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(57) ABSTRACT 

A method of multi-tier classification and calibration in non 
invasive blood analyte prediction minimizes prediction error 
by limiting co-varying spectral interferents. Tissue samples 
are categorized based on Subject demographic and instru 
mental skin measurements, including in vivo near-IR spec 
tral measurements. A multi-tier intelligent pattern classifica 
tion sequence organizes spectral data into clusters having a 
high degree of internal consistency in tissue properties. In 
each tier, categories are successively refined using Subject 
demographics, spectral measurement information and other 
device measurements suitable for developing tissue classifi 
cations. 

The multi-tier classification approach to calibration utilizes 
multivariate statistical arguments and multi-tiered classifica 
tion using spectral features. Variables used in the multi 
tiered classification can be skin Surface hydration, skin Sur 
face temperature, tissue Volume hydration, and an 
assessment of relative optical thickness of the dermis by the 
near-IR fat band. All tissue parameters are evaluated using 
the NIR spectrum signal along key wavelength segments. 
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US RE41,333 E 
1. 

MULT-TER METHOD OF DEVELOPNG 
LOCALIZED CALIBRATION MODELS FOR 

NON-INVASIVE BLOOD ANALYTE 
PREDICTION 

Matter enclosed in heavy brackets appears in the 
original patent but forms no part of this reissue specifica 
tion; matter printed in italics indicates the additions 
made by reissue. 

10 
CROSS-REFERENCE TO RELATED 

APPLICATION 

More than one reissue application has been filed for the 
reissue of U.S. Pat. No. 6,512,937. The reissue applications 
are application Ser. No. 1 1/046,673 (the present 
application) and Ser: No. 1 1/065,223, all of which are divi 
Sional reissues of U.S. Pat. No. 6,512,937. This application 
is a Continuation-in-part of U.S. patent application Ser. No. 
09/359,191 filed on Jul 22, 1999, now U.S. Pat. No. 6,280, 
381, which is incorporated herein in its entirety by this refer- 20 
ence thereto. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 25 

The invention relates to non-invasive blood analyte predi 
cation using near IR tissue absorption spectra. More 
particularly, the invention relates to a method of classifying 
sample spectra into groups having a high degree of internal 
consistency to minimized prediction error due to spectral 
interferents. 

2. Description of Related Technology 
The goal of noninvasive blood analyte measurement is to 

determine the concentration of targeted blood analytes with 
out penetrating the skin. Near infrared (NIR) spectroscopy is 35 
a promising noninvasive technology that bases measure 
ments on the absorbance of low energy NIR light transmitted 
into a Subject. The light is focused onto a small area of the 
skin and propagates through Subcutaneous tissue. The 
reflected or transmitted light that escapes and is detected by 40 
a spectrometer provides information about the contents of 
the tissue that the NIR light has penetrated and sampled. The 
absorption of light at each wavelength is determined by the 
structural properties and chemical composition of the tissue. 
Tissue layers, each containing a unique heterogeneous 45 
chemistry and particulate distribution, result in light absorp 
tion and scattering of the incident radiation. Chemical com 
ponents such as water, protein, fat and blood analytes absorb 
light proportionally to their concentration through unique 
absorption profiles. The sample tissue spectrum contains 50 
information about the targeted analyte, as well as a large 
number of other substances that interfere with the measure 
ment of the analyte. Consequently, analysis of the analyte 
signal requires the development of a mathematical model for 
extraction of analyte spectral signal from the heavily over- 55 
lapped spectral signatures of interfering Substances. Defin 
ing a model that produces accurate compensation for numer 
ous interferents may require spectral measurements at one 
hundred or more frequencies for a sizeable number of tissue 
samples. 60 

In equation 7, T is a matrix representing the concentra 
tion or magnitude of interferents in all samples, and P repre 
sents the pure spectra of the interfering Substances or effects 
present. Any spectral distortion can be considered an inter 
ferent in this formulation. For example, the effects of vari- 65 
able sample scattering and deviations in optical sampling 
Volume must be included as sources of interference in this 

30 

2 
formulation. The direct calibration for a generalized least 
squares model on analyte y is 

where is defined as the covariance matrix of the interfer 
ing Substances or spectral effects, U is defined as the mea 
surement noise, X is the spectral measurement, and ko is the 
instrument baseline component present in the spectral mea 
surement. 

Accurate noninvasive estimation of blood analytes is also 
limited by the dynamic nature of the sample, the skin and 
living tissue of the patient. Chemical, structural and physi 
ological variations occur produce dramatic changes in the 
optical properties of the measured tissue sample. See R. 
Anderson, J. Parrish. The optics of human skin, Journal of 
Investigative Dermatology, Vol. 77(1), pp. 13–19 (1981); and 
W. Cheong, S. Prahl, A. Welch. A review of the optical prop 
erties of biological tissues, IEEE Journal of Quantum 
Electronics, vol. 26(12), pp. 2166-2185 (December 1990); 
and D. Benaron, D. Ho, Imaging (NIRI) and quantitation 
(NIRS) in tissue using time-resolved spectrophotometry: the 
impact of statically and dynamically variable optical path 
lengths, SPIE, Vol. 1888, pp. 10–21 (1993); and J. Conway, 
K. Norris, C. Bodwell. A new approach for the estimation of 
body composition: infrared interactance, The American 
Journal of Clinical Nutrition, vol. 40, pp. 1123–1140 
(December 1984); and S. Homma, T. Fukunaga, A. Kagaya, 
Influence of adipose tissue thickness in near infrared spec 
troscopic signals in the measurement of human muscle, 
Journal of Biomedical Optics, vol. 1 (4), pp. 418–424 
(October 1996); and A. Profio, Light transport in tissue, 
Applied Optics, Vol. 28(12), pp. 2216–2222 (June 1989); 
and M. Van Gemert, S. Jacques, H. Sterenborg, W. Sta, Skin 
optics, IEEE Transactions on Biomedical Engineering, Vol. 
36(12), pp. 1146–1154 (December 1989); and B. Wilson, S. 
Jacques, Optical reflectance and transmittance of tissues: 
principles and applications, IEEE Journal of Quantum 
Electronics, vol. 26(12), pp. 2186-2199. 

Overall sources of spectral variations include the follow 
ing general categories: 

1. Co-variation of spectrally interfering species. The near 
infrared spectral absorption profiles of blood analytes 
tend to overlap and vary simultaneously over brief time 
periods. This overlap leads to spectral interference and 
necessitates the measurement of absorbance at more 
independently varying wavelengths than the number of 
interfering species. 

2. Sample heterogeneity. The tissue measurement site has 
multiple layers and compartments of varied composi 
tion and scattering. The spectral absorbance versus 
wavelength measurement is related to a complex com 
bination of the optical properties and composition of 
these tissue components. Therefore, the spectral 
response with changing blood analyte concentration is 
likely to deviate from a simple linear model. 

3. State Variations. Variations in the subject’s physiologi 
cal state effect the optical properties of tissue layers and 
compartments over a relatively short period of time. 
Such variations, for example, may be related to hydra 
tion levels, changes in the volume fraction of blood in 
the tissue, hormonal stimulation, skin temperature fluc 
tuations and blood hemoglobin levels. Subtle variations 
may even be expected in response to contact with an 
optical probe. 

