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FAST MULTI-PASS PARTITIONING VIA PRIORITY BASED
SCHEDULING

INVENTORS
John Owens, Andy Riffel, Aaron Lefohn, Kiril Vidimce, and Mark Leone

[0001] This application claims priority under 35 U.S.C. § 119(e) to U.S.
Provisional Application No. 60/588,538 of Owens et al., filed July 15, 2004, which is
herein incorporated by reference.

BACKGROUND OF THE INVENTION

[0002] Recent advances in architecture and programming interfaces have
added substantial programability to graphics piplined systerris: These new features allow
gréphics programmers to write user-spgciﬁéd programs that run on each vertex and each
fragment that passes through the graphics pipeline. Based on these vertex programs and
fragment programs, people have developed shading lgnguages that are used to create real-
time programmable shading systemé that run on modern graphics hardware.

[0003] The ideal interface for these shading languages is one that allows its
users to write arbitrary programs for each vertex and each fragment. Unfortunately, the
underlying graphics hardware has significant restrictions that make such a task difficult.
For example, the fragment and vertex shaders in modern graphics ﬁrocessors have
restrictions on the length of programs, on the number of resource constraints (i.e.,
temporary registers) that can be accessed in such programs, and on the control flow

constructs that may be used.
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[0004] Each new generation of graphics hardware has raised these limits. The
rapid increase in possible program size, coupled with parallel advances in the capability
and flexibility of vertex and fragment instruction sets, has led to corresponding advances
in the complexity and quality of programmable shaders. For many users, the limits
specified by the latest standards already exceed their needs. However, at least two major
classes of users require substantially more resources for their application of interest.
[0005] The first class of users are those who require shaders with more
complexity than the current hardware can support. Many shaders in usé in the fields of
photorealistic rendering or film production, for instance, exceed the capabilities of
current graphics hardware by at least an order of magnitude. The popular RenderMan
shading language, for example, is often used to specify these shaders, and RenderMan
shaders of tens or even hundreds of thousands of instructions are not uncommon.
Implementing these complex RenderMan shaders is not possible in a single vertex or
fragment program.

[0006] The second class of users use graphics hardware to implement general-
purpose (often scientific) programs. This “GPGPU” (general-purpose on graphics
processing units) community targets the programmable features of the graphics hardware
in their applications, using the inherent parallelism of the graphics processor to achieve
superior performance in microprocessor-based solutions. Like complex RenderMan
shaders, GPGPU programs often have substantially larger programs that can be
implemented in a single vertex or fragment program. They may also have more complex

outputs. For example, instead of a single color; they may need to output a compound
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data type.

[0007] To implement larger shaders than the hardware allows, programmers
have turned to multipass methods in which the shader is divided into multiple smaller
shaders, each of which respects the hardware’s resource constraints; These smaller
shaders are then mapped to multiple passes through the graphics pipeline. Each pass
outputs results that are saved for use in future passes.

[0008] A key step in this process is the efficient partitioning of the program
into several smaller programs. For example, a shader program may be partitioned into
several smaller shader programs. Conventional programs often use the RDS .(Recursive
Dominator Split) method. This method has two major deficiencies. First, shader
compilation in modern systems is performed dynamically at the time the shader is run.
Consequently, graphics vendors require algorithms that run as quickly as possible. Given
n instructions, the runtime of RDS scales as O(N3). (Even a specialized, heuristic version
of RDS, RDS}, scales as ON?).) This high runtime cost makes conventional methods
such as RDS undesirable for implementation in run-time compilers. Second, many
conventional partitioning systems assume a hardware target that can output at most one
value per shader per pass. Modern graphics hardware generally allows multiple outputs
per pass.

[0009] There is a need for a partitioning method and system that operates as
quickly as possible. There is also a need for a partitioning method and system that allows

the output of more than one value from the resulting partitions.
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Summary of the Invention

The described embodiments of the present invention include a method and system for
partitioning operations. In a preferred embodiment of the present invention, the
operations are first prioritized, then placed into one or more partitions. Each of the

partitions can then be executed during a plurality of passes.
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Brief Description of the Drawings
10010] The teachings of the present invention can be readily understood by
considering the following detailed description in conjunction with the accompanying

drawings. Like reference numerals are used for like elements in the accompanying

drawings.

