A 0 O OO O

45 A2

\o

005

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

16 January 2003 (16.01.2003) PCT

0000 A

(10) International Publication Number

WO 03/005645 A2

(51) International Patent Classification”: HO04L 12/28,
12/56

(21) International Application Number: PCT/US02/20316
(22) International Filing Date: 25 June 2002 (25.06.2002)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
09/900,393 5 July 2001 (05.07.2001) US

(71) Applicant: CLEARWATER NETWORKS, INC.
[US/US]; 160 Knowles Drive, Los Gatos, CA 95032 (US).

(72) Inventors: SAMPATH, Nandakumar; 580 Mill Creek
Lane, Santa Clara, CA 95054 (US). MUSOLL, Enrique;
7210 Via Romera, San Jose, CA 95139 (US). MELVIN,
Stephen; 967 14th Street, San Francisco, CA 94114 (US).
NEMIROVSKY, Mario; 19750 Northhampton Drive,
Saratoga, CA 95070 (US).

(74) Agent: BOYS, Donald, R.; P.O. Box 187, Aromas, CA
95004 (US).

@8n

84

Designated States (national): AE, AG, AL, AM, AT, AU,
A7, BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR NON-SPECULATIVE PRE-FETCH OPERATION IN DATA PACKET PROCESS-

ING

(57) Abstract: A system is provided for enabling a non-speculative pre-fetch operation for processing instructions to be performed
~~ in the background ahead of immediate packet processing by a packet processor. The system comprises a packet-management unit
for accepting data packets and en-queuing them for processing, a processor unit for processing the data packets, a processor core
memory for holding context registers and functional units for processing, a memory for holding a plurality of instruction threads and
a software-configurable hardware table for relating queues to pointers to beginnings of instruction threads. The packet-management
unit selects an available context in the processor core for processing of a data packet, consults the table, and communicates the pointer
to the processor, enabling the processor to perform the non-speculative pre-fetch for instructions.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

Method and Apparatus for Non-Speculative Pre-Fetch Operation in Data
\ Packet Processing

Field of the Invention

The present invention is in the field of digital processing and pertains to
apparatus and methods for processing packets in routers for packet networks, and
more particularly to apparatus and methods for enabling a non-speculative pre-fetch

operation associated with fetching processing instruction during packet processing.

Cross-Reference to Related Documents

The present invention is a continuation in part (CIP) to a U.S. patent
application S/N 09/737,375 entitled “Queuing System for Processors in Packet
Routing Operations” and filed on 12/14/00, which is included herein in it’s entirety
by reference. In addition, S/N 09/737,375 claims priority benefit under 35 U.S.C.
119(e) of Provisional Patent Application serial number 60/181,364 filed on 2/8/2000,

and incorporates all disclosure of the prior applications by reference.

Background of the Invention

The well-known Internet network is a notoriously well-known publicly-
accessible communication network at the time of filing the present patent application,
and arguably the most robust information and communication source ever made
available. The Internet is used as a prime example in the present application of a data-
packet-network which will benefit from the apparatus and methods taught in the
present patent application, but is just one such network, following a particular
standardized protocol. As is also very well known, the Internet (and related networks)

are always a work in progress. That is, many researchers and developers are

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-2-

competing at all times to provide new and better apparatus and methods, including
software, for enhancing the operation of such networks.

In general the most sought-after improvements in data packet networks are
those that provide higher speed in routing (more packets per unit time) and better
reliability and fidelity in messaging. What is generally needed are router apparatus
and methods increasing the rates at which packets may be processed in a router.

As is well-known in the art, packet routers are computerized machines wherein
data packets are received at any one or more of typically multiple ports, processed in
some fashion, and sent out at the same or other ports of the router to continue on to
downstream destinations. As an example of such computerized operations, keeping in
mind that the Internet is a vast interconnected network of individual routers,
individual routers have to keep track of which external routers to which they are
connected by communication ports, and of which of alternate routes through the
network are the best routes for incoming packets. Individual routers must also
accomplish flow accounting, with a flow generally meaning a stream of packets with a
common source and end destination. A general desire is that individual flows follow
a common path. The skilled artisan will be aware of many such requirements for
computerized processing.

Typically a router in the Internet network will have one or more Central
Processing Units (CPUs) as dedicated microprocessors for accomplishing the many
computing tasks required. In the current art at the time of the present application,
these are single-streaming processors; that is, each processor is capable of processing
a single stream of instructions. In some cases developers are applying multiprocessor
technology to such routing operations. The present inventors have been involved for
some time in development of dynamic multistreaming (DMS) processors, which
processors are capable of simultaneously processing multiple instruction streams.

One preferred application for such processors is in the processing of packets in packet
networks like the Internet.

In a data-packet processor, a configurable queuing system for packet accounting
during processing is known to the inventor. The queuing and accounting system has a

plurality of queues arranged in one or more clusters, an identification mechanism for

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-3-

creating a packet identifier for arriving packets, insertion logic for inserting packet
identifiers into queues and for determining into which queue to insert a packet
identifier, and selection logic for selecting packet identifiers from queues to initiate
processing of identified packets, downloading of completed packets, or for re-queuing
of the selected packet identifiers.

One aspect of the above-described queuing system involves selecting and
preloading contexts with packet information for processing and notifying a processing
component of the activation of the context so that the processor may fetch an
instruction thread or threads to begin and complete the processing. Such an operation
is typically called an instruction fetch, or simply a FETCH operation in programming
language.

In some prior-art processors, there is a pre-fetch operation known wherein the
processor pre-fetches an instruction thread or threads that will “most likely” be
required for the processing. Determination for which thread or threads to select is
speculative in this prior-art case, and in some cases, the selected instruction is not the
correct instruction for the processing of the packet for which it was fetched. The
desire to enable such pre-fetch operations stems from an overall goal of improving the
speed of processing for processors in general. If, in the case of a packet processor,
which is preferred application for the present invention, the instructions can be fetched
while packet preparation operations are simultaneously being performed, then the
number of cycles required to initiate and complete processing of a packet can be
reduced. Over multitudes of data packets being processed, this reduction can be
significant.

The problem in the prior-art is that the identification and selection of
instructions during a pre-fetch is speculative, meaning that not enough information is
available at the desired point in time where a pre-fetch operation would be beneficial.

Therefore, the pre-fetch operation is speculative in nature and not reliable in many
instances. Logically then, the number of cycles required to process a data packet can
be increased over what would normally be the case if a speculative pre-fetch returns

incorrect instructions and must then be repeated.

10

15

20

25

WO 03/005645 PCT/US02/20316

-4-

What is clearly needed is a method and apparatus that enables a non-speculative
pre-fetch operation wherein correctness of the fetched instruction or instructions is
assured. Such a system would further provide reduction of cycles required for packet
processing and increase processor performance by freeing up other resources for other

operations.

Summary of the Invention

In a preferred embodiment of the present invention, in a data-packet processor,
a system for non-speculative pre-fetching is provided, comprising a processing unit
having a first portion for processing the data packets, using instruction threads
specific to packet type, and a second portion comprising a pool of context registers
and functional units for processing, a packet-management unit (PMU) for managing
data packets of different types received for processing, including selecting and loading
the context registers, a memory storing at least an initial instruction of instruction
threads, and a table equating packet types with pointers to memory locations for the at
least first instructions of instruction threads specific to the packet types. The system
is characterized in that the PMU selects a context from the pool of contexts for
processing of a data packet, the table is consulted for the pointer, and the pointer is
provided to the processing unit first portion, enabling the processing unit first portion
to prefetch at least an initial instruction for the packet to be processed at least partially
in parallel with loading of the context.

In some embodiments the second portion of the processing unit comprises
separate clusters, each cluster comprising contexts and functional units. Also in some
embodiments the table is in the PMU. The processor may be a dynamic multi-
streaming processor. Also in preferred embodiments the memory holding at least a
first instruction of the instruction threads is an on-chip instruction cache memory,
while in others the memory holding at least a first instruction of the instruction

threads is an off-chip memory.

10

15

20

25

WO 03/005645 PCT/US02/20316

-5-

In some cases data packets to be processed are stored in queues according to
instruction threads required to process the packets, and the queue from which a packet
arrives for processing indicates the packet type.

In another aspect of the invention, in a data-packet processor having a first
portion for processing data packets, using instruction threads specific to packet type,
and a second portion comprising a pool of context registers and functional units for
processing, a method for accomplishing pre-fetch of at least a first instruction for
processing is provided, comprising steps of (a) selecting, by a packet-management
unit (PMU), an available context for loading information for processing a packet
ready for processing; (b) consulting a table relating packet type for the packet ready to
be processed to a pointer to a memory location for at least a first instruction of an
instruction thread to process the packet; (c) providing the pointer to the first portion;
and (d) pre-fetching the at least first instruction of the thread to process the data
packet, at least partially in parallel with loading the context.

In some preferred embodiments of the method the second portion of the
processing unit comprises separate clusters, each cluster corhprising contexts and
functional units. Also in some preferred embodiments the table is in the PMU. The
processor may be a dynamic multi-streaming processor. Also in preferred
embodiments the memory holding at least a first instruction of the instruction threads
is an on-chip instruction cache memory, while in some other the memory holding at
least a first instruction of the instruction threads is an off-chip memory. In preferred
embodiments as well, data packets to be processed are stored in queues according to
instruction threads required to process the packets, and wherein the queue from which
a packet arrives for processing indicates the packet type.

In embodiments of the invention described in enabling detail below, for the first
time a system and method is provided, useful with dynamic multi-streaming
processors and others, that provides for a non-speculative pre-fetch of instruction

threads.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-6-

Brief Description of the Drawings

Fig. 1 is a simplified block diagram showing relationship of functional areas

of a DMS processor in a preferred embodiment of the present invention.

Fig. 2 is a block diagram of the DMS processor of Fig. 1 showing additional
detail.

Fig. 3 is a block diagram illustrating uploading of data into the LPM or EPM in
an embodiment of the invention.

Fig. 4a is a diagram illustrating determination and allocation for data uploading
in an embodiment of the invention.

Fig. 4b is a diagram showing the state that needs to be maintained for each of
the four 64KB blocks.

Figs. 5a and 5b illustrate an example of how atomic pages are allocated in an
embodiment of the present invention.

Figs. 6a and 6b illustrate how memory space is efficiently utilized in an
embodiment of the invention.

Fig. 7 is a top-level schematic of the blocks of the XCaliber PMU unit involved
in the downloading of a packet.

Fig. 8 is a diagram illustrating the phenomenon of packet growth and shrink.

Fig. 9 is a block diagram showing high-level communication between the QS
and other blocks in the PMU and SPU in an embodiment of the present invention.

Fig. 10 is a table illustrating six different modes in an embodiment of the
invention into which the QS can be configured.

Fig. 11 is a diagram illustrating generic architecture of the QS of Figs. 2 and 7
in an embodiment of the present invention.

Fig. 12 is a table indicating coding of the outbound Deviceld field in an
embodiment of the invention.

Fig. 13 is a table illustrating priority mapping for RTU transfers in an
embodiment of the invention.

Fig. 14 is a table showing allowed combinations of Active, Completed, and

Probed bits for a valid packet in an embodiment of the invention.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-7-

Fig. 15 is a Pattern Matching Table in an embodiment of the present invention.
Fig. 16 illustrates the format of a mask in an embodiment of the invention.
Fig. 17 shows an example of a pre-load operation using the mask in Fig. 16.
Fig. 18 illustrates shows the PMU Configuration Space in an embodiment of
the present invention.
Figs. 19a, 19b and 19c are a table of Configuration register Mapping.
Fig. 20 is an illustration of a PreloadMaskNumber configuration register.
Fig. 21 illustrates a PatternMatchingTable in a preferred embodiment of the
present invention.‘
Fig. 22 illustrates a VirtualPageEnable configuration register in an
embodiment of the invention. |
Fig. 23 illustrates a ContextSpecificPatternMatchingMask configuration
register in an embodiment of the invention.
Fig. 24 illustrates the MaxActivePackets configuration register in an
embodiment of the present invention.
Fig. 25 illustrates the TimeCounter configuration register in an embodiment of
the present invention.
Fig. 26 illustrates the StatusRegister configuration register in an embodiment
of the invention.
Fig. 27 is a schematic of a Command Unit and command queues in an
embodiment of the present invention.
Fig. 28 is a table showing the format of command inserted in command queues
in an embodiment of the present invention.
Fig. 29 is a table showing the format for responses that different blocks
generate back to the CU in an embodiment of the invention.
Fig. 30 shows a performance counter interface between the PMU and the SIU
in an embodiment of the invention.
Fig. 31shows a possible implementation of internal interfaces among the
different units in the PMU in an embodiment of the present invention.
Fig. 32 is a diagram of a BypassHooks configuration register in an

embodiment of the invention.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-8-

Fig. 33 is a diagram of an InternalStateWrite configuration register in an
embodiment of the invention.
Figs. 34-39 comprise a table listing events related to performance counters in
an embodiment of the invention.
Fig. 40 is a table illustrating the different bypass hooks implemented in the
PMU in an embodiment of the invention.
Fig. 41 is a table relating architecture and hardware blocks in an embodiment of
the present invention.
Figs. 42-45 comprise a table showing SPU-PMU Interface in an embodiment of
the invention.
Figs. 46-49 comprise a table showing STU-PMU Interface in an embodiment of
the invention.
Fig. 50 is a block-diagram logically illustrating components and interaction
during a pre-fetch operation according to an embodiment of the present invention.
Fig. 51 is a flow chart illustrating general steps for initiating and completing a
non-speculative pre-fetch operation according to an embodiment of the present

invention.

Description of the Preferred Embodiments

In the provisional patent application S/N 60/181,364 referenced above there is
disclosure as to the architecture of a DMS processor, termed by the inventors the
XCaliber processor, which is dedicated to packet processing in packet networks. Two
extensive diagrams are provided in the referenced disclosure, one, labeled NIO Block
Diagram, shows the overall architecture of the XCaliber processor, with input and
output ports to and from a packet-handling ASIC, and the other illustrates numerous
aspects of the Generic Queue shown in the NIO diagram. The NIO system in the
priority document equates to the Packet Management Unit (PMU) in the present
specification. It is to the several aspects of the generic queue that the present

application is directed.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-9.

Fig. 1 is a simplified block diagram of an XCaliber DMS processor 101 with a
higher-level subdivision of functional units than that shown in the NIO diagram of the
priority document. In Fig. 1 XCaliber DMS processor 101 is shown as organized into
three functional areas. An outside System Interface Unit (SIU) area 107 provides
communication with outside devices, that is, external to the XCaliber processor,
typically for receiving and sending packets. Inside, processor 101 is divided into two
broad functional units, a Packet Management Unit (PMU) 103, equating to the NIO
system in the priority document mentioned above, and a Stream Processor Unit (SPU)
107. The functions of the PMU include accounting for and managing all packets
received and processed. The SPU is responsible for all computational tasks.

The PMU is a part of the XCaliber processor that offloads the SPU from
performing costly packet header accesses and packet sorting and management tasks,
which would otherwise seriously degrade performance of the overall processor.

Packet management is achieved by (a) Managing on-chip memory allocated for
packet storage, (b) Uploading, in the background, packet header information from
incoming packets into different contexts (context registers, described further below) of
the XCaliber processor, (c) Maintaining, in a flexible queuing system, packet
identifiers of the packets currently in process in the XCaliber.

The described packet management and accounting tasks performed by the PMU
are performed in parallel with processing of packets by the SPU core. To implement
this functionality, the PMU has a set of hardware structures to buffer packets
incoming from the network, provide them to the SPU core and, if needed, send them
out to the network when the processing is completed. The PMU features a high
degree of programmability of several of its functions, such as configuration of its
internal packet memory storage and a queuing system, which is a focus of the present
patent application.

Fig. 2 is a block diagram of the XCaliber processor of Fig. 1 showing additional
detail. SIU 107 and SPU 105 are shown in Fig. 2 as single blocks with the same
element numbers used in Fig. 1. The PMU is shown in considerably expanded detail,

however, with communication lines shown between elements.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-10 -

In Fig. 2 there is shown a Network/Switching Fabric Interface 203 which is in
some cases an Application Specific Integrated Circuit (ASIC) dedicated for
interfacing directly to a network, such as the Internet for example, or to switching
fabric in a packet router, for example, receiving and transmitting packets, and
transacting the packets with the XCaliber processor. In this particular instance there
are two in ports and two out ports communicating with processor 201. Network in
and out interface circuitry 205 and 215 handle packet traffic onto and off the
processor, and these two interfaces are properly a part of SIU 107, although they are
shown separately in Fig. 2 for convenience.

Also at the network interface within the PMU there are, in processor 201, input
and output buffers 207 and 217 which serve to buffer the flow of packets into and out
of processor 201.

Referring again to Fig. 1, there is shown a Packet Management Unit (PMU)
103, which has been described as a unit that offloads the requirement for packet
management and accounting from the Stream Processing Unit. This is in particular
the unit that has been expanded in Fig. 2, and consists substantially of Input Buffer
(IB) 207, Output Buffer (OB) 217, Paging Memory Management Unit (PMMU) 209,
Local Packet Memory (LPM) 219, Command Unit (CU) 213, Queueing System (QS)
211, Configuration Registers 221, and Register Transfer Unit (RTU) 227. The
communication paths between elements of the PMU are indicated by arrows in Fig. 2,
and further description of the elements of the PMU is provided below, including

especially QS 211, which is a particular focus of the present patent application.

Overview of PMU

Again, Fig. 2 shows the elements of the PMU, which are identified briefly
above. Packets arrive to the PMU in the present example through a 16-byte network
input interface. In this embodiment packet data arrives to the PMU at a rate of 20
Gbps (max). At an operating speed of 300MHz XCaliber core frequency, an average
of 8 bytes of packet data are received every XCaliber core cycle. The incoming data

from the network input interface is buffered in InBuffer (IB) block 207. Network

10

15

20

25

30

WO 03/005645

-11-

interface 205 within XCaliber has the capability of appending to the packet itself the
size of the packet being sent, in the event that the external device has not been able to
append the size to the packet before sending the packet. Up to 2 devices can send
packet data to XCaliber at (10Gbps per device), and two in ports are shown from an
attached ASIC. It is to be understood that the existence and use of the particular
ASIC is exemplary, and packets could be received from other devices. Further, there
may be in some embodiments more or fewer than the two in ports indicated.

Packet Memory Manager Unit (PMMU) 209 decides whether each incoming
packet has to be stored into on-chip Local Packet Memory (LPM) 219, or, in the case
that, for example, no space exists in the LPM to store it, may decide to either send the
packet out to an External Packet Memory (EPM) not shown through the SIU block, or
may decide to drop the packet. In case the packet is to be stored in the LPM, the
PMMU decides where to store the packet and generates all the addresses needed to do
so. The addresses generated correspond in a preferred embodiment to 16-byte lines in
the LPM, and the pabket is consecutively stored in this memory.

In the (most likely) case that the PMMU does not drop the incoming packet, a
packet identifier is created, which includes a pointer (named packetPage) to a fixed-
size page in packet memory where the packet has started to be stored. The identifier
is created and enqueued into Queuing System (QS) block 211. The QS assigns a
number from 0 to 255 (named packetNumber) to each new packet. The QS sorts the
identifiers of the packets alive in XCaliber based on the priority of the packets, and it
updates the sorting when the SPU core notifies any change on the status of a packet.
The QS selects which packet identifiers will be provided next to the SPU. Again, the
QS is a particular focus of the present application.

Register Transfer Unit (RTU) block 227, upon receiving a packet identifier
(packetPage and packetNumber) from the QS, searches for an available context (229,
Fig. 2) out of 8 contexts that XCaliber features in a preferred embodiment. For
architectural and description purposes the contexts are considered a part of a broader
Stream Processing Unit, although the contexts are shown in Fig. 2 as a separate unit

229.

PCT/US02/20316

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-12-

In the case that no context is available, the RTU has the ability to notify the
SPU about this event through a set of interrupts. In the case that a context is
available, the RTU loads the packet identifier information and some selected fields of
the header of the packet into the context, and afterwards it releases the context (which
will at that time come under control of the SPU. The RTU accesses the header
information of the packet through the SIU, since the packet could have been stored in
the off-chip EPM.

Eventually a stream in the SPU core processes the context and notifies the QS
of this fact. There are, in a preferred embodiment, eight streams in the DMS core.
The QS then updates the status of the packet (to completed), and eventually this
packet is selected for downloading (i.e. the packet data of the corresponding packet is
sent out of the XCaliber processor to one of the two external devices).

When a packet is selected for downloading, the QS sends the packetPage
(among other information) to the PMMU block, which generates the corresponding
line addresses to read the packet data from the LPM (in case the packet was stored in
the on-chip local memory) or it will instruct the SIU to bring the packet from the
external packet memory to the PMU. In any case, the lines of packet data read are
buffered into the OutBuffer (OB) block, and from there sent out to the device through
the 16-byte network output interface. This interface is independent of its input
counterpart. The maximum aggregated bandwidth of this interface in a preferred
embodiment is also 20 Gbps, 10Gbps per output device.

CommandUnit (CU) 213 receives commands sent by SPU 105. A command
corresponds to a packet instruction, which are in many cases newly defined
instructions, dispatched by the SPU core. These commands are divided into three
independent types, and the PMU can execute one command per type per cycle (for a
total of up to 3 commands per cycle). Commands can be load-like or store-like
(depending on whether the PMU provides a response back to the SPU or not,
respectively).

A large number of features of the PMU are configured by the SPU through
memory-mapped configuration registers 221. Some such features have to be

programmed at boot time, and the rest can be dynamically changed. For some of the

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-13-

latter, the SPU has to be running in a single-thread mode to properly program the
functionality of the feature. The CU block manages the update of these configuration
registers.

The PMU provides a mechanism to aid in flow control between ASIC 203 and
XCaliber DMS processor 201. Two different interrupts are generated by the PMU to
SPU 105 when LPM 219 or QS 211 are becoming full. Software controls how much
in advance the interrupt is generated before the corresponding structure becomes

completely full. Software can also disable the generation of these interrupts.

LPM 219 is also memory mapped, and SPU 105 can access it through the
conventional load/store mechanism. Both configuration registers 221 and LPM 219
have a starting address (base address) kept by SIU 107. Requests from SPU 105 to
LPM 219 and the configuration space arrive to the PMU through SIU block 107. The

SIU is also aware of the base address of the external packet memory.

In Buffer (IB)

Packet data sent by an external device arrives to the PMU through the network
input interface 205 at an average rate of 8 bytes every XCaliber core cycle in a
preferred embodiment. IB block 207 of the PMU receives this data, buffers it, and
provides it, in a FIFO-like fashion, to LPM 219 and in some cases also to the SIU (in
case of a packet overflow, as explained elsewhere in this spteciﬁcation.

XCaliber DMS processor 201 can potentially send/receive packet data to/from
up to 2 independent devices. Each device is tagged in SIU 107 with a device
identifier, which is provided along with the packet data. When one device starts
sending data from a packet, it will continue to send data from that very same packet
until the end of the packet is reached or a bus error is detected by the SIU.

In a preferred embodiment the first byte of a packet always starts at byte 0 of the
first 16 bytes sent of that packet. The first two bytes of the packet specify the size in
bytes of the packet (including these first two bytes). These two bytes are always

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-14 -

appended by the SIU if the external device has not appended them. Ifbyte & in the 16-
byte chunk is a valid byte, bytes 0..-1 are also valid bytes. This can be guaranteed
since the first byte of a packet always starts at byte 0. Note that no valid bits are
needed to validate each byte since a packet always starts at byte 0 of the 16-byte
chunk, and the size of the packet is known up front (in the first two bytes). The
network interface provides, at every core clock, a control bit specifying whether the
16-byte chunk contains, at least, one valid byte.

