
(12) United States Patent
Conti et al.

USOO6522995B1

US 6,522,995 B1
Feb. 18, 2003

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)
(22)
(51)
(52)
(58)

(56)

METHOD AND APPARATUS FOR WEB
BASED CONTROL OF A WEB-BASED
WORKLOAD SIMULATION

Inventors: Thomas W. Conti, Poughkeepsie, NY
(US); David M. Morlitz, Poughkeepsie,
NY (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 09/473,807
Filed: Dec. 28, 1999

Int. Cl........................... G06F 9/455; G06F 11/34
U.S. Cl. 702/186; 703/22; 702/183
Field of Search 714/43, 31, 25;

703/22, 13; 709/220, 225, 206, 207, 228;
702/186, 119, 188, 183

References Cited

U.S. PATENT DOCUMENTS

5,732.213 A 3/1998 Gessel et al. 709/224
5,737.517 A 4/1998 Kite et al. 714/38
5,812,750 A 9/1998 Dev et al. 714/4
5,812,780 A * 9/1998 Chen et al. 709/224
5,812,826 A 9/1998 McLain, Jr. 703/27
5,819,066 A * 10/1998 Bromberg et al. ... 395/500
5,854,889 A 12/1998 Liese et al. 714/43
5,974,572 A * 10/1999 Weinburg et al. 714/47
6,002,871 A * 12/1999 Duggan et al. 714/38
6,044,398 A * 3/2000 Marullo et al. 709/219
6,167,534 A 12/2000 Straathof et al. 714/38

10
Start
Here

1) Create script

2) Start test. Send
script to all

6,189,031 B1 * 2/2001 Badger et al. 709/224
6,223,306 B1 4/2001 Silva et al. 714/37
6,304,982 B1 * 10/2001 Mongan et al...... ... 714/38
6,317,786 B1 * 11/2001 Yamane et al. 709/224
6,360,332 B1 * 3/2002 Weinberg et al. 714/4

OTHER PUBLICATIONS

Duggin, Lantz, Sedlak, Thul- "Multi-User Application
Program Testing Tool for Stress and Regression Testing of
Application Programs”, 1999 Derwent Information
2000-0962OO.

* cited by examiner

Primary Examiner Marc S. Hoff
ASSistant Examiner Paul Kim
(74) Attorney, Agent, or Firm-Scully, Scott, Murphy &
Presser; William A. Kinnaman, Jr.
(57) ABSTRACT

A System and method for dynamically testing a web-based
Server device on multiple platforms. Test Scripts are pro
Vided to one or more test devices for Simulating one or more
web-based users for testing the web-based Server. A database
asSociated with the web-based Server Stores test configura
tion and test parameter information in varying degrees of
granularity for each Simulated web-based user. This test
configuration and test parameter information is retrieved
from the database according to the desired test Simulation
and a web-based communication, e.g., HTML web-page, is
downloaded to the test Scripts via a control device for
initiating the Simulation. A further web-based communica
tion is generated for access by a test Script which includes
information enabling dynamic control of the test devices
during a test Simulation.

18 Claims, 9 Drawing Sheets

20

S/390

machines,
- - - - - - - -------------- w

(Ability to read
PSCES web
pages embedded ; ;
in scripts)

st executes
testing web
server and
checkingf
feeding data
into PSCES

T a | 29
Web Server

|| ".

: : Network
27

Net. Data

PSCES
Macro

U.S. Patent Feb. 18, 2003 Sheet 1 of 9 US 6,522,995 B1

Start
Here

1) Create script
30 2O

2) Start test. Send S/390
Script to all
machines. He machines. 29

(Ability to read ; :
PSCES Web ; : Web
pages embedded : Server
in Scripts) a

sessee
3) Script ; :

executeS
testing web ; : Network
Server and
checking/
feeding data ; :
into PISCES :

14n
N- ; :

k::::::::::::::::::: ; : - - - - - - - - - - m -- w m - a -- - - - - - - -

Y-11

F.G. 1

US 6,522,995 B1 Sheet 2 of 9 Feb. 18, 2003 U.S. Patent

US 6,522,995 B1 Sheet 3 of 9 Feb. 18, 2003 U.S. Patent

(e)c . ?IH

)

US 6,522,995 B1

)

28 ||

U.S. Patent

U.S. Patent Feb. 18, 2003 Sheet 6 of 9 US 6,522,995 B1

create TestCaseStatus ---------------------------- se ITest Dinteger REFERENCESTests, See Fig. 3(a)
->ITest Case Dinteger REFERENCESTestCases,

!---------ParmSetID integer REFERENCES ParmSets, III Parmset
Enabled varchar (1), See Fig. 3(b)
MeasureMode varchar (1),
Threshold integer
Version integer REFERENCES TestCases,
DateDisabled timestamp,
AutoDisableUser varchar (30),
AutoDisabled varchar (1),
ManualDisabled varchar(1)
in database.project;

TestSuite
See Fig. 3(e)

Stats,
ErrorLog
See

Fig. 3(c) 126

I Version integer REFERENCESTestCaseCode, I —-
FreduencyFactor integer,
Author varchar (30),
DateCreated timestamp,
AllowAutoDisable boolean, TestCaseCode
LastModifyDate timestamp,
LastModifyUser varchar (30)
AutoDisableURLNotifier varchar (80),
PRIMARY KEY (TestCaselD, Version))
in database.project;

See Fig. 3(e)

122

create table TestCaseGroups (

TestCaseGroupName varchar (20)
Enabled varchar (1),
FreduencyFactor integer

) in database.project;

FIG. 3(d) 124

US 6,522,995 B1 Sheet 7 of 9 Feb. 18, 2003 U.S. Patent

§ säosid§§ÕGI

US 6,522,995 B1
1

METHOD AND APPARATUS FOR WEB
BASED CONTROL OFA WEB-BASED

WORKLOAD SIMULATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed to Web-based sever
testing tools and, particularly, to an improved method for
enhancing control of Web-based Server testing.

