 71 SLE patients (p=0.019). Proteinuria was determined in 71 SLE patients within one month of phlebotomy for serum BLyS determination. Serum BLyS was classified as low, normal, or high based on the 5th through 95th percentiles for normal controls. Nephrotic-range proteinuria was inversely correlated with serum Neutrokine-alpha levels. Thus, in specific embodiments, serum levels of BLyS (determined using one
or more antibodies of the present invention) in individuals diagnosed with an immune based rheumatologic disease (e.g., SLE, rheumatoid arthritis, CREST syndrome (a variant of scleroderma characterized by calcinosis, Raynaud's phenomenon, esophageal motility disorders, sclerodactyly, and telangiectasia.), seronegative spondyloarthropathy (SpA), polymyositis/dermatomyositis, microscopic polyangiitis, hepatitis C-associated arthritis, Takayasu's arteritis, and undifferentiated connective tissue disorder) may be used to determine, diagnose, prognose, or monitor the severity of certain aspects or symptoms of the disease, such as nephrotic-range proteinuria.

[0375] In another specific embodiment, antibodies of the invention are used to diagnose, prognose, treat, or prevent conditions associated with CVID, including, but not limited to, conditions associated with acute and recurring infections (e.g., pneumonia, bronchitis, sinusitis, otitis media, sepsis, meningitis, septic arthritis, and osteomyelitis), chronic lung disease, autoimmunity, granulomatous disease, lymphoma, cancers (e.g., cancers of the breast, stomach, colon, mouth, prostate, lung, vagina, ovary, skin, and melanin forming cells (i.e. melanoma), inflammatory bowel disease (e.g., Crohn's disease, ulcerative colitis, and ulcerative proctitis), malabsorption, Hodgkin's disease, and Waldenstrom's macroglobulinemia.

[0376] The invention provides a diagnostic assay for diagnosing or prognosing a disease or disorder, comprising: (a) assaying for the level of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically bind to BLyS; and (b) comparing the level of BLyS with a standard BLyS level, e.g., in a biological sample from a patient without the disease or disorder, whereby an increase or decrease in the assayed BLyS level compared to the standard level of BLyS is indicative of a particular disease or disorder. With respect to cancer, the presence of a relatively high amount of BLyS in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

[0377] In specific embodiments, the presence of a relatively high amount of
membrane-bound BLyS in a biological sample is indicative of monocytic cell related leukemias or lymphomas, such as, for example acute myelogenous leukemia and/or the severity thereof.

[0378] In other specific embodiments, the presence of a relatively high amount of BLyS receptor in a biological sample (as determined using antibodies of the invention that bind to soluble BLyS, but do not inhibit BLyS/BLyS receptor binding) is indicative of B cell related leukemias or lymphomas (e.g., chronic lymphocytic leukemia, multiple myeloma, non-Hodgkin’s lymphoma, and Hodgkin’s disease), and/or the severity thereof.

[0379] In specific embodiments, the invention provides a diagnostic assay for diagnosing or prognosing Systemic Lupus Erythematosus, comprising: (a) assaying for the level of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically bind to BLyS; and (b) comparing the level of BLyS with a standard BLyS level, e.g., in a biological sample from a patient without Systemic Lupus Erythematosus, whereby an increase in the assayed BLyS level compared to the standard level of BLyS is indicative of Systemic Lupus Erythematosus.

[0380] In specific embodiments, the invention provides a diagnostic assay for diagnosing or prognosing a Rheumatoid Arthritis, comprising: (a) assaying for the level of BLyS in a biological sample of an individual using one or more antibodies of the invention that immunospecifically bind to BLyS; and (b) comparing the level of BLyS with a standard BLyS level, e.g., in a biological sample from a patient without Rheumatoid Arthritis, whereby an increase or decrease in the assayed BLyS level compared to the standard level of BLyS is indicative of Rheumatoid Arthritis.

[0381] The invention provides a diagnostic assay for diagnosing or prognosing a disease or disorder, comprising: (a) assaying for the level of BLyS receptor in cells or a tissue sample of an individual using one or more antibodies of the invention that immunospecifically binds only to soluble BLyS, but does not neutralize BLyS/BLyS receptor binding; and (b) comparing the level of BLyS receptor with a standard BLyS receptor level, e.g., in a tissue sample from a patient without the disease or disorder, whereby an increase or decrease in the assayed BLyS receptor level compared to the standard level of BLyS receptor is indicative of a particular disease or disorder. With respect to cancer, the presence of a relatively high amount of BLyS receptor in biopsied tissue from an individual may indicate a predisposition for the development of the disease,
or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

[0382] Antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) can be used to assay protein levels in a biological sample using classical immunohistological methods as described herein or as known to those of skill in the art (e.g., see Jalkanen, et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, et al., J. Cell. Biol. 105:3087-3096 (1987)). Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as glucose oxidase, alkaline phosphatase, and horseradish peroxidase; radioisotopes, such as iodine (121I, 123I, 125I, 131I), carbon (14C), sulfur (35S), tritium (3H), indium (111In, 112In, 113mIn, 115mIn), technetium (99mTc, 99Tc), thallium (201Ti), gallium (68Ga, 67Ga), palladium (103Pd), molybdenum (99Mo), xenon (133Xe), fluorine (18F), 153Sm, 177Lu, 159Gd, 148Pm, 140La, 175Yb, 166Ho, 90Y, 47Sc, 186Re, 188Re, 142Pr, 105Rh, and 97Ru; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.

[0383] One aspect of the invention is the detection and diagnosis of a disease or disorder associated with aberrant expression of BLYS or BLYS receptor in an animal, preferably a mammal and most preferably a human. In one embodiment, diagnosis comprises: a) administering (for example, parenterally, subcutaneously, or intraperitoneally) to a subject an effective amount of a labeled antibody of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically binds to BLYS; b) waiting for a time interval following the administering for permitting the labeled antibody to preferentially concentrate at sites in the subject where BLYS is expressed (and for unbound labeled molecule to be cleared to background level); c) determining background level; and d) detecting the labeled antibody in the subject, such that detection of labeled antibody or fragment thereof above the background level and above or below the level observed in a person without the disease or disorder indicates that the subject has a particular disease or
disorder associated with aberrant expression of BLyS or BLyS receptor. Background level can be determined by various methods including, comparing the amount of labeled molecule detected to a standard value previously determined for a particular system.

[0384] It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody will then preferentially accumulate at the location of cells which contain the specific protein. *In vivo* tumor imaging is described in S.W. Burchiel *et al.*, "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).

[0385] Depending on several variables, including the type of label used and the mode of administration, the time interval following the administration for permitting the labeled molecule to preferentially concentrate at sites in the subject and for unbound labeled molecule to be cleared to background level is 6 to 48 hours or 6 to 24 hours or 6 to 12 hours. In another embodiment the time interval following administration is 5 to 20 days or 5 to 10 days.

[0386] In an embodiment, monitoring of the disease or disorder is carried out by repeating the method for diagnosing the disease or disorder, for example, one month after initial diagnosis, six months after initial diagnosis, one year after initial diagnosis, etc.

[0387] Presence of the labeled molecule can be detected in the patient using methods known in the art for *in vivo* scanning. These methods depend upon the type of label used. Skilled artisans will be able to determine the appropriate method for detecting a particular label. Methods and devices that may be used in the diagnostic methods of the invention include, but are not limited to, computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography.

[0388] In a specific embodiment, the molecule is labeled with a radioisotope and is detected in the patient using a radiation responsive surgical instrument (Thurston *et al.*, U.S. Patent No. 5,441,050). In another embodiment, the molecule is labeled with a fluorescent compound and is detected in the patient using a fluorescence responsive
scanning instrument. In another embodiment, the molecule is labeled with a positron emitting metal and is detected in the patient using positron emission-tomography. In yet another embodiment, the molecule is labeled with a paramagnetic label and is detected in a patient using magnetic resonance imaging (MRI).

Immunophenotyping

[0389] The antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) may be utilized for immunophenotyping of cell lines and biological samples by their BLyS expression or BLyS receptor expression. Various techniques can be utilized using antibodies, fragments, or variants of the invention to screen for cellular populations (i.e., immune cells, particularly monocytic cells or B-cells) expressing BLyS or BLyS receptor, and include magnetic separation using antibody-coated magnetic beads, “panning” with antibody attached to a solid matrix (i.e., plate), and flow cytometry (see, e.g., U.S. Patent 5,985,660; and Morrison et al., Cell, 96:737-49 (1999)).

[0390] These techniques allow for the screening of particular populations of cells, such as might be found with hematological malignancies (i.e., minimal residual disease (MRD) in acute leukemic patients) and “non-self” cells in transplantations to prevent Graft-versus-Host Disease (GVHD). Alternatively, these techniques allow for the screening of hematopoietic stem and progenitor cells capable of undergoing proliferation and/or differentiation, as might be found in human umbilical cord blood.

[0391] In one embodiment, antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) are used to identify cells of monocytic or B cell origin.

Therapeutic Uses of Antibodies

[0392] The present invention is further directed to antibody-based therapies which involve administering antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) to an animal, preferably a mammal, and most preferably a human, patient for treating one or more of the disclosed diseases, disorders, or conditions. Therapeutic compounds of the invention include, but are not limited to, antibodies of the invention and nucleic acids encoding antibodies (and
anti-idiotypic antibodies) of the invention as described herein. The antibodies of the invention can be used to treat, ameliorate or prevent diseases, disorders or conditions associated with aberrant expression and/or activity of BLyS or BLyS receptor, including, but not limited to, any one or more of the diseases, disorders, or conditions described herein. The treatment and/or prevention of diseases, disorders, or conditions associated with aberrant BLyS expression and/or activity or aberrant BLyS receptor expression and/or activity includes, but is not limited to, alleviating symptoms associated with those diseases, disorders or conditions. Antibodies of the invention may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.

[0393] Antibodies of the present invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that function as agonists or antagonists of BLyS, preferably of BLyS-induced signal transduction, can be administered to an animal to treat, prevent or ameliorate a disease or disorder associated with aberrant BLyS expression, lack of BLyS function, aberrant BLyS receptor expression, or lack of BLyS receptor function. For example, antibodies of the invention which disrupt the interaction between BLyS and its receptor may be administered to an animal to treat, prevent or ameliorate a disease or disorder associated with aberrant BLyS expression, excessive BLyS function, aberrant BLyS receptor expression, or excessive of BLyS receptor function. Antibodies of the invention which do not prevent BLyS from binding its receptor but inhibit or downregulate BLyS-induced signal transduction can be administered to an animal to treat, prevent or ameliorate a disease or disorder associated with aberrant BLyS expression, excessive BLyS function, aberrant BLyS receptor expression, or excessive BLyS receptor function. In particular, antibodies of the present invention which prevent BLyS-induced signal transduction by specifically recognizing the unbound BLyS, receptor-bound BLyS or both unbound and receptor-bound BLyS can be administered to an animal to treat, prevent or ameliorate a disease or disorder associated with aberrant BLyS expression, excessive BLyS function, aberrant BLyS receptor expression, or excessive BLyS receptor function. The ability of an antibody of the invention to inhibit or downregulate BLyS-induced signal transduction may be determined by techniques described herein or otherwise known in the art. For example, BLyS-induced receptor activation and the activation of signaling molecules can be determined by detecting the phosphorylation (e.g., tyrosine or serine/threonine) of the receptor or a
signaling molecule by immunoprecipitation followed by western blot analysis (for example, as described herein).

[0394] In a specific embodiment, an antibody of the present invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that inhibits or downregulates BLYS activity by at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, at least 50%, at least 45%, at least 40%, at least 45%, at least 35%, at least 30%, at least 25%, at least 20%, or at least 10% relative to BLYS activity in absence of the antibody is administered to an animal to treat, prevent or ameliorate a disease or disorder associated with aberrant BLYS expression, excessive BLYS function, aberrant BLYS receptor expression, or excessive BLYS receptor function. In another embodiment, a combination of antibodies, a combination of antibody fragments, a combination of antibody variants, or a combination of antibodies, antibody fragments, and/or variants that inhibit or downregulate BLYS activity by at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, at least 50%, at least 45%, at least 40%, at least 45%, at least 35%, at least 30%, at least 25%, at least 20%, or at least 10% relative to BLYS activity in absence of said antibodies, antibody fragments, and/or antibody variants are administered to an animal to treat, prevent or ameliorate a disease or disorder associated with aberrant BLYS expression, excessive BLYS function, aberrant BLYS receptor expression, or excessive BLYS receptor function.

[0395] Further, antibodies of the present invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) which activate BLYS-induced signal transduction can be administered to an animal to treat, prevent or ameliorate a disease or disorder associated with aberrant BLYS expression, lack of BLYS function, aberrant BLYS receptor expression, or lack of BLYS receptor function. These antibodies may potentiate or activate either all or a subset of the biological activities of BLYS-mediated receptor activation, for example, by inducing multimerization of BLYS and/or multimerization of the receptor. The antibodies of the invention may be administered with or without being pre-complexed with BLYS. In a specific embodiment, an antibody of the present invention that increases BLYS activity by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least

[0398] It is preferred to use high affinity and/or potent in vivo inhibiting and/or neutralizing antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) that immunospecifically bind to BLYS, or polynucleotides encoding antibodies that immunospecifically bind to BLYS, for both immunoassays directed to and therapy of disorders related to BLYS polynucleotides or polypeptides, including fragments thereof. Such antibodies will preferably have an affinity for BLYS and/or BLYS fragments. Preferred binding affinities include those with a dissociation constant or K_D less than or equal to 5×10^{-2} M, 10^{-2} M, 5×10^{-3} M, 10^{-3} M, 5×10^{-4} M, 10^{-4} M, 5×10^{-5} M, or 10^{-5} M. More preferably, antibodies of the invention bind BLYS polypeptides or fragments or variants thereof with a dissociation constant or K_D less than or equal to 5×10^{-6} M, 10^{-6} M, 5×10^{-7} M, 10^{-7} M, 5×10^{-8} M, or 10^{-8} M. Even more preferably, antibodies of the invention bind BLYS polypeptides or fragments or variants thereof with a dissociation constant or K_D less than or equal to 5×10^{-9} M, 10^{-9} M, 5×10^{-10} M, 10^{-10} M, 5×10^{-11} M, 10^{-11} M, 5×10^{-12} M, 10^{-12} M, 5×10^{-13} M, 10^{-13} M, 5×10^{-14} M, 10^{-14} M, 5×10^{-15} M, or 10^{-15} M. The invention encompasses antibodies that bind BLYS polypeptides with a dissociation constant or K_D that is within any one of the ranges that are between each of the individual recited values.

[0399] In a preferred embodiment, antibodies of the invention neutralize BLYS activity. In another preferred embodiment, antibodies of the invention inhibit B cell proliferation.

[0400] In a preferred embodiment, antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) inhibit or reduce binding of the soluble form of BLYS to a BLYS receptor. In another preferred embodiment antibodies of the invention inhibit or reduce B cell proliferation induced by the soluble form of BLYS. In another preferred embodiment antibodies of the invention inhibit or reduce immunoglobulin production induced by the soluble form of BLYS.

[0401] In a preferred embodiment, antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) inhibit or reduce binding of membrane-bound BLYS to a BLYS receptor. In another preferred embodiment, antibodies of the invention inhibit or reduce B cell proliferation induced by the membrane-bound form of BLYS. In another preferred
embodiment, antibodies of the invention inhibit or reduce immunoglobulin production induced by the membrane bound form of BLyS.

[0402] In a preferred embodiment, antibodies of the invention (including molecules comprising, or alternatively consisting of, antibody fragments or variants thereof) inhibit or reduce binding of both the soluble and membrane-bound forms of BLyS to a BLyS receptor. In another preferred embodiment, antibodies of the invention inhibit or reduce B cell proliferation induced by either or both forms of BLyS. In another preferred embodiment, antibodies of the invention inhibit or reduce immunoglobulin production induced by either or both forms of BLyS.

[0403] In one embodiment, the invention provides a method of delivering antibody conjugates of the invention to targeted cells, such as, for example, monocytic cells expressing the membrane-bound form of BLyS, or B cells expressing a BLyS receptor.

[0404] In one embodiment, the invention provides a method for the specific delivery of antibodies and antibody conjugates of the invention to cells by administering molecules of the invention that are associated with heterologous polypeptides or nucleic acids. In one example, the invention provides a method for delivering a therapeutic protein into the targeted cell. In another example, the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.

[0405] In another embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering antibodies or antibody conjugates of the invention (e.g., antibodies conjugated with radioisotopes, toxins, or cytotoxic prodrugs). In a specific embodiment, the invention provides a method for the specific destruction of cells of monocytic lineage (e.g., monocytic cell related leukemias or lymphomas, such as, for example acute myelogenous leukemia) by administering antibodies or antibody conjugates of the invention (e.g., antibodies conjugated with radioisotopes, toxins, or cytotoxic prodrugs) that immunospecifically bind the membrane-bound form of BLyS. In another specific embodiment, the invention provides a method for the specific destruction of cells of B cell lineage (e.g., B cell related leukemias or lymphomas (e.g., chronic lymphocytic leukemia, multiple myeloma, non-Hodgkin's lymphoma, and Hodgkin's disease) by administering antibodies or antibody
conjugates of the invention (e.g., antibodies conjugated with radioisotopes, toxins, or cytotoxic prodrugs) that bind soluble BLyS, but do not inhibit BLyS binding to a BLyS receptor on B cells.

