PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 98/37478
GOGF : A2 : -

(43) International Publication Date: 27 August 1998 (27.08.98)

(21) International Application Number: PCT/US98/02921 | (81) Designated States: AL, AM, AT, AT (Utility model), AU

(Petty patent), AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU,

(22) International Filing Date: 10 February 1998 (10.02.98) CZ, CZ (Utility model), DE, DE (Utility model), DK, DK

(Utility model), EE, EE (Utility model), ES, FI, FI (Utility
model), GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE,
(30) Priority Data: KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG,

08/798,522 10 February 1997 (10.02.97) Us MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,
SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA,
UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS,

(71) Applicant: ACTIONEER, INC. [US/US]; 539 Bryant Street, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY,

San Francisco, CA 94107 (US). KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH,

DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(72) Inventors: SMIGA, Brian, 461 Second Street #220, San SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,
Francisco, CA 94107 (US). BUCHHEIM, Dennis; 570 MR, NE, SN, TD, TG).

Ashton Avenue, Palo Alto, CA 94306 (US). HAGAN,
Thomas; 13 Union Wharf, Boston, MA 02109 (US).
WADHWANI, David; 1046 Cole Street, San Francisco, | Published

CA 94117 (US). STORKEL, Norman, Scott; 731-B Loma Without international search report and to be republished
Verde Avenue, Palo Alto, CA 94303 (US). upon receipt of that report.

(74) Agents: SALTER, James, H. et al.; Blakely, Sokoloff, Taylor
& Zafman LLP, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025 (US).

(54) Titlee A METHOD AND APPARATUS FOR GROUP ACTION PROCESSING BETWEEN USERS OF A COLLABORATION

SYSTEM
NATURAL LEXICAL
USERINPUT _LANGUAGE USER . o
(KEYNOTE >~ Text—] rerFace [—>| PARSER >| AL

REGION) EXPRESSIONS

USER OUTPUT srrumme 5 .
(SHADOW PROJECTS < =
REGION) CONTACTS,

AND CALENDAR
EVENTS

(57) Abstract

A natural language-based information organization and collaboration tool for a computer system is disclosed. The present invention
includes an apparatus and method for processing text expressions in a computer system, the apparatus including: (1) an object database
defining an information object with an associated keyword; (2) a user input device for receiving an input text expression; (3) a parsing
device for identifying the keyword in the input text expression, the parsing device including functions for linking the input text expression
to the information object based on the keyword identified in the input text expression; and (4) a user output device for displaying to the user
the identity of the information object to which the input text expression was linked. The apparatus of the present invention further includes
supplemental information in the object database which is related to the information object, the user output device further including functions
for displaying the supplemental information when a corresponding keyword is identified in the input text expression. The apparatus of the
present invention further includes a method and apparatus for collaboration between users of a time and project management system.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
M
CN
Cu
Ccz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Euxenmbourg SN Senegal
Australia GA Gabon LV Latvia Sz Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ) Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi us United States of America
Canada IT Italy MX Mexico UZ Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway VAL Zimbabwe
Cote d’Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

WO 98/37478 PCT/US98/02921

A METHOD AND APPARATUS FOR GROUP ACTION PROCESSING
BETWEEN USERS OF A COLLABORATION SYSTEM

FIELD OF THE INVENTION

The present invention relates to the organization and access to
information stored in a computer system. More specifically, the
present invention relates to the analysis of natural language input to
produce structured information output and the processing of notes in
a computer svstem. The present invention also relates to time and
action/project management using a computer system. More
specifically, the present invention relates to a method and apparatus
for collaboration between two or more persons for time and project

management.

DESCRIPTION OF RELATED ART

Manv application programs exist in the prior art for organizing
information in particular ways or for manipulating specific types of
information. For example, word processing applications are
specificallv designed for manipulating text documents in a computer
system. Similarly databases in the prior art provide means for
structuring data in well defined ways. Fﬁrther, calendaring systems
provide a structured way for tracking events or actions required at
specified dates and times. Although these prior art applications
provide ways for organizing information in particular ways, it is often
inconvenient to require a user to switch back and forth between
application programs when updates of information are required.

Moreover, these types of systems require a user to organize the

1

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

information prior to entering data into the computer system. For
example, the user must know to activate a calendaring program if an
appointment or action date is to be entered. In separate actions, the
user may also need to update lists or databases associated with the
appointment or action for which a calendar entry was made. In many
prior art systems, the user is required to spend time navigating around
a user interface to link information to the desired lists or categories to
which it pertains.

U.S. DPatent Number 5115504 entitled "Information
Management System" describes a system for linking elements
representing stored information in a database. The system comprises
a link structure formed in a section of the database independent of the
elements, a pointer in the link structure indicating the location of a
first element, and a second pointer in the link structure indicating the
location of a second element. The database contains items comprising
textual data and a plurality of categories into which the items may be
categorized such that each item may be linked to more than one
category. The system automatically assigns an element in a database to
a parent category if it has been assigned to a child category of the
parent. The system also generally features a means for assigning an
element in a database to one or more of a plurality of categories, the
categories being hierarchically arranged. The system constructs views
as screens of information organized into sections having categories
and section heads and items presented one after another beneath a
given section head of a category to which the item has been assigned.
After entering an item, the user can make further assignments directly

by moving to the columns of the view and entering an existing name

2

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

of a sub-category under the column head. In this manner, a link
structure is created.

Unfortunately, the system disclosed in U.S. Patent Number
5,115,504 still requires a user to directly manipulate information
categories on a display screen. Using this approach, a user is still
required to organize the information in some fashion on entry of the
data into the desired category. In many situations, it is inefficient and
inconvenient for a wuser to pre-organize and explicitly store
information in this fashion. Moreover, further efficiencies could be
obtained if a user could provide input in a convenient free form or
natural language representation. It would also improve prior art
systems if a user could update an information item or action item
easily, quickly and without losing the context in which he/she is
currently engaged. Another disadvantage of the prior art systems
described above, is that they do not provide a mechanism for
collaboration between users or between applications. Organizing
one's own information is important, but actions/projects are often
shared between two or more people. In other words, it is not
sufficient to organize one's own To Do lists and calendars. The user
should also be able to collaborate with other users to assign projects,
accept project assignments, and inform others. Furthermore, an
ability to notify others of the status of projects is advantageous.

One prior art method of allowing multiple users to work
together includes using e-mail to send messages to others. Although
this prior art application allows users to communicate regarding any
topic, it is not linked to calendars, lists, or external databases

maintained by the users. Thus, as an agreement evolves with each e-

3

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

mail exchange, the user is often involved in updating everything
associated‘with the project. It would further improve prior art
systems if a user could update an action item easily, quickly and
without losing the context in which he/she is currently engaged.
Further, it would be an improvement over the prior art to provide a
system whereby multiple users could collaborate and track action
items between many participants and across many computer systems.

Another prior art method utilizes top down delegation. This
allows a supervisor to delegate projects to subordinates. However, it
does not allow negotiation or collaboration between users. Rather, it
is rigidly hierarchical. = Thus, this method is not wuseful for
collaboration and negotiation between peers. Another disadvantage
of such prior art systems is that they use a client-server system. That
is, a server has to be provided as a repository of information regarding
the collaboration process. Thus, only clients that are connected to the
server can participate in the collaboration. This means that persons
who are not linked to the same server can not participate in the
collaborative environment.

It would be an improvement over the prior art to provide a
system that allows collaboration between two or more users. Further,
it would be an improvement over the prior art to provide a system
whereby multiple users could collaborate and track action items
between many participants and across many computer systems.

Thus, a better natural language information organization and

collaboration tool is needed.

SUMMARY OF THE INVENTION

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

The present invention is a natural language based information
organization and collaboration tool for a computer system. The
present invention includes an apparatus and method for processing
text expressions in a computer system, the apparatus including: 1)
relational object database defining an information object with an
associated keyword, project, list, contact, date/time event or enclosure;
2) a user input device for receiving an input text expression; 3) a
parsing device for identifying the keyword in the input text
expression, the parsing device including functions for linking the
input text expression to the information object based on the keyword
identified in the input text expression; and 4) a user ouptut device for
displaying to the user the identity of the information object to which
the input text expression was linked. The apparatus of the present
invention further includes supplemental information in the object
database which is related to the information object, and the user
ouptut device further includes functions for displaying the
supplemental information when a corresponding keyword is
identified in the input text expression. The apparatus of the present
invention further includes a method and apparatus for collaboration

between users of a time and project management system.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not

by way of limitation, in the figures of the accompanying drawings and
in which like reference numerals refer to similar elements and in
which:

Figure 1 illustrates a complete system on which the present

5

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

invention may be implemented.

Figﬁre 2 is a block diagram of the main system elements of the
present invention.

Figure 3 illustrates a display screen showing the keynote and
shadow regions.

Figures 4A, 4B, and 5 - 7 illustrate the operation of the user
interface of the present invention.

Figure 8 is a block diagram of the components of the parser.

Figure 9 is a flow diagram showing the processing flow of the
lexical analysis tool.

Figures 10 - 11 are flow diagrams showing the processing flow of
the keyword parser.

Figures 12 - 13 illustrate examples of the processing performed
by the keyword parser.

Figure 14 is a flow diagram showing the processing flow of the
suggest list keyword function.

Figures 15-18 illustrate the organization of tables in the object
database of the preferred embodiment.

Figure 19 is a diagram of a client-server system.

Figure 20 is a diagram of a peer-to-peer distributed system.

Figure 21 is a flowchart illustrating an overview of the present
invention.

Figure 22A is a flowchart illustrating the collaboration cycle as
viewed by the originator, or requester.

Figure 22B is a flowchart illustrating the collaboration cycle as
viewed by the recipient, or delegate.

Figure 23 is a flowchart illustrating the negotiation process of

6

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

the present invention.

Figﬁre 24 is a flowchart illustrating the distribution of an FYI
note.

Figures 25A and 25B illustrate a graphical an example of the

collaborative process.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention is a natural language based information
organization and collaboration tool for a computer system. In the
following description, numerous specific details are set forth in order
to provide a thorough understanding of the present invention.
However, it will be apparent to one of ordinary skill in the art that
these specific details need not be used to practice the present
invention. In other circumstances, well-known structures, circuits,
and interfaces have not been shown in detail in order to not obscure
unnecessarily the present invention.

Figure 1 illustrates a typical data processing system upon which
one embodiment of the present invention is implemented. It will be
apparent to those of ordinary skill in the art, however that other
alternative systems of various system architectures may also be used.
The data processing system illustrated in Figure 1 includes a bus or
other internal communication means 101 for communicating
information, and a processor 102 coupled to the bus 101 for processing
information. The system further comprises a random access memory
(RAM) or other volatile storage device 104 (referred to as main
memory), coupled to bus 101 for storing information and instructions

to be executed by processor 102. Main memory 104 also may be used

7

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

for storing temporary variables or other intermediate information
during execution of instructions by processor 102. The system also
comprises a read only memory (ROM) and/or static storage device 106
coupled to bus 101 for storing static information and instructions for
processor 102, and a data storage device 107 such as a magnetic disk or
optical disk and its corresponding disk drive. Data storage device 107
is coupled to bus 101 for storing information and instructions. The
system may further be coupled to a display device 121, such as a
cathode ray tube (CRT) or a liquid crystal display (LCD) coupled to bus
101 through bus 103 for displaying information to a computer user.
An alphanumeric input device 122, including alphanumeric and
other keys, may also be coupled to bus 101 through bus 103 for
communicating information and command selections to processor
102. An additional user input device is cursor control device 123, such
as a mouse, a trackball, stylus, or cursor direction keys coupled to bus
101 through bus 103 for communicating direction information and
command selections to processor 102, and for controlling cursor
movement on display device 121. Another device which may
optionally be coupled to bus 101 thorough bus 103 is a hard copy
device or printer 124 which may be used for printing instructions,
data, or other information on a medium such as paper, film, or
similar types of media. In the preferred embodiment, a
communication device 125 is coupled to bus 101 through bus 103 for
use in accessing other nodes of a distributed system via a network.
The communication device 125 may include any of a number of
commercially available networking peripheral devices such as those

used for coupling to an Ethernet, token ring, Internet, or wide area

8

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

network. Note that any or all of the components of this system
illustrated in Figure 1 and associated hardware may be used in various
embodiments of the present invention; however, it will be
appreciated by those of ordinary skill in the art that any configuration
of the system may be used for various purposes according to the
particular implementation. In one embodiment of the present

invention, the data processing system illustrated in Figure 1 is an

IBM® compatible personal computer or a Sun® SPARC workstation.

Processor 102 may be one of the 80X86 compatible microprocessors
such as the 80486 or PENTIUM® brand microprocessors manufactured
by INTEL® Corporation of Santa Clara, California.

The control logic or software implementing the present
invention can be stored in main memory 104, mass storage device 107,
or other storage medium locally accessible to processor 102. Other
storage media may include floppy disks, memory cards, flash memory,
or CD-ROM drives. It will be apparent to those of ordinary skill in the
art that the methods and processes described herein can be
implemented as software stored in main memory 104 or read only
memory 106 and executed by processor 102. This control logic or
software may also be resident on an article of manufacture comprising
a computer readable medium 108 having computer readable program
code embodied therein and being readable by the mass storage device
107 and for causing the processor 102 to operate in accordance with the
methods and teachings herein.

The software of the present invention may also be embodied in
a handheld or portable device containing a subset of the computer

hardware components described above. For example, the handheld
9

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

device may be configured to contain only the bus 101, the processor
102, and rﬁemory 104 and/or 106. The handheld device may also be
configured to include a set of buttons or input signalling components
with which a user may select from a set of available options. The
handheld device may also be configured to include an output
apparatus such as a liquid crystal display (LCD) or display element
matrix for displaying information to a user of the handheld device.
Conventional methods may be used to implement such a handheld
device. The implementation of the present invention for such a
device would be apparent to one of ordinary skill in the art given the
disclosure of the present invention as provided herein.

The present invention is a natural language based, parsable,
always available, intelligent note editor that captures user thoughts,
action requests, and information in a computer system. The present
invention uses natural language parsing to identify keywords and date
information amongst a free form text input expression (denoted
keynote herein) entered by a user and establishes links to other
information objects based on the identified words. These linked other
objects include projects, contacts, date/time events, lists, and
document identifier objects. Keywords are pre-defined one word or
multiple word text strings with or without punctuation that are
associated or linked to one or more related information objects. Lists
are user-established collections of related keynotes. Lists can be action-
related or merely archived memos. The present invention further
classifies the text input (i.e., keynote) as a particular type of keynote,
such as an action, a memo, a personal keynote, a shared keynote, an

action request, an FYI (for your information) message, or one of

10

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

several other different types of keynotes. A personal keynote is one
not intended to be sent to anyone else. A shared keynote is sent to
others. Once the keynote is classified, the present invention takes
action upon the keynote by sending an action request to a linked
contact, updating a linked list, contact, date/time expression, or project
data, sharing the keynote to others in a collaboration group, or storing
information related to the keynote in an organized and efficient
manner. The present invention includes a real-time and interactive
user interface for receiving input text expressions from a user and for
providing selectable supplemental information to the user regarding
the classification of the keynote. In addition, the present invention
includes a parser for processing natural language in the manner
described above.

Figure 2 illustrates in block diagram form the main
components of the preferred embodiment of the present invention. A
user provides natural language text expressions (i.e., keynotes)
representing notes, thoughts, or action requests which are provided to
user interface 200. User interface 200 passes these text expressions to
parser 300. Parser 300 is responsible for identifying the type of keynote
and for linking the keynote to one or more corresponding
information objects based upon identified keywords or date/time
expressions found in the input text expression. The linked objects
include lists, projects, contacts, e-mail addresses, enclosed document
identifiers, and date/time events for use in a calendar. Parser 300 uses
lexical analysis tool 400 to partition the input text expression into a
plurality of tokens. Tokens are sequential or adjacent portions of the

input text expression between pre-specified delimiters. Once parser

11

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

300 has classified the keynote type and has linked the keynote to the
associated objects, the linked list, project, contact, associated e-mail
addresses enclosed document identifiers, and any calendar event, is
passed back to user interface 200 and displayed by user interface 200 in
a keynote and shadow region on display device 121.

Referring now to Figure 3, an example of the keynote and
shadow region 210 of user interface 200 is illustrated in relationship to
the content of display device 121. In its typical application, the keynote
and shadow region 210 of the present invention are displayed on
display device 121 in combination with other windows or
informational and functional regions of display device 121. The
display of windows and informational or functional of regions on a

display device is well-known to those of ordinary skill in the art. For

example, the Windows 95™ operating system developed by Microsoft
Corporation of Redmond, Washington is an example of an operating
system providing for the display of such windows. Keynote and
shadow region 210 of the present invention may be displayved using
the windowing and display functions provided by such an operating
system. In the alternative, it will be apparent to those of ordinary skill
in the art that other means for displaying such an informational area
on a display device may equivalently be provided by other
conventional operating systems or application programs. It will also
be appreciated by those of ordinary skill in the art that the keynote and
shadow region 210 may be displayed at any arbitrary position or at any
arbitrary size using the conventional tools of the operating system.
Moreover, conventional operating systems provide means for

specifying a display priority or level with which the keynote and

12

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

shadow region 210 may be specified and coded to always be displayed
at the top most display priority or level. Thus, the keynote and
shadow region 210 may be programmed to be always visible and
always available on display screen 121 using conventional methods.
In this manner, the present invention provides an always available
method for entering textual information into a window or display
region that provides real time feedback of parsing and keyword
matching of the text entered.

Referring now to Figures 4A and 4B, examples illustrate the
components comprising the keynote and shadow region 210 of the
preferred embodiment. The keynote region 220 is an on screen
computer version of a paper sticky note allowing the user to quickly
capture information and ideas. The keynote region 220 provides a
display area for the entry of a natural language text expression (i.e.
keynote) representing textual information and ideas the user would
like to capture. An example of such a keynote in keynote region 220 is
shown in Figure 4B. Any type of natural language text expression may
be entered in keynote region 220. Conventional techniques may be
used to display and word wrap the text in keynote region 220. Further,
conventional techniques may be used for the selection or
identification of keynote region 220 for the entry of text input. For
example, the cursor control device 123, mouse, or special key codes
entered on the key board 122 of the computer system may be used to
select keynote region 220 for the entry of a text expression. As each key
stroke is input to keynote region 220, the individual key stroke is
transferred to user interface 200 and subsequently to parser 300 as will

be described below in a later section of this document.