2. Discussion of the Prior Art

Web application and database Server testing tools, Such as
Segue Software's SilkPerformer running on Windows NT
do not provide adequate methods of control at the granu
larity level required.

SilkPerformer is a tool that enables simulation of world
wide web users of an e-busineSS Site. As a Single NT
machine does not have the capacity required to “streSS-test”
an S/390 server (for example), SilkPerformer's “multi
machine” option may be implemented to invoke Simulation
“agents” on multiple NT machines, which are controlled at
a central NT workstation, to increase the number of virtual
users participating in the Simulation. Due to the Structure
inherent in both Windows NT and the Segue product, there
is no method for operator manipulation of the “path” or
parameters of the workload once it has been Started. There
is additionally no method available to view, from a global
perspective, the cumulative Status of the test as it is being run
as Segue only writes test Statistics to the repository at the
conclusion of the test.

It would thus be highly desirable to provide, in a web
based server test Scenario, an additional level of control So
that a test operator could dynamically "focus' the test on any
specific function that needs further testing. This level of
control is required to ensure that the test operator may
manipulate the test as it progresses to either correct or
prevent errors from occurring which may adversely affect
the outcome of the test. Via the use of cumulative Statistics,
an operator may become immediately aware of any problem
or may be able to notice trends leading to a failure situation.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a
platform-independent, Self-adjusting control and execution
System for testing and Simulating users of a web server.

It is a further object of the present invention to provide an
enhancement for a web-based test tool to provide greater
control over Simulation of users accessing a web server of an
e-busineSS Site.

It is another object of the present invention to provide an
enhancement for a web-based test tool to provide control
over Simulation of users accessing a web server of an
e-busineSS Site by enabling the test operator to manipulate
the test as it progresses to either correct or prevent errors
from occurring which may adversely affect the outcome of
the test.

Thus in accordance with the invention there is provided a
control mechanism to be used in conjunction with a web
based Server testing tool that provides a level of control
required to meet a comprehensive Set of testing require
ments. In order to achieve the required testing level
granularity, and provide test-tool independence, the inven
tive control mechanism is provided external to a web-based
Server testing tool. AS the tool is web-based, control over the
web-based workload is enhanced.

15

25

35

40

45

50

55

60

65

2
The inventive tool is implemented for testing web-based

products, and requires the Simple configuration of test agents
to operate as the workload would. A database, Such as DB2
(V.6.1), may be implemented for Storing all of the configu
ration information and Net. Data and IBM HTTP Server 5.2
product may be implemented for providing the pathway
which delivers test configuration information to a “web
aware' client. Using the same pathway, information about
the progreSS of any ongoing testing is Stored in DB2 during
test execution. Once these Statistics exist in DB2, the Strong
analytical ability of the database is utilized to produce a
web-page, via a Net. Data macro, that would provide a global
View of the ongoing tests to the operator. The design which
meets all of the aforementioned criterion requires a plurality
of DB2 tables. For example, at least six (6) DB2 tables may
be implemented which are related to one another to provide
an extremely flexible method of delivering test configuration
options to each "virtual user as they request this informa
tion. The granularity of control using the present invention
ranges to one parameter Set for the entire test all the way
down to having a different parameter set for each “virtual”
user. Further tables may be implemented, for example, to
contain log data in the following categories: response time,
errors, and good/bad count, and further, to include informa
tion about each transaction that is available.

Advantageously, the testing tool enhancement of the
invention is Self-adjusting, providing “feed-back informa
tion which may be used to automatically adjust test param
eters and terminate malfunctioning tests, thereby optimizing
the test environment. Furthermore, the present invention
may be used by any web-based testing tool provided that the
test tool can parse HTML pages and extract data into
variables, and, moreover, may be implemented on a variety
of System platforms.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features, aspects and advantages of the apparatus
and methods of the present invention will become better
understood with regard to the following description,
appended claims, and accompanying drawings where:

FIG. 1 is a diagram illustrating the physical architecture
of the web-based test-tool;

FIG. 2 is a block diagram illustrating conceptually the
database organization for the Web-server testing tool of the
invention;

FIG.3(a) is a detailed diagram illustrating the “Tests” and
the “Running database tables;

FIG.3(b) is a detailed diagram illustrating the “Configs”,
“UserParmSet”, “Parmsets”, and “ParmValues' database
tables;

FIG.3(c) is a detailed diagram illustrating the “Stats” and
the “Error log database tables;
FIG. 3(d) is a detailed diagram illustrating the

