ELECTRONIC VAPOR LIQUID COMPOSITION AND METHOD OF USE

Applicants: Sahan Abayarathna, Missouri City, TX (US); Michael Jaehne, Missouri City, TX (US)

Inventors: Sahan Abayarathna, Missouri City, TX (US); Michael Jaehne, Missouri City, TX (US)

Appl. No.: 14/581,179

Filed: Dec. 23, 2014

Publication Classification

Int. Cl.
A24B 15/16 (2006.01)
A24F 47/00 (2006.01)
A24B 15/18 (2006.01)

U.S. Cl.
CPC A24B 15/16 (2013.01); A24B 15/18 (2013.01); A24F 47/002 (2013.01)

ABSTRACT

An e-liquid for use in electronic cigarettes which utilizes a vaporizing base (either propylene glycol, vegetable glycerin, or mixture of the two) mixed with an herbal powder extract generally at a 0.001 g-2.0 g per 1 mL ratio. The herbal extract can be any of the following: Kanna (sceletium tortuosum), Blue lotus (Nymphaea caerulea), Salvia (Salvia divinorum), Salvia eivinorm, Kratom (Mitragyna speciosa), Celandine poppy (Stylorhodium diphylleum), Mugwort (Artemisia), Coltsfoot leaf (Tussilago farfara), California poppy (Eschscholzia californica), St. John’s Wort (Hypericum perforatum), Yerba lenna yescas (Artemisica scoparia), Calea zacatechichi (Calea ternifolia), Leonurus sibericus (Leonurus sibiricus), Wild dagga (Leonotis leonurus), Klip dagga (Leonotis nepetifolia), Damiana (Turnera diffusa), Kava (Piper methysticum), Scotch broom tops (Cytisus scoparius), Valarian (Valeriana officinalis), Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifolium pretense), and/or combinations therein.
A compound is created from a mixture of extracts from different herbs (for reference, this compound is called Herbal Additive). These herbal extracts can come in various forms including a powdered form, crushed leaf form, as well as liquid form (tincture formed from herbs in a water or alcohol base).

In mixture A, the compound consists of 25% Wild Lettuce, 25% Wild Dagga, 20% Indian Warrior, 10% Kava, 10% Valerian, and 10% Kratom.

The herbal additive is blended with a vaporizing solution. The vaporizing solution generally consists of a 50/50 blend of vegetable glycerin and propylene glycol (however the vaporizing solution can be any ratio of vegetable glycerin and propylene glycol). The herbal additive is added to the vaporizing solution at a ratio of .075g to 1 mL (although this ratio can vary from .025 to 1g). The solution (consisting of the Herbal Additive and vaporizing solution) is blended using an industrial blender. The blending is typical done at slightly warmer than room temperature, but the blending can occur in temperatures between 20-120°F.

This blend is strained over a type of filter to collect the powder residue. The resulting powder-less solution is our final blend which is put into a labeled glass bottle and sold. The final blend is consumed using vapor products (electronic cigarette, electronic vape pen, any device that vaporizes liquid into a smokeable vapor for the user).

FIG. 2
A compound is created from a mixture of extracts from different herbs (for reference, this compound is called Herbal Additive). These herbal extracts can come in various forms including a powdered form, crushed leaf form, as well as liquid form (tincture formed from herbs in a water or alcohol base).

In mixture B, the compound consists of 20% Wild Lettuce, 20% Kratom, 15% Skullcap, 15% Kanna, 10% Sinicuichi, 10% Klip Daggaf Leaf, and 10% Blue Lotus.

The herbal additive is blended with a vaporizing solution. The vaporizing solution generally consists of a 50/50 blend of vegetable glycerin and propylene glycol (however vaporizing solution can be any ratio of vegetable glycerin and propylene glycol). The herbal additive is added to the vaporizing solution at a ratio of .075g to 1 mL (although this ratio can vary from .025 to 1g). The solution (consisting of the Herbal Additive and vaporizing solution) is blended using an industrial blender. The blending is typical done at slightly warmer than room temperature, but the blending can occur in temperatures between 20-120° F.

This blend is strained over a type of filter to collect the powder residue. The resulting powder-less solution is our final blend which is put into a labeled glass bottle and sold. The final blend is consumed using vapor products (electronic cigarette, electronic vape pen, any device that vaporizes liquid into a smokeable vapor for the user).

FIG. 3
A compound is created from a mixture of extracts from different herbs (for reference, this compound is called Herbal Additive). These herbal extracts can come in various forms including a powdered form, crushed leaf form, as well as liquid form (tincture formed from herbs in a water or alcohol base).

In mixture C, the compound consists of 20% Leonurus sibericus, 20% California poppy, 20% Yerba lenna yesca, 20% Calea zacatechichi, 10% Damiana, and 10% Celandine poppy.

Herbal Additives- The herbal additive is blended with a vaporizing solution. The vaporizing solution generally consists of a 50/50 blend of vegetable glycerin and propylene glycol (however the vaporizing solution can be any ratio of vegetable glycerin and propylene glycol). The herbal additive is added to the vaporizing solution at a ratio of .075g to 1 mL (although this ratio can vary from .025 to 1g). The solution (consisting of the Herbal Additive and vaporizing solution) is blended using an industrial blender. The blending is typical done at slightly warmer than room temperature, but the blending can occur in temperatures between 20-120° F.

This blend is strained over a type of filter to collect the powder residue. The resulting powder-less solution is our final blend which is put into a labeled glass bottle and sold. The final blend is consumed using vapor products (electronic cigarette, electronic vape pen, any device that vaporizes liquid into a smokeable vapor for the user).

