
٠
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
Internationa[Bureau

(51) International Patent Classification 6 :

G06F
(11) International Publication Number: wo 98/37478

Α2 _
(43) International Publication Date: 27 August 1998 (27.08.98)

(21) International Application Number: PCT/US98/02921

(22) International Filing Date: 10 February 1998 (10.02.98)

(30) Priority Data:
08/798,522 10 February 1997 (10.02.97) US

(71) Applicant: ACTIONEER, INC. [US/US]; 539 Bryant Street，
San Francisco, CA 94107 (US؛.

(72) Inventors: SMIGA, Brian; 461 Second Street #220，San
Francisco, CA 94107 (US). BUCHHEIM, Dennis; 570
Ashton Avenue，Palo Alto, CA 94306 (US). HAGAN，
Thomas; 13 Union Wharf，B؟ston，MA 02109 (US)■
WADHWANI, David; 104¿ Cole Street, San Francisco,
CA 94117 (U¿)· STORKEL，Norman，Scott; 731-Β Loma
Verde Avenue，Palo Alto； CA 94303 (US).

(74) Agents: SALTER，James，H· et al.; Blakely，Soko^off，Taylor
& Zafman LL★，7th floor，12400 Wiishire Boulevard，tos
Angeles，CA 90025 (US).

(81) Designated Stetes: AL，AM，AT，AT (Utility model)，AU
(Petty patent)，AZ，BA，BB，BG，BR，BY，CA； CH, CN, cu，
CZ, cz (utility model), DE，DE (Utility model)，DK； DK
(Utility model)，EE，EE (Utility model)，ES，FI，FI (utility
model、GB，GE, GH, GM，GW, HU，ID, ÍL, is，JP, KE，
KG，KP，KR，Ц LC, LK, LR，LS，LT，LU，LV，MD，MG；
MK, MN, MW٠ MX, NO, NZ，PL，PT，RO, RU，SD, SE;
SG，SI，SK, SK (Utility model؛，SL，TJ: TM: та，TT，UA:
UG，UZ，VN，YU, ZW, ARIPO patent (GH，GM； KE，LS;
MWJ SD, SZ，UG，ZW)，Eurasian patent (AM，AZ，BY:
KG，KZ，MD, RU，TJ，TM), Europea。patent (AT，BE，CH:
DE，DK，ES，FI，FR，GB，GR，IE，IT，LU，ivic: NL，PT:
SE)，OAPI patent (BF，BJ，CF，CG，CI，CM: GA，GN，ML;
・，NE，SN, TD，TG).

Published
Without international search report and to be republished
upon receipt oj that report،

(54) Title: A METHOD AND APPARATUS FOR GROUP ACTION PROCESSING BETWEEN USERS OF A COLLABORATION
SYSTEM

USERiNPUT NATURAL、LANGUAGE USER ل PARSER —ز
LEXICAL

ANALYSIS
TOOL(KEYNOTE

REGION) TEXT و
EXPRESSIONS

INTERFACE م م

USER OUTPUT OUTPUT
/STRUnTUREDLIfíTñ. د SHADOW)حم

REGION) ヽ PROJECTS,
CONTACTS

AND CALENDAR
EVENTS

Ш

٢

Ж

、٠

1

(57) Abstract

A natural language-based information organization and collaboration tool for a computer system is disclosed. The present invention
includes an apparatus and method for processing text expressions in a computer system，the apparatus including:⑴ an object database
defining an information object with an associated keyword; (2) a user input device for receiving an input text expression;⑶ a parsing
device for identifying the keyword in the input text expression，the parsing device including functions for linking the input text expression
to the information oDject based on the keyword identified in the input text expression; and (4) a user output device for displaying to the user
the identity of the information object to which the input text expression was linked. The apparatus of the present invention further includes
supplemental information in the object database which is relate¿ to the information object，the user output device further including functions
for displaying the supplemental information when a corresponding keyword is identified in the input text expression. The apparatus of the
present invention further includes a method and apparatus for collaboration between users of a time and project management system.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania ES Spain LS Lesotho SI Slovenia
AM Armenia FI Finland LT Lithuania SK Slovakia
AT Austria FR France LU L.uxem^urg SN Senegal
AU Australia GA Gabon LV Latvia SZ Swaziland
AZ Azerbaijan GB United Kingdom MC Monaco TD Chad
BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
BB Barbados GH Ghana MG Madagascar TJ Tajikistan
BE Belgium GN Guinea MK The former Yugoslav TM Turkmenistan
BF Burkina Faso GR Greece Republic of Macedonia TR Turkey
BG Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
BJ Benin IE Ireland ・ Mongolia UA Ukraine
BR Brazil IL Israel MR Mauritania UG Uganda
BY Belarus IS Iceland MW Malawi US United States of America
CA Canada IT Italy MX Mexico uz UzbeKJStan
CF Centra African Republic JP Japan NE Niger VN Viet Nam
CG Congo KE Kenya NL Netherlands YU Yugoslavia
CH Switzerland KG Kyrgyzstan NO Norway Zimbabwe
CI Côte d’Ivoire KP Democratic People’s NZ New Zealand
CM Cameroon Republic of Korea PL Poland
CN China KR Republic of Korea PT Portugal
CU Cuba та Kazakstan RO Romania
cz Czech Republic LC Saint Lucia RU Russian Federation
DE Germany LI Liechtenstein SD Sudan
DK Denmark LK Sri Lanka SE Sweden
ЕЕ Estonia LR Liberia SG Singapore

wo 98/37478 PCT/US98/02921

A METHOD AND APPARATUS FOR GROUP ACTION PROCESSING

BETWEEN USERS OF A COLLABORATION SYSTEM

FIELD OF THE INVENTION

The present invention relates to the organization and access to

information stored in a computer system· More specifically, the

present invention relates to the analysis of natural language input to

produce structured information output and the processing of notes in

a computer system. The present invention also relates to time and

action/project management using a computer system. More

specifically, the present invention relates to a method and apparatus

for collaboration between two or more persons for time and project

management.

DESCRIPTION OF RELATED ART

Many application programs exist in the prior art for organizing

information in particular ways or for manipulating specific types of

information. For example, word processing applications are

specifically designed for manipulating text documents in a computer

system. Similarly databases in the prior art provide means for

structuring data in well defined ways. Further, calendaring systems

provide a structured way for tracking events or actions required at

specified dates and times. Although these prior art applications

provide ways for organizing information in particular ways, it is often

inconvenient to require a user to switch back and forth between

application programs when updates of information are required.

Moreover, these types of systems require a user to organize the

1

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

information prior to entering data into the computer system· For

example, the user must know to activate a calendaring program if an

appointment or action date is to be entered. In separate actions, the

user may also need to update lists or databases associated with the

appointment or action for which a calendar entry was made. In many

prior art systems, the user is required to spend time navigating around

a user interface to link information to the desired lists or categories to

which it pertains.

U.S, Patent Number 5,115,504 entitled 11Information

Management System" describes a system for linking elements

representing stored in formation in a database. The system comprises

a link structure formed in a section of the database independent of the

elements, a pointer in the link structure indicating the location of a

first element, and a second pointer in the link structure indicating the

location of a second element. The database contains items comprising

textual data and a plurality of categories into which the items may be

categorized such that each item may be linked to more than one

category. The system automatically assigns an element in a database to

a parent category if it has been assigned to a child category of the

parent· The system also generally features a means for assigning an

element in a database to one or more of à plurality of categories' the

categories being hierarchically arranged. The system constructs views

as screens of information organized into sections having categories

and section heads and items presented one after another beneath a

given section head of a category to which the item has been assigned.

After entering an item, the user can make further assignments directly

by moving to the columns of the view and entering an existing name

2

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

of a sub-category under the column head. In this manner, a link

structure is created.

Unfortunately, the system disclosed in u.s. Patent Number

5,115,504 still requires a user to directly manipulate information

categories on a display screen■ Using this approach, a user is still

required to organize the information in some fashion on entry of the

data into the desired category. In many situations, it is inefficient and

inconvenient for a user to pre-organize and explicitly store

information in this fashion· Moreover, further efficiencies could be

obtained if a user could provide input in a convenient free form or

natural language representation. It would also improve prior art

systems if a user could update an information item or action item

easily, quickly and without losing the context in which he/she is

currently engaged. Another disadvantage of the prior art systems

described above, is that they do not provide a mechanism for

collaboration between users or between applications. Organizing

one's own information is important, but actions/projects are often

shared between two or more people. In other words, it is not

sufficient to organize one's own To Do lists and calendars. The user

should also be able to collaborate with other users to assign projects,

accept project assignments, and inform others· Furthermore, an

ability to notify others of the status of projects is advantageous.

One prior art method of allowing multiple users to work

together includes using e-mail to send messages to others. Although

this prior art application allows users to communicate regarding any

topic, it is not linked to calendars, lists, or external databases

maintained by the users. Thus, as an agreement evolves with each e-

3

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

mail exchange, the user is often involved in updating everything

associated with the project. It would further improve prior art

systems if a user could update an action item easily, quickly and

without losing the context in which he/she is currently engaged.

Further, it would be an improvement over the prior art to provide a

system whereby multiple users could collaborate and track action

items between many participants and across many computer systems.

Another prior art method utilizes top down delegation. This

allows a supervisor to delegate projects to subordinates. However, it

does not allow negotiation OT collaboration between users. Rather, it

is rigidly hierarchical. Thus' this method is not useful for

collaboration and negotiation between peers. Another disadvantage

of such prior art systems is that they use a client-server system· That

is, a server has to be provided as a repository of information regarding

the collaboration process. Thus, only clients that are connected to the

server can participate in the collaboration. This means that persons

who are not linked to the same server can not participate in the

collaborative environment·

It would be an improvement over the prior art to provide a

system that allows collaboration between two OT more users. Further,

it would be an improvement over the prior art to provide a system

whereby multiple users could collaborate and track action items

between many participants and across many computer systems.

Thus, a better natural language information organization and

collaboration tool is needed.

SUMMARY OFTHE INVENTION

4

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

The present invention is a natural language based information

organization and collaboration tool for a computer system. The

present invention includes an apparatus and method for processing

text expressions in a computer system, the apparatus including: 1)

relational object database defining an information object witn an

associated keyword, project, list, contact/ date/time event or enclosure:

2) a user input device for receiving an input text expression; 3) a

parsing device for identifying the keyword in the input text

expression, the parsing device including functions for linking the

input text expression to the information object based on the keyword

identified in the input text expression: and 4) a user ouptut device for

displaying to the user the identity of the information object to which

the input text expression was linked. The apparatus of the present

invention further includes supplemental information in the object

database which is related to the information object, and the user

ouptut device further includes functions for displaying the

supplemental information when a corresponding keyword is

identified in the input text expression. The apparatus of the present

invention further includes a method and apparatus for collaboration

between users of a time and project management system.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not

by way of limitation, in the figures of the accompanying drawings and

in which like reference numerals refer to similar elements and in

which:

Figure 1 illustrates a complete system on which the present

5

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

invention may be implemented.

Figure 2 is a block diagram of the main system elements ◦f the

present invention.

Figure 3 illustrates a display screen showing the keynote and

shadow regions·

Figures 4Α, 4Β, and 5-7 illustrate the Operation of the user

interface of the present invention.

Figure 8 is a block diagram of the components of the parser.

Figure 9 is a flow diagram showing the processing flow of the

lexical analysis tool.

Figures 10 - 11 are flow diagrams showing the processing flow of

the keyword parser.

Figures 12 - 13 illustrate examples of the processing performed

by the keyword parser.

Figure 14 is a flow diagram showing the processing flow of the

suggest list keyword function.

Figures 15-18 illustrate the organization of tables in the object

database of the preferred embodiment.

Figure 19 is a diagram of a client-server system.

Figure 20 is a diagram of a peer-to-peer distributed system.

Figure 21 is a flowchart illustrating ٠an overview of the present

invention.

Figure 22Α is a flowchart illustrating the collaboration cycle as

viewed by the originator, or requester.

Figure 22Β is a flowchart illustrating the collaboration cycle as

viewed by the recipient, or delegate.

Figure 23 is a flowchart illustrating the negotiation process of

6

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

the present invention.

Figure 24 is a flowchart illustrating the distribution of an FYI

note.

Figures 25Α and 25Β illustrate a graphical an example of the

collaborative process.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention is a natural language based information

organization and collaboration tool for a computer system. In the

following description, numerous specific details are set forth in order

to provide a thorough understanding of the present invention.

However, it will be apparent to one of ordinary skill in the art that

these specific details need not be used to practice the present

invention. In other circumstances, well-known structures, circuits,

and interfaces have not been shown in detail in order to not obscure

unnecessarily the present invention.

Figure 1 illustrates a typical data processing system upon which

one embodiment of the present invention is implemented. It will be

apparent to those of ordinary skill in the art, however that other

alternative systems of various system architectures may also be used.

The data processing system illustrated in Figure 1 includes a bus or

other internal communication means 101 for communicating

information, and a processor 102 coupled to the bus 101 for processing

information■ The system further comprises a random access memory

(RAM) or other volatile storage device 104 (referred to as main

memory), coupled to bus 101 for storing information and instructions

to be executed by processor 102. Main memory 104 also may be used

ᄀ

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

for storing temporary variables or other intermediate information

during execution of instructions by processor 102. The system also

comprises a read only memory (ROM) and/or static storage device 106

coupled to bus 101 for storing static information and instructions for

processor 102, and a data storage device 107 such as a magnetic disk or

optical disk and its corresponding disk drive. Data storage device 107

is coupled to bus 101 for storing information and instructions. The

system may further be coupled to a display device 121, such as a

cathode ray tube (CRT) or a liquid crystal display (LCD) coupled to bus

101 through bus 103 for displaying information to a computer user.

An alphanumeric input device 122, including alphanumeric and

other keys, may also be coupled to bus 101 through bus 103 for

communicating information and command selections to processor

102. An additional user input device is cursor control device 123, such

as a mouse, a trackball, stylus, or cursor direction keys coupled to bus

101 through bus 103 for communicating direction information and

command selections to processor 102, and for controlling cursor

movement on display device 121. Another device which may

optionally be coupled to bus 101 thorough bus 103 is a hard copy

device or printer 124 which may be used for printing instructions,

data, or other information on a medium such as paper, film, or

similar types of media. In the preferred embodiment, a

communication device 125 is coupled to bus 101 through bus 103 for

use in accessing other nodes of a distributed system via a network.

The communication device 125 may include any of a number of

commercially available networking peripheral devices such as those

used for coupling to an Ethernet, token ring, Internet, or wide area

8

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

network. Note that any or all of the components of this system

illustrated in Figure 1 and associated hardware may be used in various

embodiments of the present invention; however, it will be

appreciated by those of ordinary skill in the art that any configuration

of the system may be used for various purposes according to the

particular implementation. In one embodiment of the present

invention, the data processing system illustrated in Figure 1 is an

IBM® compatible personal computer or a Sun® SPARC workstation.

Processor 102 may be one of the 80Χ86 compatible microprocessors

such as the 80486 or PENTIUM® brand microprocessors manufactured

by INTEL® Corporation of Santa Clara, California.

The control logic or software implementing the present

invention can be stored in main memory 104, mass storage device 107,

or other storage medium locally accessible to processor 102. Other

storage media may include floppy disks, memory cards, flash memory,

or CD-ROM drives. It will be apparent to those of ordinary skill in the

art that the methods and processes described herein can be

implemented as software stored in main memory 104 or read only

memory 106 and executed by processor 102. This control logic or

software may also be resident on an article of manufacture comprising

a computer readable medium 108 having computer readable program

code embodied therein and being readable by the mass storage device

107 and for causing the processor 102 to operate in accordance with the

methods and teachings herein.

The software of the present invention may also be embodied in

a handheld or portable device containing a subset of the computer

hardware components described above. For example, the handheld
9

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

device may be configured to contain only the bus 101, the processor

102, and memory 104 and/or 106. The handheld device may also be

configured to include a set of buttons or input signalling components

with which a user may select from a set of available options. The

handheld device may also be configured to include an output

apparatus such as a liquid crystal display (LCD) or display element

matrix for displaying information to a user of the handheld device.

Conventional methods may be used to implement such a handheld

device. The implementation of the present invention for such a

device would be apparent to one of ordinary skill in the art given the

disclosure of the present invention as provided herein.

The present invention is a natural language based, parsable,

always available, intelligent note editor that captures user thoughts,

action requests, and information in a computer system. The present

invention uses natural language parsing to identify keywords and date

information amongst a free form text input expression (denoted

keynote herein) entered by a user and establishes links to other

information objects based on the identified words. These linked other

objects include projects, contacts, date/time events, lists, and

document identifier objects. Keywords are pre-defined one word or

multiple word text strings with or without punctuation that are

associated or linked to one or more related information objects. Lists

are user-established collections of related keynotes. Lists can be action-

related or merely archived memos. The present invention further

classifies the text input (i.e., keynote) as a particular type of keynote,

such as an action, a memo, a personal keynote, a shared keynote, an

action request，an FYI (for your information) message，or one of

10

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

several other different types of keynotes. A personal keynote is one

not intended to be sent to anyone else. A shared keynote is sent to

others. Once the keynote is classified, the present invention takes

action upon the keynote by sending an action request to a linked

contact, updating a linked list, contact, date/time expression, or project

data, sharing the keynote to others in a collaboration group, or storing

information related to the keynote in an organized and efficient

manner. The present invention includes a real-time and interactive

user interface for receiving input text expressions from a user and for

providing selectable supplemental information to the user regarding

the classification of the keynote. In addition, the present invention

includes a parser for processing natural language in the manner

described above.