“TestCaseStatus”, “TestCases” and “TestCase Groups' data
base tables,

FIGS. 4(a)-4(c) illustrate example web-pages comprising
information extracted from the database tables and acces
Sible by executing test Scripts for enhanced test execution
control.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 illustrates the web-server test system 10 according
to the present invention. As shown in FIG. 1, the system
includes a computer control device 12, configured with the

US 6,522,995 B1
3

Segue SilkPerformer test control or similar web-based test
control device, and a plurality of user test agents, comprising
computer terminals 14a-14n, which may be NT
WorkStations, that execute testing Scripts in accordance with
control commands from the control device 12 for Simulating
one or more users of varying types for testing a web server
device 20, for example, an IBM S/390. It is understood that
each of the test control and test agent devices are web
browser configured for communicating with the server 20
over a network 30, Such as the Internet and, according to the
invention, are capable of executing testing Scripts and
receiving web page data generated by the test System of the
invention. Further, in the manner as described in detail
below, the test scripts further include commands for “read
ing” and extracting Specified data from a web page. It should
be understood that although the IBM S/390 is shown
depicted in the FIG. 1, the method and apparatus of the
invention may be implemented for use on a variety of System
platforms including, but not limited to: OS/390, AIX, NT,
OS/400, OS/2, SCO, Solaris, HP-UX, and Linux.
At the web server 20, a database 25, Such as DB2, is

provided for Storing all of the configuration and test param
eter information which is retrievable by a database connec
tor Such as IBM's “Net.data” macro product 27. Operating
in conjunction with the Net.data DB connecting product is
a web-server device 29, Such as an IBM HTTP Server 5.2
product, which provides the pathway for delivering test
configuration information to the “web-aware' agents
14a–14n. Using the same pathway, information about the
progreSS of any ongoing testing is Stored in the database 25.
These statistics may be stored in the database 25, for
instance, in a plurality of DB2 tables, as will be described in
greater detail. The strong analytical ability of the database,
enables generation of a web-page, via Net. Data and web
Server 29, to provide a global view of the ongoing tests to the
operator.

In further view of FIG. 1, the control device 12, config
ured with the Segue SilkPerformer test control, initiates the
Web-Server testing by Sending the test Scripts to each of the
test agents 14a–14n. Using the enhancement of the
invention, when a test Script is created, only a test ID need
be coded into the script directly, which is sufficient to enable
retrieval of the rest of the test configuration data from the
Server 29 and minimize the frequency of Script-regeneration
to compensate for new requirements.

FIG. 2 illustrates conceptually the database organization
100 for the web-based testing system 10, such as may be
implemented in accordance with the DB2 product 25. As
shown in FIG. 2, the data is organized into the following
table categories: a “Tests” table 102 comprising definitions
in the form of “TestID' numbers for each of the tests able to
be performed by the virtual users (test agents); a “Configs’
table 104 comprising configurations of =all of the virtual
users, a test being associated with a ConfigD included in the
Configs table; a “ParmSet” table 108 comprising test param
eter Sets which include the web-Server test parameters for
the types of testing desired. This ParmSet table is related
with a “UserParmSet” table 106 for associating a ParmSet
with a user ID ConfigD, and, is additionally related with a
“ParmValues’ table 110 which includes all of the test
parameter values for the defined ParmSets (test parameter
Sets). Example test parameter values include values Such as:
network connection (modem) Speed, Internet Browser type,
delay between test cases, Socket connection type, encryption
type, graphics accepted, IP address simulated, etc. Further
tables implemented in accordance with the invention
include: a “TestCases” table 122 which includes definitions

15

25

35

40

45

50

55

60

65

4
of all testcases(s); a “TestCaseGroups” table 124 which
includes definitions of all testcase group(S); a “TestCaseSta
tus” table 126 which includes fields providing indication of
enabled testcases(s); a “Stats” table 132 for receiving and
storing statistics submitted to the Web server 29 (FIG. 1) and
an “ErrorLog” table 134 for receiving errors submitted to the
Web server on a regular basis; and, a “Running” table 130
which tracks users who are currently running tests. That is,
a virtual user supplies a TestD number and a virtual “User
ID" (number) for registry with the “Running” table 130
when executing a test.
As shown in FIG. 2, the database system organization 100

may further include tables providing an increased level of
functionality. For instance: a “TestSuite” table 138 may be
provided for Storing which testcases and version were run in
a given test for use as a future regression test bucket; a
“TestCaseCode” table 140 may be provided for storing
pseudo-code for test cases, an “Instructions” table 142 may
be provided for Storing pseudo-code instructions which are
translatable for a given tool; and, a “Translators” table 144
which may be used to Spawn pseudo-code translators, i.e.,
which enable creation of test-tool Specific Scripts.

According to the invention, when a test is executed, the
following Steps are performed:

Step 1) A virtual user receives and executes a test Script
in the appropriate test language to query the Server-side
Tests table 102, via the Net. Data macro, to determine the
“TestD' number associated with the test name that has been
hard-coded in the test script. FIG. 3(a) illustrates one
implementation of the Tests table 102, formulated in SQL,
for example, which includes variables "Testname', i.e., a
descriptive name of the test, the “TestID” which is the
unique numeric ID number for the particular test, a "DateEn
tered” which is a date the test was created, and, “ConfigD”
which is a pointer for referencing the Configs table 104
which lists all of the available test configurations, i.e., test
parameter Sets, for that test. According to the invention, the
Net.data macro (FIG. 1) generates all DB2 table queries in
SOL.

