This invention relates generally to devices for protecting polyphase circuits.

Devices of the subject type are especially useful for protecting polyphase alternating current electrical apparatus, and particularly polyphase electric motors, and comprise a plurality of current-sensitive members each of which can respond to one of the currents between which unbalance is to be avoided, a switch, and a operative connection between the current-sensitive members and the switch for operating the latter to disconnect the apparatus by non-uniform motion of the member in the event of unbalance.

Since the device is particularly useful in protecting polyphase motors against single phasing, it is described hereinafter as a "single phasing preventor" or more briefly, as a "preventor." According to the practice of the prior art, a number of bimetal strips was employed to operate the "preventor," these being heated in accordance with the currents in the respective phases of the circuit being protected, either by passing current through the bimetal itself or through a resistance element mounted with it. In either case, if it was desired to renew the heating elements, or to exchange them for others of different value, it was necessary to reassemble the bimetal strips, if not to exchange them for others, which involved re-adjusting the mechanism.

Therefore, it is the primary object of the present invention to provide for the replacement of the heating elements without interference with any mechanically operated parts, whereby to obviate the necessity for re-adjustment when the heating elements are replaced. In accordance with said object, it is a more specific object to provide for the replacement of the heating elements without disturbing the bimetal strips. Another object of the present invention is to make the means of attaching in place the heaters, or carriers, therefor such that positive location is obtained on interchange.

A further object is to provide a more efficient improved and generally simplified single phasing preventor.

The above and other objects, features and advantages of the present invention will be more fully understood from the following description considered in connection with the accompanying illustrative drawings.

In the drawings:

Fig. 1 is a top plan view of a preventor, pursuant to the present invention, for protecting a three phase electric circuit against unbalance, two of the heaters being removed for purposes of illustration;

Fig. 2 is a view similar to Fig. 1, with the cover of the device removed, two of the heaters being removed as in Fig. 1;

Fig. 3 is a front elevation taken in the direction of arrow 3 in Fig. 1;

Fig. 4 is a sectional view taken on the line 4-4 of Fig. 1 and Compart 4.

Fig. 5 is an end view in the direction of the arrow 5 in Fig. 1;

Fig. 6 is a fragmentary perspective view of a switch provided in the preventor device;

Figs. 7 and 8 illustrate one form of heater for the preventor; and

Figs. 9 and 10 illustrate another form of heater thereof.

Referring now to the drawings in detail, the protector device of the present invention is provided with an insulating base 20 on which the various component parts thereof are mounted. Provision is made for three laterally spaced conducting brackets or terminal elements 22, each provided with a terminal 24 for the incoming current, said brackets being suitably secured to the base 20, as by the securing elements 23 (Fig. 4). Three conducting brackets or terminal elements 26 are also secured to the base 20 as by the securing elements 27, said brackets extending through apertured portions 29 of the base and being each provided with a terminal 28 for the outgoing current. Consequently, it will be understood that there is an input terminal 24 and an output terminal 28 for each current phase. The base 20 has defined therein three laterally spaced chambers 34 in each of which there is mounted a bimetal strip 38. More specifically, each strip is provided with a looped portion 72, an end portion 33 which is secured to the insulated base in the companion chamber, as by means of a clip 36, and with a free end 48 which extends from the chamber and engages in slots 40 and 42 provided in the longitudinally extending slide members or plates 44 and 46, respectively. The plates are disposed between the base 20 and a cover 48 which is fixed thereto, said base and cover defining a housing for the protector. Said plates are mounted for slideable movement in the direction of their longitudinal axis under the control of the bimetal strips. Adjacent one end thereof the upper plate 44 carries a pivot 50 on which there is pivotally mounted a bell crank lever 52. A pin 56 carried at one end of the lower plate 46 extends into and is connected with one arm 54 of the bell crank lever. The other arm 58 of the bell crank lever engages a hook contact 60, which constitutes one of the contacts of a switch 61, best illustrated in Fig. 6, the other switch contact being indicated at 68.