The valid data received from the network input interface is organized in buffer
207. This is an 8-entry buffer, each entry holding the 16-bytes of data plus the control
bits associated to each chunk. PMMU 209 looks at the control bits in each entry and
determines whether a new packet starts or to which of the (up to) two active packets
the data belongs to, and it acts accordingly.

The 16-byte chunks in each of the entries in IB 207 are stored in LPM 219 or in
the EPM (not shown). It is guaranteed by either the LPM controller or the SIU that
the bandwidth to write into the packet memory will at least match the bandwidth of
the incoming packet data, and that the writing of the incoming packet data into the
packet memory will have higher priority over other accesses to the packet memory.

In some cases IB 207 may get full because PMMU 209 may be stalled, and
therefore the LPM will not consume any more data of the IB until the stall is resolved.

Whenever the IB gets full, a signal is sent to network input interface 205, which will
retransmit the next 16-byte chunk as many times as needed until the IB accepts it.

Thus, no packet data is lost due to the IB getting full.

Out Buffer (OB)

Network output interface 215 also supports a total aggregated bandwith of 20
Gbps (10Gbps per output device), as does the Input Interface. At 300 MHz XCaliber
clock frequency, the network output interface accepts in average 8 bytes of data every
XCaliber cycle from the OB block, and sends it to one of the two output devices. The

network input and output interfaces are completely independent of each other.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-15-

Up to 2 packets (one per output device) can be simultaneously sent. The device
to which the packet is sent does not need to correspond to the device that sent the
packet in. The packet data to be sent out will come from either LPM 219 or the EPM
(not shown).

For each of the two output devices connected at Network Out interface 215,
PMMU 209 can have a packet ready to start being downloaded, a packet being
downloaded, or no packet to download. Every cycle PMMU 209 selects the highest
packet across both output devices and initiates the download of 16 bytes of data for
that packet. Whenever the PMMU is downloading packet data from a packet to an
output device, no data from a different packet will be downloaded to the same device
until the current packet is completely downloaded.

The 16-byte chunks of packet data read from LPM 219 (along with some
associated control information) are fed into one of the two 8-entry buffers (one per
device identifier). The contents of the head of one of these buffers is provided to the
network output interface whenever this interface requests it. When the head of both
buffers is valid, the OB provides the data in a round robin fashion.

Differently than the network input interface, in the 16-byte chunk sent to the
network output interface it can not be guaranteed that if a byte £ is valid, then bytes
0..k-1 are valid as well. The reason for this is that when the packet is being sent out, it
does not need to start at byte 0 of the 16-byte chunk in memory. Thus, for each 16-
byte chunk of data that contains the start of the packet to be sent out, OB 217 needs to
notify the network interface where the first valid byte of the chunk resides. Moreover,
since the first two bytes of the packet contain the size of the packet in bytes, the
network output interface has the information to figure out where the last valid byte of
the packet resides within the last 16-byte chunk of data for that packet. Moreover, OB
217 also provides a control bit that informs SIU 107 whether it needs to compute CRC
for the packet, and if so, which type of CRC. This control bit is provided by PMMU
209 to OB 217.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-16 -

Paging Memory Management Unit (PMMU)

The packet memory address space is 16MB. Out of the 16MB, the XCaliber
processor features 256KB on-chip. The rest (or a fraction) is implemented using
external storage.

The packet memory address space can be mapped in the TLB of SPU 105 as
user or kernel space, and as cachable or uncachable. In case it is mapped cachable,
the packet memory space is cached (write-through) into an L1 data cache of SPU 105,
but not into an L2 cache.

A goal of PMMU 209 is to store incoming packets (and SPU-generated packets
as well) into the packet memory. In case a packet from the network input interface
fits into LPM 219, PMMU 209 decides where to store it and generates the necessary
write accesses to LPM 219; in case the packet from the network input interface is
going to be stored in the EPM, SPU 105 decides where in the EPM the packet needs
to be stored and SIU 107 is in charge of storing the packet. In either case, the packet is
consecutively stored and a packet identifier is created by PMMU 209 and sent to QS
211,

SPU 105 can configure LPM 219 so packets larger than a given size will never
be stored in the LPM. Such packets, as well as packets that do not fit into the LPM
because lack of spacé, are sent by PMMU 209 to the EPM through SIU 107. This is a
mechanism called overflow and is configured by the SPU for the PMU to do so. If no
overflow of packets is allowed, then the packet is dropped. In this case, PMMU 209
interrupts the SPU (again, if configured to do so).

Uploading a packet into packet memory

Whenever there is valid data at the head of IB 205, the corresponding device
identifier bit is used to determine to which packet (out of the two possible packets
being received) the data belongs. When the network input interface starts sending
data of a new packet with device identifier d, all the rest of the data will eventually

arrive with that same device identifier d unless an error is notified by the network

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-17-

interface block. The network input interface can interleave data from two different
device identifiers, but in a given cycle only data from one device is received by IB
207.

When a packet needs to be stored into LPM 219, PMMU block 209 generates
all the write addresses and write strobes to LPM 219. If the packet needs to be stored
into the EPM, SIU 107 generates them.

Fig. 3 is a diagram illustrating uploading of data into either LPM 219 or the
EPM, which is shown in Fig. 3 as element 305, but not shown in Fig. 2. The write
strobe to the LPM or EPM will not be generated unless the header of the IB has valid
data. Whenever the write strobe is generated, the 16-byte chunk of data at the head of
the IB (which corresponds to a LPM line) is deleted from the IB and stored in the
LPM or EPM. The device identifier bit of the head of the IB is used to select the
correct write address out of the 2 address generators (one per input device).

In the current embodiment only one incoming packet can be simultaneously
stored in the EPM by the SIU (i.e. only one overflow packet can be handled by the
SIU at a time). Therefore, if a second packet that needs to be overflowed is sent by
the network input interface, the data of this packet will be thrown away (i.e. the packet

will be dropped).
A Two Byte Packet-Size Header

The network input interface always appends two bytes to a packet received from
the external device (unless this external device already does so, in which case the STU
will be programmed not to append them). This appended data indicates the size in
bytes of the total packet, including the two appended bytes. Thus, the maximum size
of a packet that is processed by the XCaliber DMS processor is 65535 bytes including
the first two bytes.

The network output interface expects that, when the packet is returned by the
PMU (if not dropped during its processing), the first two bytes also indicate the size
of the processed packet. The size of the original packet can change (the packet can

increase or shrink) as a result of processing performed by the XCaliber processor.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-18 -

Thus, if the processing results in increasing the size beyond 64K-1 bytes, it is the
responsibility of software to chop the packet into two different smaller packets.
The PMU is more efficient when the priority of the packet being received is
known up front. The third byte of the packet will be used for priority purpose if the
external device is capable of providing this information to the PMU. The software
programs the PMU to either use the information in this byte or not, which is does

through a boot-time configuration register named Log2InQueues.

Dropping a packet

A packet completely stored in either LPM 219 or EPM 305 will be dropped
only if SPU 105 sends an explicit command to the PMU to do so. No automatic
dropping of packets already stored in the packet memory can occur. In other words,
any dropping algorithm of packets received by the XCaliber DMS processor 1s
implemented in software.

There are, however, several situations wherein the PMU may drop an incoming
packet. These are (a) The packet does not fit in the LPM and the overflow of packets
is disabled, (b) The total amount of bytes received for the packet is not the same as the
number of bytes specified by the ASIC in the first two bytes of the ASIC-specific
header, or (c) A transmission error has occurred between the external device and the
network input interface block of the SIU. The PMMU block is notified about such an
error.

For each of the cases (a), (b) and (c) above, an interrupt is generated to the SPU.

The software can disable the generation of these interrupts using

AutomaticPacketDropIntEnable, PacketErrorIntEnable on-the-fly configuration flags.
Virtual Pages
An important process of PMMU 209 is to provide an efficient way to

consecutively store packets into LPM 219 with as little memory fragmentation as

possible. The architecture in the preferred embodiment provides SPU 105 with a

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-19-

capability of grouping, as much as possible, packets of similar size in the same region
of LPM 219. This reduces overall memory fragmentation.

To implement the low-fragmentation feature, LPM 219 is logically divided into
4 blocks of 64KB bytes each. Each block is divided into fixed atomic pages of 256
bytes. However, every block has virtual pages that range from 256 bytes up to 64KB,
in power-of-2 increments. Software can enable/disable the different sizes of the
virtual pages for each of the 4 blocks using an on-the-fly configuration register named
VirtualPageEnable. This allows configuring some blocks to store packets of up to a
certain size.

The organization and features of the PMU assure that a packet of size s will
never be stored in a block with a maximum virtual page size less than s. However, a
block with a minimum virtual page size of r will accept packets of size smaller than r.
This will usually be the case, for example, in which another block or blocks are
configured to store these smaller packets, but is full.

Software can get ownership of any of the four blocks of the LPM, which implies
that the corresponding 64KB of memory will become software managed. A
configuration flag exists per block (SoftwareOwned) for this purpose. The PMMU
block will not store any incoming packet from the network input interface into a block
in the LPM with the associated SoftwareOwned flag asserted. Similarly, the PMMU
will not satisfy a GetSpace operation (described elsewhere) with memory of a block
with its SoftwareOwned flag asserted. The PMMU, however, is able to download any
packet stored by software in a software-owned block.

The PMMU logic determines whether an incoming packet fits in any of the
blocks of the LPM. If a packet fits, the PMMU decides in which of the four blocks
(since the packet may fit in more than one block), and the first and last atomic page
that the packet will use in the selected block. The atomic pages are allocated for the
incoming packet. When packet data stored in an atomic page has been safely sent out
of the XCaliber processor through the network output interface, the corresponding
space in the LPM can be de-allocated (i.e. made available for other incoming packets).

The EPM, like the LPM is also logically divided into atomic pages of 256 bytes.

However, the PMMU does not maintain the allocation status of these pages. The

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-20 -

allocation status of these pages is managed by software. Regardless of where the
packet is stored, the PMMU generates an offset (in atomic pages) within the packet
memory to where the first data of the packet is stored. This offset is named
henceforth packetPage. Since the maximum size of the packet memory is 16MB, the
packetPage is a 16-bit value.

As soon as the PMMU safely stores the packet in the LPM, or receives
acknowledgement from SIU 107 that the last byte of the packet has been safely stored
in the EPM, the packetPage created for that packet is sent to the QS. Operations of

the QS are described in enabling detail below.

Generating the packetPage offset

The PMMU always monitors the device identifier (deviceld) associated to the
packet data at the head of the IB. If the deviceld is not currently active (i.e. the
previous packet sent by that deviceld has been completely received), that indicates
that the head of the IB contains the first data of a new packet. In this case, the first
two bytes (byteO and bytel in the 16-byte chunk) specify the size of the packet in
bytes. With the information of the size of the new incoming packet, the PMMU
determines whether the packet fits into LPM 219 and, if it does, in which of the four
blocks it will be stored, plus the starting and ending atomic pages within that block.

The required throughput in the current embodiment of the PMMU to determine
whether a packet fits in LPM 219 and, if so, which atomic pages are needed, is one
packet every two cycles. One possible two-cycle implementation is as follows: (a)
The determination happens in one cycle, and only one determination happens at a time
(b) In the cycle following the determination, the atomic pages needed to store the
packet are allocated and the new state (allocated/de-allocated) of the virtual pages are
computed. In this cycle, no determination is allowed.

Fig. 4a is a diagram illustrating determination and allocation in parallel for local
packet memory. The determination logic is performed in parallel for all of the four 64

KB blocks as shown.

WO 03/005645 PCT/US02/20316

-21-

Fig. 4b shows the state that needs to be maintained for each of the four 64KB
blocks. This state, named AllocationMatrix, is recomputed every time one or more
atomic pages are allocated or de-allocated, and it is an input for the determination
logic. The FitsVector and IndexVector contain information computed from the
AllocationMatrix.

AllocationMatrix[VPSize][VPIndex] indicates whether virtual page number
VPIndex of size VPSize in bytes is already allocated or not. FitsVector[VPSize]
indicates whether the block has at least one non-allocated virtual page of size VPSize.

If FitsVector[VPSize] is asserted, IndexVector[VPSize] vector contains the index of a
non-allocated virtual page of size VPSize.

The SPU programs which virtual page sizes are enabled for each of the blocks.
The EnableVector[VPSize] contains this information. This configuration is performed
using the VirtualPageEnable on-the-fly configuration register. Note that the
AllocationMatrix[][], FitsVector[], IndexVector[] and EnableVector[] are don’t cares
if the corresponding SoftwareOwned flag is asserted.

In this example the algorithm for the determination logic (for a packet of size s

bytes) is as follows:

1) Fits logic: check, for each of the blocks, whether the packet fits in or not. If it
fits, remember the virtual page size and the number of the first virtual page of
that size.

For All Block j Do (can be done in parallel):
Fits[j] = (s <= VPSize) AND FitsVector[VPSize] AND
Not SoftwareOwned
where VPSize is the smallest possible page size.
If (Fits[/])
VPIndex[j] = IndexVector[VPSize]
MinVPS[j] = VPSize
Else

MinVP§[/] = <Infinity>

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-22-

2) Block selection: the blocks with the smallest virtual page (enabled or not) that

is able to fit the packet in are candidates. The block with the smallest enabled
virtual page is selected.
If Fits[j] = FALSE for all j Then
<Packet does not fit in LPM>
packetPage = OverflowAddress >> §

C = set of blocks with smallest MinVPS AND
Fits[MinVPS]
B =block# in C with the smallest enabled virtual
page
(if more than one exists, pick the smallest block number)
If one or more blocks in C have virtual pages enabled
Then

Index = VPIndex[B]

VPSize = MinVPS[B]

NumAPs = ceil(57256)

packetPage = (B*64KB + Index*VPSize) >> 8

o
7
(¢]

<Packet does not fit in LPM>
packetPage = OverflowAddress >> 8

If the packet fits in the LPM, the packetPage created is then the atomic page
number within the LPM (there are up to 1K different atomic pages in the LPM) into
which the first data of the packet is stored. If the packet does not fit, then the
packetPage is the contents of the configuration register OverflowAddress right-shifted
8 bits. The packet overflow mechanism is described elsewhere in this specification,
with a subheader "Packet overflow".

In the cycle following the determination of where the packet will be stored, the
new values of the AllocationMatrix, FitsVector and IndexVector must be recomputed

for the selected block. If FitsVector[VPSize] is asserted, then IndexVector[VPSize] is

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-23.-

the index of the largest non-allocated virtual page possible for the corresponding
virtual page size. If FitsVector[VPSize] is de-asserted, then IndexVector[VPSize] is
undefined.

The number of atomic pages needed to store the packet is calculated (NumAPs)
and the corresponding atomic pages are allocated. The allocation of the atomic pages
for the selected block (B) is done as follows:

1. The allocation status of the atomic pages in AllocationMatrix[APsize][j..k], j
being the first atomic page and & the last one (k-j+1 = NumAPs), are set to
allocated.

2. The allocation status of the virtual pages in AllocationMatrix[r][s] are updated
following the mesh structure in Fig. 4b. (a 2*"'-byte virtual page will be
allocated if any of the two 2*-byte virtual pages that it is composed of is
allocated).

When the packetPage has been generated, it is sent to the QS for enqueueing. If
the QS is full (very rare), it will not be able to accept the packetPage being provided
by the PMMU. In this case, the PMMU will not be able to generate a new packetPage
for the next new packet. This puts pressure on the IB, which might get full if the QS
remains full for several cycles.

The PMMU block also sends the queue number into which the QS has to store
the packetPage. How the PMMU generates this queue number is described below in
sections specifically allocated to the QS.

Page Allocation example

Figs. 5a and 5b illustrate an example of how atomic pages are allocated. For
simplicity, the example assumes 2 blocks (0 and 1) of 2KB each, with an Atomic page
size of 256 bytes, and both blocks have their SoftwareOwned flag de-asserted. Single
and double cross-hatched areas represent allocated virtual pages (single cross-hatched
pages correspond to the pages being allocated in the current cycle). The example

shows how the pages get allocated for a sequence of packet sizes of 256, 512, 1K and

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-24 -

512 bytes. Note that, after this sequence, a 2K-byte packet, for example, will not fit in
the example LPM.

Whenever the FitsVector[VPSize] is asserted, the IndexVector[VPSize] contains
the largest non-allocated virtual page index for virtual page size VPSize. The reason
for choosing the largest index is that the memory space is better utilized. This is
shown in Figs. 6a and 6b, where two 256-byte packets are stored in a block. In
scenario A, the 256-byte virtual page is randomly chosen, whereas in scenario B, the
largest index is always chosen. As can be seen, the block in scenario A only allows
two 512-byte virtual pages, whereas the block in scenario B allows three. Both,
however, allow the same number of 256-byte packets since this is the smallest
allocation unit. Note that the same effect is obtained by choosing the smallest virtual
page index number all the time.

Packet overflow

The only two reasons why a packet cannot be stored in the LPM are (a) that
the size of the packet is larger than the maximum virtual page enabled across all 4
blocks; or (b) that the size of the packet is smaller than or equal to the maximum
virtual page enabled but no space could be found in the LPM.

When a packet does not fit into the LPM, the PMMU will overflow the packet
through the SIU into the EPM. To do so, the PMMU provides the initial address to
the SIU (16-byte offset within the packet memory) to where the packet will be stored.

This 20-bit address is obtained as follows: (a) The 16 MSB bits correspond to the 16
MSB bits of the OverflowAddress configuration register (i.e. the atomic page number
within the packet memory). (b) The 4 LSB bits correspond to the
HeaderGrowthOffset configuration register. The packetPage value (which will be
sent to the QS) for this overflowed packet is then the 16 MSB bits of the
OverflowAddress configuration register.

If the on-the-fly configuration flag OverflowEnable is asserted, the PMMU will
generate an OverflowStartedInt interrupt. When the OverflowStartedInt interrupt is
generated, the size in bytes of the packet to overflow is written by the PMMU into the
SPU-read-only configuration register SizeOfOverflowedPacket. At this point, the

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-25-

PMMU sets an internal lock flag that will prevent a new packet from overflowing.
This lock flag is reset when the software writes into the on-the-fly configuration
register OverflowAddress. If a packet needs to be overflowed but the lock flag is set,
the packet will be dropped.

With this mechanism, it is guaranteed that only one interrupt will be generated
and serviced per packet that is overflowed. This also creates a platform for software
to decide where the starting address into which the next packet that will be overflowed
will be stored is visible to the interrupt service routine through the
SizeOfOverflowedPacket register. In other words, software manages the EPM.

If software writes the OverflowAddress multiple times in between two
OverflowStartedInt interrupts, the results are undefined. Moreover, if software sets
the 16 MSB bits of OverflowAddress to 0..1023, results are also undefined since the
first 1K atomic pages in the packet memory correspond to the LPM.

Downloading a packet from packet memory

Eventually the SPU will complete the processing of a packet and will inform the
QS of the fact. At this point the packet may be downloaded from memory, either
LPM or EPM, and sent, via the OB to one of the connected devices. Fig. 7 is a top-
level schematic of the blocks of the XCaliber DMS processor involved in the
downloading of a packet, and the elements in Fig. 7 are numbered the same as in Fig.
2. The downloading process may be followed in Fig. 7 with the aid of the following
descriptions.

When QS 211 is informed that processing of a packet is complete, the QS marks
this packet as completed and, a few cycles later (depending on the priority of the
packet), the QS provides to PMMU 209 (as long as the PMMU has requested it) the
following information regarding the packet:

(a) the packetPage

(b) the priority (cluster number from which it was extracted)

(c) the tail growth/shrink information (described later in spec)

(d) the outbound device identifier bit

10

15

20

25

30

WO 03/005645 PCT/US02/20316

=26 -

(e) the CRC type field (described later in spec)
(f) the KeepSpace bit

The device identifier sent to PMMU block 209 is a 1-bit value that specifies
the external device to which the packet will be sent. This outbound device identifier
is provided by software to QS 211 as a 2-bit value.

If the packet was stored in LPM 219, PMMU 209 generates all of the (16-byte
line) read addresses and read strobes to LPM 219. The read strobes are generated as
soon as the read address is computed and there is enough space in OB 217 to buffer
the line read from LPM 219. Buffer d in the OB is associated to device identifier d.
This buffer may become full for either two reasons: (a) The external device d
temporarily does not accept data from XCaliber; or (b) The rate of reading data from
the OB is lower than the rate of writing data into it.

As soon as the packet data within an atomic page has all been downloaded and
sent to the OB, that atomic page can be de-allocated. The de-allocation of one or
more atomic pages follows the same procedure as described above. However, no de-
allocation of atomic pages occurs if the LPM bit is de-asserted. The KeepSpace bit is
a don’t care if the packet resides in EPM 701.

If the packet was stored in EPM 701, PMMU 209 provides to SIU 107 the
address within the EPM where the first byte of the packet resides. The SIU performs
the downloading of the packet from the EPM. The SIU also monitors the buffer space
in the corresponding buffer in OB 217 to determine whether it has space to write the
16-byte chunk read from EPM 701. When the packet is fully downloaded, the STU
informs the PMMU of the fact so that the PMMU can download the next packet with
the same device identifier.

When two packets (one per device) are being simultaneously sent, data from the
packet with highest priority is read out of the memory first. This preemption can
happen at a 16-byte boundary or when the packet finishes its transmission. If both
packets have the same priority (provided by the QS), a round-robin method is used to
select the packet from which data will be downloaded next. This selection logic also

takes into account how full the two buffers in the OB are. If buffer d is full, for

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-27 -

example, no packet with a device identifier d will be selected in the PMMU for
downloading the next 16-byte chunk of data.

When a packet starts to be downloaded from the packet memory (local or
external), the PMMU knows where the first valid byte of the packet resides.

However, the packet's size is not known until the first line (or the first two lines in
some cases) of packet data is read from the packet memory, since the size of the
packet resides in the first two bytes of the packet data. Therefore, the processing of
downloading a packet first generates the necessary line addresses to determine the size
of the packet, and then, if needed, generates the rest of the accesses.

This logic takes into account that the first two bytes that specify the size of the
packet can reside in any position in the 16-byte line of data. A particular case is when
the first two bytes span two consecutive lines (which will occur when the first byte is
the 16th byte of a line, and second byte is the 1* byte of next line.

As soon as the PMMU finishes downloading a packet (all the data of that packet
has been read from packet memory and sent to OB), the PMMU notifies the QS of
this event. The QS then invalidates the corresponding packet from its queuing
system.

When a packet starts to be downloaded, it cannot be preempted, i.e. the packet
will finish its transmission. Other packets that become ready to be downloaded with
the same outbound device identifier while the previous packet is being transmitted
cannot be transmitted until the previous packet is fully transmitted.

Packet growth/shrink

As a result of processing a packet, the size of a network packet can grow, shrink
or remain the same size. If the size varies, the SPU has to write the new size of the
packet in the same first two bytes of the packet. The phenomenon of packet growth
and shrink is illustrated in Fig. 8.