Step 2) The virtual user then “registers” with the Running
table 130, by Submitting its virtual “User ID'So the tool may
track all running “virtual” users. The use of these tables
overcomes the problem of not having a unique integer
number for each user as the workload is distributed over
multiple NT workstations. FIG. 3(a) illustrates the “Run
ning” table 130 that a virtual user will “registers” with by
submitting a TestID. As shown in FIG. 3(a), the table
includes an “AgentName' variable which is the agent name
recognized by the Segue Silkperformer tool; and, a “User
Number” which is a Sequential number assigned to a regis
tered user. A “Status' variable is provided which is a one
character value indicating the test Status, e.g., “S” for test
started, “P” for test paused, “F” for test finished, and “O'” for
“Orphaned,” which is used to identify users which haven’t
“checked in” in a reasonable amount of time, or, to identify
if a user disappeared and failed to “check out'. Other data
fields are provided which indicate test “Start time,” “Stop
time' and “Lastcheckin' time.

Having received “TestID” number and the “User ID"
numbers, the test configuration for this virtual user, is
retrieved in accordance with the following Steps:

Step 3) When the test was looked up in the first step (Step
1), a “ConfigD” was concurrently retrieved for the current
test from the “Configs” table 104. FIG. 3(b) illustrates the
“Configs” table 104 which includes a “ConfigName” vari
able for identifying the name of the test configuration, and

US 6,522,995 B1
S

the “ConfigD'Specifying the unique numeric ID associated
with the test configuration.

Step 4) Given the “ConfigD” number, a ParmSet to be
used and associated with this user is then looked up from the
UserParmSet table 106. For instance, the query to retrieve a
ParmSet performs a search of the UserParmSet table 106
(FIG.3(b)) for the row that has a matching ConfigD and the
highest MinUser value which is less than or equal to the
UserNumber. Thus, as shown in FIG. 3(b), the ConfigD
value from the Configs table 104 references the UserParm
Set table 106 which includes the constant "MinUser' iden
tifying for Specifying the minimum user number to use and,
the “ParmSetID” which is a unique numeric ID used to
reference the ParmSets table 108 which assigns the param
eter Set to a user. It is understood that the parameter Set may
be a parameter “cluster” and identified by a variable “Parm
SetName". As further shown in FIG.3(b), the “ParmSetID”
references the ParmValues table 110 which comprises the
values of all the test parameters. Through the use of the
MinUser parameter different ParmSets may be associated
with the users in a given Configuration. According to the
preferred methodology, a user receives a UserNumber (or
percentage number—if in "Percentage” mode) and Stores
that in a memory (not shown). When that virtual user
attempts to find its parameters it will search the UserParm
Set table for the highest MinUser less than or equal to the
virtual user's own number for a given test. From that
information, an associated ParmSet is located, and the user
may retrieve their parameters. This is the table that enables
multiple ParmSets to exist with a single Config ID.

Step 5) Given the ParmSetID, all associated parameter
values for the ParmSet are retrieved from the “ParmValues”
table 110 in the DB and downloaded to the user as an HTML
page (web-based communication) formulated by the Net
.data macro 27 via the web server 29/network 30 pathway.
Particularly, as shown in FIG. 3(b), the ParmValues table
110 includes a “ValName” variable indicating the name of
the variable; an optional “ValDesc” variable providing a
description of the variable; a “Value” variable indicating the
value to be assigned to the variable; and, an "Allow AutoUp
date' which is a boolean variable used to determine if an
autoupdate is required. That is, if the test tool determines
that a testcase is failing, it may try to disable it via the
Net. Data macro interface. While this may be beneficial in
Some situations, there are Some situations when it is not
desirable to allow the test tool to automatically update the
Status of testcases. Such an example includes the Scenario
where the testcase shuts down the entire test (by accident)
because of too many failures. The “Allow Auto Update”
mechanism is provided to indicate which testcases the tool
may automatically update, and the Net.data macro adheres
to this marking. AS will be explained in greater detail, this
is included as part of a feedback System.

Step 6) The associated parameter values are downloaded
as an HTML web page via the network pathway and
imported into the “virtual user by means of HTML page
Search functions provided by the test tool. An example
web-page downloaded to the virtual user and including the
test parameter values for the Virtual user's test case is
illustrated in FIG. 4(c). This web page may be received by
the virtual user (FIG. 1) for parsing.

Step 7) The testing may now begin with the test configu
ration and test parameters as desired. It is understood that
Step 5) through Step 7) may be repeated during test execu
tion.

One benefit of the present invention is as follows: When
an operator decides that a different test needs to be executed,

15

25

35

40

45

50

55

60

65

6
all that is required is a simple update to the “Tests” table 102,
with a new ConfigD for the Test ID via a Net. Data macro
which changes the results of the parameter Search and the
test cases. Thus, in the manner herein described, global
variables are provided enabling increased operator control of
workload parameters (local and global), and accumulation
of real-time Statistics.