Switch 61 is of similar construction and operation to the switch illustrated and described in the British patent specification No. 553,154 and in No. 628,220. As illustrated and described therein, and as shown herein, the aforesaid hook contact 60 is secured through an opening 62 provided in a fixed conducting bracket 64, which is provided with a terminal screw 65 (Fig. 5). One end of the companion contact 68 is hooked, as at 70, into a contact bar 72 (Fig. 3) which is fixed to the device in a suitable manner and which is provided with a terminal 76. A spring 74 operates to move the contact 68 downwardly from the full line, to the broken line position thereof, as illustrated in Fig. 5, when the companion contact 60 is rocked in a clockwise direction, viewing said figure. In this connection it will be noted that the hook contact 60 has an extension portion 86 upwardly of the bracket 62, which extension is biased by a spring 67 in a direction to effect engagement of the opposite end of the hook contact 60 with the companion contact 68. It will be understood that the switch contacts 60 and 68 are connected in well known manner to control the supply of current to a suitable load, for example, and not by way of limitation, to a motor, and, when the switch is opened, protects the motor by a reverse off the current supply thereof. In this connection, the switch may be connected in series with the operating coil of a suitable contactor (not illustrated) for controlling the supply of current to the apparatus, for example, a motor, which is being protected.

The aforementioned spring 67 serves to press the hook contact 60 against the bell crank lever 52, as best illustrated in Figs. 3 and 5. When the bell crank lever is in the posi-
tion thereof illustrated in Fig. 3, the hook at the lower end of the hook contact 60 is in contact with and holds the companion switch contact or arm 65 of the switch 61. The pressure exerted by the spring 67 through the hook contact 62 makes the latter thrust the plate 46 in the direction of the arrow 47 in Fig. 5, and relative to the companion plate 44, so far as the relative position of the various parts being, as illustrated in Fig. 3. Uniform heating of the bimetal strips 30 will cause their free ends to move in the direction of the arrow 47 by equal amounts, and it will be apparent that the plates 44 and 46 and the bell crank lever 52 will move in the direction of said arrow 47 with said free ends of the heaters. The upper arm 58 of the bell crank lever, against which the hook contact 68 presses, will slide under the latter without affecting the closed condition of the switch 61. However, should unequal heating of the bimetal strips occur, so that one of them moves less than the other, this will limit the movement of the plate 46 in the direction of the arrow 47, but the plate 44 will continue to move in said direction under pressure from the other strip. By a suitable design of the strip and its placement thereon, said one strip, consequently, the plate 44 will move in the direction of the arrow 47 over the plate 46, carrying with it the pivot 50 of the bell crank lever 52, while the pin 56 which is fixed to the plate 46 and which engages in the lower arm 56 of the bell crank lever will prevent that lower arm from moving in the direction of the arrow 47. Consequently, the bell crank lever will pivot in a counter-clockwise direction, viewing Fig. 3, so that the arm 58 thereof moves upwardly from the position thereof illustrated in said figure. This arm forces the hook contact 68 upwardly, viewing Fig. 3, until it disengages the companion switch contact 65, permitting the latter to be moved to the open position thereof by spring 74, as illustrated in broken line in Fig. 5. Since, as previously indicated, the switch is connected to control the supply of current to a motor, it will be apparent that when opened the switch protects the motor by cutting off the supply of current thereto. As previously indicated, the contact arm 68 being pivoted at the hook portion 70 and being biased by the spring 74 to press firmly against the hook end of hook contact 70 in the engaged condition thereof, when the lower portion of the hook contact 69 is moved in the direction of the arrow 63 (Fig. 6) to disengage the hooked end thereof from the companion arm 71, the lower portion of the hook contact 69 is moved downwardly by the spring 74 until it abuts an insulating nose 78, as illustrated in Fig. 5.

Once the switch 61 is opened in the described manner, it remains open even though the hook contact 69 moves back in the direction opposite the arrow 63. However, after the hook contact has returned to the position thereof illustrated in Fig. 5 or 6, the companion switch contact 65 may be re-engaged therewith by moving upwardly upon the nose 78, as illustrated in Fig. 5, to move the contact 68 back into engagement with the hook contact 60 to reset the switch.

Provision is made for a bracket 48 which is pivoted at 82 and which carries a bimetal strip 84. Provision is also made for a lever 86 which is pivotally mounted, as at 83, and which is provided with a pointer 90 (Fig. 3), which pointer moves relative to notches 92 provided on the base 88 as the lever 86 is rotated on its pivot. As best seen in Fig. 2. When the projection 94 which limits the rotation of the bracket 88, it being noted that the latter is provided with a part 91 which is adapted to engage the projection 94, said projection being disposed in the path of movement of the part 81. As best seen in Fig. 5, the bimetal strip 84 extends from the bracket 88 into the path of movement of the plate 46 in the direction of the arrow 47 to limit the movement of said plate in said direction.