FIG. 4
<table>
<thead>
<tr>
<th>Test</th>
<th>Results</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>JWH-015 (3-Methyl-1-propyl-1H-indol-3-yl)-1-262 napthalene/methane</td>
<td>ND</td>
<td>ND = Non-detected</td>
</tr>
<tr>
<td>JWH-018 (1-pentyl-3-(1-naphthyl)indole)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-019 (Napthalen-1-yl)-(1-hexylindol-3-yl)methane)</td>
<td>ND</td>
<td>Performed by GC as Chromatograph Mass Spectrometry</td>
</tr>
<tr>
<td>JWH-030 (napthalen-1-yl)-(1-pentyl)(pyrrol-3-yl)methane)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-073 (napthalen-1-yl)-(1-butylindol-3-yl)methane)</td>
<td>ND</td>
<td>+ = Positive Result</td>
</tr>
<tr>
<td>JWH-081 (4-methoxynapthalen-1-yl)-(1-pentylindol-3-yl)methane)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-133 ([6aR,10aR]-3-[1,1-Bimethylbutyl]-6a,7,10,16a-tetrahydro-6,6,6-trimethyl-6H-dibenz[b,d]pyran)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-144</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-147 (1-hexyl-5-phenyl-1H-pyrrolo-3-yl)-1-naphthalenyl-methane)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-167 (1-pentyl-3-(phenylacetyl)indole)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-176 (1-(((1E)-3-pentylinden-1-yliide))methyl)naphthalene)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-197 (2-methyl-1-pentyl-1H-indol-3-yl)-(4-methoxy-1-naphthyl)methane)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-200 (1-(2-morpholin-4-ylhexyl)indol-3-yl)-napthalen-1-yl-methane)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-203 (2-(2-chlorophenyl)-1-(1-pentylindol-3-277 yl)ethanone)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-210 (4-ethylnapthalen-1-yl)-(1-pentylindol-3-278 yl)methane)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-249 (1-pentyl-3-[2-bromophenacyl]indole)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>AB-FUBINACA N-[[1S]-1-(Aminocarbonyl)-2-methyl propyl]-1-[[4-fluorophenyl]methyl]-1H-indazole-3-carboxamide</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-250 (2-(2-methoxyphenyl)-1-(1-pentylindol-3-281 yl)ethanone)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-251 (2-(2-methylphenyl)-1-(1-pentyl-1H-indol-3-283 yl)ethanone)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-302 (1-pentyl-3-[3-methoxyphenacyl]indole)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>JWH-307 (1S-),(2-fluorophenyl)-1-pentyl(2-3-yl)—napthalene-1-(pyrilenone)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>AM-630 (1-[2-(morpholin-4-yl)ethoxy]-2-methyl-3-[4-methoxybenzoxyl]-6-indolindole)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>AM-679 (1-pentyl-3-(2-iodobenzoyle)[indole)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>AM-694 (1-1H-indol-3-yl)-2-304 [2-(fluorophenyl)-1H-indol-3-yl]-1H-indazole-3-carboxamide</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>RCS-4 (4-methoxyphenyl)-1-pentyl-1H-indol-3-yl)ethanone)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>RCS-8 (1-1-[2-cyclohexylethyl]-1H-indol-3-yl)-2-(2-310 methoxyphenylethanone)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>WIN55,212-2 (R)-[2,3-Dihydro-5-methyl-3-(4-312 morpholinylmethyl)pyrrole[1,2,3-de;1,4-benzoxazin-6-yl]1-313 napthalenylmethanone)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>CP 47,497 [2-[2H,3H]-3-hydroxyheterocyclohexyl]-5-318 (2-methylcycloclan-2-yl)phenol and its homologues</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 5
<table>
<thead>
<tr>
<th>Test</th>
<th>Results</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Synthetic Cannabinoids Tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU-210 ({6\text{R,10\text{aR}}}-\text{9-{hydroxymethyl}-6,6-dimethyl-3-{2-methylfuran-2-yl}-6a,7,10,10a-tetrahydrobenzo[c]chromen-1-ol})</td>
<td>ND</td>
<td>Legend</td>
</tr>
<tr>
<td>HU-211 ({6\text{aS,10\text{aS}}}-\text{9-{hydroxymethyl}-6,6-dimethyl-3-{2-methylfuran-2-yl}-6a,7,10,10a-tetrahydrobenzo[c]chromen-1-ol})</td>
<td>ND</td>
<td>ND = Non-detected</td>
</tr>
<tr>
<td>HU-331 ({3-hydroxy-2-{\text{1R}}-6-isopropenyl-3-methyl-cyclohex-2-ene-1-yl}-5-pentyl-1,4-benzoquinone)</td>
<td>ND</td>
<td>Performed by Gas Chromatograph Mass Spectrometry</td>
</tr>
<tr>
<td>WIN-54,481</td>
<td>ND</td>
<td>+ = Positive Result</td>
</tr>
<tr>
<td>UR8-597 ({3\text{-{aminocarbonyl}}\text{{1,1\text{-{biphenyl}}\text{-3-yl}}}-333 cyclohexylcarbamate)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>UR8-602 ({1,1\text{-{biphenyl}}\text{-3-yl}-carbamic acid, 341 cyclohexyl ester)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>APICA (\text{N-(1-adamantyl){-1-pentyl}-1H-indole-3-carboxamide})</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>AKB48 ({1-pentyl-N{-tricyclo[3.3.1.1{3,7}]dec-1-yl}-1H-333 indazole-3-carboxamide)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>SF1AKB-48</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>P8-22 ({1-pentyl-1H-indole-3-carboxylic acid 8-quinoliny ester)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>SF P8-22 ({1-{5-fluoropentyl}-1H-indole-3-carboxylic acid 8-quinoliny ester)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>B8-22 ({1-cyclohexylmethyl}-1H-indole-3-carboxylic acid 8-quinoliny ester)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>UR-144 ({1-pentyl-1H-indol-3-yl}-2,2,3,3-tetramethylcyclopropyl)methanone)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>9-OCTADECOENAMIDE</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>AM-1241 ({1-(methylpiperidin-2-ylmethyl)-3-(2-iodo-6-nitrobenzoyl)indole)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>AM-2201 ({1-(5-fluoropentyl)-1H-indol-3-yl}-305 (naphthalen-1-yl)methanone)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>AM-2233 (2-iodophenyl)[1-{1-methyl-2-335 piperidin[methyl]-1H-indol-3-yl}-methanone)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>XLR-11 ({1-(5-fluoropentyl)-1H-indol-3-yl}-2,2,3,3-tetramethylcyclopropyl)methanone)</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 5
(continued)
ELECTRONIC VAPOR LIQUID COMPOSITION AND METHOD OF USE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] Not applicable.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0002] Not applicable