[0406] In another preferred embodiment antibodies of the invention (including antibody fragments and variants) promote or enhance B cell proliferation induced by the soluble form of BLyS. In another preferred embodiment, antibodies of the invention (including antibody fragments and variants) promote or enhance B cell proliferation induced by the membrane or soluble form of APRIL. In another preferred embodiment antibodies of the invention (including antibody fragments and variants) increase or enhance immunoglobulin production induced by the soluble form of BLyS. In another preferred embodiment antibodies of the invention (including antibody fragments and variants) increase or enhance immunoglobulin production induced by the membrane bound or soluble form of APRIL. In another preferred embodiment antibodies of the invention (including antibody fragments and variants) increase or enhance immunoglobulin production in response to T cell dependent immunogens. In another preferred embodiment antibodies of the invention (including antibody fragments and variants, and anti-antibody antibodies) increase or enhance immunoglobulin production in response to T cell independent immunogens.

[0407] In another embodiment, therapeutic or pharmaceutical compositions of the invention are administered to an animal to treat, prevent or ameliorate immune disorders. Immune disorders include, but are not limited to, autoimmune disorders (e.g., arthritis, graft rejection, Hashimoto's thyroiditis, insulin-dependent diabetes, lupus, idiopathic thrombocytopenic purpura, systemic lupus erythematosus and multiple sclerosis), elective IgA deficiency, ataxia-telangiectasia, common variable immunodeficiency (CVID), X-linked agammaglobulinemia, severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome, idiopathic hyper-cosinophilic syndrome, monocytic leukemoid reaction, monocytic leukocytosis, monocytic leukopenia, monocytopenia, monocytosis, and graft or transplant rejection.

[0408] As discussed herein, antibodies and antibody compositions of the
invention, may be used to treat, prevent, ameliorate, diagnose or prognose various immune system-related disorders and/or conditions associated with these disorders, in mammals, preferably humans. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of antibody and antibody compositions of the invention that can inhibit an immune response, particularly the proliferation of B cells and/or the production of immunoglobulins, may be an effective therapy in treating and/or preventing autoimmune disorders. Thus, in preferred embodiments, antibodies and antibody compositions of the invention are used to treat, prevent, ameliorate, diagnose and/or prognose an autoimmune disorder, or condition(s) associated with such disorder.

[0409] Autoimmune disorders and conditions associated with these disorders that may be treated, prevented, ameliorated, diagnosed and/or prognosed with the therapeutic and pharmaceutical compositions of the invention include, but are not limited to, autoimmune hemolytic anemia, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, autoimmune neutropenia, autoimmune cytopenia, hemolytic anemia, antiphospholipid syndrome, dermatitis, gluten-sensitive enteropathy, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, glomerulonephritis (e.g., IgA nephropathy), Multiple Sclerosis, Neuritis, Uveitis Ophthalmia, Polycydrencinopathies, Purpura (e.g., Henloch-Scoenlein purpura), Reiter’s Disease, Stiff-Man Syndrome, Autoimmune Pulmonary Inflammation, myocarditis, IgA glomerulonephritis, dense deposit disease, rheumatic heart disease, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

[0410] Additional autoimmune disorders and conditions associated with these disorders that may be treated, prevented, ameliorated, diagnosed and/or prognosed with the therapeutic and pharmaceutical compositions of the invention include, but are not limited to, autoimmune thyroiditis, hypothyroidism (i.e., Hashimoto’s thyroiditis) (often characterized, e.g., by cell-mediated and humoral thyroid cytotoxicity), systemic lupus erythematosus (often characterized, e.g., by circulating and locally generated immune complexes), discoid lupus, Goodpasture’s syndrome (often characterized, e.g., by anti-basement membrane antibodies), Pemphigus (often characterized, e.g., by epidermal acantholytic antibodies), Receptor autoimmunities such as, for example, (a) Graves’
Disease (often characterized, e.g., by TSH receptor antibodies), (b) Myasthenia Gravis (often characterized, e.g., by acetylcholine receptor antibodies), and (c) insulin resistance (often characterized, e.g., by insulin receptor antibodies), autoimmune hemolytic anemia (often characterized, e.g., by phagocytosis of antibody-sensitized RBCs), autoimmune thrombocytopenic purpura (often characterized, e.g., by phagocytosis of antibody-sensitized platelets).

Additional autoimmune disorders and conditions associated with these disorders that may be treated, prevented, ameliorated, diagnosed and/or prognosed with the therapeutic and pharmaceutical compositions of the invention include, but are not limited to, rheumatoid arthritis (often characterized, e.g., by immune complexes in joints), scleroderma with anti-collagen antibodies (often characterized, e.g., by nucleolar and other nuclear antibodies), mixed connective tissue disease (often characterized, e.g., by antibodies to extractable nuclear antigens (e.g., ribonucleoprotein)), polymyositis/dermatomyositis (often characterized, e.g., by nonhistone ANA), pernicious anemia (often characterized, e.g., by antiparietal cell, microsomes, and intrinsic factor antibodies), idiopathic Addison's disease (often characterized, e.g., by humoral and cell-mediated adrenal cytotoxicity, infertility (often characterized, e.g., by antispermatozoal antibodies), glomerulonephritis (often characterized, e.g., by glomerular basement membrane antibodies or immune complexes) such as primary glomerulonephritis and IgA nephropathy, bullous pemphigoid (often characterized, e.g., by IgG and complement in basement membrane), Sjögren's syndrome (often characterized, e.g., by multiple tissue antibodies, and/or a specific nonhistone ANA (SS-B)), diabetes mellitus (often characterized, e.g., by cell-mediated and humoral islet cell antibodies), and adrenergic drug resistance (including adrenergic drug resistance with asthma or cystic fibrosis) (often characterized, e.g., by beta-adrenergic receptor antibodies), chronic active hepatitis (often characterized, e.g., by smooth muscle antibodies), primary biliary cirrhosis (often characterized, e.g., by mitochondrial antibodies), other endocrine gland failure (often characterized, e.g., by specific tissue antibodies in some cases), vitiligo (often characterized, e.g., by melanocyte antibodies), vasculitis (often characterized, e.g., by Ig and complement in vessel walls and/or low serum complement), post-MI (often characterized, e.g., by myocardial antibodies), cardiomyopathy syndrome (often characterized, e.g., by myocardial antibodies), urticaria (often characterized, e.g., by IgG and IgM...
antibodies to IgE), atopic dermatitis (often characterized, e.g., by IgG and IgM antibodies to IgE), asthma (often characterized, e.g., by IgG and IgM antibodies to IgE), inflammatory myopathies, and many other inflammatory, granulomatous, degenerative, and atrophic disorders.

[0412] In a preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, a member of the group: autoimmune hemolytic anemia, as primary glomerulonephritis, IgA glomerulonephritis, Goodpasture's syndrome, idiopathic thrombocytopenia, Multiple Sclerosis, Myasthenia Gravis, Pemphigus, polymyositis/dermatomyositis, relapsing polychondritis, rheumatoid arthritis, Sjögren's syndrome, systemic lupus erythematosus, Uveitis, vasculitis, and primary biliary cirrhosis.

[0413] In another preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, an immune based-rheumatologic disease, such as, for example, SLE, rheumatoid arthritis, CREST syndrome (a variant of scleroderma characterized by calcinosis, Raynaud's phenomenon, esophageal motility disorders, sclerodactyly, and telangiectasia.), Seronegative spondyloarthropathy (SpA), polymyositis/dermatomyositis, microscopic polyangiitis, hepatitis C-associated arthritis, Takayasu's arteritis, and undifferentiated connective tissue disorder.

[0414] In a specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, rheumatoid arthritis and/or medical conditions associated therewith.

[0415] For example, an antibody, or antibodies, of the present invention are used to treat patients with clinical diagnosis of rheumatoid arthritis (RA). The patient treated preferably will not have a B cell malignancy. Moreover, the patient is optionally further treated with any one or more agents employed for treating RA such as salicylate; nonsteroidal anti-inflammatory drugs such as indomethacin, phenylbutazone, phenylacetic acid derivatives (e.g. ibuprofen and fenoprofen), naphthalene acetic acids (naproxen), pyrrolealkanoic acid (tometin), indoleacetic acids (sulindac), halogenated anthranilic acid (meclofenamate sodium), piroxicam, zomepirac and diflunisal; antimalarials such as
chloroquine; gold salts; penicillamine; or immunosuppressive agents such as methotrexate or corticosteroids in dosages known for such drugs or reduced dosages. Preferably however, the patient is only treated with an antibody, or antibodies, of the present invention. Antibodies of the present invention are administered to the RA patient according to a dosing schedule as described *infra*, which may be readily determined by one of ordinary skill in the art. The primary response is determined by the Paulus index (Paulus et al. *Arthritis Rheum.* 33:477-484 (1990)), *i.e.*, improvement in morning stiffness, number of painful and inflamed joints, erythrocyte sedimentation (ESR), and at least a 2-point improvement on a 5-point scale of disease severity assessed by patient and by physician. Administration of an antibody, or antibodies, of the present invention will alleviate one or more of the symptoms of RA in the patient treated as described above.

[0416] In a specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, amelioate, diagnose or prognose, lupus and/or medical conditions associated therewith. Lupus-associated conditions that may be treated, prevented, ameliorated, prognosed and/or diagnosed with the antibodies and antibody compositions of the invention include, but are not limited to, hematologic disorders (e.g., hemolytic anemia, leukopenia, lymphopenia, and thrombocytopenia), immunologic disorders (e.g., anti-DNA antibodies, and anti-Sm antibodies), rashes, photosensitivity, oral ulcers, arthritis, fever, fatigue, weight loss, serositis (e.g., pleuritus (pleurisy)), renal disorders (e.g., nephritis), neurological disorders (e.g., seizures, peripheral neuropathy, CNS related disorders), gastrointestinal disorders, Raynaud phenomenon, and pericarditis. In a preferred embodiment, therapeutic and pharmaceutical compositions of the invention are used to treat, prevent, ameliorate, diagnose, or prognose, renal disorders associated with systemic lupus erythematosus. In a most preferred embodiment, therapeutic and pharmaceutical compositions of the invention are used to treat, prevent, ameliorate, diagnose, or prognose, nephritis associated with systemic lupus erythematosus. In another most preferred embodiment, therapeutic or pharmaceutical compositions of the invention are administered to an animal to treat, prevent or ameliorate lupus or glomerular nephritis.
In a further specific embodiment, antibodies of the invention are used to treat, inhibit, prognose, diagnose or prevent hemolytic anemia. For example, patients diagnosed with autoimmune hemolytic anemia (AIHA), e.g., cryoglobulinemia or Coombs positive anemia, are treated with an antibody, or antibodies, of the present invention. AIHA is an acquired hemolytic anemia due to auto-antibodies that react with the patient's red blood cells. The patient treated preferably will not have a B cell malignancy. Further adjunct therapies (such as glucocorticoids, prednisone, azathioprine, cyclophosphamide, vinca-laden platelets or Danazol) may be combined with the antibody therapy, but preferably the patient is treated with an antibody, or antibodies, of the present invention as a single-agent throughout the course of therapy. Antibodies of the present invention are administered to the hemolytic anemia patient according to a dosing schedule as described infra, which may be readily determined by one of ordinary skill in the art. Overall response rate is determined based upon an improvement in blood counts, decreased requirement for transfusions, improved hemoglobin levels and/or a decrease in the evidence of hemolysis as determined by standard chemical parameters. Administration of an antibody, or antibodies of the present invention will improve any one or more of the symptoms of hemolytic anemia in the patient treated as described above. For example, the patient treated as described above will show an increase in hemoglobin and an improvement in chemical parameters of hemolysis or return to normal as measured by serum lactic dehydrogenase and/or bilirubin.

In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, Sjögren's Syndrome and/or medical conditions associated therewith.

In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, HIV infection and/or medical conditions associated therewith (e.g. AIDS).
[0420] In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, Myasthenia gravis and/or medical conditions associated therewith.

[0421] In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, IgA nephropathy and/or medical conditions associated therewith.

[0422] In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, hemolytic anemia and/or medical conditions associated therewith.

[0423] In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, thyroiditis and/or medical conditions associated therewith.

[0424] In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, Goodpasture's Syndrome and/or medical conditions associated therewith.

[0425] In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, multiple sclerosis and/or medical conditions associated therewith.

[0426] In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, chronic lymphocytic leukemia (CLL) and/or medical conditions associated therewith.

[0427] In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, multiple myeloma and/or medical conditions associated therewith.

[0428] In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, Non-Hodgkin's lymphoma and/or medical conditions associated therewith.

[0429] In another specific preferred embodiment, therapeutic and pharmaceutical compositions of the invention, are used to treat, prevent, ameliorate, diagnose or prognose, Hodgkin's disease and/or medical conditions associated therewith.

[0430] In another specific embodiment, antibodies of the invention are used to treat, inhibit, prognose, diagnose or prevent adult immune thrombocytopenic purpura.
Adult immune thrombocytopenic purpura (ITP) is a relatively rare hematologic disorder that constitutes the most common of the immune-mediated cytopenias. The disease typically presents with severe thrombocytopenia that may be associated with acute hemorrhage in the presence of normal to increased megakaryocytes in the bone marrow. Most patients with ITP have an IgG antibody directed against target antigens on the outer surface of the platelet membrane, resulting in platelet sequestration in the spleen and accelerated reticuloendothelial destruction of platelets (Bussell, J.B. Hematol. Oncol. Clin. North Am. (4):179 (1990)). A number of therapeutic interventions have been shown to be effective in the treatment of ITP. Steroids are generally considered first-line therapy, after which most patients are candidates for intravenous immunoglobulin (IVIG), splenectomy, or other medical therapies including vincristine or immunosuppressive/cytotoxic agents. Up to 80% of patients with ITP initially respond to a course of steroids, but far fewer have complete and lasting remissions. Splenectomy has been recommended as standard second-line therapy for steroid failures, and leads to prolonged remission in nearly 60% of cases yet may result in reduced immunity to infection. Splenectomy is a major surgical procedure that may be associated with substantial morbidity (15%) and mortality (2%). IVIG has also been used as second line medical therapy, although only a small proportion of adult patients with ITP achieve remission. Therapeutic options that would interfere with the production of autoantibodies by activated B cells without the associated morbidities that occur with corticosteroids and/or splenectomy would provide an important treatment approach for a proportion of patients with ITP. Patients with clinical diagnosis of ITP are treated with an antibody, or antibodies of the present invention, optionally in combination with steroid therapy. The patient treated will not have a B cell malignancy. Antibodies of the present invention are administered to the RA patient according to a dosing schedule as described infra, which may be readily determined by one of ordinary skill in the art. Overall patient response rate is determined based upon a platelet count determined on two consecutive occasions two weeks apart following

[0431] In another embodiment, therapeutic or pharmaceutical compositions of the invention are administered to an animal to treat, prevent or ameliorate an IgE-mediated allergic reaction or histamine-mediated allergic reaction. Examples of allergic reactions include, but are not limited to, asthma, rhinitis, eczema, chronic urticaria, and atopic dermatitis. In another embodiment, therapeutic or pharmaceutical compositions of the invention are administered to an animal to treat, prevent, or ameliorate anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility. In another embodiment, therapeutic or pharmaceutical compositions of the invention are administered to an animal to treat, prevent or ameliorate or modulate inflammation or an inflammatory disorder. Examples of chronic and acute inflammatory disorders that may be treated prevented or ameliorated with the therapeutic and pharmaceutical compositions of the invention include, but are not limited to, chronic prostatitis, granulomatous prostatitis and malacoplakia, inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, Crohn's disease, inflammatory bowel disease, chronic and acute inflammatory pulmonary diseases, bacterial infection, psoriasis, septicemia, cerebral malaria, arthritis, gastroenteritis, and glomerular nephritis.

[0432] In another embodiment, therapeutic or pharmaceutical compositions of the invention are administered to an animal to treat, prevent or ameliorate ischemia and arteriosclerosis. Examples of such disorders include, but are not limited to, reperfusion damage (e.g., in the heart and/or brain) and cardiac hypertrophy.