Figure 2 illustrates in block diagram form the main

components of the preferred embodiment of the present invention. A

user provides natural language text expressions (i.e., keynotes)

representing notes, thoughts, or action requests which are provided to

user interface 200. User interface 200 passes these text expressions to

parser 30◦. Parser 300 is responsible for identifying the type of keynote

and for linking the keynote to one or more corresponding

information objects based upon identified keywords or date/time

expressions found in the input text expression. The linked objects

include lists, projects, contacts, e-mail addresses, enclosed document

identifiers, and date/time events for use in a calendar. Parser 300 uses

lexical analysis tool 400 to partition the input text expression into a

plurality of tokens. Tokens are sequential or adjacent portions of the

input text expression between pre-specified delimiters. Once parser

11

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

300 has classified the keynote type and has linked the keynote to the

associated objects, the linked list, project, contact, associated e-mail

addresses enclosed document identifiers, and any calendar event, is

passed back to user interface 200 and displayed by user interface 200 in

a keynote and shadow region on display device 121.

Referring now to Figure 3, an example of the keynote and

shadow region 210 of user interface 20◦ is illustrated in relationship to

the content of display device 121. In its typical application, the keynote

and shadow region 210 of the present invention are displayed on

display device 121 in combination with other windows or

informational and functional regions of display device 121, The

display of windows and informational or functional of regions on a

display device is well-known to those of ordinary skill in the art. For

example' the Windows 95™ operating system developed by Microsoft

Corporation of Redmond, Washington is an example of an operating

system providing for the display of such windows· Keynote and

shadow region 210 of the present invention may be displayed using

the windowing and display functions provided by such an operating

system. In the alternative, it will be apparent to those of ordinary skill

in the art that other means for displaying such an informational area

on a display device may equivalently be provided by other

conventional operating systems or application programs. It will also

be appreciated by those of ordinary skill in the art that the keynote and

shadow region 210 may be displayed at any arbitrary position or at any

arbitrary size using the conventional tools of the operating system.

Moreover, conventional operating systems provide means for

specifying a display priority or level with which the keynote and

12

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

shadow region 210 may be specified and coded to always be displayed

at the top most display priority or level. Thus, the keynote and

shadow region 210 may be programmed to be always visible and

always available on display screen 121 using conventional methods·

In this manner, the present invention provides an always available

method for entering textual information into a window or display

region that provides real time feedback of parsing and keyword

matching of the text entered.

Referring now to Figures 4Α and 4Β, examples illustrate the

components comprising the keynote and shadow region 210 of the

preferred embodiment. The keynote region 220 is an on screen

computer version of a paper sticky note allowing the user to quickly

capture information and ideas. The keynote region 220 provides a

display area for the entry of a natural language text expression (i.e■

keynote) representing textual information and ideas the user would

like to capture. An example of such a keynote in keynote region 220 is

shown in Figure 4Β. Any type of natural language text expression may

be entered in keynote region 220. Conventional techniques may be

used to display and word wrap the text in keynote region 220. Further,

conventional techniques may be used for the selection or

identification of keynote region 220 for the entry of text input. For

example, the cursor control device 123, mouse, or special key codes

entered on the key board 122 of the computer system may be used to

select keynote region 220 for the entry of a text expression. As each key

stroke is input to keynote region 220, the individual key stroke is

transferred to user interface 200 and subsequently to parser 300 as will

be described below in a later section of this document.

13

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

Referring again to Figures 4Α and 4Β, a shadow region 230 is

provided to display the output of a parsed text expression and to

capture input icon selections from the user· Shadow region 23◦ is a

window that appears beneath, or alternatively adjacent to, the keynote

region 220 and contains linked object information in data fields that

are automatically set as a result of parsing the keynote entered into

keynote region 22◦. Shadow 230 includes a set of icons 240 which are

always visible along with keynote region 220 in the preferred

embodiment· Icons 240 serve two purposes. First, icons 240 can be

distinctively displayed in one of two states to represent the presence or

absence of a link to a corresponding object as a result of parsing the

keynote. For example, an icon of icons 240 representing a contact

information object may be highlighted if contact information has been

found as a result of parsing the keynote. Similarly, other icons

corresponding to projects, lists, calendars, or enclosed documents may

also be highlighted or unmghlighted depending on the presence or

absence of links to objects/ such as projects, lists, calendar events, or

enclosed document information found as a result of parsing the

keynote. Alternatively, the keywords of a keynote linked to a project,

list, calendar event, or enclosed document object may be distinctively

displayed in the keynote itself. For example, the keyword or keywords

linking the keynote to a project object may be displayed in a first color

OT font type or style. The the keyword or keywords linking the keynote

to a contact oDject may be displayed in a second color OT font type or

style· Similarly, other keywords linking the keynote to other objects

may also be distinctively displayed to inform the user that the parser

300 has identified the corresponding keyword in the input text

14

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

expression.

The second function served by the icons 240 and a related

dropdown list control is a means for a user to select the display of the

linked object type corresponding to a particular selected icon· The

output produced by parser 300 is displayed in region 250 of shadow

230. Although shadow 230 may initially be displayed beneath keynote

220, the user may bring the shadow region 230 in front of the keynote

region 220 by clicking on the shadow region 230 with the cursor

control device 123 or by typing a pre-specified key entry on the

keyboard 122. Alternatively, the shadow region 230 may also be

selected for display using a menu command.

Referring now to Figure 5, the generic version of the keynote

and shadow region 210 of the preferred embodiment of the present

invention is illustrated in its initial state. As shown, keynote 220 is

initially blank prior to the entry of any keynote. Shadow region 230

includes a set of icons identified generically as II through 15■ In this

example, icon II represents a project object; icon 12 represents a contact

object; icon 14 represents a date/time calendar object; icon 15 represents

a list object· It will be apparent to one of ordinary skill in the art that

other types of information or objects may correspond to each or the

icons 240 of shadow 230, Similarly, it will be apparent to one of

ordinary skill in the art that an arbitrary number of icons 240 may

equivalently be provided in shadow region 230.

Referring now to Figure 6, the keynote and shadow region 210

are shown after the entry of a keynote 222 indicated within a dotted

circle region (for illustrative purposes only). It will be apparent to one

of ordinary skill in the art that the dotted line is shown in Figure 6 for

15

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

illustrative purposes only and is not actually displayed in the

preferred embodiment. As a result of parsing keynote 222, several

output results have been produced by the present invention. First, the

individual icons of icons 240 corresponding to object types linked by

parser 300 to input keynote 222 are highlighted. For example, icon II

is highlighted because parser 300 has linked a project object (i.e.'

"Wilson deal") to keynote 222. Similarly, icon 12 is highlighted because

parser 300 has linked a contact object (i.e. "Paul") to keynote 222. Icon

14 is highlighted because parser 300 has linked a date/time calendar

event object ("next Thursday") to input keynote 222. Finally, icon 15

has been highlighted because parser 300 has linked a list (■'Call'') to

input keynote 222. It will be apparent to one of ordinary skill in the

art that if an information object type corresponding to a particular icon

was not found by parser 300 m input keynote 222, the corresponding

icon would not be highlighted in shadow region 230. A second result

of the parsing of input keynote 222 by the present invention is

classification of the keynote as one of several different keynote types,

such as an action, memo, personal keynote, shared keynote, action

request, FYI message, etc. Finally, the structured output information

or linked object data is displayed in display area 250 of shadow 230,

This output information is described in more detail in connection

with Figure 7.

Referring now to Figure 7, the keynote and shadow region 210

is illustrated after the shadow region 230 has been brought to the

foreground using the cursor control device 123 or a pre-specified

keyboard 122 entry. Region 250 of shadow 230 illustrates the

structured information output produced as a result of parsing the

16

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

sample input keynote 222 shown in Figure 6. As a result of parsing

input keynote 222, parser 300 has linked the reference to iJwilson deal"

in input keynote 222 to the previously specified "Wilson Account"

project object. The linked project object "Wilson Account" is

displayed in region 250 adjacent to corresponding icon II. Similarly,

parser 300 has linked the reference to "Paul" in input keynote 222 to

the previously specified contact object "Paul Jones". The linked

contact object "Paul Jones" is displayed in region 250 adjacent to its

corresponding icon 12. The parser 300 has linked a date/time calendar

event object as a result of parsing the "next Thursday" text in keynote

222. This processed time/date calendar event object is displayed in

region 250 of shadow 230 adjacent to the corresponding icon 14.

Finally, parser 300 has linked the keyword "call” in input keynote 222

to the previously specified "Calls" list previously defined as a list

object. The identification of the linked Calls list is displayed in region

250 of shadow 230 adjacent to the corresponding icon 15.

Drop down list indicators 260 are provided to cause a list to

expand downward so a multiple line list of objects or information is

displayed in a drop down portion of region 250. Conventional

methods exist for providing drop down list indicators on a computer

display device.

Thus, user interface 200 and its corresponding keynote and

shadow regions 210 provide a means and method for receiving a

natural language text expression from a user and for concisely and

efficiently displaying the parsed and linked structured output of the

text expression in an area on display device 121. In the following

sections, the detailed description of the processing performed by parser

17

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

300 and lexical analysis tool 400 is provided.

As can be seen from Figures 3-7 and the above description in

connection with user interface 200 of the present invention, user

interface 2◦◦ provides an easy and intuitive user interface for

inputting text expressions and receiving resulting associated

structured information. Further, because the keynote and shadow

regions 210 are always displayed or easily displayable on display device

121, the user may easily record notes or thoughts within the keynote

window 220 without losing the context of the work previously being

done. In this manner, the present invention allows the easy

recordation of notes without disrupting current user operations. In

addition, the present invention allows notes to be recorded in a

natural language unstructured form which more closely resembles the

natural user thought processes. Thus, the user is not required to

organize these notes or thoughts into particular structured fields and

the user is not required to navigate through a multiple step

application to record notes or thoughts. A further advantage of the

present invention is the ability to integrate the operation of several

conventional computer applications into a central free form user

interface. Because the present invention provides a means for parsing

natural language into structured information linked to project objects,

contact objects, date/time calendar event objects, or list objects, the

structured information thereby produced can be easily integrated to a

word processor application, a calendaring application, a database

application, a project management application, or an electronic mail

application. The present invention thereby allows the user to input

an unstructured text expression which can be parsed into structured

18

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

information which is thereafter provided as input to this variety of

conventional software applications.

Parser

The parser 300 of the preferred embodiment receives natural

language text expressions from user interface 200 and produces

structured information including links to information objects, such as

projects, contacts, lists, date/time calendar items, and enclosed

documents corresponding to those identified to keywords in the input

text expression. Although many parsing algorithms exist in the prior

art, the parser 300 of the present invention is unique in its ability to

effectively identify and suggest keywords and/or date/time calendar

events in an input text string and respond with interactive user real-

time performance. Parser 300 of the preferred embodiment

accomplishes these objectives with a novel internal architecture and

set of methods for processing a natural language text expression. The

architecture and methods used by the parser 300 of the present

invention will be described in the following sections.

The present invention solves the problem of interpreting

structure and meaning from natural language text. This meaning is a

set of structured information related to or linked to other pertinent

information known to and pre-defined by the user. The following

example illustrates the operation of the present invention.

Suppose a user enters the following sample keynote to the user

interface 200 of the present invention:

"call Scott tomorrow to arrange the next Engineering meeting."

The parser 300 of the present invention is used to analyze this keynote

19

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

in real-time as the user enters the keynote character by character. Note

that the entire keynote is parsed after the entry of each new character.

After the entire keynote is entered by the user and analyzed by parse

300, the following structured information output is produced by parser

300:

lists: Calls

project: arrange Engineering meetings until Dennis gets

back

contact: Scott Jones

date: tomorrow = current date + 1 day

In this example, parser 300 of the present invention recognized

the keyword "call" in the input keynote and determined that this text

input keyword should be linked to or related to the "Calls" list. The

parser 300 of the present invention also recognized the keyword

"Scott" and determined that this contact name should be linked to the

contact object "Scott Jones". The word "tomorrow" was also

recognized by parser 300, which calculated tomorrow's date (i.e.,

current date + 1 day) and linked this date object to the input keynote.

The keywords "Engineering meeting" were recognized by parser 300 as

a link to the previously defined "arrange Engineering meetings until

Dennis gets back" project object· Note that the present invention

displays these links between the input keynote and corresponding

linked object types in the data areas for the list, project, contact, or

date/time calendar event objects in display region 250.

One important goal of the present invention is to ease the

computer user's workload by anticipating his/her intentions based on

20

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCTÆJS98/02921

the natural language text expression that has been entered. By

anticipating the user's intentions with a reasonable degree of accuracy,

the present invention allows the user to capture information in a

much more efficient and comfortable manner. For example, after

simply typing the input keynote in the example presented above: "call

Scott tomorrow to arrange the next Engineering meeting", the user is

not required to spend valuable time navigating around the display

screen or an application user interface to link the input keynote to the

desired list, project, contact, and date/time calendar event objects· The

present invention automatically handles the linkage of the

unstructured information in the input keynote to corresponding

structured information objects. The user is thus able to save the

keynote, send the keynote, or initiate action upon the keynote very

quickly with very little user intervention.

Referring now to Figure 8, a block diagram illustrates internal

components of parser 300 and its relationship to the user interface 200,

lexical analysis tool 400, and object database 850. Parser 300 includes

keyword and date/time parser 810 which receives the input natural

language keynote from user interface 200. The keyword and date/time

parser 810 includes a keyword parser and a date/time parser. The

keyword parser of keyword and date/time parser 810 is responsible for

parsing keywords from the input keynote. Keywords, can be linked to

a variety of different object types including lists, project, contact,

document enclosure objects and even dates (e.g., "Dane's Birthday" ت

6/25). Each of these different types of objects are maintained in parser

300. List object 820 is used to maintain user defined list objects.

Project object 822 is used to maintain user defined project objects·

21

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT^JS98/02921

Contact object 824 is used to maintain contact name objects.

Enclosure object 826 is used to maintain enclosure or document

identifier objects. Other object types 828 may similarly be provided.

For each type of object, the keyword parser of keyword and date/time

parser 810 links objects 820 through 828 to corresponding keywords of

the input keynote in a manner described in more detail below.

The date/time parser of keyword and date/time parser 810 is

used to scan the input keynote for the presence of information

corresponding to a date or time event. The operation of the date^ime

parser is described in more detail in a later section of this document.

Keyword and date/time parser 810 interfaces with a lexical

analysis tool 400. It will be apparent to one of ordinary skill in art that

the functions performed by lexical analysis tool 400 may equivalently

be implemented as an. integrated part of parser 300 or keyword and

date/time parser 810. However' in the preferred embodiment of the

present invention, lexical analysis tool 400 is provided as a software

module independent from keyword and date/time parser 810. Upon

receiving an input natural language keynote from user interface 200,

keyword and date/time parser 810 passes this keynote to lexical

analysis tool 400 on line 410. Lexical analysis tool 400 is responsible for

producing a set of tokens from the input keynote.

Referring now to Figure 9, a flowchart describes the processing

performed by lexical analysis tool 400. In an initial processing block

912, lexical analysis tool 400 gets the input keynote from parser 300. As

part of the initialization process, a character pointer is initialized to

point to the first character of the keynote. A token buffer used for

collecting characters of the current token is initialized in block 912.

22

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

Next in decision block 914, a loop is started to process each of the

characters in the input keynote· When the entire keynote has been

processed, processing path 916 is taken and the lexical analysis tool 400

returns the output token list to parser 300. If more characters remain

in the input keynote, processing path 918 is taken to decision block

920. If the current character being processed is not a delimiter

character, processing path 924 is taken to processing block 928 where

the current character is added to the token buffer and the next

character is processed through block 930 and back to decision block 914.

A delimiter character can be one of any pre-defined special characters

such as blank, tab, comma, period, etc. Referring again to decision

block 920 if the current character is a delimiter character, processing

path 922 is taken to processing block 926 where processing is

completed for the currently collected token. In block 926, any white

space or unnecessary blanks surrounding the token are removed and

any upper or lower case characters of the token may optionally be

standardized to a consistent form of capitalization. Further, the token

is classified as one of several token types such as alpha character, alpha

numeral, date, date span, etc. A numerical quantity is also associated

with the token. The token is also classified as a date/time token or a

keyword token. In the preferred embodiment, two separate token lists

are maintained: one for keyword tokens and another list for date/time

tokens. This distinction is made because the parser 300 is context

sensitive· For example, the token "Friday" may have special meaning

to the date/time parser but not to the keyword parser. It will be

apparent to those of ordinary skill in the art that the use of separate

token lists is not necessary in alternative embodiments.

23

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

The new token, the token type, and token value information is

then added to an output token list, which represents the token list that

will be returned to parser 300 at the completion of processing

performed by lexical analysis tool 400. Also in processing block 926,

the token buffer is initialized to set up for collection of the next token

and processing is transferred to processing block 930 where the next

character in the keynote is processed. Using this basic processing flow

performed by lexical analysis tool as shown in Figure 9, the present

invention converts a natural language free form input keynote to a set

of tokens and token type and value information which can be

conveniently processed by parser 300. The token list is transferred

from lexical analysis tool 400 to parser 300 on path 420 as shown in

Figure 8·

The interface between parser 300 and lexical analysis tool 400

may also be used to exchange tokens between parser 300 and lexical

analysis tool 400 for the purpose of obtaining a multiple word token

that may be used to represent a particular date/time event. The parser

300 and lexical analysis tool 400 exchange date/time tokens until the

parser 300 finds a date/time processing path that succeeds for the

date/time token.