BACKGROUND

[0003] E-cigarettes, and e-cigarette liquid are very popular alternatives to utilizing cigarettes and other tobacco products. The present invention, and inventive system, is a new and novel electronic cigarette liquid used in conjunction with electronic cigarettes. The present invention can be used to enhance effects for relaxation, euphoria, medicinal, recreational, or alternative purposes desired by a consumer. Such uses are new, and novel, benefit not offered by other products on the market. The present invention provides the following benefits to other e-liquids on the market place by using extracts, in a new and novel way. The extracts come from select herbal plants and extracts used in Native American and Eastern cultures along with chemical procedures to give a relaxing, euphoric, and/or medicinal effect to the user unlike any previous e-cigarette liquid, and the present invention utilizes non-regulated substances. The present invention is designed to give an e-liquid user a mood altering or enhancing effect in a safe and legal fashion.

[0004] In the prior art, there are e-cigarette liquid patents and applications that address e-liquid compositions (i.e., they refer to a composition of a mixture), however the present invention has a composition of a mixture that is unique from any of the prior art patents. By way of example, the patent application US 2013/000845 to Zheng, et al., published Jan. 10, 2013 (“Zheng”), addresses a preparation method of e-cigarette liquid. However the present invention’s composition scope covers a specific ingredient list that is distinct unique from Zheng’s patent application, and also provides an effect distinctive of Zheng. Zheng’s patent focuses on making e-cigarette liquid similar, in terms of aroma and taste, to actual cigarettes (a completely distinct and different purpose from the present patent filing). Zheng does this by using a chocolate extractive and tobacco (completely different ingredients from this patent filing). Zheng, et al., focuses on tobacco derivatives, whereas the present invention focuses on herbal and chemical infusions. Zheng does not disclose or contemplate the utilization of any of the additives found in the present invention.

[0005] Patent application CN102028306 B, published Jun. 27, 2012, refers to an application that calls for a mixture of ingredients into an e-cigarette blend that has a throat-rejuvating effect using a combination of watermelon frost, peppermint oil, menthol, blumea aromatica, eucalyptus oil, and star anise oil. The aforementioned patent application is focused on addressing a specific condition (throat nourishment) using a specific ingredient list, whereas the present invention covers general recreational, relaxation, and general medicinal purposes using an ingredient list that is distinct and unique from the ingredients covered in that patent. The patent application CN 1594159 A published on Jun. 11, 2007, references a combination of ingredients into an electronic atomized cigarette that serves as a kidney-strengthening function. That prior patent application is focused on addressing a specific purpose (kidney strengthening), a unique and different purpose as compared to the present invention. In addition, the aforementioned patent covers ingredients that are distinct and different from our ingredients (their ingredient list is more flavors and food-based whereas the present invention focuses on enhancement features). The patent application CN 19192505 A published Dec. 29, 2010, discloses a combination of ingredients for an electronic cigarette liquid using caffeine (to produce a more alert/aware effect, similar to coffee). That patent application covers a caffeine-containing substance (guarana) in the e-liquid for the purpose of making the user more alert and aware, whereas “this” or “the present” patent covers ingredients that are distinct and different from that patent’s unique ingredient along with a more general recreational, relaxation, and medicinal purpose. That previous patent application, again fails to disclose or contemplate the unique ingredient list that found in the present invention.

[0006] None of the prior art patents or applications, utilize or suggest the detailed breakdown of ingredients and processes found in at least one embodiment of the present invention which comprises a combination of the following: (1) vaporizing base (either propylene glycol, vegetable glycerin, or combination of the two—and this is found in every e-cigarette liquid blend) mixed with (2) a herbal powder extract generally at a 0.001-2.0 g per 1 ml ratio. Other ratios can be utilized though. The herbal extract can be any of the following used individually, or in combination; Karma (seceltium tortuosum), Blue lotus (Nymphaea caerulea), Salvia (Salvia divinorum), Kratom (Mitragyna speciosa), Celandine poppy (Stylhouron diphylhum), Mugwort (Artemisia), Coltsfoot leaf (Tussilago farfara), California poppy (Eschscholtzia californica), St. John’s Wort (Hypericum perforatum), Yerba leena yesca (Artemisia scoparia), Calea zacatechichi (Calea ternifolia), Leonurus sibericus (Leonurus sibiricus), Wild daga (Leonitis leonurus), Klip daga (Leonitis nepetifolia), Dumiana (Turnera diffusa), Kava (Piper methysticum), Scotch broom tops (Cytisus scoparius), Valerian (Valeriana officinalis), Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifolium pretense). The combinations of these materials is new, novel and has never been done in use with an e-liquid application.

SUMMARY

[0007] In one embodiment of the present invention, a herbal additive (distinct component) is presented in a 0.001 g per 1 ml ratio (7.5%)—2.0 g per 1 ml ratio with a vaporizing base. In one embodiment of the present invention there is a fluid mixture, preferably, vegetable glycerin and/or propylene glycol mixture (common vaporizing solution) in a ratio of roughly 92% in relation to other components. In one embodiment of the present invention the fluid flavoring of the e-liquid mixture comprises roughly 0.5%.

[0008] In one embodiment of the present invention, the procedure for making the composition is as follows. The herbal additive (and flavor additive) is mixed with vegetable glycerin and/or propylene glycol solution. In several embodiments of the present invention the blending can be done by using simple mixing, using an indus
trial blender, or other liquid mixing methods as are used in the art. In many embodiments of the present invention, the delivery systems for the present invention includes: electronic vaporizing, electronic cigarette, personal vaporizer, or other vaporizing methods known in the art.