13

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

Referring again to Figures 4A and 4B, a shadow region 230 is
provided to display the output of a parsed text expression and to
capture input icon selections from the user. Shadow region 230 is a
window that appears beneath, or alternatively adjacent to, the keynote
region 220 and contains linked object information in data fields that
are automatically set as a result of parsing the keynote entered into
keynote region 220. Shadow 230 includes a set of icons 240 which are
always visible along with keynote region 220 in the preferred
embodiment. Icons 240 serve two purposes. First, icons 240 can be
distinctively displayed in one of two states to represent the presence or
absence of a link to a corresponding object as a result of parsing the
keynote. For example, an icon of icons 240 representing a contact
information object may be highlighted if contact information has been
found as a result of parsing the keynote. Similarly, other icons
corresponding to projects, lists, calendars, or enclosed documents may
also be highlighted or unhighlighted depending on the presence or
absence of links to objects, such as projects, lists, calendar events, or
enclosed document information found as a result of parsing the
keynote. Alternatively, the keywords of a keynote linked to a project,
list, calendar event, or enclosed document object may be distinctively
displayed in the keynote itself. For example, the keyword or keywords
linking the keynote to a project object may be displayed in a first color
or font type or style. The the keyword or keywords linking the keynote
to a contact object may be displayed in a second color or font type or
style. Similarly, other keywords linking the keynote to other objects
may also be distinctively displayed to inform the user that the parser

300 has identified the corresponding keyword in the input text

14

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

expression.

Thé second function served by the icons 240 and a related
dropdown list control is a means for a user to select the display of the
linked object type corresponding to a particular selected icon. The
output produced by parser 300 is displayed in region 250 of shadow
230. Although shadow 230 may initially be displayed beneath keynote
220, the user may bring the shadow region 230 in front of the keynote
region 220 by clicking on the shadow region 230 with the cursor
control device 123 or by typing a pre-specified key entrv on the
keyboard 122. Alternatively, the shadow region 230 may also be
selected for display using a menu command.

Referring now to Figure 5, the generic version of the keynote
and shadow region 210 of the preferred embodiment of the present
invention is illustrated in its initial state. As shown, keynote 220 is
initially blank prior to the entry of any keynote. Shadow region 230
includes a set of icons identified generically as I1 through I5. In this
example, icon I1 represents a project object; icon I2 represents a contact
object; icon 14 represents a date/time calendar object; icon I5 represents
a list object. It will be apparent to one of ordinary skill in the art that
other types of information or objects may correspond to each of the
icons 240 of shadow 230. Similarly, it will be apparent to one of
ordinary skill in the art that an arbitrary number of icons 240 may
equivalently be provided in shadow region 230.

Referring now to Figure 6, the keynote and shadow region 210
are shown after the entry of a keynote 222 indicated within a dotted
circle region (for illustrative purposes only). It will be apparent to one

of ordinary skill in the art that the dotted line is shown in Figure 6 for

15

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

illustrative purposes only and is not actually displayed in the
preferred émbodiment. As a result of parsing keynote 222, several
output results have been produced by the present invention. First, the
individual icons of icons 240 corresponding to object types linked by
parser 300 to input keynote 222 are highlighted. For example, icon I1
is highlighted because parser 300 has linked a project object (i.e.,
"wilson deal") to keynote 222. Similarly, icon 12 is highlighted because
parser 300 has linked a contact object (i.e. "Paul”) to keynote 222. Icon
I4 is highlighted because parser 300 has linked a date/time calendar
event object ("next Thursday"”) to input keynote 222. Finally, icon I5
has been highlighted because parser 300 has linked a list ("Call”) to
input keynote 222. It will be apparent to one of ordinary skill in the
art that if an information object type corresponding to a particular icon
was not found by parser 300 in input keynote 222, the corresponding
icon would not be highlighted in shadow region 230. A second result
of the parsing of input keynote 222 by the present invention is
classification of the keynote as one of several different keynote types,
such as an action, memo, personal keynote, shared keynote, action
request, FYI message, etc. Finally, the structured output information
or linked object data is displayed in display area 250 of shadow 230.
This output information is described in more detail in connection
with Figure 7.

Referring now to Figure 7, the keynote and shadow region 210
is illustrated after the shadow region 230 has been brought to the
foreground using the cursor control device 123 or a pre-specified
keyboard 122 entry. Region 250 of shadow 230 illustrates the

structured information output produced as a result of parsing the

16

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

sample input keynote 222 shown in Figure 6. As a result of parsing
input keyhote 222, parser 300 has linked the reference to "wilson deal"
in input keynote 222 to the previously specified "Wilson Account”
project object. The linked project object "Wilson Account” is
displayed in region 250 adjacent to corresponding icon I1. Similarly,
parser 300 has linked the reference to "Paul” in input keynote 222 to
the previously specified contact object "Paul Jones". The linked
contact object "Paul Jones" is displayed in region 250 adjacent to its
corresponding icon 12. The parser 300 has linked a date/time calendar
event object as a result of parsing the "next Thursday” text in keynote
222. This processed time/date calendar event object is displayed in
region 250 of shadow 230 adjacent to the corresponding icon I4.
Finally, parser 300 has linked the keyword "call” in input keynote 222
to the previously specified "Calls" list previously defined as a list
object. The identification of the linked Calls list is displayed in region
250 of shadow 230 adjacent to the corresponding icon I5.

Drop down list indicators 260 are provided to cause a list to
expand downward so a multiple line list of objects or information is
displayed in a drop down portion of region 250. Conventional
methods exist for providing drop down list indicators on a computer
display device.

Thus, user interface 200 and its corresponding keynote and
shadow regions 210 provide a means and method for receiving a
natural language text expression from a user and for concisely and
efficiently displaying the parsed and linked structured output of the
text expression in an area on display device 121. In the following

sections, the detailed description of the processing performed by parser

17

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

300 and lexical analysis tool 400 is provided.

As can be seen from Figures 3 - 7 and the above description in
connection with user interface 200 of the present invention, user
interface 200 provides an easy and intuitive user interface for
inputting text expressions and receiving resulting associated
structured information. Further, because the keynote and shadow
regions 210 are always displayed or easily displayable on display device
121, the user may easily record notes or thoughts within the keynote
window 220 without losing the context of the work previously being
done. In this manner, the present invention allows the easy
recordation of notes without disrupting current user operations. In
addition, the present invention allows notes to be recorded in a
natural language unstructured form which more closely resembles the
natural user thought processes. Thus, the user is not required to
organize these notes or thoughts into particular structured fields and
the user is not required to navigate through a multiple step
application to record notes or thoughts. A further advantage of the
present invention is the ability to integrate the operation of several
conventional computer applications into a central free form user
interface. Because the present invention provides a means for parsing
natural language into structured information linked to project objects,
contact objects, date/time calendar event objects, or list objects, the
structured information thereby produced can be easily integrated to a
word processor application, a calendaring application, a database
application, a project management application, or an electronic mail
application. The present invention thereby allows the user to input

an unstructured text expression which can be parsed into structured

18

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

information which is thereafter provided as input to this variety of

conventional software applications.

Parser

The parser 300 of the preferred embodiment receives natural
language text expressions from user interface 200 and produces
structured information including links to information objects, such as
projects, contacts, lists, date/time calendar items, and enclosed
documents corresponding to those identified to keywords in the input
text expression. Although many parsing algorithms exist in the prior
art, the parser 300 of the present invention is unique in its ability to
effectively identify and suggest keywords and/or date/time calendar
events in an input text string and respond with interactive user real-
time performance. Parser 300 of the preferred embodiment
accomplishes these objectives with a novel internal architecture and
set of methods for processing a natural language text expression. The
architecture and methods used by the parser 300 of the present
invention will be described in the following sections.

The present invention solves the problem of interpreting
structure and meaning from natural language text. This meaning is a
set of structured information related to or linked to other pertinent
information known to and pre-defined by the user. The following
example illustrates the operation of the present invention.

Suppose a user enters the following sample keynote to the user
interface 200 of the present invention:

“call Scott tomorrow to arrange the next Engineering meeting."

The parser 300 of the present invention is used to analyze this keynote

19

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

in real-time as the user enters the keynote character by character. Note
that the eﬁtire keynote is parsed after the entry of each new character.
After the entire keynote is entered by the user and analyzed by parser
300, the following structured information output is produced by parser
300:

lists: Calls

project: arrange Engineering meetings until Dennis gets

back

contact: Scott Jones

date: tomorrow = current date + 1 day

In this example, parser 300 of the present invention recognized
the keyword "call” in the input keynote and determined that this text
input keyword should be linked to or related to the "Calls" list. The
parser 300 of the present invention also recognized the keyword
"Scott" and determined that this contact name should be linked to the
contact object "Scott Jones”. The word "tomorrow" was also
recognized by parser 300, which calculated tomorrow's date (ie.,
current date + 1 day) and linked this date object to the input keynote.
The keywords "Engineering meeting" were recognized by parser 300 as
a link to the previously defined "arrange Engineering meetings until
Dennis gets back" project object. Note that the present invention
displays these links between the input keynote and corresponding
linked object types in the data areas for the list, project, contact, or
date/time calendar event objects in display region 250.

One important goal of the present invention is to ease the

computer user's workload by anticipating his/her intentions based on

20

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

the natural language text expression that has been entered. By
anticipatiﬁg the user's intentions with a reasonable degree of accuracy,
the present invention allows the user to capture information in a
much more efficient and comfortable manner. For example, after
simply typing the input keynote in the example presented above: “call
Scott tomorrow to arrange the next Engineering meeting”, the user is
not required to spend valuable time navigating around the display
screen or an application user interface to link the input keynote to the
desired list, project, contact, and date/time calendar event objects. The
present invention automatically handles the linkage of the
unstructured information in the input keynote to corresponding
structured information objects. The user is thus able to save the
keynote, send the keynote, or initiate action upon the keynote very
quickly with very little user intervention.

Referring now to Figure 8, a block diagram illustrates internal
components of parser 300 and its relationship to the user interface 200,
lexical analysis tool 400, and object database 850. Parser 300 includes
keyword and date/time parser 810 which receives the input natural
language kevnote from user interface 200. The keyword and date/time
parser 810 includes a keyword parser and a date/time parser. The
keyword parser of keyword and date/time parser 810 is responsible for
parsing keywords from the input keynote. Keywords, can be linked to
a variety of different object types including lists, project, contact,
document enclosure objects and even dates (e.g., "Dave’s Birthday" =
6/25). Each of these different types of objects are maintained in parser
300. List object 820 is used to maintain user defined list objects.

Project object 822 is used to maintain user defined project objects.

21

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

Contact object 824 is used to maintain contact name objects.
Enclosure object 826 is used to maintain enclosure or document
identifier objects. Other object types 828 may similarly be provided.
For each type of object, the keyword parser of keyword and date/time
parser 810 links objects 820 through 828 to corresponding keywords of
the input keynote in a manner described in more detail below.

The date/time parser of keyword and date/time parser 810 is
used to scan the input keynote for the presence of information
corresponding to a date or time event. The operation of the date/time
parser is described in more detail in a later section of this document.

Keyword and date/time parser 810 interfaces with a lexical
analysis tool 400. It will be apparent to one of ordinary skill in art that
the functions performed by lexical analysis tool 400 may equivalently
be implemented as an integrated part of parser 300 or keyword and
date/time parser 810. However, in the preferred embodiment of the
present invention, lexical analysis tool 400 is provided as a software
module independent from keyword and date/time parser 810. Upon
receiving an input natural language keynote from user interface 200,
keyword and date/time parser 810 passes this keynote to lexical
analysis tool 400 on line 410. Lexical analysis tool 400 is responsible for
producing a set of tokens from the input keynote.

Referring now to Figure 9, a flowchart describes the processing
performed by lexical analysis tool 400. In an initial processing block
912, lexical analysis tool 400 gets the input keynote from parser 300. As
part of the initialization process, a character pointer is initialized to
point to the first character of the keynote. A token buffer used for

collecting characters of the current token is initialized in block 912.

22

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

Next in decision block 914, a loop is started to process each of the
characters in the input keynote. When the entire keynote has been
processed, processing path 916 is taken and the lexical analysis tool 400
returns the output token list to parser 300. If more characters remain
in the input keynote, processing path 918 is taken to decision block
920. If the current character being processed is not a delimiter
character, processing path 924 is taken to processing block 928 where
the current character is added to the token buffer and the next
character is processed through block 930 and back to decision block 914.
A delimiter character can be one of any pre-defined special characters
such as blank, tab, comma, period, etc. Referring again to decision
block 920 if the current character is a delimiter character, processing
path 922 is taken to processing block 926 where processing is
completed for the currently collected token. In block 926, any white
space or unnecessary blanks surrounding the token are removed and
any upper or lower case characters of the token may optionally be
standardized to a consistent form of capitalization. Further, the token
is classified as one of several token types such as alpha character, alpha
numeral, date, date span, etc. A numerical quantity is also associated
with the token. The token is also classified as a date/time token or a
keyword token. In the preferred embodiment, two separate token lists
are maintained: one for keyword tokens and another list for date/time
tokens. This distinction is made because the parser 300 is context
sensitive. For example, the token "Friday" may have special meaning
to the date/time parser but not to the keyword parser. It will be
apparent to those of ordinary skill in the art that the use of separate

token lists is not necessary in alternative embodiments.

23

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

The new token, the token type, and token value information is
then addéd to an output token list, which represents the token list that
will be returned to parser 300 at the completion of processing
performed by lexical analysis tool 400. Also in processing block 926,
the token buffer is initialized to set up for collection of the next token
and processing is transferred to processing block 930 where the next
character in the keynote is processed. Using this basic processing flow
performed by lexical analysis tool as shown in Figure 9, the present
invention converts a natural language free form input keynote to a set
of tokens and token type and value information which can be
conveniently processed by parser 300. The token list is transferred
from lexical analysis tool 400 to parser 300 on path 420 as shown in
Figure 8.

The interface between parser 300 and lexical analysis tool 400
may also be used to exchange tokens between parser 300 and lexical
analysis tool 400 for the purpose of obtaining a multiple word token
that may be used to represent a particular date/time event. The parser
300 and lexical analysis tool 400 exchange date/time tokens until the
parser 300 finds a date/time processing path that succeeds for the
date/time token.

Figures 10 - 13 illustrate the operation of the keyword parser of
keyword and date/time parser 810 of the present invention. Figures
10 and 11 are flowcharts illustrating the processing flow of the
keyword parser of keyword and date/time parser 810. Figures 12 and
13 illustrate examples of the operation of the keyword parser of
keyword and date/time parser 810.

Referring now to Figure 12, examples illustrate the manner in

24

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

which object dictionary 851 is initially loaded with keyword
informatioh. On initialization, the object database 850 is accessed to
obtain the initial objects to be loaded into object dictionary 851.
Because local data in the object dictionary 851 can be used, the
operation of the parser 300 is much faster. More details on the object
database 850 are provided in a later section of this document.

Object dictionary 851 includes a trigger table 856, a keyword
dictionary 852, and keyword definitions table 854. Trigger table 856
includes entries called triggers for each of the tokens from which
keywords are formulated. Associated with each trigger is a reference
count identifying the number of keywords of which the corresponding
trigger is a member. Keyword dictionary 852 includes the identity of
each of the keywords pre-defined using methods or calls provided by
the keyword parser of keyword and date/time parser 810. Blocks 1210,
1212, and 1214 shown in Figure 12 illustrate three examples of calls to
an "add keyword" function or method used to add an entry to
keyword dictionary 852. These calls are also used to load keyword
definition information into keyword definition table 854. As shown
in the examples in Figure 12, keyword definitions include a reference
to a list object, a project object, and a contact object associated with each
keyword in the keyword dictionary 852. The keyword dictionary 852
includes a definition link (Def. Link) which points to the keyword
definition entry corresponding to the keyword in the keyword
dictionary 852. As a result of the sample method calls 1210, 1212, and
1214 illustrated in Figure 12, keyword dictionary 852, keyword
definition table 854, and trigger table 856 are populated with keywords

and associated keyword definitions and triggers. Once these tables and

25

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

storage areas of object dictionary 851 are populated, the keyword parser
of keywofd and date/time parser 810 can be used to parse a user input
keynote from a natural language form including these predefined
keywords into an output structured information table containing the
linked list objects, project objects, and contact objects associated to the
keywords detected by the keyword parser of keyword and date/time
parser 810 in the user input keynote.

Referring now to Figures 10 and 11, flowcharts illustrate the
processing logic used by the keyword parser of keyword and date/time
parser 810 for performing this function. In an initial processing block
1010, a keyword buffer, a current keyword buffer, and an output buffer
are initialized. The keyword buffer is used to temporarily hold a
portion of a keyword (i.e., one or more tokens) until a most complete
(i.e., longest) keyword can be built. The current keyword buffer is used
for the storage of the currently most complete keyword. The output
buffer is used for storage of the structured information or keyword
definition information retrieved for the keywords of the current user
input keynote. In processing block 1012 the next token in the user
input kevnote is retrieved. If the retrieved token is a trigger as
determined by accessing the trigger table 856, the processing path 1018
is taken to processing block 1022 where the trigger is appended to the
contents of the keyword buffer. Next, the keyword dictionary 852 is
searched for the current contents of the keyword buffer in decision
block 1024. If the contents of the keyword buffer are found in keyword
dictionary 852, processing continues with processing block 1026 where
the contents of the keyword buffer are stored in the current keyword

buffer. In this situation, the current collection of tokens in the

26

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

keyword buffer were found in keyword dictionary 852. If there are
more tokens in the user input keynote, path 1030 is taken back to
processing block 1012 where the next token is retrieved and the above
process is repeated.