Figures 10 - 13 illustrate the operation of the keyword parser of

keyword and date/time parser 810 of the present invention. Figures

10 and 11 are flowcharts illustrating the processing flow of the

keyword parser of keyword and date/time parser 810, Figures 12 and

13 illustrate examples of the operation of the keyword parser of

keyword and date/time parser 810.

Referring now to Figure 12, examples illustrate the manner in

24

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

which object dictionary 851 is initially loaded with keyword

information. On initialization, the object database 850 is accessed to

obtain the initial objects to be loaded into object dictionary 851.

Because local data in the object dictionary 851 can be used, the

operation of the parser 300 is much faster· More details on the object

database 850 are provided in a later section of this document.

Object dictionary 851 includes a trigger table 856, a keyword

dictionary 852, and keyword definitions table 854. Trigger table 856

includes entries called triggers for each of the tokens from which

keywords are formulated. Associated with each trigger is a reference

count identifying the number of keywords of which the corresponding

trigger is a member. Keyword dictionary 852 includes the identity of

each of the keywords pre-defined using methods or calls provided by

the keyword parser of keyword and date/time parser 810. Blocks 1210,

1212, and 1214 shown in Figure 12 illustrate three examples of calls to

an "add keyword" function or method used to add an entry to

keyword dictionary 852. These calls are also used to load keyword

definition information into keyword definition table 854. As shown

in the examples in Figure 12, keyword definitions include a reference

to a list object, a project object, and a contact object associated with each

keyword in the keyword dictionary 852. The keyword dictionary 852

includes a definition link (Def. Link) which points to the keyword

definition entry corresponding to the keyword in the keyword

dictionary 852. As a result of the sample method calls 1210, 1212, and

1214 illustrated in Figure 12, keyword dictionary 852, keyword

definition table 854, and trigger table 856 are populated with keywords

and associated keyword definitions and triggers. Once these tables and

25

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

Storage areas of object dictionary 851 are populated, the keyword parser

of keyword and date/time parser 810 can be used to parse a user input

keynote from a natural language form including these predefined

keywords into an output structured information table containing the

linked list objects, project objects, and contact objects associated to the

keywords detected by the keyword parser of keyword and date/time

parser 810 in the user input keynote.

Referring now to Figures 10 and 11, flowcharts illustrate the

processing logic used by the keyword parser of keyword and date/time

parser 810 for performing this function. In an initial processing block

101◦, a keyword buffer, a current keyword buffer, and an output buffer

are initialized. The keyword buffer is used to temporarily hold a

portion of a keyword (i.e., one or more tokens) until a most complete

(i.e·，longest) keyword can be built. The current keyword buffer is used

for the storage of the currently most complete keyword. The output

buffer is used for storage of the structured information or keyword

definition information retrieved for the keywords of the current user

input keynote. In processing block 1012 the next token in the user

input keynote is retrieved. If the retrieved token is a trigger as

determined by accessing the trigger table 856, the processing path 1018

is taken to processing block 1022 where the trigger is appended to the

contents of the keyword buffer. Next, the keyword dictionary 852 is

searched for the current contents of the keyword buffer in decision

block 1024. If the contents of the keyword buffer are found in keyword

dictionary 852, processing continues with processing block 1026 where

the contents or the keyword buffer are stored in the current keyword

buffer. In this situation, the current collection of tokens in the

26

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

keyword buffer we e found in keyword dictionary 852. If there are

more tokens in the user input keynote, path 1030 is taken back to

processing block 1012 where the next token is retrieved and the above

process is repeated.

Referring again to decision block 1014, if the retrieved token is

not a trigger as determined by access to trigger table 856, processing

path 1016 is taken to decision block 1020 where the contents of the

current keyword buffer are checked. If the current keyword buffer is

emOtv, processing continues at decision block 1028 through the bubble

labeled A. In this case, the current token is simply thrown away. If

the current keyword buffer is not empty however, processing

continues at the bubble labeled B illustrated in Figure 11· Similarly,

processing continues at the bubble labeled B if the current keyword

buffer is not empty for the last token in the user input keynote

resulting in traversal of processing path 1034.

Referring now to Figure 11, processing continues for the

keyword parser of keyword and date/time parser 810 at the bubble

labeled B. In this situation, the current keyword buffer contains the

greatest number of continuous tokens found in the user input

keynote that form a predefined keyword in keyword dictionary 852. In

this case, the current keyword in the current keyword buffer is used to

perform a look up for the associated keyword in keyword dictionary

852 (processing block 1110)• Once the keyword is found in keyword

dictionary 852, the corresponding keyword definition from keyword

definition table 854 is retrieved. The corresponding keyword

definition includes the list, the project, and the contact object

information corresponding to the matched keyword from the

2Ί

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCTZÜS98/02921

keyword dictionary (processing block 1112)• In decision block 1114, a

test is performed to determine if the keyword definition components

(i.e., the list, the project' and the contact) have been previously

modified in the output buffer. If this is true (processing path 1118), the

current content of the output buffer is not further modified by

execution of the operation in processing block 1116. In processing

block 1116, the keyword definition information from the keyword

dictionary is stored into the previously unmodified portions of the

output buffer. In the present invention, if keywords or the tokens of a

keyword are not mixed, and the keyword parser of keyword and

date/time parser 810 detects two or more keywords that link to

different keyword definitions' the keyword parser of keyword and

date/time parser 810 of the preferred embodiment picks the keyword

definition whose keyword appeared first or left-most in the user input

keynote. Further, if two or more keywords or the tokens of the

keywords are mixed together, the keyword parser of keyword and

date/time parser 810 of the preferred embodiment picks the longest

keyword from left to right in the user input keynote and then throws

away all of the tokens of this longest keyword from further

consideration in processing the remainder of the user input keynote.

Using these parsing rules in the present invention, the resulting

output structured information is predictable and understandable

given an input keynote. Once the output buffer is loaded in

processing block 1116, processing continues at the bubble labeled A

illustrated in Figure 10. Referring again to Figure 10 and the bubble

labeled A' the processing loop for processing tokens continues at

decision block 1028 until all of the tokens in the input keynote are

28

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

processed.

Referring now to Figure 13, four examples (1 - 4) illustrate the

operation of the preferred embodiment of the present invention

given a user input keynote in association with the corresponding

output structured information produced by the keyword parser of

keyword and date/time parser 810 of the present invention. Further,

the examples illustrated in Figure 13 are based on the preloaded object

dictionary 851 illustrated in Figure 12. As described above in

connection with Figure 12, the object dictionary 851 including trigger

table 856, keyword dictionary 852 and keyword definition table 854 is

loaded with information such as the sample information illustrated

in Figure 12. Based on this information/ the present invention

produces the output structured information illustrated in Figure 13

given the input keynotes shown for each example.

Referring now to Figures 12 and 13, in a first example, given the

input keynote "hello world", the present invention matches this

input keynote with the "hello world■' keyword found at row 2 in

keyword dictionary 852 shown in Figure 12. As a result, the content of

row 2 of keyword definition table 854 shown in Figure 12 is transferred

to the output structured information buffer shown in the first

example in Figure 13.

In the second example shown in Figure 13, the input keynote

"hello world peace1' is parsed by the present invention. As a result,

the present invention matches this second sample input keynote with

the "hello world” keyword found at row 2 in keyword dictionary 852.

In this case, the keyword definition at row 2 of keyword definition

table 854 shown in Figure 12 is transferred t◦ the output structured

29

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

information buffer as shown for the second example illustrated in

Figure 13. Note that the keyword "world peace" in the second example

shown in Figure 13 does not cause the keyword definition in the

output structured information buffer to be modified.

Referring now to the third example illustrated in Figure 13, the

input keynote "hello everyone world peace" is processed by the

keyword parser of keyword and date/time parser 810. In this case, the

keyword parser of keyword and date/time parser 810 matches the

"hello" keyword with the first row of keyword dictionary 852 shown

in Figure 12. In this case, the keyword definition at row 1 of keyword

definition table 854 shown in Figure 12 is transferred to the output

structured information buffer shown for the third example illustrated

in Figure 13. In further parsing of the input keynote for the third

example shown in Figure 13, the keyword "world peace" is matched

with the third row of keyword dictionary 852 shown in Figure 12.

However, because the list and contact components of keyword

definition 854 have already been modified by the previously matched

keyword ("hello"), the list and contact components in the output

structured information are not further modified for the "world peace"

keyword definition.

Referring to the fourth example illustrated in Figure 13, the

input keynote is parsed by the keyword parser of keyword and

date/time parser 810. In this case, the keyword "hello" is matched to

the first row of keyword dictionary 852 and the corresponding

keyword definition from row 1 is transferred to the output structured

information buffer as shown for the fourth example illustrated in

Figure 13. In this case, however, further parsing of the input keynote

30

SUBST^UTE SHEET (RULE 26》

wo 98/37478 PCT/ÜS98/O2921

in the fourth example matches the keyword "hello world" to the

second row of keyword dictionary 852. The corresponding keyword

definition from row 2 is obtained. Because the project component of

the keyword definition was not previously modified, the project

definition for the second row of the keyword definition table 854 can

be transferred to the project component of the output structured

information buffer illustrated for the fourth example shown in Figure

13·

The present invention includes methods and objects for

suggesting new keywords to a user given a predefined object

dictionary 851 and an input user keynote.

Referring now to Figure 14, a flowchart illustrates the

processing performed for suggesting keywords to be linked to contact

objects. It will be apparent to one of ordinary skill in the art that a

similar set of processing may be performed for lists, projects,

enclosures, or other keyword definition components. In processing

block 1410, the user input keynote is parsed into tokens by lexical

analysis tool 40◦. Each token can then be compared with the keyword

dictionary 852 to determine if the token is already a predefined

keyword (processing block 1414). In addition, the token may be

checked with the content of a pre-defined list of words explicitly

defined as not suggestible. If the token is not already in keyword

dictionary 852 and the token is not on the list of non-suggestible

words, the token may be suggested as a keyword in processing block

1416. If the token is already present in keyword dictionary 852 or the

token is on the list of non-suggestible words, the token cannot be

suggested. In this case, the token can be augmented in a variety of

31

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

ways to render the token distinctly different from other keywords

currently residing in keyword dictionary 852. As an example of such

an augmentation of a token, the first character of the next sequential

token in the input keynote may be used and concatenated with the

token currently being processed. This augmented token may then be

compared with the contents of keyword dictionary 852 to determine if

the augmented token is not currently present in the keyword

dictionary and not on the list of non-suggestible words. If the

augmented token is found in keyword dictionary 852 or the

augmented token is on the list of non-suggestible words, the

augmented token may be further augmented using additional

characters of the next token or the previous token in the input

keynote. This process continues until a unique and suggestible

augmented token is generated. This unique and suggestible

augmented token may then be suggested as a keyword to the user in

processing block 1418. Finally, all tokens in the input keynote may be

appended together as a combined token. This combined token is

compared with the contents of keyword dictionary 852 and the list of

non-suggestible words to determine if the combined tokens are

currently defined as a keyword in the keyword dictionary OT as non-

suggestible. If not, the combined tokens may be suggested as an

additional keyword in processing block 1420.

In an alternative embodiment, the logic for suggesting

keywords may employ different heuristics based on the type of object

for which keywords are being suggested. Thus, for example as

described above for contact objects, it may be desirable to augment a

keyword to include characters from subsequent tokens or to create

32

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

initials from multiple tokens as one may do for the name of a contact.

However, this process may not be appropriate for creating augmented

keywords for list or project objects. In these cases, a somewhat

different augmentation process may be used. The use of different

heuristics based on the type of object is easily implemented with the

present invention because the type of object will be known at the time

the suggesting process is employed. By knowing the type of object for

which a keyword suggestion is being generated, the appropriate

heuristic may be selected.

Thus, the processing performed by the present invention for

parsing keywords is described.

Date/Time Parser

The implementation of the date/time parser of keyword and

date/time parser 810 of the present invention is described in the

following sections. The date/time parser of keyword and date/time

parser 810 uses lexical analysis tool 400 to break an input keynote into

date relevant tokens and to identify tokens in the input expression

that may be relevant to date parsing. The lexical analysis tool 400 uses

a method for breaking the input keynote into date relevant tokens

similar to the method described above in connection with Figure 9. In

addition, lexical analysis tool 40◦ provides for each token a

specification of the type of the token and a numerical value associated

with the token. For example, the word "two" would be classified by

lexical analysis tool 400 as a numerical type token with a value equal

to 2. As another example, the token "Monday" would be classified by

lexical analysis tool 400 as a day type token with a numerical value

33

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

equal to 2, corresponding to the second day of the week. As another

example, the token 7" would be classified as a date separator token

with an undefined numerical value. In a similar manner, all other

tokens associated with date or time events are similarly predefined

with a specific type and a predefined numerical value which lexical

analysis tool 400 provides as output to keyword and date/time parser

810 when the particular token is identified in the input keynote.

Using the token and token type information provided by lexical

analysis tool 400, the date/time parser of keyword and date/time

parser 810 is able to parse and recognize date/time events in an input

keynote.

The date/time parser of keyword and date^ime parser 810 is

responsible for parsing the input keynote to interpret dates and times

from the natural language input keynotes as entered by a user. The

goal of the day/time parser 814 of the present invention is to parse a

set of date and time tokens from an input keynote and determine with

perfect accuracy the intended date or time constraint applied by a user.

The format used by the present invention is simple, short' intuitive,

and powerful enough to allow a user to express almost any date/time

value by typing a short and simple expression directly as natural

language text rather than being forced to navigate through a maze of

dialogs or to manipulate numerous command buttons, check boxes, or

other graphical user interface components.

The date/time parsing performed by the date/time parser of

keyword and date/time parser 810 uses a novel form of recursive

descent with infinite look ahead technique. This technique provides

an O(N) complexity methodology. Similarly, the keyword parser of

34

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

keyword and date/time parser 810 achieves an O(N) complexity. This

is the best complexity theoretically possible. Thus, the performance of

the present invention is well suited for real-time applications

requiring quick response.

The following is a list of date expressions recognized and a list

of rules employed by the keyword and date/time parser 810 of the

preferred embodiment:

Note: Assume today is Monday, June 10, 1996 while reading this table.

Date Description Parses to This Date

٠ today Mon., 6/10/96

٠ this morning/afternoon/evening Rule: Parse to current date

٠ tonight

٠ tonite

・ tomorrow

٠ tomorrow morning/afternoon/

evening/night

6/10[0]・

6-10[0] ٠

Tues٠/6/11/96

Rule: Parse to the current

date + 1 day

Mon., 6/10/96

Rule： Parse to the current

date or the nearest future

occurrence of the specified

date.

6.10[0] ٠
10 June ・

Η10؛ June •

35

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

June tenfth]

tenfth] of June

[OJ6/1O/98

[이6-10-98

Wed., 6/10/98

Rule: Parse to the specified

date.

[이6.10.98 Note: The parser must be

configured for European

locations to enable handling

of the DD/MM/ΥΥ date

format.

June 10, 1998

10 June 1998

two days* from today** Wed.,6/12/96

Rule: Parse to the Specified

starting date ("today," etc·)

+ specified increment ("two

days, etc.)·

in/within fourteen days* Mon./6/24/96

Rule: Parse to the current date

+ specified number of days or

weeks. Adding months will

yield the same day of the

month (if possible), X months

later In other words, "2

36

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/ÜS98/O2921

・ Monday

٠ this Monday

٠ this coming Monday

٠ next Monday

months from "june 4th'

96" will yield ··August 4th, 96”.

"one month from May 31st",

will yield "June 30th" (the last

day of the month, since June

31st does not exist). Similarly,

"five years from 5/5/94

"will yield "599 ا5ا "·

Mon.,6/17/96

Rule: Parse to the next

occurrence of the specified day;

never the current date. For

example, Tuesday IS Tue,

6/11/96.

Μοπζ6/17/96

Rule: Parse to:

1. "next〈day〉IS specified

during the next week, using

Monday as the first day

of the week.

2. "On a Sunday, "next〈day〉''

37

SUBST^UTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

parses to the specified day

during the 2nd week following

the Sunday (i.e., the week

beginning eight days from the

Sunday) - except for Sunday,

which parses to the Sunday

that is one week away.

٠ first★** Monday of next month

٠ first*** Monday of/in July

Mon·、7/3/96

Rule: Parse to the first

occurrence of the specified

day during the next month

on the calendar.

• first*** Monday of June, 1995

٠ first*** Monday of June, 95

• first*** Monday of 6/95

* Could specify "weeks, months, years," "Mondays,”

Tuesdays," etc. instead of "days"

* * Could specify "tomorrow," "next Thursday'" etc. instead of

"today"

*** Could specify "second", "third", "fourth", ''fifth■', and "last".

Recurring events can occur on a daily, weekly, monthly, annual

basis. The keyword and date/time parser 810 also handles the entry of

recurring events. The keyword and date/time parser 810 recognizes

38

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

the following types of recurring event specifications and associated

date-related keywords or key expressions. Note that other forms may

similarly be handled.

・ every day*

・ every other day*

٠ every three days*

・ every Thursday

٠ every weekday (every Monday, Tuesday, Wednesday, Thursday,

and Friday)

٠ every weekend (every Saturday & Sunday)

٠ every other weekend

・ every other Thursday

・ Tuesdays (every Tuesday)

・ weekdays (every weekday)

٠ first Thursday of every [other] month

٠ first Thursday of every three months

٠ fifteenth of every month

* |'day(s)'| can be replaced by 1'week(s)'，z ٠lmonth(s)٠٠, and 11year(s)1'.