In one embodiment, the present invention is an electronic cigarette liquid comprising a vaporizing base mixed with a herbal powder extract. In several embodiments, the vaporizing base is a propylene glycol. In several embodiments the vaporizing base is a vegetable glycerin. In several embodiments, said vaporizing base is mixed with said herbal powder extract at a 0.001-2.0 g per 1 ml ratio. In several embodiments of the present invention, the herbal extract may include members selected from the group of materials consisting of Kanna (sceletium tortuosum), Blue lotus (Nymphaea caerulea), Salvia (Salvia divinorum), Kratom (Mitragyna speciosa), Celandine poppy (Stylorhynchus diphyllym), Mugwort (Artemisia), Coltsfoot leaf (Tussilago farfara), California poppy (Eschscholzia californica), Sinecuichi (Helina salicifolia), St. John's Wort (Hypericum perforatum), Yerba lanna yescas (Artemisia scoparia), Calea zacatechichi (Calea ternifolia), Leonurus sibericus (Leonurus sibiricus), Wild dagga (Leonotis leonurus), Klip dagga (Leonotis nepetifolia), Damiana (Turnera diffusa), Kava (Piper methysticum), Scotch broom tops (Cytisus scoparius), Valerien (Valeriana officinalis), Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifolium pretense), and/or combinations thereof.

In several embodiments of the present invention, the present invention comprises, a method for creating an electronic cigarette liquid comprising the steps of mixing a herbal additive with a vaporizing base wherein said base is comprised of vegetable glycerin and/or propylene glycol solution. In several embodiments of the present invention the method of further comprises the steps of mixing said herbal additive and said vaporizing base at a temperature between −50 to 150°F. In several embodiments of the present invention, the method further comprises the steps of forming the herbal additive from a group that may include members selected from the group of materials consisting of Kanna (sceletium tortuosum), Blue lotus (Nymphaea caerulea), Salvia (Salvia divinorum), Kratom (Mitragyna speciosa), Celandine poppy (Stylorhynchus diphyllym), Mugwort (Artemisia), Coltsfoot leaf (Tussilago farfara), California poppy (Eschscholzia californica), Sinecuichi (Helina salicifolia), St. John's Wort (Hypericum perforatum), Yerba lanna yescas (Artemisia scoparia), Calea zacatechichi (Calea ternifolia), Leonurus sibericus (Leonurus sibiricus), Wild dagga (Leonotis leonurus), Klip dagga (Leonotis nepetifolia), Damiana (Turnera diffusa), Kava (Piper methysticum), Scotch broom tops (Cytisus scoparius), Valerien (Valeriana officinalis), Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifolium pretense), and/or combinations thereof.

Several examples of successful mixtures of the present invention include “Mixture A” (which contains Wild Lettuce, Wild Dagga, Indian Warrior, Kava, Valerian, and Kratom) that has a relaxing and headache/pain diminishing effect caused by the alkaloids in these herbs that is distinct and unique in terms of ingredients and purpose compared to other e-liquid patents; “Mixture B” (which contains Wild Lettuce, Kratom, Skullcap, Kanna, Sinecuichi, Klip Dagga Leaf, and Blue Lotus) that causes a sedated feeling with relaxation and assists in sleeping; and “Mixture C” (which contains Leonurus sibericus, California poppy, Yerba lanna yescas, Calea zacatechichi, Hernia salicifolia, Damiana, and Celandine poppy) that causes a euphoric feeling with alertness.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions to be taken in conjunction with the accompanying drawings describing specific embodiments of the disclosure, wherein:

Fig. 1 illustrates a chart of the various plants from which the herbal additives of the present invention are derived.

Fig. 2 illustrates a flow chart for creating one embodiment of the present invention for Mixture A.

Fig. 3 illustrates a flow chart for creating one embodiment of the present invention for Mixture B.

Fig. 4 illustrates a flow chart for creating one embodiment of the present invention for Mixture C.

Fig. 5 illustrates a testing chart for the components of the present invention.

DETAILED DESCRIPTION

In the following description, certain details are set forth such as specific quantities, sizes, etc., so as to provide a thorough understanding of the embodiments disclosed herein. However, it will be evident to those of ordinary skill in the art that the present disclosure may be practiced without such specific details. In many cases, details concerning such considerations and the like have been omitted inasmuch as such details are not necessary to obtain a complete understanding of the present disclosure and are within the skills of persons of ordinary skill in the relevant art.

Referring to the drawings in general, it will be understood that the illustrations are for the purpose of describing particular embodiments of the disclosure and are not intended to be limiting thereeto. Drawings are not necessarily to scale.

While most of the terms used herein will be recognizable to those of ordinary skill in the art, it should be understood, however, that when not explicitly defined, terms should be interpreted as adopting a meaning presently accepted by those of ordinary skill in the art. In cases where the construction of a term would render it meaningless or essentially meaningless, the definition should be taken from Webster’s Dictionary, 11th Edition, 2008. Definitions and/or interpretations should not be incorporated from other patent applications, patents, or publications, related or not, unless specifically stated in this present specification or if the incorporation is necessary for maintaining validity. “Herbal Additive” or “Herbal Extract” in the present application means a material selected from one or more of the following group individually, or in combination: Kanna (sceletium tortuosum), Blue lotus (Nymphaea caerulea), Salvia (Salvia divinorum), Kratom (Mitragyna speciosa), Celandine poppy (Stylorhynchus diphyllym), Mugwort (Artemisia), Coltsfoot leaf (Tussilago farfara), California poppy (Eschscholzia californica), Sinecuichi (Helina salicifolia), St. John’s Wort (Hypericum perforatum), Yerba lanna yescas (Artemisia scoparia), Calea zacatechichi (Calea ternifolia), Leonurus sibericus (Leonurus sibiricus), Wild dagga (Leonotis leonurus), Klip dagga (Leonotis nepetifolia), Damiana (Turnera diffusa), Kava (Piper methysticum), Scotch broom tops (Cytisus scoparius), Valerien (Valeriana officinalis), Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifolium pretense), and/or combinations thereof.
(Leonotis nepetifolia), Damiana (Turnera diffusa), Kava (Piper methysticum), Scotch broom tops (Cytisus scoparius), Valerian (Valeriana officinalis), Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifolium pretense).