Both the header and the tail of the packet can grow or shrink. When a packet
grows, the added data can overwrite the data of another packet that may have been
stored right above the packet experiencing header growth, or that was stored right

below in the case of tail growth. To avoid this problem the PMU can be configured so

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-28-

that an empty space is allocated at the front and at the end of every packet when it is
stored in the packet memory. These empty spaces are specified with
HeaderGrowthOffset and TailGrowthOffset boot-time configuration registers,
respectively, and their granularity is 16 bytes. The maximum HeaderGrowthOffset is
240 bytes (15 16-byte chunks), and the maximum TailGrowthOffset is 1008 bytes (63
16-byte chunks). The minimum in both cases is 0 bytes. Note that these growth offsets
apply to all incoming packets, that is, there is no mechanism to apply different growth
offsets to different packets.

When the PMMU searches for space in the LPM, it will look for contiguous
space of Size(packet) + ((HeaderGrowthOffset + TailGrowthOffset) << 4). Thus, the
first byte of the packet (first byte of the ASIC-specific header) will really start at
offset ((packetPage << 8)+ (HeaderGrowthOffset << 4)) within the packet memory.

The software knows what the default offsets are, and, therefore, knows how
much the packet can safely grow at both the head and the tail. In case the packet
needs to grow more than the maximum offsets, the software has to explicitly move the

packet to a new location in the packet memory. The steps to do this are as follows:

1) The software requests the PMU for a chunk of contiguous space of the new
size. The PMU will return a new packetPage that identifies (points to) this new
space.

2) The software writes the data into the new memory space.

3) The software renames the old packetPage with the new packetPage.

4) The software requests the PMU to de-allocate the space associated to the old
packetPage.

In the case of header growth or shrinkage, the packet data will no longer start at
((packetPage << 8) + (HeaderGrowthOffset << 4)). The new starting location is
provided to the PMU with a special instruction executed by the SPU when the
processing of the packet is completed. This information is provided to the PMMU by
the QS block.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-29.-

Time stamp

The QS block of the PMU (described in detail in a following section) guarantees
the order of the incoming packets by keeping the packetPage identifiers of the packets
in process in the XCaliber processor in FIFO-like queues. However, software may
break this ordering by explicitly extracting identifiers from the QS, and inserting them
at the tail of any of the queues.

To help software in guaranteeing the relative order of packets, the PMU can be
configured to time stamp every packet that arrives to the PMMU block using an on-
the-fly configuration flag TimeStampEnabled. The time stamp is an 8-byte value,
obtained from a 64-bit counter that is incremented every core clock cycle.

When the time stamp feature is on, the PMMU appends the 8-byte time stamp
value in front of each packet, and the time stamp is stripped off when the packet is
sent to the network output interface. The time stamp value always occupies the 8
MSB bytes of the (k-1)th 16-byte chunk of the packet memory, where k is the 16-byte
line offset where the data of the packet starts (k> 0). In the case that
HeaderGrowthOffset is 0, the time stamp value will not be appended, even if
TimeStampEnabled is asserted.

The full 64-bit time counter value is provided to software through a read-only

configuration register (TimeCounter).

Software operations on the PMMU

Software has access to the PMMU to request or free a chunk of contiguous
space. In particular, there are two operations that software can perform on the
PMMU. Firstly the software, through an operation GetSpace(size), may try to find a
contiguous space in the LPM for size bytes. The PMU replies with the atomic page
number where the contiguous space that has been found starts (i.e. the packetPage),
and a success bit. If the PMU was able to find space, the success bit is set to ‘1°,

otherwise it is set to ‘0’. GetSpace will not be satisfied with memory of a block that

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-30-

has its SoftwareOwned configuration bit asserted. Thus, software explicitly manages
the memory space of software-owned LPM blocks.

The PMMU allocates the atomic pages needed for the requested space. The
EnableVector set of bits used in the allocation of atomic pages for incoming packets 1s
a don’t care for the GetSpace operation. In other words, as long as sufficient
consecutive non-allocated atomic pages exist in a particular block to cover size bytes,
the GetSpace(size) operation will succeed even if all the virtual pages in that block are
disabled.

Moreover, among non-software-owned blocks, a GetSpace operation will be served
first using a block that has all its virtual pages disabled. If more than such a block
exists, the smallest block number is chosen. If size is 0, GetSpace(size) returns ‘0’.

The second operation software can perform on the PMMU is
FreeSpace(packetPage). In this operation the PMU de-allocates atomic pages that
were previously allocated (starting at packetPage). This space might have been either
automatically allocated by the PMMU as a result of an incoming packet, or as a result
of a GetSpace command. FreeSpace does not return any result to the software. A
FreeSpace operation on a block with its SoftwareOwned bit asserted is disregarded

(nothing is done and no result will be provided to the SPU).
Local Packet Memory

Local Packet Memory (LPM), illustrated as element 219 in FIGS. 2 and 7, has ’
in the instant embodiment a size of 256KB, 16-byte line width with byte enables, 2
banks (even/odd), one Read and one Write port per bank, is fully pipelined, and has
one cycle latency

The LPM in packet processing receives read and write requests from both the
PMMU and the STU. An LPM controller guarantees that requests from the PMMU
have the highest priority. The PMMU reads at most one packet while writing another
one. The LPM controller guarantees that the PMMU will always have dedicated ports
to the LPM.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-31-

Malicious software could read/write the same data that is being written/read by
the PMMU. Thus, there is no guarantee that the read and write accesses in the same
cycle are performed to different 16-byte line addresses.

A request to the LPM is defined in this example as a single access (either read
or write) of 16-bytes. The SIU generates several requests for a masked load or store,
which are new instructions known to the inventors and the subject of at least one
separate patent application. Therefore, a masked load/store operation can be stalled in
the middle of these multiple requests if the highest priority PMMU access needs the
same port.

When the PMMU reads or writes, the byte enable signals are assumed to be set
(i.e. all 16 bytes in the line are either read or written). When the SIU drives the reads
or writes, the byte enable signals are meaningful and are provided by the SIU.

When the SPU reads a single byte/word in the LPM, the SIU reads the
corresponding 16-byte line and performs the extraction and right alignment of the
desired byte/word. When the SPU writes a single byte/word, the SIU generates a 16-
byte line with the byte/word in the correct location, plus the valid bytes signals.

Prioritization among operations

The PMMU may receive up to three requests from three different sources (IB,
QS and software) to perform operations. For example, requests may come from the
IB and/or Software: to perform a search for a contiguous chunk of space, to allocate
the corresponding atomic page sizes and to provide the generated packetPage.
Requests may also come from the QS and/or Software to perform the de-allocation of
the atomic pages associated to a given packetPage.

It is required that the first of these operations takes no more than 2 cycles, and
the second no more than one. The PMMU executes only one operation at a time.
From highest to lowest, the PMMU block will give priority to requests from: IB, QS
and Software.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-32-

Early full-PMMU detection

The PMU implements a mechanism to aid in flow control between any external
device and the XCaliber processor. Part of this mechanism is to detect that the LPM
is becoming full and, in this case, a NoMorePagesOfXsizeInt interrupt is generated to
the SPU. The EPM is software controlled and, therefore, its state is not maintained by
the PMMU hardware.

The software can enable the NoMorePagesOfXsizelnt interrupt by specifying a
virtual page size s . Whenever the PMMU detects that no more available virtual pages
of that size are available (i.e. FitsVector[s] is de-asserted for all the blocks), the
interrupt is generated. The larger the virtual page size selected, the sooner the
interrupt will be generated. The size of the virtual page will be indicated with a 4-bit
value (0:256 bytes, 1:512 bytes, ..., 8:64KB) in an on-the-fly configuration register
IntIfNoMoreThanXsizePages. When this value is greater than 8, the interrupt is never
generated.

If the smallest virtual page size is selected (256 bytes), the
NoMorePagesOfXsizelnt interrupt is generated when the LPM is completely full (i.e.
no more packets are accepted, not even a 1-byte packet).

In general, if the IntifNoMoreThanXsizePages is X, the soonest the interrupt
will be generated is when the local packet memory is (100/2%)% full. Note that,
because of the atomic pages being 256 bytes, the LPM could become full with only 3
K-bytes of packet data (3 byte per packet, each packet using an atomic page).

Packet size mismatch

The PMMU keeps track of how many bytes are being uploaded into the LPM or
EPM. If this size is different from the size specified in the first two bytes, a
PacketErrorInt interrupt is generated to the SPU. In this case the packet with the
mismatch packet size is dropped (the already allocated atomic pages will be de-
allocated and no packetPage will be created). No AutomaticDroplnt interrupt is

generated in this case. If the actual size is more than the size specified in the first two

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-33-

bytes, the remaining packet data being received from the ASIC is gracefully
discarded.

When a packet size mismatch is detected on an inbound device identifier D (D =
0,1), the following packets received from that same device identifier are dropped until

software writes (any value) into a ClearErrorD configuration register.
Bus Error Recovering
Faulty packet data can arrive to or leave the PMU due to external bus errors. In

particular the network input interface may notify that the 16-byte chunk of data sent in
has a bus error, or the SIU may notify that the 16-byte chunk of data downloaded

_ from EPM has a bus error. In both cases, the PMMU generates the PacketErrorInt

interrupt to notify the SPU about this event. No other information is provided to the
SPU.

Note that if an error is generated within the LPM, it will not be detected since
no error detection mechanism is implemented in this on-chip memory. Whenever a
bus error arises, no more data of the affected packet will be received by the PMU.
This is done by the SIU in both cases. For the first case the PMMU needs to de-
allocate the already allocated atomic pages used for the packet data received previous
to the error event.

When a bus error is detected on an inbound device identifier D (D=0,1), the
following packets received from that same device identifier are dropped until software

writes (any value) into a ClearErrorD (D=0,1) configuration register.

Queuing System (QS)

The queueing system (QS) in the PMU of the XCaliber processor has functions
of holding packet identifiers and the state of the packets currently in-process in the
XCaliber processor, keeping packets sorted by their default or software-provided
priority, selecting the packets that need to be pre-loaded (in the background) into one

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-34-

of the available contexts, and selecting those processed packets that are ready to be
sent out to an external device.

Fig. 9 is a block diagram showing the high-level communication between the
QS and other blocks in the PMU and SPU. When the PMMU creates a packetPage, it
is sent to the QS along with a queue number and the device identifier. The QS
enqueues that packetPage in the corresponding queue and associates a number
(packetNumber) to that packet. Eventually, the packet is selected and provided to the
RTU, which loads the packetPage, packetNumber and selected fields of the packet
header into an available context. Eventually the SPU processes that context and
communicates to the PMU, among other information, when the processing of the
packet is completed or the packet has been dropped. For this communication, the
SPU provides the packetNumber as the packet identifier. The QS marks that packet
as completed (in the first case) and the packet is eventually selected for downloading
from packet memory.

It is a requirement in the instant embodiment (and highly desirable) that packets
of the same flow (same source and destination) need to be sent out to the external
device in the same order as they arrived to the XCaliber processor (unless software
explicitly breaks this ordering). When the SPU begins to process a packet the flow is
not known. Keeping track of the ordering of packets within a flow is a costly task
because of the amount of processing needed and because the number of active flows
can be very large, depending on the application. Thus, the order within a flow is
usually kept track by using aggregated-flow queues. In an aggregated-flow queue,
packet identifiers from different flows are treated as from the same flow for ordering
purposes.

The QS offloads the costly task of maintaining aggregated-flow queues by
doing it in hardware and in the background. Up to 32 aggregated-flow queues can be
maintained in the current embodiment, and each of these queues has an implicit
priority. Software can enqueue a packetPage in any of the up to 32 queues, and can
move a packetPage identifier from one queue to another (for example, when the
priority of that packet is discovered by the software). It is expected that software, if
needed, will enqueue all the packetPage identifiers of the packets that belong to the

10

15

20

25

30

WO 03/005645

-35-

same flow into the same queue. Otherwise, a drop in the performance of the network
might occur, since packets will be sent out of order within the same flow. Without

software intervention, the QS guarantees the per-flow order of arrival.
Generic Queue

The QS implements a set of up to 32 FIFO-like queues, which are numbered, in
the case of 32 queues, from 0 to 31. Each queue can have up to 256 entries. The
addition of all the entries of all the queues, however, cannot exceed 256. Thus, queue
sizes are dynamic. A queue entry corresponds to a packetPage identifier plus some
other information. Up to 256 packets are therefore allowed to be in process at any
given time in the XCaliber processor. This maximum number is not visible to
software.

Whenever the QS enqueues a packetPagé, a number (packetNumber) from 0 to
255 is assigned to the packetPage. This number is provided to the software along
with the packetPage value. When the software wants to perform an operation on the
QS, it provides the packetNumber identifier. This identifier is used by the QS to
locate the packetPage (and other information associated to the corresponding packet)
in and among its queues.

Software is aware that the maximum number of queues in the XCaliber
processor is 32. Queues are disabled unless used. That is, the software does not need
to decide how many queues it needs up front. A queue becomes enabled when at least
one packet is in residence in that queue.

Several packet identifiers from different queues can become candidates for a
particular operation to be performed. Therefore, some prioritization mechanism must
exist to select the packet identifier to which an operation will be applied first.
Software can configure (on-the-fly) the relative priority among the queues using an
"on-the-fly" configuration register PriorityClusters. This is a 3-bit value that specifies
how the different queues are grouped in clusters. Each cluster has associated a

priority (the higher the cluster number, the higher the priority). The six different

PCT/US02/20316

10

15

20

25

WO 03/005645 PCT/US02/20316

-36 -

modes in the instant embodiment into which the QS can be configured are shown in
the table of Fig. 10.

The first column of Fig. 10 is the value in the "on-the-fly" configuration register
PriorityClusters. Software controls this number, which defines the QS configuration.
For example, for PriorityClusters = 2, the QS is configured into four clusters, with
eight queues per cluster. The first of the four clusters will have queues 0 through 7,
the second cluster will have queues 8-15, the third clusters 16 through 23, and the last
of the four clusters has queues 24 through 31.

Queues within a cluster are treated fairly in a round robin fashion. Clusters are
treated in a strict priority fashion. Thus, the only mode that guarantees no starvation

of any queue is when PriorityClusters is 0, meaning one cluster of 32 queues.
Inserting a packetPage/deviceld into the QS

Fig. 11 is a diagram illustrating the generic architecture of QS 211 of Figs. 2
and 7 in the instant embodiment. Insertion of packetPages and Deviceld information
is shown as arrows directed toward the individual queues (in this case 32 queues).
The information may be inserted from three possible sources, these being the PMMU,
the SPU and re-insertion from the QS. There exists priority logic, illustrated by
function element 1101, for the case in which two or more sources have a packetPage
ready to be inserted into the QS. In the instant embodiment the priority is, in
descending priority order, the PMMU, the QS, and the SPU (software).

Regarding insertion of packets from the SPU (software), the software can create
packets on its own. To do so, it first requests a consecutive chunk of free space of a
given size (see the SPU documentation) from the PMU, and the PMU returns a
packetPage in case the space is found. The software needs to explicitly insert that
packetPage for the packet to be eventually sent out. When the QS inserts this
packetPage, the packetNumber created is sent to the SPU. Software requests an
insertion through the Command Unit (see Fig. 2).

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-37-

In the case of insertion from the QS, an entry residing at the head of a queue
may be moved to the tail of another queue. This operation is shown as selection
function 1103.

In the case of insertion from the PMU, when a packet arrives to the XCaliber
processor, the PMMU assigns a packetPage to the packet, which is sent to the QS as
soon as the corresponding packet is safely stored in packet memory.

An exemplary entry in a queue is illustrated as element 1105, and has the
following fields: Valid (1) validates the entry. PacketPage (16) is the first atomic
page number in memory used by the packet. NextQueue (5) may be different from
the queue number the entry currently belongs to, and if so, this number indicates the
queue into which the packetPage needs to be inserted next when the entry reaches the
head of the queue. Delta (10) contains the number of bytes that the header of the
packet has either grown or shrunk. This value is coded in 2’s complement.
Completed (1) is a single bit that indicates whether software has finished the
processing of the corresponding packet. Deviceld (2) is the device identifier
associated to the packet. Before a Complete operation is performed on the packet
(described below) the Deviceld field contains the device identifier of the external
device that sent the packet in. After the Complete operation, this field contains the
device identifier of the device to which the packet will be sent. Active (1) is a single
bit that indicates whether the associated packet is currently being processed by the
SPU. CRCtype (2) indicates to the network output interface which type of CRC, if
any, needs to be computed for the packet. Before the Complete operation is
performed on the packet, this field is 0. KeepSpace (1) specifies whether the atomic
pages that the packet occupies in the LPM will be de-allocated (KeepSpace de-
asserted) by the PMMU or not (KeepSpace asserted). If the packet resides in EPM
this bit is disregarded by the PMMU.

The QS needs to know the number of the queue to which the packetPage will be
inserted. When software inserts the packetPage, the queue number is explicitly
provided by an XStream packet instruction, which is a function of the SPU, described
elsewhere in this specification. If the packetPage is inserted by the QS itself, the

10

15

20

25

WO 03/005645 PCT/US02/20316

-38-

queue number is the value of the NextQueue field of the entry where the packetPage
resides.

When a packetPage is inserted by the PMMU, the queue number depends on
how the software has configured (at boot time) the Log2InputQueues configuration
register. If Log2InputQueues is set to 0, all the packetPages for the incoming packets
will be enqueued in the same queue, which is specified by the on-the-fly configuration
register FirstInputQueue. If Log2InputQueues is set to k (1<=k <= 5), then the k
MSB bits of the 3rd byte of the packet determine the queue number. Thus an external
device (or the network input interface block of the SIU) can assign up to 256 priorities
for each of the packets sent into the PMU. The QS maps those 256 priorities into 2",
and uses queue numbers FirstInputQueue to FirstinputQueue+2*-1 to insert the
packetPages and deviceld information of the incoming packets.

Tt is expected that an external device will send the same 5 MSB bits in the 3™
byte for all packets in the same flow. Otherwise, a drop in the performance of the
network might occur, since packets may be sent back to the external device out-of-
order within the same flow. Software is aware of whether or not the external device
(or SIU) can provide the information of the priority of the packet in the 3" byte.

When packetPage p is inserted into queue g, the PacketPage field of the entry to
be used is set to p and the Valid field to ‘1°. The value for the other fields depend on
the source of the insertion. If the source is software (SPU), Completed is ‘0’;
NextQueue is provided by SPU; Deviceld is ‘0’; Active is ‘1’; CRCtype is 0;
KeepSpace is 0, and Probed is 0.

If the source is the QS, the remaining fields are assigned the value they have in
the entry in which the to-be-inserted packetPage currently resides. If the source is the
PMMU, Completed is ‘0’, NextQueue is g, Deviceld is the device identifier of the
external device that sent the packet into XCaliber, Active is ‘0’, CRCtype is 0,
KeepSpace is 0, and Probed is 0.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-39.

Monitoring logic

The QS monitors entries into all of the queues to detect certain conditions and to
perform the corresponding operation, such as to re-enqueue an entry, to send a
packetPage (plus some other information) to the PMMU for downloading, or to send a
packetPage (plus some other information) to the RTU.

All detections take place in a single cycle and they are done in parallel.

Re-enqueuing an entry

The QS monitors all the head entities of the queues to determine whether a
packet needs to be moved to another queue. Candidate entries to be re-enqueued need
to be valid, be at the head of a queue, and have the NextQueue field value different
from the queue number of the queue in which the packet currently resides.

If more than one candidate exists for re-enqueueing, the chosen entry will be

selected following a priority scheme described later in this specification.

Sending an entry to the PMMU for downloading

The QS monitors all the head entities of the queues to determine whether a
packet needs to be downloaded from the packet memory. This operation is 1102 in
Fig. 11. The candidate entries to be sent out of XCaliber need to be valid, be at the
head of the queue, have the NextQueue field value the same as the queue number of
the queue in which the packet currently resides, and have the Completed flag asserted
and the Active flag de-asserted. Moreover the QS needs to guarantee that no pending
reads or writes exist from the same context that has issued the download command to
the QS.

If more than one candidate exists for downloading, the chosen entry will be
selected following a priority scheme described later in this specification.

A selected candidate will only be sent to the PMMU if the PMMU requested it.

If the candidate was requested, the selected packetPage, along with the cluster number

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-40 -

from which it is extracted, the tail grothsMink, the outbound device identifier bit,
the CRCtype and the KeepSpace bits are sent to the PMMU.

Fig. 12 is a table indicating coding of the Deviceid field. If the Deviceid field is
0, then the Outbound Device Identifier is the same as the Inbound Device Identifier,
and so on as per the table.

When an entry is sent to the PMMU, the entry is marked as “being transmitted”
and it is extracted from the queuing system (so that it does not block other packets
that are ready to be transmitted and go to a different outbound device identifier).
However, the entry is not invalidated until the PMMU notifies that the corresponding
packet has been completely downloaded. Thus, probe-type operations on this entry

will be treated as valid, i.e. as still residing in the XCaliber processor.
Reincarnation effect

As described above, the QS assigns a packetNumber from 0 to 255 (256

numbers in total) to each packet that comes into XCaliber and is inserted into a queue.
This is done by maintaining a table of 256 entries into which packet identifiers are
inserted. At this time the Valid bit in the packet identifier is also asserted. Because
the overall numbers of packets dealt with by XCaliber far exceeds 256, packet
numbers, of course, have to be reused throughout the running of the XCaliber
processor. Therefore, when packets are selected for downloading, at some point the
packetNumber is no longer associated with a valid packet in process, and the number
may be reused.

As long as a packet is valid in XCaliber it is associated with the packetNumber
originally assigned. The usual way in which a packetNumber becomes available to be
reused is that a packet is sent by the QS to the RTU for preloading in a context prior
to processing. Then when the packet is fully processed and fully downloaded from
memory, the packet identifier in the table associating packetNumbers is marked
Invalid by manipulating the Valid bit (see Fig. 11 and the text accompanying).

In usual operation the system thus far described is perfectly adequate. It has

been discovered by the inventors, however, that there are some situations in which the

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-41-

Active and Valid bits are not sufficient to avoid contention between streams. One of
these situations has to do with a clean-up process, sometimes termed garbage
collection, in which software monitors all packet numbers to determine when packets
have remained in the system too long, and discards packets under certain conditions,
freeing space in the system for newly-arriving packets.

In these special operations, like garbage collection, a stream must gain
ownership of a packet, and assure that the operation it is to perform on the packet
actually gets performed on the correct packet. As software probes packets, however,
and before action may be taken, because there are several streams operating, and
because the normal operation of the system may also send packets to the RTU, for
example, it is perfectly possible in these special operations that a packet probed may
be selected and effected by another stream before the special operation is completed.
A packet, for example, may be sent to the RTU, processed, and downloaded, and a
new packet may then be assigned to the packetNumber, and the new packet may even
be stored at exactly the same packetPage as the original packet. There is a danger,
then, that the special operations, such as discarding a packet in the garbage collection
process, may discard a new and perfectly valid packet, instead of the packet originally
selected to be discarded. This, of course, is just one of potentially many such special
operations that might lead to trouble.

Considering the above, the inventors have provided a mechanism for assuring
that, given two different absolute points in time, time s and time 7, for example, that a
valid packetNumber at time s and the same packetNumber at time r, still is associated
to the same packet. A simple probe operation is not enough, because at some time
after s and before time r the associated packet may be downloaded, and another (and
different) packet may have arrived, been stored in exactly the same memory location
as the previous packet, and been assigned the same packetNumber as the downloaded
packet.

