4,380,515 [11]

Rasberger et al. Apr. 19, 1983 [45]

	[54]	N-SUBSTI 6-AMINO- RINES	FUTED DIBENZ[C,E][1,2]OXAPHOSPHO-	FOREIGN 1256180 12/19
	[75]	Inventors:	Michael Rasberger; Samuel Evans, both of Riehen, Switzerland	Primary Examiner- Attorney, Agent, or
	[73]	Assignee:	Ciba-Geigy Corporation, Ardsley, N.Y.	[57] Compounds of the
	[21]	Appl. No.:	241,807	
	[22]	Filed:	Mar. 9, 1981	
		Rela	ted U.S. Application Data	Į
	[63] Continuation of Ser. No. 104,335, Dec. 17, 1979, abandoned, which is a continuation of Ser. No. 27,336, Apr. 5, 1979, abandoned.			
	[30]	Foreign	n Application Priority Data	
[52] U.S. Cl				R ₁ and R ₂ indep tuted or unsu halogen, x and y independ and
	[56]		A is a substitute alicyclic, aron	
	3	3,702,878 11/1 3,887,655 6/1	PATENT DOCUMENTS 1972 Saito	the substituent cyclic amine of

N PATENT DOCUMENTS

971 United Kingdom 260/936

r-Anton H. Sutto r Firm—Luther A. R. Hall

ABSTRACT

e formula I

$$(R_1)_x$$

$$(I)$$

$$P-A$$

$$(R_2)_y$$

- pendently of one another are substiubstituted hydrocarbon radicals, or
- idently of one another are 0, 1, 2 or 3,
- ed primary or secondary aliphatic or matic or araliphatic amine, in which nts are identical or different, a heteroor a hydrazine derivative.

Claims, No Drawings

N-SUBSTITUTED 6-AMINO-DIBENZ[C,E][1,2]OXAPHOSPHORINES

This is a Continuation of application Ser. No. 5 104,335, filed on Dec. 17, 1979, now abandoned, which in turn is a Continuation of application Ser. No. 27,336, filed on Apr. 5, 1979, now abandoned.

The present invention relates to new N-substituted 6-amino-dibenz[c,e][1,2]oxaphosphorines, to the pro- 10 duction thereof, to their use as stabilisers for organic material, and to the organic material stabilised by means of these compounds.

Phosphonites are known stabilisers, especially 6phenoxy-dibenz[c,e][1,2]oxaphosphorine, which is de- 15 above all branched-chain amines. scribed in the G.B. Pat. Specification No. 1,256,180. Although it is not specifically stated, it can be inferred from the same publication that 6-amino-dibenz[c,e][1,-2]oxaphosphorine could also be suitable as a stabiliser. However, these phosphonites do not meet the high ²⁰ requirements that a stabiliser should meet, particularly with respect to storage stability, water absorption, sensitivity to hydrolysis, processing stabilisation, colour behaviour, volatility, migration behaviour, compatibility and improved stability to light.

It was the object of the invention to provide stabilizers which do not have these disadvantages or have them to a lesser extent.

The present invention relates to N-substituted 6-30 amino-dibenz[c,e][1,2]oxaphosphorines of the formula

$$(R_1)_x$$
 (I) 35

wherein

 R_1 and R_2 independently of one another are substi- $_{45}$ tuted or unsubstituted hydrocarbon radicals, or halogen,

x and y independently of one another are 0, 1, 2 or 3,

A is a substituted primary or secondary aliphatic or 50 alicyclic, aromatic or araliphatic amine, in which the substituents are indentical or different, a heterocyclic amine or a hydrazine derivative.

As substituted or unsubstituted hydrocarbon radicals, R₁ and R₂ are in particular those having 1-8 C atoms, 55 such as straight-chain or branched-chain alkyl having 1-8 C atoms, for example methyl, ethyl, iso-propyl, tertbutyl or tert-octyl; and as halogen they are in particular chlorine.

x is 0, 1, 2 or 3, preferably 0, 1 or 2, and especially 0. 60 y is 0, 1, 2 or 3, preferably 0.