[0011] Fig. 1 is a block diagram showing operations to be partitioned.
[0012] Fig. 2 is a flow chart showing a method for partitioning operations.
[0013] Fig. 3(a) is a directed acyclic graph vin which the nodes are assigned

priorities in accordance with a first priority scheme.

[0014] Figs. 3(b)-3(d) show details of additional priority schemes.

[0015] Figs. 3(e) and é(t) show example of different partitions of the same
graph.

[0016] Fig. 4 is a flow chart showing details of a scheduling method that can

be used to partition in the method of Fig. 1 in accordance with an embodiment of the

present invention.

[0017] Fig. 5 is an example of a ready list using the priority scheme of Fig. 3.
[0018] Fig. 6 is an example of constraints stored in a memory that are specific
to particular hardware.

[0019] ~ Fig. 7is a flow chart shoﬁng details of a scheduling method that can

‘be used to partition in the method of Fig. 1 in accordance with an embodiment of the

present invention.

[0020] The figures depict embodiments of the present invention for purposes
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of illustration only. One skilled in the art will readily recognize from the following
discussion that alternative embodiments of the structures and methods illustrated herein

may be employed without departing from the principles of the invention described herein.
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Detailed Description of Embodiments

[0021] , Fig. 1 is a block diagram showing operations 110 to be partitioned. Ina
described embodiment of the present invention a partitioning module 130 partitions a
plurality of operations 110 into a plurality of smaller programs 120 for execution by a
processor (or by a plurality of processors (not shown)). Partitioning module 130
preferably contains instructions that can be executed in a data processing system to
perform the partitioning operations of the described embodimients of the present
invention. The instructions of module 130 are stored, for example, in a memory or
appropriate storage media, as are the operations 110 to be partitioned. Partitioning
module 130 can be embodied in hardware, software, or firmware. The processor(s) (not
shown) can be embodied in, for example, a single data processing system, a general
purpose data processing chip, a graphics processing unit, a distributed data processing
system, or a networked data processing system. For example, partitioning module 130
may partition a software shader program into smaller programs that are executed by
multiple passes through a graphics pipeline.

[0022] Fig. 2 is a flow chart showing a method for partitioning operations.
The method is performed, for example, by partitioning module 130 of Fig. 1. As will be
understood.by persons of ordinary skill in the art, the method can be embodied in
instructions stored on a cbmputer readable medium such as a memory, disk, hard drive,
CDROM, or a transmission media such as signals on a network connection or signals on
a wireless network connection. Element 250 receives operations to be partitioned such as

operations 110 of Fig. 1. Element 252 constructs a graph, such as a DAG (Directed
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Acyclic Graph) based on the operations using a method known to persons of ordinary
skill in the art. The DAG reflects a relationship and dependency between the operations.
[0023] Element 254 determines a priority of the operations of the graph. The
determined priority is used to decide an order of traversal of the graph during the
partitioning process. The present invention may be used with several priority methods,
some of which are described below in connection with Figs. 3(a);3 (d). These priority
methods are sometimes called “scheduling methods” herein although they do not actually
schedule the operations. Instead, they determine an order in which the nodes of the graph
are visited during the partitioning process. Element 256 places the operations into one or
more partitions. Each of these partitions may be thought of as one of the srﬁaller
programs 120 of Fig. 1. As is described below in more detail, operations are partitioned
in accordance with their resource usage and with hard and soft resoﬁrce constraints of the
hardware upon which they will later be executed.

[0024] Fig. 3(a) is a directed acyclic graph (DAG) in which each node
corresponds to an operation. This graph represents a data structure or similar construct in
memory created by partitioning module 130. In Fig 3(a), the nodes are assigned priorities
in accordance with a first priority scheme that employs Sethi-Ullman numbering. Sethi-
Ullman numbering is described in, for example, “R. Sethi and J. D. Ullman, “The
Generation of Optimal Code for Arithmetic Expressions,” J. Assoc. Computing
Machinery, pp. 715 =728, ACM, 1970,” which is incorporated by reference herein. Sethi-
Ullman numbers are further described in Section 9.10 ("Optimal Ordering for Trees") of

"Compilers: Principles, Techniques, and Tools", Alfred V. Aho, Ravi Sethi, and Jeffrey
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D. Ullman (Addison-Wesley, 1988), which is incorporated by reference herein.