[0433] Therapeutic or pharmaceutical compositions of the invention, may also be administered to modulate blood clotting and to treat or prevent blood clotting disorders, such as, for example, antibody-mediated thrombosis (i.e., antiphospholipid antibody syndrome (APS)). For example, therapeutic or pharmaceutical compositions of the invention, may inhibit the proliferation and differentiation of cells involved in producing antiphospholipid antibodies. These compositions of the invention can be used to treat, prevent, ameliorate, diagnose, and/or prognose thrombotic related events including, but
not limited to, stroke (and recurrent stroke), heart attack, deep vein thrombosis, pulmonary embolism, myocardial infarction, coronary artery disease (e.g., antibody-mediated coronary artery disease), thrombosis, graft reocclusion following cardiovascular surgery (e.g., coronary arterial bypass grafts, recurrent fetal loss, and recurrent cardiovascular thromboembolic events.

[0434] Therapeutic or pharmaceutical compositions of the invention, may also be administered to treat, prevent, or ameliorate organ rejection or graft-versus-host disease (GVHD) and/or conditions associated therewith. Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of antibodies of the invention, that inhibit an immune response, may be an effective therapy in preventing organ rejection or GVHD.

[0435] In another embodiment, therapeutic or pharmaceutical compositions of the invention are administered to an animal to treat, prevent or ameliorate a disease or disorder diseases associated with increased apoptosis including, but not limited to, AIDS, neurodegenerative disorders (such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, Retinitis pigmentosa, Cerebellar degeneration), myelodysplastic syndromes (such as aplastic anemia), ischemic injury (such as that caused by myocardial infarction, stroke and reperfusion injury), toxin-induced liver disease (such as that caused by alcohol), septic shock, cachexia and anorexia. In another embodiment, therapeutic or pharmaceutical compositions of the invention are administered to an animal to treat, prevent or ameliorate bone marrow failure, for example, aplastic anemia and myelodysplastic syndrome.

[0436] In another embodiment, therapeutic or pharmaceutical compositions of the invention are administered to an animal to treat, prevent or ameliorate growth, progression, and/or metastases of malignancies and proliferative disorders associated with increased cell survival, or the inhibition of apoptosis. Examples of such disorders, include, but are not limited to, leukemia (e.g., acute leukemia such as acute lymphocytic leukemia and acute myelocytic leukemia), neoplasms, tumors (e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma,
synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, and retinoblastoma), heavy chain disease, metastases, or any disease or disorder characterized by uncontrolled cell growth.

[0437] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used to treat or prevent a disorder characterized by hypergammaglobulinemia (e.g., AIDS, autoimmune diseases, and some immunodeficiencies).

[0438] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used to treat or prevent a disorder characterized by deficient serum immunoglobulin production, recurrent infections, and/or immune system dysfunction. Moreover, therapeutic or pharmaceutical compositions of the invention may be used to treat or prevent infections of the joints, bones, skin, and/or parotid glands, blood-borne infections (e.g., sepsis, meningitis, septic arthritis, and/or osteomyelitis), autoimmune diseases (e.g., those disclosed herein), inflammatory disorders, and malignancies, and/or any disease or disorder or condition associated with these infections, diseases, disorders and/or malignancies) including, but not limited to, CVID, other primary immune deficiencies, HIV disease, CLL, recurrent bronchitis, sinusitis, otitis media, conjunctivitis, pneumonia, hepatitis, meningitis, herpes zoster (e.g., severe herpes zoster), and/or pneumocystis carinii.

[0439] Therapeutic or pharmaceutical compositions of the invention of the invention thereof, may be used to diagnose, prognose, treat or prevent one or more of the following diseases or disorders, or conditions associated therewith: primary immuodeficiencies, immune-mediated thrombocytopenia, Kawasaki syndrome, bone marrow transplant (e.g., recent bone marrow transplant in adults or children), chronic B-
cell lymphocytic leukemia, HIV infection (e.g., adult or pediatric HIV infection), chronic inflammatory demyelinating polyneuropathy, and post-transfusion purpura.

Additionally, therapeutic or pharmaceutical compositions of the invention may be used to diagnose, prognose, treat or prevent one or more of the following diseases, disorders, or conditions associated therewith, Guillain-Barre syndrome, anemia (e.g., anemia associated with parvovirus B19, patients with stable multiple myeloma who are at high risk for infection (e.g., recurrent infection), autoimmune hemolytic anemia (e.g., warm-type autoimmune hemolytic anemia), thrombocytopenia (e.g., neonatal thrombocytopenia), and immune-mediated neutropenia), transplantation (e.g., cytomegalovirus (CMV)-negative recipients of CMV-positive organs), hypogammaglobulinemia (e.g., hypogammaglobulinemic neonates with risk factor for infection or morbidity), epilepsy (e.g., intractable epilepsy), systemic vasculitic syndromes, myasthenia gravis (e.g., decompensation in myasthenia gravis), dermatomyositis, and polymyositis.

Additional preferred embodiments of the invention include, but are not limited to, the use of therapeutic or pharmaceutical compositions of the invention in the following applications:

Administration to an animal (e.g., mouse, rat, rabbit, hamster, guinea pig, pigs, micro-pig, chicken, camel, goat, horse, cow, sheep, dog, cat, non-human primate, and human, most preferably human) to boost the immune system to produce increased quantities of one or more antibodies (e.g., IgG, IgA, IgM, and IgE), to induce higher affinity antibody production (e.g., IgG, IgA, IgM, and IgE), and/or to increase an immune response. In a specific nonexclusive embodiment, therapeutic or pharmaceutical compositions of the invention are administered to boost the immune system to produce increased quantities of IgG. In another specific nonexclusive embodiment, antibodies of the are administered to boost the immune system to produce increased quantities of IgA. In another specific nonexclusive embodiment antibodies of the invention are administered to boost the immune system to produce increased quantities of IgM.

Administration to an animal (including, but not limited to, those listed above, and also including transgenic animals) incapable of producing functional endogenous antibody molecules or having an otherwise compromised endogenous immune system, but which is capable of producing human immunoglobulin molecules by
means of a reconstituted or partially reconstituted immune system from another animal (see, e.g., published PCT Application Nos. WO98/24893, WO/9634096, WO/9633735, and WO/9110741).

[0444] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a vaccine adjuvant that enhances immune responsiveness to specific antigen. In a specific embodiment, the vaccine is an antibody described herein. In another specific embodiment, the vaccine adjuvant is a polynucleotide described herein (e.g., an antibody polynucleotide genetic vaccine adjuvant). As discussed herein, therapeutic or pharmaceutical compositions of the invention may be administered using techniques known in the art, including but not limited to, liposomal delivery, recombinant vector delivery, injection of naked DNA, and gene gun delivery.

[0445] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an adjuvant to enhance tumor-specific immune responses.

[0446] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an adjuvant to enhance anti-viral immune responses. Anti-viral immune responses that may be enhanced using the compositions of the invention as an adjuvant, include, but are not limited to, virus and virus associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune response to a virus, disease, or symptom selected from the group consisting of: AIDS, meningitis, Dengue, EBV, and hepatitis (e.g., hepatitis B). In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to a virus, disease, or symptom selected from the group consisting of: HIV/AIDS, Respiratory syncytial virus, Dengue, Rotavirus, Japanese B encephalitis, Influenza A and B, Parainfluenza, Measles, Cytomegalovirus, Rabies, Junin, Chikungunya, Rift Valley fever, Herpes simplex, and yellow fever. In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to the HIV gp120 antigen.

[0447] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an adjuvant to enhance anti-bacterial or anti-fungal immune responses. Anti-bacterial or anti-fungal immune responses that may be enhanced using the
compositions of the invention as an adjuvant, include bacteria or fungus and bacteria or fungus associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune response to a bacteria or fungus, disease, or symptom selected from the group consisting of: tetanus, Diphtheria, botulism, and meningitis type B. In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to a bacteria or fungus, disease, or symptom selected from the group consisting of: Vibrio cholerae, Mycobacterium leprae, Salmonella typhi, Salmonella paratyphi, Neisseria meningitidis, Streptococcus pneumoniae, Group B streptococcus, Shigella spp., Enterotoxigenic Escherichia coli, Enterohemorrhagic E. coli, Borrelia burgdorferi, and Plasmodium (malaria).

In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an adjuvant to enhance anti-parasitic immune responses. Anti-parasitic immune responses that may be enhanced using the compositions of the invention as an adjuvant, include parasite and parasite associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune response to a parasite. In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to Plasmodium (malaria).

In a specific embodiment, compositions of the invention may be administered to patients as vaccine adjuvants. In a further specific embodiment, compositions of the invention may be administered as vaccine adjuvants to patients suffering from an immune-deficiency. In a further specific embodiment, compositions of the invention may be administered as vaccine adjuvants to patients suffering from HIV.

In a specific embodiment, compositions of the invention may be used to increase or enhance antigen-specific antibody responses to standard and experimental vaccines. In a specific embodiment, compositions of the invention may be used to enhance seroconversion in patients treated with standard and experimental vaccines. In another specific embodiment, compositions of the invention may be used to increase the repertoire of antibodies recognizing unique epitopes in response to standard and experimental vaccination.

In a preferred embodiment, antibodies of the invention (including antibody
fragments and variants, and anti-antibody antibodies) increase or enhance antigen-specific antibody responses to standard and experimental vaccines by regulating binding of the soluble form of BLyS to a BLyS receptor (e.g., BCMA and TACI). In another preferred embodiment, antibodies of the invention (including antibody fragments and variants, and anti-antibody antibodies) increase or enhance antigen-specific antibody responses to standard and experimental vaccines by regulating binding of the soluble form of APRIL to an APRIL receptor (e.g., BCMA and TACI).

[0452] In a preferred embodiment, antibodies of the invention (including antibody fragments and variants, and anti-antibody antibodies) increase or enhance seroconversion in patients treated with standard and experimental vaccines by regulating binding of the soluble form of BLyS to BLyS receptor (e.g., BCMA and TACI). In another preferred embodiment, antibodies of the invention (including antibody fragments and variants, and anti-antibody antibodies) increase or enhance seroconversion in patients treated with standard and experimental vaccines by regulating binding of the soluble form of APRIL to an APRIL receptor (e.g., BCMA and TACI).

[0453] In a preferred embodiment, antibodies of the invention (including antibody fragments and variants, and anti-antibody antibodies) increase or enhance the repertoire of antibodies recognizing unique epitopes in response to standard and experimental vaccination by regulating binding of the soluble form of BLyS to a BLyS receptor (e.g., BCMA and TACI). In another preferred embodiment, antibodies of the invention (including antibody fragments and variants, and anti-antibody antibodies) increase or enhance the repertoire of antibodies recognizing unique epitopes in response to standard and experimental vaccination by regulating binding of the soluble form of APRIL to an APRIL receptor (e.g., BCMA and TACI).

[0454] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a stimulator of B cell responsiveness to pathogens.

[0455] In a specific embodiment, therapeutic or pharmaceutical compositions of
the invention are used as an agent that elevates the immune status of an individual prior to their receipt of immunosuppressive therapies.

[0456] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an agent to induce higher affinity antibodies.

[0457] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an agent to increase serum immunoglobulin concentrations.

[0458] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an agent to accelerate recovery of immunocompromised individuals.

[0459] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an agent to boost immunoresponsiveness among aged populations.

[0460] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an immune system enhancer prior to, during, or after bone marrow transplant and/or other transplants (e.g., allogeneic or xenogeneic organ transplantation). With respect to transplantation, compositions of the invention may be administered prior to, concomitant with, and/or after transplantation. In a specific embodiment, compositions of the invention are administered after transplantation, prior to the beginning of recovery of T-cell populations. In another specific embodiment, compositions of the invention are first administered after transplantation after the beginning of recovery of T cell populations, but prior to full recovery of B cell populations.

[0461] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an agent to boost immunoresponsiveness among B cell immunodeficient individuals, such as, for example, an individual who has undergone a partial or complete splenectomy. B cell immunodeficiencies that may be ameliorated or treated by administering the antibodies and/or compositions of the invention include, but are not limited to, severe combined immunodeficiency (SCID)-X linked, SCID-autosomal, adenosine deaminase deficiency (ADA deficiency), X-linked agammaglobulinemia (XLA), Bruton’s disease, congenital agammaglobulinemia, X-linked infantile
agammaglobulinemia, acquired agammaglobulinemia, adult onset agammaglobulinemia, late-onset agammaglobulinemia, dysgammaglobulinemia, hypogammaglobulinemia, transient hypogammaglobulinemia of infancy, unspecified hypogammaglobulinemia, agammaglobulinemia, common variable immunodeficiency (CVID) (acquired), Wiskott-Aldrich Syndrome (WAS), X-linked immunodeficiency with hyper IgM, non X-linked immunodeficiency with hyper IgM, selective IgA deficiency, IgG subclass deficiency (with or without IgA deficiency), antibody deficiency with normal or elevated Igs, immunodeficiency with thymoma, Ig heavy chain deletions, kappa chain deficiency, B cell lymphoproliferative disorder (BLPD), selective IgM immunodeficiency, recessive agammaglobulinemia (Swiss type), reticular dysgenesis, neonatal neutropenia, severe congenital leukopenia, thymic lymphoplasia-aplasia or dysplasia with immunodeficiency, ataxia-telangiectasia, short limbed dwarfism, X-linked lymphoproliferative syndrome (XLP), Nezelof syndrome-combined immunodeficiency with Igs, purine nucleoside phosphorylase deficiency (PNP), MHC Class II deficiency (Bare Lymphocyte Syndrome) and severe combined immunodeficiency.

[0462] In a specific embodiment, antibodies and/or compositions of the invention are administered to treat or ameliorate selective IgA deficiency.

[0463] In another specific embodiment, antibodies and/or compositions of the invention are administered to treat or ameliorate selective ataxia-telangiectasia.

[0464] In another specific embodiment antibodies and/or compositions of the invention are administered to treat or ameliorate common variable immunodeficiency.

[0465] In another specific embodiment, antibodies and/or compositions of the invention are administered to treat or ameliorate X-linked agammaglobulinemia.

[0466] In another specific embodiment, antibodies and/or compositions of the invention are administered to treat or ameliorate severe combined immunodeficiency (SCID).

[0467] In another specific embodiment, antibodies and/or compositions of the invention are administered to treat or ameliorate Wiskott-Aldrich syndrome.

[0468] In another specific embodiment, antibodies and/or compositions of the invention are administered to treat or ameliorate X-linked Ig deficiency with hyper IgM.

[0469] As an agent to boost immunoresponsiveness among individuals having an acquired loss of B cell function. Conditions resulting in an acquired loss of B cell
function that may be ameliorated or treated by administering antibodies and/or compositions of the invention include, but are not limited to, HIV Infection, AIDS, bone marrow transplant, and B cell chronic lymphocytic leukemia (CLL).

[0470] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an agent to boost immunoresponsiveness among individuals having a temporary immune deficiency. Conditions resulting in a temporary immune deficiency that may be ameliorated or treated by administering antibodies and/or compositions of the invention include, but are not limited to, recovery from viral infections (e.g., influenza), conditions associated with malnutrition, recovery from infectious mononucleosis, or conditions associated with stress, recovery from measles, recovery from blood transfusion, recovery from surgery.

[0471] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a regulator of antigen presentation by monocytes, dendritic cells, T cells and/or B-cells. In one embodiment, antibody polypeptides or polynucleotides enhance antigen presentation or antagonize antigen presentation in vitro or in vivo. Moreover, in related embodiments, this enhancement or antagonization of antigen presentation may be useful in anti-tumor treatment or to modulate the immune system.

[0472] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a mediator of mucosal immune responses. The expression of BLyS on monocytes, the expression of BLyS receptor on B cells, and the responsiveness of B cells to BLyS suggests that it may be involved in exchange of signals between B cells and monocytes or their differentiated progeny. This activity is in many ways analogous to the CD40-CD154 signalling between B cells and T cells. Anti-BLyS antibodies and compositions of the invention may therefore be good regulators of T cell independent immune responses to environmental pathogens. In particular, the unconventional B cell populations (CD5+) that are associated with mucosal sites and responsible for much of the innate immunity in humans may respond to antibodies or compositions of the invention thereby enhancing or inhibiting individual’s immune status.

[0473] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an agent to direct an individual’s immune system towards development of a humoral response (i.e. TH2) as opposed to a TH1 cellular response.
[0474] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a means to induce tumor proliferation and thus make it more susceptible to anti-neoplastic agents. For example, multiple myeloma is a slowly dividing disease and is thus refractory to virtually all anti-neoplastic regimens. If these cells were forced to proliferate more rapidly, their susceptibility profile would likely change.

[0475] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a monocyte cell specific binding protein to which specific activators or inhibitors of cell growth may be attached. The result would be to focus the activity of such activators or inhibitors onto normal, diseased, or neoplastic B cell populations.

[0476] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a B cell specific binding protein to which specific activators or inhibitors of cell growth may be attached. The result would be to focus the activity of such activators or inhibitors onto normal, diseased, or neoplastic B cell populations.

[0477] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a means of detecting monocytic cells by virtue of its specificity. This application may require labeling the protein with biotin or other agents (e.g., as described herein) to afford a means of detection.

[0478] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a means of detecting B-lineage cells by virtue of its specificity. This application may require labeling the protein with biotin or other agents (e.g., as described herein) to afford a means of detection.