A is a substituted primary or secondary amine in which the substituents are identical or different, which amine can contain up to six primary and/or secondary amino groups. Preferred compounds are those in which 65 all primary or secondary amine nitrogen atoms occurring in the molecule are substituted with a group of the formula II:

$$(II)$$

$$(R_1)_x$$

$$(II)$$

$$(R_2)_y$$

The symbols R₁, R₂, x and y in the formula II have the meanings given in the foregoing.

Of interest are in particular secondary amines, and

Preferred amines denoted by A are therefore those of the formula III

$$-N$$
 R_4
(III)

wherein

R₃ is hydrogen, C₁-C₂₂ alkyl, C₂-C₂₁ oxa- or thiaalkyl, C₃-C₁₈ alkenyl, C₃-C₁₈ alkynyl, C₂-C₆ hydroxyalkyl, C₃-C₂₄ alkoxycarbonylalkyl, C₅-C₁₂ cycloalkyl, C6-C14 aryl, C7-C15 alkaryl, C7-C15 aralkyl, a substituted or unsubstituted C5-C17 piperidin-4-yl group or a group of the formula II in which R₁, R₂, x and y have the meanings given

R₄ is C₁-C₂₂ alkyl, C₂-C₂₁ oxa- or thiaalkyl, C₃-C₁₈ alkenyl, C₃-C₁₈ alkynyl, C₂-C₆ hydroxyalkyl, C₃-C₂₄ alkoxycarbonylalkyl, C₅-C₁₂ cycloalkyl, C6-C14 aryl, C7-C15 alkaryl, C7-C15 aralkyl, a substituted or unsubstituted C5-C17 piperidin-4-yl group, a group of the formula IV

$$\begin{array}{c}
Q \\
\hline
-(R_5)_n - N - R_3
\end{array}$$
(IV)

wherein

R₃ has the meaning given above, n is 0 or 1,

R₅ is C₂-C₂₂ alkylene, C₄-C₂₂ alkenylene, C₄-C₂₂ alkynylene or C5-C9 cycloalkylene, each of which can be interrupted with one or two oxygen or sulfur atoms, or R₅ is a group of the formula VI

in which R_6 is $-O_{-}$, $-S_{-}$ or $-(R_7)C(R_8)_{-}$, wherein R7 and R8 independenty of one another are hydrogen or C₁-C₈ alkyl, or R₇ and R₈ together with the C atom to which they are attached form C5-C12 cycloalkyl, or R7 and R8 together are 1,4cyclohexylenedimethylene or 1,3,3-trimethylcy-

wherein R₆ has the meaning given above, and r, t and n independently of one another are 2, 3, 4, 5 10 or 6,

m is 0, 1, 2 or 3,

Q is a group of the formula II, wherein R_1 , R_2 , x and y have the meanings given above, or

 R_3 and R_4 together with the N atom to which they are 15 attached are also substituted pyrrolidine, oxazolidine, piperidine or morpholine, or R3 and R4 together form the radical -CH2-CH2-N(-Q)—CH₂—CH₂ wherein Q has the meaning given above.

If R_3 and R_4 are each $C_1\text{--}C_{22}$ alkyl, they can be methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, isohexyl, n-octyl, 1,1,3,3tetramethylbutyl, n-nonyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl or docosyl. As alkyl 25 groups, R₃ and R₄ preferably contain 1-18 C atoms, with R₃ containing in particular 1–12 C atoms and R₄ in particular 1-4 C atoms. As C2-C21, essentially C4-C21, oxa- or thiaalkyl, R3 and R4 are preferably alkoxy- or alkylthiopropyl, such as butoxypropyl, dodecylthiopro- 30 pyl, octyloxypropyl or octadecyloxypropyl.

As C₃-C₁₈ alkenyl, R₃ and R₄ are for example allyl, methallyl, n-hex-3-enyl, n-oct-4-enyl or n-undec-10enyl. They are preferably allyl and methallyl but partic-

As C₃-C₁₈ alkynyl, R₃ and R₄ are for example propargyl, n-but-1-ynyl, n-but-2-ynyl or n-hex-1-ynyl. Alkynyl groups having 3 or 4 C atoms and particularly propargyl are preferred.

If R₃ and R₄ are each hydroxyalkyl having 1-6 C 40 atoms, they can be 2-hydroxypropyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl or 6-hydroxyhexyl.