4. Structural Variations. The tissue characteristics of indi 
viduals differ as a result of factors that include 
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hereditary, environmental influences, the aging process, 
sex and body composition. These differences are 
largely anatomical and can be described as slowly vary 
ing structural properties producing diverse tissue geom 
etry. Consequently, the tissue of a given Subject may 5 
have distinct systematic spectral absorbance features or 
patterns that can be related directly to specific charac 
teristics Such as dermal thickness, protein levels and 
percent body fat. While the absorbance features may be 
repeatable within a patient, the structural variations in a 
population of patients may not be amenable to the use 
of a single mathematical calibration model. Therefore, 
differences between patients are a significant obstacle 
to the noninvasive measurement of blood analytes 
through NIR spectral absorbance. 

In a non-dispersive system, variations similar to (1) above 
are easily modeled through multivariate techniques such as 
multiple linear regression and factor-based algorithms. Sig 
nificant effort has been expended to model the scattering 
properties of tissue in diffuse reflectance, although the prob 
lem outlined in (2) above has been largely unexplored. Varia 
tion of the type listed in (3) and (4) above causes significant 
nonlinear spectral response for which an effective solution 
has not been reported. For example, several reported meth 
ods of noninvasive glucose measurement develop calibration 
models that are specific to an individual over a short period 
of time. See K. Hazen, Glucose determination in biological 
matrices using near-infrared spectroscopy, Doctoral 
Dissertation, University of Iowa (August 1995); and J. 
Burmeister. In vitro model for human noninvasive blood glu 
cose measurements, Doctoral Dissertation, University of 
Iowa (December 1997); and M. Robinson, R. Eaton, D. 
Haaland, G. Koepp, E. Thomas, B. Stallard and P. Robinson, 
Noninvasive glucose monitoring in diabetic patients: a pre 
liminary evaluation, Clin. Chem, Vol. 38 (9), pp. 1618–1622 
(1992). This approach avoids modeling the differences 
between patients and therefore cannot be generalized to 
more individuals. However, the calibration models have not 
been tested over long time periods during which variation of 
type (4) may require recalibration. Furthermore, the reported 
methods have not been shown to be effective over a range of 
type (3) variations. 

SUMMARY OF THE INVENTION 

The invention provides a Multi-Tier method for classify 
ing tissue absorbance spectra that localizes calibration and 
sample spectra into local groups that are used to reduce 
variation in Sample spectra due to co-variation of spectral 
interferents, sample heterogeneity, state variation and struc 
tural variation. Measurement spectra are associated with 
localized calibration models that are designed to produce the 
most accurate estimates for the patient at the time of mea 
Surement. Classification occurs through extracted features of 
the tissue absorbance spectrum related to the current patient 
state and structure. 

The invention also provides a method of developing local 
ized calibration models from tissue absorbance spectra from 
a representative population of patients or physiological 
states of individual patients that have been segregated into 
groups. The groups or classes are defined on the basis of 60 
structural and State similarity Such that the variation in tissue 
characteristics within a class is Smaller than the variation 
between classes. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 provides a representation of a Multi-Tiered Classi 
fication Tree structure, according to the invention; 
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4 
FIG. 2 is a block diagram of the architecture of an intelli 

gent system for the noninvasive measurement of blood 
analytes, according to the invention; 

FIG. 3 is a block diagram of a pattern classification 
system, according to the invention; 

FIG. 4 is a noninvasive absorbance spectrum collected 
using a diffuse reflectance NIR spectrometer; 

FIG. 5 shows the spectra of repeated noninvasive mea 
Surements with no attempt to control tissue hydration; 

FIG. 6 shows the spectra of repeated noninvasive mea 
Surements using ambient humidity to control hydration, 
according to the invention; 

FIG. 7 shows a noninvasive absorbance spectrum having a 
pronounced fat band at 1710 nm: 

FIG. 8 is a block schematic diagram of a general calibra 
tion system for mutually exclusive classes, according to the 
invention; 

FIG. 9 is a block schematic diagram of a general calibra 
tion system for fuZZy class assignments, according to the 
invention; and 

FIG. 10 is a block Schematic diagram showing an example 
of parallel calibration models for fuZZy set assignments, 
according to the invention. 

DETAILED DESCRIPTION 
MULTI-TIERED CLASSIFICATION 
The classification of tissue samples using spectra and 

other electronic and demographic information can be 
approached using a wide variety of algorithms. A wide range 
of classifiers exists for separating tissue states into groups 
having high internal similarity: for example, Bayesian clas 
sifiers utilizing statistical distribution information; or non 
parametric neural network classifiers that assume little a 
priori information. See K. Funkunaga, Intro to Statistical 
Pattern Recognition, Academic Pres, San Diego, Calif. 
(1990); and J. Hertz, A. Krogh, R. Palmer, Introduction To 
The Theory Of Neural Computation, Addison-Wesley Pub 
lishing Co., Redwood City, Calif. (1991). The multi-tiered 
classification approach selected here provides the opportu 
nity to grow and expand the classification database as more 
data become available. The multi-tiered classifier is similar 
to a hierarchic classification tree, but unlike a classification 
tree, the decision rules can be defined by crisp or fuzzy 
functions and the classification algorithm used to define the 
decision rule can vary throughout the tree structure. 

Referring now to FIG. 1, an example of a Multi-Tiered 
Classification scheme is represented. A first tier 11 assigns 
sample spectra according to pre-defined age groups: 18-27 
(15), 28–40 (14), 40–54 (13) and 55–80 years old (12). As 
indicated, a sample has been assigned to the 28–40 age 
group. A second tier 16 assigns samples to classes 18, 17 
according to sex, in this case female. A third tier 19, groups 
according to stratum corneum hydration: 31-60 (20); <30 
(21) and >61 corneometer units (22); in this case, >61. A 
fourth tier 23, groups according to skin temperature: 88–90 
(24); 86–88 (25); 84–86 and <84 degrees; in this case 84-86 
degrees. In this way, a determination of class membership is 
made within each tier in the multi-tiered structure. Finally, in 
a last tier 28, a final class assignment is made into one of 
three pre-defined groups 29, 30 and 31 according to relative 
optical thickness of the dermis. 

For economy’s sake, only the branching adjacent the 
selected classes is completely shown in FIG. 1, though there 
would be many more intermediate and final classification 
categories in a full multi-tiered classification structure. For 
example, at the fourth tier 23 of Figure, there would be 
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ninety-six possible classifications for a tissue measurement 
spectrum; at the final tier, there would be two hundred 
eighty-eight possible classifications. The foregoing descrip 
tion of a Multi-Tier Classification structure is meant to be 
exemplary only. One skilled in the art will appreciate that an 
actual classification structure could have more or fewer tiers, 
and different decision rules could be utilized at each tier than 
have been utilized in the example. 
FEATURE EXTRACTION 
As previously indicated, at each tier in the classification 

structure, classification is made based on a priori knowledge 
of the sample, or on the basis of instrumental measurements 
made at the tissue measurement site. In the example of FIG. 
1, the first two tiers utilize a priori information about the 
sample: Subject age and sex. Successive tiers utilize infor 
mation gained from instrumental measurements at the tissue 
measurement site. Further classification occurs on the basis 
of extracted features from the tissue absorbance spectra 
themselves. 