Referring again to decision block 1014, if the retrieved token is
not a trigger as determined by access to trigger table 856, processing
path 1016 is taken to decision block 1020 where the contents of the
current keyword buffer are checked. If the current keyword buffer is
empty, processing continues at decision block 1028 through the bubble
labeled A. In this case, the current token is simply thrown away. If
the current keyword buffer is not empty however, processing
continues at the bubble labeled B illustrated in Figure 11. Similarly,
processing continues at the bubble labeled B if the current keyword
buffer is not empty for the last token in the user input keynote
resulting in traversal of processing path 1034.

Referring now to Figure 11, processing continues for the
keyword parser of keyword and date/time parser 810 at the bubble
labeled B. In this situation, the current keyword buffer contains the
greatest number of continuous tokens found in the user input
keynote that form a predefined keyword in keyword dictionary 852. In
this case, the current keyword in the current keyword buffer is used to
perform a look up for the associated keyword in keyword dictionary
852 (processing block 1110). Once the keyword is found in keyword
dictionary 852, the corresponding keyword definition from keyword
definition table 854 is retrieved. The corresponding keyword
definition includes the list, the project, and the contact object

information corresponding to the matched keyword from the

27

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

keyword dictionary (processing block 1112). In decision block 1114, a
test is pefformed to determine if the keyword definition components
(i.e., the list, the project, and the contact) have been previously
modified in the output buffer. If this is true (processing path 1118), the
current content of the output buffer is not further modified by
execution of the operation in processing block 1116. In processing
block 1116, the keyword definition information from the keyword
dictionary is stored into the previously unmodified portions of the
output buffer. In the present invention, if keywords or the tokens of a
keyword are not mixed, and the keyword parser of keyword and
date/time parser 810 detects two or more keywords that link to
different keyword definitions, the keyword parser of keyword and
date/time parser 810 of the preferred embodiment picks the keyword
definition whose keyword appeared first or left-most in the user input
keynote. Further, if two or more keywords or the tokens of the
keywords are mixed together, the keyword parser of keyword and
date/time parser 810 of the preferred embodiment picks the longest
keyword from left to right in the user input keynote and then throws
away all of the tokens of this longest keyword from further
consideration in processing the remainder of the user input keynote.
Using these parsing rules in the present invention, the resulting
output structured information is predictable and understandable
given an input keynote. Once the output buffer is loaded in
processing block 1116, processing continues at the bubble labeled A
illustrated in Figure 10. Referring again to Figure 10 and the bubble
labeled A, the processing loop for processing tokens continues at

decision block 1028 until all of the tokens in the input keynote are

28

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

processed.

Reférring now to Figure 13, four examples (1 - 4) illustrate the
operation of the preferred embodiment of the present invention
given a user input keynote in association with the corresponding
output structured information produced by the keyword parser of
keyword and date/time parser 810 of the present invention. Further,
the examples illustrated in Figure 13 are based on the preloaded object
dictionary 851 illustrated in Figure 12. As described above in
connection with Figure 12, the object dictionary 851 including trigger
table 856, keyword dictionary 852 and keyword definition table 854 is
loaded with information such as the sample information illustrated
in Figure 12. Based on this information, the present invention
produces the output structured information illustrated in Figure 13
given the input keynotes shown for each example.

Referring now to Figures 12 and 13, in a first example, given the
input keynote "hello world", the present invention matches this
input keynote with the "hello world” keyword found at row 2 in
keyword dictionary 852 shown in Figure 12. As a result, the content of
row 2 of keyword definition table 854 shown in Figure 12 is transferred
to the output structured information buffer shown in the first
example in Figure 13.

In the second example shown in Figure 13, the input keynote
"hello world peace” is parsed by the present invention. As a result,
the present invention matches this second sample input keynote with
the "hello world" keyword found at row 2 in keyword dictionary 852.
In this case, the keyword definition at row 2 of keyword definition

table 854 shown in Figure 12 is transferred to the output structured

29

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

information buffer as shown for the second example illustrated in
Figure 13; Note that the keyword "world peace” in the second example
shown in Figure 13 does not cause the keyword definition in the
output structured information buffer to be modified.

Referring now to the third example illustrated in Figure 13, the
input keynote "hello everyone world peace" is processed by the
keyword parser of keyword and date/time parser 810. In this case, the
keyword parser of keyword and date/time parser 810 matches the
"hello" keyword with the first row of keyword dictionary 852 shown
in Figure 12. In this case, the keyword definition at row 1 of keyword
definition table 854 shown in Figure 12 is transferred to the output
structured information buffer shown for the third example illustrated
in Figure 13. In further parsing of the input keynote for the third
example shown in Figure 13, the keyword "world peace" is matched
with the third row of keyword dictionary 852 shown in Figure 12.
However, because the list and contact components of keyword
definition 854 have already been modified by the previously matched
keyword ("hello"), the list and contact components in the output
structured information are not further modified for the "world peace”
keyword definition.

Referring to the fourth example illustrated in Figure 13, the
input keynote is parsed by the keyword parser of keyword and
date/time parser 810. In this case, the keyword "hello” is matched to
the first row of keyword dictionary 852 and the corresponding
keyword definition from row 1 is transferred to the output structured
information buffer as shown for the fourth example illustrated in

Figure 13. In this case, however, further parsing of the input keynote

30

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

in the fourth example matches the keyword "hello world” to the
second rdw of keyword dictionary 852. The corresponding keyword
definition from row 2 is obtained. Because the project component of
the keyword definition was not previously modified, the project
definition for the second row of the keyword definition table 854 can
be transferred to the project component of the output structured
information buffer illustrated for the fourth example shown in Figure
13.

The present invention includes methods and objects for
suggesting new keywords to a user given a predefined object
dictionary 851 and an input user keynote.

Referring now to Figure 14, a flowchart illustrates the
processing performed for suggesting keywords to be linked to contact
objects. It will be apparent to one of ordinary skill in the art that a
similar set of processing may be performed for lists, projects,
enclosures, or other keyword definition components. In processing
block 1410, the user input keynote is parsed into tokens by lexical
analysis tool 400. Each token can then be compared with the keyword
dictionary 852 to determine if the token is already a predefined
keyword (processing block 1414). In addition, the token may be
checked with the content of a pre-defined list of words explicitly
defined as not suggestible. If the token is not already in keyword
dictionary 852 and the token is not on the list of non-suggestible
words, the token may be suggested as a keyword in processing block
1416. If the token is already present in keyword dictionary 852 or the
token is on the list of non-suggestible words, the token cannot be

suggested. In this case, the token can be augmented in a variety of

31

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

ways to render the token distinctly different from other keywords
currently fesiding in keyword dictionary 852. As an example of such
an augmentation of a token, the first character of the next sequential
token in the input keynote may be used and concatenated with the
token currently being processed. This augmented token may then be
compared with the contents of keyword dictionary 852 to determine if
the augmented token is not currently present in the keyword
dictionary and not on the list of non-suggestible words. If the
augmented token is found in keyword dictionary 852 or the
augmented token is on the list of non-suggestible words, the
augmented token may be further augmented using additional
characters of the next token or the previous token in the input
keynote. This process continues until a unique and suggestible
augmented token 1is generated. @ This unique and suggestible
augmented token may then be suggested as a keyword to the user in
processing block 1418. Finally, all tokens in the input keynote may be
appended together as a combined token. This combined token is
compared with the contents of keyword dictionary 852 and the list of
non-suggestible words to determine if the combined tokens are
currently defined as a keyword in the keyword dictionary or as non-
suggestible. If not, the combined tokens may be suggested as an
additional keyword in processing block 1420.

In an alternative embodiment, the logic for suggesting
keywords may employ different heuristics based on the type of object
for which keywords are being suggested. Thus, for example as
described above for contact objects, it may be desirable to augment a

keyword to include characters from subsequent tokens or to create

32

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

initials from multiple tokens as one may do for the name of a contact.
However, .this process may not be appropriate for creating augmented
keywords for list or project objects. In these cases, a somewhat
different augmentation process may be used. The use of different
heuristics based on the type of object is easily implemented with the
present invention because the type of object will be known at the time
the suggesting process is employed. By knowing the type of object for
which a keyword suggestion is being generated, the appropriate
heuristic may be selected.

Thus, the processing performed by the present invention for

parsing keywords is described.

Date/Time Parser

The implementation of the date/time parser of keyword and
date/time parser 810 of the present invention is described in the
following sections. The date/time parser of keyword and date/time
parser 810 uses lexical analysis tool 400 to break an input keynote into
date relevant tokens and to identify tokens in the input expression
that may be relevant to date parsing. The lexical analysis tool 400 uses
a method for breaking the input keynote into date relevant tokens
similar to the method described above in connection with Figure 9. In
addition, lexical analysis tool 400 provides for each token a
specification of the type of the token and a numerical value associated
with the token. For example, the word "two" would be classified by
lexical analysis tool 400 as a numerical type token with a value equal
to 2. As another example, the token "Monday" would be classified by

lexical analysis tool 400 as a day type token with a numerical value

33

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

equal to 2, corresponding to the second day of the week. As another
example, the token "/" would be classified as a date separator token
with an undefined numerical value. In a similar manner, all other
tokens associated with date or time events are similarly predefined
with a specific type and a predefined numerical value which lexical
analysis tool 400 provides as output to keyword and date/time parser
810 when the particular token is identified in the input keynote.
Using the token and token type information provided by lexical
analysis tool 400, the date/time parser of keyword and date/time
parser 810 is able to parse and recognize date/time events in an input
keynote.

The date/time parser of keyword and date/time parser 810 is
responsible for parsing the input keynote to interpret dates and times
from the natural language input keynotes as entered by a user. The
goal of the day/time parser 814 of the present invention is to parse a
set of date and time tokens from an input keynote and determine with
perfect accuracy the intended date or time constraint applied by a user.
The format used by the present invention is simple, short, intuitive,
and powerful enough to allow a user to express almost any date/time
value by typing a short and simple expression directly as natural
language text rather than being forced to navigate through a maze of
dialogs or to manipulate numerous command buttons, check boxes, or
other graphical user interface components.

The date/time parsing performed by the date/time parser of
keyword and date/time parser 810 uses a novel form of recursive
descent with infinite look ahead technique. This technique provides

an O(N) complexity methodology. Similarly, the keyword parser of

34

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

keyword and date/time parser 810 achieves an O(N) complexity. This
is the best.complexity theoretically possible. Thus, the performance of
the present invention is well suited for real-time applications
requiring quick response.

The following is a list of date expressions recognized and a list
of rules employed by the keyword and date/time parser 810 of the
preferred embodiment:

Note: Assume today is Monday, June 10, 1996 while reading this table.

Date Description Parses to This Date

e today Mon., 6/10/96

e this morning/afternoon/evening Rule: Parse to current date
* tonight

* tonite

* tomorrow Tues., 6/11/96

e tomorrow morning/afternoon/ Rule: Parse to the current

evening/night date + 1 day
e [0]6/10 Mon., 6/10/96
¢ [0]6-10 Rule: Parse to the current

date or the nearest future

occurrence of the specified

date.
e [0]6.10
e June 10
e June 10th

35

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

¢ June ten|[th]

e ten[th] of June

* [0]6/10/98 Wed., 6/10/98

e [0]6-10-98 Rule: Parse to the specified
date.

e [0]6.10.98 Note: The parser must be

configured for European

locations to enable handling
of the DD/MM/YY date

format.
* June 10, 1998
* 10 June 1998
* two days* from today** Wed., 6/12/96

Rule: Parse to the Specified
starting date ("today," etc.)
+ specified increment ("two

days, " etc.).

* in/within fourteen days* Mon., 6/24/96
Rule: Parse to the current date
+ specified number of days or
weeks. Adding months will
yield the same day of the
month (if possible), x months

later. In other words, "2

36

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

months from “june 4th,

96" will yield "August 4th, 96".
"one month from May 315t",

will yield "June 30th" (the last
day of the month, since June
315t does not exist). Similarly,

"five years from 5/5/94
"will yield "5/5/99".

* Monday Mon., 6/17/96

* this Monday Rule: Parse to the next
occurrence of the specified day;
never the current date. For
example, Tuesday" is Tue,
6/11/96.

* this coming Monday

* next Monday Mon, 6/17/96

Rule: Parse to:

1. "next <day>" is specified
during the next week, using
Monday as the first day

of the week.

2. "On a Sunday, "next <day>"

37

SUBSTITUTE SHEET (RULE 26)

WO 98/37478

PCT/US98/02921

parses to the specified day

during the 2d week following
the Sunday (i.e., the week
beginning eight days from the
Sunday) - except for Sunday,
which parses to the Sunday

that is one week away.

o first*** Monday of next month

e first*** Monday of/in July

e first*** Monday of June, 1995
e first** Monday of June, 95
e first*** Monday of 6/95

Mon., 7/3/96

Rule: Parse to the first
occurrence of the specified
day during the next month

on the calendar.

* Could specify "weeks,” "months,” "years,” "Mondays,"

Tuesdays," etc. instead of "days”

*x Could specify "tomorrow,” "next Thursday," etc. instead of

"today"”

*** Could specify "second", "third", "fourth”, "fifth", and "last".

Recurring events can occur on a daily, weekly, monthly, annual

basis. The keyword and date/time parser 810 also handles the entry of

recurring events. The keyword and date/time parser 810 recognizes

38

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

the following types of recurring event specifications and associated
date-related keywords or key expressions. Note that other forms may
similarly be handled.

* every day”

* every other day*

* every three days*

e every Thursday

» every weekday (every Monday, Tuesday, Wednesday, Thursday,

and Friday)

* every weekend (every Saturday & Sunday)

* every other weekend

* every other Thursday

* Tuesdays (every Tuesday)

* weekdays (every weekday)

 first Thursday of every [other] month

* first Thursday of every three months

e fifteenth of every month

* "day(s)" can be replaced by "week(s)", "month(s)", and "year(s)".

Note that recurring dates are assumed to occur forever in the
preferred embodiment. The keyword and date/time parser 810 always
picks an intelligent starting date, but does not report an ending date.
For example, assuming that today is Monday, 6/11/96, "every
Tuesday" will be interpreted by the parser 810 as "every Tuesday"
starting Tuesday, 6/12/96 (the nearest weekday starting from today).

As with dates, abbreviations and numerical/ordinal

substitutions are correctly interpreted.

39

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

DLL Interface of the Preferred Embodiment of the Present Invention

The following section describes the interface to the parser 300
dynamic link library (DLL) component of the preferred embodiment
of the present invention. The generic use of DLL's is well known to
those of ordinary skill in the art.

The parser 300 of the preferred embodiment is composed of a
single DLL. In this embodiment, the DLL is written in the C++
programming language. It will be apparent to those of ordinary skill
in the art that other programming languages, such as C, Basic, etc.,
may alternatively be used. The parser 300 capabilities of the preferred
embodiment include the following:

* Date and time parsing.
* Recurring event parsing.
e List, project, and contact parsing via keywords.

* Suggestions of list, project, and contact keywords.

* Automatic Completion (auto-complete or auto-fill) of list,
project, and contact names. This process is similar to a
conventional "quick fill" technique designed to assist the user
by completing the partial entry of data based on previously
entered data.

* Collaboration parsing.

From the point of view of parser 300, date and time parsing
requires no special knowledge of data. On the other hand, parsing,
completing, and suggesting keywords, lists, projects, and contacts
requires explicit knowledge of the existing or predefined lists, projects,
contacts, and keywords. The parser 300 of the preferred embodiment

40

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

is data-independent. In other words, it is not aware of any files or
databases.‘ Therefore, the parser 300 must be initialized with lists,
projects, contacts, and keywords. The initialization process usually
occurs during the boot time of the application that uses the parser 300,
or when the application switches to another set of data. The following
pseudo code illustrates a typical initialization of the parser 300 of the

preferred embodiment:

declare list, project, contact, keyword as strings
for every list in database

AddList(list)

for every project in object database

AddProject(project)

for every contact in object database

AddContact(contact)

for every keyword in object database

AddKeyword(keyword, list, project, contact)

After this initialization, the parser 300 knows about all the lists,
projects, contacts, and keywords. It is now able to correctly auto-fill,
parse, and suggest keywords upon request from the client. Of course,
the parser 300 must be kept in synchronization with the data in the
object database 850; changes in the object database 850 should be
reflected in the parser 300. Updates are accomplished using Add,

41

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

Delete, and Rename function calls. As an example, consider the
followingb situation: a user deletes an existing project named "Paint
Fence". The application removes the project from the object database
850 and removes (or updates) its associated keywords. This change
must be reflected in the parser 300 and can be done with a single

function call as follows:
DeleteProject("Paint Fence");

This single function call will remove the project and any
references to it from the parser 300. The project name will no longer
auto-complete and all of the keywords that are associated with the
"Paint Fence" project will be automatically removed or updated. Note
that DeleteProject(), AddProject(), and RenameProject() return values
indicating success or failure of the function. For the sake of simplicity,
the previous examples ignore the return values.

The Rename functions support renaming of lists, projects,
contacts, and keywords. Renaming a list ("list" is used as an example -
it can be replaced by "project” or "contact”) is easily done in the object
database 850. It is effectively a simple database update operation.
Because the list has a primary key in the object database 850, and the
keywords that are associated with the list are related to the list via this
key (rather than the list's name), modifying the name of the list will
not affect its associated keywords. In other words, the keywords will
remain linked to the list after the name change.

The Rename functions of the preferred embodiment are as

follows:

42

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

BOOL WINAPI EXPORT RenamelList(const char FAR* sOldList,
| const char FAR* sNewList);

BOOL WINAPI EXPORT RenameProject(const char FAR*
sOldProject, const char FAR* sNewProject);

BOOL WINAPI EXPORT RenameContact(const char FAR*
sOldContact, const char FAR* sNewContact);

BOOL WINAPI EXPORT RenameKeyword(const char FAR*
sOldKeyword, const char FAR* sNewKeyword);

A single function call to any of the above functions will handle

the entire renaming process, and will simplify the client's task.