One or more illustrative embodiments incorporating the invention disclosed herein are presented below. Applicants have created a revolutionary and novel composition of e-liquids for electronic cigarettes and the like.

FIG. 1 illustrates a chart of the various plants from which components utilized in several embodiments of the herbal compositions of the present invention are derived. The compositions of the present invention may include (in a variety of forms including tinctures, water, alcohol, or other liquid based forms that the herbal extract may be soluble in, including but not limited to propylene glycol and vegetable glycerin) extract powder in capsule, powder, or other form; as well as powdered plant material. In many embodiments of the present invention, the present invention may contain Kanna, also known as sceliotium tortuosum 1. In many embodiments of the present invention, Mesembrine is an alkaloid present in the material Sceletium tortuosum 1, also referred to herein as “Kanna”. In many clinical applications, it has been shown that Kanna 1 acts as a serotonin reuptake inhibitor (Ki=1.4 nM). More recently, Kanna 1 has been found to behave as a weak inhibitor of the enzyme phosphodiesterase 4 (PDE4) (Ki=7,800 nM). As such, Mesembrine may contribute to the antidepressant effects of Kanna 1. The levorotatory isomer, (−)-mesembrine, is the natural form found in Kanna 1. This material can provide benefits to the user of the present inventive e-liquid, including but not limited to mood-elevation. It also has anxiolytic properties.

References:
2. Id.

FIG. 1 illustrates one embodiment of the invention in which the Blue Lotus 2 (Nymphaea caerulea). The Blue Lotus 2 herb contains the alkaloids nociceptine and aporphine, which have a mildly sedating effect. This material can provide benefits to the user of the present inventive e-liquid including a relaxing effect.

Also shown in FIG. 1 is the component Salvia (Salvia divinorum 3). The known active constituent of Salvia divinorum 3 is a trans-neoclerodane diterpenoid known as salvinorin A (chemical formula C23H32O8). This compound is present in the dried plant Salvia, at about 0.18% by volume. Salvinorin A is not an alkaloid, (meaning it does not contain a basic nitrogen in its composition) in many natural applications, Salvia divinorum 3 synthesizes and excretes its active constituent (salvinorin A) via trihydroxyls, of the peltate-glandular morphology, located just beneath the cuticle (subcuticular) layer of the plant. Salvinorin A is considered a dissociative, which has a long history of use as an entheogen by indigenous Mazatec cultures (Valdés, 287). This material can provide a dissociative effect and pain-relief to the user of the present inventive e-liquid.

References:

As shown in FIG. 1, one additive of the present invention is Wild Daggia (Leonotis leonurus) 15. Leonotis leonurus 15, also known as lion’s tail and wild daggia, is a plant species in the Lamiaceae (mint) family. The plant is a broadleaf evergreen large shrub native to South Africa and southern Africa, where it is very common. The main active component of Leonotis leonurus 15 is leonurine. This material can possess anxiolytic and anti-inflammatory properties while providing the user with mild euphoria and sedation. As shown in FIG. 1, one additive of the present invention is Kratom (Mitragyna speciosa) 5. There are more than 40 compounds in Mitragyna speciosa leaves, including many alkaloids such as mitragynine, mitraphylline, 7-hydroxymitragynine, and mitragynine pseudoxoixylyl. Other active chemicals in M. speciosa include rubasin and some yohimbe alkaloids such as corynantheidine. Mitragyna speciosa 5 also contains at least one alkaloid (phyllotoxine) that is a calcium channel blocker, and reduces NMDA-induced current. One analysis of products marketed as kratom leaf found, using liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS), mitragynine at levels of 1-6% and 7-hydroxymitragynine at levels of 0.01-0.04%. These compounds are thought to contribute to Mitragyna speciosa’s 5 effects, including its use as an anti-arheal as well as managing chronic pain. The chemical structure of mitragynines incorporate the nucleus of the tryptamine, and the mitragynines may be responsible for the molecules which are observed in the serotonin and adrenergic systems. This material can provide benefits to the user of the present inventive e-liquid through its antidepressant and pain relief effects.
one additive of the present invention which is Mugwort (Artemisia). Mugworts are used medicinally, especially in Chinese, Japanese and Korean traditional medicine, and are used as a herb to flavor food. In Korea, Mugworts were also used for plain, non-medicinal consumption; in South Korea, Mugworts 7, called Suak, are still used as a staple ingredient in many dishes including rice cakes and soup. This material can provide benefits to the user of the present inventive e-liquid by adding flavor and stimulation of circulation through presssure points without the use of a user. As shown in FIG. 1, one additive of the present invention is Coltsfoot leaves (Tussilago farfara). Tussilago farfara 8 contains pyrrolizidine alkaloids. This material can provide benefits to the user of the present inventive e-liquid by providing alleviation for the respiratory tract as well as alleviation for general infections and colds.

[0027] As shown in FIG. 1, one additive of the present invention is California Poppy (Eschscholtzia californica) 9. California poppy 9 leaves were used medicinally by Native Americans, and the pollen was used cosmetically. The seeds are used in cooking. California Poppy 9 contains the alkaloid Californidine (which is thought to be the primary constituent responsible for the effects of California Poppy 9). An aqueous extract of the plant has sedative and anxiolytic action. This material can provide benefits to the user of the present inventive e-liquid including feelings of sedation and anxiety relief. Also shown in FIG. 1 is Siniiuchi (Heinitia salicifolia) 10. Some isolated alkaloids found in Siniiuchi include Vertine, also known as crygyenine; it is regarded as the primary active component. Clinically demonstrated effects of Vertine include anticholinergic, anti-inflammatory, antispasmodic, hyperglycemic, hypnotic, sedative, tranquilizer, and vasodilator activity. This material can provide benefits to the user of the present inventive e-liquid including feelings of sedation.