In accordance with the invention as readily seen in FIG.
1, test configuration and parameter information have been
moved from the client side 11 to the server side 21.
Consequently, a situation is created where the test tool is
actually able to affect its own performance throughout the
test, i.e., provide increased operator control over the work
load once testing has been Started. For example, when the
tool determines that a test case is failing too frequently (as
determined by the programmer of the test Script) the test tool
requests a Net. Data macro 27 (FIG. 1) which generates a
web page including a form requesting that the executing
testcase be turned off. Once this form is filled out, the
Net. Data macro determines if the testcase is allowed to be
automatically disabled by the test tool and proceeds accord
ingly. The next time that each Virtual user checks the list of
enabled testcases, the one turned off will no longer appear.
Thus, only a single user experiences the testcase outage, and
the other users do not have to handle known or broken
testcases. The same is true for any parameter, depending on
the way that the test Scripts are coded. For example, a test
Script may be coded in Such a way that if a virtual user
determines that the transaction rate is too slow, then the
UserParmSet table may be updated to Switch the mode that
the users are operating in Via the Net. Data macro. This is a
large global change, but the tool could just as easily change
a single parameter in the ParmValues table to affect a single
Small piece of the entire test. This is now possible because
the data resides on the central Server outside the Scope of the
test tool and a “Smart” interface has been created to permit/
deny these types of operations.

Further to this, there is provided a mechanism for pro
Viding real-time Statistics to determine if a workload is
functioning properly or not. The Web-Server testing tool Such
as Segue's SilkPerformer, provides a web page response
checking mechanism for determining whether a transaction
worked properly or not. The mechanism of the invention
provides an additional “global View by counting how many
transactions failed and how many worked acroSS all agents
and all users, even if all users are on a Single machine. Thus,
as will be explained in greater detail with respect to FIGS.
3(c) and 3(d), the DB2 Stats table 132 includes at least the
following columns: TestID, ParmSetID, TestCaseID, ver
Sion number, good count, and, bad count, whereby, Via the
Net. Data macro, each Script may post their information after
a given number of transactions completed. Then via the
same Net. Data macro, in a different report block, an HTML
page may be generated which shows cumulative results for
the entire test acroSS all agents. Preferably, this page is
written in Such a way that it would automatically refresh
periodically, e.g., every minute.
A Net. Data macro is further provided that will format the

results. That is, by moving this data into DB2, a Net. Data
macro is executed So that, as the workload is running and an
error threshold is reached, the workload may shut-off mal
functioning tests and notify the operator via e-mail or Some
other method. Thus, according to the invention, a count is
maintained of how many times each transaction failed, and
when a certain threshold (user determined) has been
reached. At Such time a certain threshold is reached, an
automatic testcase disable function is performed. The actual

US 6,522,995 B1
7

code for determining a failure implements SegueSoftware's
test tool Standard Scripting language, including an internal
function WebParseResponsel)ata that is used for parsing and
locating certain characters in a returned web page.

function WebPostCheck (URL,
LBorder,
check,
connname,
tranname: string;
form name: form;
goodcount,
badcount: number;

delay: float optional)
wa

responsepageSays: string (5000);
begin

WebParseResponseData (responsepageSays, 100, LBorder);
WebForm Post (URL, form name, delay);

if strsearch (responsepageSays, check, STR SEARCH FIRST) > 0
then

goodcount := goodcount + 1,
print ("Good response "+tranname + "(good:

"+string (goodcount) +",
bad: "+string (badcount) +")".1, TEXT GREEN);

else
badcount := badcount + 1,

print("Bad response "+tranname + "(good:
"+string (goodcount) +",
bad: "+string (badcount) +")" .1, TEXT RED);

end;
If send stats to server every 10 transactions, for example,
// via logstats function for placement in web form via Net. Data macro:

if (goodcount+badcount) mod 10=0 then
logStats (connname, tranname, goodcount, badcount);
print ("Logged "+connname+" "+tranname+" with (good:

"+string(goodcount)+", bad: "+string (badcount)+")", 1, TEXT BLUE);
goodcount: =0;
badcount: =0;

end;
end WebPostCheck:

FIG. 3(c) illustrates the create table “Stats” 132 that is
designed to hold the number of Successful and failed trans
actions for all tests Submitted by the test tool during a
configurable time interval or, after a pre-determined number
of good/failed transactions. As shown in the FIG. 3(c), the
“Stats' 132 includes the Test) number from the Tests table
102 (FIG. 3(a)) that is used to identify the test the stats are
directed to; the ParmSetID is the ID number from the
ParmSets table 108 (FIG. 3(b)) to indicate what ParmSet
produced these stats; the “TestCaseID' is an ID number
from the TestCase table 122 (FIG. 3(d)) to indicate which
testcase the stats are about; “Version' is the version number
of the testcase that produced these results, GoodCount
indicates the number of transactions of this testcase that
have Succeeded and "Bad Count' indicates the number of
transactions of this testcase that have failed; and, “Time
Submitted” indicates the time that the test tool Submitted
these Stats. For example, one way in which Statistics are
maintained is by Submission to the Stats table 132 every
pre-determined number of transactions, e.g., ten (10) trans
actions (when good+bad=10) as shown and described below
(FIG. 3(d)). Therefore, the actual number of transactions
may be found when all of the stats with the same first four
(4) fields together are summed. The DB25 may also include
a table that permits archiving of the Stats (called
StatsHistory) which is similar in design as the Stats table,
except it has entries called “NumEntriesTotalled,”
“EarliestTestTime,” “LatestTestTime” and “Tim Cumulated”
and enables entry of all of the Stats together as a single
record in this table.