Note that recurring dates are assumed to occur forever in the

preferred embodiment. The keyword and date/time parser 810 always

picks an intelligent starting date, but does not report an ending date.

For example, assuming that today is Monday, 6/11/96, "every

Tuesday'■ will be interpreted by the parser 810 as "every Tuesday"

starting Tuesday, 6/12/96 (the nearest weekday starting from today).

As with dates, abbreviations and numerical/ordinal

substitutions are correctly interpreted·

39

SUBSTITUTE SHEET (RULE 26)

wo 98/374*78 PCT/US98/02921

DLL Interface of the Preferred Embodiment of the Present Invention

The following section describes the interface to the parser 3◦◦

dynamic link library (DLL) component of the preferred embodiment

of the present invention. The generic use of DLL'S is well known to

those of ordinary skill in the art.

The parser 300 of the preferred embodiment is composed of a

single DLL. In this embodiment, the DLL is written in the c++
programming language. It will be apparent to those of ordinary skill

in the art that other programming languages, such as c, Basic, etc.,

may alternatively be used. The parser 300 capabilities of the preferred

embodiment include the following:

• Date and time parsing.

• Recurring event parsing.

٠ List, project, and contact parsing via keywords·

٠ Suggestions of list, project, and contact keywords·

• Automatic Completion (auto-complete or auto-fill) of list,

project, and contact names. This process is similar to a

conventional "quick fill" technique designed to assist the user

by completing the partial entry of data based on previously

entered data·

٠ Collaboration parsing.

From the point of view of parser 30◦, date and time parsing

requires no special knowledge of data. On the other hand, parsing,

completing, and suggesting keywords, lists, projects, and contacts

requires explicit knowledge of the existing or predefined lists, projects,

contacts, and keywords. The parser 300 of the preferred embodiment

40

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

is data-independent. In other words, it is not aware of any files or

databases. Therefore, the parser 300 must be initialized with lists,

projects, contacts, and keywords■ The initialization process usually

occurs during the boot time of the application that uses the parser 300,

or when the application switches to another set of data. The following

pseudo code illustrates a typical initialization of the parser 300 of the

preferred embodiment:

declare list, project, contact, keyword as strings

for every list in database

AddLitlist)

for every project in object database

AddProject(project)

for every contact in object database

AddContact(contact)

for every keyword in object database

AddKeyword(keywordz list, project, contact)

After this initialization, the parser 30◦ knows about all the lists,

projects, contacts, and keywords. It is now able to correctly auto-fill,

parse, and suggest keywords upon request from the client, ◦f course,

the parser 300 must be kept in synchronization with the data in the

object database 850; changes in the object database 850 should be

reflected in the parser 300. Updates are accomplished using Add,

41

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

Delete, and Rename function calls. As an example, consider the

following situation: a user deletes an existing project named "Paint

Fence". The application removes the project from the object database

850 and removes (or updates) its associated keywords. This change

must be reflected in the parser 30◦ and can be done with a single

function call as follows:

DeleteProject(٠٠Paint Fence”)；

This single function call will remove the project and any

references to it from the parser 300. The project name will no longer

auto-complete and all of the keywords that are associated with the

"Paint Fence" project will be automatically removed or updated. Note

that DeleteProjectOz AddProject(), and RenameProject() return values

indicating success or failure of the function. For the sake of simplicity,

the previous examples ignore the return values.

The Rename functions support renaming of lists, projects'

contacts, and keywords. Renaming a list ("list" is used as an example -

it can be replaced by "project" or "contact") is easily done in the object

database 850. It is effectively a simple database update operation.

Because the list has a primary key in the ■object database 850, and the

keywords that are associated with the list are related to the list via this

key (rather than the list's name), modifying the name of the list will

not affect its associated keywords. In other words, the keywords will

remain linked to the list after the name change.

The Rename functions of the preferred embodiment are as

follows:

42

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

BOOL WINAPI EXPORT RenameListCconst char FAR* sOldList,

const char FAR* sNewList);

BOOL WINAPI EXPORT RenameProjectCconst char FAR*

sOldProject, const char FAR* sNewProject);

BOOL WINAPI EXPORT RenameContacticonst char FAR*

sOldContact/ const char FAR* sNewContact);

BOOL WINAPI EXPORT RenameKeywordiconst char FAR*

sOldKeyword, const char FAR* sNewKeyword);

A single function call to any of the above functions will handle

the entire renaming process, and will simplify the client's task.

Retrieving Results From The Parser

In order to retrieve information from the parser 300, a client

must allocate buffers and pass them into the parser 300 DLL via

function calls. Parsing information is retrieved using the ParseOutput

Data Structure 830, which is defined as follows:

typedef struct-ParseOutput{

char sList[BUFFER_SIZE};

charsProject[BUFFER١SIZE];

char sContact[BUFFER_SIZE】；

char sDelegate[BUFFER_SIZE];

char sDate[BUFFER„SIZE];

char sTimeBegin[BUFFER_SIZEI;

char sTimeEnd[BUFFER_SIZE];

charsDateEnd[BUFFER_SIZE];

43

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

long nFrequency;

BYTE bRecurring;

BYTE nUnits;

BYTE nWeekdays;

BYTE nWeekdayPos;

}ParseOutput/ *ParseOutputPtr;

The client of the parser 300 DLL allocates a ParseOutput data

structure ("struct" or "type" in Visual Basic), and passes it along with

the input expression to be parsed using any of the following function

calls:

Parse()

DateParse()

Keyword suggestions are retrieved from the parser 300 using

the KeywordSuggestion structure, defined as follows:

typedef struct_KeywordSuggestion{

char sKeywordl[BUFFER_SIZE];

char sKeyword2[BUFFER_SIZE];

char sKeyword3[BUFFER_SIZE】；

}Keyword Suggestion, *KeywordSuggestionPtr;

The client of the parse DLL· allocates a KeywordSuggestion data

structure, and passes it along with an input expression using any of

the following function calls:

44

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

SuggestListKeywords()

SuggestProjectKeywords()

SuggestContactKeywords()

Auto-completion (auto-fill) requires only a character buffer

which can be declared by the client as:

charsBuffer[BUFFER_SIZE];

in c or C++, or

Dim sBuffer As string * BUFFER.SIZE

in Visual Basic. The buffer, along with the expression to be

completed, is then passed into any of the following function calls:

AutoFillList()

AutoFillProject()

AutoFillContact()

Handling Recurring Dates

The present invention supports recurring date parsing by use of

the following fields of the Parse Output Data Structure. These fields

are:

nFrequency: Long. Null value = 0. "five days" -> nFrequency =

45

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

nUnits:

5.

BYTE. Null value = 0. DAYS = 1, WEEKS =

nWeekdays:

2, MONTHS = 3, YEARS = 4.

BYTE. Null value = 0· SUN = 1, MON =

2, TOE = 4, WED = 8, THU = 16, FRI = 32, SAT = 64.

All possible combinations of weekdays can be

stored. For example. Sat and Sun = 64 + 1 = 65·

Mon, Tues, and Wed 14 ت. To find out if

nWeekdays includes a specific weekday, simply

"bitwise and" that weekday with nWeekdays (&

operator in C/C++, "and" operator in Visual Basic)·

If the result of the bitwise operation is zero, then

the weekday is not included in n Weekdays:

otherwise, it is·

nWeekdayPos: BYTE. Null Value = 0. ist, 2nd, 3rd, 4th, or 5th

weekday of a given month. Thus, "the second

Monday of July" would imply that nWeekdayPos =

2٠

Finally, a boolean value is provided to signal whether we are

dealing with a simple date or a recurring date:

bRecurring: BYTE. False = 0. True = anything else. If

bRecurring = True, sDate serves as the starting date of the

recurring event.

The parser 300 doesn't require end dates. That is, recurring

46

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

events arc assumed to go on "forever" (the user must use the user

interface 200 to specify a full range)· The '1sEndDate11 field in the

ParseOutput data structure, is nonetheless provided to support

specified end dates· A starting date, however, is always provided when

a recurring date is parsed. Although the parser 300 doesn't require

starting dates (i.e., every Friday starting on 8/8/97), it always tries to

guess (intelligently) a starting date for the recurring event· This

starting date will be passed via the ParseOutput struct in the sDate

field.

Collaboration

Collaboration support is provided in the preferred embodiment

of the present invention. The parser 300 looks for two possibilities at

the beginning of each keynote. Note that other similar keywords

triggering collaboration could also be provided.

• The word "please" (or "pis") immediately followed by a

contact keyword.

٠ A contact keyword immediately followed by the word

"please" (or "pis")■

The parser 300 also accepts a single or multiple punctuation

(comma, period, colon, and semicolon) between the contact keyword

and the word "please" (e.g., "Brian. Please..." or "Please, Brian.··")·

When the parser 300 recognizes this keynote sequence, parser

300 fills the sDelegate field or the ParseOutput data structure with the

contact name (pointed to by the contact keyword). The next contact

keyword (if any) will appear in the sContact field. For example,

consider the two contacts, "Brian Smith" (keyword : "brian") and

47

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

"Danny Jones" (keyword = "danny")· The input expression:

”Brian, please call Danny and arrange for all of US

to go to lunch tomorrow at 2pm”

will result in the following ParseOutput data structure fields:

sDate =〈tomorrow's date〉

sTimeBegin = 14:0

sDelegate = ”Brian Smiga”

sContact = ’’Danny Rabbani”

Further details on collaboration support of the present

invention are provided in a subsequent section this document.

Object Database

The object database 850 of the present invention supports

arbitrary association of one type of object in the database with one or

more other objects of any type· The object database 850 also supports

collaboration (including negotiation and tracking action requests to

completion) between two users of the present invention who may or

may not share a common server.

Referring now to Figures 15-18, various tables maintained

within object database 850 are shown. Note that the table keys are

shown only for illustrative purposes.

Types of Objects

48

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCTZUS98/02921

Figure 15 shows the object type table of the preferred

embodiment. There are several types of objects currently supported in

the database of the present invention. A representative portion of

these types of objects are shown in Figure 15 along with a description

of the type of the particular object in the preferred embodiment.

Because the object types are stored in a table in the object database 85◦,

an object type can be added, deleted, or modified at run time. This is

useful for supporting user-defined types of information or objects (e.g·,

a "GPS Location").

Association of Object Types to Tables Where They Reside

Every type of object listed in Figure 15 is stored in the object

database 850 in one of several tables. The association between the

object type the table in which it resides is retained in the object

association table shown in Figure 16. As the object association table

shown in Figure 16 illustrates' multiple types of objects may be

associated with--a!٦d thus actually stored in-·the same table. For

example, the object types of: Person, Delegate, FYI, and Attached

Person are all associated with the "People" table.

Object Links Table

The links table of the preferred embodiment is a special table in

the database of the present invention that allows free association of

one object of any type to another object of any type. For example, the

links table allows the present invention to associate a Person object

type to an Email Address object type. Note that the same Person could

also be associated with additional email addresses, each represented in

49

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

the LinKs table as separate entries.

Referring to Figure 18, a sample link table is illustrated· As

shown, the columns (structure) of the link table includes the

specification of a two keys and two object types: key 1, type 1, key 2, and

type 2.

Every object in the object database 850 of the present invention

has a unique identifier, or key, associated with the object. These keys

are stored as part of the record, or entry, describing an object in a

particular table. For example, Brian Smiga is an instance of a Person

object type with a key of 101; Brian's first name and last name, as well

as his object instance key, will be stored directly in the People table as

part of a single record.

As indicated previously, every object in the database of the

present invention also has a type associated with it. Given the object

key and object type of one object and the key and type of another

object, the two objects may be "linked" via a single entry (record) in

the links table, a sample of which is shown in Figure 18.

For example, if "Brian Smiga'■ represents an instance of a

Person object type with a key 101 and ''smiga@actioneer.com''

represents an instance of a corresponding Email Address with a key

102, the ■'Brian Smiga" object instance may be linked to his

corresponding "smiga@actioneer.com" email address instance in the

link table as follows:

Keyl Typel Key2 Type2

101 5 102 13

50

SUBSTITUTE SHEET (RULE 26)

mailto:smiga%40actioneer.com

wo 98/37478 PCT/US98/02921

where a Person object type has a key 5 and an Email object type has a

key 13. The above example of a links table entry indicates that Brian

Smiga (key=101) of type Person (5) is associated to (i.e· linked to)

smiga@actioneer.com (102) of type Email Address (13)• In the preferred

embodiment, entries are always stored in the links table such that the

value of Type 1 is less than or equal to the value of Type 2. This table

organization aids in searching.

Sample Database Representation

Referring now to Figure 17, an example illustrates the

organization and use of the various tables in the object database 850 of

the present invention. The columns shown for each table are only a

subset of the columns actually in the database of the present

invention. For example. Projects also have an associated Outcome

(goal), which would be saved in a separate column in the Projects

table. Additional information about a project might be entered in

another table, such as Simple Date (wmch would include the start,

due, and completion dates for the project), and linked to the associated

Project via the links table as described above. Additional information

about any of the contacts in the Contacts table might be entered in a

Physical Address table, the Email Address table, etc. and linked to the

associated Person via the links table as described above. Note that in

the table representations illustrated in Figure 17 and 18, the italicized

columns showing descriptions of the linked items do not actually

appear in the database of the preferred embodiment. Rather, they are

shown here for purposes of clarification in this patent application·

Given the initial database table content shown in Figure 17,

51

SUBSTITUTE SHEET (RULE 26)

mailto:smiga%40actioneer.com

wo 98/37478 PCTZUS98/02921

suppose a user named "Dennis Buchheim", creates a keynote by

entering a text expression into a keynote region 220, the sample

keynote reading as follows:

"Brian, please call Jim tomorrow re patent status"

Further suppose the user attaches the Person "Jim Salter" and

the Project "Patents"，also sending an FYI keynote to Tom Hagan as

described in detail above. In this example, the parser 300 of the present

invention will automatically determine many of the links that need

to be established in the tables shown in Figure 17: keyword "Brian"

will be recognized as a keyword linked to "Brian Smiga," who is a

Delegate of the keynote; keyword "call" will be recognized as a

keyword linked to the "Calls" list; keyword "Jim" will be recognized as

a keyword linked to the contact person "Jim Salter"; "tomorrow" will

be recognized as meaning 2/8/97 (or whatever the current date is plus

one day); and "patent' will be recognized as a keyword linked to the

"Patents" Project, The remaining links will be determined by the user

interface 200, in which the new keynote was created.

Once the new keynote is filed by user Dennis, the following

significant data will be recorded in the object database 850 by the

present invention:

٠ An envelope (Type=0) will be added as a container for the keynote

being sent to a delegate person. The Envelope includes such data as a

subject for the note, when the note was used, or when it is received in

a standard email client· Assume that this Envelope was assigned a

database key of 212 by the object database 850.

52

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

٠ A List Item (Туре=1) will be added for the note and would read

"Brian, please call Jim tomorrow re patent status". Assume that this

List Item was assigned a key of 213 by the object database 850.

٠ Several link table entries would be created for the new keynote in

this example. The sample link table resulting from this sample input

keynote is shown in Figure 18. These entries in the links table (and

one or two less significant additional entries) as shown are sufficient

to describe the note that was entered as an example.

It will be apparent to those of ordinary skill in the art that the

object database 850 implementation of the present invention as

described herein is of broader applicability than strictly for use with

the natural language parser 300 as described herein. In an alternative

embodiment, the input text data may be provided as a structured

record or buffer from which the object database 850 extracts the

information necessary to create the link table shown by example in

Figure 18.

Collaboration Between Two Or More Users Of The Present System

The present system allows a user to manage his or her own

actions/projects and time more effectively. In many cases

actions/projects have to be handled by more than one person. The

collaboration cycle described below allows interaction between users to

further completion of actions/projects and to allow information to be

efficiently exchanged between users of the present system.

Figure 1, described above, illustrates a typical data processing

system upon which one embodiment of the present invention is

implemented· It is understood that the present invention utilizes at
53

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

least one instance of the system, for the originator of the action

request. In one embodiment, the communication device 125,

described above, allows the users to collaborate as will be described

below. Alternatively, the computer systems of users may be directly

coupled. Alternatively, multiple users may be using the same

computer system.

In addition to parsing input text, the parser 300, described above,

further utilizes the keywords to "classity1 the text entered. In one

embodiment, the message types are shared and personal. Shared

messages include: FYI and action requests■ Personal messages include

personal action and personal memo. Of course, other message types

may be utilized.

An action request is input text which is sent out to at least one

other person, and requires a response. It generally asks another user

to do something. In one embodiment, the keyword "please" may

initiate an action request. As discussed above, other keywords may be

added to the list, at the user's discretion. For example, a user may add

the keywords "I need you to", "pis", or similar words to indicate that

the text entered is an action request· Thus, the sentence "Joe, I need

you to call Bill about the Project X deadline" is classified as an action

request' targeted at Joe. The contact is Bill，and the project is Project X.

There is no date, since the requester did not include a date. Such

analysis may be done using the parsing methods described above.

However, the present system is not limited to the parsing method

described above. Other methods of identifying the target, contact,

project and date may be utilized.

An FYIz or "for your information," is input text that is sent out

54

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

to at least one other person, and requires no response· It is used to

inform others about facts. For example, and FYI might be used to

inform others that a new manager has been brought in. Keywords for

an FYI type may be "FYI", "For your information", "Please note", and

any other keywords which the user included in the keyword list.

Generally, the targets of the FYI are deduced from the proximity to the

keyword. For example, an FYI which read "John, FYI, Tom is in

charge of Project X now." would send a copy of this FYI to John.