Retrieving Results From The Parser

In order to retrieve information from the parser 300, a client
must allocate buffers and pass them into the parser 300 DLL via
function calls. Parsing information is retrieved using the ParseOutput

Data Structure 830, which is defined as follows:

typedef struct_ParseOutputf
char sList{BUFFER_SIZE};
char sProject(BUFFER_SIZE];
char sContact(BUFFER_SIZE];
char sDelegate[BUFFER_SIZE];
char sDate[BUFFER_SIZE];
char sTimeBegin[BUFFER_SIZE];
char sTimeEnd[BUFFER_SIZE];
char sDateEnd[BUFFER_SIZE};

43

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

long nFrequency;

BYTE bRecurring;

BYTE nUnits;

BYTE nWeekdays;

BYTE nWeekdayPos;
JParseOutput, *ParseOutputPtr;

The client of the parser 300 DLL allocates a ParseOutput data
structure ("struct" or "type" in Visual Basic), and passes it along with
the input expression to be parsed using any of the following function

calls:

Parse()
DateParse()

Keyword suggestions are retrieved from the parser 300 using

the KeywordSuggestion structure, defined as follows:

typedef struct_KeywordSuggestion{
char sKeyword1[BUFFER_SIZE];
char sKeyword2[BUFFER_SIZE];
char sKeyword3[BUFFER_SIZE];
}Keyword Suggestion, “KeywordSuggestionPtr;

The client of the parse DLL allocates a KeywordSuggestion data
structure, and passes it along with an input expression using any of

the following function calls:

44

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

SuggestListKeywords()
SuggestProjectKeywords()
SuggestContactKeywords()

Auto-completion (auto-fill) requires only a character buffer

which can be declared by the client as:
char sBuffer[BUFFER_SIZE];
in C or C++, or
Dim sBuffer As string * BUFFER_SIZE

in Visual Basic. The buffer, along with the expression to be

completed, is then passed into any of the following function calls:

AutoFillList()
AutoFillProject()
AutoFillContact()

Handling Recurring Dates
The present invention supports recurring date parsing by use of
the following fields of the Parse Output Data Structure. These fields

are:

nFrequency: Long. Null value = 0. "five days" -> nFrequency =

45

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

5.

nUnits: BYTE. Null value = 0. DAYS = 1, WEEKS =
2, MONTHS = 3, YEARS = 4.

nWeekdays: ~ BYTE. Null value = 0. SUN =1, MON =
2, TUE =4, WED = 8, THU = 16, FRI = 32, SAT = 64.
All possible combinations of weekdays can be
stored. For example, Sat and Sun =64 + 1 = 65.
Mon, Tues, and Wed = 14. To find out if
nWeekdays includes a specific weekday, simply
"bitwise and" that weekday with nWeekdays (&
operator in C/C++, "and" operator in Visual Basic).
If the result of the bitwise operation is zero, then
the weekday is not included in n Weekdays;
otherwise, it is.

nWeekdayPos: BYTE. Null Value = 0. 18t, 2nd, 3rd 4th or 5th
weekday of a given month. Thus, "the second

Monday of July” would imply that nWeekdayPos =
2.

Finally, a boolean value is provided to signal whether we are

dealing with a simple date or a recurring date:
bRecurring: BYTE. False = 0. True = anything else. If
bRecurring = True, sDate serves as the starting date of the

recurring event.

The parser 300 doesn't require end dates. That is, recurring

46

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

events are assumed to go on "forever" (the user must use the user
interface 200 to specify a full range). The "sEndDate" field in the
ParseOutput data structure, is nonetheless provided to support
specified end dates. A starting date, however, is always provided when
a recurring date is parsed. Although the parser 300 doesn't require
starting dates (i.e., every Friday starting on 8/8/97), it always tries to
guess (intelligently) a starting date for the recurring event. This
starting date will be passed via the ParseOutput struct in the sDate

field.

Collaboration

Collaboration support is provided in the preferred embodiment
of the present invention. The parser 300 looks for two possibilities at
the beginning of each keynote. Note that other similar keywords
triggering collaboration could also be provided.

. The word "please” (or "pls") immediately followed by a

contact keyword.

. A contact keyword immediately followed by the word

"please” (or "pls").

The parser 300 also accepts a single or multiple punctuation
(comma, period, colon, and semicolon) between the contact keyword
and the word "please” (e.g., "Brian. Please..." or "Please, Brian...").

When the parser 300 recognizes this keynote sequence, parser
300 fills the sDelegate field of the ParseOutput data structure with the
contact name (pointed to by the contact keyword). The next contact
keyword (if any) will appear in the sContact field. For example,

consider the two contacts, "Brian Smith" (keyword = "brian") and

47

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

"Danny Jones" (keyword = "danny"). The input expression:

"Brian, please call Danny and arrange for all of us

to go to lunch tomorrow at 2pm"
will result in the following ParseOutput data structure fields:
sDate = <tomorrow's date>
sTimeBegin = 14:0
sDelegate = "Brian Smiga"

sContact = "Danny Rabbani"

Further details on collaboration support of the present

invention are provided in a subsequent section this document.

Object Database

The object database 850 of the present invention supports
arbitrary association of one type of object in the database with one or
more other objects of any type. The object database 850 also supports
collaboration (including negotiation and tracking action requests to
completion) between two users of the present invention who may or
may not share a common server.

Referring now to Figures 15-18, various tables maintained
within object database 850 are shown. Note that the table keys are

shown only for illustrative purposes.

Types of Objects

48

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

Figure 15 shows the object type table of the preferred
embodiment. There are several types of objects currently supported in
the database of the present invention. A representative portion of
these types of objects are shown in Figure 15 along with a description
of the type of the particular object in the preferred embodiment.
Because the object types are stored in a table in the object database 850,
an object type can be added, deleted, or modified at run time. This is
useful for supporting user-defined types of information or objects (e.g.,

a “GPS Location”).

Association of Object Types to Tables Where They Reside

Every type of object listed in Figure 15 is stored in the object
database 850 in one of several tables. The association between the
object type the table in which it resides is retained in the object
association table shown in Figure 16. As the object association table
shown in Figure 16 illustrates, multiple types of objects may be
associated with--and thus actually stored in--the same table. For
example, the object types of: Person, Delegate, FYI, and Attached

Person are all associated with the "People” table.

Object Links Table

The links table of the preferred embodiment is a special table in
the database of the present invention that allows free association of
one object of any type to another object of any type. For example, the
links table allows the present invention to associate a Person object
type to an Email Address object type. Note that the same Person could

also be associated with additional email addresses, each represented in

49

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

the Links table as separate entries.

Referring to Figure 18, a sample link table is illustrated. As
shown, the columns (structure) of the link table includes the
specification of a two keys and two object types: key 1, type 1, key 2, and
type 2.

Every object in the object database 850 of the present invention
has a unique identifier, or key, associated with the object. These keys
are stored as part of the record, or entry, describing an object in a
particular table. For example, Brian Smiga is an instance of a Person
object type with a key of 101; Brian’s first name and last name, as well
as his object instance key, will be stored directly in the People table as
part of a single record.

As indicated previously, every object in the database of the
present invention also has a type associated with it. Given the object
key and object type of one object and the key and type of another
object, the two objects may be “linked” via a single entry (record) in
the links table, a sample of which is shown in Figure 18.

For example, if "Brian Smiga" represents an instance of a
Person object type with a key 101 and "smiga@actioneer.com”
represents an instance of a corresponding Email Address with a key
102, the “"Brian Smiga" object instance may be linked to his
corresponding “smiga@actioneer.com” email address instance in the

link table as follows:

Key 1 Type 1 Key 2 Type 2
101 5 102 13

50

SUBSTITUTE SHEET (RULE 26)

mailto:smiga%40actioneer.com

WO 98/37478 PCT/US98/02921

where a Person object type has a key 5 and an Email object type has a
key 13. The above example of a links table entry indicates that Brian
Smiga (key=101) of type Person (5) is associated to (i.e. linked to)
smiga@actioneer.com (102) of type Email Address (13). In the preferred
embodiment, entries are always stored in the links table such that the
value of Type 1 is less than or equal to the value of Type 2. This table

organization aids in searching.

Sample Database Representation

Referring now to Figure 17, an example illustrates the
organization and use of the various tables in the object database 850 of
the present invention. The columns shown for each table are only a
subset of the columns actually in the database of the present
invention. For example, Projects also have an associated Outcome
(goal), which would be saved in a separate column in the Projects
table. Additional information about a project might be entered in
another table, such as Simple Date (which would include the start,
due, and completion dates for the project), and linked to the associated
Project via the links table as described above. Additional information
about any of the contacts in the Contacts table might be entered in a
Physical Address table, the Email Address table, etc. and linked to the
associated Person via the links table as described above. Note that in
the table representations illustrated in Figure 17 and 18, the italicized
columns showing descriptions of the linked items do not actually
appear in the database of the preferred embodiment. Rather, they are
shown here for purposes of clarification in this patent application.

Given the initial database table content shown in Figure 17,

51

SUBSTITUTE SHEET (RULE 26)

mailto:smiga%40actioneer.com

WO 98/37478 PCT/US98/02921

suppose a user named "Dennis Buchheim", creates a keynote by
entering a text expression into a keynote region 220, the sample
keynote reading as follows:

“Brian, please call Jim tomorrow re patent status”

Further suppose the user attaches the Person “Jim Salter” and
the Project “Patents”, also sending an FYI keynote to Tom Hagan as
described in detail above. In this example, the parser 300 of the present
invention will automatically determine many of the links that need
to be established in the tables shown in Figure 17: keyword “Brian”
will be recognized as a keyword linked to “Brian Smiga,” who is a
Delegate of the keynote; keyword “call” will be recognized as a
keyword linked to the “Calls” list; keyword “Jim” will be recognized as
a keyword linked to the contact person “Jim Salter”; “tomorrow” will
be recognized as meaning 2/8/97 (or whatever the current date is plus
one day); and “patent” will be recognized as a keyword linked to the
“Patents” Project. The remaining links will be determined by the user
interface 200, in which the new keynote was created.

Once the new keynote is filed by user Dennis, the following
significant data will be recorded in the object database 850 by the

present invention:

* An envelope (Type=0) will be added as a container for the keynote
being sent to a delegate person. The Envelope includes such data as a
subject for the note, when the note was used, or when it is received in
a standard email client. Assume that this Envelope was assigned a
database key of 212 by the object database 850.

52

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

* A List Item (Type=1) will be added for the note and would read
“Brian, please call im tomorrow re patent status”. Assume that this

List Item was assigned a key of 213 by the object database 850.

e Several link table entries would be created for the new keynote in
this example. The sample link table resulting from this sample input
keynote is shown in Figure 18. These entries in the links table (and
one or two less significant additional entries) as shown are sufficient
to describe the note that was entered as an example.

It will be apparent to those of ordinary skill in the art that the
object database 850 implementation of the present invention as
described herein is of broader applicability than strictly for use with
the natural language parser 300 as described herein. In an alternative
embodiment, the input text data may be provided as a structured
record or buffer from which the object database 850 extracts the
information necessary to create the link table shown by example in

Figure 18.

Collaboration Between Two Or More Users Of The Present System

The present system allows a user to manage his or her own
actions/projects and time more effectively. In many cases
actions/projects have to be handled by more than one person. The
collaboration cycle described below allows interaction between users to
further completion of actions/projects and to allow information to be
efficiently exchanged between users of the present system.

Figure 1, described above, illustrates a typical data processing
system upon which one embodiment of the present invention is

implemented. It is understood that the present invention utilizes at
53

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

least one instance of the system, for the originator of the action
request. | In one embodiment, the communication device 125,
described above, allows the users to collaborate as will be described
below. Alternatively, the computer systems of users may be directly
coupled. Alternatively, multiple users may be using the same
computer system.

In addition to parsing input text, the parser 300, described above,
further utilizes the keywords to "classify” the text entered. In one
embodiment, the message types are shared and personal. Shared
messages include: FYI and action requests. Personal messages include
personal action and personal memo. Of course, other message types
may be utilized.

An action request is input text which is sent out to at least one
other person, and requires a response. It generally asks another user
to do something. In one embodiment, the keyword "please” may
initiate an action request. As discussed above, other keywords may be
added to the list, at the user's discretion. For example, a user may add
the keywords "I need you to", "pls”, or similar words to indicate that
the text entered is an action request. Thus, the sentence "Joe, I need
you to call Bill about the Project X deadline" is classified as an action
request, targeted at Joe. The contact is Bill, and the project is Project X.
There is no date, since the requester did not include a date. Such
analysis may be done using the parsing methods described above.
However, the present system is not limited to the parsing method
described above. Other methods of identifying the target, contact,
project and date may be utilized.

An FY], or "for your information,” is input text that is sent out

54

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

to at least one other person, and requires no response. It is used to
inform others about facts. For example, and FYI might be used to
inform others that a new manager has been brought in. Keywords for
an FYI type may be "FYI", "For your information”, "Please note”, and
any other keywords which the user included in the keyword list.
Generally, the targets of the FYI are deduced from the proximity to the
keyword. For example, an FYI which read "John, FYI, Tom is in
charge of Project X now." would send a copy of this FYI to John.

A personal action/memo is text that is not sent to anyone. The
absence of the other keywords would indicate that an entry is classified
as a personal action/memo. For example, the input text "Call Jim
about Project X" is a personal action. It is filed in the user's own

system, as described above, but is not forwarded to anyone else.

Framework For Collaboration

The present system may be implemented on a number of
different frameworks. Figure 19 is a diagram of a client-server system.
The client server system consists of a server 1910, and a plurality of
clients 1920 connected to the server 1910. The server 1910 stores the
information regarding the action requests sent between users and the
database(s) to support the interaction. This assumes, and necessitates,
the existence of a server in a client-server system. In addition to being
expensive and complex, this limits collaboration to members of the
limited group sharing access to the server 2010. In other words, it is
limited to a closed loop of clients C1 ... Cn 2020 who have access to
the server 1910. This means that the collaboration system can not be

used for interacting with individuals outside of the client-server

55

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

framework.

Figure 20 is a diagram of a peer-to-peer distributed system. A
number of peers P1 ... Pn 2030 are interconnected. The peer-to-peer
system allows any two peers to communicate over the system, even if
not directly linked. This distributed system model parallels the
Internet. Thus, any two individuals can communicate using the peer-
to-peer distributed system, as long as both individuals have access to
an e-mail address. In one embodiment, the peer-to-peer distributed
system can be expanded to include such mechanisms as voice mail,
personal digital assistants, and any other mechanisms capable of
receiving and/or sending messages.

The distributed peer-to-peer system enables communication
with users who do not utilize the present system. Thus, the present
system allows seamless integration of all action requests, and to-do-
lists, regardless of whether the recipient is a subscriber to the present
system or not. In one embodiment, the peer-to-peer distributed

system model is used for the present invention.

Keeping Track of Action Requests

Utilizing a distributed system necessitates an alternative means
of keeping track of action requests. Because there is no server which
tracks each action request, a method of identifying each action request
and its associated objects, such as project, sender, etc., is needed. This
method enables the system to match replies to the proper action
request.

In one embodiment, a foreign key table is utilized to keep track

of action requests. To clarify, the example described above with respect

56

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

to Figures 15-18, is continued. The action request in question was:

Delegate: Brian

From: Dennis

FYT: Tom

Subj.: Action Request: Please Brian, call Jim . ..
Encl.: Project Information, Contact Information
Text: Please Brian, call Jim re: patent project.

The format of the action request does not reflect the actual
format of the action request displayed on the present system. The
appearance of such an action request is described below. This action
request was entered by Dennis, and sent to Brian. In addition, an FYI
copy of the action request was sent to Tom. This is to alert Tom to the
action request. When the action request is generated, an envelope is
generated, to contain the action request. The envelope includes a
subject, and links to the list item, as well as the e-mail addresses of
recipients. Below, only the actions occurring in Brian's system are
described. However, similar activity occurs in Tom's system.

When Brian receives the action request, several Link table
entries are created for the new action request. These Link table entries
parallel the entries in Dennis' table, described above. Since the local
key numbers are unique to the database of the individual, these key
numbers may be different. In addition, Brian's system generates a
number of entries into a Foreign Key table. The Foreign Key table is
utilized in mapping a collaborative action request in one database, part
of the sender’s system, to the same action request in another database,

part of the recipient’s system. This link is represented by associating

57

SUBSTITUTE SHEET (RULE 26)

WO 98/37478

PCT/US98/02921
the Envelopes containing the corresponding List Items.
Creator | Local Local Key Foreign | Foreign Key
Database Database
SMTP |Brian's Brian's Rece Dennis' | Dennis' Sent
Database ID | envelope key Database | envelope key
ID (212)
SMTP | Brian's Brian's key for Dennis’ | "me" key for
Database ID | note creator Database | Dennis
(Dennis) ID
SMTP | Brian's Brian's key for "my e-mail" key
Database ID | creator's e-mail | Database | for Dennis
address (Dennis) | ID
SMTP | Brian's "me" key for Dennis’ | Dennis' key for
Database ID | Brian Database | delegate (Brian)
ID
SMTP | Brian's "my e-mail" key | Dennis’ | Dennis’ key for
Database ID| for Brian | Database | delegate's
ID
e-mail address
(Brian)

58

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

SMTP |Brian's Brian's key for Dennis' | Dennis’ key for
Database ID| linked person Database | linked person
(Jim) ID (Jim)

SMTP | Brian's Brian's key for Dennis' | Dennis' key for
Database ID | FYI recipient's e- | Database | FYI recipient's e-
mail address ID mail address

(Tom) (Tom)

SMTP | Brian's Brian's key for Dennis' | Dennis’ key for
Database ID | linked project Database | linked project
(Patents) ID (Patents)

SMTP | Brian's Brian's key for Dennis' | Dennis’ key for
Database ID | sender Database | sender
ID

SMTP | Brian's Brian's key for Dennis' | Dennis’ key for
Database ID| sender e-mail Database | sender e-mail

ID

Table 1

The creator column is the creator of the entries in the Foreign
Key table. The creator column displays the device which received the
action request. In this example, it was the simple mail transfer
protocol (SMTP) plug-in which received the action request from
Dennis.