[0479] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a stimulator of B cell production in pathologies such as AIDS, chronic lymphocyte disorder and/or Common Variable immunodeficiency.

[0480] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as part of a monocyte selection device the function of which is to isolate monocytes from a heterogeneous mixture of cell types. Antibodies of the invention could be coupled to a solid support to which monocytes would then specifically bind.
Unbound cells would be washed out and the bound cells subsequently eluted. A non-limiting use of this selection would be to allow purging of tumor cells from, for example, bone marrow or peripheral blood prior to transplant.

[0481] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as part of a B cell selection device the function of which is to isolate B cells from a heterogeneous mixture of cell types. Antibodies of the invention (that do not inhibit BLyS/BLyS Receptor interaction) binding soluble BLyS could be coupled to a solid support to which B cells would then specifically bind. Unbound cells would be washed out and the bound cells subsequently eluted. A non-limiting use of this selection would be to allow purging of tumor cells from, for example, bone marrow or peripheral blood prior to transplant.

[0482] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a therapy for generation and/or regeneration of lymphoid tissues following surgery, trauma or genetic defect.

[0483] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a gene-based therapy for genetically inherited disorders resulting in immuno-incompetence such as observed among SCID patients.

[0484] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as an antigen for the generation of antibodies to inhibit or enhance BLyS mediated responses.

[0485] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a means of activating monocytes/macrophages to defend against parasitic diseases that effect monocytes such as Leishmania.

[0486] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as pretreatment of bone marrow samples prior to transplant. Such treatment would increase B cell representation and thus accelerate recovery.

[0487] In a specific embodiment, therapeutic or pharmaceutical compositions of the invention are used as a means of regulating secreted cytokines that are elicited by BLyS and/or BLyS receptor.
Antibody polypeptides or polynucleotides of the invention may be used to modulate IgE concentrations in vitro or in vivo.

Additionally, antibody polypeptides or polynucleotides of the invention may be used to treat, prevent, and/or diagnose IgE-mediated allergic reactions. Such allergic reactions include, but are not limited to, asthma, rhinitis, and eczema.

In a specific embodiment, antibody polypeptides or polynucleotides of the invention are administered to treat, prevent, diagnose, and/or ameliorate selective IgA deficiency.

In another specific embodiment antibody polypeptides or polynucleotides of the invention are administered to treat, prevent, diagnose, and/or ameliorate ataxia-telangiectasia.

In another specific embodiment, antibody polypeptides or polynucleotides of the invention are administered to treat, prevent, diagnose, and/or ameliorate common variable immunodeficiency.

In another specific embodiment, antibody polypeptides or polynucleotides of the invention are administered to treat, prevent, diagnose, and/or ameliorate X-linked agammaglobulinemia.

In another specific embodiment, antibody polypeptides or polynucleotides of the invention are administered to treat, prevent, diagnose, and/or ameliorate severe combined immunodeficiency (SCID).

In another specific embodiment, antibody polypeptides or polynucleotides of the invention are administered to treat, prevent, diagnose, and/or ameliorate Wiskott-Aldrich syndrome.

In another specific embodiment, antibody polypeptides or polynucleotides of the invention are administered to treat, prevent, diagnose, and/or ameliorate X-linked Ig deficiency with hyper IgM. In a specific embodiment antibody polypeptides or polynucleotides of the invention are administered to treat, prevent, diagnose, and/or ameliorate X-linked Ig deficiency with hyper IgM.

In another specific embodiment, antibody polypeptides or polynucleotides of the invention are administered to treat, prevent, and/or diagnose chronic myelogenous leukemia, acute myelogenous leukemia, leukemia, hystiocytic leukemia, monocytic leukemia (e.g., acute monocytic leukemia), leukemic reticulosi sis, Shilling Type monocytic
leukemia, and/or other leukemias derived from monocytes and/or monocytic cells and/or tissues.

[0498] In another specific embodiment, antibody polypeptides or polynucleotides of the invention are administered to treat, prevent, diagnose, and/or ameliorate monocytic leukemoid reaction, as seen, for example, with tuberculosis.

[0499] In another specific embodiment, antibody polypeptides or polynucleotides of the invention are administered to treat, prevent, diagnose, and/or ameliorate monocytic leukocytosis, monocytic leukopenia, monocytopenia, and/or monocytosis.

[0500] In a specific embodiment, antibody polypeptides or polynucleotides of the invention are used to treat, prevent, detect, and/or diagnose monocyte disorders and/or diseases, and/or conditions associated therewith.

[0501] In a specific embodiment, antibody polypeptides or polynucleotides of the invention are used to treat, prevent, detect, and/or diagnose primary B lymphocyte disorders and/or diseases, and/or conditions associated therewith. In one embodiment, such primary B lymphocyte disorders, diseases, and/or conditions are characterized by a complete or partial loss of humoral immunity. Primary B lymphocyte disorders, diseases, and/or conditions associated therewith that are characterized by a complete or partial loss of humoral immunity and that may be prevented, treated, detected and/or diagnosed with compositions of the invention include, but are not limited to, X-Linked Agammaglobulinemia (XLA), severe combined immunodeficiency disease (SCID), and selective IgA deficiency.

[0502] In a preferred embodiment antibody polypeptides or polynucleotides of the invention are used to treat, prevent, and/or diagnose diseases or disorders affecting or conditions associated with any one or more of the various mucous membranes of the body. Such diseases or disorders include, but are not limited to, for example, mucositis, mucoclasis, mucocollitis, mucocutaneous leishmaniasis (such as, for example, American leishmaniasis, leishmaniasis americana, nasopharyngeal leishmaniasis, and New World leishmaniasis), mucocutaneous lymph node syndrome (for example, Kawasaki disease), mucoenteritis, mucoepidermoid carcinoma, mucoepidermoid tumor, mucoepithelial dysplasia, mucoid adenocarcinoma, mucoid degeneration, myxoid degeneration; myxomatous degeneration; myxomatosis, mucoid medial degeneration (for example, cystic medial necrosis), mucolipidosis (including, for example, mucolipidosis I,
mucolipidosis II, mucolipidosis III, and mucolipidosis IV), mucolysis disorders, mucoclebranous enteritis, mucoenteritis, mucopolysaccharidosis (such as, for example, type I mucopolysaccharidosis (i.e., Hurler's syndrome), type IS mucopolysaccharidosis (i.e., Scheie's syndrome or type V mucopolysaccharidosis), type II mucopolysaccharidosis (i.e., Hunter's syndrome), type III mucopolysaccharidosis (i.e., Sanfilippo's syndrome), type IV mucopolysaccharidosis (i.e., Morquio's syndrome), type VI mucopolysaccharidosis (i.e., Maroteaux-Lamy syndrome), type VII mucopolysaccharidosis (i.e, mucopolysaccharidosis due to beta-glucuronidase deficiency), and mucosulfatidosis), mucopolysaccharidurias, mucopurulent conjunctivitis, mucopus, mucormycosis (i.e., zygomycosis), mucosal disease (i.e., bovine virus diarrhea), mucous colitis (such as, for example, mucocolitis and myxomembranous colitis), and mucoviscidosis (such as, for example, cystic fibrosis, cystic fibrosis of the pancreas, Clarke-Hadfield syndrome, fibrocystic disease of the pancreas, mucoviscidosis, and viscidosis). In a highly preferred embodiment, antibody polypeptides or polynucleotides of the invention are used to treat, prevent, and/or diagnose mucositis, especially as associated with chemotherapy.

[0503] In a preferred embodiment, antibody polypeptides or polynucleotides of the invention are used to treat, prevent, and/or diagnose diseases or disorders affecting or conditions associated with sinusitis.

[0504] An additional condition, disease or symptom that can be treated, prevented, and/or diagnosed by antibody polypeptides or polynucleotides of the invention is osteomyelitis.

[0505] An additional condition, disease or symptom that can be treated, prevented, and/or diagnosed by antibody polypeptides or polynucleotides of the invention is endocarditis.

[0506] All of the above described applications as they may apply to veterinary medicine.

[0507] Antibody polypeptides or polynucleotides of the invention may be used to treat, prevent, and/or diagnose diseases and disorders of the pulmonary system (e.g., bronchi such as, for example, sinopulmonary and bronchial infections and conditions associated with such diseases and disorders and other respiratory diseases and disorders. In specific embodiments, such diseases and disorders include, but are not limited to,
bronchial adenoma, bronchial asthma, pneumonia (such as, e.g., bronchial pneumonia, bronchopneumonia, and tuberculous bronchopneumonia), chronic obstructive pulmonary disease (COPD), bronchial polyps, bronchiecstasy (such as, e.g., bronchiecstasy sicca, cylindrical bronchiecstasy, and saccular bronchiecstasy), bronchiolar adenocarcinoma, bronchiolar carcinoma, bronchiolitis (such as, e.g., exudative bronchiolitis, bronchiolitis fibrosa obliterans, and proliferative bronchiolitis), bronchiolo-alveolar carcinoma, bronchitic asthma, bronchitis (such as, e.g., asthmatic bronchitis, Castellani's bronchitis, chronic bronchitis, croupous bronchitis, fibrinous bronchitis, hemorrhagic bronchitis, infectious avian bronchitis, obliterative bronchitis, plastic bronchitis, pseudomembranous bronchitis, putrid bronchitis, and verminous bronchitis), bronchocentric granulomatosis, bronchoedema, bronchoesophageal fistula, bronchogenic carcinoma, bronchogenic cyst, broncholithiasis, bronchomalacia, bronchomycosis (such as, e.g., bronchopulmonary aspergillosis), bronchopulmonary spirochetosis, hemorrhagic bronchitis, bronchorrhea, bronchospasm, bronchoastaxis, bronchostenosis, Biot's respiration, bronchial respiration, Kussmaul respiration, Kussmaul-Kien respiration, respiratory acidosis, respiratory alkalosis, respiratory distress syndrome of the newborn, respiratory insufficiency, respiratory scleroma, respiratory syncytial virus, and the like.

[0508] In a specific embodiment, antibody polypeptides or polynucleotides of the invention are used to treat, prevent, and/or diagnose chronic obstructive pulmonary disease (COPD).

[0509] In another embodiment, antibody polypeptides or polynucleotides of the invention are used to treat, prevent, and/or diagnose fibroses and conditions associated with fibroses, including, but not limited to, cystic fibrosis (including such fibroses as cystic fibrosis of the pancreas, Clarke-Hadfield syndrome, fibrocystic disease of the pancreas, mucoviscidosis, and viscidosis), endomyocardial fibrosis, idiopathic retroperitoneal fibrosis, leptomeningeal fibrosis, mediastinal fibrosis, nodular subepidermal fibrosis, pericentral fibrosis, perimuscualr fibrosis, pipestem fibrosis, replacement fibrosis, subadventitial fibrosis, and Symmers' clay pipestem fibrosis.

[0510] In another embodiment, therapeutic or pharmaceutical compositions of the invention are administered to an animal to treat, prevent or ameliorate infectious diseases. Infectious diseases include diseases associated with yeast, fungal, viral and bacterial infections. Viruses causing viral infections which can be treated or prevented in
accordance with this invention include, but are not limited to, retroviruses (e.g., human T-cell lymphotropic virus (HTLV) types I and II and human immunodeficiency virus (HIV)), herpes viruses (e.g., herpes simplex virus (HSV) types I and II, Epstein-Barr virus, HHV6-HHV8, and cytomegalovirus), arenaviruses (e.g., lassa fever virus), paramyxoviruses (e.g., morbillivirus virus, human respiratory syncytial virus, mumps, and pneumovirus), adenoviruses, bunyaviruses (e.g., hantavirus), coronaviruses, filoviruses (e.g., Ebola virus), flaviviruses (e.g., hepatitis C virus (HCV), yellow fever virus, and Japanese encephalitis virus), hepadnaviruses (e.g., hepatitis B viruses (HBV)), orthomyxoviruses (e.g., influenza viruses A, B and C), papovaviruses (e.g., papillomaviruses), picornaviruses (e.g., rhinoviruses, enteroviruses and hepatitis A viruses), poxviruses, reoviruses (e.g., rotavirus), togaviruses (e.g., rubella virus), rhabdoviruses (e.g., rabies virus). Microbial pathogens causing bacterial infections include, but are not limited to, *Streptococcus pyogenes*, *Streptococcus pneumoniae*, *Neisseria gonorrhoea*, *Neisseria meningitidis*, *Corynebacterium diptheriae*, *Clostridium botulinum*, *Clostridium perfringens*, *Clostridium tetani*, *Haemophilus influenzae*, *Klebsiella pneumoniae*, *Klebsiella ozaenae*, *Klebsiella rhinoscleromatis*, *Staphylococcus aureus*, *Vibrio cholerae*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Campylobacter* (Vibrio) *fetus*, *Campylobacter jejuni*, *Aeromonas hydrophila*, *Bacillus cereus*, *Edwardsiella tarda*, *Yersinia enterocolitica*, *Yersinia pestis*, *Yersinia pseudotuberculosis*, *Shigella dysenteriae*, *Shigella flexneri*, *Shigella sonnei*, *Salmonella typhimurium*, *Treponema pallidum*, *Treponema pertenue*, *Treponema carateum*, *Borrelia vincentii*, *Borrelia burgdorferi*, *Leptospira icterohemorrhagiae*, *Mycobacterium tuberculosis*, *Toxoplasma gondii*, *Pneumocystis carinii*, *Francisella tularensis*, *Brucella abortus*, *Brucella suis*, *Brucella melitensis*, *Mycoplasma spp.*, *Rickettsia prowazeki*, *Rickettsia tsutsugamushi*, *Chlamydia spp.*, and *Helicobacter pylori*.

Gene Therapy

[0511] In a specific embodiment, nucleic acids comprising sequences encoding antibodies or functional derivatives thereof, are administered to treat, inhibit or prevent a disease or disorder associated with aberrant expression and/or activity of BLyS and/or its receptor, by way of gene therapy. Gene therapy refers to therapy performed by the
administration to a subject of an expressed or expressible nucleic acid. In this embodiment of the invention, the nucleic acids produce their encoded protein that mediates a therapeutic effect.

[0512] Any of the methods for gene therapy available in the art can be used according to the present invention. Exemplary methods are described below.

[0514] In a preferred aspect, a composition of the invention comprises, or alternatively consists of, nucleic acids encoding an antibody, said nucleic acids being part of an expression vector that expresses the antibody or fragments or chimeric proteins or heavy or light chains thereof in a suitable host. In particular, such nucleic acids have promoters, preferably heterologous promoters, operably linked to the antibody coding region, said promoter being inducible or constitutive, and, optionally, tissue-specific. In another particular embodiment, nucleic acid molecules are used in which the antibody coding sequences and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression of the antibody encoding nucleic acids (Koller and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); Zijlstra et al., Nature 342:435-438 (1989). In specific embodiments, the expressed antibody molecule is an scFv; alternatively, the nucleic acid sequences include sequences encoding both the heavy and light chains, or fragments or variants thereof, of an antibody.

[0515] Delivery of the nucleic acids into a patient may be either direct, in which case the patient is directly exposed to the nucleic acid or nucleic acid-carrying vectors, or indirect, in which case, cells are first transformed with the nucleic acids in vitro, then transplanted into the patient. These two approaches are known, respectively, as in vivo or ex vivo gene therapy.
In a specific embodiment, the nucleic acid sequences are directly administered \textit{in vivo}, where it is expressed to produce the encoded product. This can be accomplished by any of numerous methods known in the art, \textit{e.g.}, by constructing them as part of an appropriate nucleic acid expression vector and administering it so that they become intracellular, \textit{e.g.}, by infection using defective or attenuated retrovirals or other viral vectors (see U.S. Patent No. 4,980,286), or by direct injection of naked DNA, or by use of microparticle bombardment (\textit{e.g.}, a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, encapsulation in liposomes, microparticles, or microcapsules, or by administering them in linkage to a peptide which is known to enter the nucleus, by administering it in linkage to a ligand subject to receptor-mediated endocytosis (see, \textit{e.g.}, Wu and Wu, \textit{J. Biol. Chem.} 262:4429-4432 (1987)) (which can be used to target cell types specifically expressing the receptors), etc. In another embodiment, nucleic acid-ligand complexes can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation. In yet another embodiment, the nucleic acid can be targeted \textit{in vivo} for cell specific uptake and expression, by targeting a specific receptor (see, \textit{e.g.}, PCT Publications WO 92/06 180; WO 92/22635; W092/20316; W093/14188, WO 93/20221). Alternatively, the nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination (Koller and Smithies, \textit{Proc. Natl. Acad. Sci. USA} 86:8932-8935 (1989); Zijlstra \textit{et al.}, \textit{Nature} 342:435-438 (1989)).