A personal action/memo is text that is not sent to anyone■ The

absence of the other keywords would indicate that an entry is classified

as a personal action/memo. For example, the input text "Call Jim

about Project X" is a personal action· It is filed in the user's own

system, as described above, but is not forwarded to anyone else.

Framework For Collaboration

The present system may be implemented on a number of

different frameworks. Figure 19 is a diagram of a client-server system.

The client server system consists of a server 1910, and a plurality of

clients 1920 connected to the server 1910. The server 1910 stores the

information regarding the action requests sent between users and the

database(s) to support the interaction. This assumes, and necessitates,

the existence of a server in a client-server system· In addition to being

expensive and complex, this limits collaboration to members of the

limited group sharing access to the server 2010. In other words, it is

limited to a closed loop of clients Cl . ٠ ٠ Cn 2020 who have access to

the server 1910. This means that the collaboration system can not be

used for interacting with individuals outside of the client-server

55

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

framework.

Figure 20 is a diagram of a peer-topeer distributed system. A

number of peers Pl ... Pn 2030 are interconnected. The peer-to-peer

system allows any two peers to communicate over the system, even if

not directly 】inked. This distributed system model parallels the

Internet. Thus, any two individuals can communicate using the peer-

to-peer distributed system, as long as both individuals have access to

an e-mail address. In one embodiment, the peer-to-peer distributed

system can be expanded to include such mechanisms as voice mail,

personal digital assistants, and any other mechanisms capable of

receiving and/or sending messages.

The distributed peer-to-peer system enables communication

with users who do not utilize the present system· Thus, the present

system allows seamless integration of all action requests, and to-do-

lists, regardless of whether the recipient is a subscriber to the present

system or not. In one embodiment, the peer-to-peer distributed

system model is used for the present invention.

Keeping Track of Action Requests

Utilizing a distributed system necessitates an alternative means

of keeping track of action requests. Because there is no server which

tracks each action request, a method of identifying each action request

and its associated objects, such as project' sender, etc·, is needed. This

method enables the system to match replies to the proper action

request.

In one embodiment, a foreign key table is utilized to keep track

of action requests. To clarify, the example described above with respect

56

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

to Figures 15-18, is continued. The action request in question was:

Deegate: Brian

From: Dennis

FYI: Tom

Sub؛:. Action Request: Please Brian, call Jim . . .

Enel.: Project Information, Contact Information

Text: Please Brian, call Jim re: patent project.

The format of the action request does not reflect the actual

format of the action request displayed on the present system. The

appearance of such an action request is described below■ This action

request was entered by Dennis, and sent to Brian. In addition, an FYI

copy of the action request was sent to Tom. This is to alert Tom to the

action request. When the action request is generated, an envelope is

generated, to contain the action request. The envelope includes a

subject, and links to the list item, as well as the e-mail addresses of

recipients. Below, only the actions occurring in Brian's system are

described· However, similar activity occurs in Tom's system.

When Brian receives the action request, several Link table

entries are created for the new action request. These Link table entries

parallel the entries in Dennis' table, described above. Since the local

key numbers are unique to the database of the individual, these key

numbers may be different. In addition, Brian's system generates a

number of entries into a Foreign Key table. The Foreign Key table is

utilized in mapping a collaborative action request in one database, part

of the sender's system, to the same action request in another database,

part of the recipient s system. This link is represented by associating

57

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

the Envelopes containing the corresponding List Items.

Creator Local

Database

Local Key Foreign

Database

Foreign Key

SMTP Brian's

Database ID

Brians Rece

envelope key

Dennis

Database

ID

Dennis' Sent

envelope key

(212)

SMTP Brian's

Database ID

Brian's key for

note creator

(Dennis)

Dennis·

Database

ID

"me" key for

Dennis

SMTP Brian's

Database ID

Brian's key for

creator’s e-mail

address (Dennis)

Database

ID

"my e-mail" key

for Dennis

SMTP Brian's

Database ID

"me" key for

Brian

Dennis'

Database

ID

Dennis' key for

delegate (Brian)

SMTP Brian's

Database ID

"my e-mail” key

for Brian

Dennis'

Database

ID

Dennis' key for

delegate's

e-mail address

(Brian)

58

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

SMTP Brian's

Database ID

Brian's key for

linked person

(Jim)

Dennis'

Database

ID

Dennis' key for

linked person

(Jim)

SMTP Brian's

Database ID

Brian's key for

FYI recipient's e-

mail address

(Tom)

Dennis’

Database

ID

Dennis' key for

FYI recipient's e-

mail address

(Tom)

SMTP Brian's

Database ID

Brian's key for

linked project

(Patents)

Dennis'

Database

ID

Dennis' key for

linked project

(Patents)

SMTP Brian's

Database ID

Brian's key for

sender

Dennis■

Database

ID

Dennis' key for

sender

SMTP Brian's

Database ID

Brian's key for

sender e-mail

Dennis'

Database

ID

Dennis· key for

sender e-mail

Table 1

The creator column is the creator of the entries in the Foreign

Key table· The creator column displays the device which received the

action request. In this example, it was the simple mail transfer

protocol (SMTP) plug-in which received the action request from

Dennis·

The Local Database column contains a unique identifier

59

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

identifying the delegate's (Brian's) database. The Foreign Database

column contains a unique identifier identifying the requester's

(Dennis') database. In one embodiment, the identifier is a Globally

Unique Identifier (GUID), which is a 128-bit value based on the

Ethernet address of the machine on which the GUID is generated, as

well as the time at which the GUID was created. Alternatively, other

unique identifiers may be utilized.

The Local Key and Foreign Key are the key numbers from the

Database tables of the individuals. The example keys described above

with respect to Figure X are included in the Foreign Key table, i.e·

Dennis' database entries. For example, the local key for note creator

(Dennis) is the key number associated with Dennis in Brian's database.

The "me" key is a special purpose value utilized because the user's

database may or may not contain information identifying the user

himself or herself, and it is unreliable to match user names via text

comparison. This method allows for a match to be indicated. The

"my e-mail" key is a similar key for the e-mail address of the database

owner. Additionally, a parallel table is generated in Dennis' system

when Dennis receives a reply from Brian, ◦f course, in Dennis'

system, Dennis' database ID is the Local Database, while Brian's is the

Foreign Database.

Foreign Key entries are also created on both sides (requester and

delegate) for the Person and Project linked to the action request, as

well as the Creator (another Person) of the action request, the Sender

(another Person) of the action request, the Delegate, and any Email

Address associated with the action request. The Person, Project, etc.

entries are created to ensure that the correct links are

60

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

created/maintained on reply and that duplicate entries are not created

in any user's database.

In an alternative embodiment, the e-mail addresses of the

sender and the recipient, coupled with a unique identification

attached to the action request itself identifies the action request. In

another alternative embodiment, a unique local identification

coupled with a public key/private key identification of the

sender/recipient is utilized to identify each action request.

Collaboration Cycle

Figure 21 is a flowchart illustrating an overview of the present

invention. At block 210◦, the present collaboration cycle starts. It is

initiated by a requester sending a message to a delegate or delegates.

At block 2110, there is collaboration between the systems of the

requester and delegate or delegates. This collaboration involves a

complex series of negotiation steps that are designed to arrive at a final

answer. This is described in more detail below.

At block 2120, the process queries whether the final answer is

affirmative or negative, or done. An affirmative answer occurs when

the parties agree to perform the task. A negative answer occurs when

the parties decide to not perform the task.

If the final answer is affirmative, the process continues to block

2130. At block 2130, the final answer is filed in the appropriate

calendars and lists, including lists associated with contact, project, if

appropriate■ These lists will be referred to hereinafter as

project/contact list. Where it is filed depends on the interpretation of

the original action request, and the collaboration process, as described

below.

61

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT^US98/02921

If the final answer is negative, the process continues to block

2140. At block 2140, the action request, and collaborative updates of

the original action request are deleted from the calendar and lists.

This process is further described below.

At one point, unless a negative reply was received, the delegate

sends a Done reply to the requester. A Done reply may be sent by the

delegate using the process described below. Alternatively, when the

delegate checks the action/project off his or her calendar and/or

project/contact lists, an automatic Done reply may be generated and

sent to the requester.

When the requester receives the Done reply, the original action

request is marked done in the requester's system. Additionally, in one

embodiment, an automatic acknowledgment form is generated. In

one embodiment, an acknowledgment form consists of a generic text,

such as "Thank you for completing my action request regarding the

'Project name' project In one embodiment, different types of

acknowledgments may be associated with different delegates. For

example, the requester may identify certain delegates that should

receive a thank you voice mail, or document. In those instances' such

an acknowledgment may be automatically generated by the system. In

one embodiment, the user may select the type of acknowledgment■ In

one embodiment, the requester only receives a notification that an

acknowledgment should be sent.

Figure 22Α is a flowchart illustrating the collaboration cycle as

viewed by the originator, or requester. The process starts at block 2200,

when an input text has been parsed, and classified as an action request.

In one embodiment, this occurs when the parser detects the keyword

62

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/ÜS98/O2921

such as "please".

At block 2205, the process identifies the delegate. An action

request can be addressed to one or more parties. These parties are the

delegate. As described above, in one embodiment, the names prior to,

or following, the keyword "please" are generally considered the

delegate. As described above, the user may have adaed additional

keywords which indicate that the present entry is an action request■

The delegate may be an individual or a group. For example, an

action request could be addressed to "managers". In that instance, the

keyword "manager" could include a plurality of managers. In one

embodiment, for multiple delegates, separate action requests are

spawned for each delegate, and each delegate is dealt with

individually. For simplicity's sake, the remainder of this flowchart

will assume that there is only a single delegate.

In one embodiment, a header is generated when the delegate is

identified. In one embodiment, the header includes a number of

fields. In one embodiment, these fields include: Delegate, FYI, and

Enclosures. The Delegate field includes the delegates, which are

determined as described above. The FYI field is determined in a

similar way■ In one embodiment, the Delegate field maps to the To

field, the FYI maps to the cc field in other messaging applications.

The Enclosures field enables the requester to attach a variety of

items to the action request. In. one embodiment, the enclosures may

include arbitrary files or information about the projects and the

contacts related to the action request. This is especially useful when

an action request is sent to a delegate who is not using the present

system. In that instance, the message received by the delegate may not

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

be linked to database(s) with information about contacts or projects·

Thus, by attaching those items, the requester can simplify the

recipients' work.

The requester's name is placed in the From: field. The header

may also include a subject. The subject may be the first few words of

the action request, the project セ〇 which the entry was parsed, or may be

entered by the author of the action request. In one embodiment, the

subject appears as "Action Request:〈first few words of request〉,'' or

"FYI:〈first few words Oi FYI〉·'' This makes apparent to the recipient

the type of message received, in addition to giving some information

about the subject matter of the message.

At block 2210, the action request is sent to the delegate. The action

request may be sent via electronic mail or any other means. In one

embodiment, the action request is sent directly to the delegate's in-box

in the system of the present invention. In one embodiment, if the

delegate is not utilizing the present system, the action request is sent

to the delegate's address. In one embodiment, this may include the

delegate's e-mail address, fax number, voice email number, or pager.

Much of the filing and similar actions described in the present

application require the use of the system of the present invention.

However, action requests may be sent to any individual who has a

receiver object/ which can receive text or voice in some format. In one

embodiment, if the delegate does not have an e-mail connection, the

action request can be faxed to the delegate. In one embodiment, the

present system may format the action request in a rich text format

(RTF) and fax it to the delegate. In one embodiment, the action

request may be turned into a voice mail message and sent by the

64

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCTZUS98/02921

present system. In another embodiment, the action request may be

sent as a pager message to a pager.

In one embodiment, the action request is formatted into an

ASCII format, which is readable by a user. In one embodiment, the

action request is reformatted to read as follows:

"Text of the original action request."

This is an Action Request for "Delegate" from

"Requester".

It relates to:

Project: "Project"

Contact: "Contact"

Due Date: "Due Date"

Attachments: "Enclosures"

The text in quotation marks is inserted based on the

information from the action request. This text format is sent, and is

readable by delegates who are not subscribers to the present system.

At block 2215, the action request is filed, and penciled into the

appropriate calendars and/or project/contact lists. In one

embodiment, the action request is filed in the "Waiting For" list. This

is a list which contains action requests which have not been resolved.

In one embodiment, a copy of the action request is also filed in the

project/contact list to which it was parsed. Additionally, if

appropriate, the action request is penciled into any lists, projects,
65

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

contacts, and calendars that it was parsed to. "Penciling" indicates

entry into a calendar OT project/contact list in a different color. This

allows the user to easily identify items which are not yet agreed upon.

In one embodiment, penciled items appear in gray, compared to

normal entries in black or blue.

At block 2220, the process waits for a reply from the delegate.

The process does not remain in a wait state, but rather continues to

execute other processes. However, this action request cycle waits for

completion. When the reply from the delegate is received, the process

continues to block 2225. The reply from the delegate appears in the in-

box of the requester· In one embodiment, if there is no reply a

reminder is sent before the due date.

At block 2225/ the process queries whether the reply is

affirmative, negative, or an other category. These categorizations are

described below with respect to Figure 22Β. In one embodiment, the

reply list is selected by the delegate by selecting from a preset selection

or replies. In an alternate embodiment, the reply is reparsed to

determine the appropriate reply list■ In one embodiment, the date is

reparsed. In an alternate embodiment, all of the reply is reparsed and

reclassified.

If the reply is affirmative, the process continues to block 2230.

At block 2230, the original action request is updated and refiled. As

described above, the action request is originally in the Waiting For list.

Now, the action request is recategorized to the appropriate list, as

determined from the parsing. The action request is also placed into

the calendars and project/contact lists in ink. In one embodiment,

writing in ink comprises entering the request in a different color from

66

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

penciling. In one embodiment, ink is a black or blue color.

If the reply is negative, the process continues to block 2235. At

block 2235, the action request is deleted from the calendar and from

the Waiting For category. At this point, the process is dosed, since the

delegate has refused to complete the request. However, the negative

reply remains in the in-box of the delegate. Thus, if the requester

wishes to reassign the project, he or she can do so using the copy in

the in-box.

If the reply is other, the process continues to block 2240. At

block 2240, the requester and delegate negotiate. The negotiation

process is described in more detail with respect to Figure 23. When

the negotiation is completed, the process continues to block 2245. At

block 2245, the process once again queries whether the final answer is

an affirmative or negative. If the final answer is affirmative, the

process returns to block 223◦. If the final answer is negative, the

process returns to block 2235.

Figure 22Β is a flowchart illustrating the collaboration cycle as

viewed by the recipient, or delegate. At block 2250, a copy of the

received action request is placed in the delegate's in-box. In one

embodiment, the in-box is a part of the present system. In an

alternative embodiment, the in-box may be the e-mail box of the

delegate. In one embodiment, if the delegate is not a user of the

present system, the in-box is the delegate's e-mail address box. In one

embodiment, the in-box is also a list in the present system, into which

received action requests are placed.

At block 2250, the opened action request is displayed to the

delegate. In one embodiment, if the delegate is using the present

ζ>Ί

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

system, the action request is displayed in the format described above,

with respect to Figure 4. If the delegate is not using the present

system, in one embodiment the delegate can open the action request

as an e-mail message. If the delegate opens the present invention as

an e-mail, it appears as plain or formatted text, which is human

readable. The format of the text is as it appears above. In an

alternative embodiment, if the delegate opens the information in any

format that permits linking, enclosures are linked to the text. In one

embodiment, if the delegate opens the action request in a Web

browser, it appears in hypertext markup language (HTML) format. In

one embodiment, enclosures appear at the bottom of the document.

In one embodiment, in HTML, enclosures may be linked to the

appropriate information in the text. For example, if the requester

enclosed the contact information, the contact name is linked to that

enclosure. Thus, when the delegate selects the contact name, the

enclosed contact information is displayed. Other means of displaying

text are well known in the art·

◦nee the action request has been opened, the delegate may

further delegate the action request. Of course, if the delegate is not

using the present system, he or she can not do this, except through

standard e-mail communication. At this point, in one embodiment,

the user can further delegate the action request by adding a "Please

'new delegate'" to the action request· This, in reparsing, directs the

action request to the new delegate. In an alternative embodiment, the

user can manually select a new delegate in the header, and thereby

forward the action request. The action request is readdressed to the

new delegate, and sent on٠ The original delegate becomes a requester

68

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

at this point. However, the original delegate is still has to respond to

the original requester.

At block 2260, the user is prompted to enter a reply. In one

embodiment, when the user opens the action request in the in-box, it

appears with reply classification choices in a reply box on the displayed

action request. In one embodiment, the reply box is a pull-down

menu. In an alternate embodiment, the reply box includes radio

buttons, or other means of indicating one choice from a number of

listed items.

One of these choices can be selected by the user, as the reply to

the action request. In one embodiment these choices include: Yes, Yes

if. No, Comment, and Done. The Yes reply indicates that the delegate

accepts the delegation, and will perform the action requested. A Yes if

reply indicates that the delegate is willing to perform the action

requested, but is making a counter-suggestion. For example, the

counter suggestion may be to change the meeting date. A No reply

indicates that the delegate is refusing the delegation. The Done reply

indicates that the delegate accepts the delegation, and has completed

the project assigned. And finally, the Comment reply indicates

something outside of these categories· For example, if the delegate

feels that the requester misunderstands the project, this reply may be

utilized. Other reply choices may be incorporated without changing

the fundamental purpose of the present invention. In one

embodiment, these choices appear when the delegate opens the action

request in his or her in-box. In one embodiment the user must select

one of these choices. In an alternative embodiment, no such reply

options appear· In that embodiment, the user replies in a free-form

69

SUBSTITUTE SHEET《RULE 26》

wo 98/37478 PCT/US98/02921

text. In that embodiment, a parser is used to parse the user's reply,

and fit it into one of the above categories.