15

25

35

40

45

50

55

60

65

8
With respect to the “TestCases” database table 122 of

FIG.3(d), the following fields are provided: “TestCaseID” is
a unique integer used to identify the TestCase and “Version”
is the number indicating which TestCase version; “TestCase
Name” is the name of the test case and “TestCaseGroup” is
the name of the test group that the test case belongs to (see
the TestCaseGroup table 124 (FIG. 3(d)); the Frequency
Factor is a multiplier, e.g., /2, 1, 2, etc. provided to help
determine the weighting of individual testcases in a TestCa
SeGroup and particularly, a value multiplied by a Frequen
cyFactor for the entire group to determine a random value
weighting; the “Author' which indicates who wrote the
testcase and the data the testcase was created as indicated in
the "DateCreated” value; "LastModified User' indicates who
the last person was to update the testcase and the data it was
updated as given in the “LastModified Date” variable;
“Allow AutoDisable” which includes either a yes or no value
“Y” or “N” indicating whether the test tool may update this
record; and, “AutoDisableURL' which indicates what web
page the tool needs to go to if it wants to automatically
disable the testcase. Note that this is the first page the tool
attempts to go to. The Net. Data macro at that page will then
determine if it is allowed to disable the TestCase.

The “TestCaseGroups” table 124 illustrated in FIG. 3(d)
is used to help classify testcases into categories. AS shown
in FIG. 3(d), the “TestCaseGroupID” is a unique integer
identifying a given test case group and “TestCase Group
Name” is what this TestCaseGroup is called; “Enabled”
provides an indication of whether this group is allowed to
run and enables the turning off or turning on of all the
TestCases for a TestCase Group in a single Setting. To find if
a specific TestCase is enabled, this value is put together in
a boolean AND operation with the TestCaseStatus's
“enabled' value by the SQL in the Net. Data macro as it
computes the web page for return to the test tool. “Frequen
cyFactor” is the multiplier provided to help determine the
weighting of testcases in a TestCase Group. For example, a
number such as 100 may be used as the normal number. The
Net. Data macro multiplies the frequency factor for the
individual test cases with that of the associated TestCase
Group. These values are retrieved from the DB and used to
determine the borders used to Select a test when invoking the
randomization function. Thus, if it is desired that all the
testcases in this group be twice as likely to run, the Fre
quencyFactor value will be set to 2.
With respect to the “TestCaseStatus” database table 126

of FIG. 3(d), the TestID field represents the Test that this
entry will affect; TestCaseID represents the TestCase within
that test that this entry will affect; Version represents the
version of the lo testcase that is currently executing, and
ParmSetID indicates the ParmSet that this entry will affect.
Thus, by having all of these parameters, TestCases which
run within a given test may be modified, or just for a Subset
of those users which are running in a given ParmSet. This
granularity is helpful as it may be desirable not to make
broad changes to the test, thus providing a greater degree of
optimization. Enabled is a value indicating whether a
testcase is enabled for the given TestID and ParmSetID.
“MeasureMode” is a value indicating how errors are mea
sured. For instance, a value “A” represents “Absolute” mode
for indicating that when an exact number of errors are
reached (given a Threshold number) then the tool will
attempt to disable the testcase. A value “P” represents a
"Percentage” mode indicating that when a fraction of a
given threshold of errors are reached, for example, accord
ing to the formula:

US 6,522,995 B1
9

bad count x 100%
bad count + good count O,

then the tool will attempt to disable the testcase. A “Mea
sureMode” value “H” representing “Hourly” (e.g., in clock
hours), indicating that when the Threshold is reached within
that clock hour, the tool will try to disable the testcase. For
example, even though the test may be started at 10:30, the
hour will be up at 10:59 and the count will be reset when the
hour turns to 11:00 (regardless of the minutes). “Threshold”
is the integer value used by the tool to determine how many
errors (per virtual user) are acceptable before trying to
disable the testcase; “AutoDisableUser' is a field indicating
the identity of the virtual user who turned off the testcase;
“AutoDisabled” including a value indicating whether a
Virtual user turned the testcase off (i.e., automatically); and,
“ManualDisabled” indicating whether an operator turned the
testcase off (i.e., manually). These last AutoDisabled and
ManualDisabled entries thus provide the reason as to why
the testcase was disabled, which is desirable as the testing
operator may want to re-enable all auto-disabled testcases,
but not manually disabled testcases.
As further shown in FIG. 3(c), an ErrorLog table 134 is

provided and utilized for the diagnosis of error conditions.
When the virtual user encounters an unexpected condition,
it writes an entry in this table. The fields from TestID to
Version are the same as in the Stats table 132. The entry
“UserNumber” represents which virtual user in the test
found the particular error; “ExpectedCode” is a variable
indicating what that particular user was looking to find;
“ReceivedCode” is a variable indicating what that particular
user actually did see from the web server; "HTMLReceived”
is an entry that enables the saving of all the HTML received,
as there is information included in it required for debugging
problems; and, “TimeSubmitted” is a value indicating at
what time the error was noticed.
As mentioned, via the Net. Data macro HTML pages may