If R₃ and R₄ are each C₃-C₂₄ alkoxycarbonylalkyl, preferably C₃-C₂₄ alkoxycarbonylmethyl or -ethyl and in particular C₃-C₁₄ alkoxycarbonylmethyl or C₃-C₁₅ 45 is for example formyl, acetyl, acryloyl or crotonoyl, alkoxycarbonylethyl, they can be for example methoxycarbonylmethyl, ethoxymethyl, methoxycarbonylethyl, octoxycarbonylmethyl, octoxycarbonylbutyl, dodecyloxycarbonylethyl octadecyloxycarbonylethyl.

As C₅-C₁₂, preferably C₅-C₈ and especially C₆, cycloalkyl, R3 and R4 are for example cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclododecyl.

As C₆-C₁₄ aryl, R₃ and R₄ are for example phenyl, 55 phosphorin-6-yl group already present in the molecule. α -naphthyl, β -naphthyl or phenanthryl. Phenyl groups are preferred.

If R₃ and R₄ are aralkyl having C₇-C₁₅ C atoms, they are for example benzyl, α-phenylethyl, α,α-dimethylbenzyl or 2-phenylethyl, preferably benzyl.

As C7-C15 alkaryl groups, R3 and R4 can be for example tolyl, 2,6-dimethylphenyl, 2,6-diethylphenyl, 2,4,6triisopropylphenyl or 4-tert-butylphenyl.

If R₃ and R₄ are each C₅-C₁₇ piperidin-4-yl groups, they can be for example unsubstituted piperidin-4-yl, or 65 the piperidine can be substituted by up to 5 alkyl groups, preferably by methyl or ethyl groups. Preferred substitution positions are the 2- and 6-position in the piperidine ring. They can also be 3,3,5-trimethyl-8-ethoxybicyclo[4,4,0]dec-2-yl.

R₃ and R₄ can therefore form piperidin-4-yl groups of the following structure

$$R_9$$
 CH_3 CH_2-R_9 (VIII)
 $N-R_{10}$ CH_3 CH_2-R_9

wherein R₉ is hydrogen or methyl, and R₁₀ is hydrogen, oxyl, C₁-C₈ alkyl, C₃-C₈ alkenyl, C₃-C₆ alkynyl, C7-C12 aralkyl, C2-C21 alkoxyalkyl, an aliphatic acyl group having 1-4 C atoms, or a group -CH2COOR11 where R_{11} is C_1 - C_{12} alkyl, C_3 - C_8 alkenyl, phenyl, C7-C8 aralkyl or cyclohexyl.

Very particularly preferred piperidin-4-yl groups are those wherein R9 is hydrogen, and R10 is hydrogen, methyl or acetyl.

The preferred meaning of R₉ is hydrogen.

As C₁-C₁₈ alkyl, R₁₀ is for example methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-octyl, n-decyl, n-dodecyl or octadecyl. Preferred alkyl groups are those having 1 to 12 C atoms, especially those having 1 to 8 C atoms, in particular those having 1 to 4 C atoms, and above all methyl is preferred.

As C₃-C₈ alkenyl, R₁₀ is for example allyl, 3-methyl-2-butyl, 2-butenyl, 2-hexenyl or 2-octenyl, especially allyl.

As C₃-C₆ alkynyl, R₁₀ is for example propargyl.

As C_7 - C_{12} aralkyl, R_{10} is for example benzyl, β phenylethyl or 4-tert-butyl-benzyl, preferably benzyl.

If R₁₀ is alkoxyalkyl, the alkyl moiety can contain 1 to 3 C atoms, and the alkoxy moiety can consist of 1 to 18 C atoms, for example in methoxymethyl, ethoxymethyl, 2-methoxyethyl, 2-ethoxyethyl, 2-n-butoxyethyl, 3-nbutoxypropyl, 2-octoxyethyl or 2-octadecyloxyethyl. To be particularly mentioned are compounds in which R₁₀ is an alkoxyalkyl group having 2 to 6 C atoms.

As an aliphatic acyl group having 1 to 4 C atoms, R₁₀ especially acetyl.