When the user selects one of these choices, a reply form is

created. If the reply was either a Yes, No, or Done, the reply form is

complete. The user need not enter any further information.

However, the user may enter further information، In one

embodiment, if the reply is Yes, No or Done, a header is automatically

added to the reply, and it is automatically sent. The user is not

prompted for entry.

If, on the other hand, the choice selected is a Yes If or a

Comment, a reply form is automatically generated, with the

appropriate header information. In one embodiment, if the reply was

Yes If, a phrase such as "Yes, I will do it, if11 appears, followed by the

cursor The user can then complete this phrase. In an alternative

embodiment, the user can delete the phrase and enter his or her own

words· In one embodiment, if the Comment button is selected, the

phrase such as 'Ί have a comment," followed by the cursor is

displayed. Again, the user can either finish the phrase, or erase it and

write it differently. In this way, the reply format is automatically filled

in based on the reply choice selected.

At block 2265, the action request and reply are placed on the

appropriate project/contact lists and calendars of the delegate. The

information placed on the lists and calendars is based on the parsed

action request and parsed reply. In one embodiment, only the date

information is reparsed, and all other information remains. When

the delegate opens the action request，preliminary project/contact list，

contact, and other information is indicated in the shadow of the action

フ〇

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

request, in parentheses· However, the delegate can change this

information, either directly in the shadow, or by changing the

information in the reply■
At block 2270, the reply is sent to the requester. In one

embodiment, this occurs when the user presses a button. In one

embodiment, there is a send button.

At block 2275, the process queries whether the just sent reply

was affirmative, a negative, or other. The affirmative reply includes

Yes and Done. The negative reply includes No. The Yes if and

Comment replies are classified as other. Similarly, if different

categories are utilized, any category which refuses the delegation is

negative. Any category which accepts the delegation, without

attempting to change it in any way is affirmative■ Any other

categories are Other.

If the reply is affirmative, the process continues to block 2280.

At block 2280, the original action request is updated and filed. As

described above, the original action request is on the Out-box list of the

delegate. At this point, the action request is refiled based on the

results of the parsing. The action request is also placed into the

appropriate calendars and lists in ink. In one embodiment, placing

the request in the calendar in ink comprises entering the request in a

different color from penciling. In one embodiment, ink is a black or

blue color. In one embodiment, a notification of the reply remains in

the requester's in-box. In another embodiment, the user may select

whether or not to receive notification.

If the reply is a negative, the process continues to block 2285. At

block 2285, the action request is deleted from the calendar and from

71

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

the Waiting For category. At this point, the request is closed, since the

delegate has refused to complete the request· In one embodiment, a

notification of the reply remains in the requester's in-box. In another

embodiment, the user may select whether or not to receive

notification.

If the reply is Other, the process continues to block 2290. At

block 2290, the requester and delegate negotiate. The negotiation

process is described in more detail with respect to Figure 23. When

the negotiation is completed, the process continues to block 2295. At

block 2295, the process once again queries whether the final answer is

affirmative or negative. If the final answer is affirmative, the process

returns to block 2280. If the final answer is negative, the process

returns to block 2285.

Figure 23 is an illustration of the negotiation process. The

negotiation is initiated at block 2240 and 2290, as described above. If

the requester and delegate do not come to an agreement during the

initial exchange of messages, they segue into the negotiation process.

At block 2310, the negotiation process starts. At block 2320, the

recipient of the last message is prompted for a reply. The negotiation

process is entered when the delegate returns a reply which is either a

"Yes, if" or a "Comment," or any other reply which is not affirmative

or negative.

Thus, in the first iteration, at block 2320, the requester is

prompted for a reply, in response to the delegate's initiai reply, rhe

reply form that appears before the requester is very similar to the reply

form for the delegate■

In one embodiment, the categories that may be selected are: OK, ◦K If,

٩٦

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

No, Withdraw/Done, and Comment. These categories parallel the

categories of Yes, Yes If, No, Done and Comment. The category names

may be changed without affecting the present process. The ◦K reply

means that the requester accepts the change or comment proposed by

the delegate. An OK If reply is a counterproposal by the requester. A

No is a rejection of the delegate's proposal· A Withdraw is

notification of the delegate that the original action request is being

canceled, and the delegate no longer has to do anything in connection

with the action request. An OK is classified as affirmative. A No or

Withdraw is classified as a negative. And OK If and Comment are

classified as Other· In an alternative embodiment, the reply form does

not contain any categories. In that embodiment, the user enters a free-

form reply, A parser is used to parse the reply, and determine the

reply choice into which it belongs·

As described above, with respect to blocks 2270 and 2320, based

on the reply choice selected, a preformat ted reply appears, along with

the appropriate header information. This simplifies the negotiation

process.

At block 2330, the reply is sent and a copy of the reply is placed in the

appropriate calendars and project/contact lists. The message is also

appropriately updated in light of the reply just sent.

At block 2340, the process tests whether the reply just sent was

an affirmative, negative or other. As described in the above

classification, a delegate's Yes, Done, and a requester's ◦K are classified

as an affirmative· The delegate's No, and the requester's No or

Withdraw is classified as a negative. All other answers, i.e٠ Yes If, OK

If, and Comment, are classified as other Either an affirmative or a

Ί٦

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

negative answer is a final answer. That is, it is a conclusion to the

negotiation. If the answer was either affirmative or negative, the

process continues to block 2350. At block 2350, the negotiation process

terminates.

If, at block 2340, the answer was found to be Other, the process

continues to block 2360 At block 2360, the process tests whether there

is an auto-terminate that is activated. In one embodiment, the auto-

terminate is an option which a requester can select· The auto-

terminate automatically ends the negotiation process after a preset

number of exchanges· In one embodiment, the user enters the

number of exchanges after which the negotiation ends. For example,

if the parties can not agree after five e-mail exchanges, the process

automatically terminates. This is a method to avoid endless cycles of

negotiation when it is apparent that the parties can not agree.

If the auto-termination process is not activated, the process

returns to block 2320, and prompts the recipient of the last message for

a reply. For example, if the last message was written by the requester

to the delegate, the process prompts the delegate to respond to the

message.

If, on the other hand, the auto-termination process is activated,

at block 2360, the process continues to block 2370. At block 2370, the

final answer is set to a No. This indicates that no agreement was

reached between the requester and the delegate. The process then

continues to block 2350, where the negotiation process terminates.

Figure 24 is a flowchart illustrating the distribution of an FYI.

As discussed above, an FYI is sent out by an originator to at least one

recipient. In one embodiment, an action request may be also sent as

74

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

an FYI to Other users. The FYI does not require a reply. In one

embodiment, an FYI recipients may answer.

At block 2410, the process starts. This occurs when a user enters

information started with a keyword which indicates that the data

entered is an FYI. The FYI is parsed, as described above. At block 242◦,

the FYI is filed in the system of the originator.

At block 2430, the recipient or recipients are identified. In one

embodiment, the name, names, or group names wmch appear next to

the keyword indicating that this is an FYI are identified as the

recipient(s)· At block 2440, headers are added to the FYI· The header

contains the To: field. From: field, cc: field, enclosures: field, and a

subject field. These header entries are as described above with respect

to the action request.

At block 2450, the FYI is sent to the recipients. When the

recipients receive the FYI, they can open it and file it· In one

embodiment, no option to distributed reply is provided. In this way,

no extraneous communication about information is encouraged.

Figures 25Α and 25Β are a flowchart illustrating an example of

the collaborative process. In this example, two people, Tom and

Dennis are trying to set up a meeting about a certain project, Dennis is

the requester, or originator

At graphic 2500, Dennis is entering text. As described above, the

text is being concurrently parsed. Thus, the project, contact, date and

appropriate project/contact list come up in the shadow 2515, as Dennis

types in the action request 2512. As discussed above, the parsing

algorithm may be the algorithm described above, or any other

algorithm. In one embodiment, as Dennis is entering the action

٩5

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

request 2512, the parser is parsing the text■ When the keyword

indicating that this is an action request is found, a header is placed on

the action request. The spaces in the header, such as delegate, FYI,

enclosures etc. are added as they are determined by the parsing

algorithm and Dennis' actions. In an alternative embodiment, the

action request 2512 is parsed only when Dennis indicates that he has

finished entering text. When Dennis finishes entering the action

request, he sends it.

At graphic 2502, Tom has received the action request, and

opened it· The header 2425 that was automatically generated is

displayed. Underneath, the original action request 2530 is displayed·

Above the header, a reply block 2520 is displayed. The reply block 2520

displays the possible reply options. In one embodiment, the reply

block 2520 is a drop-down list from which one reply may be selected.

In another embodiment, the reply block 2520 may be in any other

format which allows the user to select a reply· In this instance, the Yes

If reply has been highlighted. For contact and project information,

suggestions derived from the sender are provided to the recipient

initially. In one embodiment, the project name and contact name are

in parentheses. This is to indicate that the project and contact names

may not be the same for Tom as they were for Dennis. As described

above, the keywords vary, because each user can enter his or her own

keywords·

At graphic 2504, Tom has selected the Yes If reply button from

the reply block 2520, and the reply 2545 is displayed. In one

embodiment, reply automatically starts with a "Yes, I'll do it, if . .

The cursor is placed behind that phrase, enabling Tom to complete the

٦쯧

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

phrase. In this instance, Tom has completed the phrase by typing "we

can reschedule for Tuesday·" The text entered by Tom is differentiated

by being placed in italics in this instance. It is understood that in the

actual application, the text need not be differentiated in this way. In

the shadow 2540, the project name has been altered. This may be done

manually by the user. Alternatively, the process may parse the

original note, using Tom's databases and keyword lists. In this

instance, the contact name remained the same· However, the project

name was changed. Each user is responsible for naming his or her

own projects, since two users may refer to the same project by different

names. At this point, Tom may send the reply. At that point, a

header is placed on the reply, and it is sent back to the requester, i.e.,

Dennis.

At graphic 2506, Dennis has received Tom's reply and opened it■

In the shadow 2560, the new date appears. Tom suggested a new date

for the meeting· Because the reply was reparsed for this factor, the

new date/time appears in the shadow 2560. Once again, a reply box

2550 appears. Because Dennis is the requester, a slightly different reply

box 2550 appears. The entries are explained above, with respect to

Figure 22Β. In this instance, Dennis selected the Yes button, agreeing

to Tom's suggested date change. In one embodiment, after Dennis

selects the Yes button, the reply is automatically sent by the system,

and the user's involvement ends. A final answer has been reached.

Thus, the negotiation terminates.

At graphic 2508, Dennis' system files the finalized information.

In one embodiment, the finalized information is displayed in a box

showing the history of the communications between the parties· The

ΊΊ

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

original shadow 2515 is updated to an updated shadow 2570. The

original penciled entries in Dennis' calendars and lists are also

updated to be in ink. This indicates that an agreement was reached.

At graphic 2510, Tom's system files the finalized information.

Additionally, the original shadow 2535 is updated to a new shadow

2585, containing the finally agreed upon information. The original

penciled entries in Brian's calendars and lists are also updated to be in

ink. This indicates that an agreement was reached.

Thus, through this process, one instance of the present

invention has been illustrated in a graphical form. It is understood

that the actual screen displays may not be identical to the displays

illustrated in this Figure. In this way, the interaction between a

requester and a delegate is simplified. This allows a delegate and a

requester to arrive at a mutually satisfactory way to complete

actions/projects. It provides sufficient flexibility for both parties, and

works as an automated conversation type of automated negotiation.

Parser DLL Application Programmer's Interface (API)

The following section describes in detail the parser 300 DLL

application programmer's interface (API) in the preferred

embodiment of the present invention.
/***Η·*****؛·(؛**·(؛******■(؛**·(؛*****·()*******·()***************■(؛******·(»**·(؛(·

FILE: parseapi.h

PURPOSE: Defines the parse 300 DLL API

NOTES: All functions in this API are prefixed with "Prs_”(short

78

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

for Parse) as a form of namespace protection·

The functions that involve string manipulation are fairly

intelligent in terms of filtering the strings. As an example,

Prs_AddContact(٠٠Danny Rabbani") is equivalent to

Prs_AddContact(" Danny Rabbani ") - capitalization is

important here. Prs_DeleteContact("Danny Rabbani") is

equivalent to Prs__DeleteContact(٠, danny raBBanl ").

Prs_AddContact(i٠Danny Rabbani") is not equivalent to

Prs_AddContact(" danny rabbani"), because the parser 300

will internally represent the contacts as "Danny Rabbani" and

"danny rabbani11 respectively. However, the second call will

fail because the parser 300 will not allow two contacts (or

lists, projects, or keywords) that differ only by capitalization to

exist simultaneously. This sort of smart filtering (removing

leading and trailing spaces, and ignoring case where applicable),

and other forms of error and sanity checking are applied

appropriately to most of the functions in this DLL (the autofill

functions will only tolerate case differences " white space makes

a difference!). However, it is recomended that the client does

not rely heavily on such functionalities without at least testing

some of them a priori.
Η■ *؛(-*Η-Η-Η·* هل بل بل ؛· (·**Η-χ-χ■ ؛* بد بل)■***بل ب X■* *·(؛ بل ه بل *■(؛·هذجل **·(؛*****·،؛* *٥٠ ·* и·* جل* *********я■/

#ifndef PARSEAPLH

*define PARSEAPI-H

extern "c" {

79

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

广

Note that a buffer size of 128 allows strings of up to 63 characters in

length when communicating with Visual Basic (VB). This is because

VB always uses Unicode characters which effectively doubles the

amount of bytes needed to store an ascii character. The conversion to

Unicode is handled automatically by VB.

叫

#define PRS BUFFER_SIZE 128

//Units

#define PRS_DAYS 1

ttdefine PRS-WEEKS 2

*define PRS_MONTHS 3

#define PRS-YEARS 4

/ / Weekdays

#define PRS_SUN 1

*define PRS—MON 2

*define PRS-TUE 4

#define PRS-WED 8

*define PRS-THU 16

#define PRS_FRI 32

*define PRS_SAT 64

#define PRS—WEEKDAYS (PRS_MON + PRSJUE + PRS_WED +

PRS-THU + PRS_FRI)

80

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

■fine PRSJEEKENDS (PRS„SAT + PRS_SUN)

STRUCT: ParseOutput

PURPOSE: The ParseOutput struct is designed to be created and

used by a client of the parser 300 DLL. The ParseOutput struct

is passed as a second parameter to the Prs_Parse() function

along with an input expression (the first parameter)■ When the

client calls Prs_Parse(), the parser 300 analyzes the input

expression and packages the results of the parsing into the

ParseOutput struct. There is no need to initialize any of the

ParseOutput fields prior to calling Prs_Parse()٠ The Prs_Parse()

function will fill out only those fields which were successfully

parsed out of the expression, and will initialize all other fields

to null-terminated strings of zero length, or to appropriate null

values otherwise. If only date parsing is desired, the client

should call Prs_DateParse() instead of Prs_Parse()٠

Prs_DateParse() works like Prs_Parse() but only the date and

time related fields of the ParseOutput struct are filled in

(keyword parsing and delegate parsing are bypassed).

Both function calls are extremely efficient. Even long and

complex input expressions (within reason) are parsed in a small

fraction of a second.

FIELDS: sList: The name of the list as a null-terminated string.

81

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

sProject: The project name as a null-terminated string

sContact; The name of the contact as a null-terminated

string.

An example is a First name followed by a single

space followed by a last name.

sDelegate: The name of the contact to delegate to.

sDate: The date as a null٠terminated string.

month/day/year format. Example: "12/28/1969"

This field also serves as the starting date for

a recurring event.

sTimeBegin: The start time as a null-terminated string.

[H]H:M[M] 24-hour format. That is, the number of

hours (0 - 23), followed by a colon, followed by

the number of minutes (0 - 59)■

Examples: "3:0" = 3:00am, _'23:45” = ll:45pm.

sTimeEnd: The end time as a null-terminated string.

Format same as sTimeBegin.

sDateEnd: The ending date of a recurring event.

bRecurring: BYTE size value that serves as a boolean flag to

82

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

indicate that the parser 30◦ found a recurring

event (rather than a simple date)· A value of 0

(FALSE) indicates that a recurring date is not

present. All other values represent TRUE (i.e·,

a recurring date was parsed)

nFrequency: Long integer (32 bits) that represents the

frequency of the recurring date. For example,

"every 5 years" has a frequency of 5. Null value

for this field is 0.

nUnits: BYTE size value indicating the units (days, weeks,

months, and years). Defined, respectively, by the

constants: PRS،DAYS/ PRS_WEEKS, PRS—MONTHS,

and PRS~YEARS. Null value for this field is 0.

nWeekdays: BYTE size value indicating the day(s) of the

week (i.e·, Tuesday, Monday and Friday, etc...)·

The weekday constants (PRS-SUN - PRS-SAT) are

defined in such a way as to allow this BYTE field

to encode any combination of up to 7 weekdays.

To find out if a particular weekday is included

in an nWeekdays value, simply "and" (bitwise and

operation) the value of the weekday with the

nWeekdays value (e.g., PRS—MON & nWeekdays). Null

value for this field is 0.