[0025] In general, this priority scheme orders a graph or tree of operations
based on resource usage. A register is an example of a resource and Sethi-Ullman
numbers are just one example of a resource estimate. The crux of a priority scheme
based on Sethi-Ullman numbers is that performing resource-intensive calculations first
frees up resources for later calculations.

[0026] Here, the resource usage of an operation and its children ié used to
calculate a Sethi-Ullman number for its node. The method labels each node in the graph
with a Sethi-Ullman Number (SUN) that indicates a number of registers required to
execute the operations in the subtree rooted at that node. In general, for tree-structured
inputs, partitioning higher-numbered nodes first minimizes overall register usage. In the
example, a node above another node is considered to be a child of that node. Thus, for
example, in Fig. 3(a), node #1 is a child of node #3. In the figure, a node above another
node is considered to be a predecessor of that node.. Thus, for example, in Fig. 3(a), node
#1 is a predecessor of node #3. Similarly. Node #3 is a successor of node #1.

[0027] The simple case of Sehti-Ullman numbering involves a node "N"
whose children are labeled L1 and L2. Node N represents an operation that requires one
register to hold its result. The label of N is determined by:

if (L1=12)

then label(N) =L1 + 1

else label(N) = max(LL1, L.2)

[0028] This method assumes that each operation stores a result in a register.
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When both children require M registers, we need a register to hold the result of one child
while M regisfers also are used for the other child, so the total required is M + 1. That
extra register is not needed if the children have different register requirements, as long as
the child with the bigger resource requirement is run first.

[0029] In the more éeneral case where there are K children:

let N1, N2, ... Nk be the children of N ordered by their labels,

so that label(N1) >= label(N2) >= ... >= label(Nk);

label(N) = max (from i= 1 through K) of label(Ni) +1i - 1;

[0030] In the example of Fig. 3(a), the nodes are all assumed to require one
output register. Thus, node #3 (as labeled inside the node) has a Sethi-Ullman Number
(SUN) of 2 because both of its children have SUNs of 1 (1+1 =2). Similarly, nodes #4
and #5 have SUNs of 2 since their child (node #3) has a SUN of 2. Similarly, node #11
has a SUN of 3 since its children (nodes #3 and #10) have a SUN of 2 (2+1=3).

[0031] As shown in Fig. 3‘(a), the SUN values assigned to the nodes result in
the following in-order traversal of nodes: 1,2, 3, 8,9, 10, 11,4, 5, 6, 7, 12, 13, 14. The
"pre-order traversal" is as follows: 14, 12, 11,3, 1,2, 10, 8,9, 4, 7, 6, 5; 13. The two
traversal orders are equivalent traversals: the in-order traversal specifies which
operations are scheduled first, whereas the pre-order traversal specifies the order in which
the nodes are visited by the scheduling algorithm (i.e. the operations are not scheduled on
the way towards the leaves, they are scheduled on the way back to the root).

[0032] In a preferred embodiment, SUNs are assigned to the graph in a first

stage and a traversal order is determined during a second stage. The first stage is order

10
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O(n) with the number of input nodes. In the second stage to determine traversal order
the method preferably uses a depth-first traversal through the graph, preferably choosing
the node with a higher Sethi-Ullman number. Ties are broken in a deterministic and
consistent manner. (For example, ties can be broken user a comparison of pointers in the
node) This stage is also order O(n) with the number of input nodes.
[0033] Figs. 3(b)-3(d) show details of additional priority schemes. In general,
the priority scheﬁes described in this document prefer depth first traversal (i.e., depth
first tréversal and the ready list method described herein) over breadth first traversal. This
preference tends to minimize register usage. Figs. 3(e) and 3(f) shows an example of two
possible ways to partition example graphs. A first graph of Fig. 3l(e) tries to maximize
parallelism in the operations by placing nodes #1, #2, #3, and #4 in the same partition.
This approach is often used in conventional methods and results in four pieces of
mformation (from nodes #1, #2, #3 and #4) that need to be passed to a second partition

~ having nodes #5, #6, and #7 therein.
[0034] In contrast, the described embodiments of the present invention tend to
minimize register usage. Thus, the graph in Fig. 3(f) partitions nodes #1, #2, and #5
together and partitions nodes #3, #4, #6, and #7 together. This results in only one piece
of information that needs to be passed between the two partitions.
[0035] Fig. 3(b) shows an example of a More Predecessors method. In this
method, node #3 330 would be given é higher priority than node #5 332 because node #3
has more predecessors (noaes #1 and #2 vs. none).