If R₁₀ is the group —CH₂COOR₁₁, R₁₁ as C₁-C₁₂ alkyl is for example methyl, ethyl, isopropyl, n-butyl, isobutyl, tert-butyl, isopentyl, n-octyl or n-dodecyl. 50 Preferably R₁₁ is C₁-C₄ alkyl. As C₃-C₈ alkenyl, R₁₁ is for example allyl, 2-butenyl or 2-hexenyl. As C₇-C₈ aralkyl, R_{11} is for example benzyl or α -phenylethyl.

If R₃ is a group of the formula II, this group preferably has the same substitution as the dibenz[c,e][1,2]oxa-

If R₃ and R₄ with the N atom to which they are attached form a pyrrolidine, oxazolidine, piperidine or morpholine ring, these heterocycles can be substituted by up to five methyl or ethyl groups. These ring systems 60 are preferably unsubstituted.

The symbol n can be 0 or preferably 1.

As C₂-C₂₂ alkylene, preferably C₂-C₉ and particularly C2-C6 alkylene, R5 can be for example dimethylene, trimethylene, tetramethylene, hexamethylene, octamethylene, nonamethylene, 2,2,4-trimethylhexamethylene, decamethylene, dodecamethylene, octadecamethyl or docosamethylene. If the alkylene groups are interrupted by -O-or -S-, they can be

2-thiapropylene-1,3,3-thiapentylene-1,5,4-oxaheptamethylene or 3,6-dioxaoctylene-1,8.

If R_5 is C_4 – C_{22} alkenylene or alkynylene, it is for example 2-butenylene-1,4,2-butynylene-1,4,2,4-hexadiinylene-1, or propenylene-1,3.

As C5-C5 cycloalkylene, R5 is for example 1,2-cyclopentylene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1,4-cyclohexylene, 1,4-cyclohexylene or 1,2-cyclononylene. As cycloalkylene, R5 preferably has 6 C atoms.

 R_7 and R_8 as C_1 – C_8 alkyl are for example ethyl, n-propyl, isopropyl, n-butyl, n-phenyl, n-hexyl or n-octyl. As alkyl groups, R_7 and R_8 are preferably however methyl.

With the C atom to which they are attached, R_7 and R_8 can also form C_5 – C_{12} cycloalkyl, preferably cyclohexyl. It can be cyclopentyl, cyclohexyl, cycloheptyl, ¹⁵ cyclooctyl or cyclododecyl.

Independently of one another, r, t and n are 2, 3, 4, 5 or 6; they are preferably however identical, and are in particular 2 or 3.

m can be 0, 1, 2 or 3. Preferably m is 0 or 1, but particularly 0.

If radicals Q are present in the compounds, these are preferably substituted in the same way as the other dibenz[c,e][1,2]oxaphosphorin-6-yl groups present in the molecule.

Preferred compounds of the formula I are those wherein

R₁ is C₁-C₈ alkyl,

x is 0, 1 or 2,

y is 0,

A is a group $-N(R_3)R_4$ (III), wherein

R₃ L is hydrogen, C₁-C₁₈ alkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, C₃-C₂₄ alkoxycarbonylmethyl or -ethyl, C₅-C₁₂ cycloalkyl, phenyl, benzyl, C₇-C₁₅ alkaryl, a substituted or unsubstituted C₅-C₁₇ piperidin-4-yl group, or a group of the formula II, wherein R₁, x and y have the meanings given above,

R₄ is C₁-C₁₈ alkyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, C₃-C₂₄ alkoxycarbonylmethyl or -ethyl, C₅-C₁₂ ₄₀ cycloalkyl, phenyl, benzyl, C₇-C₁₅ alkaryl, a substituted or unsubstituted C₅-C₁₇ piperidin-4-yl group, a group of the formula IV or V, wherein R₃ has the meaning given above,

n is 0 or 1,

R₅ is C₂-C₉ alkylene which can be interrupted with one or two oxygen or sulfur atoms, or it is cyclohexylene, or a group of the formula VI, wherein

 R_6 is -O-, -S- or $-(R_7)C(R_8)-$, wherein R_7 and R_8 independently of one another are hydrogen 50

or methyl, or R7 and R8 together with the C atom to which they are

attached form cyclohexylene, or R_7 and R_8 together are 1,4-cyclohexylenedimethylene or 1,3,3-trimethyl-cyclohexylene-1,5,

r, t and n are 2 or 3,

m is 0 or 1,

Q is a group of the formula II, wherein R_1 , x and y have the meanings given above, or

R₃ and R₄ together with the N atoms to which they 60 are attached form a pyrrolidine, oxozolidine, piperidine or morpholine ring, or

R₃ and R₄ together are the radical —CH₂CH₂—N(-Q)—CH₂CH₂—, wherein Q has the meaning given above.