In view of the foregoing, it will be apparent that the extent of the movement of the plate 46 in the direction of the arrow 47 may be predetermined by the setting of the pointer 90 at a particular notch 92, the setting of said pointer determining the position of the lever 86 and thereby limiting the clocking of the plate 46. Such limitation may be observed by referring to Fig. 2, which in turn determines the setting of the bimetal strip 84 which, as indicated, predetermines the extent of the movement of the plate 46 in the direction of the arrow 47. When under conditions of uniform heating of the various bimetal strips 30, the plates 44 and 46 move in the direction of the arrow 47, viewing Fig. 3, as previously described, and the movement of the plate 46 will be stopped by its engagement with the bimetal strip 84. Further heating of the strips 30 will cause the companion plate 44 to move in the direction of the arrow 47, relative to the plate 46, to result in the pivotal movement of the bell crank lever 52 in a direction to open the switch 61, as previously described, and thereby discontinuing the supply of current to the apparatus, for example a three phase motor which is being protected. Therefore, it will be apparent that the preventive device herein described provides protection against ordinary overload of the apparatus as well as protection against sub-normal in the various current phases thereof. By virtue of said design and construction of the bimetal strip 84, so that for a given change of ambient temperature its deflection is the same as that of the bimetal strips 30, the uniform overload which will trip the switch 61 is caused to be made independent of ambient temperature.

The base 29 and the cover 48, which constitute the housing, are extended to overlap the free ends 38 of the bimetal strips 30 and to hold a transparent front window plate 95 (Fig. 2). The base and the cover may also be extended at each side of the device to overlap the strip 84 and associated parts, and to hold transparent side window plates 96 and 100. Consequently, the various operating parts are clearly visible and yet they are protected. In this connection, it will be understood that it is particularly useful to be able to observe the movement of the free ends 38 of the various strips 30 in order to see if they are moving together, as when the three leads of the circuit being protected are equally loaded, or if one or more of the ends is lagging, as when unbalance exists between the three leads of the circuit being protected.

Cover 48, when mounted on the base 29, closes the top of the various chambers 34. The heaters 102 are disposed in each of the chambers 34 when the protector device is in use. Pursuant to the present invention, as the best shown and described, the heater 102 is provided with a companion incoming terminal bracket 22 by a securing portion 103 which extends transversely of the bimetal loop outwardly of the associated chamber, through the medium of the screw 104 and is fixed to a companion outgoing terminal bracket 26 by a securing portion 105 which extends transversely of said loop outwardly of the associated chamber, through the medium of a screw 106. Consequently, it will be apparent that at both ends thereof, the heater is secured outwardly of the housing. It will be noted from the left hand chamber, viewing Fig. 2, that the heater lies within and adjacent to the loop 32 of the associated bimetal strip 30 in close spaced thermal relation therewith to obtain maximum heat transfer. Referring now to Fig. 4, it will be noted that the cover 48 is cut away, as at 108, to permit the heater to be readily removed or replaced through the cover, without the necessity of removing the latter, by merely removing the screw 104 and by backing up or slackening the screw 106. Each heater 102 has attached to itself, or molded a part thereof, a plate 110 which serves to close the opening of the chamber provided for the particular heater that is in position in the device. Fig. 2 illustrates only one of the heaters in position, the heater in the left hand chamber, viewing said figure, being shown in section at the level of the companion bimetal strip 30, the heaters in the center and the right hand chambers having been removed for purposes of illustration. The center and
right hand heaters have also been removed from Fig. 1 and in addition the screws 104 which hold the heaters to the brackets 22 have also been removed so as to reveal the openings 103 and 105. The heater 102 shows in position in the protector device is formed of sheet metal and is suitably shaped for disposition within the loop 32 of the associated bimetal strip and to provide the terminal connecting portions 103 and 105 thereof. Thicker or thinner sheet metal is employed for larger or smaller currents respectively, provided however that the heater is not made of such thin material as to be readily liable for accidental deformation.

