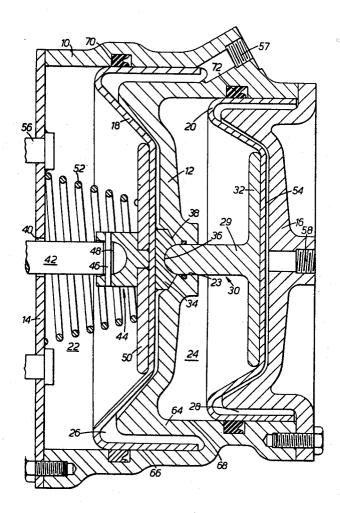
[72]	Inventor	Richard Thomas Fowler	
3		Tyseley, England	
[21]	Appl. No.	• •	
	Filed	Dec. 2, 1968	
	Patented	•	
•	Assignee	Girling Limited	
[,0]	. ibb.g.iee	Birmingham, England	
[32]	Priority	Dec. 22, 1967	
[33]		Great Britain	
[31]		No. 58,495/67	
[54]		ESSURE ACTUATED MOTORS	
[52]	•		92/6
	U.S. Cl		
[51]	U.S. Cl Int. Cl	***************************************	92/63 F01b 7/00
	U.S. Cl Int. Cl		F01b 7/00 92/64, 63
[51]	U.S. Cl Int. Cl	arch	F01b 7/00 92/64, 63

2,726,738 12/1955 Fawick.....

5/1963 Hoppenstand

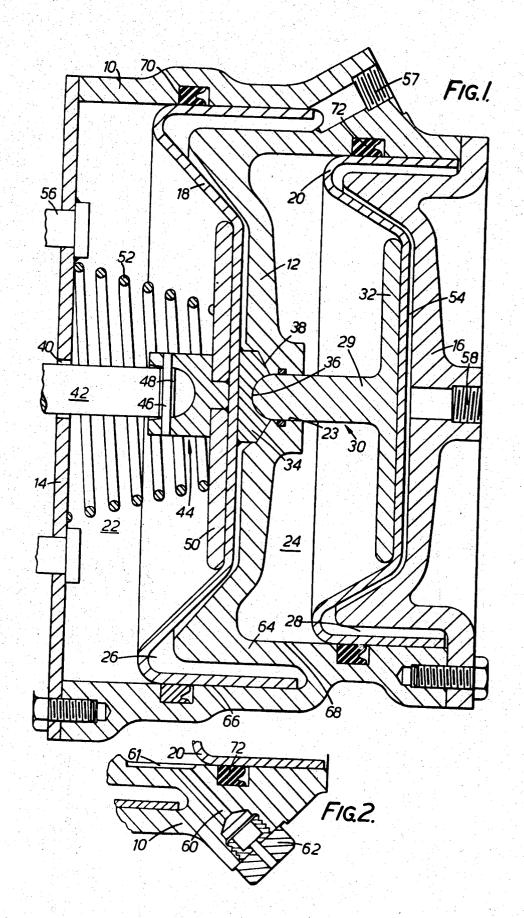
Ayers


3,090,359

3,152,518 10/1964

3,208,354 3,372,623	9/1965 3/1968	Cruse	92/63 92/168X 92/64X 92/165X		
Duim ann Engaring Martin D. Calant					

Primary Examiner—Martin P. Schwadron Assistant Examiner—Leslie J. Payne Attorney—Holcombe, Wetherill & Brisebois


ABSTRACT: In a fluid pressure motor having at least two pistons working in separate cylinder spaces and coupled together in tandem, the cylinder space in which one piston works overlaps axially with the cylinder space in which an adjacent piston works. In the construction described and illustrated there are two pistons each formed as a metal pressing and including an annular skirt which throughout the working stroke of the piston is in engagement with a stationary seal carried by the wall of the cylinder in which that piston works; each piston is of dished form towards one end of its cylinder and the wall at that end of the cylinder is complementarily shaped; the opposite end wall of one cylinder provides an abutment for a coil compression spring which bears against the piston in that cylinder and is accommodated within the dished recess of the piston.

188/152

92/64X

92/49X

FLUID PRESSURE ACTUATED MOTORS

This invention relates to fluid pressure actuated motors of the type having two (or more) pistons working in separate cylinder spaces and mechanically interconnected in tandem to apply their working outputs to a common output member. A motor of this type has the advantage over a conventional single piston motor that the overall diameter can be considerably reduced for a given output at a given applied fluid pressure.