be generated which shows results and Status for tests per
formed by all agents. FIGS. 4(a)-4(c) illustrate example
web-pages, including frames 180 that include TestTool data
readable by Scripts to enable the test configuration for virtual
users of the System. Particularly, the web pages are provided
in a data format (not shown) usable by the Scripts and
comprise the data included in the frame 180. However, the
web-pages of FIGS. 4(a)-4(c) may also be presented for
user display as shown. For example, as shown in FIG. 4(a),
the web-page 150 enables an operator to view, delete and
edit the “Configs” table 104 in the DB2 system 100 com
prising the configurations of the Virtual users. Thus, as
shown in FIG. 4(a), there is a column 152 indicating the
configuration name, a column 154 indicating the corre
sponding Config ID, and a column indicating the measuring
mode 156, e.g., Percentage or Absolute, and the edit opera
tions buttons 158 (for user mode). In the example shown in
FIG. 4(b), the web-page 160 enables an operator to view,
delete and edit the “Tests” table 102 comprising definitions
in the form of “TestID' numbers for each of the tests to be
performed by the virtual users (test agents). Thus, as shown
in FIG. 4(b), there is a column 162 indicating the
“TestName,” a column 164 indicating the corresponding
“TestID', a column 166 indicating “Date Entered”, and a
column 168 indicating the corresponding “ConfigD” as
shown with respect to FIG. 4(a). In the example shown in
FIG. 4(c), the web-page 170 enables an operator to view,
delete and edit the “ParmValues” table 110 comprising the
definitions of the parameter values for defined ParmSets

15

25

35

40

45

50

55

60

65

10
(test parameter Sets) Thus, as shown in FIG. 4(c), there is a
column 172 indicating the “ParmSetName,” a column 174
indicating the corresponding “ParmSetID', a column 176
indicating the “ParmValueName”, a column 177 indicating
the “ParmValueDesc', a column 178 indicating the “Value”
of the parameter and, a column 179 indicating whether the
“Allow Auto Update” mechanism is enabled which enables
the automatic feedback mechanism indicating which
testcases the tool may automatically update.
With respect to the autofeedback mechanism, the test tool

performs periodic monitoring of the TestCaseStatus table to
determine if a user should either enable or disable a specific
transaction or group of transactions (testcases), and,
Specifically, to control what testcases are executing in a
given run. In the preferred embodiment, before or during
execution of a test, an executing Script will check the
“enabled” field of the Testcase Status table to determine if a
particular testcase is to be skipped. In this manner, workload
may be controlled because the web page may be edited to
reflect working/broken testcases and the tool will “notice” a
change in the web page each time it is looked at. This check
may be made at any predetermined frequency, Such that, any
change may be immediately noticed by all Subsequent users
who check the TestCase status table. Therefore, near instan
taneous control over which transactions run and which are to
be skipped is provided. The referred to TestCase Group table
is the manner in which testcase workload may be classified
into larger groups. By toggling the “enabled” field in the
TestCase Group table global changes may be made, (e.g., all
DB2 transactions may be disabled) in a single “swipe”. Due
to the nature of the database tables (TestCaseStatus et al.),
different statements may be had for different tests. As the
Statements appear as additional rows in the table, increased
granular control over test execution is attained. It is under
stood that table may be further enabled to provide any
boolean data that may be desired for the workload.

While the invention has been particularly shown and
described with respect to illustrative and preformed embodi
ments thereof, it will be understood by those skilled in the
art that the foregoing and other changes in form and details
may be made therein without departing from the Spirit and
scope of the invention which should be limited only by the
Scope of the appended claims.

Having thus described our invention, what we claim as
new, and desire to Secure by Letters Patent is:

1. An apparatus for dynamically controlling the testing of
a web-based Server device comprising:

one or more test devices in communication with a web
based Server device via a respective network
connection, each said test device capable executing a
test Script for Simulating a plurality of web-based users,
each test Script capable of extracting test information
from a web-based communication;

control mechanism for configuring each test device in
accordance with an initial web-based workload Simu
lation;

database for Storing test configuration and test parameter
information in varying degrees of granularity for each
Simulated web-based user, Said test configuration infor
mation comprising one or more test cases for a test
Simulation, Said test configuration associated with a
Simulated web-based user;

means for retrieving and updating Said configuration and
test parameter information from Said database accord
ing to a desired test Simulation and generating a web
based communication for download to Said control
mechanism for test initiation,

US 6,522,995 B1
11

Said control means including means for tracking Status of
executing test cases and for tracking real-time Statistics
relating to Successful or unsuccessful test case simula
tion results, Said test case Status and real-time Statistics
being Stored and updated in Said database; and

comparison means for determining from Said database
whether Said test Simulation results that are unsuccess
ful exceeds a pre-determined threshold and Setting Said
flag to indicate a test case to be disabled when Said
threshold is exceeded, said test device including means
responsive to Said flag for disabling a test case during
test execution,

wherein a further web-based communication is generated
that includes information including Said flag, Said infor
mation accessible by a test Script for dynamically
reconfiguring Said test devices during test execution.

2. The apparatus according to claim 1, wherein Said
database includes a look-up table for associating Said test
configuration with a simulated web-based user.

3. The apparatus according to claim 2, wherein each said
test case includes one or more testing parameters, Said
database comprising a look-up table for associating test
parameters associated with each test case executed by a
web-based user.