83

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

nWeekdayPos:BYTE size value indicating the ordinal (1st,

2nd, 3rd, 4th, 5th) position of the weekday within a

month. For example, "The third Tuesday of every

month" would have an nWeekdayPos value of 3. Null

value for this field is 0.

bFYI: Indicates that the sDelegate field represents an

FYI keynote, rather than a delegate or action request keynote.

bNote: Indicates that this is a note type of keynote.

typedef struct -ParseOutput {

char sList[PRS٠BUFFER_SIZE];

char sProject[PRS_BUFFER_SIZE];

char sContact[PRS_BUFFER_SIZE];

char sDelegate[PRS_BUFFER_SIZE];

char sDate[PRS-BUFFER_SIZE】；

char sTimeBegin[PRS_BUFFER_SIZE];

char sTimeEnd[PRS٠BUFFER_SIZE];

char sDateEnd[PRS|FFER_SIZE];

BYTE bRecurring;

BYTE nUnits;

BYTE nWeekdays;

BYTE nWeekdayPos;

long nFrequency;

BYTE bFYI;

84

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCTZÜS98/02921

BYTE bNote;

! ParseOutputz *ParseOutputPtr;

STRUCT: KeywordSuggestion

PURPOSE: The KeywordSuggestion struct is designed to be created

and used by a dient of the parse DLL The KeywordSuggestion

data structure is passed as a second parameter to the

Prs_SuggestKeywords() family of functions, along with an

input expression (first parameter). When the client calls

Prs_SuggestListKeywords() for example, the parser 300

analyzes the input expression (the name of the list in this

case), and packages up to three keyword suggestions into the

KeywordSuggestion data structure. There is no need to

initialize any of the KeywordSuggestion fields prior to calling

the keyword suggestion functions. The functions will fill out

as many fields as possible (in consecutive order, starting from

sKeywordl), with all other fields initialized to null-

terminated strings of length zero.

FIELDS: sKeywordl: The first keyword suggestion as a null-

terminated string.

sKeyword2: The second keyword suggestion.

85

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

sKeyword3: The third keyword suggestion.

typedef struct „KeywordSuggestion {

char sKeywordl[PRS_BUFFER_SIZE];

char sKeyword2[PRS_BUFFER„SIZE];

char sKeyword3[PRSjUFFER_SIZE];

} KeywordSuggestion, *KeywordSuggestionPtr;

FUNCTION: Prs_ResetParseDll

PURPOSE: The PrsjesetParseDll() function resets the parsedll.

All of the information which was presented to the DLL via the

Add / Delete functions will be lost. Date parsing will remain

fully functional.
?/٠٠٠٠.٠٠،__ ________„٠___٠__٠._.„_٠__،٠٠___٠٠٠٠_٠__.„______٠٠_٠__٠،_٠__

void WINAPI EXPORT PrS-ResetParseDll(void);

FUNCTION: Prs_Parse

PURPOSE: The Prs_Parse() function parses an input expression for

a list, project, contact, delegate, and a date/time combination.

86

SUBSTITUTE SHEET (RU E 26)

wo 98/37478 PCT/US98/02921

The Ist parameter is a pointer to a null-terminated string that

holds the input expression to be parsed. The second

parameter is a pointer to a client-allocated ParseOutput data

structure that gets filled out with the results of the parsing.

There is no need for any special initialization of the

ParseOutput data structure other than allocation of memory.

The fields of the ParseOutput data structure that cannot be

successfully derived from the input expression will be set to

appropriate null values.

EXAMPLE: ParseOutput parseResults;

Prs_Parse(٠lCall Brian tomorrow at 6pm", &parseResults);

void WINAPI EXPORT Prs_Parse(const char FAR* slnputExpr,

ParseOutput FAR* pParseOutput);

م--------------------------------

FUNCTION: Prs_DateParse

PURPOSE: The Prs_DateParse() functiòn parses an input

expression for a date and a time (or time span) only. The first

parameter is a pointer to a null-terminated string that holds

the input expression to be parsed. The second parameter is a

pointer to a client-allocated ParseOutput struct that is filled in

with the results of the parsing. There is no need for any

special initialization of the ParseOutput data structure other

87

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

than allocation of memory. The fields of the ParseOutput data

structure that cannot be successfully derived from the input

expression will be set to appropriate null values.

EXAMPLE: ParseOutput parseResults;

Prs_DateParse(٠٠Call Tony next Friday", &parseResults);
--

void WINAPI EXPORT Prs„DateParse(const char FAR* slnputExpr/

ParseOutput FAR* pParseOutput);

FUNCTIONS: Prs_SuggestListKeywords,

Prs_SuggestProjectKeywords

Prs٠SuggestContactKeywords

PURPOSE: Suggest up to 3 keywords for the given list, project, or

contact The parser will not suggest keywords that are already in use.

EXAMPLE: KeywordSuggestion suggestion;

Prs_SuggestContactKeywords("D٠anny Rabbani",

&suggestion);
---"

void WINAPI EXPORT Prs_SuggestListKeywords(const char FAR*

sList, KeywordSuggestion FAR* ؟Suggestion);

void WINAPI EXPORT Prs_SuggestProjectKeywords(const char FAR*

88

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

sProject, KeywordSuggestion FAR* pSuggestion);

void WIN API EXPORT Prs_SuggestContactKeywords(const char

FAR* sContact/ KeywordSuggestion FAR* pSuggestion);

FUNCTIONS: Prs_AddKeyword / Prs_DeleteKeyword /

Prs_RenameKeyword

PURPOSE: Add / Delete / Rename an keyword.

These functions should be called during initialization or

whenever the database is updated.

EXAMPLE: Prs_AddKeyword(Hna"z "Next Actions", ٠"٠);

Prs_DeleteKeyword(l٠na٠,);

Prs_RenameKeyword(HnaH/ ''actions■');

NOTE: Prs_AddKeyword will return FALSE if he keyword

already exists, if any of the non-empty links do not exist, or if all

of the links are empty. The client must make sure to call this

function only AFTER the corresponding lists, projects, or

contacts have already been added to the parser 30◦. To rename

an keyword, the client can simply call Prs_RenameKeyword().

Capitalization of any kind is ignored.

BOOL WINAPI EXPORT Prs_AddKeyword(const char FAR*

sKeyword,

89

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

const char FAR* sList,

const char FAR* sProject,

const char FAR* sContact);

BOOL WINAPI EXPORT Prs_DeleteKeyword(const char FAR*

sKeyword);

BOOL WINAPI EXPORT Prs_RenameKeyword(const char FAR*

sOldKeyword, const char FAR* sNewKeyword);

م---
FUNCTIONS: Prs_AddList / Prs_DeleteList / PrsjenameList

PURPOSE: Add / Delete / Rename a list.

These functions should be called whenever the object

database 850 is updated.

EXAMPLE: Prs_AddList(,٠Next Calls٠١);
Prs_DeleteList(١lNext Calls”)؛

Prs_RenameList(lfNext Calls", "My Next Calls"》

NOTE: Prs_AddList will return FALSE if the list already exists

(even if capitalized differently). Prs_DeleteList will return

FALSE if the list doesn’t exist· If Prs_DeleteList or

Prs_RenameList are successful, all of the keywords that are

linked to the list will be automatically removed or updated as

necessary.

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

BOOL WINAPI EXPORT Prs_AddList(const char FAR* sList);

BOOL WINAPI EXPORT Prs„DeleteList(const char FAR* sList);

BOOL WINAPI EXPORT Prs،RenameList(const char FAR* sOldList,

const char FAR* sNewList);

FUNCTIONS: Prs_AddProject / Prs_DeleteProject /

Prs_RenameProject

PURPOSE: Add / Delete / Rename a project.

These functions should be called whenever the object

database 850 is updated.

EXAMPLE: Prs_AddProject("Learn Spanish1');

Prs_DeleteProject(٠٠Learn Spanish”)；

Prs_RenamePro]ect("Learn Spanish"，"Learn French");

NOTE: See NOTE for Prs_AddList

BOOL WINAPI EXPORT Prs_AddProject(const char FAR* sProject);

BOOL WINAPI EXPORT Prs__DeleteProject(const char FAR* sProject);

BOOL WINAPI EXPORT Prs_RenameProject(const char FAR*

sOldProject, const char FAR* sNewProject);

91

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

FUNCTIONS: Prs٠AddContact / Prs٠DeleteContact /

Prs_RenameContact

PURPOSE: Add / Delete / Rename a contact

These functions should be called whenever the object

database 850 is updated.

EXAMPLE: Prs_AddContact(uDanny Rabbani");

Prs_DeleteContact(I,Danny Rabbani·■):

Prs_RenameContact(uDanny Rabbani", "Dan Rabbani"》

NOTE: See NOTE for Prs٠AddList

BOOL WINAPI EXPORT Prs_AddContact(const char FAR* sContact);

BOOL WINAPI EXPORT Prs_DeleteContact(const char FAR*

sContact);

BOOL WINAPI EXPORT Prs_RenameContact(const char FAR*

sOldContact, const char FAR* sNewContact);

/* AutoFill Functions */
1、—시

广

FUNCTIONS: Prs_AutoFillList, Prs_AutoFillProject,

Prs_AutoFillContact٠
92

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT^JS98/02921

PURPOSE: Return the completion of the substring. The functions

take a prefix string as a first parameter and fill in the buffer (the

second parameter) with the completion of the prefix and return

TRUE. If the completion does not exist, the functions will

return FALSE (see NOTE below)· The functions are NOT case

sensitive with respect to the prefix string (first parameter).

This has the advantage that a prefix such as "d" will expand

to "Danny Rabbani" as will a "D" prefix.

NOTE: If the completion does not exist, the functions will return

FALSE and the buffer (second parameter) is not modified.

EXAMPLE: Prs_AddPro؛ect("Grasshopper"):

char sPro]ect[PRS_BUFFER_SIZE];

Prs_AutoFillProject(٠lgra,lz sProject);

AfxMessageBox(sProject); / / Outputs "Grasshopper"

--———ال

BOOL WINAPI EXPORT Prs_AutoFillList(const char FAR* sListPrefix,

char FAR* sListBuffer);

BOOL WINAPI EXPORT Prs_AutoFillPro]ect(const char FAR*

sProjectPrefix, char FAR* sProjectBuffer);

BOOL WINAPI EXPORT Prs_AutoFillContact(const char FAR"

sContactPrefix, char FAR* sContactBuffer);

}

93

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

#endif /* PARSEAPU */

Sample Electronic Mail Message

The present invention can be used to receive and parse an

input keynote in the manner described above. In addition, the present

invention supports collaboration with other users, each of whom may

or may not have the functionality of the present invention. Because a

receiver of a keynote may not have the functionality of the present

invention, the present invention automatically formats a

conventional electronic mail message which can be sent to a receiver

or delagate of a keynote. Using the parser 300 as described above, the

present invention takes an input keynote and builds the conventional

electronic mail message from information associated with keywords

matched in the input keynote. In addition, the present invention also

builds a scripted (i٠e., encoded) version of the electronic mail message.

The scripted version of the electronic mail message is formatted in a

structured form to allow a receiver OT delagate of the keynote to

process the message automatically if the receiver or delagate has the

functionality of the present invention. If the receiver or delagate has

the functionality of the present invention, the scripted version of the

keynote can be interpreted and automatically processed as a keynote

on the receiving end. Thus, the present invention, by building an

electronic message with both a conventional text format and a scripted

format combined in the same automatically generated electronic

message, allows keynote collaboration with anyone on the receiving

end of such an electronic mail message.

94

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

The following sample automatically generated keynote

electronic mail message illustrates the dual format electronic message

structure automatically created by the present invention given the

following input keynote:

Jim, please add this sample KeyNote

to the KeyNote/parser patent

tomorrow. Call Tom if you have

questions. Thanks!

A sample electronic mail message produced by the present

invention from the above input keynote follows. The first portion of

the message below represents the conventional electronic mail format

(ASCII) readable by a receiver without the functionality of the present

invention. The second portion of the message starting with the second

occurance of the text string, 11--dreldbssbtdwrvkval11 represents the

scripted version of the message which can be processed by a receiver

with the functionality of the present invention. Thus, this sample

electronic mail message illustrates the dual format electronic mail

message generation capability of the present invention. A further

explanation of the collaboration capability of the present invention is

provided in a later section of this patent application.

--begin sample electronic mail message--

This is a multipart message in MIME format.

--dreldbssbtdwrvkval

<other content transfer encoding type being used,

probably quoted-printable or 7-bit>
95

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/ÜS98/O2921

Jimz please add this sample KeyNote to the

KeyNote/parser patent tomorrow. Call Tom if you have

questions. Thanks!

This is an ActionRequest for Jim Salter from Dennis

Buchheim.

It relates to:

Project: Patents

Contact : Tom Hagan

Lue حاةدآ٦ ٠2لأ/ج/٩

PROJECT INFORMATION

Name: Patents

Due: 2/5/97

Outcome: Successfully defend Actioneer's inventions.

CONTACT INFORMATION

Tom Hagan

Chairman

Actioneer, Inc.

539 Bryant St.

San Francisco, CA 94107

96

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

USA

(415) 555-1212 (Work)

hagan@actioneer.com (Internet)

--dreldbssbtdwrvkval

〈other content transfer encoding type being used,

probably quoted-printable or 7-bit>

X-Keynote-Delegate: TRUE

BEGIN:VCARD

X-Version:1.0.0.0.0

X-Type:ENVELOPE

X-GUID：lde904el-7f86-lld0-b001-00c026303ba3

X-ID:160

X-GUID:00000000_0000-0000-0000-000000000000

X-ID:0

X-٠e: PERSON

X-GUTD:lde904el-7f86-lld0-b001-00c026303ba3

X-ID:1

X-Salutation：

N :Buchheim;Dennis

X-MiddleName:

Χ-Туре : EMAIL_ADDR

X-GUID:lde904el-7f86-lld0-b001-00c026303ba3

X-ID:2

X-EmailAddrTz/pe : 4-/ /ISBN 1-887687-00-

9::versit：:PDI//INTERNET

EMAIL ; INTERET : buchheim

X-٠List:l

Χ-Туре：PERSON

X-GUID:lde904el-7f86-lld0-b001-00c026303ba3

9Ί

SUBSTITUTE SHEET《RULE 26》

mailto:hagan%40actioneer.com

wo 98/37478 PCT/US98/02921

X-ID:1

X-Salutation:

X-FamilyName: Buchheim

X-GivenName: Dennis

X-MiddleName:

Χ-Туре : EMAIL٠_ADDR

X-GUID：lde904el-7f86-lld0-b001-00c026303ba3

X-ID:2

X-EmailAddrT١٢pe:+//ISBN 1-887687-00-

9::versit::PDI//INTERNET

EMAIL ; INTERNET : buchheim

X-List:l

Χ-Туре : EMAIL__ADDR

X-GUID:lde904el-7f86-lld0-b001-00c026303ba3

X-ID:136

X-EmailAddrType:+//ISBN 1-887687-00-

9::versit::PDI//INTERNET

EMAIL;INTERNET : jim_salter@bstz.com

X-List:3

Χ-Туре : EMAIL_ADDR

X-GUID：lde904el-7f86-lld0-b001-00c026303ba3

X-ID:126

X-EmailAddrType:+//ISBN 1-887687-00-

9: :versit: :■"INTERNET

EMAIL; INTERNET : buchheim@actioneer.com

Χ-Туре: EMAIL_ADDR

X-GUID:lde904el-7f86-lld0-b001-00c026303ba3

X-ID:151

X٠--EmailAddrType：-٠-//ISBN 1-887687-00-

9::versit::PDI//INTERNET

EMAIL ; INTERNET : hagan@actioneer.com

98

SUBSTITUTE SHEET (RULE 26》

mailto:jim_salter%40bstz.com
mailto:buchheim%40actioneer.com
mailto:hagan%40actioneer.com

wo 98/37478 PCT/US98/02921

Χ-Type: EMAIL_ADDR

X-GUID.:lde904el-7f86 —lld0-b001-00c026303ba3

X-ID:143

X-EmailAddrType: اب/ISBN 1-887687-00-

9::versit::PDI//INTERNET

EMAIL·;INTERNET:judith_szepesi@bstz.com

X-Type:bIST__ITEM

X-GUID:lde904el-7f86-lld0-b001-00c026303ba3

X-ID:157

X-ItemType：ACTION

X-Complete：OPEN

X-Collaboration:REQUESTOUT

X-Priority:0

X-List:l

X-BodyText: Jim, please add this sample KeyNote to the

KeyNote/parser patent tomorrow. Call Tom if you have

questions. Thanks!

X-List:l

X-ReplyText：

XDte:35466.812778

X-List:l

X-Type:PERSON

X-GUID:lde904el-7f86-lld0-b001-00c026303ba3

X-ID:130

X-Salutation：

X-FamilyName : Salter

X-GivenName: jim

X-MiddleName:

X-List:l

X-Type:PROJECT

X-GUID：lde904el-7f86-lld0-b001-00c026303ba3

99

SUBSTITUTE SHEET (RULE 26》

mailto:judith_szepesi%40bstz.com

wo 98/37478 PCT/US98/02921

X-ID:153

X-ProjName: Patents

X-Outcome: Successfully defend Actioneer*s inventions.