Of interest are compounds of the formula I wherein x and y are 0,

A is a group -N(R₃)R₄ (III), wherein

R₃ hydrogen, C₁-C₁₈ alkyl, allyl, propargyl, C₃-C₁₄ alkoxycarbonylmethyl, C₃-C₁₅ alkoxycarbonylethyl or C₅-C₈ cycloalkyl,

R₄ is C₁-C₄ alkyl, allyl, propargyl, C₃-C₁₄ alkoxycarbonylmethyl, C₃-C₁₅ alkoxycarbonylethyl, C₅-C₈ cycloalkyl, or a group of the formula IV or V, wherein R₃ has the meaning given above,

n is 1.

R₅ is C₂-C₆ alkylene,

r, t and n are 2 or 3,

m is 0.

Q is a group of the formula II, wherein x and y have the meanings given above, or

R₃ and R₄ together with the N atom to which they are attached form a piperidine or morpholine ring, or R₃ and R₄ together are the radical —CH₂CH₂—N(-

Q)—CH₂CH₂—, wherein Q has the meaning given above.

Particularly preferred are compounds of the formula 20 I wherein

x and y are 0,

A is a group $-N(R_3)R_4$ (III), wherein

R₃ is hydrogen, C₁-C₁₂ alkyl or cyclohexyl,

R₄ is C₁-C₄ alkyl, cyclohexyl, or a group of the formula IV, wherein R₃ has the meaning given above, and Q is a group of the formula II, wherein x and y have the meanings given above,

n is 1,

30

R₅ is C₂-C₆ alkylene,

R₃ and R₄ together with the N atom to which they are attached form a piperidine or morpholine ring, or R₃ and R₄ together are the radical —CH₂CH₂—N(-

Q)—CH₂CH₂— wherein Q has the meaning given above.

Examples of compounds of the formula I are:

(1) 6-(N,N-di-n-octylamino)-dibenz[c,e][1,2]oxaphosphorine,

(2) 6-(2'-aza-3',3',5'-trimethyl-8'-ethoxy-bicyclo-[4,4,0]dec-2'-yl)-dibenz[c,e][1,2]oxaphosphorine,

(3) 6-(N-2',6'-dimethylphenyl-N-cyclohexyl-amino)-dibenz[c,e][1,2]oxaphosphorine,

(4) 6-(N-cyclododecyl-N-tert-octyl-amino)-dibenz[c,e][1,2]oxaphosphorine,

(5) 6-(N-tert-butylamino)-dibenz[c,e][1,2]oxaphosphorine,

(6) 6-(N-2',6'-dimethylphenylamino)-dibenz[c,e][1,-2]oxaphosphorine,

(7) 6-(N-octadecylamino)-dibenz[c,e][1,2]oxaphosphorine,

(8) 6-(N-cyclododecylamino)-dibenz[c,e][1,2]oxaphosphorine,

(9) 6-(N-p-tert-octylphenyl-N-isopropylamino)-dibenz[c,e][1,2]oxaphosphorine,

(10) 6-(N-cyclohexyl-N-allyl-amino)-dibenz[c,e][1,-2]oxaphosphorine,

(11) 2,2-bis-[4'-[N-(dibenz[c,e][1",2"]oxaphosphorin-6"-yl)]-amino-cyclohexyl]-propane,

(12) N,N'-bis-(dibenz[c,e][1,2]-2,4-di-tert-butyloxaphosphorin-6-yl)-benzidine,

(13) N,N'-bis-(dibenz[c,e][1,2]oxaphosphorin-6-yl)-N,N'-dicyclopentyl-hexamethylenediamine,

