wo 2012/054204 A1 I 0T 000 OO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

. TN
1 rld Intellectual Property Organization /) -sady
(19) World Intellectual Property Organization /g5 1IN I A 00 A 00RO O 01
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
26 April 2012 (26.04.2012) PCT WO 2012/054204 Al
(51) International Patent Classification: (74) Agents: OCAMPO, Carlo, Miguel, C. et al.; Fenwick &
GO6F 21/00 (2006.01) West LLP, 801 California Street, Mountain View, CA
4041 .
(21) International Application Number: ’ (US)
PCT/US2011/053881 (81) Designated States (unless otherwise indicated, for every
. -) kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
29 September 2011 (29.09.2011) CA. CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L. . HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(26) Publication Language: Enghsh KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
12/907,308 19 October 2010 (19.10.2010) Us NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
(71) Applicant (for all designated States except US): T™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
SYMANTEC CORPORATION [US/US]; 350 Ellis M, ZW.
Street, Mountain View, CA 94043 (US). o
(84) Designated States (unless otherwise indicated, for every
(72) Inventors; and kind of regional protection available): ARIPO (BW, GH,
(75) Inventors/Applicants (for US ornly): SOBEL, William, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

E. [US/US]; ¢/o Symantec Corporation, 350 Ellis Street,
Mountain View, CA 94043 (US). MCCORKENDALE,
Bruce, E. [US/US]; c¢/o Symantec Corporation, 350 Ellis
Street, Mountain View, CA 94043 (US).

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SOFTWARE SIGNING CERTIFICATE REPUTATION MODEL

(57) Abstract: A request from a software developer is received to digitally
sign software included in the request. A security policy associated with
the software developer is accessed where the security policy describes cri-
l teria for valid request by the software developer. A determination is made

whether the request is valid based at least in part on the security policy.
The software is digitally signed responsive to the determination indicating
that the request is valid. The digitally signed software is provided to the
software developer.

Receive Request to Sign
Software
401

Access Policy of the Software
Developer
403

Compare Conditions of the
Request to a Policy of the
Developer
405

Anomalous
Request?
407

YES Perform Security Action

409

Sign Software
411

!

Provide Software To Developer
413

FIG. 4

WO 2012/054204 A1 W00) 00T 0

Published:
— with international search report (Art. 21(3))

WO 2012/054204 PCT/US2011/053881

SOFTWARE SIGNING CERTIFICATE REPUTATION MODEL

BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
[0001] This invention pertains in general to computer security and in particular to
preventing malicious and/or unauthorized code (i.c., malware) from executing on a computer

system through code signing by a certificate authority.

2. DESCRIPTION OF THE RELATED ART

[0002] A parasitic computer virus typically infects a computer system by inserting viral
code into other executable programs stored on the computer system. This code can infect
other files and/or computer systems, destroy data on the computer system, or perform other
malicious actions. Other types of malicious code, including Trojan horses, worms, keystroke
grabbers, etc. can also damage computer systems. Thus, there is a strong desire to prevent
viruses and other malicious code from infecting and/or executing on a computer system.
[0003] One technique for preventing attacks is to establish mechanisms for detecting
whether software has been altered by a virus or other malicious code. Code signing is one
technique for detecting alterations. Digitally signed code includes values in computer
programs that the computer system can use to detect whether the code has been altered. Code
signing thus prevents tampering with executable content.

[0004] In conventional systems, a software developer obtains signing keys and a
corresponding digital certificate from a certificate authority (CA) in order to sign code. The
digital certificate may be used by the software developer until the certificate expires. At that
time, the certificate must be renewed by the certificate authority that issued the certificate.
However, during the period of time in which the certificate is valid, the software developer
need not further interact with the certificate authority. Thus, the usage of the signing keys is
unknown to the certificate authority.

[0005] Malware authors have begun stealing code signing certificates from legitimate
software companies as well as registering certificates under numerous false business names.
Because the certificate authority is not aware of the usage of the digital certificates, the
malware authors are able to use the legitimate certificates to digitally sign malware. By
digitally signing malware, anti-malware systems are circumvented because these systems
often give higher trust to signed software and assume that the signed code is non-malicious.
[0006] Accordingly, there is a need to address problems created by stolen and/or misused

digital certificates.