In a specific embodiment, viral vectors that contains nucleic acid sequences encoding an antibody of the invention or fragments or variants thereof are used. For example, a retroviral vector can be used (see Miller \textit{et al.}, Meth. Enzymol. 217:581-599 (1993)). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences encoding the antibody to be used in gene therapy are cloned into one or more vectors, which facilitates delivery of the gene into a patient. More detail about retroviral vectors can be found in Boesen \textit{et al.}, \textit{Biotherapy} 6:29 1-302 (1994), which describes the use of a retroviral vector to deliver the mdr 1 gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes \textit{et al.}, \textit{J. Clin. Invest.} 93:644-651(1994);

[0518] Adenoviruses are other viral vectors that can be used in gene therapy. Adenoviruses are especially attractive vehicles for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, Current Opinion in Genetics and Development 3:499-503 (1993) present a review of adenovirus-based gene therapy. Bout et al., Human Gene Therapy 5:3-10 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in gene therapy can be found in Rosenfeld et al., Science 252:431-434 (1991); Rosenfeld et al., Cell 68:143-155 (1992); Mastrangeli et al., J. Clin. Invest. 91:225-234 (1993); PCT Publication W094/12649; and Wang, et al., Gene Therapy 2:775-783 (1995). In a preferred embodiment, adenovirus vectors are used.

[0520] Another approach to gene therapy involves transferring a gene to cells in tissue culture by such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection. Usually, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a patient.

[0521] In this embodiment, the nucleic acid is introduced into a cell prior to administration in vivo of the resulting recombinant cell. Such introduction can be carried out by any method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign genes into cells (see, e.g., Loeffler and Behr, Meth.
Enzymol. 217:599-618 (1993); Cohen et al., Meth. Enzymol. 217:618-644 (1993); Clin. Pharma. Ther. 29:69-92m (1985)) and may be used in accordance with the present invention, provided that the necessary developmental and physiological functions of the recipient cells are not disrupted. The technique should provide for the stable transfer of the nucleic acid to the cell, so that the nucleic acid is expressible by the cell and preferably heritable and expressible by its cell progeny.

[0522] The resulting recombinant cells can be delivered to a patient by various methods known in the art. Recombinant blood cells (e.g., hematopoietic stem or progenitor cells) are preferably administered intravenously. The amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined by one skilled in the art.

[0523] Cells into which a nucleic acid can be introduced for purposes of gene therapy encompass any desired, available cell type, and include but are not limited to epithelial cells, endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes; blood cells such as T lymphocytes, B lymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc.

[0524] In a preferred embodiment, the cell used for gene therapy is autologous to the patient.

[0525] In an embodiment in which recombinant cells are used in gene therapy, nucleic acid sequences encoding an antibody or fragment thereof are introduced into the cells such that they are expressible by the cells or their progeny, and the recombinant cells are then administered in vivo for therapeutic effect. In a specific embodiment, stem or progenitor cells are used. Any stem and/or progenitor cells which can be isolated and maintained in vitro can potentially be used in accordance with this embodiment of the present invention (see e.g., PCT Publication WO 94/08598; Stemple and Anderson, Cell 71:973-985 (1992); Rheinwald, Meth. Cell Bio. 21A:229 (1980); and Pittelkow and Scott, Mayo Clinic Proc. 61:771 (1986)).

[0526] In a specific embodiment, the nucleic acid to be introduced for purposes of gene therapy comprises an inducible promoter operably linked to the coding region, such
that expression of the nucleic acid is controllable by controlling the presence or absence of
the appropriate inducer of transcription.

Demonstration of Therapeutic or Prophylactic Utility of a Composition

[0527] The compounds of the invention are preferably tested in vitro, and then in vivo for the desired therapeutic or prophylactic activity, prior to use in humans. For example, in vitro assays which can be used to determine whether administration of a specific antibody or composition of the present invention is indicated, include in vitro cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered an antibody or composition of the present invention, and the effect of such an antibody or composition of the present invention upon the tissue sample is observed. In various specific embodiments, in vitro assays can be carried out with representative cells of cell types involved in a patient's disorder, to determine if an antibody or composition of the present invention has a desired effect upon such cell types. Preferably, the antibodies or compositions of the invention are also tested in in vitro assays and animal model systems prior to administration to humans.

[0528] Antibodies or compositions of the present invention for use in therapy can be tested for their toxicity in suitable animal model systems, including but not limited to rats, mice, chicken, cows, monkeys, and rabbits. For in vivo testing of an antibody or composition's toxicity any animal model system known in the art may be used.

[0529] Efficacy in treating or preventing viral infection may be demonstrated by detecting the ability of an antibody or composition of the invention to inhibit the replication of the virus, to inhibit transmission or prevent the virus from establishing itself in its host, or to prevent, ameliorate or alleviate the symptoms of disease a progression. The treatment is considered therapeutic if there is, for example, a reduction in viral load, amelioration of one or more symptoms, or a decrease in mortality and/or morbidity following administration of an antibody or composition of the invention.

[0530] Antibodies or compositions of the invention can be tested for the ability to induce the expression of cytokines such as IFN-γ, by contacting cells, preferably human cells, with an antibody or composition of the invention or a control antibody or control composition and determining the ability of the antibody or composition of the invention to induce one or more cytokines. Techniques known to those of skill in the art can be used to
measure the level of expression of cytokines. For example, the level of expression of cytokines can be measured by analyzing the level of RNA of cytokines by, for example, RT-PCR and Northern blot analysis, and by analyzing the level of cytokines by, for example, immunoprecipitation followed by western blot analysis and ELISA. In a preferred embodiment, a compound of the invention is tested for its ability to induce the expression of IFN-γ.

[0531] Antibodies or compositions of the invention can be tested for their ability to modulate the biological activity of immune cells by contacting immune cells, preferably human immune cells (e.g., T-cells, B-cells, and Natural Killer cells), with an antibody or composition of the invention or a control compound and determining the ability of the antibody or composition of the invention to modulate (i.e., increase or decrease) the biological activity of immune cells. The ability of an antibody or composition of the invention to modulate the biological activity of immune cells can be assessed by detecting the expression of antigens, detecting the proliferation of immune cells (i.e., B-cell proliferation), detecting the activation of signaling molecules, detecting the effector function of immune cells, or detecting the differentiation of immune cells. Techniques known to those of skill in the art can be used for measuring these activities. For example, cellular proliferation can be assayed by ³H-thymidine incorporation assays and trypan blue cell counts. Antigen expression can be assayed, for example, by immunoassays including, but not limited to, competitive and non-competitive assay systems using techniques such as western blots, immunohistochemistry radioimmunooassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays and FACS analysis. The activation of signaling molecules can be assayed, for example, by kinase assays and electrophoretic shift assays (EMSAs). In a preferred embodiment, the ability of an antibody or composition of the invention to induce B-cell proliferation is measured. In another preferred embodiment, the ability of an antibody or composition of the invention to modulate immunoglobulin expression is measured.

[0532] Antibodies or compositions of the invention can be tested for their ability to reduce tumor formation in *in vitro*, *ex vivo* and *in vivo* assays. Antibodies or compositions
of the invention can also be tested for their ability to inhibit viral replication or reduce viral load in *in vitro* and *in vivo* assays. Antibodies or compositions of the invention can also be tested for their ability to reduce bacterial numbers in *in vitro* and *in vivo* assays known to those of skill in the art. Antibodies or compositions of the invention can also be tested for their ability to alleviate one or more symptoms associated with cancer, an immune disorder (e.g., an inflammatory disease), a neurological disorder or an infectious disease. Antibodies or compositions of the invention can also be tested for their ability to decrease the time course of the infectious disease. Further, antibodies or compositions of the invention can be tested for their ability to increase the survival period of animals suffering from disease or disorder, including cancer, an immune disorder or an infectious disease. Techniques known to those of skill in the art can be used to analyze the function of the antibodies or compositions of the invention *in vivo*.

Therapeutic/Prophylactic Compositions and Administration

[0533] The invention provides methods of treatment, inhibition and prophylaxis by administration to a subject of an effective amount of antibody (or fragment or variant thereof) or pharmaceutical composition of the invention, preferably an antibody of the invention. In a preferred aspect, an antibody or fragment or variant thereof is substantially purified (*i.e.*, substantially free from substances that limit its effect or produce undesired side-effects). The subject is preferably an animal, including but not limited to, animals such as cows, pigs, horses, chickens, cats, dogs, etc., and is preferably a mammal, and most preferably a human.

[0534] Formulations and methods of administration that can be employed when the compound comprises a nucleic acid or an immunoglobulin are described above; additional appropriate formulations and routes of administration can be selected from among those described herein below.

[0535] Various delivery systems are known and can be used to administer antibody or fragment or variant thereof of the invention, *e.g.*, encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the antibody or antibody fragment, receptor-mediated endocytosis (see, *e.g.*, Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of introduction include, but are not limited to, intradermal,
intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

[0536] In a specific embodiment, it may be desirable to administer the pharmaceutical compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, of the invention, care must be taken to use materials to which the protein does not absorb.

[0537] In another embodiment, the composition can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.).

[0538] In yet another embodiment, the composition can be delivered in a controlled release system. In one embodiment, a pump may be used (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:20 1 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989)). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984);
Ranger and Peppas, J., Macromol. Sci. Rev. Macromol. Chem. 23:61 (1983); see also Levy et al., Science 228:190 (1985); During et al., Ann. Neurol. 25:351 (1989); Howard et al., J. Neurosurg. 71:105 (1989)). In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, i.e., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).

[0539] Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)).

[0540] In a specific embodiment where the composition of the invention is a nucleic acid encoding a protein, the nucleic acid can be administered in vivo to promote expression of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Patent No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (see e.g., Joliot et al., Proc. Natl. Acad. Sci. USA 88:1864-1868 (1991)), etc. Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.

[0541] The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of an antibody or a fragment thereof, and a pharmaceutically acceptable carrier. In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose,
sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate,
talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the
like. The composition, if desired, can also contain minor amounts of wetting or
emulsifying agents, or pH buffering agents. These compositions can take the form of
solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release
formulations and the like. The composition can be formulated as a suppository, with
traditional binders and carriers such as triglycerides. Oral formulation can include
standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium
stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable
pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E.W.
Martin. Such compositions will contain a therapeutically effective amount of the antibody
or fragment thereof, preferably in purified form, together with a suitable amount of carrier
so as to provide the form for proper administration to the patient. The formulation should
suit the mode of administration.

[0542] In a preferred embodiment, the composition is formulated in accordance
with routine procedures as a pharmaceutical composition adapted for intravenous
administration to human beings. Typically, compositions for intravenous administration
are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may
also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at
the site of the injection. Generally, the ingredients are supplied either separately or mixed
together in unit dosage form, for example, as a dry lyophilized powder or water free
concentrate in a hermetically sealed container such as an ampoule or sachette indicating
the quantity of active agent. Where the composition is to be administered by infusion, it
can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or
saline. Where the composition is administered by injection, an ampoule of sterile water for
injection or saline can be provided so that the ingredients may be mixed prior to
administration.

[0543] The compositions of the invention can be formulated as neutral or salt
forms. Pharmaceutically acceptable salts include those formed with anions such as those
derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed
with cations such as those derived from sodium, potassium, ammonium, calcium, ferric
hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
The amount of the composition of the invention which will be effective in the treatment, inhibition and prevention of a disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention can be determined by standard clinical techniques. In addition, \textit{in vitro} assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient’s circumstances. Effective doses may be extrapolated from dose-response curves derived from \textit{in vitro} or animal model test systems.

For antibodies, the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg of the patient’s body weight. Preferably, the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient’s body weight, more preferably 1 mg/kg to 10 mg/kg of the patient’s body weight. Generally, human antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible. Further, the dosage and frequency of administration of therapeutic or pharmaceutical compositions of the invention may be reduced by enhancing uptake and tissue penetration (e.g., into the brain) of the antibodies by modifications such as, for example, lipidation.

The antibodies and antibody compositions of the invention may be administered alone or in combination with other adjuvants. Adjuvants that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, alum, alum plus deoxycholate (ImmunoAg), MTP-PE (Biocine Corp.), QS21 (Genentech, Inc.), BCG, and MPL. In a specific embodiment, antibody and antibody compositions of the invention are administered in combination with alum. In another specific embodiment, antibody and antibody compositions of the invention are administered in combination with QS-21. Further adjuvants that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, Monophosphoryl lipid immunomodulator, AdjuVax 100a, QS-21, QS-18, CRL1005, Aluminum salts, MF-59, and Virosomal adjuvant technology. Vaccines that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, vaccines directed toward protection against MMR (measles, mumps,
rubella), polio, varicella, tetanus/diptheria, hepatitis A, hepatitis B, haemophilus influenzae B, whooping cough, pneumonia, influenza, Lyme's Disease, rotavirus, cholera, yellow fever, Japanese encephalitis, poliomyelitis, rabies, typhoid fever, and pertussis, and/or PNEUMOVAX-23™. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration "in combination" further includes the separate administration of one of the compounds or agents given first, followed by the second.

[0547] In another specific embodiment, antibody and antibody compositions of the invention are used in combination with PNEUMOVAX-23™ to treat, prevent, and/or diagnose infection and/or any disease, disorder, and/or condition associated therewith. In one embodiment, antibody and antibody compositions of the invention are used in combination with PNEUMOVAX-23™ to treat, prevent, and/or diagnose any Gram positive bacterial infection and/or any disease, disorder, and/or condition associated therewith. In another embodiment, antibody and antibody compositions of the invention are used in combination with PNEUMOVAX-23™ to treat, prevent, and/or diagnose infection and/or any disease, disorder, and/or condition associated with one or more members of the genus Enterococcus and/or the genus Streptococcus. In another embodiment, antibody and antibody compositions of the invention are used in any combination with PNEUMOVAX-23™ to treat, prevent, and/or diagnose infection and/or any disease, disorder, and/or condition associated with one or more members of the Group B streptococci. In another embodiment, antibody and antibody compositions of the invention are used in combination with PNEUMOVAX-23™ to treat, prevent, and/or diagnose infection and/or any disease, disorder, and/or condition associated with Streptococcus pneumoniae.

[0548] The antibody and antibody compositions of the invention may be administered alone or in combination with other therapeutic agents, including but not limited to, chemotherapeutic agents, antibiotics, antivirals, steroidal and non-steroidal anti-inflammatories, conventional immunotherapeutic agents and cytokines. Combinations may be administered either concomitantly, e.g., as an admixture, separately
but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration "in combination" further includes the separate administration of one of the compounds or agents given first, followed by the second.

[0549] In one embodiment, the antibody and antibody compositions of the invention are administered in combination with other members of the TNF family. TNF, TNF-related or TNF-like molecules that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, soluble forms of TNF-alpha, lymphotoxin-alpha (LT-alpha, also known as TNF-beta), LT-beta (found in complex heterotrimer LT-alpha2-beta), OPGL, FasL, CD27L, CD30L, CD40L, 4-IBBL, DcR3, OX40L, TNF-gamma (International Publication No. WO 96/14328), TRAIL, AIM-II (International Publication No. WO 97/34911), APRIL (J. Exp. Med. 188(6):1185-1190 (1998)), endokine-alpha (International Publication No. WO 98/07880), Neutrokine-alpha (International Application Publication No. WO 98/18921), OPG, OX40, and nerve growth factor (NGF), and soluble forms of Fas, CD30, CD27, CD40 and 4-IBB, TR2 (International Publication No. WO 96/34095), DR3 (International Publication No. WO 97/33904), DR4 (International Publication No. WO 98/32856), TR5 (International Publication No. WO 98/30693), TR6 (International Publication No. WO 98/30694), TR7 (International Publication No. WO 98/41629), TRANK, TR9 (International Publication No. WO 98/56892), 312C2 (International Publication No. WO 98/06842), and TR12, and soluble forms CD154, CD70, and CD153.

[0550] In a preferred embodiment, the antibody and antibody compositions of the invention are administered in combination with CD40 ligand (CD40L), a soluble form of CD40L (e.g., AVREND™), biologically active fragments, variants, or derivatives of CD40L, anti-CD40L antibodies (e.g., agonistic or antagonistic antibodies), and/or anti-CD40 antibodies (e.g., agonistic or antagonistic antibodies).

[0551] In an additional embodiment, the antibody and antibody compositions of the invention are administered alone or in combination with an anti-angiogenic agent(s). Anti-angiogenic agents that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, Angiostatin (Entremed,
Rockville, MD), Troponin-1 (Boston Life Sciences, Boston, MA), anti-Invasive Factor, retinoic acid and derivatives thereof, paclitaxel (Taxol), Suramin, Tissue Inhibitor of Metalloproteinase-1, Tissue Inhibitor of Metalloproteinase-2, VEGI, Plasminogen Activator Inhibitor-1, Plasminogen Activator Inhibitor-2, and various forms of the lighter "d group" transition metals.

Lighter "d group" transition metals include, for example, vanadium, molybdenum, tungsten, titanium, niobium, and tantalum species. Such transition metal species may form transition metal complexes. Suitable complexes of the above-mentioned transition metal species include oxo transition metal complexes.