The mechanism implemented in XCaliber to ensure packetNumber association
with a specific packet at different times includes a probe bit in the packet identifier.
When a first stream, performing a process such as garbage collection, probes a packet,

a special command, called Probe&Set is used. Probe&Set sets (asserts) the probe bit,

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-42-

and the usual information is returned, such as the value for the Valid bit, the Active
bit, the packetPage address, and the old value of the probe bit. The first stream then
executes a Conditional Activate instruction, described elsewhere in this specification,
to gain ownership of the packet. Also, when the queuing system executes this
Conditional Activate instruction it asserts the active bit of the packet. Now, at any
time after the probe bit is set by the first stream, when a second stream at a later time
probes the same packet, the asserted probe bit indicates that the first stream intends to
gain control of this packet. The second stream now knows to leave this packet alone.
This probe bit is de-asserted when a packet enters the XCaliber processor and a new

(non-valid) number is assigned.

Sending an entry to the RTU

The RTU uploads in the SPU background to the XCaliber processor some fields
of the headers of packets that have arrived, and have been completely stored into
packet memory. This uploading of the header of a packet in the background may
occur multiple times for the same packet. The QS keeps track of which packets need
to be sent to the RTU. The selection operation is illustrated in Fig. 11 as 1104.

Whenever the RTU has chosen a context to pre-load a packet, it notifies the QS
that the corresponding packet is no longer an inactive packet. The QS then marks the
packet as active.

Candidate entries to be sent to the RTU need to be valid, to be the oldest entry
with the Active and Completed bits de-asserted, to have the NextQueue field value the
same as the queue number of the queue in which the packet currently resides, and to
conform to a limitation that no more than a certain number of packets in the queue in
which the candidate resides are currently being processed in the SPU. More detail
regarding this limitation is provided later in this specification. When an entry is sent
to the RTU for pre-loading, the corresponding Active bit is asserted.

A queue can have entries with packet identifiers that already have been
presented to the RTU and entries that still have not. Every queue has a pointer
(NextPacketForRTU) that points to the oldest entry within that queue that needs to be

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-43 -

sent to the RTU. Within a queue, packet identifiers are sent to the RTU in the same
order they were inserted in the queue.

The candidate packet identifiers to be sent to the RTU are those pointed to by
the different NextPacketForRTU pointers associated with the queues. However, some
of these pointers might point to a non-existent entry (for example, when the queue is
empty or when all the entries have already been sent to the RTU). The hardware that
keeps track of the state of each of the queues determines these conditions. Besides
being a valid entry pointed to by a NextPacketForRTU pointer, the candidate entry
needs to have associated with it an RTU priority (described later in this specification)
currently not being used by another entry in the RTU. If more than a single candidate
exists, the chosen entry is selected following a priority scheme described later in this
specification.

As opposed to the case in which an entry is sent to the PMMU for downloading,
an entry sent to the RTU is not extracted from its queue. Instead, the corresponding
NextPacketForRTU pointer is updated, and the corresponding Active bit is asserted.

The QS sends entries to an 8-entry table in the RTU block as long as the entry is
a valid candidate and the corresponding slot in the RTU table is empty. The RTU will
accept, at most, 8 entries, one per each interrupt that the RTU may generate to the
SPU.

The QS maps the priority of the entry (given by the queue number where it
resides) that it wants to send to the RTU into one of the 8 priorities handled by the
RTU (RTU priorities). This mapping is shown in the table of Fig. 13, and it depends
on the number of clusters into which the different queues are grouped (configuration
register PriorityClusters) and the queue number in which the entry resides.

The RTU has a table of 8 entries, one for each RTU priority. Every entry
contains a packet identifier (packetPage, packetNumber, queue#) and a Valid bit that
validates it. The RTU always accepts a packet identifier of RTU priority p if the
corresponding Valid bit in entry p of that table is de-asserted. When the RTU receives
a packet identifier of RTU priority p from the QS, the Valid bit of entry p in the table
is asserted, and the packet identifier is stored. At that time the QS can update the
corresponding NextPacketForRTU pointer.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-44 -

Limiting the packets sent within a queue

Software can limit the number of packets that can be active (i.e. being processed
by any of the streams in the SPU) on a per-queue basis. This is achieved through a
MaxActivePackets on-the-fly configuration register, which specifies, for each queue,
a value between 1 and 256 that corresponds to the maximum number of packets,
within that queue, that can be being processed by any stream.

The QS maintains a counter for each queue g which keeps track of the current
number of packets active for queue ¢. This counter is incremented whenever a packet
identifier is sent from queue g to the RTU, a Move operation moves a packet into
queue g, or an Insert operation inserts a packet identifier into queue g; and
decremented when any one the following operations are performed in any valid entry
in queue g: a Complete operation, an Extract operation, a Move operation that moves
the entry to a different queue, or a MoveAndReactivate operation that moves the entry
to any queue (even to the same queue). Move, MoveAndReactivate, Insert, Complete
and Extract are operations described elsewhere in this specification.

Whenever the value of the counter for queue ¢ is equal to or greater than the
corresponding maximum value specified in the MaxActivePackets configuration
register, no entry from queue g is allowed to be sent to the RTU. The value of the
counter could be greater since software can change the MaxActivePackets
configuration register for a queue to a value lower than the counter value at the time

of the change, and a queue can receive a burst of moves and inserts.

Software operations on the QS

Software executes several instructions that affect the QS. The following is a
list of all operations that can be generated to the QS as a result of the dispatch by the
SPU core of an XStream packet instruction:

Insert(p,q): the packetPage p is inserted into queue g. A ‘1’ will be returned to

the SPU if the insertion was successful, and a ‘0’ if not. The insertion will be

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-45 -

unsuccessful only when no entries are available (i.e. when all the 256 entries are
valid).

Move(n,q): asserts to ¢ the NextQueue field of the entry in which
packetNumber # resides.

MoveAndReactivate(n,q): asserts to g the NextQueue field of the entry in
which packetNumber n resides; de-asserts the Active bit.

Complete(n,d,e): asserts the Completed flag, the Delta field to & and the
deviceld field to e of the entry in which packetNumber # resides. De-asserts the
Active bit and de-asserts the KeepSpace bit.

CompleteAndKeepSpace(n,d,e): same as Complete() but it asserts the
KeepSpace bit.

Extract(n): resets the Valid flag of the entry in which packetNumber »n
resides. '

Replace(n,p): the PacketPage field of the entry in which packetNumber
resides is set to packetPage p.

Probe(n): the information whether the packetNumber » exists in the QS or not
is returned to the software. In case it exists, it returns the PacketPage, Completed,
NextQueue, Deviceld, CRCtype, Active, KeepSpace and Probed fields.

ConditionalActivate(n): returns a ‘1’ if the packetNumber 7 is valid, Probed
is asserted, Active is de-asserted, and the packet is not being transmitted. In this case,
the Active bit is asserted.

The QS queries the RTU to determine whether the packet identifier of the
packet to be potentially activated is in the RTU table, waiting to be preloaded, or
being preloaded. If the packet identifier is in the table, the RTU invalidates it. If the
query happens simultaneously with the start of preloading of that packet, the QS does
not activate the packet.

ProbeAndSet(n): same as Probe() but it asserts the Probed bit (the returned
Probed bit is the old Probed bit).

Probe(q): provides the size (i.e. number of valid entries) in queue g.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-46 -

A Move(), MoveAndReactivate(), Complete(), CompleteAndKeepSpace(),
Extract() and Replace() on an invalid (i.e. non-existing) packetNumber is disregarded

(no interrupt is generated).

A Move, MoveAndReactivate, Complete, CompleteAndKeepSpace, Extract and
Replace on a valid packeéﬁumber with the Active bit de-asserted should not happen
(guaranteed by software). If it happens, results are undefined. Only the Insert, Probe,
ProbeAndSet and Conditional Activate operations reply back to the SPU.

If software issues two move-like operations to the PMU that affect the same
packet, results are undefined, since there is no guarantee that the moves will happen as
software specified.

Fig. 14 is a table showing allowed combinations of Active, Completed, and

Probed bits for a valid packet.

Basic operations

To support the software operations and the monitoring logic, the QS implements
the following basic operations:
1. Enqueue an entry at the tail of a queue.
2. Dequeue an entry from the queue in which it resides.
3. Move an entry from the head of the queue wherein it currently resides to the
tail of another queue.
4. Provide an entry of a queue to the RTU.
5. Provide the size of a queue.

6. Update any of the fields associated to packetNumber.

Operations 1, 2, 4 and 6 above (applied to different packets at the same time)
are completed in 4 cycles in a preferred embodiment of the present invention. This

implies a throughput of one operation per cycle.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-47 -

Some prioritization is necessary when two or more operations could start to be
executed at the same time. From highest to lowest priority, these events are inserting
from the PMMU, dequeuing an entry, moving an entry from one queue to another
queue, sending an entry to the RTU for pre-loading, or a software operation. The
prioritization among the software operations is provided by design since software

operations are always executed in order.

Early QS full detection

The PMU implements a mechanism to aid in flow control between the ASIC
(see element 203 in Fig. 2) and the XCaliber processor. Part of this mechanism is to
detect that the QS is becoming full and, in this case, a LessThanXpacketIdEntriesInt
interrupt is generated to the SPU. The software can enable this interrupt by specifying
(in a IntIfLessThanXpacketldEntries configuration register) a number z larger than 0.
An interrupt is generated when 256-y < z, being y the total number of packets

currently in process in XCaliber. When z = 0, the interrupt will never occur.

Register Transfer Unit (RTU)

A goal of the RTU block is to pre-load an available context with information of
packets alive in XCaliber. This information is the packetPage and packetNumber of
the packet and some fields of its header. The selected context is owned by the PMU at
the time of the pre-loading, and released to the SPU as soon as it has been pre-loaded.

Thus, the SPU does not need to perform the costly load operations to load the header
information and, therefore, the overall latency of processing packets is reduced.

The RTU receives from the QS a packet identifier (packetPage, packetNumber)
and the number of the queue from which the packet comes from) from the QS. This
identifier is created partly by the PMMU as a result of a new packet arriving to
XCaliber through the network input interface (packetPage), and partly by the QS

when the packetPage and device identifier are enqueued (packetNumber).

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-48 -

Another function of the RTU is to execute masked load/store instructions
dispatched by the SPU core since the logic to execute a masked load/store instruction
is similar to the logic to perform a pre-load. Therefore, the hardware can be shared for
both operations. For this reason, the RTU performs either a masked load/store or a
pre-load, but not both, at a time. The masked load/store instructions arrive to the

RTU through the command queue (CU) block.

Context States

A context can be in one of two states: PMU-owned or SPU-owned. The
ownership of a context changes when the current owner releases the context. The
PMU releases a context to the SPU in three cases. Firstly, when the RTU has finished
pre-loading the information of the packet into the context. Secondly, the PMU
releases a context to the SPU when the SPU requests a context to the RTU. In this
case, the RTU will release a context if it has one available for releasing. Thirdly, all
eight contexts are PMU-owned. Note that a context being pre-loaded is considered to
be a PMU-owned context.

The SPU releases a context to the RTU when the SPU dispatches an XStream
RELEASE instruction.

Pre-loading a Context

At boot time, the PMU owns 7 out of the 8 contexts that are available in the
embodiment of the invention described in the present example, and the SPU owns one
context. The PMU can only pre-load information of a packet to a context that it owns.
The process of pre-loading information of a packet into a context is divided into two
steps. A first phase to load the address (the offset within the packet memory address
space), from where the packet starts. This offset points to the first byte of the two-
byte value that codes the size in bytes of the packet. In the case that the packet has
been time stamped and HeaderGrowthOffset is not 0, the time stamp value is located

at offset-4. The offset address is computed as (packetPage << 8§) |

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-49-

(HeaderGrowthOffset << 4). This offset is loaded into register number
StartLoadingRegister in the selected context. StartLoadingRegister is a boot-time
configuration register. The packetNumber value is loaded in register number
StartLoadingRegister+1.

The second phase is to load the packet header. The packet header is loaded
using registers StartLoadingRegister+2, StartLoadingRegister+3, ... (as many as
needed, and as long as there exist GPR registers). The PatternMatchingTable[g] (g
being the queue number associated to the packet) mask specifies how the header of
the packet will be loaded into the GPR registers of the context. The
PatternMatchingTable is an on-the-fly configuration register that contains masks. To
obtain the header data, the RTU requests the SIU to read as many 16-byte lines of
packet data as needed into the packet memory. The RTU, upon receiving the 16-byte
lines from packet memory (either local or external), selects the desired bytes to load
into the context using pattern mask to control this operation.

The step described immediately above of loading the packet header may be
disabled by software on a per-queue basis through the on-the-fly PreloadMaskNumber
configuration register. This register specifies, for each of the 32 possible queues in
the QS, which mask (from 0 to 23) in the PatternMatchingTable is going to be used
for the pre-loading. If a value between 24 and 31 is specified in the configuration
register, it is interpreted by the RTU as not to perform.

The RTU only loads the GPR registers of a context. The required CPO registers
are initialized by the SPU. Since the context loaded is a PMU-owned context, the
RTU has all the available write ports to that context (4 in this embodiment) to perform
the loading.

Whenever the pre-loading operation starts, the RTU notifies this event to the
SPU through a dedicated interface. Similarly, when the pre-loading operation is
completed, the RTU also notified the SPU. Thus the SPU expects two notifications
(start and end) for each packet pre-load. A special notification is provided to the SPU
when the RTU starts and ends a pre-load in the same cycle (which occurs when the
step of loading packet header is disabled). In all three cases, the RTU provides the

context number and the contents of the CodeEntryPoint configuration register

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-50-

associated to the packet. In the case that the PMU releases a context to the SPU
because all eight contexts are PMU-owned, the contents of the CodeEntryPointSpecial
are provided to the SPU. The RTU has an 8-entry table (one for each context), each
entry having a packet identifier ready to be pre-loaded and a valid bit that validates the
entry. The RTU selects always the valid identifier of the highest entry index to do the
pre-load. When a context is associated to this identifier, the corresponding valid bit is
de-asserted. The RTU pre-loads one context at a time. After loading a context, the
context is released to the SPU and becomes a SPU-owned context. At this point the
RTU searches its table for the next packet to be pre-loaded into a context (in case

there is at leas one PMU-owned context).

Pattern-Matching Table

Figure 15 illustrates a Pattern Matching Table which is an on-the-fly
configuration register that contains a set of sub-masks. The RTU can use any sub-
mask (from 0 to 23) within this table for a pre-loading a context. Sub-masks can also
be grouped into a larger mask containing two or more submasks.

Fig. 16 illustrates the format of a mask. A mask is a variable number (1 to 8) of
sub-masks of 32x2 bits each, as shown. Every sub-mask has an associated bit
(EndOfMask) that indicates whether the composite mask finishes with the
corresponding sub-mask, or it continues with the next sub-mask. The maximum total
number of sub-masks is 32, out of which 24 (sub-mask indexes 0 to 23) are global,
which means any stream in the SPU can use and update them, and 8 are per-stream
sub-masks. The per-stream sub-masks do not have an EndOfMask bit, which is
because no grouping of per-stream sub-masks is allowed.

The two 32-bit vectors in each sub-mask are named SelectVector and
RegisterVector. The SelectVector indicates which bytes from the header of the packet
will be stored into the context. The RegisterVector indicates when to switch to the
next consecutive register within the context to keep storing the selected bytes by the
SelectVector. The bytes are always right aligned in the register.

Fig. 17 shows an example of a pre-load operation using the mask in Fig. 16. A

bit asserted in the SelectVector indicates that the corresponding byte of the header are

10

15

20

25

30

35

WO 03/005645 PCT/US02/20316

-51-

stored into a register. In the example, bytes 0, 1 and 7 of the header are loaded into
GPR number StartLoadingRegister +2 in bytes 0, 1 and 2; respectively (i.e. the header
bytes are right-aligned when loaded into the register). A bit asserted in the
RegisterVector indicates that no more header bytes are loaded into the current GPR
register, and that the next header bytes, if any, are loaded into the next (consecutively)
GPR register. In the example, bytes 12 and 13 of the header are loaded into GPR
number StartLoadingRegister+3.

Selecting a PMU-owned Context

There are a total of eight functional units in the SPU core. However, due to
complexity-performance tradeoffs, a stream (context) can only issue instructions to a
fixed set of 4 functional units.

The RTU may own at any given time several contexts. Therefore, logic is
provided to select one of the contexts when a pre-load is performed, or when a context
has to be provided to the SPU. This logic is defined based on how the different
streams (contexts) in the SPU core can potentially dispatch instructions to the
different functional units, and the goal of the logic is to balance operations that the
functional units in the SPU can potentially receive.

The selection logic takes as inputs eight bits, one per context, that indicates
whether that context is PMU or SPU-owned. The logic outputs which PMU-owned

context(s) that can be selected.

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,3,20,5,6,7,24,9,10,11,12,
13,14,15,32,33,34,3,36,5,6,7,40,9,10,11,12,13,14,15,48,48,48,51,48,53,
54,7,48,57,58,11,60,13,14,15,64,65,66,3,68,5,6,7,72,9,10,11,12,13,14,
15,80,80,80,83,80,85,86,7,80,89,90,11,92,13,14,15,96,96,96,99,96,101,
102,7,96,105,106,11,108,13,14,15,112,112,112,112,112,112,112,119,112,
112,112,123,112,125,126,15,128,129,130,3,132,5,6,7,136,9,10,11,12,13,
14,15,144,144,144,147,144,149,150,7,144,153,154,11,156,13,14,15,160,
160,160,163,160,165,166,7,160,169,170,11,172,13,14,15,176,176,176,176,
176,176,176,183,176,176,176,187,176,189,190,15,192,192,192,195,192,197,198,7,192,201,202,11,20
4,13,14,15,208,208,208,208,208,208,208,215,208,
208,208,219,208,221,222,15,224,224,224,224,224,224,224,231,224,224,224,235,224,237,238,15,240,
240,240,240,240,240,240,240,240,240,240,240,240,240,240

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-52.-

The selection logic is specified with the previous list of 254 numbers. Each
number is associated to a possible combination of SPU/PMU-owned context. For
example, the first number corresponds to the combination '00000001', i.e. context
number 0 is PMU owned and context numbers 1 to 7 are SPU owned (LSB digit
corresponds to context 0, MSB digit to context 7; digit value of 0 means SPU owned,
digit value of 1 means PMU owned). The second number corresponds to combination
‘00000010°, the third to combination ‘00000011°, and so forth up to combination
11111110°. The 19" combination (‘00010011°) has associated number 3 (or
‘00000011°) in the previous list, which means that context 0 and 1 can be selected.
Context 4 could also be selected, however it is not the best choice to balance the use

of the functional units in the SPU core.

Interrupt when no context is available

The RTU has a table of 8 entries named NewPacketldTable). Entry p in this
table contains a packet identifier (packetPage, packetNumber and queue number) with
an RTU-priority of p, and a Valid bit that validates the identifier. When the RTU is
not busy pre-loading or executing a masked load/store, it will obtain from this table
the valid identifier with the highest RTU-priority. In case it exists and there is at least
one PMU-owned context, the RTU will start the pre-loading of a PMU-owned
context, and it will reset the Valid bit in the table.

In case there is no PMU-owned context, the RTU sits idle (assuming no
software operation is pending) until a context is released by the SPU. At that point in
time the RTU obtains, again, the highest valid RTU-priority identifier from the
NewPacketIdTable (since a new identifier with higher RTU priority could have been
sent by the QS while the RTU was waiting for a context to be released by the SPU).
The Valid bit is reset and the packet information starts being pre-loaded into the
available context. At this point the RTU is able to accept a packet with RTU priority
p from the QS.

When an identifier with a RTU priority of p is sent by the QS to the RTU, it is
loaded in entry p in the NewPacketIdTable, and the Valid bit is set. At this time, if

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-53-

the number of valid identifiers (without counting the incoming one) in the
NewPacketldTable is equal or larger than the current available PMU-owned contexts
(without counting the context that the RTU currently might be loading), then a
PacketAvailableButNoContextPriorityP Int interrupt is generated to the SPU. P
ranges from 0 to 7, and its value is determined by a boot-time configuration flag
PacketAvailableButNo ContextIntMapping. If this flag is ‘0’, P is determined by the
3-bit boot-time configuration register DefaultPacketPriority. If this flagis ‘1°, P is the
RTU priority. However, the PacketAvailableButNoContextPriorityPint will not be
generated if the corresponding configuration flag PacketAvailableButNo
ContextPriorityPintEnable is de-asserted.

The SPU, upon receiving the interrupt, decides whether or not to release a
context that it owns so that the RTU can pre-load the packetPage, packetNumber and
header information of the new packet.

When the RTU generates a PacketAvailableButNoContext Priority PInt
interrupt, it may receive after a few cycles a context that has been released by the
SPU. This context, however, could have been released when, for example, one of the
streams finished the processing of a packet. This can happen before the interrupt
service routine for the PacketAvailable ButNoContextPriorityPInt interrupt finishes.
Thus, when a context is released due to the ISR completion, the packet pre-load that
originated the interrupt already might have used the context first released by another
stream in the SPU. Thus, the context released due to the interrupt will be used for
another (maybe future) packet pre-load. If no other entry is valid in the
NewPacketIdTable, the context is be used and sits still until either an identifier arrives
to the RTU or the SPU requesting a context to the RTU.

Whenever a context becomes SPU-owned, and the RTU has a pre-load pending,
the RTU selects the most priority pending pre-load (which corresponds to the highest-
valid entry in the NewPacketTable), and will start the preload. If the
PacketAvailableButNoContextPriorityint interrupt associated to this level was

asserted, it gets de-asserted when the pre-load starts.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-54 -

Software Operations on the RTU

Software executes a number of instructions that affect the RTU. Following is a
list of all operations that can be generated to the RTU as a result of dispatch by the
SPU core of an XStream packet instruction. The operations arrive to the RTU
through the command queue (CU), along with the context number associated to the

stream that issued the instruction:

1. Release(c): context number ¢ becomes PMU owned.

2. GetContext: the RTU returns the number of a PMU-owned context number. This
context, if it exists, becomes SPU owned and a success flag is returned asserted;

otherwise it is return de-asserted, in which case the context number is meaningless.

3. MaskedLoad(r,a,m), MaskedStore(r,a,m): the SPU core uses the RTU as a special
functional unit to execute the masked load/store instructions since the logic to execute
a masked load/store instruction is similar to the logic to perform a pre-load.
Therefore, the hardware can be shared for both operations. For this reason, the RTU
performs either a masked load/store or a pre-load, but not both at a time. For either the
masked load or masked store, the RTU will receive the following parameters:
(a) A mask number m that corresponds to the index of the first submask in the
PatternMatchingTable to be used by the masked load/store operation.
(b) A 36-bit address a that points to the first byte in (any) memory to which
the mask will start to be applied.
(c) A register number (within the context number provided) that corresponds
to the first register involved in the masked load/store operation. Subsequent
registers within the same context number will be used according to the
selected mask.
For masked load/store operations, the mask can start to be applied at any byte

of the memory, whereas in a pre-load operation (a masked-load like operation) the

10

IS5

20

25

30

WO 03/005645 PCT/US02/20316

-55-

mask will always be applied starting at a 16-byte boundary address since packet data
coming from the network input interface is always stored in packet memory starting at
the LSB byte in a 16-byte line.

The MaskedLoad, MaskedStore and GetContext operations communicate to the
SPU when they complete through a dedicated interface between the RTU and the
SPU. The RTU gives more priority to a software operation than packet pre-loads.
Pre-loads access the packet memory whereas the masked load/store may access any
memory in the system as long as it is not cacheable or write-through. If not, results are
undefined.