Feature extraction is any mathematical transformation 
that enhances a quality or aspect of the sample measurement 
for interpretation. See R. Duda, P. Hart, Pattern Classifica 
tion and Scene Analysis, John Wiley and Sons, New York 
(1973). FIG. 2 shows a block diagram of an intelligent mea 
Surement system for noninvasive blood analyte prediction, 
fully described in the parent application to the current appli 
cation: S. Malin and T. Ruchti. An Intelligent System For 
Noninvasive Blood Analyte Prediction, U.S. patent applica 
tion Ser. No. 09/359,191; Jul. 22, 1999, The purpose of fea 
ture extraction 41 in FIG. 2 is to concisely represent the 
structural properties and physiological State of the tissue 
measurement site. The set of features is used to classify the 
patient and determine the calibration model(s) most useful 
for blood analyte prediction. 
The features are represented in a vector, zeit' that is 

determined from the preprocessed measurement through 

Z=f(x) (1) 

where f: 9t'->R' is a mapping from the measurement space 
to the feature space. Decomposing f() will yield specific 
transformations, f(t): 9->9', for determining a specific 
feature. The dimension, M., indicates whether the i' feature 
is a scalar or a vector and the aggregation of all features is 
the vector Z. When a feature is represented as a vector or a 
pattern, it exhibits a certain structure indicative of an under 
lying physical phenomenon. 
The individual features are divided into two categories: 
1. abstract and 
2. simple. 
Abstract features do not necessarily have a specific inter 

pretation related to the physical system. Specifically, the 
scores of a principal component analysis are useful features 
although their physical interpretation is not always known. 
The utility of the principal component analysis is related to 
the nature of the tissue absorbance spectrum. The most sig 
nificant variation in the tissue spectral absorbance is not 
caused by a blood analyte but is related to the state, structure 
and composition of the measurement site. This variation is 
modeled by the primary principal components. Therefore, 
the leading principal components tend to represent variation 
related to the structural properties and physiological State of 
the tissue measurement site. Simple features are derived 
from an a priori understanding of the sample and can be 
related directly to a physical phenomenon. Useful features 
that can be calculated from NIR spectral absorbance mea 
surements include but are not limited to: 
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1. Thickness of adipose tissue. See J. Conway, K. Norris, 

C. Bodwell. A new approach for the estimation of body 
composition: infrared interactance, The American Jour 
nal of Clinical Nutrition, vol. 40, pp. 1123–1140 
(December 1984) and S. Homma, T. Fukunaga, A. 
Kagaya, Influence of adipose tissue thickness in near 
infrared spectroscopic signals in the measurement of 
human muscle, Journal of Biomedical Optics, Vol.1 (4), 
pp. 418–424 (October 1996). 

2. Tissue hydration. See K. Martin, Direct measurement 
of moisture in skin by NIR spectroscopy, J. Soc. Cos 
met. Chem. Vol. 44, pp. 249-261 (September/October 
1993). 

3. Magnitude of protein absorbance. See J. Conway, et al., 
Supra. 

4. Scattering properties of the tissue. See A. Profio, Light 
transport in tissue. Applied Optics, Vol. 28(12), pp. 
2216–2222 (June 1989) and W. Cheong, S. Prahl, A. 
Welch. A review of the optical properties of biological 
tissues, IEEE Journal of Quantum Electronics, vol. 
26(12), pp. 2166-2185 (December 1990); and R. 
Anderson, J. Parrish. The optics of human skin, Journal 
of Investigative Dermatology, vol. 77(1), pp. 13–19 
(1981). 

5. Skin thickness. See Anderson, et al., Supra; and Van 
Gemmert, et al., Supra. 

6. Temperature related effects. See Funkunga, Supra. 
7. Age related effects. See W. Andrew, R. Behnke, T. Sato, 

Changes with advancing age in the cell population of 
human dermis, Gerontologia, Vol. 10, pp. 1-19 (1964/ 
65); and W. Montagna, K. Carlisle, Structural changes 
in aging human skin, The Journal of Investigative 
Dermatology, vol. 73, pp. 47–53 (1979; and 19 J. 
Brocklehurst, Textbook of Geriatric Medicine and 
Gerontology, pp.593-623, Churchill Livingstone, 
Edinburgh and London (1973). 

8. Spectral characteristics relates to sex. See T. Ruchti, 
Internal Reports and Presentations, Instrumentation 
Metrics, Inc. 

9. Pathlength estimates. See R. Anderson, et al., Supra and 
S. Matcher, M. Cope, D. Delpy, Use of water absorp 
tion spectrum to quantify tissue chromophore concen 
tration changes in near-infrared spectroscopy, Phys. 

Med. Biol., vol. 38, pp. 177-196 (1993). 
10. Volume fraction of blood in tissue. See Wilson, et al., 

Supra. 

11. Spectral characteristics related to environmental influ 
CCCS, 

Spectral decomposition is employed to determine the fea 
tures related to a known spectral absorbance pattern. Protein 
and fat, for example, have known absorbance signatures that 
can be used to determine their contribution to the tissue 
spectral absorbance. The measured contribution is used as a 
feature and represents the underlying variable through a 
single value. 

Features relates to demographic information, Such as age, 
are combinations of many different effects that cannot be 
represented by a single absorbance profile. Furthermore, the 
relationship of demographic variables and the tissue spectral 
absorbance is not deterministic. For example, dermal thick 
ness and many other tissue properties are statistically related 
to age but also vary Substantially as a result of hereditary and 
environmental influences. Therefore, factor based methods 
are employed to build models capable of representing varia 
tion in the measured absorbance related to the demographic 
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variable. The projection of a measured absorbance spectrum 
onto the model constitutes a feature that represents the spec 
tral variation related to the demographic variable. The com 
pilation of the abstract and simple features constitutes the 
M-dimensional feature space. Due to redundancy of infor 
mation across the set of features, optimum feature selection 
and/or data compression is applied to enhance the robustness 
of the classifier. 
CLASSIFICATION 
The goal of feature extraction is to define the salient char 

acteristics of measurements that are relevant for classifica 
tion. Feature extraction is performed at branching junctions 
of the multi-tiered classification tree structure. The goal of 
the classification step is to assign the calibration model(s) 
most appropriate for a particular noninvasive measurement. 
In this step the patient is assigned to one of many predefined 
classes for which a calibration model has been developed 
and tested. Since the applied calibration model is developed 
for similar tissue absorbance spectra, the blood analyte pre 
dictions are more accurate than those obtained from a uni 
versal calibration model. 
As depicted in FIG. 3, pattern classification generally 

involves two steps: 
1. a mapping step in which a classification model 53 mea 

sures the similarity of the extracted features to pre 
defined classes; and 

2. an assignment step in which a decision engine 54 
assigns class membership. Within this framework, two 
general methods of classification are proposed. The 
first uses mutually exclusive classes and therefore 
assigns each measurement to one class. The second 
scheme utilizes a fuzzy classification system that 
allows class membership in more than one class simul 
taneously. Both methods rely on previously defined 
classes, as described below. 

Class Definition 
The development of the classification system requires a 

data set of exemplar spectral measurements from a represen 
tative sampling of the population. Class definition is the 
assignment of the measurements in the exploratory data set 
to classes. After class definition, the measurements and class 
assignments are used to determine the mapping from the 
features to class assignments. 