[0028] As shown in FIG. 1, one additive of the present invention is St. John’s Wort (Hypericum perforatum) 11 abbreviated herein as “SJW”. Hyperforin and adhyperforin, two phlogollicin constituents of SJW 11, are TRPC6 receptor agonists and, consequently, they induce noncompetitive upregulation of monoamines (specifically, dopamine, norepinephrine, and serotonin), GABA, and glutamate when they activate this receptor in the brain. Hyperforin and adhyperforin inhibit upregulation of these neurotransmitters by increasing intracellular sodium ion concentrations. Moreover, SJW 11 is known to downregulate the β1 adrenoceptor and upregulate post synaptic 5-HT1A and 5-HT2A receptors, both of which are a type of serotonin receptor. Other compounds may also play a role in SJW 11’s effects, such compounds include: oligomeric procyanidines, flavonoids (querceatin), hypericin, and pseudohypericin. Hyperforin (the active ingredient) is also a powerful anti-inflammatory compound with anti-angiogenic, antibiotic, and neurotrophic properties. SJW can provide benefits to the user of the present inventive e-liquid including anti-inflammatory and anti-depressive effects.

[0029] As shown in FIG. 1, one additive of the present invention is Yerba Lenña (Artemisia scoparia) 12. The chemical constituents of Yerba Lenña 12 may include: Capillarisin, Chlorogenic acid butyl ester; 6,7-Dihydroxyesculetin; Isosabandin; Magnolioside; Isocoumarinoids; 7-Methoxy coumarin; 7-Methylesculetin; Sabandin A; Sabandin B; Scoparone (6,7-dimethoxyccoumarin); Scopoletin; β-Sitosterol. Artemisia scoparia 12 is an important traditional Chinese medicine. This material can provide benefits to the user of the present inventive e-liquid including its sedative effects. Also shown in FIG. 1 is Callea Zacatechichi (Calea ternifolia). Chemical compounds isolated from this species may include flavones such as acacetin and sesquiterpene lactones such as germacrone. The sesquiterpenes known as caleines and caleochromenes may be active in its effects on sleep. This material can provide benefits to the user of the present inventive e-liquid including its sleep remedy properties. Also shown in FIG. 1 is Leonurus sibiricus Flowers 14. Alkaloids isolated from Leonurus sibiricus include: Cycloleucorinine; Leoheterin; Leonurine; Leonurine; Prehispalonic; Preleoheterin; Stychydrine (“Leonurus sibiricus”). This material can provide benefits to the user of the present inventive e-liquid including relaxing effects.

[0030] As shown in FIG. 1, one additive of the present invention is Klip Daggag (Leonotis nepetfolia or L. nepetfolia) 16. L. nepetfolia (Klip Daggag) 16 is related to L. leonurus 15 (wild dagga or lion’s tail). L. nepetfolia’s leaves are brewed as tea for fers and couchs in Trinidad. This material can provide benefits to the user of the present inventive e-liquid including a relaxing and anti-bacterial affect. Also shown in FIG. 1 is Damiana (Turnera diffusa) 17. Damiana 17 contains damianin, tetrahydro B; gonzalitosin I; arbatin; triosan-2-one; acacetin; p-cymene; β-sitosterol; 1,8-cineole; apigenin; α-pinene; β-caryophyllene; β-pinene; eucalyptol; tan- nins; thymol; and hexacosanol. Damiana’s 17 axiolytic properties might be due to apigenin. It has also been shown that Damiana 17 may function as an aromatase inhibitor, which has been suggested as a possible method of action for its reputed effects. The chemical compound has long been claimed to have a stimulating effect on libido, supported by studies on sexual stimulation in mice. This material can provide benefits to the user of the present inventive e-liquid including an increase in libido and relaxation.

As shown in FIG. 1, one additive of the present invention is Kava (Piper methysticum) 18. Kava’s 18 active principal ingredients are the kavalactones. Research has suggested that kavalactones potentiate GABA activity, but do not alter levels of dopamine and serotonin in the CNS20. It is thought to do this via modulating GABA activity by altering the lipid membrane structure and sodium channel function27. Desmethoxyyangonin, one of the six major kavalactones, is a reversible MAO-B inhibitor (K_i 280 nM) and is able to increase dopamine levels in the nucleus accumbens. These findings might correspond to the slightly euphoric action of kava28 18. Kavain, in both enantiomeric forms, inhibits the reuptake of norepinephrine at the transporter (NA_T), but not of serotonin (SERT)28. An elevated extracellular norepinephrine level in the brain may account for the reported enhancement of attention and focus. This material can provide to the user of the present inventive e-liquid including a euphoric effect with sedative properties in addition to increasing mental acuity.

As shown in FIG. 1, one additive of the present invention is Scotch broom (Cytisus scoparius) 19. The characteristic constituents of Scotch broom 19 are biogenic amines (mostly tyramine in the young shoots), flavonoids (sparteine and scoparoside), isoflavones and their glycosides (genistin), as well as allelopathic quinolizidine alkaloids (mostly sparteine, lupanine, scoparin and hydroxy-derivatives), which defend the plant against insect infestation and herbivory (with the exception of the resistant Aphis cytisorum30). This material adds flavoring and increased yellow color in the inventive e-liquid. Also shown in FIG. 1 is Valerian (Valeriana officinalis) 20. The known compounds detected in Valerian 20 that may contribute to its method of action are: Alkaloids: actinidine, chatinine, shanathine, valeriane, and valerine. Isovaleramide may be created in the extraction process; Gamma-aminobutyric acid (GABA); Isovaleric acid; Iridoids, including valepotriates: isovaletrate and valtrate; Sesquiterpenes (contained in the Volatile oil): valerenic acid, hydroxyvaleranic acid and acetoxyvaleranic acid; and Flavanones: hesperidin, 6-methyllumigentin and linaria31. Combined, these compounds are thought to provide the sedative and anxiolytic effects of the plant. This material can provide benefits to the user of the present inventive e-liquid including anti-anxiety and sedative effects. Also shown in FIG. 1 is Indian Warrior (Pedicularis densiflora) 21. In many applications, Indian warrior 21 is used as a tea or tincture to promote healthy immune function and its ability to relax tense muscles. The buds and flowers of Indian Warrior 21 are often added to tea blends for their color, flavor, and relaxing properties. It is also found to be useful in the treatment of insomnia, as well as having antioxidiant properties. This material can provide benefits to the user of the present inventive e-liquid including anti-anxiety and muscle relaxant effects.