WO 2012/054204 PCT/US2011/053881

BRIEF SUMMARY
[0007] The above and other needs are met by a computer-implemented method, a
computer system, and a non-transitory computer-readable storage medium storing executable
code for using a computer system of a certificate authority to digitally sign software. One
embodiment of the computer-implemented method comprises receiving a request from a
software developer to digitally sign software included in the request. A security policy
associated with the software developer is accessed. The security policy describes criteria for
valid requests by the software developer. The computer-implemented method determines
whether the request is valid based at least in part on the security policy. The software is
digitally signed responsive to the determination indicating that the request is valid. The
computer-implemented method provides the digitally-signed software to the software
developer.
[0008] Embodiments of a computer system of a certificate authority to digitally sign
software comprise a computer processor and a non-transitory computer readable storage
medium storing computer program modules configured to execute on the computer processor.
The computer program modules comprise a signing request module configured to receive a
request from a software developer to digitally sign software included in the request. The
modules further comprise a request verification module configured to access a security policy
associated with the software developer, the security policy describing criteria for valid
requests by the software developer and determine whether the request is valid based at least
in part on the security policy. Lastly, the modules comprise a software signing module is
configured to digitally sign the software responsive to the determination indicating that the
request is valid and provide the digitally-signed software to the software developer.
[0009] Embodiments of the computer program product comprise a non-transitory
computer-readable storage medium storing computer-executable code, the code when
executed by a computer processor performs steps comprising receiving a request from a
software developer to digitally sign software included in the request. A security policy
associated with the software developer is accessed. The security policy describes criteria for
valid requests by the software developer. The steps further comprise determining whether the
request is valid based at least in part on the security policy. The software is digitally signed
responsive to the determination indicating that the request is valid. The steps comprise

providing the digitally-signed software to the software developer.

WO 2012/054204 PCT/US2011/053881

[0010] The features and advantages described in this summary and the following detailed
description are not all-inclusive. Many additional features and advantages will be apparent to

one of ordinary skill in the art in view of the drawings, specification, and claims hereof.

BRIEF DESCRIPTION OF THE DRAWINGS
[0011] FIG. 1 is a high-level block diagram of a computing environment according to one
embodiment.
[0012] FIG. 2 is a high-level block diagram illustrating a typical computer for use as a
certificate authority, a client, or software developer computer system according to one
embodiment.
[0013] FIG. 3 is a high-level block diagram illustrating a detailed view of the certificate
authority according to one embodiment.
[0014] FIG. 4 is a flowchart illustrating steps performed by the certificate authority to
sign software according to one embodiment.
[0015] The figures depict an embodiment of the present invention for purposes of
illustration only. One skilled in the art will readily recognize from the following description
that alternative embodiments of the structures and methods illustrated herein may be

employed without departing from the principles of the invention described herein.

DETAILED DESCRIPTION
[0016] FIG. 1 is a high-level diagram of a computing environment 100 according to one
embodiment. FIG. 1 illustrates a certificate authority (CA) 101, a developer computer system
103, and a client 105. Only one client 105 and one developer system 103 are shown in FIG. 1
in order to simplify and clarify the description. Embodiments of the computing environment
100 can have thousands or millions of clients 105 and/or developers 103, and multiple CAs
101, connected to the network 115.
[0017] Generally, the CA 101 is an entity that issues and manages security credentials,
signing keys (private/public key pairs), and/or other data in order to support authentication,
verification, and encryption of computer programs (sometimes referred to as “software” or
“code”). The CA 101 generates private/public key pairs using public-key-based techniques.
The CA 101 issues certificates containing encrypted information that can be decrypted using
the CA’s public key. Since the CA’s public key is well known and easily verified, parties can
use the public key to verify that a certificate issued by the CA 101 is legitimate.
[0018] In one embodiment, the CA 101 issues certificates to software developers 103 that

specify the developers’ public keys. A software developer 103 can develop software,

WO 2012/054204 PCT/US2011/053881

digitally sign it using the developer’s private key (the “signing key”), and distribute the
software along with the certificate issued by the CA 101 that specifies the developer’s public
key. A third party, such as the client 105, can use the CA’s public key to decrypt the
certificate and verify that the certificate was issued to the developer 103 by the CA 101 and
has not been altered. In addition, the third party can use the developer’s public key within the
certificate to verify the developer’s digital signature and detect whether the software has been
altered. Therefore, the functionality provided by the CA 101 allows software to be
communicated from the developer computer system 103 to the client 105 without tampering
(i.e., the client 105 is able to detect any tampering).

[0019] As mentioned in the Background section, one problem with the environment
described above is that software developer 103 need not interact with the CA 101 when
signing software. Therefore, the developer’s certificate is subject to misuse, either by the
developer 103 itself or a malicious third party that obtains the developer’s private key. To
address this and other issues, in one embodiment, the CA 101 itself signs software received
from software developers 103. Alternatively, the CA 101 may co-sign software that has been
signed by the software developers 103.

[0020] As part of the signing, the CA 101 creates high trust certificates that are included
with the signed software. Because the CA 101 is included in the software signing process,
the CA 101 is able to monitor usage of code signing keys and issue a high trust certificate
only if the CA determines that the signing request from the developer 103 is legitimate.
Moreover, an embodiment of the CA 101 assesses the reputation of the developer 103
requesting signing of software, and embeds information describing the reputation in the
certificate. Furthermore, in an embodiment where co-signing by the CA 101 is required, the
CA can detect misuse of code signing keys by identifying software in the environment 100
that lacks the co-signature.

[0021] In one embodiment, the developer system 103 is utilized by a software developer
to develop software (i.e., computer programs or code) for execution on the client 105. The
developer computer system 103 includes a software development system module (referred to
as the “SDS”) 107 that the developer uses to develop software adapted for execution on
clients 105. The SDS 107 includes functionality allowing the developer to write, compile,
link, and debug executable code.