Class definition is performed through either a supervised 
or an unsupervised approach. See Y. Pao, Adaptive Pattern 
Recognition and Neural Networks. Addison-Wesley Pub 
lishing Co., Reading, Mass. (1989). In the supervised case, 
classes are defined through known differences in the data. 
The use of a priori information in this manner is the first step 
in Supervised pattern recognition, which develops classifica 
tion models when the class assignment is known. For 
example, the majority of observed spectral variation can be 
modeled by three abstract factors, which are related to sev 
eral physical properties including body fat, tissue hydration 
and skin thickness. Categorizing patients on the basis of 
these three features produces eight different classes if each 
feature is assigned a “high” and “low” value. The drawback 
to this approach is that attention is not given to spectral 
similarity and the number of classes tends to increase expo 
nentially with the number of features. 

Unsupervised methods rely solely on the spectral mea 
Surements to explore and develop clusters or natural group 
ings of the data in feature space. Such an analysis optimizes 
the within cluster homogeneity and the between cluster 
separation. Clusters formed from features with physical 
meaning can be interpreted based on the known underlying 
phenomenon causing variation in the feature space. 
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However, cluster analysis does not utilize a priori informa 
tion and can yield inconsistent results. 
A combination of the two approaches utilizes a priori 

knowledge and exploration of the feature space for naturally 
occurring spectral classes. In this approach, classes are first 
defined from the features in a supervised manner. Each set of 
features is divided into two or more regions and classes are 
defined by combinations of the feature divisions. A cluster 
analysis is performed on the data and the results of the two 
approaches are compared. Systematically, the clusters are 
used to determine groups of classes that can be combined. 
After conglomeration, the number of final class definitions is 
significantly reduced according to natural divisions in the 
data. Subsequent to class definition, a classifier is designed 
through Supervised pattern recognition. A model is created, 
based on class definitions, that transforms a measured set of 
features to an estimated classification. Since the ultimate 
goal of the classifier is to produce robust and accurate cali 
bration models, an iterative approach must be followed in 
which class definitions are optimized to satisfy the specifica 
tions of the measurement system. 
Statistical Classification 
The statistical classification methods are applied to mutu 

ally exclusive classes whose variation can be described sta 
tistically. See J. Bezdek, S. Pal, eds, Fuzzy Models for Pat 
tern Recognition, IEEE Press, Piscataway, N.J. (1992). Once 
class definitions have been assigned to a set of exemplary 
samples, the classifier is designed by determining an optimal 
mapping or transformation from the feature space to a class 
estimate which minimizes the number of misclassifications. 
The form of the mapping varies by method as does the defi 
nition of “optimal'. Existing methods include linear Dis 
criminant analysis, SIMCA, k nearest-neighbor and various 
forms of artificial neural networks. See Funkunaga, Supra; 
and Hertz, et al., Supra; and Martin, Supra; and Duda, et al., 
supra; and Pao, supra; and S. Wold, M. Sostrom, SIMCA: A 
method for analyzing chemical data in terms of similarity 
and analogy, Chemometrics: Theory and Application, ed. B. 
R. Kowalski, ACS Symposium Series, vol. 52 (1977); and S. 
Haykin, Neural Networks: A Comprehensive Foundation, 
Prentice-Hall, Upper Saddle River. N.J. (1994). The result is 
a function or algorithm that maps the feature to a class, c. 
according to 

c=f(z) (21) 

where c is an integer on the interval 1P and P is the num 
ber of classes. The class is used to selector adapt the calibra 
tion model as discussed in the Calibration Section. 
Fuzzy Classification 
While statistically based class definitions provide a set of 

classes applicable to blood analyte estimation, the optical 
properties of the tissue sample resulting in spectral variation 
change over a continuum of values. Therefore, the natural 
variation of tissue thickness, hydration levels and body fat 
content, among others, results in class overlap. Distinct class 
boundaries do not exist and many measurements are likely to 
fall between classes and have a statistically equal chance of 
membership in any of several classes. Therefore, “hard' 
class boundaries and mutually exclusive membership func 
tions appear contrary to the nature of the target population. 
A more versatile method of class assignment is based on 

fuzzy set theory. See Bezdek, et al., supra; and C. Chen, ed., 
Fuzzy Logic and Neural Network Handbook, IEEE Press, 
Piscataway, N.J. (1996); and L. Zadeh, Fuzzy Sets, Inform. 
Control, vol. 8, pp. 338–353 (1965). Generally, membership 
in fuZZy sets is defined by a continuum of grades and a set of 
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membership functions that map the feature space into the 
interval 0.1 for each class. The assigned membership grade 
represents the degree of class membership with “1” corre 
sponding to the highest degree. Therefore, a sample can 
simultaneously be a member of more than one class. 
The mapping from feature space to a vector of class mem 

berships is given by 

(2) 

where k=1,2,... P. f. () is the membership function of the 
k" class, ce0,1) for all k and the vector cei is the set of 
class memberships. The membership vector provides the 
degree of membership in each of the predefined classes and 
is passed to the calibration algorithm. 
The design of membership functions utilizes fuZZy class 

definitions similar to the methods previously described. 
FuZZy cluster analysis can be applied and several methods, 
differing according to structure and optimization approach 
can be used to develop the fuzzy classifier. All methods 
attempt to minimize the estimation error of the class mem 
bership over a population of samples. 
MULTI-TIERED CALIBRATION 

Blood analyte prediction occurs by the application of a 
calibration model to the preprocessed measurement as 
depicted in FIG. 2. The proposed prediction system involves 
a calibration or a set of calibration models that are adaptable 
or selected on the basis of the classification step. 
DEVELOPMENT OF LOCALIZED CALIBRATION 
MODELS 

Accurate blood analyte prediction requires calibration 
models that are capable of compensating for the co-varying 
interferents, sample heterogeneity, state and structural varia 
tions encountered. Complex mixtures of chemically absorb 
ing species that exhibit Substantial spectral overlap between 
the system components are solvable only with the use of 
multivariate statistical models. However, prediction error 
increases with increasing variation in interferents that also 
co-vary with analyte concentration in calibration data. 
Therefore, blood analyte prediction is best performed on 
measurements exhibiting Smaller interference variations that 
correlate poorly with analyte concentration in the calibration 
set data. Since it may not be possible to make all interference 
variations random, it is desirable to limit the range of spec 
tral interferent variation in general. 

The principle behind the multi-tiered classification and 
calibration system is based on the properties of a generalized 
class of algorithm that are required to compensate for over 
lapped interfering signals in the presence of the desired ana 
lyte signal. See H. Martens, T. Naes, Multivariate 
Calibration, John Wiley and Sons, New York (1989). The 
models used in this application require the measurement of 
multiple independent variables, designated as X, to estimate 
a single dependent variable, designated as y. For example, y 
may be tissue glucose concentration, and X may represent a 
vector, x x . . . X, consisting of the noninvasive spectrum 
signal intensities at each of n wavelengths. 
The generalized form of a model to be used in the calcula 

tion of a single glucose estimate uses a weighted Summation 
of the noninvasive spectrum as in Equation 4. The weights, 
w, are referred to as the regression vector. 

The weights define the calibration model and must be 
calculated from a given calibration set of noninvasive spectra 
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10 
in the spectral matrix X, and associated reference values y 
for each spectrum: 

w=(XX)'X'yW. (5) 

The modeling error that might be expected in a multivari 
ate system using Equation 5 can be estimated using a linear 
additive mixture model. Linear additive mixtures are charac 
terized by the definition that the sum of the pure spectra of 
the individual constituents in a mixture equals the spectra of 
the mixture. Linear mixture models are useful in assessing 
the general limitations of multivariate models that are based 
on linear additive systems and those, noninvasive blood 
analysis, for example, that can be expected to deviate some 
what from linear additive behavior. 