4. The apparatus according to claim 2, further including a
registry look-up table for tracking current Simulated users
executing test Scripts on Said Server.

5. The apparatus according to claim 2, wherein Said
database includes a look-up test case Status table for tracking
Status of executing test cases, Said look-up test case Status
table including a flag for indicating a test case enablement,
Said flag capable of being included in a further web-based
communication.

6. The apparatus according to claim 5, wherein Said
database includes a Statistics look-up table for receiving
tracked and updated real-time Statistics relating to Successful
or unsuccessful test case Simulation results.

7. The apparatus according to claim 2, further including a
look-up test case group Status table including a plurality of
test cases directed to a particular test category, Said test case
group Status table including a disable flag for indicating a
plurality of test cases to be disabled, Said test device includes
means responsive to Said flag for disabling all test cases
indicated in Said test case group.

8. The apparatus according to claim 6, wherein Said means
for tracking real-time Statistics relating to Successful or
unsuccessful test case Simulation results includes:

means for extracting test case simulation results for
enabling Said dynamic feedback control of Said test
devices during test execution; and,

means for generating a flag for enabling automatic update
of a test case Simulation results record in a database
table.

9. The apparatus according to claim 1, wherein a test
Script further includes a weighting factor for indicating
whether one or more test cases will be executed in a given
test Simulation.

10. The apparatus according to claim 1, further including:
a look-up table for associating a test configuration with a

test identified to be run in a test Script;
a look-up table for associating one or more test parameter

Sets with a test configuration; and,
a look-up table for associating test parameter values with

each test parameter indicated in Said Set, wherein
different test parameters may be assigned to different
users who are all running the same test.

1O

15

25

35

40

45

50

55

60

65

12
11. A method for dynamically testing a web-based server

device comprising:
providing test Scripts to one or more test devices for

Simulating a plurality of web-based users for testing
Said web-based Server, each Said one or more test
devices executing one or more test Scripts,

maintaining a database associated with Said web-based
Server for Storing test configuration and test parameter
information in varying degrees of granularity for each
Simulated web-based user;

retrieving and updating Said test configuration and test
parameter information in Said database according to
Said desired test Simulation and generating a web-based
communication for download to a control mechanism
for test initiation;

tracking real-time Statistics relating to Successful or
unsuccessful test case Simulation results and Storing
Said results in a Statistics look-up table;

determining whether unsuccessful test case results in Said
Statistics look-up table exceeds a pre-determined
threshold and Setting Said disabling flag for indicating
a test case to be disabled when said threshold is
exceeded; and,

generating a further web-based communication that
includes information including Said flag, said informa
tion accessible by a test Script for dynamically recon
figuring Said test devices during a test Simulation.

12. The method according to claim 11, wherein Said Step
b) of retrieving and storing said test configuration and test
parameter information in Said database further includes a
Step of associating Said test configuration in a database
look-up table with a simulated web-based user via a test case
identifier provided in a test Script.

13. The method according to claim 11, wherein a test case
includes one or more testing parameters, said step b) of
retrieving and Storing Said test configuration and test param
eter information in Said database further includes the Steps
of:

asSociating a test configuration with a test identified to be
run in a test Script;

asSociating one or more test parameter Sets with a test
configuration; and,

asSociating test parameter values with each test parameter
indicated in Said Set for execution thereof.

14. The method according to claim 13, further including
the Step of tracking current Simulated users executing test
Scripts on Said web-based server.

15. The method according to claim 13, further including
the Step of maintaining a look-up test case Status table
including a test case disable flag, Said Step of enabling
dynamic feedback control of Said test devices includes
downloading Said test case disabled flag in Said further
web-based communication, and responding to Said flag for
disabling a test case during test execution.

16. The method according to claim 15, wherein said
database further includes indication whether a test result for
a test case is to be automatically updated in Said database,
Said Step of tracking real-time Statistics relating to Successful
or unsuccessful test case Simulation results further including
the Steps of checking Setting of Said automatic update
indication in Said database; and, if Set, enabling automatic
update of a test case Simulation result record associated with
Said test case in Said database table.

17. The method according to claim 11, further including
the Step of determining a weighting factor for a test case
execution in a test Script; and,

US 6,522,995 B1
13

indicating whether said test case will be executed in a
given test Simulation based on Said weighting factor.

18. A program Storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform method steps for dynamically testing
a web-based Server device, Said method steps comprising:

providing test Scripts to one or more test devices for
Simulating a plurality of web-based users for testing
Said web-based Server, each Said one or more test
devices executing one or more test Scripts,

maintaining a database associated with Said web-based
Server for Storing test configuration and test parameter
information in varying degrees of granularity for each
Simulated web-based user;

retrieving and Storing Said test configuration and test
parameter information in Said database according to
Said desired test Simulation and generating a web-based

15

14
communication for download to a control mechanism
for test initiation;

tracking real-time Statistics relating to Successful or
unsuccessful test case Simulation results and Storing
Said results in a Statistics look-up table;

determining whether unsuccessful test case results in Said
Statistics look-up table exceeds a pre-determined
threshold and Setting Said disabling flag for indicating
a test case to be disabled when said threshold is
exceeded; and,

generating a further web-based communication that
includes information including Said flag, said informa
tion accessible by a test Script for dynamically recon
figuring Said test devices during a test Simulation.