[0022] In one embodiment, the developer computer system 103 includes a signature
request module 109. The signature request module 109 communicates with the CA 101 to

request that the CA 101 sign (or co-sign) completed software created by the SDS 107. The
4

WO 2012/054204 PCT/US2011/053881

user of the developer system 103 may submit software signing requests to the CA 101 viaa
secure web portal provided by the CA 101 or through other means including e-mail. The
signature request module 109 may automatically authenticate itself with the web portal
provided by the CA 101 or notify a user of the developer system 103 to manually submit a
signing request to the CA 101.

[0023] Additionally, the signature request module 109 may communicate with the CA
101 to obtain signing keys and corresponding digital certificates. The signature request
module 109 may sign software developed with the SDS 103 using the signing keys provided
by the CA 101 or other certificate authorities. The signature request module 109 may then
request for the CA 101 to co-sign the signed software in order for the CA 101 to
acknowledge the usage of the signing key used by the signature request module 109 to sign
the software.

[0024] In one embodiment, the signature request module 109 is integrated into SDS 107.
Alternatively, the signature request module 109 is a discrete module that is called by the SDS
107 or the developer once software is produced. The signature request module 109 may be
implemented as an automated process that automatically and transparently (i.e., without
developer intervention) requests that the CA 101 sign all software developed with the SDS
107. This automated embodiment reduces the burden on the part of the developer to produce
signed code.

[0025] Once the developer system 103 receives software that has been signed or co-
signed by the CA 101, the developer system 103 may distribute the signed software to clients
105. The developer system 103 may distribute the signed software via standard distribution
channels, such as by selling boxed software at retail stores and/or making the software
available for download from the Internet.

[0026] In one embodiment, a client 105 is a computer used by one or more users to
perform activities including downloading, installing, and/or executing software applications.
The client 105, for example, can be a personal computer comprising a web browser such as
MICROSOFT INTERNET EXPLORER, MOZILLA FIREFOX, APPLE SAFARI, or
GOOGLE CHROME that allows the user to retrieve and display content from web servers
and other computers on the network 115. In other embodiments, the client 105 is a network-
capable device other than a computer, such as a personal digital assistant (PDA), a mobile
telephone, a pager, a television “set-top box,” etc. For purposes of this description, the term

“client” also includes computers such as servers and gateways that encounter software

WO 2012/054204 PCT/US2011/053881

applications or other entities that might constitute malware or other threats. For example, a
client 105 can be a network gateway located between an enterprise network and the Internet.
[0027] In one embodiment, the client 105 evaluates the certificates and signatures
associated with software before executing it. The client 105 determines a level of trust (i.e.,
trustworthiness) for the software based on the certificates/signatures, and also determines
whether and how to execute the software based on the trust level. For example, in one
embodiment if the software is co-signed by the CA 101 and the certificate from the CA
indicates that the developer 103 has a good reputation, the client 105 executes the software
without any extra precautions. The client 105 treats the CA’s signature and reputation
assessment as a guarantee that the software was created by a trusted software developer and,
therefore, is not malicious. In one embodiment, the client 105 may refrain from executing
software that is not co-signed by the CA 101. Alternatively, if the software is not co-signed
by the CA 101 or the CA’s certificate indicates that the developer 103 has less than a good
reputation, the client 105 may execute the software with extra precautions, such as executing
the software only after it is scanned for malware, or executing the software with limited
privileges.

[0028] Communication between the certificate authority 101, client 105, and developer
system 103 is performed via the network 115. In one embodiment, the network 115 uses
standard communications technologies and/or protocols. Thus, the network 115 can include
links using technologies such as Ethernet, 802.11, worldwide interoperability for microwave
access (WiMAX), 3G, digital subscriber line (DSL), asynchronous transfer mode (ATM),
InfiniBand, PCI Express Advanced Switching, etc. Similarly, the networking protocols used
on the network 115 can include multiprotocol label switching (MPLS), the transmission
control protocol/Internet protocol (TCP/IP), the User Datagram Protocol (UDP), the
hypertext transport protocol (HTTP), the simple mail transfer protocol (SMTP), the file
transfer protocol (FTP), etc. The data exchanged over the network 115 can be represented
using technologies and/or formats including the hypertext markup language (HTML), the
extensible markup language (XML), etc. In addition, all or some of links can be encrypted
using conventional encryption technologies such as secure sockets layer (SSL), transport
layer security (TLS), virtual private networks (VPNs), Internet Protocol security (IPsec), etc.
In another embodiment, the entities can use custom and/or dedicated data communications
technologies instead of, or in addition to, the ones described above. Depending upon the

embodiment, the network 115 can also include links to other networks such as the Internet.

WO 2012/054204 PCT/US2011/053881

[0029] FIG. 2 is a high-level block diagram of a computer 200 for acting as a CA 101, a
developer system 103, and/or a client 105 according to one embodiment. Illustrated are at
least one processor 202 coupled to a chipset 204. Also coupled to the chipset 204 are a
memory 206, a storage device 208, a keyboard 210, a graphics adapter 212, a pointing device
214, and a network adapter 216. A display 218 is coupled to the graphics adapter 212. In
one embodiment, the functionality of the chipset 204 is provided by a memory controller hub
220 and an I/O controller hub 222. In another embodiment, the memory 206 is coupled
directly to the processor 202 instead of the chipset 204.