For smaller currents, a heater 102A, as illustrated in Figs. 7 and 8 may be used. Said heater is made of spiral wound wire, being provided with the apertured end portion 112, apertured as at 112A, for connection by screw 104 to the terminal brackets 22 and with the U-shaped end or peripherally interrupted portion 114 for connection by screw 106 to the terminal bracket 26. For still smaller currents, a heater 102B, as illustrated in Figs. 9 and 10 may be used. Said heater is formed of a relatively thin or fine wire which is spirally wound on an insulating former or mounting member 116. The heater 102B is provided with an apertured end 118, apertured as at 112A, for connection by screw 106 to the terminal bracket 26 and with a slotted end 120 for connection by screw 106 to the terminal bracket 26. It will be understood that the heater 102 is also apertured in the connecting portion 103 thereof, and is slotted in the connecting portion 105 thereof in the same manner, as at 120 in Fig. 9. It will be noted in addition, that the U-shaped opening 114 in Fig. 7, is substantially in the form of an open ended slot as in Fig. 9. Therefore, in view of the slotted ends of each of the heaters, in removing or replacing a heater, the screw 106 which engages in said slotted ends needs to be slackened back only. However, the screw 104 must be entirely removed, but being at the top of the device, as will be apparent from Fig. 1, is readily effected and, in order to facilitate the removal of the screw 104, the latter is provided with a long hexagon head to provide a suitable finger grip. Once the screw 104 is entirely withdrawn, and the screw 106 is partially withdrawn, the heater may be readily removed through the opening 108 in the cover 48 without the necessity of removing the cover. If the heaters are not inherently sufficiently rigid, strict interchangeability may be secured by mounting the heater on a carrier which may be of ceramic or other heat resisting material; moreover all the heaters may be mounted on one carrier, or the carriers of different phases mounted together to form one unit. In any event, the attaching means for the heaters, or carriers if used, as previously described, provide for positive location of the various heaters upon interchange or replacement thereof.

In view of the foregoing, it will be readily apparent that there is no direct mechanical connection, nor any electrical connection whatsoever, between the heaters and the adjacent bimetal strips 30. On removing only one screw, namely the screw 104, and on slackening or backing up another screw, namely the screw 106, a heater may be removed and may be replaced by another heater without disturbing any of the operating mechanism of the device or the associated bimetal strip.

While we have shown and described the preferred embodiments of our invention, it will be understood that various changes may be made in the idea or principles of the invention within the scope of the appended claims.

Having thus described our invention, what we claim and desire to secure by Letters Patent is:

4. A protective device for electric circuits, operating mechanism for said device including a circuit controlling switch, a plurality of thermally responsive elements and means for operating said switch in response to the condition of said elements; heaters for said elements, respectively, energized by the currents in said circuits, respectively, and means for removably mounting said heaters in said device independently of said operating mechanism, whereby said heaters are replaceable without interference with said operating mechanism, said thermally responsive elements being flexible bimetal members, and said heaters each being mounted in spaced thermal relation with an associated bimetal member and independently thereof, said bimetal members each having a loop defined therein and each heater being mounted within the loop of its associated bimetal member.

3. A protective device for electric circuits, operating mechanism for said device including a circuit controlling switch, a plurality of thermally responsive elements and means for operating said switch in response to the condition of said elements; heaters for said elements, respectively, energized by the currents in said circuits, respectively, and means for removably mounting said heaters in said device independently of said operating mechanism, whereby said heaters are replaceable without interference with said operating mechanism, said thermally responsive elements being flexible bimetal members, and said heaters each being mounted in spaced thermal relation with an associated bimetal member and independently thereof, said bimetal members each having a loop defined therein and each heater being mounted within the loop of its associated bimetal member, said mounting means including spaced terminal elements for each circuit and each heater having securing portions extending outwardly of its associated loop for removably securing to the associated terminal elements, and securing members threaded engageably in said terminal elements for releasably securing said heater portions thereto, respectively, said heater portions being being peripherally interrupted, whereby said one heater portion can be disconnected from its associated terminal element without disengaging the associated securing member from said latter terminal element.

5. A protective device for electric circuits comprising a housing for said device, a plurality of chambers defined in said housing, operating mechanism in said housing responsive to unbalance in said circuits and including thermally responsive elements for said circuits, respectively, said elements being mounted in said chambers, respectively, and heaters for said elements disposed within said chambers, respectively, in spaced thermal relation therewith and being removably mounted in operative engagement outwardly of said chambers, and means for mounting said heaters externally of said housing, said means comprising spaced terminal elements for each circuit provided with portions disposed outwardly of said housing, said heaters interconnecting the associated terminal elements by releasable securing to said portions thereof, said device being further characterized in that the heaters are sheet metal members provided with secur-
ing portions extending outwardly of said housing, and
securing elements interconnecting associated terminal and
heater portions, one of said portions in each heater being
peripherally interrupted, whereby to facilitate the dis-
connection of said one heater portion from its associ-
ated terminal portion without removing the securing ele-
ment from the latter.