Representative examples of vanadium complexes include oxo vanadium complexes such as vanadate and vanadyl complexes. Suitable vanadate complexes include metavanadate and orthovanadate complexes such as, for example, ammonium metavanadate, sodium metavanadate, and sodium orthovanadate. Suitable vanadyl complexes include, for example, vanadyl acetylacetonate and vanadyl sulfate including vanadyl sulfate hydrates such as vanadyl sulfate mono- and trihydrates.

Representative examples of tungsten and molybdenum complexes also include oxo complexes. Suitable oxo tungsten complexes include tungstate and tungsten oxide complexes. Suitable tungstate complexes include ammonium tungstate, calcium tungstate, sodium tungstate dihydrate, and tungstic acid. Suitable tungsten oxides include tungsten (IV) oxide and tungsten (VI) oxide. Suitable oxo molybdenum complexes include molybdate, molybdenum oxide, and molybdenyl complexes. Suitable molybdate complexes include ammonium molybdate and its hydrates, sodium molybdate and its hydrates, and potassium molybdate and its hydrates. Suitable molybdenum oxides include molybdenum (VI) oxide, molybdenum (VI) oxide, and molybdic acid. Suitable molybdenyl complexes include, for example, molybdenyl acetylacetonate. Other suitable tungsten and molybdenum complexes include hydroxo derivatives derived from, for example, glycerol, tartaric acid, and sugars.

A wide variety of other anti-angiogenic factors may also be utilized within the context of the present invention. Representative examples include, but are not limited to, platelet factor 4; protamine sulphate; sulphated chitin derivatives (prepared from queen crab shells), (Murata et al., Cancer Res. 51:22-26, 1991); Sulphated Polysaccharide Peptidoglycan Complex (SP- PG) (the function of this compound may be enhanced by the
presence of steroids such as estrogen, and tamoxifen citrate); Stauroporine; modulators of matrix metabolism, including for example, proline analogs, cis-hydroxyproline, d,L-3,4-dehydroproline, Thiaproline, alpha, alpha-dipryridyl, aminopropionitrile fumarate; 4-propyl-5-(4-pyridinyl)-2(3H)-oxazolone; Methotrexate; Mitoxantrone; Heparin; Interferons; 2 Macroglobulin-serum; ChlMP-3 (Pavloff et al., J. Bio. Chem. 267:17321-17326, 1992); Chymostatin (Tomkinson et al., Biochem J. 286:475-480, 1992); Cyclodextrin Tetradecasulfate; Eponemycin; Camtothecin; Fumagillin (Ingber et al., Nature 348:555-557, 1990); Gold Sodium Thiomalate ("GST"; Matsubara and Ziff, J. Clin. Invest. 79:1440-1446, 1987); anticoaglagenase-serum; alpha2-antiplasmin (Holmes et al., J. Biol. Chem. 262(4):1659-1664, 1987); Bisantrene (National Cancer Institute); Lobenzarit disodium (N-(2-carboxyphenyl)-4-chloroanthonilic acid disodium or "CCA"); (Takeuchi et al., Agents Actions 36:312-316, 1992); and metalloproteinase inhibitors such as BB94.

[0556] Additional anti-angiogenic factors that may also be utilized within the context of the present invention include Thalidomide, (Celgene, Warren, NJ); Angiostatic steroid; AGM-1470 (H. Brem and J. Folkman J Pediatr. Surg. 28:445-51 (1993)); an integrin alpha v beta 3 antagonist (C. Storgard et al., J Clin. Invest. 103:47-54 (1999)); carboxynaminolmidazole; Carboxyamidotriazole (CAI) (National Cancer Institute, Bethesda, MD); Conbrestatatin A-4 (CA4P) (OXIGENE, Boston, MA); Squalamine (Magainin Pharmaceuticals, Plymouth Meeting, PA); TNP-470, (Tap Pharmaceuticals, Deerfield, IL); ZD-0101 AstraZeneca (London, UK); APRA (CT2584); Benefin, Byrostatin-1 (SC339555); CGP-41251 (PKC 412); CM101; Dexrazoxane (ICRF187); DMXAA; Endostatin; Flavopridiol; Genestein; GTE; ImmTher; Iressa (ZD1839); Octreotide (Somatostatin); Panretin; Penacilamine; Photopoint; PL-88; Prinomastat (AG-3340) Purlytin; Suradista (FCE26644); Tamoxifen (Nolvadex); Tazarotene; Tetrahthiomolybdate; Xeloda (Capecitabine); and 5-Fluorouracil.

[0557] Anti-angiogenic agents that may be administered in combination with the compounds of the invention may work through a variety of mechanisms including, but not limited to, inhibiting proteolysis of the extracellular matrix, blocking the function of endothelial cell-extracellular matrix adhesion molecules, by antagonizing the function of angiogenesis inducers such as growth factors, and inhibiting integrin receptors expressed on proliferating endothelial cells. Examples of anti-angiogenic inhibitors that interfere
with extracellular matrix proteolysis and which may be administered in combination with
the antibody and antibody compositions of the invention include, but are not limited to,
AG-3340 (Agouron, La Jolla, CA), BAY-12-9566 (Bayer, West Haven, CT), BMS-
275291 (Bristol Myers Squibb, Princeton, NJ), CGS-27032A (Novartis, East Hanover,
NJ), Marimastat (British Biotech, Oxford, UK), and Metastat (Aeterna, St-Foy, Quebec).
Examples of anti-angiogenic inhibitors that act by blocking the function of endothelial
cell-extracellular matrix adhesion molecules and which may be administered in
combination with the antibody and antibody compositions of the invention include, but are
not limited to, EMD-121974 (Merck KgeA Darmstadt, Germany) and Vitaxin (Ixsys, La
Jolla, CA/Medimmune, Gaithersburg, MD). Examples of anti-angiogenic agents that act
by directly antagonizing or inhibiting angiogenesis inducers and which may be
administered in combination with the antibody and antibody compositions of the invention
include, but are not limited to, Angiozyme (Ribozyme, Boulder, CO), Anti-VEGF
antibody (Genentech, S. San Francisco, CA), PTK-787/ZK-225846 (Novartis, Basel,
Switzerland), SU-101 (Sugen, S. San Francisco, CA), SU-5416 (Sugen/Pharmacia
Upjohn, Bridgewater, NJ), and SU-6668 (Sugen). Other anti-angiogenic agents act to
indirectly inhibit angiogenesis. Examples of indirect inhibitors of angiogenesis which
may be administered in combination with the antibody and antibody compositions of the
invention include, but are not limited to, IM-862 (Cytran, Kirkland, WA), Interferon-
alpha, IL-12 (Roche, Nutley, NJ), and Pentosan polysulfate (Georgetown University,
Washington, DC).

[0558] In particular embodiments, the use of antibody and antibody compositions
of the invention in combination with anti-angiogenic agents is contemplated for the
treatment, prevention, and/or amelioration of an autoimmune disease, such as for example,
an autoimmune disease described herein.

[0559] In a particular embodiment, the use of antibody and antibody compositions
of the invention in combination with anti-angiogenic agents is contemplated for the
treatment, prevention, and/or amelioration of arthritis. In a more particular embodiment,
the use of antibody and antibody compositions of the invention in combination with anti-
angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of
rheumatoid arthritis.

[0560] In another embodiment, antibody and antibody compositions of the
invention are administered in combination with an anticoagulant. Anticoagulants that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, heparin, warfarin, and aspirin. In a specific embodiment, antibody and antibody compositions of the invention are administered in combination with heparin and/or warfarin. In another specific embodiment, antibody and antibody compositions of the invention are administered in combination with warfarin. In another specific embodiment, antibody and antibody compositions of the invention are administered in combination with warfarin and aspirin. In another specific embodiment, antibody and antibody compositions of the invention are administered in combination with heparin. In another specific embodiment, antibody and antibody compositions of the invention are administered in combination with heparin and aspirin.

[0561] In another embodiment, antibody and antibody compositions of the invention are administered in combination with an agent that suppresses the production of anticardiolipin antibodies. In specific embodiments, the polynucleotides of the invention are administered in combination with an agent that blocks and/or reduces the ability of anticardiolipin antibodies to bind phospholipid-binding plasma protein beta 2-glycoprotein I (b2GPI).

[0562] In certain embodiments, antibody and antibody compositions of the invention are administered in combination with antiretroviral agents, nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, and/or protease inhibitors. Nucleoside reverse transcriptase inhibitors that may be administered in combination with the antibody and antibody compositions of the invention, include, but are not limited to, RETROVIR™ (zidovudine/AZT), VIDEX™ (didanosine/ddI), HIVID™ (zalcitabine/ddC), ZERIT™ (stavudine/d4T), EPIVIR™ (lamivudine/3TC), and COMBIVIR™ (zidovudine/lamivudine). Non-nucleoside reverse transcriptase inhibitors that may be administered in combination with the antibody and antibody compositions of the invention, include, but are not limited to, VIRAMUNE™ (nevirapine), RESCRIPTOR™ (delavirdine), and SUSTIVA™ (efavirenz). Protease inhibitors that may be administered in combination with the antibody and antibody compositions of the invention, include, but are not limited to, CRIXIVAN™ (indinavir), NORVIR™ (ritonavir), INVIRASE™ (saquinavir), and VIRAJECT™ (nelfinavir). In a specific embodiment, antiretroviral agents, nucleoside reverse transcriptase inhibitors, non-
nucleoside reverse transcriptase inhibitors, and/or protease inhibitors may be used in any
combination with antibody and antibody compositions of the invention to treat, prevent,
and/or diagnose AIDS and/or to treat, prevent, and/or diagnose HIV infection.

[0563] In other embodiments, antibody and antibody compositions of the invention
may be administered in combination with anti-opportunistic infection agents. Anti-
opportunistic agents that may be administered in combination with the antibody and
antibody compositions of the invention, include, but are not limited to,
TRIMETHOPRIM-SULFAMETHOXAZOLE™, DAPSONE™, PENTAMIDINE™,
ATOVAQUONE™, ISONIAZID™, RIFAMPIN™, PYRAZINAMIDE™,
ETHAMBUTOL™, RIFABUTIN™, CLARITHROMYCIN™, AZITHROMYCIN™,
GANCICLOVIR™, FOSCARNET™, CIDOFOVIR™, FLUCONAZOLE™,
ITRACONAZOLE™, KETOCONAZOLE™, ACYCLOVIR™, FAMCICOLVIR™,
PYRIMETHAMINE™, LEUCOVORIN™, NEUPOGEN™ (filgrastim/G-CSF), and
LEUKINE™ (sargramostim/GM-CSF). In a specific embodiment, antibody and antibody
compositions of the invention are used in any combination with TRIMETHOPRIM-
SULFAMETHOXAZOLE™, DAPSONE™, PENTAMIDINE™, and/or
ATOVAQUONE™ to prophylactically treat, prevent, and/or diagnose an opportunistic
Pneumocystis carinii pneumonia infection. In another specific embodiment, antibody and
antibody compositions of the invention are used in any combination with ISONIAZID™,
RIFAMPIN™, PYRAZINAMIDE™, and/or ETHAMBUTOL™ to prophylactically treat,
prevent, and/or diagnose an opportunistic Mycobacterium avium complex infection. In
another specific embodiment, antibody and antibody compositions of the invention are
used in any combination with RIFABUTIN™, CLARITHROMYCIN™, and/or
AZITHROMYCIN™ to prophylactically treat, prevent, and/or diagnose an opportunistic
Mycobacterium tuberculosis infection. In another specific embodiment, antibody and
antibody compositions of the invention are used in any combination with
GANCICLOVIR™, FOSCARNET™, and/or CIDOFOVIR™ to prophylactically treat,
prevent, and/or diagnose an opportunistic cytomegalovirus infection. In another specific
embodiment, antibody and antibody compositions of the invention are used in any
combination with FLUCONAZOLE™, ITRACONAZOLE™, and/or
KETOCONAZOLE™ to prophylactically treat, prevent, and/or diagnose an opportunistic
fungal infection. In another specific embodiment, antibody and antibody compositions of the invention are used in any combination with ACYCLOVIR™ and/or FAMCICOLVIR™ to prophylactically treat, prevent, and/or diagnose an opportunistic herpes simplex virus type I and/or type II infection. In another specific embodiment, antibody and antibody compositions of the invention are used in any combination with PYRIMETHAMINE™ and/or LEUCOVORIN™ to prophylactically treat, prevent, and/or diagnose an opportunistic Toxoplasma gondii infection. In another specific embodiment, antibody and antibody compositions of the invention are used in any combination with LEUCOVORIN™ and/or NEUPOGEN™ to prophylactically treat, prevent, and/or diagnose an opportunistic bacterial infection.

[0564] In a further embodiment, the antibody and antibody compositions of the invention are administered in combination with an antiviral agent. Antiviral agents that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, acyclovir, ribavirin, amantadine, and remantidine.

[0565] In a further embodiment, the antibody and antibody compositions of the invention are administered in combination with an antibiotic agent. Antibiotic agents that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, amoxicillin, aminoglycosides, beta-lactam (glycopeptide), beta-lactamases, Clindamycin, chloramphenicol, cephalosporins, ciprofloxacin, ciprofloxacin, erythromycin, fluoroquinolones, macrolides, metronidazole, penicillins, quinolones, rifampin, streptomycin, sulfonamide, tetracyclines, trimethoprim, trimethoprim-sulfamethoxazole, and vancomycin.

[0566] Conventional nonspecific immunosuppressive agents, that may be administered in combination with the antibody and antibody compositions of the invention include, but are not limited to, steroids, cyclosporine, cyclosporine analogs cyclophosphamide, cyclophosphamide IV, methylprednisolone, prednisolone, azathioprine, FK-506, 15-deoxyspergualin, and other immunosuppressive agents that act by suppressing the function of responding T cells.

[0567] In specific embodiments, antibody and antibody compositions of the invention are administered in combination with immunosuppressants. Immunosuppressants preparations that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, ORTHOCLONE™
(OKT3), SANDIMMUNE™/NEORAL™/SANGDYA™ (cyclosporin), PROGRAF™ (tacrolimus), CELLCEPT™ (mycophenolate), Azathioprine, glucorticosteroids, and RAPAMUNE™ (sirolimus). In a specific embodiment, immunosuppressants may be used to prevent rejection of organ or bone marrow transplantation.

[0568] In a preferred embodiment, the antibody and antibody compositions of the invention are administered in combination with steroid therapy. Steroids that may be administered in combination with the antibody and antibody compositions of the invention, include, but are not limited to, oral corticosteroids, prednisone, and methylprednisolone (e.g., IV methylprednisolone). In a specific embodiment, antibody and antibody compositions of the invention are administered in combination with prednisone. In a further specific embodiment, the antibody and antibody compositions of the invention are administered in combination with prednisone and an immunosuppressive agent. Immunosuppressive agents that may be administered with the antibody and antibody compositions of the invention and prednisone are those described herein, and include, but are not limited to, azathioprine, cyclophosphamide, and cyclophosphamide IV. In a another specific embodiment, antibody and antibody compositions of the invention are administered in combination with methylprednisolone.

In a further specific embodiment, the antibody and antibody compositions of the invention are administered in combination with methylprednisolone and an immunosuppressive agent. Immunosuppressive agents that may be administered with the antibody and antibody compositions of the invention and methylprednisolone are those described herein, and include, but are not limited to, azathioprine, cyclophosphamide, and cyclophosphamide IV.

[0569] In a preferred embodiment, the antibody and antibody compositions of the invention are administered in combination with an antimalarial. Antimalarials that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, hydroxychloroquine, chloroquine, and/or quinacrine.

[0570] In a preferred embodiment, the antibody and antibody compositions of the invention are administered in combination with an NSAID.

[0571] In a nonexclusive embodiment, the antibody and antibody compositions of the invention are administered in combination with one, two, three, four, five, ten, or more of the following drugs: NRD-101 (Hoechst Marion Roussel), diclofenac
(Dimethaid), oxaprozin potassium (Monsanto), mecasermin (Chiron), T-614 (Toyama), pemetrexed disodium (Eli Lilly), atreleuton (Abbott), valdecoxib (Monsanto), eltenac (Byk Gulden), campath, AGM-1470 (Takeda), CDP-571 (Celltech Chirosience), CM-101 (CarboMed), ML-3000 (Merckle), CB-2431 (KS Biomedix), CBF-BS2 (KS Biomedix), IL-1Ra gene therapy (Valentis), JTE-522 (Japan Tobacco), paclitaxel (Angiotech), DW-166HC (Dong Wha), darbufelone mesylate (Warner-Lambert), soluble TNF receptor 1 (synergen; Amgen), IPR-6001 (Institute for Pharmaceutical Research), trocade (Hoffman-La Roche), EF-5 (Scotia Pharmaceuticals), BIIL-284 (Boehringer Ingelheim), BIIF-1149 (Boehringer Ingelheim), LeukoVax (Inflammatics), MK-663 (Merck), ST-1482 (Sigma-Tau), and butixocort propionate (WarnerLambert).