[0036] Fig. 3(c) shows an example of a More Ready Successors method. In

11
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this method, node #3 340 would be given a higher priority than node #5 342 because
node #3 has more ready successors (nodes #4 and #11 vs. just nAode #11).

[0037] Fig. 3(d) shows an example of a Critical Path priority scheme. Here,
all nodes on path 350 have a high priority since path 350 is a longest path and should be
prioritized first. Edge weights, representing latencies between operations, can'be assigned
to each edge, and then used to determine the path length between input and output nodes.
Therefore the longest path is not necessarily the path with the most operations.

[0038] Another alternate priority method keeps track of register usage.
Specifically, the method keeps track of which operations incur additional register usage
(generate) and which operations reduce register usage (kill). Given a choice, operations
that kill registers are preferred over registers that generate registe;s. Note tﬁét since Sethi-
Ullman numbering accounts for register usage, this priority method is redundant when
using SUN.

[0039] Various embodiments of the present invention, uses one or more of the
above described priority determining methods. As an example, a preferred embodiment
uses a combination as follows: The highest priority ﬁodes are those that reduce register
usage, followed by those that leave register usage constant, and finally those that
increase register usage. This is the highest priority metric because it most directly affects _
a number of live registers. The second highest priority metric is to partition operations
that will create more ready successors rather than fewer ready successors. The third
priority metric is to partition nodes with more predecessors over fewer predecessors and

the final priority metric is to partition nodes closest to the critical path.

12
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[0040] Fig. 4 is a flow chart showing details of the method of Fig. 1 in
accordance with an. embodiment of the present invention. Specifically, Fig. 4 shows a
method of partitioning nodes in partitioning module of Fig. 1 using a scheduling
algorithm. The method can be used to partition any list of operations that must b?
partitioned because of resource constraints. Fig. 5 is an example of a ready list data
structure 500 stored in an appropriate memory and using the priority scheme of Fig. 3.
The following discussion provides an example of partitioning the nodes of the graph of
Fig. 3(a) using a ready list scheduling algorithm to determine tree traversal order.
[0041] Elements 402 and 404 correspond to element 254 of Fig. 2, which
determines a traversal order. Element 406 adds child nodes to a “ready list” 500. In this
example, initially child nodes #1, #2, #8, and #9 are added to the ready list. The
remainder of elements form a loop that is executed until all nodes are scheduled into a
partition. .

[0042] Element 420 chooses a node having a highest priority from the ready
list. If the node does not violate any constraints (element 421) the node is added to the
current partition 502 and removed from the ready list 500 (element 422). In the example,
node #1 is removed from the ready list and placed in the partition 502. (Removal from
the ready list is indicated by placing an “x” through the node number in the Figure). A
rollback stack in memory is also cleared at this time. If the node violates only soft
constraints (such as ;>utput constraints) (element 428), the node is scheduled in the
current partition anyway and removed from the ready list (element 426). The node is

added to the rollback stack. If the node violates an input constraint (element 432) the

- 13
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node is removed from the ready list without scheduling it in this stage (element 430). If
the node violates neither input nor output constraints (élement 432) then an operation
count constraint or a temporary register count constraint (i.e., a hard constraint) has been
violated and the ready list is cleared (element 434). This causes a rollback in element