5. A protective device for electric circuits comprising a
housing for said device, a plurality of chambers defined
in said housing, operating mechanism in said housing
responsive to unbalance in said circuits and including
thermally responsive elements for said circuits, respec-
tively, said elements being mounted in said chambers,
respectively, and heaters for said elements disposed with-
in said chambers, respectively, in spaced thermal relation
therewith and being removably mounted in operative
disposition outwardly of said chambers, and means for mount-
ing said heaters externally of said housing, said means
comprising spaced terminal elements for each circuit pro-
vided with portions disposed outwardly of said housing,
said heaters interconnecting the associated terminal ele-
ments by releasable securement to said portions thereof,
said device being further characterized in that the heaters
are spirally wound elements provided with securing por-
tions extending outwardly of said housing, and securing
elements interconnecting associated terminal and heater
portions, one of said portions in each heater being U-
shaped, whereby to facilitate the disconnection of said
one heater portion from its associated terminal portion
without removing the securing element from the latter.

6. A protective device for electric circuits comprising a
housing for said device, a plurality of chambers defined
in said housing, operating mechanism in said housing
responsive to unbalance in said circuits and including
thermally responsive elements for said circuits, respect-
ively, said elements being mounted in said chambers,
respectively, and heaters for said elements disposed with-
in said chambers, respectively, in spaced thermal relation
therewith and being removably mounted in operative
disposition outwardly of said chambers, and means for mount-
ing said heaters externally of said housing, said means
comprising spaced terminal elements for each cir-
cuit provided with portions disposed outwardly of said
housing, said heaters interconnecting the associated ter-
"nal elements by releasable securement to said portions
thereof, said device being further characterized in that
the heaters are spirally wound elements provided with
securing portions extending outwardly of said hous-
ing and securing elements interconnecting associated ter-
"nal and heater portions, one of said portions in each
heater being an open ended slot defined therein, whereby
to facilitate the disconnection of said one heater portion
from its associated terminal portion without removing the
securing element from the latter.

7. A protective device for electric circuits comprising a
housing for said device, a plurality of chambers defined
in said housing, operating mechanism in said housing
responsive to unbalance in said circuits and including
a circuit controlling switch, a plurality of bimetal strips
for said circuits, respectively, and means for operating
said switch in response to the condition of said strips,
said means including a pair of members mounted for
relative movement, said members having slots defined
therein, said strips being disposed in said chambers and
having free end portions extending therefrom and through
said slots for effecting movement of said members upon
flexing of said strips respectively, and heaters for said
strips, disposed within said chambers, respectively, in
spaced thermal relation with said strips, said heaters
extending from the respective chambers and being remov-
ably mounted outwardly of said chambers.

8. A protective device for electric circuits comprising a
housing for said device, a plurality of chambers defined
in said housing, operating mechanism in said housing
responsive to unbalance in said circuits and including
a circuit controlling switch, a plurality of bimetal strips
for said circuits, respectively, and means for operating
said switch in response to the condition of said strips, said
means including a pair of members mounted for relative
movement, said members having slots defined therein,
said strips being disposed in said chambers and having
free end portions extending therefrom and through said
slots for effecting movement of said members upon
flexing of said strips respectively, and heaters for said
strips, disposed within said chambers, respectively, in
spaced thermal relation with said strips, said heaters
extending from the respective chambers and being remov-
ably mounted outwardly of said chambers, and a
transparent window provided in said housing through
which the free ends of said bimetal strips are visible.

References Cited in the file of this patent

UNITED STATES PATENTS

1,910,494 O’Keeffe May 23, 1933
2,199,477 Besag May 7, 1940
2,495,608 Schlescher Jan. 24, 1950
2,506,796 Krieger May 9, 1950
2,581,882 Randall Jan. 8, 1952
2,584,673 Cole Feb. 5, 1952

FOREIGN PATENTS

482,822 Great Britain Apr. 4, 1938
543,154 Great Britain May 10, 1943