[0572] In a preferred embodiment, the antibody and antibody compositions of the invention are administered in combination with one, two, three, four, five or more of the following drugs: methotrexate, sulfasalazine, sodium aurothiomalate, auranofin, cyclosporine, penicillamine, azathioprine, an antimalarial drug (e.g., as described herein), cyclophosphamide, chlorambucil, gold, ENBREL™ (Etanercept), anti-TNF antibody, LJP 394 (La Jolla Pharmaceutical Company, San Diego, California) and prednisolone.

[0573] In a more preferred embodiment, the antibody and antibody compositions of the invention are administered in combination with an antimalarial, methotrexate, anti-TNF antibody, ENBREL™ and/or sulfasalazine. In one embodiment, the antibody and antibody compositions of the invention are administered in combination with methotrexate. In another embodiment, the antibody and antibody compositions of the invention are administered in combination with methotrexate. In another embodiment, the antibody and antibody compositions of the invention are administered in combination with anti-TNF antibody. In another embodiment, the antibody and antibody compositions of the invention are administered in combination with methotrexate and anti-TNF antibody. In another embodiment, the antibody and antibody compositions of the invention are administered in combination with sulfasalazine. In another specific embodiment, the antibody and antibody compositions of the invention are administered in combination with methotrexate, anti-TNF antibody, and sulfasalazine. In another embodiment, the antibody and antibody compositions of the invention are administered in combination ENBREL™. In another embodiment, the antibody and antibody compositions of the invention are administered in combination with ENBREL™ and methotrexate. In another embodiment, the antibody and antibody compositions of the invention are administered in combination with ENBREL™,
methotrexate and sulfasalazine. In another embodiment, the antibody and antibody compositions of the invention are administered in combination with ENBREL™, methotrexate and sulfasalazine. In other embodiments, one or more antimalarials is combined with one of the above-recited combinations. In a specific embodiment, the antibody and antibody compositions of the invention are administered in combination with an antimalarial (e.g., hydroxychloroquine), ENBREL™, methotrexate and sulfasalazine. In another specific embodiment, the antibody and antibody compositions of the invention are administered in combination with an antimalarial (e.g., hydroxychloroquine), sulfasalazine, anti-TNF antibody, and methotrexate.

In an additional embodiment, antibody and antibody compositions of the invention are administered alone or in combination with one or more intravenous immune globulin preparations. Intravenous immune globulin preparations that may be administered with the antibody and antibody compositions of the invention include, but not limited to, GAMMAR™, IVEEGAM™, SANDOglobulin™, Gammagard S/D™, and GAMIMUNE™. In a specific embodiment, antibody and antibody compositions of the invention are administered in combination with intravenous immune globulin preparations in transplantation therapy (e.g., bone marrow transplant).

CD40 ligand (CD40L), a soluble form of CD40L (e.g., AVREN™), biologically active fragments, variants, or derivatives of CD40L, anti-CD40L antibodies (e.g., agonistic or antagonistic antibodies), and/or anti-CD40 antibodies (e.g., agonistic or antagonistic antibodies).

In an additional embodiment, the antibody and antibody compositions of the invention are administered alone or in combination with an anti-inflammatory agent. Anti-inflammatory agents that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, glucocorticoids and the nonsteroidal anti-inflammatories, aminoarylcarboxylic acid derivatives, arylocetic acid derivatives, arylbutyric acid derivatives, aryldelpropionic acid derivatives, pyrazoles, pyrazolones, salicylic acid derivatives, thiazidecarboxamides, e-acetamidocaproic acid, S-adenosylmethionine, 3-amino-4-hydroxybutyric acid, amixetrine, bendazac, benzylamine, bupolome, difenpiramide, ditazol, emorpazone, guaiazulene, nabumetone, nimesulide, orgotein, oxaceprol, paranyline, perisosax, pifoxime, proquazone, proxazole, and tenidap.
In another embodiment, compositions of the invention are administered in combination with a chemotherapeutic agent. Chemotherapeutic agents that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, antibiotic derivatives (e.g., doxorubicin, bleomycin, daunorubicin, and dactinomycin); antiestrogens (e.g., tamoxifen); antimetabolites (e.g., fluorouracil, 5-FU, methotrexate, floxuridine, interferon alpha-2b, glutamic acid, plicamycin, mercaptopurine, and 6-thioguanine); cytotoxic agents (e.g., carmustine, BCNU, lomustine, CCNU, cytosine arabinoside, cyclophosphamide, estramustine, hydroxyurea, procarbazine, mitomycin, busulfan, cis-platin, and vincristine sulfate); hormones (e.g., medroxyprogesterone, estramustine phosphate sodium, ethinyl estradiol, estradiol, megestrol acetate, methyltestosterone, diethylstilbestrol diphasmate, chlorotrianisene, and testolactone); nitrogen mustard derivatives (e.g., mephalen, chorambucil, mechlorethamine (nitrogen mustard) and thiotepa); steroids and combinations (e.g., bethamethasone sodium phosphate); and others (e.g., dicarbazine, asparaginase, mitotane, vincristine sulfate, vinblastine sulfate, and etoposide).

In a specific embodiment, antibody and antibody compositions of the invention are administered in combination with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) or any combination of the components of CHOP. In another embodiment, antibody and antibody compositions of the invention are administered in combination with Rituximab. In a further embodiment, antibody and antibody compositions of the invention are administered with Rituximab and CHOP, or Rituximab and any combination of the components of CHOP.

In an additional embodiment, the antibody and antibody compositions of the invention are administered in combination with cytokines. Cytokines that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, GM-CSF, G-CSF, IL2, IL3, IL4, IL5, IL6, IL7, IL10, IL12, IL13, IL15, anti-CD40, CD40L, IFN-alpha, IFN-beta, IFN-gamma, TNF-alpha, and TNF-beta. In preferred embodiments, antibody and antibody compositions of the invention are administered with BLyS (e.g., amino acids 134-285 of SEQ ID NO:3228). In another embodiment, antibody and antibody compositions of the invention may be administered with any interleukin, including, but not limited to, IL-1alpha, IL-1beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18,
IL-19, IL-20, IL-21, and IL-22. In preferred embodiments, the antibody and antibody compositions of the invention are administered in combination with IL4 and IL10.

[0580] In one embodiment, the antibody and antibody compositions of the invention are administered in combination with one or more chemokines. In specific embodiments, the antibody and antibody compositions of the invention are administered in combination with an α(CxC) chemokine selected from the group consisting of gamma-interferon inducible protein-10 (γIP-10), interleukin-8 (IL-8), platelet factor-4 (PF4), neutrophil activating protein (NAP-2), GRO-α, GRO-β, GRO-γ, neutrophil-activating peptide (ENA-78), granulocyte chemoattractant protein-2 (GCP-2), and stromal cell-derived factor-1 (SDF-1, or pre-B cell stimulatory factor (PBSF)); and/or a β(CC) chemokine selected from the group consisting of: RANTES (regulated on activation, normal T expressed and secreted), macrophage inflammatory protein-1 alpha (MIP-1α), macrophage inflammatory protein-1 beta (MIP-1β), monocyte chemotactic protein-1 (MCP-1), monocyte chemotactic protein-2 (MCP-2), monocyte chemotactic protein-3 (MCP-3), monocyte chemotactic protein-4 (MCP-4) macrophage inflammatory protein-1 gamma (MIP-1γ), macrophage inflammatory protein-3 alpha (MIP-3α), macrophage inflammatory protein-3 beta (MIP-3β), macrophage inflammatory protein-4 (MIP-4/DC-CCK-1/PARC), eotaxin, Exodus, and I-309; and/or the γ(C) chemokine, lymphotactin.

[0581] In another embodiment, the antibody and antibody compositions of the invention are administered with chemokine beta-8, chemokine beta-1, and/or macrophage inflammatory protein-4. In a preferred embodiment, the antibody and antibody compositions of the invention are administered with chemokine beta-8.

[0582] In an additional embodiment, the antibody and antibody compositions of the invention are administered in combination with an IL-4 antagonist. IL-4 antagonists that may be administered with the antibody and antibody compositions of the invention include, but are not limited to: soluble IL-4 receptor polypeptides, multimeric forms of soluble IL-4 receptor polypeptides; anti-IL-4 receptor antibodies that bind the IL-4 receptor without transducing the biological signal elicited by IL-4, anti-IL4 antibodies that block binding of IL-4 to one or more IL-4 receptors, and muteins of IL-4 that bind IL-4 receptors but do not transduce the biological signal elicited by IL-4. Preferably, the antibodies employed according to this method are monoclonal antibodies (including antibody fragments, such as, for example, those described herein).
The invention also encompasses combining the polynucleotides and/or polypeptides of the invention (and/or agonists or antagonists thereof) with other proposed or conventional hematopoietic therapies. Thus, for example, the polynucleotides and/or polypeptides of the invention (and/or agonists or antagonists thereof) can be combined with compounds that singly exhibit erythropoietic stimulatory effects, such as erythropoietin, testosterone, progenitor cell stimulators, insulin-like growth factor, prostaglandins, serotonin, cyclic AMP, prolactin, and triiodothyronine. Also encompassed are combinations of the antibody and antibody compositions of the invention with compounds generally used to treat aplastic anemia, such as, for example, methenolone, stanozolol, and nandrolone; to treat iron-deficiency anemia, such as, for example, iron preparations; to treat malignant anemia, such as, for example, vitamin B₁₂ and/or folic acid; and to treat hemolytic anemia, such as, for example, adrenocortical steroids, e.g., corticoids. See e.g., Resegotti et al., Panminerva Medica, 23:243-248 (1981); Kurtz, FEBS Letters, 14a:105-108 (1982); McGonigle et al., Kidney Int., 25:437-444 (1984); and Pavlovic-Kantera, Expt. Hematol., 8(supp. 8) 283-291 (1980), the contents of each of which are hereby incorporated by reference in their entireties.

Compounds that enhance the effects of or synergize with erythropoietin are also useful as adjuvants herein, and include but are not limited to, adrenergic agonists, thyroid hormones, androgens, hepatic erythropoietic factors, erythropoietins, and erythropoietins, See for e.g., Dunn, "Current Concepts in Erythropoiesis", John Wiley and Sons (Chichester, England, 1983); Kalmani, Kidney Int., 22:383-391 (1982); Shahidi, New Eng. J. Med., 289:72-80 (1973); Urabe et al., J. Exp. Med., 149:1314-1325 (1979); Billat et al., Expt. Hematol., 10:133-140 (1982); Naughton et al., Acta Haematol., 69:171-179 (1983); Cognote et al. in abstract 364, Proceedings 7th Intl. Cong. of Endocrinology (Quebec City, Quebec, July 1-7, 1984); and Rothman et al., 1982, J. Surg. Oncol., 20:105-108 (1982). Methods for stimulating hematopoiesis comprise administering a hematopoietically effective amount (i.e., an amount which effects the formation of blood cells) of a pharmaceutical composition containing polynucleotides and/or polypeptides of the invention (and/or agonists or antagonists thereof) to a patient. The polynucleotides and/or polypeptides of the invention and/or agonists or antagonists thereof is administered to the patient by any suitable technique, including but not limited to, parenteral, sublingual, topical, intrapulmonary and intranasal, and those techniques further discussed.
The pharmaceutical composition optionally contains one or more members of the group consisting of erythropoietin, testosterone, progenitor cell stimulators, insulin-like growth factor, prostaglandins, serotonin, cyclic AMP, prolactin, triiodothyronine, methenolone, stanozolol, and nandrolone, iron preparations, vitamin B₁₂, folic acid and/or adrenocortical steroids.

[0585] In an additional embodiment, the antibody and antibody compositions of the invention are administered in combination with hematopoietic growth factors. Hematopoietic growth factors that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, LEUKINE™ (SARGRAMOSTIM™) and NEUPOGEN™ (FILGRASTIM™).

[0586] In an additional embodiment, the antibody and antibody compositions of the invention are administered in combination with fibroblast growth factors. Fibroblast growth factors that may be administered with the antibody and antibody compositions of the invention include, but are not limited to, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, FGF-11, FGF-12, FGF-13, FGF-14, and FGF-15.

[0587] Additionally, the antibody and antibody compositions of the invention may be administered alone or in combination with other therapeutic regimens, including but not limited to, radiation therapy. Such combinatorial therapy may be administered sequentially and/or concomitantly.

Kits

[0588] The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

[0589] The present invention provides kits that can be used in the above methods. In one embodiment, a kit comprises an antibody of the invention, preferably a purified antibody, in one or more containers. In an alternative embodiment, a kit comprises an antibody fragment that immunospecifically binds to BLYS. In a specific embodiment, the kits of the present invention contain a substantially isolated BLYS polypeptide as a control.
Preferably, the kits of the present invention further comprise a control antibody which does not react with BLyS. In another specific embodiment, the kits of the present invention contain a means for detecting the binding of an antibody to BLyS (e.g., the antibody may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate). In specific embodiments, the kit may include a recombinantly produced or chemically synthesized BLyS. The BLyS provided in the kit may also be attached to a solid support. In a more specific embodiment the detecting means of the above-described kit includes a solid support to which BLyS is attached. Such a kit may also include a non-attached reporter-labeled anti-human antibody. In this embodiment, binding of the antibody to BLyS can be detected by binding of the said reporter-labeled antibody.

[0590] In an additional embodiment, the invention includes a diagnostic kit for use in screening serum containing antigens of the polypeptide of the invention. The diagnostic kit includes a substantially isolated antibody specifically immunoreactive with BLyS, and means for detecting the binding of BLyS to the antibody. In one embodiment, the antibody is attached to a solid support. In a specific embodiment, the antibody may be a monoclonal antibody. The detecting means of the kit may include a second, labeled monoclonal antibody. Alternatively, or in addition, the detecting means may include a labeled, competing antigen.

[0591] In one diagnostic configuration, test serum is reacted with a solid phase reagent having a surface-bound BLyS obtained by the methods of the present invention. After BLyS binds to a specific antibody, the unbound serum components are removed by washing, reporter-labeled anti-human antibody is added, unbound anti-human antibody is removed by washing, and a reagent is reacted with reporter-labeled anti-human antibody to bind reporter to the reagent in proportion to the amount of bound anti-BLyS antibody on the solid support. Typically, the reporter is an enzyme which is detected by incubating the solid phase in the presence of a suitable fluorometric, luminescent or colorimetric substrate.

[0592] The solid surface reagent in the above assay is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plate or filter material. These attachment methods generally
include non-specific adsorption of the protein to the support or covalent attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).

Thus, the invention provides an assay system or kit for carrying out this diagnostic method. The kit generally includes a support with surface-bound recombinant BLyS, and a reporter-labeled anti-human antibody for detecting surface-bound anti-BLyS antibody.

In specific embodiments, the present invention encompasses a single chain Fv (scFv) having an amino acid sequence of one of SEQ ID NOS: 1 to 2128.

In specific embodiments, the present invention encompasses a single chain Fv (scFv) having an amino acid sequence of one of SEQ ID NOS: 1 to 46, 321 to 329, 1563 to 1595, and 1881 to 1908.

In specific embodiments, the present invention encompasses a single chain Fv (scFv) having an amino acid sequence of one of SEQ ID NOS: 1563 to 1880.

In specific embodiments, the present invention encompasses a single chain Fv (scFv) having an amino acid sequence of one of SEQ ID NOS: 1881 to 2128.

In specific embodiments, the present invention encompasses a single chain Fv (scFv) having an amino acid sequence of one of SEQ ID NOS: 1 to 1562.

In specific embodiments, the present invention encompasses an antibody or fragment thereof comprising a VH domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1 to 2128, wherein said antibody or fragment thereof immunospecifically binds BLyS.

In specific embodiments, the present invention encompasses an antibody or fragment thereof comprising a VH domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1 to 46, 321 to 329, 1563 to 1595, and 1881 to 1908.

In specific embodiments, the present invention encompasses an antibody or fragment thereof comprising a VH domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1881 to 2128, and in which said antibody or fragment thereof immunospecifically binds to the membrane-bound form of BLyS.
[0602] In specific embodiments, the present invention encompasses an antibody or fragment thereof comprising a VH domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1563 to 1880, and in which said antibody or fragment thereof immunospecifically binds to the soluble form of BLyS.

[0603] In specific embodiments, the present invention encompasses an antibody or fragment thereof comprising a VL domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1 to 2128, wherein said antibody or fragment thereof immunospecifically binds BLyS.

[0604] In specific embodiments, the present invention encompasses an antibody or fragment thereof comprising a VL domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1 to 46, 321 to 329, 1563 to 1595, and 1881 to 1908.

[0605] In specific embodiments, the present invention encompasses an antibody or fragment thereof comprising a VL domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1881 to 2128, and in which said antibody or fragment thereof immunospecifically binds to the membrane-bound form of BLyS.

[0606] In specific embodiments, the present invention encompasses an antibody or fragment thereof comprising a VL domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1563 to 1880, and in which said antibody or fragment thereof immunospecifically binds to the soluble form of BLyS.

[0607] In specific embodiments, the present invention encompasses an antibody or fragment thereof comprising a VL domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1 to 2128, wherein said antibody or fragment thereof immunospecifically binds BLyS and which also comprises a VH domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1 to 2128.