The RTU is able to execute a GetContext or Release command while executing

a previous masked load/store command.

Programming Model

Software can configure, either at boot time or on the fly, several of the features
of the PMU. All of the features configurable at boot time only, and some
configurable on the fly, must happen only when the SPU is running in a single-stream
mode. If not, results are undefined. The PMU does not check in which mode the SPU
is running.

Software can update some of the information that the PMU maintains for a
given packet, and also obtain this information. This is accomplished by software
through new XStream packet instructions that are the subject of separate patent
applications. These instructions create operations of three different types (depending
on which block of the PMU the operation affects, whether PMMU, QS or RTU) that
will be executed by the PMU. Some of the operations require a result from the PMU
to be sent back to the SPU.

The packet memory and configuration space are memory mapped. The SIU
maintains a configuration register (16MB aligned) with the base address of the packet
memory, and a second configuration register with the base address of EPM. Software
sees the packet memory as a contiguous space. The system, however, allows the EPM

portion of the packet memory to be mapped in a different space.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-56 -

The SIU also maintains a third configuration register with the base of the PMU
configuration register space. All the load/store accesses to LPM and configuration
space performed by the SPU reach the PMU through the SIU. The SIU determines to
which space the access belongs, and lets the PMU know whether the access is to LPM
or to the PMU configuration space. Accesses to the EPM are transparent to the PMU.

The PMU can interrupt the SPU when certain events happen. Software can

disable all these interrupts through configuration registers.
Configuration Registers

The configuration registers of the PMU reside in the PMU Configuration Space
of the XCaliber address space. The base address of this space is maintained by the
SIU and does not need to be visible by the PMU. The SIU notifies to the PMU with a
signal when a read/write access performed by the SPU belongs to this space, along
with the information needed to update the particular register on a write access.

Some of the PMU configuration registers can be conﬁgured only at boot time,
and some can be configured on the fly. All boot-time configurable and some on-the-
fly configurable registers need to be accessed in single-stream mode. A boot-time
configurable register should only be updated if the PMU is in reset mode. Results are
undefined otherwise. The PMU will not check whether the SPU is indeed in single-
stream mode when a single-stream mode configuration register is updated. All the
configuration registers come up with a default value after the reset sequence.

In the instant embodiment 4KB of the XCaliber address space is allocated for
the PMU configuration space. In XCaliber’s PMU, some of these configuration
registers are either not used or are sparsely used (i.e. only some bits of the 32-bit
configuration register word are meaningful). The non-defined bits in the PMU
configuration space are reserved for future PMU generations. Software can read or
write these reserved bits but their contents, although fully deterministic, are
undefined.

Fig. 18 shows the PMU Configuration Space, which is logically divided into 32-

bit words. Each word or set of words contains a configuration register.

10

15

20

25

WO 03/005645 PCT/US02/20316

-57-

Figs. 19a and 19b are two parts of a table showing mapping of the different
PMU configuration registers into the different words of the configuration space. The
block owner of each configuration register is also shown in the table.

Following is the list of all configuration registers in this particular embodiment
along with a description and the default value (after PMU reset). For each of the
configuration registers, the bit width is shown in parenthesis. Unless otherwise
specified, the value of the configuration register is right aligned into the

corresponding word within the configuration space.

Boot-time Only Configuration Registers:

1. Log2InputQueues (5)
(a) Default Value: 0
(b) Description: Number of queues in the QS used as input queues (i.e. number

of queues in which packetPages/devicelds from the PMMU will be inserted).

2. PriorityClustering (3)
(a) Default Value: 5 (32 clusters)
(b) Description: Specifies how the different queues in the QS are grouped in

priority clusters (0: 1 cluster, 1: 2 clusters, 2: 4 clusters, ..., 5: 32 clusters).

3. HeaderGrowthOffset (4)
(a) Default Value: 0
(b) Description: Number of empty 16-byte chunks that will be left in front of
the packet when it is stored in packet memory. Maximum value is 15 16-byte
chunks. Minimum is 0.

4., TailGrowthOffset (6)
(a)Default Value: 0

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-58-

(b) Description: Number of empty 16-byte chunks that will be left at the end of
the packet when it is stored in packet memory. Maximum value is 63 16-byte

chunks. Minimum is 0.

5. PacketAvailableButNoContextIntMapping (1)
(a) Default Value: 0
(b) Description: Specifies the P in the
PacketAvailableButNoContextPriorityPInt interrupt, if enabled. The possible
values are:
(1) 0: P is specified by the DefaultPacketPriority register.
(2) 1: Pis the RTU priority.

6. StartLoadingRegister (5)
(a) Default Value: 1
(b) Description: Determines the first GPR register number to be loaded by the
RTU when performing the background load of the packet header on the chosen
context. In this register, the value (packetPage << 8) | (HeaderGrowthOffset
<< 4) is loaded. The packetNumber is loaded in the next GPR register. The
following GPR registers will be used to pre-load the packet header data
following PatternMatchingMaskO mask if this feature is enabled.

7. PreloadMaskNumber (32x5)
(a) Default Value: mask 31 for all queues (i.e. pre-load of header is disabled).
(b) Description: It specifies, for each of the 32 possible queues in the QS, which
mask in the PatternMatchingTable is going to be used for pre-loading.

Figs. 19a-c show a mapping of the PreloadMaskNumber configuration register.

The configuration registers described above are the boot-time-only
configuration registers in the instant example. Immediately below are listed the On-

The-Fly configuration registers.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-59 -

Single-stream Configuration Registers

1. OverflowEnable (1)
(a) Default Value: 0
(b) Description: Enables/disables the overflow of packets in case they do not
fit into LPM. When disabled, these packets are dropped.
2. PatternMatchingTable (24x(32x2+1)
(a) Default Value (per each of the 24 entries):
(1) SelectVector: select all bytes
(2) RegisterVector: store 4 consecutive bytes per register
(3) EndOfMask: 1
(b) Description: It specifies, for masked load/store operations, which bytes to
load/store and in which (consecutive) registers. Mask 0 of this table is used by
the RTU to pre-load, in the background, some bytes of the header of the packet
in one of the available contexts. There are a total of 24 masks.
(c) Note: Mask 0 needs to be written when the PMU is freezed (see Section 0),

otherwise results are undefined.

Fig. 21 illustrates the PatternMatchingTable described immediately above.

3. Freeze (1)
(a) Default Value: 1

(b) Description: Enables/disables the freeze mode.

4, Reset (1)
(a) Default Value: 0
(b) Description: When set to 1, forces the PMU to perform the reset sequence.
All packet data in the PMU will be lost. After the reset sequence all the

configuration registers will have the default values.

5

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-60 -

Multi-stream Configuration Registers

1. ClearErrorD (D =0,1)
(a) Default Value: 0
(b) Description: When written by software (with any data), the packet error

condition detected on device identifier D is cleared.

2. PacketAvailableButNoContextPriorityPintEnable (8) [P =0..7]
(a) Default Value: 0 (for all levels)
(b) Description: Enables/disables the
PacketAvailableButNoContextPriorityPint interrupt.

3. AutomaticPacketDropIntEnable (1)
(a) Default Value: 1
(b) Description: Enables/disables the AutomaticPacketDroplnt interrupt.

4. TimeStampEnable (1)
(a) Default Value: 0
(b) Description: Enables/disables the time stamp of packets. When enabled
and HeaderGrowthOffset is greater than 0, a 4-byte time stamp is appended to

the packet before it is written into the packet memory.

5. PacketErrorIntEnable (1)
(a) Default Value: 0
(b) Description: Enables/disables the PacketErrorInt interrupt.

6. VirtualPageEnable (9x4)
(a) Default Value: all virtual pages enabled for all blocks.
(b) Description: Enables/disables the virtual pages for each of the 4 blocks that
the LPM is divided into. There are up to 9 virtual pages, from 256 bytes

10

15

20

25

30

WO 03/005645

-61-

(enabled by the LSB bit) up to 64K bytes (enabled by the MSB bit), with all

power-of-two sizes in between.

Fig. 22 illustrates the VirtualPageEnable register.

7. OverflowAddress (24)

(a) Default Value: 0x40000 (the first atomic page in the EPM)

(b) Description: the 16 MSB bits correspond to the atomic page number in
packet memory into which the packet that is overflowed will start to be stored.
The 8 LSB are hardwired to ‘0’ (i.e. any value set by software to these bits
will be disregarded). OverflowAddress is then the offset address within the
16MB packet memory. The SIU will translate this offset into the
corresponding physical address into the EPM. The first 1K atomic pages of
the packet memory correspond to the LPM. If software sets the 16 MSB of
OverflowAddress to 0..1023, results are undefined. When a packet is
overflowed, the 16 MSB bits of OverflowAddress become the packetPage for
that packet. The SPU allows the next packet overflow when it writes into this

configuration register.

8. IntIfNoMoreXsizePages (4)

(a) Default Value: 0xF (i.e. the interrupt will never be generated)

(b) Description: Specifies the index of a virtual page (0:256 bytes, 1:512 bytes,
..., 8:64K bytes, 9-15: no virtual page). Whenever the PMMU detects that
there are no more virtual pages of that size in all the LPM, the

NoMoreThanXSizePagesInt interrupt will be generated to the SPU.

9. IntIfLessThanXpacketIdEntries (9)

(a) Default Value: 0
(b) Description: Minimum number of entries in the QS available for new

packet identifiers. If the actual number of available entries is less than this

PCT/US02/20316

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-62-

number, an interrupt will be generated to the SPU. If this number is 0, the

LessThanXPacketIdEntriesInt interrupt will not be generated.

10. DefaultPacketPriority (3)
(a) Default Value: 0 ‘
(b) Description: Provides the priority level for the
PacketAvailableButNoContextInt interrupt when
PacketAvailableButNoContextMapping is 0.

11. ContextSpecificPatternMatchingMask: (8x(32x2))
(a) Default Value:
(1) SelectVector: select all bytes
(2) RegisterVector: store 4 bytes in each register
(EndOfMask is hardwired to 1)
(b) Description: It specifies, for masked load/store operations, which bytes to
load/store and in which (consecutive) registers. Software will guarantee that a

stream only access its corresponding context-specific mask.

Fig. 23 illustrates the ContextSpecificPAtternMAtching mask

configuration register.

12. FirstInputQueue (5)
(a) Default Value: 0
(b) Description: Specifies the smallest number of the queue into which packets

from the PMMU will be inserted.

13. SoftwareOwned (4)
(a) Default Value: 0 (not software owned)
(b) Description: one bit per LPM block. If ‘1°, the block is software owned,
which implies that the memory of the block is managed by software, and that

the VirtualPageEnable bits for that block are a don’t care.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-63 -

14. MaxActivePackets (32x9)
(a) Default Value: 256 for each of the queues.

(b) Description: Specifies, for each queue g, a value between 0 and 256 that
corresponds to the maximum number of packets within queue ¢ that can be
being processed by the SPU.

Fig. 24 illustrates the MaxActivePackets configuration register.

15. CodeEntryPoint (32x30)
(a) Default Value: 0 for each of the queues.
(b) Description: The contents of the CodeEntryPoint register associated to
queue g are sent to the SPU when a context is activated which has been pre-

loaded with a packet that resides in queue g.

16. CodeEntryPointSpecial (30)
(a) Default Value: 0
(b) Description: The contents of this register are sent to the SPU when a

context is activated due to the fact that all the contexts become PMU-owned.

17. Bypass Hooks (9)
(a) Default Value: 0
(b) Description: See Fig. 32. Each bit activates one hardware bypass hook.
The bypass hook is applied for as many cycles as the corresponding bit in this

register is asserted.

18. InternalStateWrite (12)
(a) Default Value: 0
(b) Description: See Fig. 33. Specifies one word of internal PMU state. The
word of internal state will be available to software when reading the
InternalStateRead configuration register. The InternalStateWrite configuration

register is only used in one embodiment to debug the PMU.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-64 -

Read-only Registers

1. SizeOfOverflowedPacket (16)
(a) Default Value: 0
(b) Description: Whenever the PMU has to overflow a packet, this register will

contain the size in bytes of that packet.

2. TimeCounter (64)
(a) Default Value: 0

(b) Description: Contains the number of core clock cycles since the last reset

of the PMU.

The TimeCounter configuration register is illustrated in Fig. 25.

3. StatusRegister (8)
(a) Default Value: 1
(b) Description: Contains the state of the PMU. This register is polled by the
SPU to figure out when the reset or freeze has completed (Freeze and Reset
bits), or to figure out the source of packet error per inbound device identifier
(Err: 1 - error,0 - no error; EPM: 1 - error has occurred while packet is
overflowed to EPM, 0 — error has occurred while packet is being stored in
LPM; PSM: 1 - error due to a packet size mismatch, 0 — error due to a bus

erTor).
Fig. 26 illustrates the StatusRegister configuration register
Interrupts
The PMU can interrupt the SPU when certain events happen. Software can

disable all these interrupts using some of the configuration registers listed above.

Moreover, each stream can individually mask these interrupts, which is the subject of

10

15

20

25

30

WO 03/005645 PCT/US02/20316

- 65 -

a separate patent application. The list of interrupts that the PMU generate are as

follows:

1. OverflowStartedInt
(a) Interrupt Condition: When the PMMU cannot store the incoming packet

into the LocalPacketMemory, it will overflow the packet to the
ExternalPacketMemory through the SIU.
(b)_Disable Condition: OverflowEnable = ‘0’

2. NoMorePagesOfXSizelnt

(a) Interrupt Condition: When no more free virtual pages of the size indicated

in IntIfNoMoreXSizePages are available.
(b) Disable Condition: IntIfNoMoreXSizePages = {10,11,12,13,14,15}.

3. LessThanXPacketIdEntriesInt

(a) Interrupt Condition: When the actual number of available entries in the QS

is less than IntIfLessThanXPacketIdEntries.
(b)_Disable Condition: IntIfLessThanXPacketIdEntries = 0

4. PacketAvailableButNoContextPriorityPint (P=0..7)
(a)Interrupt Condition: When a packet identifier is received by the RTU from

the QS but there is no available context.
(b)Disable Condition: PacketAvailableButNoContextPriority PIntEnable = ‘0’

5. AutomaticPacketDropInt

(a)Interrupt Condition: When a packet cannot be stored in LPM and
OverflowEnable = ‘0’.
(b)Disable Condition: AutomaticPacketDropIntEnable = ‘0’

6. PacketErrorint

10

15

20

25

WO 03/005645 PCT/US02/20316

- 66 -

(a) Interrupt Condition: When the actual size of the packet received from the

ASIC does not match the value in the first two bytes of the ASIC-specific
header, or when a bus error has occurred. '

(b) Disable Condition: PacketErrorIntEnable = 0’

Interrupts to the SPU in this embodiment are edge-triggered, which means that
the condition that caused the interrupt is cleared in hardware when the interrupt is
serviced. This also implies that the condition that causes the interrupt may happen
several times before the interrupt is served by the SPU. Therefore, the corresponding
interrupt service routine will be executed only once, even though the condition that
causes the interrupt has happened more than once.

This behavior is not desirable for some of the interrupts. For these cases, a
special interlock mechanism is implemented in hardware that guarantees that the
condition will not happen again until the interrupt has been serviced.

An example of the special interlock mechanism is the case of the
OverflowStartedInt and PacketAvailableButNoContextPriorityPInt interrupts. In the
first case, when a packet is overflowed, no other packet are overflowed until the
software writes a new address in the on-the-fly configuration register
OverflowAddress. If a packet has been overflowed but the OverflowAddress register
still has not been written by the software, any subsequent packet that would have

otherwise been overflowed because it does not fit in the LPM must be dropped.

For the 8 PacketAvailableButNoContextPriorityPInt (P = 0..7) interrupts, the
PMU architecture implicitly guarantees that no multiple conditions (per each P) will
occur. This is guaranteed by design since:

(a) the PacketAvailableButNoContextPriorityPInt interrupt is only generated
when a packet identifier of RTU priority P arrives to the RTU, and
(b) at most, only one packet identifier with RTU priority P resides in the RTU.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-67-

The other interrupts can suffer from the multiple condition effect. Therefore,
software should not rely on counting the number of times a given type of interrupt

happens to figure out exactly how many times that condition has occurred.

Protection Issues

The architecture of the PMU in the instant embodiment creates the following

protection issues:

1. An stream could read/write data from a packet other than the one it is processing.
An stream has access to all the packet memory, and there is no mechanism to prevent
an stream from accessing data from a totally unrelated packet unless the packet
memory is mapped as kernel space.

2. Since the configuration registers are memory mapped, any stream could update a
configuration register, no matter whether the SPU is in single-stream mode or not. In
particular, any stream could freeze and reset the PMU.

3. Whenever a packet is completed or moved with reactivation, nothing prevents

software from continuing “processing” the packet.

Command Unit (CU)

Software can update some information that the PMU maintains for a given
packet and obtain this information. This is accomplished by software through some
of the new XStream packet instructions referred to above. Some of these instructions
are load-like in the sense that a response is required from the PMU. Others are store-
like instructions, and no response is required from the PMU.

Fig. 27 is a diagram of Command Unit 213 of Fig. 2, in relation to other blocks
of the XCaliber processor in this example, all of which bear the same element
numbers in Fig. 27 as in Fig. 2. The SPU dispatches, at most, two packet instructions
per cycle across all contexts (one instruction per cluster of the SPU). The type of the

packet instruction corresponds to the PMU block to which the instruction affects

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-68 -

(PMMU, QS or RTU). When the SPU dispatches a packet instruction, a single
command to the PMU is generated and inserted into one of three different queues in
the CU block (one queue per PMU block to which the command goes). Commands to
the PMU are issued to PMMU command queue 2703, those to the QS go to QS
command queue 2705, and command to the RTU go to the RTU command queue
2707. Each queue can hold up to 8 commands. The SPU only dispatches a command
to the CU if there are enough free entries in the corresponding queue.

The CU is responsible for dispatching the commands to the respective blocks,
and gathering the responses (if any) in an 8-entry ResponseQueue 2709, which queues
responses to be returned to the SPU. The CU can receive up to three responses in a
given cycle (one from each of the three blocks). Since (a) only one outstanding packet
instruction is allowed per stream, (b) the Response Queue has as many entries as
streams, (c) only one command to the PMU is generated per packet instruction, and
(d) only one response is generated per each load-like command, it is guaranteed that
there will be enough space in the ResponseQueue to enqueue the responses generated
by the PMU blocks. The ResponseQueue should be able to enqueue up to two
commands at a time.

CU 213 also receives requests from SIU 107 to update the configuration
registers. These commands are also sent to the PMMU, RTU and QS blocks as
commands. The PMMU, QS, and RTU keep a local copy of the configuration
registers that apply to them. The CU keeps a copy as well of all the configuration
registers, and this copy is used to satisfy the configuration register reads from the SIU.

For read-only configuration registers, a special interface is provided between the
CU and the particular unit that owns the read-only configuration register. In
XCaliber’s PMU, there exists two read-only configuration registers: one in the
PMMU block (SizeOfOverflowedPacket) and the other one in the CU block
(StatusRegister). Whenever the PMMU writes into the SizeOfOverflowedPacket
register, it notifies the CU and the CU updates its local copy.

Commands in different queues are independent and can be executed out of order
by the PMU. Within a queue, however, commands are executed in order, and one at a

time. The PMU can initiate the execution of up to 3 commands per cycle. The

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-69 -

PMMU and QS blocks give more priority to other events (like the creation of a new
packetPage when a new packet arrives -PMMU-, or the extraction of a packet
identifier because it needs to be sent out —QS-) than to the commands from the SPU.
This means that a command that requests some data to be sent back to the SPU may
take several cycles to execute because either the PMMU or QS might be busy
executing other operations.

RTU 227 has two sources of commands: from the QS (to pre-load packet
information into an available context) and from the SPU (software command). The
RTU always gives more priority to SPU commands. However, the RTU finishes the

on-going context pre-load operation before executing the pending SPU command.

Command/response formats

A command received by the CMU has three fields in the current embodiment:
1. Context number, which is the context associated to the stream that generated the
command.
2. Command opcode, which is a number that specifies the type of command to be
executed by the PMU.
3. Command data, which is the different information needed by the PMU to execute

the command specified in the command opcode field.

The PMU, upon receiving a command, determines to which of the command
queues the command needs to be inserted. A command inserted in any of the queues
has a similar structure as the command received, but the bit width of the opcode and
the data will vary depending on the queue. The table of Fig. 28 shows the format of
the command inserted in each of the queues. Not included are the Read Configuration
Register and Write Configuration Register commands that the CU sends to the
PMMU, QS and RTU blocks.

Each command that requires a response is tagged with a number that

corresponds to the context associated to the stream that generated the command. The

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-70 -

response that is generated is also tagged with the same context number so that the
SPU knows to which of the commands issued it belongs.

As described above, there is only one ResponseQueue 2709 (Fig. 27) that
buffers responses from the three PMU blocks. Note that there is no need to indicate
from which block the response comes since, at most, one packet instruction that
requires a response will be outstanding per stream. Therefore, the context number
associated to a response is enough information to associate a response to a stream.

Fig. 29 is a table showing the format for the responses that the different blocks
generate back to the CU. Not included in the table are the configuration register
values provided by each of the blocks to the CU when CU performs a configuration
register read.

The RTU notifies the SPU, through a dedicated interface that bypasses the CU
(path 2711 in Fig. 27), of the following events:

1. A masked load/store operation has finished. The interface provides the context
number.

2. A GetContext has completed. The context number associated to the stream that
dispatched the GetContext operation, and the context number selected by the RTU is
provided by the interface. A success bit is asserted when the GetContext succeeded;
otherwise it is de-asserted.

3. A pre-load either starts or ends. The context number and the priority associated to

the packet is provided to the SPU.

Reset and freeze modes

The PMU can enter the reset mode in two cases:
1. SPU sets the Reset configuration flag.
2. XCaliber is booted.
The PMU can also enter the freeze mode in two cases:
1. SPU sets the Freeze configuration flag.
2. PMU finishes the reset sequence.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-71-

The reset sequence of the PMU takes several cycles. During this sequence, the
Reset bit in the StatusRegister configuration register is set. After the reset sequence,
all the configuration registers are set to their default values, and the PMU enters the
freeze mode (the Reset bit in the StatusRegister is reset and the Freeze bit is set).
When this is done, the SPU resets the Freeze configuration flag and, from that time
on, the PMU runs in the normal mode.

When the SPU sets the Freeze configuration flag, the PMU terminates the
current transaction or transactions before setting the Freeze bit in the StatusRegister.
Once in the freeze mode, the PMU will not accept any data from the network input
interface, send any data out through the network output interface, or pre-load any
packet

The PMU continues executing all the SPU commands while in freeze mode.

The SPU needs to poll the StatusRegister configuration register to determine in
which mode the PMU happened to be (reset or freeze) and to detect when the PMU
changes modes.

The CU block instructs the rest of the blocks to perform the reset and the freeze.
The following is the protocol between the CU and any other block when the CU
receives a write into the reset and/or freeze configuration bit:

1. The CU notifies to some of the blocks that either a freeze or a reset needs to be
performed.

2. Every block performs the freeze or the reset. After completion, the block signals
back to the CU that it has completed the freeze or reset.

3. The CU updates the StatusRegister bits as soon as the reset or freeze has been
completed. Software polls the StatusRegister to determine when the PMU has

completely frozen.