The Local Database column contains a unique identifier

59

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

identifying the delegate's (Brian's) database. The Foreign Database
column contains a unique identifier identifying the requester's
(Dennis') database. In one embodiment, the identifier is a Globally
Unique Identifier (GUID), which is a 128-bit value based on the
Ethernet address of the machine on which the GUID is generated, as
well as the time at which the GUID was created. Alternatively, other
unique identifiers may be utilized.

The Local Key and Foreign Key are the key numbers from the
Database tables of the individuals. The example keys described above
with respect to Figure X are included in the Foreign Key table, i.e.
Dennis' database entries. For example, the local key for note creator
(Dennis) is the key number associated with Dennis in Brian's database.
The "me" key is a special purpose value utilized because the user's
database may or may not contain information identifying the user
himself or herself, and it is unreliable to match user names via text
comparison. This method allows for a match to be indicated. The
"my e-mail” key is a similar key for the e-mail address of the database
owner. Additionally, a parallel table is generated in Dennis' system
when Dennis receives a reply from Brian. Of course, in Dennis’
system, Dennis' database ID is the Local Database, while Brian's is the
Foreign Database.

Foreign Key entries are also created on both sides (requester and
delegate) for the Person and Project linked to the action request, as
well as the Creator (another Person) of the action request, the Sender
(another Person) of the action request, the Delegate, and any Email
Address associated with the action request. The Person, Project, etc.

entries are created to ensure that the correct links are

60

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

created /maintained on reply and that duplicate entries are not created
in any usér’s database.

In an alternative embodiment, the e-mail addresses of the
sender and the recipient, coupled with a unique identification
attached to the action request itself identifies the action request. In
another alternative embodiment, a unique local identification
coupled with a public key/private key identification of the
sender/recipient is utilized to identify each action request.

Collaboration Cycle

Figure 21 is a flowchart illustrating an overview of the present
invention. At block 2100, the present collaboration cycle starts. It is
initiated by a requester sending a message to a delegate or delegates.

At block 2110, there is collaboration between the systems of the
requester and delegate or delegates. This collaboration involves a
complex series of negotiation steps that are designed to arrive at a final
answer. This is described in more detail below.

At block 2120, the process queries whether the final answer is
affirmative or negative, or done. An affirmative answer occurs when
the parties agree to perform the task. A negative answer occurs when
the parties decide to not perform the task.

If the final answer is affirmative, the process continues to block
2130. At block 2130, the final answer is filed in the appropriate
calendars and lists, including lists associated with contact, project, if
appropriate. These lists will be referred to hereinafter as
project/contact list. Where it is filed depends on the interpretation of
the original action request, and the collaboration process, as described

below.

61

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

If the final answer is negative, the process continues to block
2140. At block 2140, the action request, and collaborative updates of
the original action request are deleted from the calendar and lists.
This process is further described below.

At one point, unless a negative reply was received, the delegate
sends a Done reply to the requester. A Done reply may be sent by the
delegate using the process described below. Alternatively, when the
delegate checks the action/project off his or her calendar and/or
project/contact lists, an automatic Done reply may be generated and
sent to the requester.

When the requester receives the Done reply, the original action
request is marked done in the requester's system. Additionally, in one
embodiment, an automatic acknowledgment form is generated. In
one embodiment, an acknowledgment form consists of a generic text,
such as "Thank you for completing my action request regarding the
'Project name' project.” In one embodiment, different types of
acknowledgments may be associated with different delegates. For
example, the requester may identify certain delegates that should
receive a thank you voice mail, or document. In those instances, such
an acknowledgment may be automatically generated by the system. In
one embodiment, the user may select the type of acknowledgment. In
one embodiment, the requester only receives a notification that an
acknowledgment should be sent.

Figure 22A is a flowchart illustrating the collaboration cycle as
viewed by the originator, or requester. The process starts at block 2200,
when an input text has been parsed, and classified as an action request.

In one embodiment, this occurs when the parser detects the keyword

62

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

such as "please”.

Atiblock 2205, the process identifies the delegate. An action
request can be addressed to one or more parties. These parties are the
delegate. As described above, in one embodiment, the names prior to,
or following, the keyword "please" are generally considered the
delegate. As described above, the user may have added additional
keywords which indicate that the present entry is an action request.

The delegate may be an individual or a group. For example, an
action request could be addressed to "managers”. In that instance, the
keyword "manager" could include a plurality of managers. In one
embodiment, for multiple delegates, separate action requests are
spawned for each delegate, and each delegate is dealt with
individually. For simplicity's sake, the remainder of this flowchart
will assume that there is only a single delegate.

In one embodiment, a header is generated when the delegate is
identified. In one embodiment, the header includes a number of
fields. In one embodiment, these fields include: Delegate, FYI, and
Enclosures. The Delegate field includes the delegates, which are
determined as described above. The FYI field is determined in a
similar way. In one embodiment, the Delegate field maps to the To
field, the FYI maps to the CC field in other messaging applications.

The Enclosures field enables the requester to attach a variety of
items to the action request. In one embodiment, the enclosures may
include arbitrary files or information about the projects and the
contacts related to the action request. This is especially useful when
an action request is sent to a delegate who is not using the present

system. In that instance, the message received by the delegate may not

63

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

be linked to database(s) with information about contacts or projects.
Thus, by attaching those items, the requester can simplify the
recipients’ work.

The requester's name is placed in the From: field. The header

may also include a subject. The subject may be the first few words of
the action request, the project to which the entry was parsed, or may be
entered by the author of the action request. In one embodiment, the
subject appears as "Action Request: <first few words of request>," or
"FYI: <first few words of FYI>." This makes apparent to the recipient
the type of message received, in addition to giving some information
about the subject matter of the message.
At block 2210, the action request is sent to the delegate. The action
request may be sent via electronic mail or any other means. In one
embodiment, the action request is sent directly to the delegate's in-box
in the system of the present invention. In one embodiment, if the
delegate is not utilizing the present system, the action request is sent
to the delegate's address. In one embodiment, this may include the
delegate's e-mail address, fax number, voice email number, or pager.

Much of the filing and similar actions described in the present
application require the use of the system of the present invention.
However, action requests may be sent to any individual who has a
receiver object, which can receive text or voice in some format. In one
embodiment, if the delegate does not have an e-mail connection, the
action request can be faxed to the delegate. In one embodiment, the
present system may format the action request in a rich text format
(RTF) and fax it to the delegate. In one embodiment, the action

request may be turned into a voice mail message and sent by the

64

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

present system. In another embodiment, the action request may be
sent as a pager message to a pager.

In one embodiment, the action request is formatted into an
ASCII format, which is readable by a user. In one embodiment, the

action request is reformatted to read as follows:

"Text of the original action request.”

This is an Action Request for "Delegate” from

"Requester”.
It relates to:

Project: "Project”
Contact: "Contact"
Due Date: "Due Date"

Attachments: "Enclosures”

The text in quotation marks 1is inserted based on the
information from the action request. This text format is sent, and is
readable by delegates who are not subscribers to the present system.

At block 2215, the action request is filed, and penciled into the
appropriate calendars and/or project/contact lists. In one
embodiment, the action request is filed in the "Waiting For" list. This
is a list which contains action requests which have not been resolved.
In one embodiment, a copy of the action request is also filed in the
project/contact list to which it was parsed. Additionally, if

appropriate, the action request is penciled into any lists, projects,
65

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

contacts, and calendars that it was parsed to. "Penciling” indicates
entry into a calendar or project/contact list in a different color. This
allows the user to easily identify items which are not yet agreed upon.
In one embodiment, penciled items appear in gray, compared to
normal entries in black or blue.

At block 2220, the process waits for a reply from the delegate.
The process does not remain in a wait state, but rather continues to
execute other processes. However, this action request cycle waits for
completion. When the reply from the delegate is received, the process
continues to block 2225. The reply from the delegate appears in the in-
box of the requester. In one embodiment, if there is no reply a
reminder is sent before the due date.

At block 2225, the process queries whether the reply is
affirmative, negative, or an other category. These categorizations are
described below with respect to Figure 22B. In one embodiment, the
reply list is selected by the delegate by selecting from a preset selection
or replies. In an alternate embodiment, the reply is reparsed to
determine the appropriate reply list. In one embodiment, the date is
reparsed. In an alternate embodiment, all of the reply is reparsed and
reclassified.

If the reply is affirmative, the process continues to block 2230.
At block 2230, the original action request is updated and refiled. As
described above, the action request is originally in the Waiting For list.
Now, the action request is recategorized to the appropriate list, as
determined from the parsing. The action request is also placed into
the calendars and project/contact lists in ink. In one embodiment,

writing in ink comprises entering the request in a different color from

66

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

penciling. In one embodiment, ink is a black or blue color.

If the reply is negative, the process continues to block 2235. At
block 2235, the action request is deleted from the calendar and from
the Waiting For category. At this point, the process is closed, since the
delegate has refused to complete the request. However, the negative
reply remains in the in-box of the delegate. Thus, if the requester
wishes to reassign the project, he or she can do so using the copy in
the in-box.

If the reply is other, the process continues to block 2240. At
block 2240, the requester and delegate negotiate. The negotiation
process is described in more detail with respect to Figure 23. When
the negotiation is completed, the process continues to block 2245. At
block 2245, the process once again queries whether the final answer is
an affirmative or negative. If the final answer is affirmative, the
process returns to block 2230. If the final answer is negative, the
process returns to block 2235.

Figure 22B is a flowchart illustrating the collaboration cycle as
viewed by the recipient, or delegate. At block 2250, a copy of the
received action request is placed in the delegate’s in-box. In one
embodiment, the in-box is a part of the present system. In an
alternative embodiment, the in-box may be the e-mail box of the
delegate. In one embodiment, if the delegate is not a user of the
present system, the in-box is the delegate's e-mail address box. In one
embodiment, the in-box is also a list in the present system, into which
received action requests are placed.

At block 2250, the opened action request is displayed to the

delegate. In one embodiment, if the delegate is using the present

67

SUBSTITUTE SHEET (RULE 26)

WO -98/3747 8 PCT/US98/02921

system, the action request is displayed in the format described above,
with respect to Figure 4. If the delegate is not using the present
system, in one embodiment the delegate can open the action request
as an e-mail message. If the delegate opens the present invention as
an e-mail, it appears as plain or formatted text, which is human
readable. The format of the text is as it appears above. In an
alternative embodiment, if the delegate opens the information in any
format that permits linking, enclosures are linked to the text. In one
embodiment, if the delegate opens the action request in a Web
browser, it appears in hypertext markup language (HTML) format. In
one embodiment, enclosures appear at the bottom of the document.
In one embodiment, in HTML, enclosures may be linked to the
appropriate information in the text. For example, if the requester
enclosed the contact information, the contact name is linked to that
enclosure. Thus, when the delegate selects the contact name, the
enclosed contact information is displayed. Other means of displaying
text are well known in the art.

Once the action request has been opened, the delegate may
further delegate the action request. Of course, if the delegate is not
using the present system, he or she can not do this, except through
standard e-mail communication. At this point, in one embodiment,
the user can further delegate the action request by adding a "Please

"

new delegate to the action request. This, in reparsing, directs the
action request to the new delegate. In an alternative embodiment, the
user can manually select a new delegate in the header, and thereby
forward the action request. The action request is readdressed to the

new delegate, and sent on. The original delegate becomes a requester

68

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

at this point. However, the original delegate is still has to respond to
the origihal requester.

At block 2260, the user is prompted to enter a reply. In one
embodiment, when the user opens the action request in the in-box, it
appears with reply classification choices in a reply box on the displayed
action request. In one embodiment, the reply box is a pull-down
menu. In an alternate embodiment, the reply box includes radio
buttons, or other means of indicating one choice from a number of
listed items.

One of these choices can be selected by the user, as the reply to
the action request. In one embodiment these choices include: Yes, Yes
if, No, Comment, and Done. The Yes reply indicates that the delegate
accepts the delegation, and will perform the action requested. A Yes if
reply indicates that the delegate is willing to perform the action
requested, but is making a counter-suggestion. For example, the
counter suggestion may be to change the meeting date. A No reply
indicates that the delegate is refusing the delegation. The Done reply
indicates that the delegate accepts the delegation, and has completed
the project assigned. And finally, the Comment reply indicates
something outside of these categories. For example, if the delegate
feels that the requester misunderstands the project, this reply may be
utilized. Other reply choices may be incorporated without changing
the fundamental purpose of the present invention. In one
embodiment, these choices appear when the delegate opens the action
request in his or her in-box. In one embodiment, the user must select
one of these choices. In an alternative embodiment, no such reply

options appear. In that embodiment, the user replies in a free-form

69

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

text. In that embodiment, a parser is used to parse the user's reply,
and fit it into one of the above categories.

When the user selects one of these choices, a reply form is
created. If the reply was either a Yes, No, or Done, the reply form is
complete. The user need not enter any further information.
However, the user may enter further information. In one
embodiment, if the reply is Yes, No or Done, a header is automatically
added to the reply, and it is automatically sent. The user is not
prompted for entry.

If, on the other hand, the choice selected is a Yes If or a
Comment, a reply form is automatically generated, with the
appropriate header information. In one embodiment, if the reply was
Yes If, a phrase such as "Yes, I will do it, if* appears, followed by the
cursor. The user can then complete this phrase. In an alternative
embodiment, the user can delete the phrase and enter his or her own
words. In one embodiment, if the Comment button is selected, the
phrase such as "I have a comment,” followed by the cursor is
displayed. Again, the user can either finish the phrase, or erase it and
write it differently. In this way, the reply format is automatically filled
in based on the reply choice selected.

At block 2265, the action request and reply are placed on the
appropriate project/contact lists and calendars of the delegate. The
information placed on the lists and calendars is based on the parsed
action request and parsed reply. In one embodiment, only the date
information is reparsed, and all other information remains. When
the delegate opens the action request, preliminary project/contact list,

contact, and other information is indicated in the shadow of the action

70

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

request, in parentheses. However, the delegate can change this
information, either directly in the shadow, or by changing the
information in the reply.

At block 2270, the reply is sent to the requester. In one
embodiment, this occurs when the user presses a button. In one
embodiment, there is a send button.

At block 2275, the process queries whether the just sent reply
was affirmative, a negative, or other. The affirmative reply includes
Yes and Done. The negative reply includes No. The Yes if and
Comment replies are classified as other. Similarly, if different
categories are utilized, any category which refuses the delegation is
negative. Any category which accepts the delegation, without
attempting to change it in any way is affirmative. ~Any other
categories are Other.

If the reply is affirmative, the process continues to block 2280.
At block 2280, the original action request is updated and filed. As
described above, the original action request is on the Out-box list of the
delegate. At this point, the action request is refiled based on the
results of the parsing. The action request is also placed into the
appropriate calendars and lists in ink. In one embodiment, placing
the request in the calendar in ink comprises entering the request in a
different color from penciling. In one embodiment, ink is a black or
blue color. In one embodiment, a notification of the reply remains in
the requester's in-box. In another embodiment, the user may select
whether or not to receive notification.

If the reply is a negative, the process continues to block 2285. At

block 2285, the action request is deleted from the calendar and from

71

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

the Waiting For category. At this point, the request is closed, since the
delegate has refused to complete the request. In one embodiment, a
notification of the reply remains in the requester's in-box. In another
embodiment, the user may select whether or not to receive
notification.

If the reply is Other, the process continues to block 2290. At
block 2290, the requester and delegate negotiate. The negotiation
process is described in more detail with respect to Figure 23. When
the negotiation is completed, the process continues to block 2295. At
block 2295, the process once again queries whether the final answer is
affirmative or negative. If the final answer is affirmative, the process
returns to block 2280. If the final answer is negative, the process
returns to block 2285.

Figure 23 is an illustration of the negotiation process. The
negotiation is initiated at block 2240 and 2290, as described above. If
the requester and delegate do not come to an agreement during the
initial exchange of messages, they segue into the negotiation process.

At block 2310, the negotiation process starts. At block 2320, the
recipient of the last message is prompted for a reply. The negotiation
process is entered when the delegate returns a reply which is either a
"Yes, if" or a "Comment," or any other reply which is not affirmative
or negative.

Thus, in the first iteration, at block 2320, the requester is
prompted for a reply, in response to the delegate's initial reply. The
reply form that appears before the requester is very similar to the reply
form for the delegate.

In one embodiment, the categories that may be selected are: OK, OK If,

72

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

No, Withdraw/Done, and Comment. These categories parallel the
Categorieé of Yes, Yes If, No, Done and Comment. The category names
may be changed without affecting the present process. The OK reply
means that the requester accepts the change or comment proposed by
the delegate. An OK If reply is a counterproposal by the requester. A
No is a rejection of the delegate's proposal. A Withdraw is
notification of the delegate that the original action request is being
canceled, and the delegate no longer has to do anything in connection
with the action request. An OK is classified as affirmative. A No or
Withdraw is classified as a negative. And OK If and Comment are
classified as Other. In an alternative embodiment, the reply form does
not contain any categories. In that embodiment, the user enters a free-
form reply. A parser is used to parse the reply, and determine the
reply choice into which it belongs.

As described above, with respect to blocks 2270 and 2320, based
on the reply choice selected, a preformatted reply appears, along with
the appropriate header information. This simplifies the negotiation
process.

At block 2330, the reply is sent and a copy of the reply is placed in the
appropriate calendars and project/contact lists. The message is also
appropriately updated in light of the reply just sent.

At block 2340, the process tests whether the reply just sent was
an affirmative, negative or other. = As described in the above
classification, a delegate's Yes, Done, and a requester's OK are classified
as an affirmative. The delegate’s No, and the requester's No or
Withdraw is classified as a negative. All other answers, i.e. Yes If, OK

If, and Comment, are classified as other. Either an affirmative or a

73

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

negative answer is a final answer. That is, it is a conclusion to the
negotiation. If the answer was either affirmative or negative, the
process continues to block 2350. At block 2350, the negotiation process
terminates.