© 408.
[0043] In the example, a hard constraint is yiolated when the number of
operations exceeds 8 at time 531. At this time, the paﬁition is rolled back (elements 410,
412, 414) to a time 536, which, in the example, was the most recent time that all hard and
soft constraints were met. In the example, at this time, only nodes #1, #2, and #3 are in
the partition 502.
[0044] Element 424 is executed after a node is schedule in either element 422
or 426. Element 424 -adds new ready operations to the ready list and execution continues
with element 408. In the example, when node #1 is removed from ﬁle ready list and
added to the partition, its parent nodes #3 is not added to the list. Node #3 becomes ready
and is added when its other child node #2 is added to the partition. In other words, a
node preferably is added to the ready list when all of its children have been added to the
partition
[0045] In the example, the number of outputs 506 is a soft constraint and the
number of operations in the partition is a hard constraint. These are used for the purpose
of example only. In general, soft constraints are metrics‘ that can potentially rise or fall
with the addition of more operations to the partition. In contrast, hard constraints can

only rise with more operations. A critical resource is a resource that has reached its

14
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constraint in the current partition. When a soft constraint is violated, there is a possibility
that it will not remain in a state of violation in the future, while a hard constraint will
continue to be violated. Both constraints must be met at the close of a partition. Other
embodiments can use additional or other hard and soft constraints 510 and 512.
Examples of hard constraints include, but are not limited to, a number of operations
currently in a partition (.as in the example) and a number of temporary registers used.
Examples of soft constraints include, but are not limited to, a number of textures (stored
in global memory), whether a varying input is used, uniforms, a number of constants, and
a number of oufputs (as in the example). The method allows the usage of operations that
temporarily overuse constraints such as the number of outputs with the hope that future
operations will return the schedule to compliance.

[0046] " In one embodiment, nodes that do not use a critical resource are
assigned a higher priority “on the fly.”

[0047] Fig. 6 is an example of constraints stored in a memory that are specific
to particular hardware. These values are evaluated each time anode is added to the
partition. Exactly which types of values are hard constraints and which are soft
constraints will vary with the type of hardware on which th¢ partitioned operations will
be executed. Thus, the constraints used and their designation as hard or soft will vary
depending at least on the target hardware.

[0048] Sethi-Ullman numbers are just one example of a resouirce estimate that
can be used as part of a priority scheme. Multipass partitioning can use other types of

priority schemes. For example, the number of texture units can be used as a criteria

15
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instead of a number of output registers. In general, these resource estimates can be
combined (for example, using a weighted sum) to direct the depth—ﬁrst partitioner toward
the most resource-intensive operations.

[0049] . Partitioning also can be performed with a depth-first traversal of the
DAG. Directed depth-first scheduling is a solution to the multi-pass partitioning problem
(MPP) that relies on a pre-pass to compute resource usage information followed by a
depth-first traversal that is guided by those resource estimates. A method using directed
depth-first scheduling is described below and shown in 7.

[0050] ‘ The depth-first traversal is performed as follows

[0051] - The traversal starts at the root (output) of the operation dependency
tree or DAG (élement 702). In Fig. 3(a), the root node is node #14.

- At each step, the child requiring the greatest number of resources is visited (element
704).

- If there are no children, or all the children have been visited, and the current operation
can be scheduled without violating any constraints, the current operation is added to the
current partition (element 706). The operations are then partitioned traversing the DAG
in in-order traversal, using the pre-order traversal determined by the depth first methpd.
One implementation uses a recursive algorithm to implement this method.

- The current partition can be finalized as soon as an operation is encountered that
violates a constraint. The next partition can then start with the current operation (which

is guaranteed to be ready because its children have already been scheduled) (element

708).

16
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[0052] - Alternatively, the traversal can skip operations that violate
constraints and continue to consider other operations (element 710). This might be
desirable if other operations might be scheduled because of differing resource constraints.
For example, resources like texture units might l;e exhausted before other resources.
[0053] Multipass partitioning also can use other kinds of resource estimates
instead of register usage. For example, the number of texture units required to execute a
partition could be used. In general, these resource estimates can be combined (for
example, using a weighted sum) to direct the depth-first scheduler toward the most
resource-intensive calculations.

[0054] Although the present invention has been described above with respect to
several embodiments, variots modifications can be made within the scope of the present
invention. Accordingly, the disclosure of the present invention is intended to be
illustrative, but not limiting, of the scope of the invention, which is set forth in the

following claims.
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WHAT IS CLAiMED IS:
1. A method of partitioning operations, comprising:
determining respective priorities for a plurality of operations in a ready list
containing operations to be partitioned;
choosing, from the ready list, an operation that has a highest priority;

adding the chosen operation to a current partition unless a hard constraint

is violated; and

adding successor operations that no longer have predecessor operations to

the ready list.