[0030] The storage device 208 is any non-transitory computer-readable storage medium,
such as a hard drive, compact disk read-only memory (CD-ROM), DVD, or a solid-state
memory device. The memory 206 holds instructions and data used by the processor 202.
The pointing device 214 may be a mouse, track ball, or other type of pointing device, and is
used in combination with the keyboard 210 to input data into the computer system 200. The
graphics adapter 212 displays images and other information on the display 218. The network
adapter 216 couples the computer system 200 to a local or wide area network.

[0031] As is known in the art, a computer 200 can have different and/or other
components than those shown in FIG. 2. In addition, the computer 200 can lack certain
illustrated components. In one embodiment, a computer 200 acting as a certificate authority
101 lacks a keyboard 210, pointing device 214, graphics adapter 212, and/or display 218.
Moreover, the storage device 208 can be local and/or remote from the computer 200 (such as
embodied within a storage area network (SAN)).

[0032] As is known in the art, the computer 200 is adapted to execute computer program
modules for providing functionality described herein. As used herein, the term “module”
refers to computer program logic utilized to provide the specified functionality. Thus, a
module can be implemented in hardware, firmware, and/or software. In one embodiment,
program modules are stored on the storage device 208, loaded into the memory 206, and
executed by the processor 202.

[0033] FIG. 3 is a high-level block diagram illustrating a detailed view of the CA 101
according to one embodiment. As shown in FIG. 3, the CA 101 includes multiple modules
that are in communication with one another. Those of skill in the art will recognize that other
embodiments of the CA 101 can have different and/or other modules than the ones described
herein, and that the functionalities can be distributed among the modules in a different

manner.

WO 2012/054204 PCT/US2011/053881

[0034] In one embodiment, the key database 309 stores one or more private/public key
pairs that the CA 101 uses to sign software in response to requests from software developers
103. As is known in the art, a key is a mathematical value, such as a long integer, that is
usually generated according to a random or pseudo-random technique. Public-key encryption
utilizes a private key/public key pair. The keys are related such that a message encrypted
with the private key can be decrypted with the public key and vice versa, but the public key
and message cannot be used (at least in a reasonable amount of time) to calculate the private
key. The CA 101 may use conventional techniques to generate the key pairs, including, for
example, techniques utilizing the Diffie-Hellman, Knapsack, DSA, and/or RSA key-
generation schemes.

[0035] The policy database 311 stores security policies (i.¢., profiles) for software
developers 103 in communication with the CA 101. In one embodiment, a software
developer’s security policy describes the criteria or conditions in which the CA 101 can
expect valid software signing requests from a software developer 103. A software developer

103 may provide its security policy to the CA 101 indicating default conditions or terms of
valid software signing requests. The CA 101 may update the security policy of the software
developer 103 based on observations of the actual (i.e., real) conditions in which the software
developer 103 requests the CA 101 to sign software. The software developer 103 may also
provide updated conditions of valid signing requests. Alternatively, a software developer 103
may not provide a security policy to the CA 101. By not providing a security policy, a
software developer 103 lacks restrictions for software signing request directed to the CA 101.
Accordingly, the CA 101 may generate the security policy for the software developer 101
based on the observations of the conditions in which the software developer 103 requests the
CA 101 to sign software.

[0036] As mentioned previously, a security policy may define specific conditions that
must be verified by the CA 101 to determine whether a signing request is valid or anomalous
with respect to the security policy. For example, a software developer’s security policy may
describe machine IDs of computer systems and/or personnel (i.c., staff) associated with the
software developer 103 that may submit valid software signing requests to the CA 101. The
security policy may also describe geo-locations from which the CA 101 may expect signing
requests from the software developer. For example, a security policy may indicate signing
requests may only be received from computer systems located in the USA. The specified
geo-locations may also describe more specific locations such as a city or zip code(s) from

which requests must be received by the CA 101. In one embodiment, a security policy may

8

WO 2012/054204 PCT/US2011/053881

also describe a software developer’s schedule of software build dates. The build dates are
indicative of time periods (e.g., days, weeks, or months) in which the CA 101 can expect to
receive requests from the software developer to sign completed software. Additionally, the
software developer may indicate in its policy for the CA 101 to verify that submitted software
is non-malicious by analyzing the software for malicious characteristics. In other
embodiments, a software developer’s policy may include rules other than those described
herein.

[0037] The signing request module 301 receives software signing requests from
developer computer systems 103. In one embodiment, the software included in a request
from a developer computer system 103 may be unsigned. Alternatively, the software
included in the request may already be signed by the developer computer system 103. Thus,
the software developer is requesting that the CA 101 co-sign or counter sign the software. In
one embodiment, the requests are received by the signing request module 301 via a secure
web portal provided by CA 101. Software developers 103 log into the secure web portal
using credentials such as a user name and password. Once the credentials are verified,
software developers 103 provide software signing requests that are received by the signing
request module 301. Alternatively, the software signing module 301 may receive requests
via other means such as e-mail.