If, at block 2340, the answer was found to be Other, the process
continues to block 2360 At block 2360, the process tests whether there
is an auto-terminate that is activated. In one embodiment, the auto-
terminate is an option which a requester can select. The auto-
terminate automatically ends the negotiation process after a preset
number of exchanges. In one embodiment, the user enters the
number of exchanges after which the negotiation ends. For example,
if the parties can not agree after five e-mail exchanges, the process
automatically terminates. This is a method to avoid endless cycles of
negotiation when it is apparent that the parties can not agree.

If the auto-termination process is not activated, the process
returns to block 2320, and prompts the recipient of the last message for
areply. For example, if the last message was written by the requester
to the delegate, the process prompts the delegate to respond to the
message.

If, on the other hand, the auto-termination process is activated,
at block 2360, the process continues to block 2370. At block 2370, the
final answer is set to a No. This indicates that no agreement was
reached between the requester and the delegate. The process then
continues to block 2350, where the negotiation process terminates.

Figure 24 is a flowchart illustrating the distribution of an FYI
As discussed above, an FYI is sent out by an originator to at least one

recipient. In one embodiment, an action request may be also sent as

74

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

an FYI to other users. The FYI does not require a reply. In one
embodimént, an FYI recipients may answer.

At block 2410, the process starts. This occurs when a user enters
information started with a keyword which indicates that the data
entered is an FYI. The FYI is parsed, as described above. At block 2420,
the FYI is filed in the system of the originator.

At block 2430, the recipient or recipients are identified. In one
embodiment, the name, names, or group names which appear next to
the keyword indicating that this is an FYI are identified as the
recipient(s). At block 2440, headers are added to the FYI. The header
contains the To: field, From: field, cc: field, enclosures: field, and a
subject field. These header entries are as described above with respect
to the action request.

At block 2450, the FYI is sent to the recipients. When the
recipients receive the FYI, they can open it and file it. In one
embodiment, no option to distributed reply is provided. In this way,
no extraneous communication about information is encouraged.

Figures 25A and 25B are a flowchart illustrating an example of
the collaborative process. In this example, two people, Tom and
Dennis are trying to set up a meeting about a certain project. Dennis is
the requester, or originator.

At graphic 2500, Dennis is entering text. As described above, the
text is being concurrently parsed. Thus, the project, contact, date and
appropriate project/contact list come up in the shadow 2515, as Dennis
types in the action request 2512. As discussed above, the parsing
algorithm may be the algorithm described above, or any other

algorithm. In one embodiment, as Dennis is entering the action

75

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

request 2512, the parser is parsing the text. When the keyword
indicating that this is an action request is found, a header is placed on
the action request. The spaces in the header, such as delegate, FY],
enclosures etc. are added as they are determined by the parsing
algorithm and Dennis' actions. In an alternative embodiment, the
action request 2512 is parsed only when Dennis indicates that he has
finished entering text. When Dennis finishes entering the action
request, he sends it.

At graphic 2502, Tom has received the action request, and
opened it. The header 2425 that was automatically generated is
displayed. Underneath, the original action request 2530 is displayed.
Above the header, a reply block 2520 is displayed. The reply block 2520
displays the possible reply options. In one embodiment, the reply
block 2520 is a drop-down list from which one reply may be selected.
In another embodiment, the reply block 2520 may be in any other
format which allows the user to select a reply. In this instance, the Yes
If reply has been highlighted. For contact and project information,
suggestions derived from the sender are provided to the recipient
initially. In one embodiment, the project name and contact name are
in parentheses. This is to indicate that the project and contact names
may not be the same for Tom as they were for Dennis. As described
above, the keywords vary, because each user can enter his or her own
keywords.

At graphic 2504, Tom has selected the Yes If reply button from
the reply block 2520, and the reply 2545 is displayed. In one
embodiment, reply automatically starts with a "Yes, I'll do it, if .. ."

The cursor is placed behind that phrase, enabling Tom to complete the

76

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

phrase. In this instance, Tom has completed the phrase by typing “we
can reschedule for Tuesday.” The text entered by Tom is differentiated
by being placed in italics in this instance. It is understood that in the
actual application, the text need not be differentiated in this way. In
the shadow 2540, the project name has been altered. This may be done
manually by the user. Alternatively, the process may parse the
original note, using Tom's databases and keyword lists. In this
instance, the contact name remained the same. However, the project
name was changed. Each user is responsible for naming his or her
own projects, since two users may refer to the same project by different
names. At this point, Tom may send the reply. At that point, a
header is placed on the reply, and it is sent back to the requester, i.e.,
Dennis.

At graphic 2506, Dennis has received Tom's reply and opened it.
In the shadow 2560, the new date appears. Tom suggested a new date
for the meeting. Because the reply was reparsed for this factor, the
new date/time appears in the shadow 2560. Once again, a reply box
2550 appears. Because Dennis is the requester, a slightly different reply
box 2550 appears. The entries are explained above, with respect to
Figure 22B. In this instance, Dennis selected the Yes button, agreeing
to Tom's suggested date change. In one embodiment, after Dennis
selects the Yes button, the reply is automatically sent by the system,
and the user's involvement ends. A final answer has been reached.
Thus, the negotiation terminates.

At graphic 2508, Dennis' system files the finalized information.
In one embodiment, the finalized information is displayed in a box

showing the history of the communications between the parties. The

77

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

original shadow 2515 is updated to an updated shadow 2570. The
original penciled entries in Dennis’ calendars and lists are also
updated to be in ink. This indicates that an agreement was reached.

At graphic 2510, Tom's system files the finalized information.
Additionally, the original shadow 2535 is updated to a new shadow
2585, containing the finally agreed upon information. The original
penciled entries in Brian's calendars and lists are also updated to be in
ink. This indicates that an agreement was reached.

Thus, through this process, one instance of the present
invention has been illustrated in a graphical form. It is understood
that the actual screen displays may not be identical to the displays
illustrated in this Figure. In this way, the interaction between a
requester and a delegate is simplified. This allows a delegate and a
requester to arrive at a mutually satisfactory way to complete
actions/projects. It provides sufficient flexibility for both parties, and

works as an automated conversation type of automated negotiation.

Parser DLL Application Programmer's Interface (API)
The following section describes in detail the parser 300 DLL
application programmer's interface (API) in the preferred

embodiment of the present invention.
/****************************’P******’(—****************************
FILE: parseapi.h

PURPOSE: Defines the parse 300 DLL API

NOTES: All functions in this API are prefixed with "Prs_" (short

78

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

for Parse) as a form of namespace protection.

The functions that involve string manipulation are fairly
intelligent in terms of filtering the strings. As an example,
Prs_AddContact("Danny Rabbani") is equivalent to
Prs_AddContact(" Danny Rabbani ") - capitalization is
important here. Prs_DeleteContact("Danny Rabbani") is
equivalent to Prs_DeleteContact(" danny raBBanl ").
Prs_AddContact("Danny Rabbani") is not equivalent to
Prs_AddContact(" danny rabbani”), because the parser 300
will internally represent the contacts as "Danny Rabbani" and
"danny rabbani" respectively. However, the second call will
fail because the parser 300 will not allow two contacts (or
lists, projects, or keywords) that differ only by capitalization to
exist simultaneously. This sort of smart filtering (removing
leading and trailing spaces, and ignoring case where applicable),
and other forms of error and sanity checking are applied
appropriately to most of the functions in this DLL (the autofill
functions will only tolerate case differences - white space makes
a difference!). However, it is recomended that the client does
not rely heavily on such functionalities without at least testing
some of them a priori.

AR AR AR AR AR A AR A A%

#ifndef PARSEAPI_H

#define PARSEAPI_H

extern "C" {

79

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

/*
Note that a buffer size of 128 allows strings of up to 63 characters in
length when communicating with Visual Basic (VB). This is because

VB always uses Unicode characters which effectively doubles the
amount of bytes needed to store an ascii character. The conversion to
Unicode is handled automatically by VB.

*/

#define PRS_BUFFER_SIZE 128

// Units

#define PRS_DAYS 1
#define PRS_WEEKS 2
#define PRS_MONTHS 3
#define PRS_YEARS 4

// Weekdays

#define PRS_SUN 1
#define PRS_MON 2
#define PRS_TUE 4
#define PRS_WED 8
#define PRS_THU 16
#define PRS_FRI 32
#define PRS_SAT 64

#define PRS_WEEKDAYS (PRS_MON + PRS_TUE + PRS_WED +
PRS_THU + PRS_FRI)

80

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

#define PRS_WEEKENDS (PRS_SAT + PRS_SUN)

/>(-

STRUCT: ParseOutput

PURPOSE: The ParseOutput struct is designed to be created and
used by a client of the parser 300 DLL. The ParseOutput struct
is passed as a second parameter to the Prs_Parse() function
along with an input expression (the first parameter). When the
client calls Prs_Parse(), the parser 300 analyzes the input
expression and packages the results of the parsing into the
ParseOutput struct. There is no need to initialize any of the
ParseOutput fields prior to calling Prs_Parse(). The Prs_Parse()
function will fill out only those fields which were successfully
parsed out of the expression, and will initialize all other fields
to null-terminated strings of zero length, or to appropriate null
values otherwise. If only date parsing is desired, the client
should call Prs_DateParse() instead of Prs_Parse().
Prs_DateParse() works like Prs_Parse() but only the date and
time related fields of the ParseOutput struct are filled in
(keyword parsing and delegate parsing are bypassed).

Both function calls are extremely efficient. Even long and
complex input expressions (within reason) are parsed in a small

fraction of a second.

FIELDS: sList: The name of the list as a null-terminated string.

81

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

sProject: The project name as a null-terminated string

sContact: The name of the contact as a null-terminated
string.
An example is a First name followed by a single

space followed by a last name.
sDelegate: The name of the contact to delegate to.

sDate: The date as a null-terminated string.
month/day/year format. Example: "12/28/1969"
This field also serves as the starting date for

a recurring event.

sTimeBegin: The start time as a null-terminated string.
[HIH:M[M] 24-hour format. That is, the number of
hours (0 - 23), followed by a colon, followed by
the number of minutes (0 - 59).

Examples: "3:0" = 3:00am, "23:45" = 11:45pm.

sTimeEnd: The end time as a null-terminated string.

Format same as sTimeBegin.
sDateEnd: The ending date of a recurring event.

bRecurring: BYTE size value that serves as a boolean flag to

82

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

indicate that the parser 300 found a recurring
event (rather than a simple date). A value of 0
(FALSE) indicates that a recurring date is not
present. All other values represent TRUE (i.e.,

a recurring date was parsed)

nFrequency: Long integer (32 bits) that represents the
frequency of the recurring date. For example,
"every 5 years" has a frequency of 5. Null value

for this field is 0.

nUnits: BYTE size value indicating the units (days, weeks,
months, and years). Defined, respectively, by the
constants: PRS_DAYS, PRS_WEEKS, PRS_MONTHS,
and PRS_YEARS. Null value for this field is 0.

nWeekdays: BYTE size value indicating the day(s) of the
week (i.e., Tuesday, Monday and Friday, etc...).
The weekday constants (PRS_SUN - PRS_SAT) are
defined in such a way as to allow this BYTE field
to encode any combination of up to 7 weekdays.
To find out if a particular weekday is included
in an nWeekdays value, simply "and" (bitwise and
operation) the value of the weekday with the
nWeekdays value (e.g., PRS_MON & nWeekdays). Null

value for this field is 0.

83

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

nWeekdayPos:BYTE size value indicating the ordinal (1st,
| 2nd, 3rd, 4th, 5th) position of the weekday within a
month. For example, "The third Tuesday of every

month" would have an nWeekdayPos value of 3. Null

value for this field is 0.

bFYI: Indicates that the sDelegate field represents an

FYI keynote, rather than a delegate or action request keynote.
bNote: Indicates that this is a note type of keynote.

*/

typedef struct _ParseOutput {
char sList[PRS_BUFFER_SIZE];
char sProject[PRS_BUFFER_SIZE];
char sContact[PRS_BUFFER_SIZE];
char sDelegate[PRS_BUFFER_SIZE];
char sDate[PRS_BUFFER_SIZE];
char sTimeBegin[PRS_BUFFER_SIZE];
char sTimeEnd[PRS_BUFFER_SIZE];
char sDateEnd[PRS_BUFFER_SIZE];
BYTE bRecurring;
BYTE nUnits;
BYTE nWeekdays;
BYTE nWeekdayPos;
long nFrequency;
BYTE bFYI;

84

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

BYTE bNote;
} ParseOutput} *ParseOutputPtr;

/’(-

STRUCT: KeywordSuggestion

PURPOSE: The KeywordSuggestion struct is designed to be created
and used by a client of the parse DLL. The KeywordSuggestion
data structure is passed as a second parameter to the
Prs_SuggestKeywords() family of functions, along with an
input expression (first parameter). When the client calls
Prs_SuggestListKeywords() for example, the parser 300
analyzes the input expression (the name of the list in this
case), and packages up to three keyword suggestions into the
KeywordSuggestion data structure. There is no need to
initialize any of the KeywordSuggestion fields prior to calling
the keyword suggestion functions. The functions will fill out
as many fields as possible (in consecutive order, starting from
sKeyword1), with all other fields initialized to null-

terminated strings of length zero.

FIELDS: sKeywordl: The first keyword suggestion as a null-

terminated string.

sKeyword2: The second keyword suggestion.

85

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

sKeyword3: The third keyword suggestion.

*/

typedef struct _KeywordSuggestion {
char sKeyword1[PRS_BUFFER_SIZE];
char sKeyword2[PRS_BUFFER_SIZE];
char sKeyword3[PRS_BUFFER_SIZE];

} KeywordSuggestion, *KeywordSuggestionPtr;

/’l-

FUNCTION: Prs_ResetParseDIl

PURPOSE: The Prs_ResetParseDIl() function resets the parsedll.
All of the information which was presented to the DLL via the
Add / Delete functions will be lost. Date parsing will remain

fully functional.

*/

void WINAPI EXPORT Prs_ResetParseDll(void);

/’(-

FUNCTION: Prs_Parse

PURPOSE: The Prs_Parse() function parses an input expression for

a list, project, contact, delegate, and a date/time combination.

86

SUBSTITUTE SHEET (RULE 26)

WO .98/37478 PCT/US98/02921

The 1st parameter is a pointer to a null-terminated string that
holds the input expression to be parsed. The second
parameter is a pointer to a client-allocated ParseOutput data
structure that gets filled out with the results of the parsing.
There is no need for any special initialization of the
ParseOutput data structure other than allocation of memory.
The fields of the ParseOutput data structure that cannot be
successfully derived from the input expression will be set to

appropriate null values.

EXAMPLE: ParseOutput parseResults;

Prs_Parse("Call Brian tomorrow at 6pm", &parseResults);
*/
void WINAPI EXPORT Prs_Parse(const char FAR* sinputExpr,
ParseOutput FAR* pParseOutput);

/>(—
FUNCTION: Prs_DateParse

PURPOSE: The Prs_DateParse() function parses an input
expression for a date and a time (or time span) only. The first
parameter is a pointer to a null-terminated string that holds
the input expression to be parsed. The second parameter is a
pointer to a client-allocated ParseOutput struct that is filled in
with the results of the parsing. There is no need for any

special initialization of the ParseOutput data structure other

87

SUBSTITUTE SHEET (RULE 26)

1 L0) 98/37 478 PCT/US98/02921

than allocation of memory. The fields of the ParseOutput data
structure that cannot be successfully derived from the input

expression will be set to appropriate null values.

EXAMPLE: ParseOutput parseResults;
Prs_DateParse("Call Tony next Friday", &parseResults);
*/
void WINAPI EXPORT Prs_DateParse(const char FAR* sInputExpr,
ParseOutput FAR* pParseOutput);

/’(-

FUNCTIONS: Prs_SuggestListKeywords,
Prs_SuggestProjectKeywords
Prs_SuggestContactKeywords

PURPOSE: Suggest up to 3 keywords for the given list, project, or

contact The parser will not suggest keywords that are already in use.

EXAMPLE: KeywordSuggestion suggestion;
Prs_SuggestContactKeywords("Danny Rabbani”,
&suggestion);
*/
void WINAPI EXPORT Prs_SuggestListKeywords(const char FAR*
sList, KeywordSuggestion FAR* pSuggestion);

void WINAPI EXPORT Prs_SuggestProjectKeywords(const char FAR*

88

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

sProject, KeywordSuggestion FAR* pSuggestion);

void WINAPI EXPORT Prs_SuggestContactKeywords(const char
FAR* sContact, KeywordSuggestion FAR* pSuggestion);

/*

FUNCTIONS: Prs_AddKeyword / Prs_DeleteKeyword /

Prs_RenameKeyword

PURPOSE: Add / Delete / Rename an keyword.
These functions should be called during initialization or
whenever the database is updated.
EXAMPLE: Prs_AddKeyword("na", "Next Actions”, ™, "");
Prs_DeleteKeyword("na");

Prs_RenameKeyword("na", "actions");

NOTE: Prs_AddKeyword will return FALSE if the keyword
already exists, if any of the non-empty links do not exist, or if all
of the links are empty. The client must make sure to call this
function only AFTER the corresponding lists, projects, or
contacts have already been added to the parser 300. To rename
an keyword, the client can simply call Prs_RenameKeyword().
Capitalization of any kind is ignored.

*/

BOOL WINAPI EXPORT Prs_AddKeyword(const char FAR*

sKeyword,

89

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

const char FAR* sList,
const char FAR* sProject,

const char FAR* sContact);

BOOL WINAPI EXPORT Prs_DeleteKeyword(const char FAR*
sKeyword);

BOOL WINAPI EXPORT Prs_RenameKeyword(const char FAR*
sOldKeyword, const char FAR* sNewKeyword);

/*
FUNCTIONS: Prs_AddList / Prs_DeleteList / Prs_RenamelList

PURPOSE: Add / Delete / Rename a list.
These functions should be called whenever the object

database 850 is updated.