[0608] In specific embodiments, the present invention encompasses an antibody or fragment thereof comprising a VL domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1 to 2128, wherein said antibody or fragment thereof immunospecifically binds BLyS and which also comprises a VH domain from an scFv having an amino acid sequence of one of SEQ ID NOS: 1 to 2128 and in which said VL and said VH domains are derived from the same scFv having an amino acid sequence of one of SEQ ID NOS: 1 to 2128.

[0609] In specific embodiments, the present invention encompasses an antibody or
DEMANDE OU BREVET VOLUMINEUX

LA PRÉSENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND PLUS D’UN TOME.

CECI EST LE TOME 1 DE 2
TENANT LES PAGES 1 À 246

NOTE : Pour les tomes additionnels, veuillez contacter le Bureau canadien des brevets

JUMBO APPLICATIONS/PATENTS

THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE VOLUME

THIS IS VOLUME 1 OF 2
CONTAINING PAGES 1 TO 246

NOTE: For additional volumes, please contact the Canadian Patent Office

NOM DU FICHIER / FILE NAME :

NOTE POUR LE TOME / VOLUME NOTE:
WHAT IS CLAIMED IS:

1. An antibody that immunospecifically binds to BLyS comprising a first amino acid sequence at least 95% identical to an second amino acid sequence selected from the group consisting of:

 (a) an amino acid sequence comprising the amino acid sequence of a VHCDR of any one of the scFvs of SEQ ID NOS:1 through 2128; and

 (b) an amino acid sequence comprising the amino acid sequence of a VLCDR of any one of the scFvs of SEQ ID NOS:1 through 2128.

2. The antibody of claim 1, wherein the second amino acid sequence consists of the amino acid sequence of a VHCDR3 of any one of the scFvs of SEQ ID NOS:2129 through 3227.

3. The antibody of claim 1, wherein the second amino acid sequence consists of the amino acid sequence of a VH domain of any one of the scFvs of SEQ ID NOS:1 through 2128.

4. The antibody of claim 3 in which said VH domain consists of the amino acid sequence of the VH domain of any one of the scFvs of SEQ ID NOS: 1 through 1562.

5. The antibody of claim 4 in which said antibody immunospecifically binds to both the soluble form and membrane-bound form of BLyS.

6. The antibody of claim 4 in which said VH domain consists of the amino acid sequence of the VH domain of any one of the scFvs of SEQ ID NOS: 1 through 46 and 321 through 329.
7. The antibody of claim 6 in which said VH domain consists of the amino acid sequence of the VH domain of any one of the scFvs of SEQ ID NOS: 2, 9, and 327.

8. The antibody of claim 4 in which said VH domain consists of the amino acid sequence of the VH domain of any one of the scFvs of SEQ ID NOS: 834 through 872.

9. The antibody of claim 3 in which said VH domain consists of the amino acid sequence of the VH domain of any one of the scFvs of SEQ ID NOS: 1563 through 1880.

10. The antibody of claim 9 in which, and in which said antibody immunospecifically binds to the soluble form of BLyS.

11. The antibody of claim 9 in which said VH domain consists of the amino acid sequence of the VH domain of any one of the scFvs of SEQ ID NOS: 1563 through 1569.

12. The antibody of claim 9 in which said VH domain consists of the amino acid sequence of the VH domain of any one of the scFvs of SEQ ID NOS: 1570 through 1595.

13. The antibody of claim 3 in which said VH domain consists of the amino acid sequence of the VH domain of any one of the scFvs of SEQ ID NOS: 1881 through 2128.

14. The antibody of claim 13 in which said antibody immunospecifically binds to the membrane-bound form of BLyS.

15. The antibody of claim 13 in which said VH domain consists of the amino acid sequence of the VH domain of any one of the scFvs of SEQ ID NOS: 1881 through 1885.

16. The antibody of claim 13 in which said VH domain consists of the amino acid sequence of the VH domain of any one of the scFvs of SEQ ID NOS: 1886 through 1908.
17. The antibody of claim 1, wherein the second amino acid sequence consists of the amino acid sequence of a VL domain of any one of the scFvs of SEQ ID NOS: 1 through 2128.

18. The antibody of claim 17 in which said VL domain consists of the amino acid sequence of the VL domain of any one of the scFvs of SEQ ID NOS: 1 through 1562.

19. The antibody of claim 18 in which said antibody immunospecifically binds to both the soluble form and membrane-bound form of BLyS.

20. The antibody of claim 18 in which said VL domain consists of the amino acid sequence of the VL domain of any one of the scFvs of SEQ ID NOS: 1 through 46 and 321 through 329.

21. The antibody of claim 20 in which said VL domain consists of the amino acid sequence of the VH domain of any one of the scFvs of SEQ ID NOS: 2, 9, and 327.

22. The antibody of claim 18 in which said VL domain consists of the amino acid sequence of the VL domain of any one of the scFvs of SEQ ID NOS: 834 through 872.

23. The antibody of claim 17 in which said VL domain consists of the amino acid sequence of the VL domain of any one of the scFvs of SEQ ID NOS: 1563 through 1880.

24. The antibody of claim 23 said antibody immunospecifically binds to the soluble form of BLyS.

25. The antibody of claim 23 in which said VL domain consists of the amino acid sequence of the VL domain of any one of the scFvs of SEQ ID NOS: 1563 through 1569.
26. The antibody of claim 23 in which said VL domain consists of the amino acid sequence of the VL domain of any one of the scFvs of SEQ ID NOS: 1570 through 1595.

27. The antibody of claim 17 in which said VL domain consists of the amino acid sequence of the VL domain of any one of the scFvs of SEQ ID NOS: 1881 through 2128.

28. The antibody of claim 27 in which said antibody immunospecifically binds to the membrane-bound form of BLyS.

29. The antibody of claim 27 in which said VL domain consists of the amino acid sequence of the VL domain of any one of the scFvs of SEQ ID NOS: 1881 through 1885.

30. The antibody of claim 27 in which said VL domain consists of the amino acid sequence of the VL domain of any one of the scFvs of SEQ ID NOS: 1886 through 1908.

31. The antibody of claim 3, which also comprises an amino acid sequence at least 95% identical to the amino acid sequence of a VL domain of any one of the scFvs of SEQ ID NOS:1 through 2128.

32. The antibody of claim 31, wherein the VH and VL domains are from the same scFv.

33. The antibody of claim 32, wherein the scFv is the scFv of SEQ ID NO:2.

34. The antibody of claim 32, wherein the scFv is the scFv of SEQ ID NO:9.

35. The antibody of claim 32, wherein the scFv is the scFv of SEQ ID NO:327.

36. The antibody of claim 1 wherein the first amino acid sequence is identical to the second amino acid sequence.
37. The antibody of claim 36 wherein the second amino acid sequence consists of the amino acid sequence of a VH domain of any one of the scFvs of SEQ ID NOS:1 through 2128.

38. The antibody of claim 36 wherein the second amino acid sequence consists of the amino acid sequence of a VL domain of any one of the scFvs of SEQ ID NOS:1 through 2128.

39. The antibody of claim 37 which also comprises an amino acid sequence 100% identical to the amino acid sequence of a VL domain of any one of the scFvs of SEQ ID NOS:1 through 2128.

40. The antibody of claim 39, wherein the scFv is the scFv of SEQ ID NO:2.

41. The antibody of claim 39, wherein the scFv is the scFv of SEQ ID NO:9.

42. The antibody of claim 39, wherein the scFv is the scFv of SEQ ID NO:327.

43. The antibody of claim 1 through wherein the BLyS is a BLyS homotrimer.

44. The antibody of claim 43, wherein the individual protein components of the BLyS homotrimer consist of the mature form of BLyS.

45. The antibody of any one of claims 1 through 44, wherein the BLyS is a BLyS heterotrimer.

46. The antibody of claim 45, wherein the BLyS heterotrimer comprises at least one BLyS polypeptide and at least one APRIL polypeptide.
47. The antibody of claim 46, wherein the BLyS polypeptide consists of the mature form of BLyS and the APRIL polypeptide consists of the mature form of APRIL.

48. The antibody of any one of claims 1 through 47, wherein the antibody is selected from the group consisting of:

(a) a whole immunoglobulin molecule;
(b) an scFv;
(c) a monoclonal antibody;
(d) a human antibody;
(e) a chimeric antibody;
(f) a humanized antibody;
(g) a Fab fragment;
(h) an Fab’ fragment;
(i) an F(ab’)2;
(j) an Fv; and
(k) a disulfide linked Fv.

49. The antibody of claim 3 or 37, which also comprises a heavy chain immunoglobulin constant domain selected from the group consisting of:

(a) a human IgM constant domain;
(b) a human IgG1 constant domain;
(c) a human IgG2 constant domain;
(d) a human IgG3 constant domain;
(e) a human IgG4 constant domain; and
(f) a human IgA constant domain.
50. The antibody of claim 17 or 38, which also comprises a light chain immunoglobulin constant domain selected from the group consisting of:

(a) a human Ig kappa constant domain;
(b) a human Ig lambda constant domain.

51. The antibody of any one of claims 1 through 50, wherein the antibody has a dissociation constant (K_d) selected from the group consisting of:

(a) a dissociation constant (K_d) between 10^{-7} M and 10^{-8} M;
(b) a dissociation constant (K_d) between 10^{-8} M and 10^{-9} M;
(c) a dissociation constant (K_d) between 10^{-9} M and 10^{-10} M;
(d) a dissociation constant (K_d) between 10^{-10} M and 10^{-11} M;
(e) a dissociation constant (K_d) between 10^{-11} M and 10^{-12} M; and
(f) a dissociation constant (K_d) between 10^{-12} M and 10^{-13} M.

52. The antibody of any one of claims 1 through 51, wherein the antibody is conjugated to a detectable label.

53. The antibody of claim 52, wherein the detectable label is a radiolabel.

54. The antibody of claim 53, wherein the radiolabel is 125I, 131I, 111In, 90Y, 99Tc, 177Lu, 166Ho, or 153Sm.

55. The antibody of claim 52, wherein the detectable label is an enzyme, a fluorescent label, a luminescent label, or a bioluminescent label.

56. The antibody of any one of claims 1 through 51, wherein the antibody is biotinylated.
57. The antibody of any one of claims 1 through 51, wherein the antibody is conjugated to a therapeutic or cytotoxic agent.

58. The antibody of claim 57, wherein the therapeutic or cytotoxic agent is selected from the group consisting of:
 (a) an anti-metabolite,
 (b) an alkylating agent;
 (c) an antibiotic;
 (d) a growth factor;
 (e) a cytokine;
 (f) an anti-angiogenic agent;
 (g) an anti-mitotic agent;
 (h) an anthracycline;
 (i) toxin; and
 (j) an apoptotic agent.

59. An antibody of any one of claims 1 through 58, that neutralizes BLyS or a fragment thereof.

60. The antibody of claim 59, that diminishes or abolishes the ability of BLyS or a fragment thereof to bind to its receptor.

61. The antibody of claim 60, wherein the receptor is TACI.

62. The antibody of claim 60, wherein the receptor is BCMA.

63. The antibody of claim 59, that diminishes or abolishes the ability of BLyS or a fragment thereof to stimulate B cell proliferation.
64. The antibody of claim 59, that diminishes or abolishes the ability of BLyS or a fragment thereof to stimulate immunoglobulin secretion by B cells.

65. An antibody of any one of claims 1 through 58, that enhances the activity of BLyS or a fragment thereof.

66. The antibody of claim 65, that increases the ability of BLyS or a fragment thereof to bind to its receptor.

67. The antibody of claim 66, wherein the receptor is TACI.

68. The antibody of claim 66, wherein the receptor is BCMA.

69. The antibody of claim 65, that increases the ability of BLyS or a fragment thereof to stimulate B cell proliferation.

70. The antibody of claim 65, that increases the ability of BLyS or a fragment thereof to stimulate immunoglobulin secretion by B cells.

71. The antibody of any one of claims 1 through 70 covalently linked to a heterologous polypeptide.

72. The antibody of claim 71, wherein the heterologous polypeptide is human serum albumin.

73. The antibody of any one of claims 1 through 72 in a pharmaceutically acceptable carrier.

74. A kit comprising the antibody of any one of claims 1 through 73.
75. An isolated nucleic acid molecule encoding the antibody of any one of claims 1 through 74.

76. A vector comprising the isolated nucleic acid molecule of claim 75.

77. The vector of claim 76 which also comprises a nucleotide sequence which regulates the expression of the antibody encoded by the nucleic acid molecule.

78. A host cell comprising the nucleic acid molecule of claim 77.

79. A cell line engineered to express the antibody of any one of claims 1 through 78.

80. An antibody that binds the same epitope as the antibody of any one of claims 1 through 79.

81. An antibody that competitively inhibits the binding of the antibody produced by the cell line having ATCCDeposit Number PTA-3239.

82. An antibody that competitively inhibits the binding of the antibody produced by the cell line having ATCCDeposit Number PTA-3240.

83. An antibody that competitively inhibits the binding of the antibody produced by the cell line having ATCCDeposit Number PTA-3243.

84. An second antibody that reduces the binding of the antibody of any one of claims 1 through 83 by an increment within a percentage range selected from the group consisting of:

(a) from 50% up to 60%;
(b) from 60% up to 70%;
(c) from 70% up to 80%;
(d) from 80% up to 90%; and
(e) from 90% up to 100%.

85. An antibody that immunospecifically binds to BLyS, said antibody comprising an amino acid sequence of a VH domain encoded by a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence encoding a VH domain of an scFv comprising an amino acid sequence of any one of SEQ ID NOS: 1 to 2128.

86. An antibody that immunospecifically binds to BLyS, said antibody comprising an amino acid sequence of a VL domain encoded by a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence encoding a VL domain from an scFv comprising an amino acid sequence of any one of SEQ ID NOS: 1 to 2128.

87. A method for detecting aberrant expression of BLyS protein, comprising:
(a) assaying the level of BLyS expression in a first biological sample of an individual using one or more antibodies of any one of claims 1 through 86; and
(b) comparing the level of BLyS assayed in biological sample with a standard level of BLyS expression or level of BLyS in a second, normal biological sample;
(c) wherein an increase or decrease in the assayed level of BLyS in the first biological sample compared to the standard level of BLyS expression or level of BLyS in a second, normal biological sample, is indicative of aberrant expression.

88. A method for diagnosing a disease or disorder associated with aberrant BLyS expression or activity, comprising:
(a) administering to a subject an effective amount of a labeled antibody of any one of claims 52 through 58 that immunospecifically binds to BLyS;
(b) waiting for a time interval following the administering for permitting the labeled antibody of any one of claims 52 through 58 to preferentially concentrate at sites in the subject where BLyS is expressed;

(c) determining background level; and

(d) detecting the labeled antibody of any one of claims 52 through 58 in the subject, such that detection of labeled antibody above the background level indicates that the subject has a particular disease or disorder associated with aberrant expression of BLyS.

89. A method of treating, preventing or ameliorating a disease or disorder associated with aberrant BLyS expression or activity, comprising administering to an animal in need thereof, the pharmaceutical composition of claim 73 in an amount effective to treat, prevent or ameliorate the disease or disorder.

90. The method of claim 89, wherein the disease or disorder is cancer.

91. The method of claim 89, wherein the disease or disorder of the immune system.

92. The method of claim 91, wherein the disease or disorder of the immune system is an autoimmune disease or disorder.

93. The method of claim 92, wherein the disease or disorder of the immune system is an autoimmune disease or disorder selected from the group consisting of:

(a) Systemic Lupus Erythematosus; and

(b) Rheumatoid Arthritis.
94. The method of claim 91, wherein the disease or disorder of the immune system is an immunodeficiency.

95. The method of claim 92, wherein the disease or disorder of the immune system is an immunodeficiency selected from the group consisting of:
 (a) Common Variable Immunodeficiency (CVID); and
 (b) AIDS.

96. The method of claim 91, wherein the disease or disorder of the immune system is cancer.
FIG. 9

Graph showing the OD 450nM values for different treatments:
- human BLyS
- TNF alpha
- LIGHT
- TRAIL
- TNF beta
- mouse BLyS
- PBS

Treatments include:
- D67F05
- D78D02
- anti-TNF alpha
FIG. 11

Scfvs to soluble BLyS only

- Irrelevant
- I068C06
- I074B12
- BLyS

Binding (Delfia units)

Log/M

0 25000 50000 75000
-12 -11 -10 -9 -8 -7 -6
FIG. 15

I082C03 Sensorgram

ScFv

Concentration

- 500ug/ml
- 250ug/ml
- 13ug/ml
- 6ug/ml
- 3ug/ml
- 1.5ug/ml

Time (Seconds)

Response (RU)
P388 Competition ELISA

OD (450nm)

Competing Antigen

- His-BLys
- BLys
- None

0.2
0.4
0.6
0.8
1.0
1.2
1.4

079E02
082H08
099D03

FIG. 16