The different blocks in the PMU end the freeze when:
1. IB, LPM, CU and QS do not need to freeze.
2. As soon as the PMMU finishes uploading inbound packets, if any, and

downloading outbound packets, if any.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-7 -

3. As soon as the RTU has finished the current pre-load operation, if any.

4. As soon as the OB is empty.

While in freeze mode, the blocks will not:

1. start uploading a new packet; start downloading a completed packet; or generate
interrupts to the SPU (PMMU)
2. pre-load a context or generate interrupts to the SPU (RTU).

If software writes a ‘1’ in the Freeze/Reset configuration register and then
writes a ‘0’ before the PMU froze or reset, results are undefined. Once the PMU

starts the freeze/reset sequence, it completes it.

Performance Counters Interface

The PMU probes some events in the different units. These probes are sent to
the SIU and used by software as performance probes. The SIU has a set of counters
used to count some of the events that the PMU sends to the SIU. Software decides
which events throughout the XCaliber chip it wants to monitor. Refer to the STU
Architecture Spec document for more information on how software can configure the
performance counters.

Fig. 30 shows a performance counter interface between the PMU and the STU.
Up to 64 events can be probed within the PMU. All 64 events are sent every cycle to
the SIU (EventVector) through a 64-bit bus.

Each of the 64 events may have associated a value (0 to 64K-1). Software
selects two of the events (Event4 and EventB). For each of these two, the PMU
provides the associated 16-bit value (EventDataA and EventDataB, respectively) at
the same time the event is provided in the EventVector bus.

Events are level-triggered. Therefore, if the PMU asserts the event for two

consecutive cycles, the event will be counted twice. The corresponding signal in the

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-73-

EventVector will be asserted only if the event occurs, and for as many cycles as the
event condition holds.

The SIU selects which events are actually counted (based on how software has
programmed the SIU). If the SIU decides to count an event number different from
EventA or EventB, a counter within the SIU counts the event for as many cycles the
corresponding bit in the EventVector is asserted. If the events monitored are EventA
and/or EventB, the SIU, in addition to counting the event/s, increments another
counter by EventDataA and/or EventDataB every time the event occurs.

Fig. 31shows a possible implementation of the internal interfaces among the
different blocks in PMU 103. CU acts as the interface between the PMU and SIU for
the performance counters. CU 213 distributes the information in EventA and EventB
to the different units and gathers the individual EventVector, EventDataA and
EventDataB of each of the units.

The CU block collects all the events from the different blocks and send them to
the SIU. The CU interfaces to the different blocks to notify which of the events
within each block need to provide the EventDataA and/or EventDataB values.

Performance events are not time critical, i.e. they do not need to be reported to

the SIU in the same cycle they occur.

Figs. 34 through 39 comprise a table that lists all events related to performance
counters. These events are grouped by block in the PMU. The event number is
shown in the second column. This number corresponds to the bit in the EventVector
that is asserted when the event occurs. The third column is the event name. The
fourth column shows the data value associated to the event and its bit width in
parentheses. The last column provides a description of the event.

The CU block collects all of the events from the different blocks and sends them
to the SIU. The CU interfaces to the different blocks to notify which of the events
within each block need to provide the EventDataA and the EventDataB values.

Performance events are not time critical, i.e. they do not need to be reported to

the SIU in the same cycle that they occur.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-74 -
Debug Bypasses and Trigger Events
Hardware debug hooks are implemented in the PMU to help debugging of the

silicon. The debug hooks are divided into two categories:

1. Bypass hooks: will bypass potentially faulty functions. Instead of the faulty results

generated by these functions (or, in some cases, no result at all), the bypass hook will
provide at least some functionality that will allow other neighboring blocks to be
tested.

2. Trigger events: when a particular condition occurs in the PMU (trigger event), the

PMU will enter automatically in single-step mode until, through the OCI Interface
(Section), the STU sends a command to the PMU to exit the single-step mode.

Moreover, the PMU has the capability of being single-stepped. A signal
(SingleStep) will come from the OCI Interface. On a cycle-by-cycle basis, the
different blocks of the PMU will monitor this signal. When this signal is de-asserted,
the PMU will function normally. When SingleStep is asserted, the PMU will not
perform any work: any operation on progress will be held until the signal is de-
asserted. In other words, the PMU will not do anything when the signal is asserted.
The only exception to this is when a block can lose data (an example could be in the
interface between two block: a block A sends data to a block B and assumes that
block B will get the data in the next cycle; if SingleStep is asserted in this cycle, block
B has to guarantee that the data from A is not lost).

Bypass hooks

The different bypass hooks in the PMU are activated through the on-the-fly
BypassHooks configuration register. Fig. 40 is a table illustrating the different bypass
hooks implemented in the PMU. The number of each hook corresponds to the bit
number in the BypassHooks register. The bypass hook is applied for as many cycles

as the corresponding bit in this register is asserted.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-75-

Trigger Events

The following is a list of trigger events implemented in the PMU.

1. A new packet of size s bytes is at the head of the IBU.
(a) s = 0: any packet.
2. A packetld from source s with packetPage pp is inserted in queue g in the QS.
(a) s =0: PMM, s =1: QS, s =2: CMU; s =3: any
(b) pp =0x10000: any
(c) g=33:any
3. A packetld from queue g with packetPage pp and packetNumbet pn is sent to RTU.
(a) pp = 0x10000: any
(b) g=33: any
(c) pn =1256: any
4. A packetld with packetPage pp and packetNumber pn reaches the head of queue g
in the QS.
(a) pp = 0x10000: any
(b) g=33: any
(c) pn =256 any
5. A packet with RTU priority p and packetPage pp and packetNumber pn is pre-
loaded in context c.
(a) pp = 0x10000: any
(b) g =33: any
(c) pn =256: any
(d) c=8: any
6. A packetld from queue g with packetPage pp and packetNumber pn is sent for
downloading to PMM.
(a) pp = 0x10000: any
(b) g =33: any
(c) pn = 256: any

5

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-76 -

7. A packetld with packetPage pp and packetNumber pn reaches the head of queue ¢

in the QS.
(a) pp = 0x10000: any
(b) g =33: any

(c) pn = 256: any

8. Packet command pc is executed by block b.
(a) pc = 0: GetSpace; pc = 1: FreeSpace; pc = 2: InsertPacket; pc = 3:
ProbePacket; pc = 4: ExtractPacket; pc = 5: CompletePacket; pc = 6:
UpdatePacket; pc = 7: MovePacket; pc = 8: ProbeQueue; pc = 9: GetContext,
pc = 10: ReleaseContext; pc = 11: MaskedLoad; pc = 12: MaskedStore; pc =
13: any

(b) 5=0: RTU; b= 1: PMM; b=2: QS; b = 3: any

Detailed Interfaces with the SPU and SIU

The architecture explained in the previous sections is implemented in the

hardware blocks shown in Fig. 41:
SPU-PMU Interface

Figs. 42 - 45 describe the SPU-PMU Interface.
SIU-PMU Interface

Figs. 46-49 describe the STU-PMU Interface.

The specification above describes in enabling detail a Packet Memory Unit
(PMU) for a Multi-Streaming processor adapted for packet handling and processing.
Details of architecture, hardware, software, and operation are provided in exemplary

embodiments. It will be apparent to the skilled artisan that the embodiments

described may vary considerably in detail without departing from the spirit and scope

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-77-
of the invention. It is well-known, for example, that IC hardware, firmware and

software may be accomplished in a variety of ways while still adhering to the novel

architecture and functionality taught.

Non-Speculative Pre-Fetch Operation

In another aspect of the present invention, the inventor provides a method and
apparatus that enables a non-speculative pre-fetch of processing instructions
performed by the SPU upon early notification from the PMU that a context has been
selected for processing and that preloading of the context will begin. Such a method
and apparatus is described in enabling detail below.

Fig. 50 is a block diagram illustrating various elements and interaction
between elements in performance of a non-speculative pre-fetch operation according
to one embodiment of the present invention.

Referring to S/N 09/737,375 listed as a priority document in the cross-
reference section above, there is disclosed a general method for selecting a context,
pre-loading the context with packet information, and then releasing the context to the
SPU for processing. The headings under which the disclosure is made are Register
Transfer Unit (RTU), Context States, and Pre-loading a Context.

Because a context being pre-loaded for packet processing is always a PMU-
owned context, the RTU has all the available write ports to that context to perform the
loading of packet information. It is disclosed above under the heading Pre-loading a
Context that whenever the pre-loading operation starts, the RTU notifies this event to
the SPU through a dedicated interface. Similarly, when the pre-loading operation is
completed, the RTU also notifies the SPU of this fact. Thus the SPU expects two
basic notifications (start and end) for each packet pre-load operation. A special
notification is provided to the SPU when the RTU starts and ends a pre-load in a same
cycle.

In the instant example referring to Fig. 50, a packet management unit (PMU)

5102 is provided having a register transfer unit (RTU) 5103 illustrated therein, the

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-78 -

RTU having a software-configurable hardware table (T) 5104 available thereto. PMU
5102, more specifically through RTU 5103, has a dedicated communication link 5106
established between itself and streaming processor unit (SPU) 5107. SPU 5107 is
adapted to process the packets using instructions that are pre-fetched in embodiments
of the present invention.

SPU 5107, in a preferred embodiment, is connected to an instruction cache
memory 5109, which is adapted to store, among other data, first instructions of
threads for processing data, and in some cases sequential instructions for specific
threads. Connection from SPU 5107 to cache 5109 is logically represented herein by a
link 5108. Storing the first instruction of a thread in an on-chip instruction cache is
not required for the invention, as the first instruction can be anywhere in memory,
even on a disk, but it is a convenience and preferred to have the instructions stored as
close as possible to the processing core. In an embodiment of the present invention
packets arriving for processing are staged in queues according to packet types, and a
specific thread is associated with each packet type for processing. In this embodiment
of the invention a table 5104 associates queues (packet types) to specific threads
needed for processing by a program counter (PC) pointer, indicated in Fig. 50 as PC#
and element 5105. PC# 5105 is not to be confused with a packet command (pc)
disclosed with reference to S/N 09/737,375 under the heading Trigger Events.

A cluster 5101 of contexts and functional resources generic to the processing
core of SPU 5107 is illustrated in this example. Functional resources are circuitry
required to perform calculations such as multiplication, division, addition and
subtraction. There may also be special functions such as trigonometric, averaging,
and weighting functions performed by functional units, and memory access functions
as well. Contexts are well known in the art, and are register files into which, in this
case, packet information is loaded prior to processing. The illustration of contexts and
resources is exemplary only in this example, as there may be different numbers of
each, and there is generally not a one-to-one correspondence between resources and
functional units.

It is the responsibility of PMU 5102 through RTU 5103 via link 5106 to select

available (not SPU-owned) contexts in cluster 5101 for preloading packet information

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-79.

thereto for processing by SPU-5107 and to activate those selected and loaded
contexts, at which time SPU 5107 will own the activated contexts until processing is
complete. It is noted herein that any context in cluster 5101 may issue instructions
only to the functional resources within that cluster. When SPU 5107 finishes
processing a thread it releases the context back to PMU 5102.

Table 5104 contains a PC # 5105 for each of the different queues into which
packets can be classified by the PMU. PC# 5105 represents, in a preferred
embodiment, the cache memory address of the beginning of its corresponding thread.
In other embodiments the PC may point to an address for a first instruction for a
thread in any memory device available to the processing core. It is noted herein that
in a preferred embodiment there are 32 queues available for storing identifiers of data
packets. The number of 32 is not meant to be a limitation, as there could be more or
less than 32 queues provided and made available in various configurations. In
practice of the invention a packet arrives for processing and is en-queued into one of
the 32 available queues according to a classification scheme which may include
priority. The scheme in a preferred embodiment revolves around packet type. For
example, a voice-over-Internet protocol (VoIP) packet may be assigned a higher
priority than an e-mail packet. Therefore, the VoIP packet will be en-queued in one of
the 32 queues of higher number, perhaps queue 32 if VoIP packets are assigned the
highest priority in a particular scheme, which may be varied according to enterprise
design. In fact, there are more than one type of VoIP packets that may be encountered
and they may differ somewhat from each other in exact instruction types required to
process them. Therefore, there may be more than one queue dedicated for VoIP
packets of differing types. It may be that queue numbers 29-32 are dedicated to the
range of VoIP packets encountered. Other types of data packets encountered are
similarly queued according to type and priority level of processing.

Each queue has associated with it a corresponding PC# 5105. When RTU 5103
selects an available context from within cluster 5101 for processing a newly arrived
data packet, it sends a notification of the fact to SPU 5107 over dedicated link 5106.
This notification contains the correct PC # (associated to the queue) for that queue.

The PC# identifies the beginning memory location or address of the appropriate

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-80 -

thread for processing stored in instruction cache 5109 in a preferred embodiment, or
the address for a first instruction for a thread in any other memory device in
alternative embodiments. The SPU will be able to fetch and execute from that point
on all of the instructions of which the thread is composed. A thread ends with a
special instruction (called release) that effectively send the ownership of the context
the stream is running, back to the PMU by notification via link 5106.

Immediately after the first notification that a context has been selected for
processing, RTU 5103 begins loading packet information into the selected context for
processing. Simultaneously, in this embodiment, SPU 5107 fetches the appropriate
instruction thread from cache 5109 over link 5108 using PC# 5105 as a pointer. After
loading the selected context with the appropriate data for processing, RTU 5103 sends
a notification of activation of the context to SPU 5107 over link 5106. SPU 5107,
assuming that it has completed the pre-fetch, may then commence processing. In
some cases, particularly those cases in which there is no instruction cache, and the
thread must be fetched from a more distant memory, the pre-fetch may take longer
than the loading of the context. In one embodiment, a special packet identification
thread is provided to handle a possible situation wherein a packet sender does not
include information designating the type of data packet and/or the appropriate queue
destination. In this case, the un-identified packet is en-queued into a general queue set
aside for this purpose. This general queue has a PC# associated therewith and
included in table (T) 5104. Thus when a context is selected for processing the packet
by RTU 5103, the notification to SPU contains the PC# pointing to the special packet-
type identification instruction (the start of the thread) stored in cache 5109, in a
preferred embodiment. The SPU pre-fetches the special thread as described in the
normal sequence above. During processing, the special thread will determine the
exact packet type and the appropriate queue that it should be placed in. At this time
the packet is re-queued in the appropriate queue, after which a new context is
subsequently selected and re-notification to SPU 5107 is initiated, or the special
thread might decide to process the packet itself.

The special circumstance described above needs only be performed on a first

data packet of a data packet flow from a same source. The determined classification

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-81-

information (appropriate queue for packets of this flow) can be tabled by SPU 5107
within T 5104 and sent back to RTU 5103 so that a next packet of the same flow can
be properly classified and information about the packet can be en-queued in the
appropriate queue. If for example, the unclassified packet was determined to be a
type not accounted for in terms of existing instruction threads, then a determination
may be made to create a new thread, assign a PC# and queue to handle the new packet
type. In still another embodiment, a special hardware mechanism is provided at the
port for intercepting un-classified data packets. The hardware has its own queue and
associated PC# and is enhanced with a processing capability and functional resources
to at least identify the packet independently from the SPU. After the packet is
classified by the hardware, it is looped back to ingress for proper queuing according to
priority.

Referring to the first and preferred embodiment described above, it may be that
SPU 5107, while processing an unclassified packet for identification, will find that the
determined priority of the packet is not high and that there are numerous packets
waiting for processing that are classified and of a higher priority. In this case, an
interrupt is generated to cease processing the packet and release the context back to
the PMU without re-queuing the packet. The packet can remain in the general queue
until the higher priority packets are processed. This, of course assumes that the SPU
has knowledge of multiple-queued packets before processing, information which can
be propagated over link 5106 from RTU 5102 within T 5104.

Because all packets are queued by type, and each queue is associated with a
unique PC# pointing to an address for the beginning of an appropriate thread stored in
cache 5109, or in another memory device, SPU 5108 is enabled to perform a non-
speculative pre-fetch, thus assured that the instructions retrieved are the actual
instructions required for processing.

Fig. 51 is a process flow chart illustrating steps for implementing a non-
speculative pre-fetch operation according to an embodiment of the present invention.
At step 5201 a data packet arrives for processing. As previously described above
there are 32 available queues in a preferred embodiment wherein information

pertinent to the data packet may be placed according to class and priority. Each queue

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-82-

has an associated program counter (PC#) that points to an address in memory for the
beginning of a specific thread required to process the data packet.

Time is indicated in Fig. 51 on a vertical axis, activities of the RTU are
indicated on the left of the figure, and activities of the SPU are indicated on the right
of the figure. At step 5202, the RTU selects an available (not SPU-owned) context
and notifies the SPU that the particular context will be activated for processing. In the
notification at step 5202, the PC# is provided from the association with the queue for
the packet, indicating the address for the first instruction for the thread to process the
packet.

Upon receipt of the notification from the RTU at step 5202, the SPU may begin
pre-fetching the appropriate thread. At substantially the same time the RTU, at step
5203, begins loading packet information into the selected context. At step 5205,
loading is complete, and the RTU notifies the SPU and releases (activates) the
context.

There are two necessary conditions for the SPU to process the data in the
context. One is that the RTU releases the context, and notifies the SPU. The other is
that the SPU has loaded the first instruction of an appropriate thread for processing.
Either condition may finish first, so, in one case the SPU will wait for the RTU, and
begin processing as soon as the release notification arrives from the RTU; while in the
other case the SPU will receive the notification from the RTU, but will finish loading
the appropriate thread before beginning to process at step 5208.

The optional situation is indicated in Fig. 51 by alternate paths for the SPU. IN
one case the SPU finishes pre-fetch at step 5206 before the RTU finishes loading, and
the SPU must therefore wait for the loading to finish, and for the notification from the
RTU before processing may commence. In the other option, shown as step 5207, the
notification from the RTU arrives before the SPU finishes pre-fetch, so the SPU
continues, and processing may commence at step 5207 when the pre-fetch is finished.

The present invention is particularly applicable to the processing of data packets
by data packet routers connected to a data packet network. However, this should not

be construed as a limitation of the present invention. Other types of data processing

WO 03/005645 PCT/US02/20316

-83-

machines such as Internet data servers, e-mail servers, and so on may benefit from the
present invention.
Accordingly the claims that follow should be accorded the broadest interpretation.

The spirit and scope of the present invention is limited only by the claims that follow.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-84 -
What is claimed is:
1. In a data-packet processor, a system for non-speculative pre-fetching, comprising:

a processing unit having a first portion for processing the data packets, using
instruction threads specific to packet type, and a second portion comprising a pool of
context registers and functional units for processing;

a packet-management unit (PMU) for managing data packets of different types
received for processing, including selecting and loading the context registers;

a memory storing at least an initial instruction of instruction threads; and

a table equating packet types with pointers to memory locations for the at least
first instructions of instruction threads specific to the packet types;

characterized in that the PMU selects a context from the pool of contexts for
processing of a data packet, the table is consulted for the pointer, and the pointer is
provided to the processing unit first portion, enabling the processing unit first portion
to prefetch at least an initial instruction for the packet to be processed at least

partially in parallel with loading of the context.

2. The system of claim 1 wherein the second portion of the processing unit comprises

separate clusters, each cluster comprising contexts and functional units.
3. The system of claim 1 wherein the table is in the PMU.

4. The system of claim 1 wherein the processor is a dynamic multi-streaming

processor.

5. The system of claim 1 wherein the memory holding at least a first instruction of

the instruction threads is an on-chip instruction cache memory.

6. The system of claim 1 wherein the memory holding at least a first instruction of

the instruction threads is an off-chip memory.

10

15

20

25

30

WO 03/005645 PCT/US02/20316

-85-

7. The system of claim 1 wherein data packets to be processed are stored in queues
according to instruction threads required to process the packets, and wherein the

queue from which a packet arrives for processing indicates the packet type.

8. In a data-packet processor having a first portion for processing data packets, using
instruction threads specific to packet type, and a second portion comprising a pool of
context registers and functional units for processing, a method for accomplishing pre-
fetch of at least a first instruction for processing, comprising steps of:

(a) selecting, by a packet-management unit (PMU), an available context for
loading information for processing a packet ready for processing;

(b) consulting a table relating packet type for the packet ready to be processed
to a pointer to a memory location for at least a first instruction of an instruction thread
to process the packet;

(c) providing the pointer to the first portion; and

(d) pre-fetching the at least first instruction of the thread to process the data
packet, at least partially in parallel with loading the context.

9. The method of claim 8 wherein the second portion of the processing unit comprises

separate clusters, each cluster comprising contexts and functional units.

10. The method of claim 8 wherein the table is in the PMU.

11. The method of claim 8 wherein the processor is a dynamic multi-streaming

processor.

12. The method of claim 8 wherein the memory holding at least a first instruction of

the instruction threads is an on-chip instruction cache memory.

13. The method of claim 8 wherein the memory holding at least a first instruction of

the instruction threads is an off-chip memory.

WO 03/005645 PCT/US02/20316

-86 -

14. The method of claim 8 wherein data packets to be processed are stored in queues
according to instruction threads required to process the packets, and wherein the

queue from which a packet arrives for processing indicates the packet type.