FIG. 4 shows an exemplary noninvasive absorbance spec 
trum. A set of spectral measurements may be represented as 
a matrix X where each row corresponds to an individual 
sample spectrum and each column represents the signal 
magnitude at a single wavelength. The measurement matrix 
can be represented as a linear additive mixture model with a 
matrix of instrument baseline variations Bo, a matrix of 
spectra of the pure components K, and the concentrations of 
the pure components, Y, and random measurement noise 
present in the measurement of each spectrum, E. 

The linear additive model can be broken up further into 
interferents and analytes as an extended mixture model. 

In equation 47, T is a matrix representing the concentra 
tion or magnitude of interferents in all samples, and P repre 
sents the pure spectra of the interfering Substances or effects 
present. Any spectral distortion can be considered an inter 
ferent in this formulation. For example, the effects of vari 
able sample scattering and deviations in optical sampling 
Volume must be included as sources of interference in this 
formulation. The direct calibration for a generalized least 
squares model on analyte y is 

where X is defined as the covariance matrix of the interfering 
Substances or spectral effects, 6 is defined as the measure 
ment noise, X is the spectral measurement, and k is the 
instrument baseline component present in the spectral mea 
Surement. 

X-P'(t)'P+diag(62) (9) 

The derived mean squared error (MSE) of such a general 
ized least squares predictor is found in Martens, et al., Supra. 

MSE(yos)=trace(K's 'K)' (10) 

Equation 10 describes the generalized limitations of least 
squares predictors in the presence of interferents. If K repre 
sents the concentrations of blood glucose, a basic interpreta 
tion of Equation 10 is: the mean squared error in glucose 
estimates increases with increased variation in interferences 
that also co-vary with glucose concentration in calibration 
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data. Therefore, the accurate estimation of glucose is best 
performed on measurements exhibiting Smaller interference 
variations that poorly correlate with glucose concentration in 
the calibration set data. Since it may not be possible to make 
all interference variations random with glucose, it is desir 
able to limit the range of spectral interference variation in 
general. The Multi-Tier Classification provides a method for 
limiting variation of spectral interferents by placing sample 
measurements into groups having a high degree of internal 
consistency. Groups are defined based on a priori knowledge 
of the sample, instrumental measurements at the tissue mea 
surement site, and extracted features. With each successive 
tier, samples are further classified such that variation 
between spectra within a group is successively limited. Tis 
Sue parameters to be utilized in class definition may include: 
stratum corneum hydration, tissue temperature, and dermal 
thickness. 
TISSUE HYDRATION 
The stratum corneum (SC), or horny cell layer covers 

about 10–15 um thickness of the underside of the arm. The 
SC is composed mainly of keratinous dead cells, water and 
some lipids. See D. Bommannan, R. Potts, R. Guy, Exami 
nation of the Stratum Corneum Barrier Function In Vivo by 
Infrared Spectroscopy, J. Invest. Dermatol., vol. 95, pp 
403-408 (1990). Hydration of the SC is known to vary over 
time as a function of room temperature and relative humid 
ity. See J. Middleton, B. Allen, Influence of temperature and 
humidity on stratum corneum and its relation to skin 
chapping, J. Soc. Cosmet. Chem. Vol. 24, pp. 239-43 
(1973). Because it is the first tissue penetrated by the spec 
trometer incident beam, more photons sample the SC than 
any other part of the tissue sample. Therefore, the variation 
of a strong near IR absorber like water in the first layer of the 
tissue sample can act to change the wavelength and depth 
intensity profile of the photons penetrating beneath the SC 
layer. 
The impact of changes in SC hydration can be observed 

by a simple experiment. In the first part of the experiment, 
the SC hydration is allowed to range freely with ambient 
conditions. In the second part of the experiment, variations 
in SC hydration are limited by controlling relative humidity 
to a high level at the skin Surface prior to measurement. 
Noninvasive measurements using uncontrolled and con 
trolled hydration experiments on a single individual are plot 
ted in FIGS. 5 and 6, respectively. Changes in the water band 
61 at 1900 nm can be used to assess changing Surface hydra 
tion. It is apparent that the range of variation in the water 
band 61 at 1900 nm is considerably narrower in FIG. 6 than 
in FIG. 5. Since surface hydration represents a large variable 
in the spectral measurement, it is a valuable component for 
use in categorizing similarity in tissue samples. 
TISSUE TEMPERATURE 
The temperature of the measured tissue volume varies 

from the core body temperature, at the deepest level of 
penetration, to the skin Surface temperature, which is gener 
ally related to ambient temperature, location and the amount 
of clothing at the tissue measurement site. The spectrum of 
water, which comprises about 65% of living human tissue is 
the most dominant spectral component at all depths sampled 
in the 1100–2500 nm wavelength range. These two facts, 
along with the known temperature-induced shifting of the 
water band at 1450 nm, combine to substantially complicate 
the interpretation of information about many blood analytes, 
including glucose. It is apparent that a range of temperature 
states exist in the Volume of sampled living tissue and that 
the range and distribution of states in the tissue depend on 
the skin surface temperature. Furthermore, the index of 
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refraction of skin is known to change with temperature. Skin 
temperature may therefore be considered an important cat 
egorical variable for use in the Multi-Tier Classification to 
identify groups for the generation of calibration models and 
prediction. 
OPTICAL THICKNESS OF DERMIS 

Repeated optical sampling of the tissue is necessary to 
calibrate to blood constituents. Because blood represents but 
a part of human tissue, and blood analytes only reside in 
fractions of the tissue, changes in the optical sampling of 
tissue may change the magnitude of the analyte signal for 
unchanging levels of blood analytes. This kind of a sampling 
effect may confound efforts at calibration by changing the 
signal strength for specific levels of analyte. 

Categorization of optical sampling depth is pursued by 
analyzing spectral marker bands of the different layers. For 
example, the first tissue layer under the skin is the Subcuta 
neous adipose tissue, consisting mainly of fat. The strength 
of the fat absorbance band can be used to assess the relative 
photon flux that has penetrated to the Subcutaneous tissue 
level. A more pronounced fat band means that a greater pho 
ton flux has reached the adipose tissue and returned to the 
detector. In FIG. 7, spectra with pronounced 71 and normal 
72 fat bands are presented. The most important use of the 
optical thickness is to assess the degree of hydration in the 
interior tissue sampled by the optical probe. Optical thick 
ness may also be a strong function of gender and body type, 
therefore this property measurement would be useful for 
assessing interior hydration states within a single individual. 
The following sections describe the calibration system for 

the two types of classifiers, mutually exclusive and fuZZy. 
MUTUALLY EXCLUSIVE CLASSES 

In the general case, the designated classification is passed 
to a nonlinear model that provides a blood analyte prediction 
based on the patient classification and spectral measurement. 
This process, illustrated in FIG. 8, involves the modification 
of the estimation strategy for the current Subject according to 
the structural tissue properties and physiological state mani 
fested in the absorbance spectrum. 

This general architecture necessitates a nonlinear calibra 
tion model 101 Such as nonlinear partial least squares or 
artificial neural networks since the mapping is highly nonlin 
ear. The blood analyte prediction for the preprocessed mea 
Surement X with classification specified by c is given by 

where g() is a nonlinear calibration model which maps x 
and c to an estimate of the blood analyte concentration, y. 