EXAMPLE: Prs_AddList("Next Calls");
Prs_DeleteList("Next Calls");
Prs_RenameList("Next Calls", "My Next Calls");

NOTE: Prs_AddList will return FALSE if the list already exists
(even if capitalized differently). Prs_DeleteList will return
FALSE if the list doesn't exist. If Prs_DeleteList or
Prs_RenamelList are successful, all of the keywords that are
linked to the list will be automatically removed or updated as

necessary.

*/

90

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

BOOL WINAPI EXPORT Prs_AddList(const char FAR* sList);

BOOL WINAPI EXPORT Prs_DeleteList(const char FAR* sList);
BOOL WINAPI EXPORT Prs_RenameList(const char FAR* sOldList,
const char FAR* sNewList);

/ﬁl-

FUNCTIONS: Prs_AddProject / Prs_DeleteProject /

Prs_RenameProject

PURPOSE: Add / Delete / Rename a project.
These functions should be called whenever the object

database 850 is updated.

EXAMPLE: Prs_AddProject("Learn Spanish");
Prs_DeleteProject("Learn Spanish");

Prs_RenameProject("Learn Spanish”, "Learn French");

NOTE: See NOTE for Prs_ AddList

*/

BOOL WINAPI EXPORT Prs_AddProject(éonst char FAR* sProject);
BOOL WINAPI EXPORT Prs_DeleteProject(const char FAR* sProject);
BOOL WINAPI EXPORT Prs_RenameProject(const char FAR*
sOldProject, const char FAR* sNewProject);

/>(-

91

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

FUNCTIONS: Prs_AddContact / Prs_DeleteContact /

Prs_RenameContact

PURPOSE: Add / Delete / Rename a contact
These functions should be called whenever the object

database 850 is updated.

EXAMPLE: Prs_AddContact("Danny Rabbani");
Prs_DeleteContact("Danny Rabbani");
Prs_RenameContact("Danny Rabbani”, "Dan Rabbani");

NOTE: See NOTE for Prs_AddList

*/

BOOL WINAPI EXPORT Prs_AddContact(const char FAR* sContact);
BOOL WINAPI EXPORT Prs_DeleteContact(const char FAR*
sContact);

BOOL WINAPI EXPORT Prs_RenameContact(const char FAR*
sOldContact, const char FAR* sNewContact);

/* */

/* AutoFill Functions */
/* */

/)(-

FUNCTIONS: Prs_AutoFillList, Prs_AutoFillProject,
Prs_AutoFillContact

92

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

PURPOSE: Return the completion of the substring. The functions
take a prefix string as a first parameter and fill in the buffer (the
second parameter) with the completion of the prefix and return
TRUE. If the completion does not exist, the functions will
return FALSE (see NOTE below). The functions are NOT case
sensitive with respect to the prefix string (first parameter).
This has the advantage that a prefix such as "d" will expand
to "Danny Rabbani" as will a "D" prefix.

NOTE: If the completion does not exist, the functions will return

FALSE and the buffer (second parameter) is not modified.

EXAMPLE: Prs_AddProject("Grasshopper");
char sProject[PRS_BUFFER_SIZE];
Prs_AutoFillProject("gra", sProject);
AfxMessageBox(sProject); // Outputs "Grasshopper”

*/

BOOL WINAPI EXPORT Prs_AutoFillList(const char FAR* sListPrefix,
char FAR* sListBuffer); '

BOOL WINAPI EXPORT Prs_AutoFillProject(const char FAR*
sProjectPrefix, char FAR* sProjectBuffer);

BOOL WINAPI EXPORT Prs_AutoFillContact(const char FAR*
sContactPrefix, char FAR* sContactBuffer);

93

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

#endif /* PARSEAPI_H */

Sample Electronic Mail Message

The present invention can be used to receive and parse an
input keynote in the manner described above. In addition, the present
invention supports collaboration with other users, each of whom may
or may not have the functionality of the present invention. Because a
receiver of a keynote may not have the functionality of the present
invention, the present invention automatically formats a
conventional electronic mail message which can be sent to a receiver
or delagate of a keynote. Using the parser 300 as described above, the
present invention takes an input keynote and builds the conventional
electronic mail message from information associated with keywords
matched in the input keynote. In addition, the present invention also
builds a scripted (i.e., encoded) version of the electronic mail message.
The scripted version of the electronic mail message is formatted in a
structured form to allow a receiver or delagate of the keynote to
process the message automatically if the receiver or delagate has the
functionality of the present invention. If the receiver or delagate has
the functionality of the present invention, the scripted version of the
keynote can be interpreted and automatically processed as a keynote
on the receiving end. Thus, the present invention, by building an
electronic message with both a conventional text format and a scripted
format combined in the same automatically generated electronic
message, allows keynote collaboration with anyone on the receiving

end of such an electronic mail message.

94

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

The following sample automatically generated keynote
electronic mail message illustrates the dual format electronic message
structure automatically created by the present invention given the

following input keynote:

Jim, please add this sample KeyNote

to the KeyNote/parser patent
tomorrow. Call Tom if vyou have
questions. Thanks!

A sample electronic mail message produced by the present
invention from the above input keynote follows. The first portion of
the message below represents the conventional electronic mail format
(ASCII) readable by a receiver without the functionality of the present
invention. The second portion of the message starting with the second
occurance of the text string, "--dreldbssbtdwrvkval” represents the
scripted version of the message which can be processed by a receiver
with the functionality of the present invention. Thus, this sample
electronic mail message illustrates the dual format electronic mail
message generation capability of the present invention. A further
explanation of the collaboration capability of the present invention is

provided in a later section of this patent application.

--begin sample electronic mail message--

This is a multipart message in MIME format.

--dreldbssbtdwrvkval
<other content transfer encoding type being used,

probably quoted-printable or 7-bit>
95

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

Jim, pleése add this sample KeyNote to the
KeyNote/parser patent tomorrow. Call Tom if you have

questions. Thanks!

This is an ActionRequest for Jim Salter from Dennis
Buchheim.

It relates to:

Project: Patents
Contact: Tom Hagan
Due Date: 2/6/97

PROJECT INFORMATTION

Name: Patents
Due: 2/5/97
Outcome: Successfully defend Actioneer's inventions.

CONTACT INFORMATTION

Tom Hagan

Chairman

Actioneer, Inc.

539 Bryant St.

San Francisco, CA 94107

96

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

USA
(415) 555-1212 (Work)

hagan@actioneer.com (Internet)

--dreldbssbtdwrvkval
<other content transfer encoding type being used,

probably quoted-printable or 7-bit>

X-Keynote-Delegate: TRUE

BEGIN:VCARD

X-Version:1.0.0.0.0

X-Type: ENVELOPE
X-GUID:1de9%04el1-7£86-11d0-b001-00c026303ba3
X-ID:160
X-GUID:00000000-0000-0000-0000-000000000000
X-ID:O

X-Type: PERSON
X-GUID:1de9%04el-7£f86-11d0-b001-00c026303ba3
X-ID:1

X-Salutation:

N:Buchheim;Dennis

X-MiddleName:

X-Type:EMAIL_ADDR
X-GUID:1de904el-7£86-11d0-b001-00c026303ba3
X-ID:2

X-EmailAddrType:+//ISBN 1-887687-00-
9::versit::PDI//INTERNET

EMAIL; INTERNET:buchheim

X-List:1

X-Type : PERSON
X-GUID:1de904el-7£86-11d0-b001-00c026303ba3

97

SUBSTITUTE SHEET (RULE 26)

mailto:hagan%40actioneer.com

WO 98/37478 PCT/US98/02921

X-ID:1

X-Salutation:

X-FamilyName:Buchheim

X-GivenName:Dennis

X-MiddleName:

X-Type:EMAIL_ADDR
X-GUID:1de9%04el1-7£86~-11d0-b001-00c026303ba3
X-ID:2

X-EmailAddrType:+//ISBN 1-887687-00-
9::versit: :PDI//INTERNET

EMAIL; INTERNET: buchheim

X-List:1

X-Type:EMAIL_ADDR
X-GUID:1de904el1-7£86-11d0-b001-00c026303ba3
X-ID:136

X-EmailAddrType:+//ISBN 1-887687-00-
9::versit::PDI//INTERNET

EMAIL; INTERNET:jim_salter@bstz.com
X-List:3

X-Type:EMAIL_ADDR
X-GUID:1de9%04e1-7£86-11d0-b001-00c026303ba3
X-ID:126

X-EmailAddrType:+//ISBN 1-887687-00-
9::versit::PDI//INTERNET

EMAIL; INTERNET: buchheim@actioneer.com
X-Type: EMAIL_ADDR
X-GUID:1de9%04el1-7£86-11d0-b001-00c026303ba3
X-ID:151

X-EmailAddrType:+//ISBN 1-887687-00-
9::versit::PDI//INTERNET

EMAIL; INTERNET: hagan@actioneer.com

98

SUBSTITUTE SHEET (RULE 26)

mailto:jim_salter%40bstz.com
mailto:buchheim%40actioneer.com
mailto:hagan%40actioneer.com

WO 98/37478 PCT/US98/02921

X-Type: EMAIL_ADDR
X-GUID:1deS04el-7£86-11d0-b001-00c026303ba3
X-ID:143

X-EmailAddrType:+//ISBN 1-887687-00-
9::versit::PDI//INTERNET

EMAIL; INTERNET: judith_szepesi@bstz.com
X-Type:LIST_ITEM
X-GUID:1de9%04el-7£86-11d0-b001-00c026303ba3l
X-ID:157

X-ItemType:ACTION

X-Complete:OPEN

X-Collaboration:REQUESTOUT

X-Priority:0

X-List:1

X-BodyText:Jim, please add this sample KeyNote to the
KeyNote/parser patent tomorrow. Call Tom if you have
questions. Thanks!

X-List:1

X-ReplyText:

X-Date:35466.812778

X-List:1

X-Type: PERSON
X-GUID:1de904e1-7£86-11d0-b001-00c026303ba3
X-ID:130

X-Salutation:

X-FamilyName:Salter

X-GivenName:Jim

X-MiddleName:

X-List:1

X-Type: PROJECT
X-GUID:1de904el-7£86-11d0-b001-00c026303ba3

99

SUBSTITUTE SHEET (RULE 26)

mailto:judith_szepesi%40bstz.com

WO 98/37478 PCT/US98/02921

X-ID:153

X—ProjName:Patents

X-Outcome: Successfully defend Actioneer's inventions.
X-Type:SIMPLE_DATE
X-GUID:1de904el1-7£86-11d0-b001-00c026303ba3
X-ID:156

X-DateType: REFONLY

X-SimpleDate: -
1,35466.000000,35468.000000,0.000000,0.000000
X-List:1

X-Type: PROJECT
X-GUID:1de904el1-7£86-11d0-b001-00c026303ba3
X-ID:153

X-ProjName: Patents

X-List:1

X-Type : PERSON
X-GUID:1de904el1-7£86-11d0-b001-00c026303ba3
X-ID:144

X-Salutation:

X-FamilyName:Hagan

X-GivenName : Tom

X-MiddleName:

ORG:Actioneer, Inc.;

TITLE:Chairman

X-List:1

X-Type:ADDRESS
X-GUID:1de9%04el1-7£86-11d0-b001-00c026303ba3

X-ID:152

X-AddrType:+//ISBN 1-887687-00-9::versit: :PDI//WORK
ADR:; ;539 Bryant St.;San Francisco;CA;94107;USA
X-List:1

100

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

X-Type : PHONE
X-GUID:1de904el-7£86-11d0-b001-00c026303ba3
X-ID:150

TEL;WORK: (415) 555-1212

X-List:1

X-Type: EMAIL_ADDR
X-GUID:1de9%904el1-7£86-11d0-b001-00c026303ba3
X-ID:151

X-EmailAddxrType:+//ISBN 1-887687-00-
9::versit: :PDI//INTERNET

EMAIL; INTERNET:hagan@actioneer.com

X-List:1

X-Type: PERSON
X-GUID:1de904el1-7£86-114d0-b001-00c026303ba3
X-ID:144

X-Salutation:

X-FamilyName:Hagan

X-GivenName: Tom

X-MiddleName:

X-Type:SIMPLE_DATE
X-GUID:1de904el1-7£86-11d0-b001-00c026303ba3
X-ID:159

X-DateType : REFONLY
X-SimpleDate:-1,35467.000000,0.000000,0.000000,0.000000
END:VCARD

--dreldbssbtdwrvkval--

--end of sample electronic mail message--

Thus, a natural language based information organization and
collaboration tool for a computer system is described. Although the

invention has been described with respect to specific examples herein,

101

SUBSTITUTE SHEET (RULE 26)

mailto:hagan%40actioneer.com

WO 98/37478 PCT/US98/02921

it will be apparent to those of ordinary skill in the art that the
invention is not limited to the use of specific examples but may
extend to other embodiments as well. The present invention is
intended to include all of these other embodiments as defined in the

following claims.

102

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

CLAIMS

1. A method of collaborating on projects, using a first instance of a
messaging system and a second instance of the messaging system, the
method comprising the computer implemented steps of:

permitting entry of a message in the first instance of the messaging
system;

parsing the message to determine keywords;

creating a header for the message based on the keywords;

sending the message, using the header, to the second instance of the

messaging system.

2. The method of claim 1, further comprising:
filing a copy of the message in the first instance of the messaging

system.

3. The method of claim 1, further comprising:

receiving the message at the second instance of the messaging system;
displaying a selection of reply options;

generating a reply, including an automatic reply content based on the
selection;

creating a reply header for the reply based on the message content; and
sending the reply, using the reply header, to the first instance of the
messaging system.

103

- SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

1/26
MASS STORAGE
MEDIUM
108
A
y
MAIN READ ONLY MASS STORAGE
MEMORY MEMORY DEVICE
104 106 107
BUS
101 |
PROCESSOR
102
100
CURSOR COMMUNI-
DISPLAY | | KEYBOARD | | coNTROL HA;‘EDVICCOEPY CATION
DEVICE DEVICE
121 122 123 124 125

103

FIG. 1

SUBSTITUTE SHEET (RULE 26)

PCT/US98/02921

WO 98/37478

2/26

o
<t

1001
SISATYNY
TVOIX3

Y

A

|

(o]
(=)
(sp)

H3SHVd

Y

(=]
(=
N

30V443INI
H3sn

¢ DA

SIN3A3
HVYAN3 VO ANV
'S1OVINOD
'S103ro4d >A>7%u_wmmv
1410 1Nd1NO H3sn
SNOISS3HdX3 (NoIDaY

1X3L / 310NATIY

JDVNONYT N 1ndNI H3SN
TVHNLYN

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 ' PCT/US98/02921

3/26

121
/

4 N

((CCCCCON

210

e

L TTT]

1111

\ [I= J/

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 98/37478

4/26

210

230

/////u _—

//// B

AN

//////

250

26

o

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

5/26

210

220

/ 230

I2

I3

14

/ WIS

250

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

(G iy _—
/\/— T 5////
222 //%/

W///
/ CALLS A,

240

210

-

/ 230
CallPaui by por Tha _—
Z

\re: V Wilson Acct. W M

Jones, Paul W ///%///,

Thu, 13007 |7 W

/ CALLS \ W
250 \

FIG.7

240

SUBSTITUTE SHEET (RULE 26)

PCT/US98/02921

WO 98/37478

7/26

|

()
(=)
N

3OV4H3INI
H3sn

A

00%
1001
SISATVYNY Tv2IX31
S3dALNINMOL| ozv \'z
01SS3YdX3
ANV SN3YOL o~ NNV
018
= INIDN3I ISHVd
103rd0 || 1555
1NdLNO vd INIL/ALYA
3SHYd H3sH
]
HISHYd QHOMAIN
8¢8 928 ¥c8 228 028
s103rgo| Isio3rgo| |sioargo| |sioargo] sioargo
H3IHLO N3 | LoviNog| |Lo3roud 1sn
| | | | |
o 038
- 3SYav.Lva L23rgo

H3SHvd

8 DI

(=)

0¢

JOV4H3INI
43sN

SUBSTITUTE SHEET (RULE 26)

WO 98/37478

8/26

LEXICAL ANALYSIS TOOL
PROCESSING LOGIC

Y

PCT/US98/02921

INITIALIZE TOKEN BUFFER. INITIALIZE CHAR
POINTER TO POINT TO THE FIRST CHARACTER OF
THE INPUT TEXT EXPRESSION. GET AN INPUT
TEXT EXPRESSION

12

914

ANY

MORE CHARACTERS™,_NO - 916
TO PROCESS? \
END
YES - 918
920
B
CURRENT)
CHARACTERA >1ES-922 y

REMOVE WHITE SPACE (I.E.

NO - 924 UNNECESSARY BLANKS OR

SPECIAL CHARACTERS) FROM
TOKEN BUFFER. STANDARDIZE

CAPITALIZATION IN TOKEN

BUFFER. DETERMINE TYPE AND

FIG. 9

SUBSTITUTE SHEET (RULE 26)

NUMERIC VALUE OF TOKEN.
ADD CURRENT ADD NEW TOKEN TO OUTPUT
CHARACTER TO TOKEN TOKEN LIST WITH TOKEN TYPE.
BUFFER | INITILIZE TOKEN BUFFER.
928 926
Y
GET CHARACTER FROM THE
INPUT TEXT EXPRESSION
930

WO 98/37478

PCT/US98/02921

9/26
(' KEYWORD PARSER PROCESSING LOGIC)

Y

INITIALIZE KEYWORD BUFFER, LARGEST
KEYWORD BUFFER, AND OUTPUT BUFFER

1010
Y
GET NEXT TOKEN
1012
1014
1S
TOKEN A NO - 1016
TRIGGER? 1020

YES - 1018

4
APPEND TRIGGER TO KEYWORD
BUFFER 1022

IS LARGEST
KEYWORD BUFFE
EMPTY?

YES

1024

IS
CONTENT OF
KEYWORD BUFFER A DICTIONARY
KEYWORD?

STORE CONTENT OF KEYWORD BUFFER INTO
LARGEST KEYWORD BUFFER Y

1026
\ ;
1028
YES - 1030 /NY

FIG. 10

MORE TOKENS?