(14) N,N'-bis-(dibenz[c,e][1,2]oxaphosphorin-6-yl)-N,N'-di-isopropyl-hydrazine,

(15) N,N'-bis-(dibenz[c,e][1,2]oxaphosphorin-6-yl)-N,N'-di-(1'-isopropyl-2'-methyl-propyl)ethylenediamine,

(16) N,N'-bis-(dibenz[c,e][1',2']oxaphosphorin-6-yl)-4,9-dioxadodecylenediamine,

N,N'-bis-(dibenz[c,e][1,2]oxaphosphorin-6-yl)-N,N'-dicycloheptyl-hexamethylenediamine,

(18)1,4-bis-(dibenz[c,e][1',2']oxaphosphorin-6'-yl)-2,5-dimethylpiperazine,

(19)1,4-bis-[N-(dibenz[c,e][1',2']oxaphosphorin-6'- 5 yl)-aminopropyl]-piperazine, 0) N,N'-N''-tris-(dibenz[c,e][1,2]-2-methyl-oxa-

(20)phosphorin-6-yl)-diethylenetriamine,

(21) N,N-bis-[3-[N'-(dibenz[c,e][1',2']oxaphosphorin-6'-yl)]-aminopropyl]-N-(dibenz[c,e][1",2"]oxaphosphorin-6"-yl)-amine,

(22) N,N-bis-(dibenz[c,e][1,2]oxaphosphorin-6-yl)-Nn-butylamine,

N,N'-bis-dibenz[c,e][1,2]oxaphosphorin-6-yl)-(23)N,N'-diisopropyl-hydrazine,

(24)N-cyclohexyl-N-(dibenz[c,e][1,2]-2,4dichlorooxaphosphorin-6-yl)-aminosuccinic aciddioctyl ester,

(25) $Q-N(cyclohexyl)-(CH_2)_3-N(Q)-(CH_2)_3-N(-$ Q)—(CH₂)₃—<math>N(Q)—(CH₂)₃—<math>N(cyclohexyl)Q, and

 $Q-N(H)-[CH_2-CH_2-N(Q)]_4-CH_2-CH_2$ 2-N(H)Q

In the formulae 25 and 26, Q denotes the group (dibenz[c,e][1,2]oxaphosphorin-6-yl):

The phosphonites of the formula I can be produced by methods known per se, particularly by amidation or transamidation reactions, for example by reacting a phosphonite of the formula VI

$$(VI)$$

$$(R_1)_x$$

$$(VI)$$

$$P-X$$

$$(R_2)_y$$

wherein X is a reactive group, and R₁, R₂, x and y have the meanings given above, with an amine of the formula VII

$$R_3$$
 (VII) 55 R_4

wherein Z is hydrogen or an Na, Li or K atom, and R₃ 60 and R₄ have the meanings given above.

A reactive group x is for example halogen, particularly chlorine, alkoxy, phenoxy or a primary or secondary amino group.

The reaction can be performed in a manner known 65 per se, for example at -5° C. to 80° C., or by heating, preferably to above 80° C., for example 80°-170° C. The reaction can be performed without or in the presence of

an inert solvent, such as aprotic solvents, for example ligroin, toluene, xylene, hexane, cyclohexane, dimethylformamide, dimethylacetamide, sulfolane, acetonitrile, dioxane, di-n-butyl ether, 1,2-dichloroethane, dimethylsulfoxide, ethyl acetate, methyl ethyl ketone, nitrobenzene, nitromethane, tetrahydrofuran, chloroform or trichloroethylene. If X is halogen, the reaction is preferably carried out in the presence of a base, such as sodium carbonate, or an amine, for example triethylamine, pyridine or N,N-dimethylaniline. If is however quite possible to perform the reaction with an excess of amine of the formula VII, with this acting as an acid acceptor. Amine bases used in excess can simultaneously act as

The starting materials of the formulae VI and VII are known, or, where they are new, they can be produced by methods analogous to known methods. The phosphonites of the formula VI have been described for 20 example in the G.B. Patent Specification No. 1,256,180, whilst the starting amines of the formula VII are compounds which have been known for a long time and which are in many cases commercial products.