In the preferred realization, a different calibration is real 
ized for each class. The estimated class is used to select one 
of p calibration models most appropriate for blood analyte 
prediction using the current measurement. Given that k is the 
class estimate for the measurement, the blood analyte pre 
diction is 

y=g(x), (12) 

where g () is the calibration model associated with the k" 
class. 
The calibrations are developed from a set of exemplar 

absorbance spectra with reference blood analyte values and 
pre-assigned classification definitions. This set, denoted the 
“calibration set', must have sufficient samples to completely 
represent the range of physiological states to be encountered 
in the patient population. The p different calibration models 
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are developed individually from the measurements assigned 
to each of the p classes. The models are realized using 
known methods including principal component regression, 
partial least squares regression and artificial neural net 
works. See Hertz, et al., Supra; and Pao, Supra; and Haykin, 
Supra; and Martens, et al., Supra; and N. Draper, H. Smith, 
Applied Regression Analysis, 2" ed., John Wiley and Sons, 
New York (1981). The various models associated with each 
class are evaluated on the basis of an independent test set or 
cross validation and the “best set of models are incorpo 
rated into the Multi-tier Classification. Each class of patients 
then has a calibration model specific to that class. 
FUZZY CLASS MEMBERSHIP 
When fuzzy classification is employed the calibration is 

passed a vector of memberships rather than a single esti 
mated class. The vector, c, is utilized to determine an adap 
tation of the calibration model suitable for blood analyte 
prediction or an optimal combination of several blood ana 
lyte predictions. In the general case, illustrated in FIG. 9, the 
membership vector and the preprocessed absorbance spec 
trum are both used by a single calibration 111 for blood 
analyte prediction. The calculation is given by 

where g() is a nonlinear mapping determined through non 
linear regression, nonlinear partial least squares or artificial 
neural networks. The mapping is developed from the calibra 
tion set described previously and is generally complex. 

The preferred realization, shown in FIG. 10, has separate 
calibrations 121 for each class. However, each calibration is 
generated using all measurements in the calibration set by 
exploiting the membership vector assigned to each measure 
ment. In addition, the membership vector is used to deter 
mine an optimal combination of the p blood analyte predic 
tions from all classes through defuzzification 122. 
Therefore, during calibration development, a given measure 
ment of the calibration set has the opportunity to impact 
more than one calibration model. Similarly, during predic 
tion more than one calibration model is used to generate the 
blood analyte estimate. 

Each of the p calibration models is developed using the 
entire set of calibration data. However, when the k" calibra 
tion model is calculated, the calibration measurements are 
weighted by their respective membership in the k" class. As 
a result, the influence of a sample on the calibration model of 
a particular class is a function of its membership in the class. 

In the linear case, weighted least squares is applied to 
calculate regression coefficients and, in the case of factor 
based methods, the covariance matrix. See Duda, et al., 
supra. Given a matrix absorbance spectra Xel' and refer 
ence blood analyte concentrations Yest where r is the num 
ber of measurement spectra and w is the number 
wavelengths, let the membership in class k of each absor 
bance spectrum be the elements of Cest. Then the principal 
components are given by 

F=XM, (14) 

where M is the matrix of the first n eigenvectors of P. The 
weighted covariance matrix P is determined through 

P=XVX', (15) 
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14 
where V is a square matrix with the elements of C on the 
diagonal. The regression matrix, B, is determined through 

B-(FTVF)-FTVY. (16) 

When an iterative method is applied, such as artificial 
neural networks, the membership is used to determine the 
frequency the samples are presented to the learning algo 
rithm. Alternatively, an extended Kalman filter is applied 
with a covariance matrix scaled according to V. 
The purpose of defuZZification is to find an optimal com 

bination of the p different blood analyte predictions, based 
on a measurement's membership vector that produces accu 
rate blood analyte predictions. Therefore, defuzzification is a 
mapping from the vector of blood analyte predictions and 
the vector of class memberships to a single analyte predic 
tion. The defuzzifier can be denoted as transformation such 
that 

where d() is the defuzzification function, c is the class 
membership vector and y is the blood analyte prediction of 
the k' calibration model. Existing methods of 
defuZZification, such as the centroid or weighted average, are 
applied for small calibration sets. However, if the number of 
samples is Sufficient, d() is generated through a constrained 
nonlinear model. 
INSTRUMENT DESCRIPTION 
The Multi-tiered Classification and Calibration is imple 

mented in a scanning spectrometer which determines the 
NIR absorbance spectrum of the subject forearm through a 
diffuse reflectance measurement. The instrument employs a 
quartz halogen lamp, a monochromator, and InGaAs detec 
tors. The detected intensity from the sample is converted to a 
Voltage through analog electronics and digitized through a 
16-bit A/D converter. The spectrum is passed to the Intelli 
gent Measuring System (IMS) for processing and results in 
either a glucose prediction or a message indicating an invalid 
SCall. 

Although the invention is described herein with reference 
to the preferred embodiment, one skilled in the art will 
readily appreciate that other applications may be substituted 
for those set forth herein without departing from the spirit 
and scope of the present invention. Accordingly, the inven 
tion should only be limited by the claims included below. 
What is claimed is: 
1. A method of developing a multi-tiered calibration 

model for estimating concentration of a target blood analyte 
from measured tissue spectra, comprising the steps of: 

providing a calibration set, wherein said calibration set 
comprises a data set of exemplar spectral measure 
ments from a representative sampling of a subject 
population; 

initially, classifying said exemplar measurements into 
previously defined classes based on a priori a priori 
information pertaining to a corresponding Subject; 

further classifying said exemplar measurements into pre 
viously defined classes based on at least one instrumen 
tal measurement at a tissue measurement site; 

extracting at least one feature from said exemplar mea 
surements for still further classification, wherein a deci 
sion rule makes class assignments; and 

calculating at least one localized calibration model based 
on said classified measurements and an associated set 
of reference values. 
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2. The method of claim 1, wherein said initial classifica 
tion step comprises the steps of 

in a first tier, classifying said measured spectrum exem 
plar measurements into previously defined classes 
based on Subjects age; and 

in a second tier, further classifying said measured spec 
trum exemplar measurements into previously defined 
classes based on Subject's sex. 

3. The method of claim 1, wherein said further classifica 
tion step further comprises the steps of: 

in a third tier further classsifying said exemplar measure 
ments into previously defined classes based on an esti 
mation of stratum corneum hydration at said tissue 
measurement site; and 

in a fourth tier, further classifying said exemplar measure 
ments into previously defined classes based on skin 
temperature at said tissue measurement site. 

4. The method of claim 3, wherein said stratum corneum 
hydration estimate is based on a measurement of ambient 
humidity at said tissue measurement site. 

5. The method of claim 1, wherein said feature extraction 
step comprises any mathematical transformation that 
enhances a quality or aspect of sample measurement for 
interpretation to represent concisely structural properties 
and physiological state of a tissue measurement site, wherein 
a resulting set of features is used to classify a subject and 
determine a calibration model that is most useful for blood 
analyte prediction. 