[0038] In one embodiment, in addition to the signed/unsigned software, a signing request
comprises information (e.g., metadata) that describes the conditions of the request. The
signing request module 301 obtains the metadata from the request itself according to one
embodiment. For example, the signing request module 301 may obtain from metadata
associated with the request a machine ID of the developer computer system 103 that
submitted the request and/or a date and time that the computer system 103 request was
submitted. Furthermore, the signing module 301 may identify a user submitting the request
from metadata indicative of a user name and/or password provided to a web portal from
which the request was submitted.

[0039] Additionally, the signing request module 301 may derive the metadata from the
request. The signing request module 301 may derive metadata such as geo-location
information indicative of the origin of the request. To determine the geo-location
information, the signing module 301 may observe the IP address from which the request was
received. Furthermore, if a request to sign software was transmitted via e-mail, the signing
request module 301 may identify the user submitting the request based on an e-mail address

of the person that submitted the request.

WO 2012/054204 PCT/US2011/053881

[0040] In one embodiment, the signing request module 301 identifies historical patterns
of software signing requests from the software developer 103. The signing request module
301 updates the software developer’s security policy based at least in part on the identified
patterns of requests. Thus, although the software developer system 103 may have defined
initial criteria in a security policy indicative of valid signing requests, the signing request
module 301 modifies the policy according to the patterns of the software developer’s actual
signing requests. For example, a software developer may have indicated in a security policy
that valid requests originate only from California. However, the signing request module 301
may determine that valid signing requests from the software developer actually originate
from California and New York based on the software developer’s history of signing requests
to CA 101.

[0041] In one embodiment, the request verification module 303 determines whether a
received software signing request from a software developer system 103 is valid or
anomalous. The request verification module 303 determines that a request is valid if the
conditions of the request are consistent with the terms indicated in the security policy of a
software developer 103. That is, the request verification module 303 identifies whether the
conditions of the signing request match the general signing pattern of the software developer
103 as indicated by the developer’s security policy. A request is anomalous if the conditions
of the request are inconsistent with the security policy of the software developer. To
determine whether a request is valid or anomalous, the request verification module 303
compares the information (e.g., metadata) associated with the request with the software
developer’s security policy stored in the policy database 311. Responsive to the comparison
indicating that the conditions of the request are consistent (i.c., matches) with the software
developer’s security policy, the request verification module 303 determines that the request is
valid.

[0042] For example, the software developer’s security policy may indicate that valid
requests originate from only the USA and from only a specific machine ID. The request
verification module 303 compares the software developer’s security policy with the metadata
from the request indicating the origin of the request as well as metadata indicating the
machine ID of the software developer system 103 that transmitted the request to the CA 101.
From the metadata, the request verification module 303 determines the request originated
from California and from a machine ID listed in the security policy of the developer. Thus,

the request verification module 303 determines that the request is valid.

10

WO 2012/054204 PCT/US2011/053881

[0043] However, if the comparison indicates that the conditions of the request are
inconsistent (i.e., do not match) with the software developer’s security policy, the request
verification module 303 identifies the request as anomalous. Responsive to the request being
anomalous, the request verification module 303 may perform one or more security actions.
In one embodiment, the security action comprises treating the anomalous request as
malicious and automatically denying the signing request. Thus, the request verification
module 303 refuses to sign/counter sign the software. Alternatively, the request verification
module 303 may not automatically consider an anomalous request as malicious. Instead, the
request verification module 303 may perform a security action comprising contacting the
software developer that submitted the request. By contacting the software developer, the
request verification module 303 may determine whether the request is in fact a valid request.
Further, the request verification module 303 may require the software developer to provide a
password to validate the request. Upon verification of the password, the request verification
module 303 may consider the request as valid.

[0044] For example, responsive to the request verification module 303 determining that a
request is anomalous, the request verification module may contact the software developer 103
via e-mail or telephone with a message regarding the request. The message may indicate that
a request to sign software from the developer was anomalous because it did not conform with
the developer’s security policy. For example, the developer’s security policy may indicate
that valid signing request are only received from the USA, but the origin of the anomalous
request is China. Thus, the request is seen as suspicious and the software developer 103 is
contacted. In addition, the message may include a challenge question for the software
developer such as requesting the software developer to provide a password to authenticate
itself to the CA 101. The request is then determined to be valid responsive to the CA 101
receiving the correct password associated with the software developer.

[0045] The certificate authority 101 further comprises a malware detection module 307.
In some embodiments, the request verification module 303 calls the malware detection
module 307 to scan received software in order to determine whether a signing request is
anomalous. The malware detection module 307 analyzes software included in signature
requests from software developer system 103 for malicious characteristics. That is, the
malware detection module 307 identifies whether the received software is or contains
malware. Thus, the malware detection module 307 prevents malicious software from being
signed even though the conditions of the request may comply with the software developer’s

security policy. Responsive to malicious software being detected by the malware detection

11

WO 2012/054204 PCT/US2011/053881

module 307, the request associated with the malicious software is automatically denied. The
malicious software may be stored by the malware detection module 307 in order to develop
malware signatures based on the malware. The malware signatures are transmitted to clients
105 to update anti-virus software stored on the clients.