The compounds of the formula I can be used accord-25 ing to the present invention as stabilisers for plastics and elastomers to protect these from damage caused by the action of oxygen, light and heat. Examples of plastics concerned are the polymers listed in the German Offenlegungsschrift No. 2,456,864 on pages 12-14.

Suitable substrates are for example:

- 1. Polymers which are derived from mono-unsaturated hydrocarbons, such as polyolefins, for example low density and high density polyethylene, which can be crosslinked. polypropylene, polyisobutylene, polymethylbut-1-ene and polymethylpent-1-ene.
- 2. Mixtures of the homopolymers mentioned under 1, for example mixtures of polypropylene and polyethylene, of polypropylene and polybut-1-ene and of polypropylene and polyisobutylene.
- 40 3. Copolymers of the monomers on which the homopolymers mentioned under 1 are based, such as ethylene/propylene copolymers, propylene/but-1-ene copolymers, propylene/isobutylene copolymers and ethylene/but-1-ene copolymers, and also terpolymers of ethylene and propylene with a diene, for example hexadiene, di-cyclopentadiene or ethylideneorbornene.
 - 4. Polystyrene and its copolymers, such as SAN, ABS, IPS, ASA, and EP-modified styrene copolymers.
 - 5. Polyamides.
 - 6. Linear polyesters.
 - 7. Polyurethanes.
 - 8. Polycarbonates.
 - 9. Elastomers, such as polybutadiene, SBR, polyisoprene, polychloroprene and nitrile rubber.
 - 10. Thermoplastic elastomers, such as SBS, SIS and S-EP-S.
 - 11. Polyvinyl chloride and the like.

The present invention relates also to a process for stabilising polymers against thermooxidative degradation during production, isolation, processing and use, which process comprises incorporating into the polymer at least one compound of the formula I.

The compounds of the formula I are incorporated into the substrates at a concentration of 0.005 to 5 percent by weight, calculated relative to the material to be stabilised.

Preferably 0.01 to 1.0 percent by weight, and particularly preferably 0.02 to 0.5 percent by weight, of the compunds, relative to the material to be stabilised, is incorporated into this material. Incorporation is effected for example by mixing at least one of the com- 5 pounds of the formula I, and optionally further additives, by methods customary in the art, into the polymer either before or during shaping, or alternatively by application of the dissolved or dispersed compounds to the polymers, optionally with subsequent removal of 10 the solvent by evaporation.

The new compounds can also be added in the form of a masterbatch, which contains these compounds for example at a concentration of 2.5 to 25 percent by weight, to the plastics to be stabilised.

In the case of crosslinked polyethylene, the compounds are added before crosslinking.

The invention relates therefore also to the plastics which are stabilised by the addition of 0.01 to 5 percent by weight of a compound of the formula I, and which 20 9. 6-[N,N-di-(2,2,6,6-tetramethylpiperidin-4-yl)-amino]can optionally contain further additives. The plastics stabilised in this manner can be used in the widest variety of forms, for example as films, fibres, tapes or profiles, or as binders for lacquers, adhesives or putties.

Examples of further additives which can be used 25 together with the stabilizers according to the invention are: antioxidants, UV absorbers and light stabilisers, such as 2-(2'-hydroxyphenyl)-benzotriazoles, 2,4-bis-(2'hydroxyphenyl)-6-alkyl-s-triazines, 2-hvdroxvbenzophenones, 1,3-bis-(2'-hydroxybenzoyl)-benzenes, es- 30 ters of substituted or unsubstituted benzoic acids and acrylates, and also nickel compounds, sterically hindered amines, oxalic acid diamides, metal deactivators, phosphites, compounds which destroy peroxide, polyamide stabilisers, basic Co stabilisers, nucleating agents 35 or other additives, for example plasticisers, lubricants, emulsifiers, fillers, carbon black, asbestos, kaolin, talc, glass fibres, pigments optical brighteners, flameproofing agents and antistatic agents.

The invention is further illustrated by the following 40 Examples.

EXAMPLE 1

6-(N,N-Di-cyclohexyl-amino)-dibenz[c,e][1,2]oxaphosphorine

35.1 g (0.15 mol) of 6-chloro-dibenz[c,e][1,2]oxaphosphorine, 27.1 g (0.15 mol) of dicyclohexylamine and 50 ml of triethylamine are kept at reflux temperature for 10 hours. Toluene is added to the solution; the triethylam- 50 ine hydrochloride is then removed by filtration, and the filtrate is concentrated in vacuo. The crystalline product has a melting point of 162° C. (Compound I).