21 Ferreidh Shahidi and Marian Naczk, Phenolics in food and nutraceuticals (Boca Raton, Fla., USA: CRC Press, 2004), pp. 313-314.

As shown in FIG. 1, one additive of the present invention is Skullcap (Scutellaria lateriflora or S. lateriflora) 24. The principal phenolics in the leaves, stems, and roots of some Scutellaria species are baicalin, baicalein and wogonin. Baicalin has anti-inflammatory and analgesic effects in a rat model of thermal hyperalgesia22. A number of the flavones found in S. lateriflora 24 have been reported to selectively bind with high affinity to central benzodiazepine receptor sites, leading to the conclusion that the flavones exert anxiolytic and other benzodiazepine effects in rats22. This material can provide benefits to the user of the present inventive e-liquid including anti-anxiety effects. Also shown in FIG. 1 is Lactuca virosa 22. Lactuca virosa contains flavonoids, coumarins, and N-methyl-β-phenethylamine. A variety of other chemical compounds have been isolated from Lactuca virosa 22. One of the compounds, lactucin, is an adenosine receptor agonist in vitro; while another, lactucoxpin, has been shown to act as an acetylcholinesterase inhibitor in vitro24. This material can provide the user of the present inventive e-liquid sedative effect benefits. Also shown in FIG. 1 is Red Clover (Trifolium pretense) 25. Trifolium pretense 25 is used in traditional medicine of India as a deobstruent, antispasmodic, expectorant, sedative, anti-inflammatory, and anti-dermatosis agent25. This material can provide benefits to the user of the present inventive e-liquid including sedative effects.

As shown in FIGS. 2-4, in one embodiment of the present invention, a herbal additive (distinct component) is presented in a 0.075 g per 1 ml ratio (7.5%) to the vaporizing liquid. In one embodiment of the present invention there is a fluid mixture, preferably, vegetable glycerin and/or propylene glycol mixture (common vaporizing solution) in a ratio of roughly 92%. In one embodiment of the present invention the fluid flavoring comprises 0.5% of the gross volume of e-liquid.

In one embodiment of the present invention, as shown in FIG. 2-4, the procedure for making the composition is as follows. Herbal additive is mixed with vegetable glycerin and/or propylene glycol solution. In several embodiments of the present invention the mixing can be done at room temperature, heated or cooled in the ranges of ~50 to 150° F. In several embodiments of the present invention the blending can be done by using simple mixing up to using an industrial blender as is used in the art. In many embodiments of the delivery systems for the present invention includes: electronic vaporizing, electronic cigarette, personal vaporizer, or other vaporizing methods known in the art. Certain examples of successful mixtures include, but are not limited to, mixture A 200 (which contains Wild Lettuce 22, Wild Dagga 15, Indian Warrior 21, Kava 18, Valerian 20, and Kratom 5) that has a relaxing and headache/pain-diminishing effect caused by the alkaloids in these herbs that is distinct and unique in terms of ingredients and purpose compared to other e-liquid patents. Mixture B 300 (FIG. 3) (which contains Wild Lettuce 22,
Kratom 5, Skullcap 24, Kanna 18, Sinicuichi 10, Klip Dagga Leaf 16, and Blue Lotus 2) that causes a sedated feeling with relaxation and assists in sleeping. Mixture C 400 (FIG. 4) (which contains Leonurus sibericus 14, California Poppy 9, Yerba lanna yescua 12, Calea zacatechichi 13, hernia salicifolia 10, Damiana 17, and Celandine poppy 6) that causes a euphoric feeling with alertness. Although different mixtures using the Herb Additives as the base ‘active compounds are envisioned by the present invention.

As shown in FIG. 2, in one embodiment of the present invention, Mixture A 200, a compound is created from a mixture of extracts from different herbs and components. These herbal extracts can come in various forms including a powdered form, crushed leaf form, as well as liquid form (tincture formed from herbs in a water or alcohol base). In one embodiment, the product consists of different mixtures of herbal extracts to form different Herbal Additives. In Mixture A 200, the compound 210 consists of 25% Wild Lettuce 22, 25% Wild Dagga, 20% Indian Warrior 21, 10% Kava 18, 10% Valerian 20, and 10% Kratom 5. Percentage composition by weight in many embodiments, but can be in portions of volume or other measurements. The herbal additive is blended with a vaporizing solution. The vaporizing solution generally consists of a 50/50 blend of vegetable glycerin and propylene glycol (however the vaporizing solution can be any ratio of vegetable glycerin and propylene glycol). The herbal additive is then added to the vaporizing solution at a ratio of 0.075 g to 1 mL. (although this ratio can vary from 0.001 to 2.0 g). The solution (consisting of the Herbal Additive and vaporizing solution) is blended using an industrial blender, or any other blending mechanism suitable in the art for e-liquids. The blending is typically done at slightly warmer than room temperature, but the blending can occur in temperatures between ~50-150°F. 220. This blend is strained over a type of filter to collect the powder residue filters known in the art, other filters such as coffee filters can be used. The resulting powder-less solution is the final blend of Mixture A 200, which is put into a container for sales to an end user. The final blend is preferably consumed using vapor products (electronic cigarette, electronic vape pen, any device that vaporizes liquid into a smokeable vapor for the user) 230.