6. The method of claim 5, wherein said features are repre 
sented in a vector, ZX.9' that is determined from a prepro 
cessed measurement through: 

where f(t): 9ty->9t' is a mapping from a measurement 
space to a feature space, wherein decomposing f() yields 
specific transformations, f(t): 9->9t', for determining a 
specific feature, wherein the dimension M, indicating 
whether an i" feature is a scalar or a vector and an aggrega 
tion of all features is the vector Z, and wherein a feature 
exhibits a certain structure indicative of an underlying physi 
cal phenomenon when said feature is represented as a vector 
or a pattern. 

7. The method of claim 6, wherein individual features are 
divided into categories, said categories comprising: 

abstract features that do not necessarily have a specific 
interpretation related to a physical system; and 

simple features that are derived from an a priori under 
standing of a sample and that can be related directly to a 
physical phenomenon. 

8. The method of claim 7, wherein said simple features 
can be calculated from NIR spectral absorbance 
measurements, said simple features including any of 

thickness of adipose tissue; 
hematocrit level; 
tissue hydration; 
magnitude of protein absorbance; 
Scattering properties of said tissue; 
skin thickness; 
temperature related effects; 
age related effects; 
spectral characteristics; 
pathlength estimates; 
Volume fraction of blood in tissue; and 
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16 
spectral characteristics related to environmental influ 

CCCS, 

9. The method of claim 1, further comprising the step of: 
employing spectral decomposition to determine features 
related to a known spectral absorbance pattern. 

10. The method of claim 1, further comprising the step of: 
employing factor-based methods to build a model capable 

of representing variation in a measured absorbance 
spectrum related to a demographic variable; 

wherein projection of a measured absorption onto said 
model constitutes a feature that represents spectral 
variation related to said demographic variable. 

11. The method of claim 1, wherein said feature extraction 
step assigns a measurement to one of many predefined 
classes. 

12. The method of claim 1, further comprising the steps 
of: 

measuring the similarity of a feature to predefined classes; 
and 

assigning class membership. 
13. The method of claim 1, further comprising the step of: 
using measurements and class assignments to determine a 

mapping from features to class assignments. 
14. The method of claim 13, further comprising the steps 

of: 

defining classes from said features in a Supervised 
manner, wherein each set of features is divided into two 
or more regions, and wherein classes are defined by 
combination of feature divisions; 

performing a cluster analysis on the spectral data to deter 
mine groups of said defined classes that can be 
combined, wherein the final number of class definitions 
is significantly reduced; 

designing a classifier Subsequent to class definition 
through Supervised pattern recognition by determining 
an optimal mapping or transformation from the feature 
space to a class estimate that minimizes the number of 
misclassifications; and 

creating a model based on class definitions that transforms 
a measured set of features to an estimated 
classification, wherein said class definitions are opti 
mized to satisfy specifications of a measurement sys 
tem used to take said measurements. 

15. The method of claim 14, wherein said optimized 
classes comprise groups of measurements wherein similarity 
between measurements within a group is greater than simi 
larity between groups. 

16. The method of claim 15, said step of calculating at 
least one localized calibration model comprising: 

calculating weights, w, for said exemplar measurements 
according to: 

where X represents a matrix of spectral measurements, 
and y represents a reference value of said target analyte 
concentration for each measurement. 

17. The method of claim 16, wherein a vector of weights 
of spectral measurements within one of said groups com 
prises a regression vector for said group; 

wherein said regression vector comprises a calibration 
model for said group. 
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18. A method of developing a multi-tiered calibration 
model for estimating concentration of a target blood analyte 
from measured tissue spectra, comprising the steps of: 

providing a calibration set, wherein said calibration set 
comprises a data set of exemplar spectral measure 
ments from a representative sampling of a subject 
population; 

in at least one tier, classifying said exemplar measure 
ments into previously defined classes; and 

extracting at least one feature from said exemplar mea 
surements for still further classification; and 

calculating at least one localized calibration model based 
on said classified exemplar measurements and a set of 
associated reference values. 

19. The method of claim 18, wherein said classifying step 
is based on any of 

abstract and simple features. 
20. The method of claim 18, further comprising the step of 

mapping said exemplar measurements to estimates of said 
analyte based on either a linear or a nonlinear model. 

21. The method of claim 18, wherein said classifying step 
is based on any of 

a prioria priori information; and 
at least one instrumental measurement at a tissue mea 

Surement site at which optical samples were taken for 
said spectral measurements. 

22. The method of claim 18, wherein said classifying step 
comprises multiple tiers. 

23. The pattern classification method of claim 22, wherein 
said classifying step comprises any of the steps of: 

classifying said exemplar measurements into previously 
defined classes based on Subjects age; 

classifying said exemplar measurements into previously 
defined classes based on Subject's sex; 

classifying said exemplar measurements into previously 
defined classes based on an estimation of stratum cor 
neum hydration of said tissue measurement site; and 

classifying said exemplar measurements into previously 
defined classes based on skin temperature at said tissue 
measurement site. 

24. A method for developing a calibration model for esti 
mating a target analyte property from measured tissue 
spectra, comprising the steps of 

providing a data set of exemplar spectral measurements 
from a sampling of a subject population, 

classifying a majority of said exemplar measurements into 
classes using at least one feature of said exemplar mea 
Surements, 

wherein said feature comprises a spectral feature, 
wherein said classes comprise groups of measurements 

wherein similarity between measurements within a 
group is greater than similarity between groups, and 

calculating at least one localized calibration model using 
said classified measurements and an associated set of 
reference values. 

25. The method of claim 24, wherein said classifiving step 
comprises classifiving based on any of 

a priori information, 
a physical measurement, and 
an optical measurement at a tissue measurement site. 
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26. The method of claim 25, wherein said a priori infor 

mation comprises any of 
age, 

gender, 
hematocrit level and 
temperature. 
27. The method of claim 25, wherein said physical mea 

surement comprises any of 
thickness of adipose tissue, 
tissue hydration, 
scattering properties of said tissue, and 
skin thickness. 

28. The method of claim 25, wherein said optical mea 
surement comprises any of 

magnitude of protein absorbance, 
magnitude offat absorbance, 
a spectral characteristic, 
a pathlength estimate, 
volume fraction of blood in tissue, and 
a spectral feature. 
29. The method of claim 25, wherein said classes at least 

partially share exemplar measurements. 
30. The method of claim 25, filrther comprising the step 

of: 
assigning degree of membership to at least some of said 

exemplar measurements according to a fizzy member 
ship fitnction. 

31. The method of claim 30, wherein at least one of said 
localized calibration models comprises coefficients calcu 
lated with exemplar measurements and said degree of mem 
bership. 

32. The method of claim 31, filrther comprising the steps 
of: 

providing an estimation spectrum, 
assigning degree of class membership to said estimation 

spectrum in at least one of said classes, 
estimating at least One interim analyte property with said 

localized calibration models, and 
combining said estimates to determine said analyte prop 

erty. 
33. The method of claim 32, wherein said step of assigning 

comprises use of a fuzzy membership finction. 
34. The method of claim 32, wherein said step of combin 

ing uses said degree of class membership. 
35. The method of claim 24, wherein said classifiving step 

comprises. 
classifying said exemplar measurements into previously 

defined classes based on at least one instrument mea 
surement at a tissue measurement Site. 