[0046] In one embodiment, the request verification module 303 also determines whether
signing keys have been stolen. Upon receiving a request to co-sign software that is already
signed, the request verification module 303 communicates with the known certificate owner
(other than itself) that issued the signing keys used by the software developer system 103 to
sign the software. By communicating with the certificate authority, the request verification
module 303 determines whether the certificate authority is expecting usage of the signing key
by the developer system 103. That is, the request verification module 303 validates that the
certificate owner is expecting usage of the signing keys. By confirming that the certificate
owner is expecting usage of its certificate(s), the request verification module 303 may detect
if signing keys have been stolen.

[0047] Additionally, the request verification module 303 may communicate with a
stakeholder to verify each signature request submitted by a developer computer system 103.
In one embodiment, a stakeholder is a person or group or organization associated with the
developer 103 that is affected by actions of the developer 103. The request verification
module 303 contacts the stakeholder to verify that the software signing request submitted by
the developer computer system 103 is legitimate. The stakeholder may verify the request by
providing a credential such as a password verifying the legitimacy of the developer computer
system’s request. Until the request is verified, the request verification module 303 may
prevent software associated with the request from being signed according to one
embodiment. That is, the request verification module 303 may refrain from processing the
request until the legitimacy of the request is verified by the stakeholder.

[0048] The software signing module 305 digitally signs software. The software signing
module 305 only signs software associated with valid signature requests according to one
embodiment. To sign, the software signing module 305 uses a hash function to compute a
hash of the software. In one embodiment, the software signing module 305 uses a private key
from the key database 309 to encrypt the hash. In another embodiment, the private key is
utilized by the hash function itself to produce the hash, thereby eliminating the need to
perform a discrete encryption of the hash.

[0049] The software signing module 305 also creates a high trust code signing certificate

specifying the public key corresponding to the private key used to encrypt the hash. In one
12

WO 2012/054204 PCT/US2011/053881

embodiment, the software signing module 305 includes reputation information in the
certificate. The reputation information is indicative of the trustworthiness of the signed
software and/or the reputation of the developer 103. The reputation information may include
terms of a software developer’s security policy that were met during the verification of the
software developer’s signing request and/or an indication that a stakeholder confirmed the
submission of the signing request. Other indications of reputation may be included in the
certificate such as a reputation score calculated by the CA 101 based on which terms of the
software developer’s policy were met.

[0050] In one embodiment, different levels of trustworthiness may be included in the
certificate based on the reputation information. For example, the software signing module
305 may assign a certificate a level of “trustworthy” if the certificate lacks reputation
information. Although the software developer’s security policy is not verified, the fact that
the software is signed/co-signed by the CA 101 is enough to guarantee that the software is
trustworthy. Additionally, the software signing module 305 may include a level of “very
trustworthy” in a certificate if the conditions of the software developer’s security policy as
indicated in the certificate were verified by the CA 101 prior to signing the software. Lastly,
the software signing module 305 may include a level of “extremely trustworthy” in a
certificate if a stakeholder confirmed the legitimacy of a request as well as the CA 101
verifying the terms of the software developer’s security policy which are indicated as
reputation information in the certificate.

[0051] After creation of the certificate, the software signing module 305 stores the
encrypted hash and the certificate. By storing the encrypted hash and the certificate, the
software signing module 305 effectively signs the software. The software signing module
305 may send the encrypted hash and the certificate to the software developer computer
system 103 to include with the software for distribution.

[0052] In one embodiment, the CA 101 further comprises an unsigned software detection
module 313. The unsigned software detection module 313 identifies signed software in
environment 100 that has not been signed/co-signed by CA 101. As previously discussed,
clients 105 may only execute software that is signed/co-signed by CA 101. The unsigned
software detection module 313 may receive communications from clients 105 indicating
unsigned software that is refused for execution. Alternatively, the unsigned software
detection module 313 may receive from other external sources indications of unsigned

software in environment 100.

13

WO 2012/054204 PCT/US2011/053881

[0053] FIG. 4 is a flowchart illustrating steps performed by the CA 101 to sign software
included in signing requests from software developers according to one embodiment. Other
embodiments perform the illustrated steps in different orders, and/or perform different or
additional steps. Moreover, some of the steps can be performed by entities other than the
certificate authority 101.

[0054] In one embodiment, the CA 101 receives 401 a request to sign software from a
software developer. The CA 101 accesses 403 a security policy of the software developer
that submitted the request. The CA 101 compares 405 the conditions of the request to the
security policy of the software developer. The CA 101 determines 407 whether the request is
anomalous based on whether the conditions of the request are consistent with the software
developer’s security policy. If the conditions of the request are inconsistent with the security
policy, the request is anomalous and the CA 101 performs 409 a security action. The security
action may comprise denying the request or contacting the software developer regarding the
anomalous request. Responsive to the request being valid, the CA 101 signs 411 the
software. The CA 101 provides 413 the signed software back to the software developer to
fulfill the request.