As shown in FIG. 3, in Mixture B 300, the compound 310 consists of 20% Wild Lettuce, 20% Kratom 5, 15% Skullcap 24, 15% Kanna 18, 10% Sinicuichi 10, 10% Klip Dagga Leaf 16, and 10% Blue Lotus 2. The herbal additive is blended with a vaporizing solution. The vaporizing solution generally consists of a 50/50 blend of vegetable glycerin and propylene glycol (however the vaporizing solution can be any ratio of vegetable glycerin and propylene glycol). The herbal additive is then added to the vaporizing solution at a ratio of 0.075 g to 1 mL. (although this ratio can vary from 0.001 to 2.0 g). The solution (consisting of the Herbal Additive and vaporizing solution) is blended using an industrial blender, or any other blending mechanism suitable in the art for e-liquids. The blending is typically done at slightly warmer than room temperature, but the blending can occur in temperatures between ~50-150°F. 320. This blend is strained over a type of filter to collect the powder residue filters known in the art, filters such as coffee filters can be used. The resulting powder-less solution is the final blend of Mixture B, which is put into a container for sales to an end user. The final blend is preferably consumed using vapor products (electronic cigarette, electronic vape pen, any device that vaporizes liquid into a smokeable vapor for the user) 330.

As shown in FIG. 4, in Mixture C 400, the compound 410 consists of 20% Leonurus sibericus 14, 20% California Poppy 9, 20% Yerba lanna yescua 12, 20% Calea zacatechichi 13, 10% Damiana 17, and 10% Celandine poppy 6. The herbal additive is blended with a vaporizing solution. The vaporizing solution generally consists of a 50/50 blend of vegetable glycerin and propylene glycol (however the vaporizing solution can be any ratio of vegetable glycerin and propylene glycol). The herbal additive is then added to the vaporizing solution at a ratio of 0.075 g to 1 mL. (although this ratio can vary from 0.001 to 2.0 g). The solution (consisting of the Herbal Additive and vaporizing solution) is blended using an industrial blender, or any other blending mechanism suitable in the art for e-liquids. The blending is typically done at slightly warmer than room temperature, but the blending can occur in temperatures between ~50-150°F. 420. This blend is strained over a type of filter to collect the powder residue filters known in the art, other filters such as coffee filters can be used. The resulting powder-less solution is the final blend of Mixture C, which is put into a container for sales to an end user. The final blend is preferably consumed using vapor products (electronic cigarette, electronic vape pen, any device that vaporizes liquid into a smokeable vapor for the user) 430.

As shown in FIG. 5, in one embodiment of the present invention, when the e-liquid is tested in laboratory conditions, it does not contain, or emit any substances that are controlled, or banned under current Federal and/or state regulations concerning such substances 500.

Although several preferred embodiments of the present invention have been described in detail herein, the invention is not limited hereto. It will be appreciated by those having ordinary skill in the art that various modifications can be made without materially departing from the novel and advantageous teachings of the invention. Accordingly, the embodiments disclosed herein are by way of example. It is to be understood that the scope of the invention is not to be limited thereby.

What is claimed is the following:
1. An electronic cigarette liquid comprising:
 a. vaporizing base mixed with a herbal powder extract.
 b. the vaporizing base of claim 1 further comprising:
 said vaporizing base is a propylene glycol.
 c. the vaporizing base of claim 1 further comprising:
 said vaporizing base is a vegetable glycerin.
 d. the vaporizing base of claim 1 further comprising:
 said vaporizing base is a vegetable glycerin and propylene glycol.
 e. the vaporizing base and herbal powder extract of claim 1 further comprising:
 said vaporizing base is mixed with said herbal powder extract at a 0.001:0.001:2.0 g per 1 mL ratio.
2. The herbal extract of claim 1 further comprising said herbal extract may include members selected from the group of materials consisting of Kanna (sceletium tortuosum), Blue lotus (Nymphaea caerulea), Salvia (Salvia divinorum), Kratom (Mitragyna speciosa), Celandine poppy (Spyrophorum diphylum), Mugwort (Artemisia), Coltsfoot leaf (Tussilago farfara), California poppy (Eschscholzia californica), Sinicuichi (Helinia salicifolia), St. John’s Wort (Hypericum perforatum), Yerba lanna yescua (Artemisia scoparia), Calea zacatechichi (Calea ternifolia), Leonurus sibericus (Leonurus sibiricus), Wild dagga (Leonotis leonurus), Klip dagga (Leonotis nepetifolia), Damiana (Turnera diffusa), Kava (Piper methysticum), Scotch broom tops (Cytisus scoparius),
Valerian (Valeriana officinalis), Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifolium pretense), and/or combinations therein.

7. A method for creating an electronic cigarette liquid comprising the steps of:
 mixing an herbal additive with a vaporizing base wherein said base is comprised of vegetable glycerin, propylene glycol solution and/or combination of the two.

8. The method of claim 7 in further comprising the step of:
 mixing said herbal additive and said vaporizing base at temperature between 0 and 50 degrees Celsius.

9. The method of claim 7 in further comprising the step of:
 forming the herbal additive from a group that may include members selected from the group of materials consisting of Kanna (Cecletium tortuosum), Blue lotus (Nymphaea caerulea), Salvia (Salvia divinorum), Kratom (Mitragyna speciosa), Celandine poppy (Stylophorum diphyllum), Mugwort (Artemisia), Coltsfoot leaf (Tussilago farfara), California poppy (Eschscholzia californica), Sinicucchi (Heimia salicifolia), St. John’s Wort (Hypericum perforatum), Yerba leona yesc (Artemisia scoparia), Calea zacatechichi (Calea tertifolia), Leonurus sibiricus (Leonurus sibiricus), Wild dagga (Leonotis leonurus), Klip dagga (Leonotis nepetifolia), Damiana (Turnera diffusa), Kava (Piper methysticum), Scotch broom tops (Cytisus scoparius), Valerian (Valeriana officinalis), Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifolium pretense), and/or combinations therein.

* * * * *