2. The method of claim 1, wherein the priority for an operation is determined by
assigning a priority based on a number of registers required to execute a subtree of the

operation.

3. The method of claim 1, wherein the priority for an operation is determined by

assigning a priority based on a Sethi-Ullman number of the operation.

4. The method of claim 1, where the method is performed for graphics

operations usable in a graphics processing unit (GPU).

5. The method of claim 1, further including:

allowing partitioning of a operation that temporarily overuses a number of

outputs per partition..
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6. The method of claim 1, further including:

if a hard constraint is violated, performing a rollback to a point where all

hard constraints are met; and

adding at least one of the rolled back operations to a new ready list.

7. The method of claim 1, further including keeping track of resources and

registers used by each operation.

8. The method of claim 9, wherein resources include at least one of the
following: slots in a graphics shader operation memory used by each operation, a
number of constant and varying inputs, number of textures accessed, number of

internal registers used, and number of allowed outputs per pass.

9. The method of claim 1, where determining respective priorities attempts to

minimize a number of passes in the partitioned operations.

10. The method of claim 1, further including saving multiple intermediate results

instead of recomputing them between passes.

11. The method of claim 1, further comprising:

determining that a partition has been completed when hard constraints are

violated.
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12. The method of claim 1, wherein partitioning further comprises:

differentiating between hard and soft resource limits, hard resource limits
being limits that, once reached, make it impossible to partition more operations;
and soft limits being limits that, once reached, may possibly allow more

operations to be partitioned.

13. A method of partitioning operations, comprising:

determining respective priorities, for a plurality of operations to be
partitioned, in a data structure store in memory that represents dependencies between the
operations., the prioriﬁes assigned in accordance with the operation’s register usage,
whether the operation creates more ready successors, and a number of predecessors to the
graphics operation;

choosing, a graphics operation that has a highest priority;

adding the chosen graphics operation to a current partition unless a hard
constraint is violated; and

partitioning successor graphics operations that no longer have predecessor

graphics operations.

14. The method of claim 13, wherein the priority for a operation is determined by
assigning a highest priority to operations that reduce register usage, assigning a next
highest priority to operations that create more ready successors than fewer ready

successors, assigning a next highest priority to operations with more predecessors than
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fewer predecessors and assigning a next highest priority to operations closest to a critical

path.

15. The method of claim 13, further including:

allowing partitioning of an operation that temporarily overuses a number

of outputs per pass.

16. The method of claim 13, further including:
performing a rollback to a point where all hard constraints are met; and

scheduling at least one of the rolled back operations in a next stage.

17. The method of claim 13, where the metho.’d is performed for graphics

operations usable in a graphics processing unit (GPU).

18. The method of claim 13, further including keeping track of resources and

registers used by each partitioned operation.

19. The method of claim 18, wherein resources include at least one of the
following: slots in graphic shader operation memory used by each partitioned
graphics operation, a number of constant and varying inputs, number of textures

accessed, number of internal registers used, and number of outputs.
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20. The method of claim 13, where determining respective priorities attempts to

maximize a number of operations per pass.

21. The method of claim 13, further including saving multiple intermediate results

instead of recomputing them between passes.

22. The method of claim 13, further comprising:

determining that a partition has been completed when hard constraints are

violated.

23. The method of claim 13, further including use of a depth-first method of

traversing the operations.

24. The method of claim 13, further including use of a Sethi-Ullman based

method of traversing the operations.

25. A method, performed by a data processing system, of partitioning a plurality
of operations, represented by an operation dependency graph in a memory,
comprising:

for an operation visited during the traversal, visiting its child operation

that requires a greatest number of resources;



10

11

12

13

WO 2006/020001 PCT/US2005/025134
23

if an operation has no children, or all the children have been visited, and
the current operation can be scheduled without violating any constraints, adding
the operation to the current partition ;

finalizing the current partition when an operation is encountered that

violates a constraint; and

starting a next partition with the with the operation that violated the

constraint .

26. The method of claim 25 further comprising:
during traversal of the operations dependency graph in the memory,
skipping operations that violate predetermined constraints while continuing to consider

other operations.
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Fig. 3(f)

Fig. 3(e)
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