EXAMPLE 2

55 If the procedure is carried out as described in Example 1 except that 15.1 g (0.15 mol) of diisopropylamine is used instead of dicyclohexylamine, there is obtained 6-(N,N-di-isopropyl-amino)-dibenz[c,e][1,2]oxaphosphorine having a melting point of 111° C. (Compound 60 II).

EXAMPLE 3

By using the molar equivalent of cyclohexylamine and two molar equivalents of 6-chloro-dibenz[c,e][1,-65 2]oxaphosphorine, under otherwise the same conditions as those described in Example 1, there is obtained N,Nbis-(dibenz[c,e][1,2]oxaphosphorin-6-yl)-N-cyclohexylamine having a melting point of 191° C. (Compound

The following compounds are produced under otherwise the same conditions as those described in Example

EXAMPLES 4-12

- 6-[N-(2,6-di-isopropyl)-anilino]-dibenz[c,e][1,2]oxaphosphorine, m.p. 50° C.;
- N,N'-bis-(dibenz[c,e][1,2]oxaphosphorin-6-yl)-piperazine, m.p. 250° C.:
- N,N'-bis-(dibenz[c,e][1,2]oxaphosphorin-6-yl)-N-(2ethyl)-hexylamine, m.p. 125° C.;
- ₁₅ 7. N,N-bis-(dibenz[c,e][1,2]oxaphosphorin-6-yl)-Ndodecylamine, viscous oil: calculated: C 74.3, H 7.2, N 2.4, P 10.6; found: C 74.2, H 7.3, N 2.3, P 10.3;
 - N,N,N',N'-tetra(dibenz[c,e][1,2]oxaphosphorin-6yl)N,N'-hexamethylenediamine;
 - dibenz[c,e][1,2]oxaphosphorine, m.p. 214° C.;
 - 10. 6-[N-dodecyl-N-(2,2,6,6-tetramethylpiperidin-4-yl)amino]-dibenz[c,e][1,2]oxaphosphorine, m.p. 50° C.;
 - N,N-bis-(dibenz[c,e][1,2]oxaphosphorin-6-yl)amine, m.p. 184°-185° C.; and
 - N,N,N-tris-(dibenz[c,e][1,2]oxaphosphorin-6-yl)-12. amine, m.p. 260° C.

EXAMPLE 13

100 parts of unstabilised polyethylene of high density having a molecular weight of about 500,000 ("Lupolen 5260 Z" in powder form, BASF), are mixed dry with 0.1 and 0.05 part, respectively, of the phosphonites shown in Table 1 below. The mixtures are kneaded in a Brabender plastograph at 220° and at 50 revolutions per minute. During this time, the kneading resistance is continuously recorded as a turning moment. As a result of crosslinking of the polymer, there occurs in the course of kneading a rapid increase in the turning moment after an initial period of constant value. The effectiveness of the stabilisers is manifested by a lengthening of the time in which this value remains constant.

TABLE 1

-	Parts of phosphonite	Time in minutes until the turning moment changes
_	попе	2
	0.1 part of compound I	22
	0.05 part of compound I	. 15
1	0.1 part of compound II	22
	0.05 part of compound II	15½

What is claimed is:

1. A compound of the formula

wherein

R₃ is hydrogen, C₁-C₁₂ alkyl, cyclohexyl or the group Q, where Q is

$$-R_5-N-R_3$$

R₄ is C₁-C₁₂ alkyl, cyclohexyl or a group of the formula

5 where

R₃ and Q have the meanings given above,

R₅ is C₂-C₆ alkylene,

R₃ and R₄ together with the N atom to which they are attached form a piperidine or morpholine ring, or R₃ and R₄ together are the radical —CH₂CH₂—N(-Q)—CH₂CH₂— wherein Q has the meaning given above.

2. 6-(N,N-Di-isopropyl-amino)-dibenz[c,e][1,2]oxa15 phosphorine, according to claim 1.