PCT/US02/20316

WO 03/005645

1/55

I ‘31

(NIS) nun oejrou] wANsAS LOT

(nds)
nun
I0SS9001d
Surwreang

SO1

(NN
nmun

Io8euey
19308d

€0T

19q11eDX

/ﬁoﬁ

WO 03/005645 PCT/US02/20316
2/55
In Out
T o Network/Switching Fabric Interface S
2L o 9
5 3 5
A A a A
203 /
201

205

Network In

/

16 Bytes¢ ¢/ Deviceid

215

N

217 Deviceid T ¢ 16 Bytes

Network Out

Fig. 2

/- In Buffer \\ Out Buffer
IB
207 L) 219 (OB) Y}
¢/ /209 \ ¢
Paging > | Local Packet
Memory ¢ > ~ i Memory
Management - 213 (LPM)
. @)
Unit \ = / A
(PMMU) S~ 5 221
211 [~~< [
N RS
Queueing g |---- Cogﬁg.
System g > Registers
(QS) © I
\ A |
1
107 i
A ! \ \
System Interface Unit (SIU) —.T—)
0
1
105~ ¢ N v ¢ system
) , Register Transfer Unit (RTU) SRAM
Stream Processing Unit va \ CAM
(SPU) ¢ 229 227
Contexts |/

PCT/US02/20316

WO 03/005645

3/55

LOI
./

£ 81

19Jsuen) VNG weidold
AIS P 60¢
< -
prasIAsg .
SsaIppyVy | 2qons - AN
MIM | SIIM v §S3IppV o1e)S peordn 1991A2Q
SMIM s1e)g peofd() 030142

< <

=2

< a

A
aqons
WA N ALIM P1odIA9p
S)11q [0HU0d
oorJIUI
oul] 2149-91) et
av] T
&
JyI0MIU
> woij ered
\ 0URADPY
So¢ 61¢

L0T k dl

PCT/US02/20316

WO 03/005645

4/55

a8ed o1WOLY ISI1
popaaN seded otwoyy €—

#3901d

HSNA

Block Selection

vy 3L

1.1 £3¥00Id

TeA

pauM(Q 21em)JOS

eIS TR0

«—(om) <

pauUMQ 2IeM]JOS

S1eIS 1¥P0Id

«— (o) <

pauM(Q) aIemijos

1S 0%oold

<« (om) <

pauM(Q d1eMYOS

61¢C

INd'1

q2179

a179

a9

a>1r9

PCT/US02/20316

WO 03/005645

5/58

qp ‘811

<— X X
Xopuj
IZISJA €— <— oo
&SN
< °ee 96T
_
. o
o ®
o ®
®
o
® L A
L J
° 9
] _l_l_\ S
v
\ m
z
_ I
(YY) 0 Av \
"Sd [enIIA "3d [BNMIA ‘S [enMIA 3d [ENMIA [310019
N\ 89 a1 kg 71 kg 96T 4 (s21£q 9¢7)

XLIJBJA] UOTIBOO[[Y

»7

Y

oFed [enIA g3 T

9z1§ 98k J1WOIY

Nl
7N

AN
»

A
T~

SEADIT AT

WO 03/005645

6/55

Packet of 256 bytes

Block 0

AtomicPage
<>

[« Y LV, B JUSE | O] L Le)

/)

AtomicPage
<>

Fits Vector
Index Vector
Enable Vecdtor

Allocation Matrix

256-byte
VirtualPage

512-byte
VirtualPage
1KB

VirtualPage
2KB
VirtualPage

l
N

00O
N
AtomicPage

HEEREE

“

2] [0]
vl v]

)
Y
6.
N

Packet of 512 bytes

Block 0

N~ O

3

4/]

’2////,

10X

Fits Vector
Index Vector
Enable Vecdtor

Allocation Matrix

irtualPage

irtualPage
2KB
Bvi

1KB

VirtualPage

Ovi

BN OO
&

v| [Y] Y]
1] [o]
v] N [N

Block 1

<>

NN | BN = o

Fits Vector
Index Vector
Enable Vecdtor

Block 1

PCT/US02/20316

Allocation Matrix

rtualPage
2KB

512-byte

VirtualPage
1KB

Uvi
]

256-byte
VirtualPage
VirtualPage

O0oad
[

R LI ITTT T

] [v] [¥]

Allocation Matrix

256-byte
512-byte
VirtualPage
1KB
irtualPage
2KB
irtualPage

(v
Clv

<>

AtomicPage

[

OO0 0O

~N | AN B]WIN = O

Fits Vector
Index Vector
Enable Vecdtor

Fig. 5a

R LI T T[] |VitualPage

WO 03/005645
7/55
Packet of 1IKB
Block 0 Allocation Matrix
Q (0]
TSI PEAY
52 22 0385
RESETENE
g s > 5
Salo 1O O
[—
o
22 | [
z XX X B
4
5 XX
6 3
(155 XN

Fits Vector
Index Vector
Enable Vecdtor

Zlol<] &

Packet of 512 bytes

Allocation Matrix

Block 0

£ Al

ir
Nl osss
3/ /S
%%
5 XX

6
%%

Fits Vector
Index Vector
Enable Vecdtor

256-byte
VirtualPage

512-byte
VirtualPage

Zll<] & BN |]

B8N O

<]o]<

1KB

VirtualPage

Zle <]
=]

N

&

- |

KB

2
rtualPage

& vi

AtomicPage

[N]

AtomicPage

<>

«—>

PCT/US02/20316

Block 1 Allocation Matrix
(0] [] Q
LS e nE
25 2505 873
BESETECE
> > >
0 O O &z
1
2]
3
4/ /1 A (4]
7777 1)
077 7) 1) 1
vV /A .
Fits Vectorz
Index Vector| 3
Enable Vecdtor [N
Block 1 Allocation Matrix
(0] D)) (]
R g
= B a IS @ g
GESETER
QERE A=
=rs s =
0] O &
1
2]
3
:‘S‘X)SM K B
% %% &3
TXAOX
Fits Vector

Index Vector
Enable Vecdtor

Fig. 5b

<o l<]

z]=]<
<]

PCT/US02/20316

WO 03/005645

8/55

Allocation Matrix

oBedrenmuiA p

IT
o3edremap
a1

aedreniiA
249-716

oedreniip
9149-967

Scenario A

d..
X

L]

| X X
e

AN
RS

O|—| NN

(AXIOO] B

(IR B

<«
oBegoruory

Fig. 6a

Allocation Matrix

a3edemaA
aIe

oFeqreniip
€Il

a3ed[enaiA
24q-TIS

o3edrenuarA
3149-967

Scenario B

Oj—| NN

<>
adeJorwory

Fig. 6b

WO 03/005645 PCT/US02/20316
9/55

Data to the
T Network

OB Output Interface

21
[

> |

211 EarlyFull0, EarlyFulll H
\ Data

Devl
Control T 16-byte pevo
QS bits line
I |
16-byte 16-byte
PacketPage 219 line line
Priority
(+other info)
£ PMMU Read 701
8= Strobe o
LS B
Device0 Download State Read
Devicel Download State Addres; LPM EPM
209 j
Read Read
Strobe Address
—>
S1U
>

\107

Fig. 7

PCT/US02/20316

WO 03/005645

10/55

Packet Memory

PacketPage << 8

9ZIg Ten1o
< IST \'4

(s2149 0%2-0)

|

>

(s2149 8001-0)

séo&a&%ﬁm N JPSPOYIMOIDIIEL
<«l>< >« >

16 bytes

A
<
m m A4 =
S | |5 1|3
v aw M o
<—eo1—> a
< 4 >
< o3edeniaip oo >
< >
91B20[[e Sa8e Jo1WO0)
¢ 3 |% Il doruoly
(52149 957)
0z1538e Jo1OL Y

Fig. 8

PCT/US02/20316

WO 03/005645

11/55

6 ‘Sid

(1opeoy
‘raqunNpoyoed
‘o3eq1oyoed)

1X91U0d
ozIreniu]

SIXAINOD ¢ ONR

622 \ 1X31U0D

$530014 a3eq1oord maN

nds p > SO

~

LTC

e qyonpoed
peojumo(d

>

<

) _/ pqunpjaoed 11z .\
uo 9erxdp

NN

prooiA9p ‘yenanb
‘98eq1ovoed ananbuyg

/ 60¢

PCT/US02/20316

WO 03/005645

12/55

sananb fo Suriaisny)y 1 ‘St

{rer{11o}

(43

{icoet - {e¢cr{1'o}

91

AMM?.RWNW?.R*M?.ROM

AMMh.:nvan...nAN\A.-.nov

Aﬂma...awﬂ whﬁﬁmﬁnnokv

91

{rec- o}

(43

0

I2)1sn[d Yyoed ur sanan)

I91sn]o0 / sonanb #

SI9)SNJO #

s19isny) AjLionig

PCT/US02/20316

WO 03/005645

13/55

24NJIINYILY SUIINING I14oU2L) [Sl

011

€011

Buronanb-a1 10§
Anuo 309198

Burpeo[umop 10j
A1yua 199[98

[QRR: M
Anua 199195

<«—— peoy <«— pesy <«— peay
[X N) [X N o000
— N3 b NIy 104 < N1y 10}
IOORJIXON e e e JSOEJIXIN N 1008 IXON
eoe oo /| eee
<«— Jie] <« (L D SN LA
L€ @nanQ) I snond) . ! 0 2nand)
oo
parejduio) ™
farond proo1Ad(] |ee(|J| anend) 1xaN | sSeqiosoed %mw alviala
1011 H % % _
paqoig
NdS NWINd \ AL
SO woxy woy woly sott m.w N
RN | Masu jaasuy 20edg§ dad)y]

PIBA

PCT/US02/20316

WO 03/005645

14/55

ZI s1d

pasq] 10N

IS1IIUaP] adIA(J punoquy

0

ISLNUIP] 991A(] punoqmmQ

P91 PIodIASpUNOqU]

PCT/US02/20316

WO 03/005645

15/55

£I 81

T<<#IASND 10 T<<fanan

(43

[<<#IASN[D 10 Z<<Honand

91

#IAISN[D 10 T<<onan)

#I91SN[D IO g<<gonand

#191SN[D) 10 p<<#aNaNQ)

(0 sAempe "9°'1) #19ISN[D 10 G<<HINANY

0

Auoud NILY

SI9)ISN[O #

S191SN[DAIIOLIJ

PCT/US02/20316

WO 03/005645

16/55

pI Sid

ADADN

ADADN

"1o0ed paqoid e uo uornerado eANIBIYPUYIAON
e 10176 uadey Aew 9jels SIY], ‘NJS Y1 Aq passadoad Suraq 10U ST 19)08d

(1oyoed mau ® "9'1) NININ QY AQ paMIasul St
1930rd oY) 19)3e 10 ‘Jo3ord paqoid-10u B UO UONEISdO JJBANIBIYPUYSAOIA
e 101ye uaddey Aew 9ye)s SIYL ‘NS Yl AqQ passadoad 3uraq si 1axoed

ADADN

(1ou 10 paqoid 2q ued) NJS 2y Aq passaooid Furaq st 1o30ed

(3ou 10 paqoid A[snoraaid ussq aaey p[nod) paja[durod st joxoed

ADADN

19308 J U} JO 9)elS

WO 03/005645

Submask

0

23

24

31

17/55

Pattern Matching Table

(Select Vector)

(Register Vector)

Global

Per Stream

PCT/US02/20316

! EndOfTask

O

PCT/US02/20316

WO 03/005645

18/55

91 ‘314

L Ysewqug

®

o

° ® o ©
¢ Ysewqng

1
I Jsewqng P \ . . h
oxzs\vsgLsamnauwgmummwnaanq%nmamw

JSE1IJOPU 0

J0)09 A 19)SI3aY

10199 A 199[°S

PCT/US02/20316

WO 03/005645

19/55

1X91U0))

L

Joquinppoxoed

(¥ >> 19SOUMOIDISPESH)
(8 >> o3ed1oNded)

LI 81

| R3

€ + 1915139y Surpeo RIS
T + 1915139 Suipeo LIS
I + 1915139y SuiproTieIS

19)S139y SurpeoTHRIS

|
0934q " 1 94q ¢ 2149 ¢ 914q

peojAed
1opeoH 2 B
o L ¢l ¢l 1€
® ®
198110 “ 8 >> a3eJ1ooed “

// aseq AIOWIAIONoRd

19308

WO 03/005645 PCT/US02/20316

20/55
32 Bits
< >
A O
K| T < R p > Configuration
Words| | bl cserve register value
31 X 0
g
= X varies from 0 to 31 depending
|5+ o)
?D @ on word number
=3
g o
S 8
o
E A
A~
Y 1023

Fig. 18

WO 03/005645 PCT/US02/20316
21/55
Word # Configuration Register Name Block Affected
0-7 PreloadMaskNumber
5-63 Reserved
64-111 PatternMatchingTable (Select and Register
Vectors)
112 Reserved
448 PatternMatchingTable (EndOfMask bits)
449 Reserved
450 PacketAvailableButNoContextPriorityPintEnable
451 DefaultPacketPriority
452-453 ContextSpecificPatternMatchingMask0
454-467 Reserved
468-469 ContextSpecificPatternMatchingMask1
470-483 Reserved
484-485 ContextSpecificPatternMatchingMask2
486-499 Reserved
500-501 ContextSpecificPatternMatchingMask3
502-515 Reserved
516-517 ContextSpecificPatternMatchingMask4
518-531 Reserved
532-533 ContextSpecificPatternMatchingMaskS5 RTU
534-547 Reserved
548-549 ContextSpecificPatternMatchingMask6
550-563 Reserved
564-565 ContextSpecificPatternMatchingMask?7
566-579 Reserved
580 PacketAvailableButNoContextIntMapping
581 StartLoadingRegister
582 CodeEntryPointSpecial
583 Reserved
584 CodeEntryPoint0
585 CodeEntryPoint1
586 CodeEntryPoint2
587 CodeEntryPoint3
588 CodeEntryPoint4
589 CodeEntryPoint5
590 CodeEntryPoint6
591 CodeEntryPoint7
592 CodeEntryPoint8
593 CodeEntryPoint9
594 CodeEntryPoint10
595 CodeEntryPoint!11
596 CodeEntryPoint12

Fig.19a

WO 03/005645 PCT/US02/20316
22/55
597 CodeEntryPoint13
598 CodeEntryPoint14
599 CodeEntryPoint15
600 CodeEntryPoint16
601 CodeEntryPoint17
602 CodeEntryPoint18
603 CodeEntryPoint19
604 CodeEntryPoint20
605 CodeEntryPoint21
606 CodeEntryPoint22
607 CodeEntryPoint23
608 CodeEntryPoint24
609 CodeEntryPoint25
610 CodeEntryPoint26
611 CodeEntryPoint27
612 CodeEntryPoint28
613 CodeEntryPoint29
614 CodeEntryPoint30
615 CodeEntryPoint31
616-767 Reserved
768 Log2InputQueues
769 HeaderGrowthOffset
770 TailGrowthOffset
771 PacketErrorIntEnable
772 AutomaticPacketDropIntEnable
773 reserved
774 TimeStampEnable
775-776 VirtualPageEnable
777-778 Reserved
779 OverflowAddress PMMU
780 IntIfNoMoreXsizePages
781 FirstinputQueue
782 OverflowEnable
783 SizeOfOverflowedPacket
784 SoftwareOwned
785-786 TimeCounter
787 ClearError0
788 ClearErrorl
789-799 Reserved
800-815 MaxActivePackets
816-927 Reserved
928 IntIflessThanXpacketIdEntries QS
929 PriorityClustering

Fig. 19b

WO 03/005645 PCT/US02/20316
23/55
Reserved
930-959
960 Freeze
961 Reset
962 StatusRegister
963 BypassHooks CU
964 InternalStateWrite
965 InternalStateRead
963-1023 Reserved

Fig. 19c

WO 03/005645 PCT/US02/20316
24/55
Queue3 Queue2 ueuel Queuel

<—> <—> <—> ——> Queues

0 |reserved reserved reserved reserved 3-0
<—> <—> €—> <— Queues

1 reserved reserved reserved reserved 7-4

[BN BN)

7 [€—> <—> —> <—> Queues
eserved reserved reserved reserved 31-28

PreloadMaskNumber Configuration Register

Fig. 20

WO 03/005645

64

65

66

67

110

111

450

PCT/US02/20316
25/55
Select Register
Vector
a1 /— Vector 0
Mask
< > 0
Mask
1
e 0o o
Mask
23
23 0
E ; EndOfMask
reserved Bits
N\ N\
Mask 23 Mask 0

Fig. 21

WO 03/005645

775

776

26/55
64 KB Virtual Page
31 0
€—> <>
reSCI'VCd reserved
<—> <>
reserved reserved

Fig. 22

PCT/US02/20316

256B Virtual Page

Blocks 0-1

Blocks 2-3

WO 03/005645 PCT/US02/20316
27/55

Select Register
31 / Vector Vector 0
452+m*16 { { F

453+m*16

Fig. 23

WO 03/005645 PCT/US02/20316
28/55 T

Queue 1 Queue 0
31 23 / 16 7 / 0

601 [€&—> <>
reserved reserved
602 [€—> <>
reserved reserved
o0 0
616 € > d
reserved reserve

\ Queue 31 \ Queue 30

Fig. 24

WO 03/005645 PCT/US02/20316
29/55

31 0

785 LSB

786 MSB

Fig. 25

PCT/US02/20316

WO 03/005645

30/55

9z ‘814
0 Pt 201A3(
\\r I p1 90149
1059y = aﬁ.
o
azoa1] ~ = MMH Mm
paAIasaa

< >
0 1€

6SY

PCT/US02/20316

WO 03/005645

31/55

[1LC

LOI
\

NIs

LT 81

11¢
IX9JUo [[eISUN ket \
A

nxL

M SO

3 A

60LT

\

(xewr) 910A0/0Mm)

>
= LOLT
\ A \

e
=
~
(@]

Clx

|
v

Response Queue
RTU Command Queue

A A

QS Command Queue

YY

PMMU (omimand Queue

A

A A

A no

(xew) 9[049/5uU0

PMU Configuration
Register Update

(xew) 910A9/5U0

yojedsi(q

I 193s0[D) AATIJ

yoyedsi(y
0 Iasn[)

<

13 ¥4

WO 03/005645

PCT/US02/20316

Block Command Operand Fields Position in Data
0: GetSpace Size 15..0
PMMU

1: FreeSpace PacketPage 15..0

0: InsertPacket PacketPage 23..8
QueueNumber 4.0

1: ProbePacket PacketNumber 7.0
Set 8

2: ExtractPacket PacketNumber 7.0

3: CompletePacket PacketNumber 7.0
Delta 17..8
Deviceld 19..18
CRCtype 21..20

QS KeepSpace 22

4: UpdatePacket PacketNumber 7..0
PacketPage 23.8

5: MovePacket PacketNumber 7.0
NewQueueNumber | 12..8
Reactivate 13

6: ProbeQueue QueueNumber 4..0

7: ConditionalActivate PacketNumber 7.0

0: GetContext N/A N/A

1: ReleaseContext N/A N/A

2: MaskedLoad MaskNumber 4.0
StartRegisterNumber | 9..5

RTU PhysicalAddress 45,10

3: MaskedStore MaskNumber 4.0
StartRegisterNumber | 9..5
PhysicalAddress 45..10

Fig. 28

WO 03/005645

33/55

PCT/US02/20316

Block Response To Response Fields Position in Data
Command
PMMU GetSpace PacketPage 15..0
Success 16
InsertPacket Success 0
PacketNumber 8..1
ProbePacket, Exists 0
ProbeAndSet Completed 1
NextQueue 6..2
PacketPage 22..7
QSY Deviceld 23
CRCtype 25..24
Active 26
Probed 27
KeepSpace 28
ProbeQueue QueueSize 8..0
ConditionalActivate | Success 0

Fig. 29

PCT/US02/20316

WO 03/005645

34/55

0§ ‘81

OINd

($9) 10109 AJUDAT

(91) gereqiuanyg

>

(91) vereqiuaag
<

>

(9) giuaayg

< (9) Viuoag

o1~

nrs

/::

PCT/US02/20316

WO 03/005645

35/55

I€ 81

LOC

L1¢C
//

LTC
.j

61¢
J

40

SO

Nry

Nd'1

\ 60¢
TOT3 ATUBA AN 2 (>
$9) 10J09 A JUSAT
gere@UaAHNINING o (91) gereauaayg >
Vere@uaAad ININd o (91) vereqauaayg > IS
< @ueAIINAG < ORI
[TNIN < VIUSAHNINING < (9) viuaayg
\ to1—"
/ 11C 1
NNd

moT\

PCT/US02/20316

WO 03/005645

36/55

A2]S182Y UONVNSI10)) SYOOHSSVIAG 7€ *S1]

WA Wo1q
I PIAS(T 0} SKBM[Y 0 SAem[y anang) A1doy Awungg
0 P1A9(J 01 SAem[y
PI[BA SABM[Y PBaH uone[dwo)) snewomy ASO woig
PI[EA SAeM[V PeaH — uoreooTy ajduwrg A1doy Awrun(y
_ I I 1 ¥
0 14 8 4! 91 0¢ 1 {4 8¢ 1¢
< >€ P€E—>1€ < ><€ < < >
N4l ndo ININd INd'T ASO Nnrd ND

PCT/US02/20316

WO 03/005645

37/55

1215182 UONDINSIYU0)) iy RIVISIPUIIU] €€ “S1]

390[q € UIjiim
IaquINu pIom 9Je)S [BUIIU]

pasn jou

NWD
ngo
ndr
d'T
XSO
NN
nry

S — AN nO I

‘_

v96

6C 1€

WO 03/005645

38/55

PCT/US02/20316

Block | Event# Event Name

Event Data

Event Description

0 Insert

IB

FreeBufferE s (3)

A 16-byte chunk of packet
data is inserted at the tail of
the IB. The event data is the
number of free entries in this
buffer before the insertion.

1 Insert0

FreeBufferE ntriesO (3)

A 16-byte chunk of packet
data is inserted at the tail of
the OB (device identifier 0).
The event data is the number
of free entries in this buffer

before the insertion.

OB 2 Insertl

FreeBufferEntries1 (3)

A 16-byte chunk of packet
data is inserted at the tail of
the OB (device identifier 0).
The event data is the number
of free entries in this buffer

before the insertion.

3 PacketAllocSuccessO

PackerSize (16)

The PMMU successfully
allocates a consecutive space
in block O of the LPM for a
packet of PacketSize bytes
coming from the network
input interface.

4 PacketAllocSuccess!

PacketSize (16)

The PMMU successfully
allocates a consecutive space
in block 1 of the LPM for a
packet of PacketSize bytes
coming from the network
input interface.

P 5 PacketAllocSuccess2

PacketSize (16)

The PMMU successfully
allocates a consecutive space
in block 2 of the LPM for a
packet of PackerSize bytes
coming from the network
input interface.

6 PacketAllocSuccess3

PacketSize (16)

The PMMU successfully
allocates a consecutive space
in block 3 of the LPM for a
packet of PacketSize bytes
coming from the network
input interface.

Fig. 34

WO 03/005645

39/55

PCT/US02/20316

SR

PacketAllocFail

L PMfreeWordh (16)

The PMMU failed in allocating,
space in the LPM for a packet
coming from the network input
interface. The event data is the
total number of words (4 bytes)
free in the LPM.

PacketAllocFuail

PacketSzze (16)

The PMMU failed in allocating
space in the LPM for a packet of
PackeSize bytes coming from the
network input interface.

PacketAllocFailDrop

PacketSize(16)

"The PMMU failed in allocating
space in the LPM for a packet of
PackeaSize bytes coming from the
network input interface; the

packet is dropped..

10

PacketAllocFailOverflo
w

PackatSize (16)

The PMMU failed in allocating
space in the LPM for a packet of
PacketSize bytes coming from the
network input interface; the
packet is overflowed.

11

Alloc256Fail0

BlodOF reeBytes (16)

The allocation of a packet of 2-
255 bytes failed in block O of
IPM

12

Alloc256Faill

Blodk 1FreeBytes (16)

The allocation of a packet of 2-
255 bytes failed in block 1 of
LPM.

13

Alloc256Fail2

Blodk2FreeBytes (16)

The allocation of a packet of 2-
255 bytes failed in block 2 of
LPM.

14

Alloc256Fail3

Blodk 3FreeBytes (16)

The allocation of a packet of 2-
255 bytes failed in block 3 of
IPM

15

Alloc512Fail0

BlodOF reeByts (16)

The allocation of a packet of
256-511 bytes failed in block 0
of LPM

16

Alloc512Faill

Blok IFreeByts (16)

The allocation of a packet of
256-511 bytes failed in block 1
of LPM.

17

Alloc512Fail2

Blodk2F reeBytes (16)

The allocation of a packet of
256-511 bytes failed in block 2
of IPM

Fig. 35

WO 03/005645

40/55

PCT/US02/20316

CXX™

18

Alloc512Fail3

Block3FreeBytes (16)

The allocation of a packet
of 256-511 bytes failed in
block 3 of LPM.

19

AlloclKFail0

BlockOFreeBytes (16)

The allocation of a packet
of 512-1023 bytes failed in
block 0 of LPM.

20

AlloclKFaill

BlocklFreeBytes (16)

The allocation of a packet
of 512-1023 bytes failed in
block 1 of LPM.

21

AllociKFail?2

Block2FreeBytes (16)

The allocation of a packet
of 512-1023 bytes failed in
block 2 of LPM.

22

AllocIKFail3

Block3FreeBytes (16)

The allocation of a packet
of 512-1023 bytes failed in
block 3 of LPM.

23

Alloc2KFail0

BlockOFreeBytes (16)

The allocation of a packet
of 1024-2047 bytes failed
in block 0 of LPM.

24

Alloc2KFaill

BlocklFreeBytes (16)

The allocation of a packet
of 1024-2047 bytes failed
in block 0 of LPM.