Χ-Type: SIMPLE_DATE

X-GUID:lde904el-7f86-lld0-b001"00c026303ba3

X-ID:156

X-DateType: REFONLY

X-SimpleDate: -

1,35466.000000,35468.000000,0000000,0.000000

X-List:l

X-Type : PROJECT

X-GUID:lde904el-7f86-lld0-b001-00c026303ba3

X-ID:153

X-ProjName: Patents

X-List：l

Χ-Type：PERSON

X-GUID:lde904el-7f86-lld0-b001-00c026303ba3

X-ID:144

X-Salutation:

X-FamilyName: Hagan

X-GivenName: Tom

X-MiddleName:

ORG: Actioneer, Ine.;

TITLE : Chairman

X-List：l

Χ-Type:ADDRESS

X-GUID:lde904el-7f86-lld0-b001-00c026303ba3

X-ID:152

X-AddrType: +//1SBN 1-887687-00-9: :versit::PDI//W0RK

ADR:; ;539 Bryant st.;San Francisco;CA;94107;USA

X-List:l

100

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

Χ-Type: PHONE
X-GUID：lde904el-7f86-lldO-b001٠-OOc026303ba3

X-ID:150

TEL；WORK： (415) 555-1212

X-List:l

Χ-Туре: EMAIL_ADDR

X-GUID:lde904el-7f86-lld0-b001-00c026303ba3

X-ID:151

X-EmailAddrType:+//ISBN 1-887687-00-

9::versit::PDI//INTERNET

EMAIL ; INTERNET : hagan@actioneer.com

X-List：l

Χ-Туре：PERSON

X-GUID：lde904el-7f86-lld0-b001-00c026303ba3

X"ID：144

X-Salutation:

X-FamilyName: Hagan

X-GivenName: Tom

X-MiddleName:

X-Type :SIMPLE_DATE

X-GUID:lde904el-7f86-lld0-b001-00c026303ba3

X-ID:159

X-DateType: REFONLY

X-Simpl Date:-1,35467.000000,0.000000,0.000000,0000000

END:VCARD

--dreldbssbtdwrvkval--

--end of sample electronic mail message--

Thus, a natural language based information organization and

collaboration tool for a computer system is described. Although the

invention has been described with respect to specific examples herein,

101

SUBSTITUTE SHEET (RULE 26》

mailto:hagan%40actioneer.com

wo 98/37478 PCT/US98/02921

it will be apparent to those of ordinary skill in the art that the

invention is not limited to the use of specific examples but may

extend to other embodiments as well. The present invention is

intended to include all of these other embodiments as defined in the

following claims.

102

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

CLAIMS

1. A method of collaborating on projects, using a first instance of a

messaging system and a second instance of the messaging system, the

method comprising the computer implemented steps of:

permitting entry of a message in the first instance of the messaging

system;

parsing the message to determine keywords:

creating a header for the message based on the keywords;

sending the message, using the header, to the second instance of the

messaging system.

2. The method of claim 1, further comprising:

filing a copy of the message in the first instance of the messaging

system.

3. The method of claim 1, further comprising:

receiving the message at the second instance of the messaging system;

displaying a selection of reply options;

generating a reply, including an automatic reply content based on the

selection;

creating a reply header for the reply based on the message content; and

sending the reply, using the reply header, to the first instance of the

messaging system.

103

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

1/26

103

FIG.1
SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/ÜS98/O2921

2/2(

100
1-

SIS
>-1<N<
ب

切
以
ョ
—

爾
oc3syv
Q ب

□c
lilsn

ة
٠

ى
1
ئ

сл٤
2:шлш

œ<
٥zmj<o
٥z<

-ωΗ0<ΗΖΟ0

'sio
ulroyd

/

0
н
и
н
٩
|

ч

-nd
l—no

・
_

の)

ndlnoy—ا

tuSn

SNOISS
Jlu
-œdxa

(No
¿53y

нхшн
٩
 ш
ё

—

ωο<
٥0
ζ
^
/
Η
؛

Ξωω□

٦vyn،<N

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

3/26

FIG.3
SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

4/26

210

220

260

FIG.4

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

5/26

FIG. 5
SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

210

222

250

6/26

220

r Call Paul by next Thurs.١١
<re: Wilson deal ر

CALLS

230
!><

13 240

FIG. 6
210

220

230

250

(Call Paul by next Thur?、تا、ヽ كك
[re：]/

Wilson Acct. ▼1
Jones, Paul ▼I

13

Thu., 1/30/97 ع▼
ر CALLS عأ

240

FIG.7 260

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

8

ى
1
ئ

о
о
гу

ш

слп

SUBST^UTE SHEET (RULE 26)

wo 98/37478 PCTZUS98/02921

8/26

FIG.9
SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/0292X

9/26

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

10/26

FIG. 11
SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

11/26
o 4ا= r CM СО

EN
C

LO
SU

R
E

"W
IL

SO
N

FI
LE

" ا ・

lO
VlN

O
O "T

O
M

W
IL

SO
N

"

・

"M
AR

Y
JO

N
ES

"

PR
O

JE
C

T

・

"H
EL

LO
 W

O
R

LD
PR

O
JE

C
T，

，

نزج
"H

EL
LO

W

O
R

LD
 L

IS
T"

・

"W
O

R
LD

PE
AC

E
U

ST
"

D
E

F.
U

N
K

(Λة
Шجقج "H

EL
LO

"

"H
EL

LO
W

O
R

LD
"

"W
O

R
LD

PE
AC

E"

寸581 SNo
l—INIJ
UJa ауо5>ш̂

ح
58
 · >
Ю
_
Н
О
5

هال

0
ج
٨3

دك

N
H

٠

ى
1
ئ

=
山
〇<

山
〇-=

_

ة
ال1
0
ا٠ج

〇٦٦3

ェ__

у
ш
о
э
|
у

|_ ・
0

3

■
ц-ш

ос

9
S
8
-
S
y
3
9
o
l
y

l—

SUBSTITUTE SHEET (RLE 26》

wo 98/37478 PCT/US98/02921

12/26
3٦

〇-
・

><
ヨ

أ
ع

٠

ئ
1
ئ

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

13/26

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

6
4/26

أ
ج

٠

ئ
1
ئ

iN
tydöa
oc-гш
ссуп◦
山
工-0-
山
0-0
٦

山>드
山

ح
ؤ

0_
خ
<

ن
س
ح
ب
؛

 OHM Nos
oc
liJd

山
0-0
٦3>즈3

ء
<

ت
ك
0

ة
ج

 <
 аш،<шуэ>
٦1VNI9I

OC0 0
ق
ت
 NOS

oc
UJd

P
N
3
l
d
l
3
3
y

 |
人
11) -00=<ω< 3-ONVaN3so
l_ss3y
٥av
—|<

3ج

(
山-

〇3
٦3
٥
)

〇.шног < ٥
2:
山5
〇'

ج
ج
3
الهه

<
 J-SU

cc
UJĝ
nN 3ΝοΗ

ο_.◦
—
山

ذحت

ال
0
ج

·
ョ习
〇
ェ

'◦
1—
山 '39NVH3x
Lll'-
LUN
ccm
l—NI

Ss3
ccaa< '◦
—
山

ذحت

ج
ه
ل
ا

-
ш
!

I—Х
Ш
-

آل
ا
1|
-0
ح

<
ГШУ

П-
ССШ
1—N1
〇
—y3gy<
a.
cc3
luN0l-Q< Ш1Н ٨a ٥
山5
っ (s)ayoM

山
|—ΟΝνο
ι—٥
UJH0<UVNOS
cc
LUd

3ÍON

 V

о
،

س
ع
1

ج
ى

<
،
◦шгоу

о-

>٦ Ν
0 S3sod

ccnd N01
1—v̂
yoJNI youhzmœ SI 3-0Ν <

ج

01
ق

 oh Νοδ
ο-ω
ο-

٥

山1<9
山٦

山٥SI шно: 3ΛΙ
Ι—v
cc0av
٦103 <

ق
0
ق
ت

0
-

Nosy
LUd

-SI-О5-Ш2 yo

ح
0_
ة

<
 y

lu3NOI-
٧v

-◦ν
ι—N03 ٦

ν
π
α
ι
>ι

α
Ν
Ι

шн<٥ (шпа) 9
2:|у

ссп
э
ш

сс

3-να (
山그٥
) 9Nlyyn33

cc,N0N

нош
٦о̂
п_

□:
山
山
2:0|،
〇<

NO
i=<̂
youNlsniv،saNV

>-aog

د
<

ة
ت

<

l_N3s οζ-шт SI'<H
f_шног>ш
٧٠ <
 ё
 „yuNK-NO◦„

N
0

j=d
l

cc0
s
3
a

3٦
8٧
-
ل3
>-
—►.о
ш

-эд
о

œmûzmœ 3doJ3>N3

осо-<ш
сс◦ 3
0-0-3ΛΝ3

|
人：门_

ョ

〇-

—lvs
UJ

y
lil
CD̂
nN

luNOHd

sswyaav
— <ols>Hd

ayOM
>-
LÛ

Nosyud ٥шхо<ьн<

I—з
ш
г
о
у

а.٥шхо<нг<

-N
ÜJdö3
cc
—人̂

山
|_<

〇3٦
山٥

f-sll

NOS
cc
LUd

山-να ◦Nl
oc
ccno
UJ
cc

Ш
—va لجاة|3

-зшгоу
о-

乏
山
ヒ-

SI
-

ш
о-о-шлмш

ョ٥.
人丄

으юحح
جب٣orي٣

٨ح٣٣
3
أل

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

15/26

OBJECT ASSOCIATIONTABLE

TYPE associa™ TABLE

ENVELOPE ENVELOPES

LSTITEM LIST ITEMS

PROJECT PROJECTS

SIMPLE DATE SIMPLE DATES

RECURRING DATE RECURRING DATES

PERSON PEOPLE

LIST LSTS

DELEGATE PEOPLE

FYI RECIPIENT PEOPLE

AHACHED PROJECT PROJECTS

AnACHED PERSON PEOPLE

KEYWORD KEYWORDS

PHYSICAL ADDRESS PHYSICAL ADDRESSES

EMAIL ADDRESS EMAIL ADDRESSES

PHONE NUMBER PHONE NUMBERS

EMAIL TO EMAIL ADDRESSES

EMAIL FYI EMAIL ADDRESSES

ENVELOPE CREATOR PEOPLE

ENVELOPE SENDER PEOPLE

FIG. 16
SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

PROJECTS (ΤΥΡΕ=2)
16,26

KEY NAME
201 PATENTS

SIMPLE DA

KEY

TES《3) :

DATE
202 THU.,2/7/97

PEOPLE (5

KEY NAME
203 BRIAN SMIGA
204 JIM SALTER
205 TOM HAGAN
206 DENNIS RI FIM

LSTS(6)

KEY NAME ٠
207 CALLS

KEYWORD!

KEY

5(11) ・

KEYWORD
208 CALL
209 PATENT

EMAIL ADC

KEY

RESSES(13) ·

ADDRESS
210 smiga@actioneer.com
211 hagan@actioneer.com

SAMPLE DATABASE

LNKS

ΚΕΥ1 ΤΥΡΕ1 OBJECT DESCRIPTION 1 KEY 2 ΤΥΡΕ2 OBJECT DESCRIPTION 2
207 6 "CW IS"١」ST 208 11 ''CALL11 KEYWORD
201 2 1٠P/KTENTS11PRO،ÍECT 209 11 1'PATENT11 KEYWORD
203 5 1'BRIANSIA11 PERSON 210 13 "s٠a@ac ؛١ onee٣._''

Email Address
205 5 OMHAGAN'1 PERSON؟' 211 13 '1hagan@adioneer.com''

Ema١١ Address

FIG. 17
SUBSTITUTE SHEET (RULE 26》

mailto:smiga%40actioneer.com
mailto:hagan%40actioneer.com

wo 98/37478 PCT/US98/02921

17/26

8
1

٠

ئ
1
ئ

NOS
cc
UJ
a_٥
LUH
٠
٧J_L٧
 ,IJ3il
cesE!
—3„

¿
Ъ

—
Eoh..

봏

5
7
5٥
„툫

5
٧

-§!&
،

늣
/
7
,

-«/
/

٠3„
ح
١0

ع
ق

٠
ه
غ

^
.ح
١٦٠

N0s
o=3
CL,,mß!
.Es
u

. ĝ„

^

ئ
٦0

ى
ج
ل
ج

٦̂
عه

1
人
11룧

,,Ш٠٠сэ9и٠
!}зе@

с:в6в
?:1

0
丄1
戸크

,l_.J
a,
(vuo!
-cB
@
e
ß
l
E
s
„

ة
0
ج
^

ألخيالح

Ε]£α̂-.ى١
ωΈφα:

〇:0
٤
٧
山
〇:٠
山
〇.
〇
_1
山>
之山

—

'E!3^3ngs!uu3p

(3

إ

0

2:1

ل

1٧=

31٤٠٧ً

ا
1̂
1دل
1إ
إ
51
٩ل

ч،٠
>ы

о

й

٠
к
о
щ
٦
ф
о

ح

寸02

5ة

ج
إ
ة

=
3

جتح

으S

T-

I/ح

2
 3

〇.
人
上

ة
ج

sos0ح
ةج

ة
ê

0ح
ة

0ة
حج

ج
sج

ح

90
s

9
0
2

ε
٢2

㈧
크
니
늣
门

ح
و
ج

ر
~

/ج
7㈧

크
니
됴
门

에
山٤1-8
=¡

ج
د
ع
و
ج

/7

5ة

ج
ذ
ح

/٠
ل

3ج
)-.ة

/ج
-
ل

3doJ3>N
lu

ш
ё
ё
г
шألع

٠

ج
ق

山
0_0̂
山٨즈
山

ш
ё
^
>
г
ш

ίΝ
٠

ρ=
α.ι
α:٠83α
٤٠3٢

α1٠

3٦
m
v

f-
i¿N

I٦
 3٦
d
s
v
s

о

t
3
d

>-l

٢ح
етгح

ε

τ-г

٢ة
حة

ح
ε

τ-г
حي
ح

جب
ح

٣
>
ш٧٠

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

18/26

FIG. 19
SUBS^TUTE SHEET (RULE 26)

wo 98/37478 PCT/ÜS98/O2921

19/26

FIG· 20
SUBST^UTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

20/26

FIG. 21
SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

21/26

SUBST^UTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

22/26

١نم

SEND REPLYTO ORIGINATOR 2270 |

MOVE ACTION
REQUEST FROM

INBOXTO
ACTION LIST.

PUT INTO

AFFIRMATIV۶

ب\د7ج
/ REPLY \
’aff_ative，\negative、

NEGATIVE， ر >

DELETE FROM
INBOX AND
CALENDAR,

ETC.(s
CALENDAR，ETC. \ OR z

IN INK
2280 \7 2285

八 OTHER 八
١تم

AFFIRMATIVE
Ts FINA?،

ANSWER AFF_ATIVE—
OR NEGATIVE،؟

2295

NEGATIVE

FIG· 22Β
SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

23/26
START

2310

UPDATE FILD
MESSAGES

2315

١
PROMPT FOR REPLY

2320

١ <

SEND REPLY

2330

END NEGOTIATION
PROCESS

2350

AFFIRMATIVE OR
NEGATIVE

FIG· 23
SUBS^TUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

24/26

FIG· 24

SUBSTITUTE SHEET (RULE 26》

wo 98/37478 PCT/US98/02921

25/26

卜6/
"
사
 ١

ال

4
١

ل
آ
ه
ل
لا
ل
آ

.
\

آلهآل

l t̂
l^ls 3
101̂

٦x
'-'Q3royd)

'-эшго
сс
о-

x
UJH-yoJ
>-vaNOs

HXUZŒOL
山
〇
「

Η-Ι502_

ج
س
ئ

<

ت
ع

-
lus
山5<
山1
〇.'

ج
ر0

-

osss-

0

ج
5
ة

-
0ح
حح

:10
4=3

:03

διΝΝ
ιυα ً
اج
0
眶الل

lö
ll·-

3
・
о

ا
—

ح
3
ج
ج

0
ى

٠

0

Ζ о

비
디

人٠
디

人0

гйг
0
ةة0

٠

ى
1
ئ

I

—

yod 0
Ζ
Ξ
ί
\

١«
١

\
·

،
١

4
4

 طآل
 ال
成ال

隱:

١
\

١

\

\

\

٧

4

١
١

\
ب

ェ
ヒ
攝
ョ
〇
口

5أأ ق
_ ؛

.нош٦
٥
٢
-п-

XUH-yo
u_>vaNos

íx
lun œoL
山
〇
—3

Η
Ι—|

ؤ
ح0
_

ج
س
ة

<

ت
ع

l
UJg
山5<3
٦

〇_

ال
0
-

١,—
□

ب

-

٨
١
١

ل

ى

ب

ك
م
 œœuhzm ω-ζζω

٥

ر

SUBSTITUTE SHEET《RULE 26》

o OK IF
oCOMMENT

٠ WITHDRAW

2508

TO: DENNIS
FROM:!
cc:
Enel:

2510

TO: DENNIS
FROM: TOM
cc:
Enel:

w

٠
9
8
/
3
7
4
7
8

SUBSTITUTE SHEET

 (RULE 26)

TO: DENNIS
FROM: TOM
cc:
Enel:

YES, I'LL DO IT IF
WE CAN
RESCHEDULE
FOR TUESDAY.

2555

2560

^PROJECTX

2565

FIG· 25Β

YES，I'LL DO IT IF
WE CAN
RESCHEDULE
FOR TUESDAY.

TOM, PLEASE SET
UP A MEETING WITH

JOE FOR NEXT
MONDAY FOR THE X

PROJECT.

2570

YES, I'LL DO IT IF
WE CAN
RESCHEDULE
FOR TUESDAY.

TOM，PLEASE SET
UPA^E_G ■H

JOE FOR NEXT
MONDAYFORTHEX

PROJECT.

PROJECT ABC؛
^JOESMITH o1

づ1/28/97 كئز
¡

NEXT ACTION i診 ئ

し

P
C
T
/
U
S
9
8
/
0
2
9
2
1