[0055] Once the software developer receives the signed/co-signed software from CA 101,
the software developer distributes the signed software to clients 105. The clients 105
evaluate the certificates and signatures associated with the software prior to executing it. The
clients 105 may determine a level of trustworthiness for the software based on the reputation
information included in the certificates. Based on the level of trustworthiness, clients 105
determine whether and how to execute the software based on the trust level. For example, a
level of “extremely trustworthy” may indicate to clients 105 that the software is created by a
trusted software developer and is not malicious. Thus, clients 105 may execute the software
without any precautions.

[0056] The above description is included to illustrate to a certificate authority 101
according to one embodiment. Other embodiments the operation of certain embodiments and
is not meant to limit the scope of the invention. The scope of the invention is to be limited
only by the following claims. From the above discussion, many variations will be apparent to
one skilled in the relevant art that would yet be encompassed by the spirit and scope of the

invention.

14

WO 2012/054204 PCT/US2011/053881

CLAIMS
1. A computer-implemented method for using a computer system of a certificate
authority to digitally sign software, the method comprising:
receiving a request from a software developer to digitally sign software included in
the request;
accessing a security policy associated with the software developer, the security policy
describing criteria for valid requests by the software developer;
determining whether the request is valid based at least in part on the security policy;
digitally signing the software responsive to the determination indicating that the
request is valid; and
providing the digitally-signed software to the software developer.
2. The computer-implemented method of claim 1, wherein receiving the request from
the software developer comprises:
receiving a request to digitally co-sign software that is already digitally signed by the
software developer.
3. The computer-implemented method of claim 1, wherein determining whether the
request is valid based at least in part on the security policy comprises:
identifying conditions in which the request is received from the software developer;
comparing the identified conditions to the criteria for valid requests described by the
security policy of the software developer;
determining whether the identified conditions of the request match the criteria for
valid requests described by the security policy based on the comparison;
responsive to the identified conditions of the request matching the criteria for the
valid requests, determining that the request is valid and digitally signing the
software; and
responsive to the identified conditions of the request not matching the criteria for the
valid requests, determining that the request is anomalous.
4. The computer-implemented method of claim 3, further comprising:
embedding reputation information in a digital certificate, the reputation information
indicative of the identified conditions of the request that match the criteria for
the valid requests; and

providing the digital certificate to the software developer.

15

WO 2012/054204 PCT/US2011/053881

5. The computer-implemented method of claim 3, further comprising:
performing a security action responsive to determining that the request is anomalous,
wherein the security action comprises denying the request.
6. The computer-implemented method of claim 3, further comprising:
performing a security action responsive to determining that the request is anomalous,
wherein the security action comprises contacting the software developer to
confirm that the request is valid; and
wherein the confirmation comprises receiving a security credential from the software
developer.
7. The computer-implemented method of claim 1, further comprising:
responsive to receiving the request, contacting a stakeholder associated with the
software developer to verify that the request is valid; and
refraining from processing the request until a security credential from the stakeholder
is received verifying that the request is valid.
8. The computer-implemented method of claim 2, further comprising:
responsive to receiving the request to digitally co-sign the software, contacting a
certificate authority to verify whether usage of a signing key by the software
developer to digitally sign the software is expected, the signing key provided
by the certificate authority; and
responsive to determining that the usage of the signing key is unexpected,
determining that the signing key is stolen.
9. The computer-implemented method of claim 1, wherein the criteria for valid requests
by the software developer comprises at least one of a specific machine identifier that submits
valid requests, geo-locations from which valid requests are issued by the software developer,
identifiers of personnel associated with the software developer that issue valid requests, and a
time period in which the software developer may issue valid requests.
10. A computer program product comprising a non-transitory computer-readable storage
medium storing computer-executable code, the code when executed by a computer processor
performs steps comprising:
receiving a request from a software developer to digitally sign software included in
the request;
accessing a security policy associated with the software developer, the security policy
describing criteria for valid requests by the software developer;

determining whether the request is valid based at least in part on the security policy;

16

WO 2012/054204 PCT/US2011/053881

digitally signing the software responsive to the determination indicating that the
request is valid; and
providing the digitally-signed software to the software developer.
11. The computer program product of claim 10, wherein the code when executed by the
processor further performs steps comprising;:
identifying conditions in which the request is received from the software developer;
comparing the identified conditions to the criteria for valid requests described by the
security policy of the software developer;
determining whether the identified conditions of the request match the criteria for
valid requests described by the security policy based on the comparison;
responsive to the identified conditions of the request matching the criteria for the
valid requests, determining that the request is valid and digitally signing the
software; and
responsive to the identified conditions of the request not matching the criteria for the
valid requests, determining that the request is anomalous.
12. The computer program product of claim 11, wherein the code when executed by the
processor further performs steps comprising;:
embedding reputation information in a digital certificate, the reputation information
indicative of the identified conditions of the request that match the criteria for
the valid requests; and
providing the digital certificate to the software developer.
13. The computer program product of claim 11, wherein the code when executed by the
processor further performs steps comprising;:
performing a security action responsive to determining that the request is anomalous,
wherein the security action comprises denying the request.
14. The computer program product of claim 11, wherein the code when executed by the
processor further performs steps comprising;:
performing a security action responsive to determining that the request is anomalous,
wherein the security action comprises contacting the software developer to
confirm that the request is valid; and
wherein the confirmation comprises receiving a security credential from the software
developer.
15. The computer program product of claim 10, wherein the code when executed by the

processor further performs steps comprising;:

17

WO 2012/054204 PCT/US2011/053881

responsive to receiving the request, contacting a stakeholder associated with the
software developer to verify that the request is valid; and
refraining from processing the request until a security credential from the stakeholder
is received verifying that the request is valid.
16. A computer system of a certificate authority to digitally sign software, the system
comprising:
a computer processor; and
a non-transitory computer readable storage medium storing computer program
modules configured to execute on the computer processor, the computer
program modules comprising:
a signing request module configured to receive a request from a software
developer to digitally sign software included in the request;
a request verification module configured to:
access a security policy associated with the software developer, the
security policy describing criteria for valid requests by the software
developer;
determine whether the request is valid based at least in part on the security
policy; and
a software signing module configured to:
digitally sign the software responsive to the determination indicating that
the request is valid; and
provide the digitally-signed software to the software developer.
17. The computer-system of claim 16, wherein the request verification module is further
configured to:
identify conditions in which the request is received from the software developer;
compare the identified conditions to the criteria for valid requests described by the
security policy of the software developer;
determine whether the identified conditions of the request match the criteria for valid
requests described by the security policy based on the comparison;
responsive to the identified conditions of the request matching the criteria for the
valid requests, determine that the request is valid and digitally signing the
software; and
responsive to the identified conditions of the request not matching the criteria for the

valid requests, determine that the request is anomalous.

18

WO 2012/054204 PCT/US2011/053881

18. The computer system of claim 17, wherein the software signing module is further
configured to:
embed reputation information in a digital certificate, the reputation information
indicative of the identified conditions of the request that match the criteria for
the valid requests; and
provide the digital certificate to the software developer.
19. The computer system of claim 17, wherein the request verification module is further
configured to:
perform a security action responsive to determining that the request is anomalous,
wherein the security action comprises contacting the software developer to
confirm that the request is valid; and
wherein the confirmation comprises receiving a security credential from the software
developer.
20. The computer system of claim 17, wherein the request verification module is further
configured to:
responsive to receiving the request, contact a stakeholder associated with the software
developer to verify that the request is valid; and
refrain from processing the request until a security credential from the stakeholder is

received verifying that the request is valid.

19

PCT/US2011/053881

WO 2012/054204

1/4

601 S—
3|NPOIN 1S9nbay L0}
alneubis Sas

01 Jadojpas(

oL
Auoyny sjeouie)d

GOt
Jualo

¢ Ol

PCT/US2011/053881

WO 2012/054204

2/4

// ¢0¢

30IA30 ONILNIOd
QYYOgAIM
1z

N2]
1 1
1]
! !
1 anH 1 30IA3d

y3Ldvay I _

e i YITI0HINOD “ JOVHOLS
“ Ol “
! !

a1z m \.2zz m

1 1
1 1
1]
1 1
1 1
1 1
“ anH “

AHOWIN m Y3 TIOHLNOD m %H«mm
! AMOWIW “
1]
1 1

N m \ 022 m 2z
e e e e e -
0z) 135dIHO =
- AVIdSIa
¥0SSI0Md a1z J

WO 2012/054204

PCT/US2011/053881

3/4
Certificate Authority 101
Request .
Signing Request Verification Software Signing
Module
Module Module 305
301 303 305
Malware Detection Unsigned
Software
Module ,
307 Detection Module
- 313
/\ /\
v v
Key Database Policy Database
309 311
v v

FIG. 3

WO 2012/054204 PCT/US2011/053881

4/4

Receive Request to Sign
Software
401

'

Access Policy of the Software
Developer
403

'

Compare Conditions of the
Request to a Policy of the
Developer
405

Anomalous
Request?
407

YES Perform Security Action
409

Sign Software
411

l

Provide Software To Developer
413

FIG. 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/053881

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

the whole document

the whole document

A US 2009/249071 Al (DE ATLEY DALLAS [US] ET 1-20
AL) 1 October 2009 (2009-10-01)

X US 2007/074033 Al (ADAMS NEIL P [CA] ET 1-20
AL) 29 March 2007 (2007-03-29)

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of ancther
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
mar.llts, rs{uch combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

6 December 2011

Date of mailing of the international search report

23/12/2011

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kleiber, Michael

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/053881
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2007074033 Al 29-03-2007 NONE
US 2009249071 Al 01-10-2009 AU 2009222082 Al 11-09-2009
CN 102016864 A 13-04-2011
EP 2252957 Al 24-11-2010
JP 2011515743 A 19-05-2011
KR 20100126476 A 01-12-2010
US 2009249071 Al 01-10-2009
WO 2009111401 Al 11-09-2009

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - wo-search-report
	Page 27 - wo-search-report