36. The method of claim 24, wherein said feature extrac 
tion comprises the steps of 

representing structural properties and physiological state 
of a tissue measurement site through application of at 
least One mathematical transformation that enhances a 
quality or aspect of Sample measurement for 
interpretation, and 

using a resulting set of features i to classif a subject and 
determine a calibration model that is most useful for 
blood analyte prediction. 



prise sets of features and wherein the step of defining classes 

features having physical meaning are interpreted based on 
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37. The method of claim 36, wherein said step of repre 
senting structural properties and physiological state Com 
prises the step of 

representing features in a vector, zest' that is determined 
from a preprocessed measurement through: 5 

where f: 9Y->9t' is a mapping space to a feature 
space, wherein decomposing f() yields specific 
transformations, f(t): 9->9t', for determining a spe 
cific feature, wherein the dimension M, indicates 
whether an i' feature is a scalar or a vector and an 
aggregation of all features is the vector Z. 

38. The method of claim 24, wherein said feature exhibits 
a structure indicative of an underlying physical phenomenon 
when said feature is represented as a vector or a pattern. 

39. The method of claim 24, wherein said feature com 

10 

15 

prises any of 
a simple feature, and 
an abstract feature. 
40. The method of claim 24, wherein a decision rule 

makes class assignments. 
41. The method of claim 24, wherein said features com 

in a supervised manner comprises the steps of 25 
dividing each set of features into two or more regions, 

wherein classes are defined by combinations of feature 
divisions, wherein classes are defined through known 
differences in data, 

performing a cluster analysis on the exemplar measure 
ments to determine groups of said defined classes that 
can be combined to reduce the final number of class 
definitions, 

designing a classifier subsequent to class definition 
through supervised pattern recognition by determining 
an optimal mapping or transformation from the feature 
space to a class estimate that minimizes the number of 
misclassifications, and 

creating a model based on class definitions that trans 
forms a measured set of features to an estimated 
classification, wherein said class definitions are opti 
mized to satisfi specifications of a measurement system 
used to take said measurements. 

42. The method of claim 41, filrther comprising: 
calculating weights, W, for said measurements, according 

to. 

30 

35 

40 

45 

W-(XX) - XY 
50 

where X represents a matrix of measurements, and Y 
represents a reference value of a target analyte concen 
tration for each measurement. 

43. The method of claim 42, wherein a vector of weights of 
spectral measurements within One of said groups comprises 55 
a regression vector for said group, and 

wherein said regression vector comprises a calibration 
model for said group. 

44. The method of claim 24, wherein the steps of defining 
said classes in an unsupervised manner comprises. 

developing clusters of data in feature space based on the 
measurements, wherein within-cluster homogeneity 
and between-cluster separation is maximized. 

45. The method of claim 44, wherein clusters formed from 

60 

65 

the known underlying phenomenon causing variation in the 
feature space. 

20 
46. The method of claim 24, wherein said classes are 

defined on the basis of structural and state similarity, 
wherein variation in tissue characteristics within a class is 
smaller than the variation between classes. 

47. The method of claim 24, wherein said classifiving step 
is based on any of 

a simple feature, and 
an abstract feature. 
48. The method of claim 24, further comprising the step 

of: 
preprocessing prior to said step of classifiving. 
49. A method for developing a calibration model for esti 

mating a target analyte property from measured tissue 
spectra, comprising the steps of 

providing a data set of exemplar spectral measurements 
from a sampling of a subject population, 

classifiving a majority of said exemplar measurements into 
classes using at least one feature of said exemplar mea 
surements, and 

calculating at least one localized calibration model using 
said classified measurements and an associated set of 
reference values, 

wherein the step of classifiving comprises classifiving 
through at least two tiers. 

50. A method for developing a calibration model for esti 
mating a target blood analyte property from measured tissue 
spectra, comprising the steps of 

providing a calibration set, wherein said calibration set 
comprises a data set of exemplar spectral measure 
ments from a representative sampling of a subject 
population, 

extracting at least one feature from at least One of Said 
exemplar measurements, 

classifiving at least a portion of said exemplar measure 
ments into classes using said feature, and 

calculating at least one localized calibration model for at 
least one of said classes based on said classified mea 
surements and an associated set of reference values, 

wherein said step of extracting at least one feature Com 
prises. 
representing structural properties and physiological 

state of a tissue measurement site through applica 
tion of at least one mathematical transformation that 
enhances a quality or aspect of sample measurement 
for interpretation, wherein a resulting set of features 
is used to classif a subject and determine a calibra 
tion model. 

51. The method of claim 50, wherein said feature com 
prises a spectral feature. 

52. The method of claim 50, wherein the step of classifiving 
comprises classifiving based on any of 

a priori information, 
a physical measurement, and 
an optical measurement of a tissue measurement site. 
53. The method of claim 50, wherein the step of classifiving 

measurements comprises. 
classifiving said exemplar measurements into previously 

defined classes based on at least one instrument mea 
surement at a tissue measurement site. 

54. The method of claim 50, wherein said feature com 
prises any of 

a simple feature, and 
an abstract feature. 
55. The method of claim 50, wherein the step of classifiving 

comprises classifing said exemplar measurements, wherein 
said classes are defined in any of supervised and unsuper 
vised manners. 
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56. The method of claim 50, wherein the step of extracting 
comprises a mathematical transformation resulting in any 
of: 

a simple feature, and 
an abstract feature. 
57. The method of claim 50, wherein said classes at least 

partially share exemplar measurements. 
58. The method of claim 50, wherein the step of classifiving 

comprises classifiving through at least two tiers. 
59. The method of claim 50, wherein said classes are pre 

viously defined. 
60. The method of claim 50, filrther comprising the step 

of: 
preprocessing prior to said step of extracting. 
61. The method of claim 50, wherein the step of classifiving 

uses any of 
a crisp finction, and 
a fuzzy function. 
62. A method for developing a calibration algorithm for 

calculating concentration of a target blood analyte from 
measured tissue spectra, comprising the steps of 

providing a data set of exemplar spectral measurements 
from a representative sampling of a subject population, 

classifying at least one of said exemplar measurements 
into previously defined classes, and 

calculating at least one localized calibration model using 
said classified measurements and an associated set of 
reference values, 

wherein said classes comprise groups of measurements, 
wherein similarity between measurements within a 
group is greater than similarity between groups. 

63. The method of claim 62, wherein said classes are 
defined by any of 

a priori information, 
a physical measurement, and 
an optical measurement at a tissue measurement site. 

22 
64. The method of claim 63, wherein said a priori infor 

mation comprises any of 
age, 
gender, 
hematocrit level and 
temperature. 
65. The method of claim 63, wherein said physical mea 

surement comprises any of 
10 thickness of adipose tissue, 

tissue hydration, 
scattering properties of said tissue, and 
skin thickness. 

15 66. The method of claim 63, wherein said optical mea 
surement comprises any of 

magnitude of protein absorbance, 
magnitude offat absorbance, 
a spectral characteristic, 

20 a pathlength estimate, 
volume fraction of blood in tissue, and 
a spectral feature. 
67. The method of claim 62, wherein a decision rule 

25 makes class assignments. 
68. A method for developing a multi-tier calibration 

model for determining concentration of a target blood ana 
lyte from measured tissue spectra, comprising the steps of 

providing a calibration set, wherein said calibration set 
30 comprises a data set of exemplar spectral measure 

ments from a representative sampling of a subject 
population, 

through at least two tiers, classifying said exemplar mea 
surements into classes, and 

35 calculating at least one localized calibration model using 
said classified measurements and an associated set of 
reference values. 