25

Alloc2KFail2

Block2FreeBytes (16)

The allocation of a packet
of 1024-2047 bytes failed
in block 0 of LPM.

26

Alloc2KFail3

Block3FreeBytes (16)

The allocation of a packet
of 1024-2047 bytes failed
in block 0 of LPM.

27

Alloc4KFail0

BlockOFreeBytes (16)

The allocation of a packet
of 2048-4095 bytes failed
in block 0 of LPM.

28

Alloc4KFaill

Block1FreeBytes (16)

The allocation of a packet
0f 2048-4095 bytes failed
in block 1 of LPM.

29

Alloc4KFail2

Block2FreeBytes (16)

The allocation of a packet
of 2048-4095 bytes failed
in block 2 of LPM.

30

Alloc4KFail3

Block3FreeBytes (16)

The allocation of a packet
of 2048-4095 bytes failed
in block 3 of LPM.

31

Alloc16KFail0

BlockOFreeBytes (16)

The allocation of a packet
0f 4096-16383 bytes failed
in block 0 of LPM.

32

Allocl 6KFuaill

BlocklFreeBytes (16)

The allocation of a packet
0f 4096-16383 bytes failed
in block 1 of LPM.

Fig. 36

WO 03/005645

41/55

PCT/US02/20316

cExX™

33

Allocl16KFail2

Block2FreeBytes (16)

The allocation of a packet of
4096-16383 bytes failed in
block 2 of LPM.

34

Allocl16KFail3

Block3FreeBytes (16)

The allocation of a packet of
4096-16383 bytes failed in
block 3 of LPM.

35

Alloc64KFail0

BlockOFreeBytes (16)

The allocation of a packet of
16384-65535 bytes failed in
block 0 of LPM.

36

Alloc64KFaill

BlocklFreeBytes (16)

The allocation of a packet of
16384-65535 bytes failed in
block 1 of LPM.

37

Alloc64KFail2

Block2FreeBytes (16)

The allocation of a packet of
16384-65535 bytes failed in
block 2 of LPM.

38

Alloc64KFail3

Block3FreeBytes (16)

The allocation of a packet of
16384-65535 bytes failed in
block 3 of LPM.

39

GetSpaceSuccess
0

RequestedSize (16)

The PMMU successfully
satisfied in block 0 of LPM a
GetSpace() of RequestedSize
bytes.

40

GetSpaceSuccess
1

RequestedSize (16)

The PMMU successfully
satisfied in block 1 of LPM a
GetSpace() of RequestedSize
bytes.

41

GetSpaceSuccess
2

RequestedSize (16)

The PMMU successfully
satisfied in block 2 of LPM a
GetSpace() of RequestedSize
bytes.

42

GetSpaceSuccess
3

RequestedSize (16)

The PMMU successfully
satisfied in block 3 of LPM a
GetSpace() of RequestedSize
bytes.

43

GetSpaceFail

RequestedSize (16)

The PMMU could not satisfy a
GetSpace() of RequestedSize

bytes.

44

GetSpaceFail

TotalFreeWords (16)

The PMMU could not satisfy a
GetSpace(). The data event is
the total number of words (4
bytes) free in the LPM.

45

PacketDeallocati
on0

BlockOFreeBytes (16)

The PMMU de-allocates space
in block 0 of the LPM due to a
downloading of a packet. The
event data is the number of
bytes free in the block before
the de-allocation occurs.

Fig. 37

WO 03/005645

42/55

PCT/US02/20316

CEX™

46

PacketDea
locationl

BlocklFreeBytes (16)

The PMMU de-allocates space in
block 1 of the LPM due to a
downloading of a packet. The event
data is the number of bytes free in
the block before the de-allocation
occurs.

47

PacketDea
llocation2

Block2FreeBytes (16)

The PMMU de-allocates space in
block 2 of the LPM due to a
downloading of a packet. The event
data is the number of bytes free in
the block before the de-allocation
occurs.

48

PacketDea
llocation3

Block3FreeBytes (16)

The PMMU de-allocates space in
block 3 of the LPM due to a
downloading of a packet. The event
data is the number of bytes free in
the block before the de-allocation
occurs.

n o

49

InsertFro
mPMMU

FreeEntriesInQS (8)

A packet identifier is inserted from
the PMMU into one of the queues.
The event data is the number of free
entries in the pool of entries before
the insertion.

50

InsertFro
mCU

FreeEntriesInQS (8)

A packet identifier is inserted from
the CU into one of the queues. The
event data is the number of free
entries in the pool of entries before
the insertion.

51

InsertFro
mQS

FreeEntriesInQS (8)

A packet identifier is inserted from
the QS into one of the queues. The
event data is the number of free
entries in the pool of entries before
the insertion.

c O

52

InsertPM
MU

FreePMMUcmdEntries
(4)

A command is inserted in the
PMMU command queue. The event
data is the number of free entries in
this queue before the insertion.

53

InsertQS

FreeQScmdEntries (4)

A command is inserted in the QS
command queue. The event data is
the number of free entries in this
queue before the insertion.

Fig. 38

WO 03/005645

43/55

PCT/US02/20316

54

insertRTU

FreeRTUcomdEntries
(4)

A command is inserted in the
RTU command queue. The
event data is the number of
free entries in this queue
before the insertion.

55

Responselnsert

NumOfResponses (1)

One or two responses are
inserted in the response
queue. The event data
NumOfResponses codes how
many (0:one, 1:two).

RTU

56

Activate

NumPMUownedCtx
(3)

A context becomes SPU-
owned. The event data is the
current number of PMU-
owned contexts before the
activation.

57

PreloadStarts

SIUlatency (8)

A pre-load of a context starts.
The event data is the number
of cycles (up to 255) that the
RTU waited for the first
header data to preload is
provided by the SIU.

58

PreloadAccepted

NumOfPreloads Waitin
g@()

A packet identifier is accepted
from the QS. The event data
is the number of valid entries
in the new packet table before
the acceptance.

59

CommandWaits

CommandWaitCycles
)

A command from the CU is
ready. The event data is the
number of cycles (up to 255)
that it waits until it is served.

LPM

60

ReadSIU

SIUwaitCycles (3)

The SIU performs a read into
the LPM. The event data is
the number of cycles (up to 7)
that it waits until it can be
served.

61

WriteSIU

SIUwaitCycles (3)

The SIU performs a write into
the LPM. The event data is
the number of cycles (up to 7)
that it waits until it can be
served.

Table 1: Events probed for performance counters

Fig. 39

WO 03/005645

PCT/US02/20316
44/55

Block

Name

Description

IBU

HeadAlwaysValid

The IBU always provides a valid packet. The packet
provided is a 16-byte packet, from devide Id 0, with
the 3" byte 0, and byte i (i=4..15) to value .

OBU

HeadAlwaysValid

The OBU always provides a valid packet. The packet
provided is a 16-byte packet, from devide 1d 0, with
the 3" byte 0, and byte i (i=4..15) to value .

AlwaysToDevId0

The OBU hardwires the outbound device identifier to
0

AlwaysToDevId]

The OBU hardwires the outbound device identifier to
1

PMM

SimpleAllocation

The PMM performs the following allocation
mechanism when receives a new packet:

o 64K bytes (1 full block) are always allocated
(i.e. the size of the packet is not taken into
account).

o One bit per block indicates whether the block
is busy (i.e. it was selected to store a packet).
The download of that packet resets the bit.

o If more that non-busy block exists, the block
with the smallest index is chosen.

o Ifno available blocks exist, the packet will be
dropped.

QSY

16

AutomaticCompletion

Whenever a packet is inserted into a queue (from the
PMM or from the SPU), the Complete bit is
automatically asserted.

17

QueueAlways(

When a packet is inserted (from any source), the
queue will always be queue number 0.

CMU

24

DummyReplyFromQSY

Whenever the CMU receives from the SPU a
command to the QSY that needs a response back, the
CMU generates a dummy response and does not send
the command to the QSY.

The data associated to the dummy response is 0, and
the context number is the same as the one obtained
from the SPU.

25

DummyReplyFromPMM

Whenever the CMU receives from the SPU a
command to the QSY that needs a response back, the
CMU generates a dummy response and does not send
the command to the QSY.

The data associated to the dummy response is 0, and
the context number is the same as the one obtained
from the SPU.

Fig. 40

WO 03/005645 PCT/US02/20316
45/55

Architecture block name Hardware block name
IB IBUO
OB OBUO
PMMU PMMO
LPM LPMO
QS QSYO0
RTU RTUO
CU CU0

Fig. 41

WO 03/005645

46/55

PCT/US02/20316

signals are registered by source block unless otherwise specified.

Name Size | SRC | DST Description
Block | Block
Interrupts
overflowStarted 1 pmm0 | exc0 The PMM block decides to store the
incoming packet into the EPM.
noMorePagesOfXsize 1 pmmO | exc0 No more virtual pages of the size indicated
in the configuration register
IntlfNoMoreXsizePages are available.
automaticPacketDrop 1 pmmO | exc0 The PMM block cannot store the incoming
packet into the LPM and the overflow
mechanism is disabled.
packetError 1 pmm0 | exc0 Asserted in two cases:
The actual packet size received from the
external device does not match the value
specified in the first two bytes of the
packet data.
Bus error detected while receiving packet
data through the network interface or
while downloading packet data from EPM.
lessThanXpacketldEntri | 1 gsy0 | exc0 Asserted when the actual number of
es available entries in the QSY block is less
than the value in the configuration register
IntifLessThanXpacketIdEntries.
packetAvailableButNoC | § rtuQ exc(Asserted when a packet identifier is
ontextP (P= received by the RTU from the QSY but
0..7) there is no available context. The level of
the interrupt (P) depends on how the PMU
is configured.
Response Generation
validResponse 1 cmu0 | com0 The CMU has a valid response.
responseData 29 cmu0 | com0 The response data.
responseContext 3 cmu0 | com0 The context number to which the response
will go.
Context Access
resetContext 1 rtu0 rgfO,rgf | All GPR registers in context number
1 contextNumber are set to 0.
enableRead0..7 8x1 | rtu0 rgf0,rgf | Read port 0..7 of context number
1 contextNumber is enabled.
enableWrite0..3 4x1 | rtu0 rgfO,rgf | Write port 0..7 of context number
1 contextNumber is enabled.
contextNumber 8 rtu0 rgf0,rgf | The context number, in 1-hot encoding
1 (LSB bit corresponds to context #0; MSB
to context #7) being either read (masked
load or pre-load)

Fig. 42

WO 03/005645

47/55

PCT/US02/20316

The context number, in 1-hot encoding (LSB
bit corresponds to context #0; MSB to context
#7) being either read (masked load or pre-load)
or written (masked store).

The contextNumber bus needs to have the
correct value at least one cycle before the first
enableRead or enableWrite signals, and it
needs to be de-asserted at least one cycle
before the last enableRead or enableWrite
signals.

registerToRead | 8x5 | rtu0 rgfO,rgfl | Index of the register(s) to read through read

0..7 ports 0..7 in context number contextNumber.
Validated with the enableRead0..7 signals.

registerToWrite | 4x5 | rtu0 rgfO,rgfl | Index of the register(s) to write through write

0.3 ports 0..3 in context number contextNumber.
Validated with the enable Write0..3 signals.

clusterOreadDat | 8x32 | rgfO,rg | rtu0 The contents of the register(s) read through

a0..7 fl read ports 0..7 in cluster 0.

clusterlreadDat | 8x32 | rgfO,rg | rtu0 The contents of the register(s) read through

a0..7 fl read ports 0..7 in cluster 1.

writeData0..3 4x32 | rtu0 rgf0,rgfl | The contents of the register(s) to write through
write port(s) 0..3 into context number
contextNumber.

Command Request

statePMMqueu | 1 cmuQ dis0,dis1 | If asserted, it indicates that a command will be

e accepted into the PMM queue.

stateQSYqueue | 1 cmu(dis0,dis] | If asserted, it indicates that a command will be
accepted into the QSY queue.

stateRTUqueue | 1 cmu(disO,dis] | If asserted, it indicates that a command will be
accepted into the RTU queue.

validCommand | 1 disO cmu(The command being presented by cluster #0 is

Cluster0 valid.

validCommand | 1 disl cmu(The command being presented by cluster #1 is

Clusterl valid.

commandConte | 2 dis0 cmu0 The context number within cluster #0

xtCluster0 associated to the command being presented by
this cluster.

commandConte | 2 disl cmu(The context number within cluster #1

xtClusterl associated to the command being presented by
this cluster.

commandType |2 dis0 cmul The type of command being presented by

Cluster0 cluster #0 (0:RTU, 1:PMMU, 2:QS).

commandType |2 disl cmu(The type of command being presented by

Clusterl cluster #1 (0:RTU, 1:PMMU, 2:QS).

commandOpco | 3 dis0 cmu0 The opcode of the command being presented

deCluster0 by cluster #0.

commandOpco | 3 disl cmu(The opcode of the command being presented

deClusterl by cluster #1.

commandData | 46 dis0 cmu0__, | The command data presented by cluster #0.

Cluster0 F 1g. 43

WO 03/005645 PCT/US02/20316
48/55

commandDataClust | 46 | disl | cmu0 | The command data presented by cluster #1.
erl

Context Unstall

unstallContext 1 | rtu0 | cp00 | The masked load/store or get context
operation performed on context number
unstalledContextNum has finished. In case of
a get context operation, the misc bus contains
the number of the selected context in the 3
LSB bits, and the success outcome in the
MSB bit.

preload 1. {rtu0 | cp00 | A pre-load is either going to start
(bornContext de-asserted) or has finished
(bornContext asserted) on context number
unstalledContextNum. The misc bus contains
the queue number associated to the packet.

If the preload starts and finishes in the same
cycle, unstallContext, preload and
bornContext are asserted.

bomContext 1 |rtu0 | cp00 | Ifasserted, the operation performed on
context number unstallContextNum is a get
context or the end of a pre-load; otherwise it
is a masked load/store or the beginning of a
pre-load.

unstallContextNum | 3 | rtu0 | cp00 | For pre-loads (start or end) it contains the
context number of the context selected by the
RTU. For get context and masked
load/stores, it contains the context number of
the context associated to the stream that
dispatched the command to the PMU (the
RTU receives this context number through
the CMU command interface).

misc 30 | rtu0 | cp00 | In case of a pre-load (start or end), it contains
the 30-bit code entry point associated to the
queue in which the packet resides.

In case of a get context operation, the 3 LSB
bits contain the selected context number by
the RTU, and the MSB bit contains the
success bit (whether an available context was

found).
unstallContext | preload bornContext Action
0 0 0 No operation
0 0 1 Never

Fig. 44

WO 03/005645

49/55

PCT/US02/20316

Preload starts

—

Preload ends

Masked Load/Store
ends

GetCtx ends

Never

Preload starts and
ends in same cycle

Fig. 45

WO 03/005645

50/55

PCT/US02/20316

Signals are registered by source block unless otherwise specified.

Name Size | SRC | DST | Description
Bloc | Block
k
Network Interface In to the In-Buffer
dataValue 128 | nip0 [ibu0 | 16B of data
validBytes 4 nip0 | ibu0 | Pointer to the MSB valid byte within
dataValue
validData 1 nip0 | ibu0 | If asserted, at least one byte in dataValue
is valid, and validBytes points to the MSB
valid byte
rxDevID 1 nip0 | ibu0 | Device ID of the transmitting device
erTor nip0 | ibu0 | Error detected in the current transaction
endOfPacket 1 nip0 | ibu0 | The current transfer is the last one of the
packet
full 1 ibu0 | nip0 | The buffer in the IBU block is full and it
will not accept any more transfers

Network Interface Out from the Out-Buffer

(TBD: should the interface be duplicated for each

outbound device Id ?)

dataValue 128 | obu0 | nop0 | 16B of data

validBytes 4 obu0 | nop0 | Pointer to the MSB (if pattern == 0) or to
the LSB (if pattern == 1) valid byte in
dataValue

pattern 1 obu0 | nopO | If pattern == 1 && valid == 0, then no
valid bytes. If pattern == 0 && valid ==
15, then all 16 bytes are valid

txDevID 1 obu0 | nop0 | Device ID of the receiving device

err 1 obu0 | nop0 | Error detected in the current transaction

ready 4 nop0 | obu0 | Receiving device is ready to accept more
data

Overflow Interface to Memory

dataValue 128 | ibu0 ovl0 | 16B of data

overflowStoreRequest 1 pmm0 | ovl0 | Initiate an overflow store operation

overflowPageOffset 16 pmmO0 | ovl0 | Offset of the 256B atomic page in the
external packet memory

overflowLineOffset 4 pmm0 | ovl0 | Offset of the first line in the atomic page

extract 1 ovl0 ibu0 | Extract the next data from the buffer in
the IBU

doneStore 1 ovl0 pmm | The overflow operation is complete

0

validBytes 4 ibu0 ovl0 | Pointer to the MSB valid byte within
dataValue

validData 1 ibu0 ovl0 | If asserted, at least one byte in dataValue
is valid, and validBytes

Fig. 46

WO 03/005645 PCT/US02/20316
51/55

points to the MSB valid byte

rxDevID 1 ibu0 ovl0 Device ID of the transmitting device

error 1 ibu0 ovl0 Error detected in the current transaction

endOfTransaction ibu0 ovl0 The current transfer is the last one of the
transaction

packetSizeMismatch | 1 ovl0 pmmO | The SIU detects a packet size mismatch
while overflowing a packet.

Overflow Interface from Memory

dataValue 128 | ovIO obu0 16B of data

validBytes 4 ovl0 obu0 Pointer to the MSB (if pattern == 0) or to
the LSB (if pattern == 1) valid byte in
dataValue

pattern 1 ovl0 obu0 If pattern == 1 && valid == 0, then no
valid bytes. If pattern == 0 && valid ==
15, then all 16 bytes are valid

overflowRetrieveRequ | 1 pmmO | ovl0 Initiate an overflow retrieve operation

est

overflowPageOffset 16 | pmmO | ovl0 Offset of the 256B atomic page in the
external packet memory

overflowLineOffset 4 pmmO | ovl0 Offset of the first line in the atomic page
to be used

sizePointer 4 pmmO | ovl0 Offset of the byte in the line that contains
the LSB byte of the size of the packet

doneRetrieve 1 ovl0 pmmO0 | The overflow operation is complete

fullo 1 obu(ovl0 The buffer in the OBU block associated to
outbound device identifier 0 is full

fulll 1 obu0 ovl0 The buffer in the OBU block associated to
outbound device identifier 1 is full

error 1 ovl0 obu0,p | Error detected on the bus as packet was

mm0 being transferred to outbound device

identifier txDevID

txDevID 1 pmmO | ovl0 The outbound device identifier

Local Packet Memory Interface (SPU)

dataValue 128 | Imc0 lpmO0 16B of data

dataValue 128 | [pmO Imc0O 16B of data

read 1 Imc0O Ipm0 Read request. If read is asserted, write
should be de-asserted

write 1 Imc0 IpmO Write request. If write is asserted, read
should be de-asserted. When write is
asserted, the data to be written should be
available in dataValue

dataControlSelect 1 Imc0 lpmO If asserted, 1t validates the read or

Fig. 47

WO 03/005645

PCT/US02/20316
52/55 " e e VT Cther herese Wanee lireewe. Shynee B SR v

write access

lineAddress

Imc0

Ipm0 | Line number within the LPM to read or write

valid

Ipm0

ImcO | Access to the memory port (for read or write)
is granted

Local Packet Memory/Memory Bus Interface (RTU)

dataValue 128 ImcO | rtu0 16B of data

dataValue 128 rtu0 ImcO0 | 16B of data

read 1 rtu0 | ImcO | Read request. Asserted once (numLines has
the total number of 16-byte lines to read)

write 1 rtu0 | ImcO | Write request. Asserted on a per-line basis.
When asserted, dataValue from RTU should

. have data to be written

lineAddress 14/32 | rtu0 |ImcO | Line to initiate access from or to

numLines 4 rtu0 ImcO | Number of lines to read. If numLines == X,
then X+1 lines are requested

valid 1 ImcO0 | rtu0 | Access to the operation is granted

backgndStream 1 rtu0 | ImcO | Background operation implying only the 14
LSB bits of the line address are used, or
streaming operation implying all 32 bits are
used

byteEnables 16 rtu0 | ImcO | Byte enables. Used only for writing. For

reading, byteEnables are OXFFFF (i.e. all
bytes within the all the requested lines are
read)

SPU Command Interface through the CMU

read 1 ImcO0 | cmuO | Read request. If read is asserted, write should
be de-asserted

write 1 ImcO0 | cmu0 | Write request. If write is asserted, read
should be de-asserted

dataValue 32 ImcO0 | cmuO | 4B of data

dataValue 32 cmu0 | ImcO | 4B of data

dataControlSelect 1 ImcO0 | cmul | If de-asserted, it validates the read or write
access

lineAddress 7 ImcO0 | cmuO | Address of the configuration register

valid 1 cmu0 | ImcO0 | CMU notifies that dataValue is ready

Performance Counters Interface through the CMU

eventA 6 2777 | emu0 | One of the two events (A) requested to be
monitored

eventB 6 7777 | cmu0 | One of the two events (B) requested to be
monitored

eventDataA 16 cmu0 | 7?7?? | The data associated to event A, if any. This

value is meaningful when the corresponding
bit in the eventVector is asserted.

Fig. 48

WO 03/005645 PCT/US02/20316
53/55 - Cervee e B T T Arrrrs TieEes anwan Tmess cever

eventDataB 16 cmu0 777 The data associated to event
B, if any. This value is
meaningful when the
corresponding bit in the
eventVector is asserted.

eventVector 64 cmu0 77 The event vector (1 bit per
event). LSB bit corresponds
to event# 0, MSB bit
corresponds to event# 63.

On —Chip Instrumentation (OCI) Interface through the CMU

(TBD)

Fig. 49

PCT/US02/20316

WO 03/005645

54/55

601¢S

0S ‘31

oyor)

su ISIL]

Jsu[IS

Isu ISTL

su] 1S11]

301¢

sug ISITq

suononIsuy

aav

FETN (9]

I01S

90IN0SaYy

.\

1X21U0)

20IN0SY

1X91U0))

90IN0SY

IX21U0)

90IN0SYY

1X91U0))

LOIS

\Noﬁm

A

4{ nrd

dS

901¢S

1po15 =~

\
NN

Od

S~——301¢

€01S

PCT/US02/20316

L SELNTE 1 e

WO 03/005645

vl walles W5

o thall

o

1™ o

55/55

IS ‘814

B1ep sossaooxd NJS

wommk ,

<&
Y

~

LOTS

urssasoud ueys Aew
‘yo39j-a1d saystury NdS

v0cCs

1

\

(PoIBATIOR)IX1U0D
Saseafal pue NdS senou

“3urpeo[saysiuy N 1Y

~

N.LY 10} sirem
‘yoioj-a1d saystury NdS

c0cs

90¢S

A 1X3JU00 Ul

0

UuoIedJ1jou uo paseq
Burssaooud 10}
yoo)-a1d suers NdS

\. uornjeuLIojul 39Mo€d

3urpeo] surdaq NLY
€0TS 3

Time Line

A

NdS seynou
pue uoneanoe I0j 1X3a1u0d

&
BN

o[qejieAe ue S109]3s M 1.Y

Buissaooid 10§ 0TS

S9ALLIE J230kd

10¢¢S
2)3J-91g 9AIIB[NIIAS-UON

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