1032

NO - 1034 >®

IS LARGEST
KEYWORD BUFFER
EMPTY?

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

10/26

USE THE CONTENT OF THE LARGEST KEYWORD BUFFER
TO PERFORM A LOOKUP IN THE KEYWORD DICTIONARY.

111

GET THE LIST, PROJECT, CONTACT, AND ENCLOSURE
INFORMATION CORRESPONDING TO THE MATCHED
KEYWORD DICTIONARY. 11

o

1114

HAS
LIST, PROJECT,
CONTACT AND ENCLOSURE
BEEN MODIFIED IN THE
OUTPUT
BUFFER?

YES - 1118

STORE THE LIST, PROJECT, CONTACT, AND ENCLOSURE
INFORMATION FROM THE KEYWORD DICTIONARY INTO
THE PREVIOUSLY UNMODIFIED PORTIONS OF THE OUTPUT
BUFFER. INITIALIZE THE KEYWORD AND
LARGEST KEYWORD BUFFERS. 1116

A

FIG. 11

- SUBSTITUTE SHEET (RULE 26)

PCT/US98/02921

WO 98/37478

11/26

~—

MOH

«SINOP
A"V

oLSIT30VId [1

30V3d | _

dTdoMm.

«103r0Hd

ATHOM OT13H.

- TI

aidom. |-

(4] |

AdTHOM | _

«J 11
NOSTIM.

WNOSTIM
WOL.

+LSITATHOM | |

Ol_l_m—l___ — _.OI_l_mI__

34NSOT0N3

1OVINOD

103royd

NI

1sn ‘13a

SAHOMAIA

58 - SNOLLINIFZA AHOMAIA

¢S8 - AHVNOLLOIQ
AdOMAIA

O13H. |~

Y

<t

¥4

!

(,SINOr AHYI.

", L03r0dd G14OM OT13H. .LSI1 30v3Ad ATHOM. +30V3d QTHOM.) QGHOMAIN aav

(,SINOM AHYW.) LOVINOD aav

[aV)
-~

|

(o ‘4 w1O3rOHd ATHOM OT13H. ' “THOM O113H.) GHOMAIN aav

S
b
N
~—

(,NOSTIM WOL.

" w157 dTHOM OT13H, WO T13H.) GHOMAIN aav

(,NOSTIM WOL.) LOVINOD aav
(,LD3rodd a14om O113H.) L03rodd aayvy
(.LSI7Q1HOM OT13H.) 1SI7 aay

Y,

«30V3d. b
«dTHOM. ¢
“OT13H. 4
INNOD
43991 |~ 134

958 - SH3VOIHL

SUBSTITUTE SHEET (RULE 26)

PCT/US98/02921

WO 98/37478

12/26

I1dWVX3

A 9] K|

(THOM OTI3H | ,,
INOAYIAI OTT3H,

«30V3d ATHOM
ANOAH3A3 OT13H.

A

»30¥3d ATHOM OT13H. | ¢

A4 | NOSTIM 103r08d [LS aTHOM
NOSTIM.| WOL| QTHOM OTI3H. OTI3H.
g1 .NosTIM 1SI1 aTHOM
NOSTM.| WOL. - OTI3H.
]] .L03rodd -
aTHOM OTI3H,
i - .103roHd -
QTHOM OT13H
JHNSOTONI [1OVINOO| 103rOHd 1sn

A

NOILVWHO4NI @3dN1ONd1S LNd1NO

«dTHOM OT13H. | |

NOISS3HdX3 LIX3L LNdNI H3SN

- SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

13/26

[SUGGEST LIST KEYWORDS)

PROCESSING LOGIC

TOKENIZE INPUT TEXT EXPRESSION
1410

\
CHECK EACH TOKEN FOR PRESENCE IN KEYWORD DICTIONARY

141

\

IF THE TOKEN IS NOT PRESENT IN THE DICTIONARY
SUGGEST THE TOKEN

—_
—
(o]

IF THE TOKEN IS PRESENT IN THE DICTIONARY,
CONCATENATE THE FIRST CHARACTER OF THE NEXT
SEQUENTIAL TOKEN TO THE END OF THE PREVIOUS TOKEN AND LOOK
UP THIS AUGMENTED TOKEN IN THE KEYWORD DICTIONARY.
CONTINUE UNTIL A UNIQUE TOKEN IS GENERATED.
SUGGEST THE UNIQUE TOKEN.

—
—
(o]

APPEND ALL TOKENS OF THE INPUT EXPRESSION TOGETHER AND
LOOK UP THIS COMBINED TOKEN SET IN THE DICTIONARY.
SUGGEST THE COMBINED TOKEN IF NOT FOUND IN THE DICTIONARY.

142

FIG. 14)

- SUBSTITUTE SHEET (RULE 26)

PCT/US98/02921

WO 98/37478

14/26

ST OIA

SUBSTITUTE SHEET (RULE 26)

IN31d1034 IN3HHND 3HL 01 3dOTIANT HYINDILHYd V¥ INIS OHM NOSH3d H3IAN3S 3dOTIANT | 81
3dOTIANT HYINDILHYd ¥V AALVIHD ATIVNIDIHO OHM NOSH3d | HOLY3HO 3dOTIANT | L}
(IN3IdI034 1A4) .20, V SV 3LON ¥V AN3S 01 SS3HaAay 1IviNg IAd TIVNT | 91
(31¥93730) 0L 3LON ¥ AN3S 01 SS3HAQv TIviN3 OLNVYW3 | S}
H3GNNN INOHd "013 ‘WHOM ‘JWOH HIGWNN INOHd | ¥I
$S3HAAY VNI "0L3 ‘IONVHOXT ‘LINYIINI Ss3yaav Ivna | €t
$S3HAAY "013 ‘WHOM ‘INOH | SS3HAAY TYOISAHd | 2t
1X31 SILON ¥ 134dH3LNI OL HISHYd HIINOILOV JHL Ad a3SN (S)a4om QHOMAIY | LI
J1ON ¥ OL 3HOV.LLY NOSHId NOSH3d aIHOVLLY | 0L
310N Y OL QFHOVLLY 103r0dd | 103rodd G3HOVLLY | 6
ATNO S3S0dHNd NOILYWHOANI HO4 LN3S SI ILON ¥ WOHM OL NOSH3d INIIdIOIHIAL | 8
d31v9H313a SI ILON JAILYHOEYT100 ¥ WOHM OL NOSH3d Alvo3aT13aa | 2
1S17 OW3AW HO NOILOY HIINOILOY 11| 9
10VINOO WNAIAIONI NOSH3d | §
31va (3na) HNIYYNO3Y ALVAHNIHENO3Y | ¥
31va (3na) HNIYNOIH-NON 31vA ITdNIS | €
103r0dd H3IINOILOY 103rodd | @
NOILYNHOANI SNLYLS ANY AQOd 3LONAIN T¥NLOY W3llisn |
1N3S ONIFF SI LYHL JLONAIN ¥ 40 ,H3INIVINOD. 3dO713ANT | 0
NOILdIHOS3d IdAL | A3

318V1 3dAL 123r80

WO 98/37478

15/26

PCT/US98/02921

OBJECT ASSOCIATION TABLE
TYPE ASSOCIATED TABLE
ENVELOPE ENVELOPES
LIST ITEM LIST ITEMS
PROJECT PROJECTS
SIMPLE DATE SIMPLE DATES
RECURRING DATE RECURRING DATES
PERSON PEOPLE
LIST LISTS
DELEGATE PEOPLE
FYI RECIPIENT PEOPLE
ATTACHED PROJECT PROJECTS
ATTACHED PERSON PEOPLE
KEYWORD KEYWORDS
PHYSICAL ADDRESS PHYSICAL ADDRESSES
EMAIL ADDRESS EMAIL ADDRESSES
PHONE NUMBER PHONE NUMBERS
EMAILTO EMAIL ADDRESSES
EMAIL FYI EMAIL ADDRESSES
ENVELOPE CREATOR PEOPLE
ENVELOPE SENDER PEOPLE

FIG. 16

SUBSTITUTE SHEET (RULE 26)

WO 98/37478

PCT/US98/02921

PROJECTS (TYPE=2) 16/26
KEY | NAME SAMPLE DATABASE
201 |PATENTS
o
[]
SIMPLE DATES (3) °
KEY | DATE
202 |THU., 2/7/97
[
o
o
PEOPLE (5)
KEY | NAME
203 | BRIAN SMIGA
204 | JIM SALTER
205 | TOM HAGAN
206 | DENNIS BUCHHEIM
[]
LISTS (6) °
KEY | NAME .
207 ICALLS
[]
[]
KEYWORDS (11) ¢
KEY | KEYWORD
208 | CALL
209 | PATENT
o
[]
EMAIL ADDRESSES (13) °
KEY | ADDRESS
210 | smiga@actioneer.com
211 | hagan@actioneer.com
[]
[]
LINKS °
KEY 1| TYPE 1 | OBJECT DESCRIPTION 1 KEY 2 |TYPE 2 | OBJECT DESCRIPTION 2
207 |6 "CALLS" LIST 208 |11 "CALL" KEYWORD
201 |2 "PATENTS" PROJECT 209 |11 "PATENT" KEYWORD
203 |5 "‘BRIAN SMIGA" PERSON 210 |13 "smiga @actioneer.com”
_ Email Address
205 |5 "TOM HAGAN" PERSON 211 13 "hagan @actioneer.com”
Email Address

FIG. 17

SUBSTITUTE SHEET (RULE 26)

mailto:smiga%40actioneer.com
mailto:hagan%40actioneer.com

PCT/US98/02921

WO 98/37478

17/26

ST "ODIA

SUBSTITUTE SHEET (RULE 26)

NOSH3d GIHOV.LLY .18}es wi, 0l 02 W3L11SI7 1 €2
103r04d G3IHOV.LLY .SINILVd. 6 102 W31l 1817 1 gig
IAd ,uebey woy, 8 G02 W31l 181 1 €12
31v93730 ,ebiws ueug, L €02 W3111SI1 1 €12
1517518, 9 102 W3111SI7 1 giz
NOSH3d .J8ifes wi, S 02 W3111SI7 1 £12
NOSH3d ,BbIS ueug, G £02 W3LI 1817 } eiz
31vVad F1dNIS .L6/L/2. € 202 W31l 1SI7 1 ele
103r0Hd ,SINILYd, 2 102 W31I 1517 1 ¥
IAS Irew3 ,

,W00'133U0110e @ UBbEH, 9} 12 3d073AN3 0 4%

Ol irews
LW09"188U0N0R ® EBILS, Gl 012 3d073IANT 0 4t

H3AN3S 3d0TIANT
JurByyong siuuag, 8l 902 3d07IANT 0 212

HOL1V3H) 3d013ANT
Jreyyong sjuueg, Lt 902 3d073ANT 0 21g
(3LON T¥NL0Y) W31l 1SIT 1 ¥ 3d073ANT 0 2ie
ZNOILdIHIS3a 103rg0| 23dAL] 2A3N| I NOILdIHISIA123rg0| 13dAL | L A3

F1GVLINIT ITdNVS

WO 98/37478 PCT/US98/02921

18/26

C1
1920

Cn /:5‘ C2
1920 1910 1920

Cc3
1920

FIG. 19

SUBSTITUTE SHEET (RULE 26)

wo 98/37478 PCT/US98/02921

19/26

P1 | P2
2030 2030
p3) p7
2030 \ 2030

(o

2030

FIG. 20

SUBSTITUTE SHEET (RULE 26)

WO 98/37478 PCT/US98/02921

20/26

START
2100

Y
COLLABORATION

211

2120

1S
FINAL ANSWER

AFFIRMATIVE OR

NEGATIVE?

AFFIRMATIVE NEGATIVE

Y

FILE IN X)@[I)_ENDAR SELETE FROW
PROJECT/CONTACT ACKNOWLEDGE CALENDAR AND
LISTS
LISTS
2130 2150 2140

FIG. 21

SUBSTITUTE SHEET (RULE 26)

WO 98/37478

21/26

START
2200

Y

IDENTIFY DELEGATE
2205

Y

ADD HEADER TO ACTION REQUEST
& SEND COPY TO DELEGATE

2210

\

FILE ACTION REQUEST
PENCIL IT INTO CALENDAR
AND/OR PROJECT/CONTACT LISTS

2215

Y

WAIT FOR REPLY FROM DELEGATEE(S)

2220
UPDATE 2225
ACTION REISLY
REQUEST,
REFILE. AFFIRMATIVE /* AFFIRMATIVE , \NEGATIVE
PUT INTO NEGATIVE,
CALENDAR, OR
ETC. IN INK OTHER?
2230

OTHER

NEGOTIATION
2240

PCT/US98/02921

DELETE FROM
CALENDAR,
ETC.

OR NEGATIVE?

2245
IS FINAL
AFFIRMATIVE w NEGATIVE

FIG. 22A

SUBSTITUTE SHEET (RULE 26)

WO 98/37478

IN INK

MOVE ACTION
REQUEST FROM
INBOXTO
ACTION LIST.
PUT INTO
CALENDAR, ETC.

2280

PCT/US98/02921

22/26

[START '

Y

PLACE RECEIVED ACTION REQUEST IN
DELEGATEE'S INBOX 2250

\
DISPLAY OPENED ACTION REQUEST

IN PROPER FORMAT 2055
PROMPT FOR REPLY 2260

Y

PLACE ON LIST AND CALENDAR IN
PENCIL 2265

SEND REPLY TO ORIGINATOR 9579

2275

1S DELETE FROM
REPLY IN BOX AND
AFFIRMATIVE /“ AFFIRMATIVE , \\ NEGATIVE . | CALENDAR,
NEGATIVE, ETC.
OR

OTHER?

OTHER

NEGOTIATION
2290

2295
IS FINAL
AFFIRMATIVE W NEGATIVE

OR NEGATIVE?

FIG. 22B

SUBSTITUTE SHEET (RULE 26)

WO 98/37478

23/26

END NEGOTIATION

PROCESS

AFFIRMATIVE OR
< NEGATIVE

A
2350

PCT/US98/02921

START
2310

w2

UPDATE FILED
MESSAGES
2315

PROMPT FOR REPLY
2320

SEND REPLY
2330

2340

IS
REPLY
AFFIRMATIVE, NEGATIVE
OR OTHER?

AUTO-TERMINATE
PROCESS?

SET FINAL ANSWER

TONO

2370

FIG. 23

SUBSTITUTE SHEET (RULE 26)

WO 98/37478

FIG. 24

24/26

START
2410

Y

FILE FYI

2420

Y

IDENTIFY RECIPIENTS
2430

Y

ADD HEADER TO FYI
2440

Y

SEND FYI TO
RECIPIENTS
2450

SUBSTITUTE SHEET (RULE 26)

PCT/US98/02921

PCT/US98/02921

WO 98/37478

0vSe
|

SvSe N

‘Avasant

HO4 31NA3HOS3YH
NVO IM |

41°110d 114 'S3A

QOO

%

X0d 1N0
16/12/1

HLINS J0r'[

L L L £ L L L. L L Ll

L L L L

103rodd 08av]/

GEae
{

N

NEND

L6/LS/}
HLIAS 307

0Ne

NN

_UCIOOHd)

V. 2z

VeZ O

25/26

8&\

G252 \
$0G2 \

'103rodd

X 3HL HO4 AVANOW
IX3N HO4 30r
HLIM ONILFIW VY dN
13S 3Sv3aTd ‘WOl

X 103r0Hd -34
SINN3Q :NOH4d
WOL -0l

1S3nO3d
NOILOV OL S3INd3d
WOl

0€9¢

02Se

¢05¢ \

e
Gese \
e

'133ro4d

X 3HL HOd AVANOW
1X3IN H04 301
HLIM ONILIIN V dN
135 3Sv3aT1d ‘WOL

ENONTIONN

\\\

H04 ONLLIVM

T 777777777

16/¢/1 1)

HLIWS J0r

X 103r08d

> /]

Joug
200

SINN3Q ‘WOo44d
WOL ‘0L

3INOd o

INJWNOCD O ON o
d1SJAe S3A o

1S3Nn03d
NOILOV S3AI303d
WOl

00S¢

4814

'193r04d
X 3HL HO4 AVANOW
1X3NHO4 30
HLIM ONI1FIN V¥ dN
135S 3S¥37d ‘WOl

SUBSTITUTE SHEET (RULE 26)

NN

|

DENNIS
RECEIVES REPLY &
NSWER

Y

® OK O OKIF
o0 NO o COMMENT

O WITHDRAW

TO: DENNIS
FROM: TOM
cc:

Encl:

YES,I'LLDOIT IF
WE CAN
RESCHEDULE
FOR TUESDAY.

(92 37nd) L33HS 31NnL11SANS

NN N

/ 2506

2550

2555

2560

FILEIN
PEN IN DENNIS'
SYSTE

TO: DENNIS

FROM: TOM
cc:
Encl:

YES, I'LLDOIT IF
WE CAN
RESCHEDULE
FOR TUESDAY.

VAVAV4

PROJECT X

F o2 2 2 2 2 bl Ll L

(1JOE SMITH

L Ll Ll il il il

11/28/97

V' L L Ll Ll Ll Ll L

WAITING FOR

1 2565

FIG. 25B

TOM, PLEASE SET

/
/ 2560

2508 2510
F /

2555

2565
UP A MEETING WITH /

JOE FOR NEXT
MONDAY FOR THE X
PROJECT.

TO: DENNIS
FROM: TOM
cc:

Encl:

YES, ILLDOIT IF
WE CAN
RESCHEDULE
FOR TUESDAY.

2575

/ 2580

TOM, PLEASE SET
UP A MEETING WITH
JOE FOR NEXT
MONDAY FOR THE X
PROJECT.

/ 2590

[/ i s y.o—.a

PROJECT X

JOE SMITH
1/28/97

NEXT ACTION

/////

PROJECT ABC

2 ol Ll L Ll

JOE SMITH

ANAN

1/28/97

NEXT ACTION

92/9¢

8LYLE/Z6 OM

12670/86S)/LOd