In accordance with the present invention the cylinder space 10 in which one piston of such a motor works overlaps axially with the cylinder space in which an adjacent piston works, thus allowing the overall axial length of the motor to be reduced.

In a preferred form of motor in accordance with the invention one (at least) of the pistons is formed as a metal pressing and includes a peripheral skirt which throughout the working stroke of the piston is in engagement with a stationary seal carried by the wall of the cylinder in which that piston works, this skirt (when the piston is at one end of its stroke) surrounding at least part of the length of the cylinder space in which an adjacent piston works.

These and other features and advantages of the invention are exemplified in the constructional form of the invention which will now be described, by way of example only, with reference to the accompanying drawings, in which:

FIG. 1 is an axial cross section of a motor in accordance with the invention; and

FIG. 2 is a scrap cross section taken in another axial plane to illustrate a detail.

The motor unit comprises a generally cylindrical, open ended body portion 10, having a central-dividing wall 12 which, together with a pair of cylinder-end closures 14 and 16, forms a forward and a rear motor compartment or cylinder space. A pair of pressed steel pistons 18 and 20 are located one in each of the motor compartments to divide the compartments into atmospheric chambers 22 and 24 in front of the respective pistons and pressure chambers 26 and 28 to the rear of the respective pistons.

The dividing wall 12 has a central aperture 23 which sealingly and slidably receives the forward end of a stem 29 forming part of a pressure member 30, which is housed within the chamber 24 and has an enlarged disc-shaped rear end portion 32, which is in abutting engagement with the piston 20. A thrust pad 34 is welded to the back face of the piston 18 and is provided with complementary abutment surfaces for the part-spherical end 36 of the stem 29 and for a frustoconical seating 38 machined into the front end of the dividing wall 12 around the aperture 23.

The end wall 14 has a central aperture 40 which receives with substantial clearance a push rod 42, whose rear end rests in a spherical seating on a force transmitting element 44, to which it is connected by a pin 46 passing through a diametrical hole 48 adjacent the push rod end. The element 44 includes an enlarged disc-shaped rear end portion 50 which abuts the piston 18. A piston return coil spring 52, located between the end closure 14 and the element 44, acts to urge the piston 18 against the abutment 38 and the piston 20 against a rubber or like buffer 54, on the front face of the end closure 16. The 60 motor is adapted for attachment, e.g. to a vehicle frame, by a set of mounting bolts 56 carried by the end closure 14.

Fluid under pressure is introduced into the pressure chamber 26 by way of a radial port 57 in the body portion 10, and to the pressure chamber 28 through an axial port 58 in the 65 end closure 16.

The chamber 24 is connected to atmosphere by means of a plurality of port means, each of the general form shown in FIG. 2 and comprising a radial port 60 communicating with an axial port 61. At its outer end, the port 60 is provided with an apertured end cap 62 for carrying an air filter element (not shown). The chamber 22 is connected to atmosphere through the aperture 40.

To minimise the overall length of the motor, the respective said wall so that said second end portion is radially inwardly cylinders and pistons are so constructed and arranged that the 75 arranged with respect to said first annular portion and means

rear part of the forward cylinder space (constituted by chambers 22 and 26) axially overlaps the forward part of the rear cylinder space (constituted by chambers 24 and 28). As shown in the drawing, the piston 18 is of larger diameter than the piston 20, and the dividing wall 12 has a peripheral skirt 64, the interior surface 68 of which forms the forward part of the rear cylinder space. The outer surface of the skirt 64 is spaced from the interior surface 66 of the forward pressure chamber 26, sufficiently to facilitate machining of the surface 66 and to receive a rearwardly extending skirt on the forward piston 18. The pistons 18 and 20 are sealed by respective piston seals 70 and 72 mounted in the body 10.

Both pistons 18 and 20 are formed as metal pressings which are each dished rearwardly so as to have a flat central portion or web, located axially between the forward and rear extremities of the piston. The piston return spring 52 is located within the dished part of piston 18, so that when the piston is fully forward, the spring is accommodated wholly within the piston 18 and does not interfere with the working stroke of the piston 18.

The rear walls 12 and 16 of the pressure chambers 26 and 28 are shaped to conform substantially to the adjacent pistons, so as to reduce as far sa practically possible the minimum volume of the chambers 26 and 28 when the motor is in its unactuated condition, as drawn. This arrangement reduces to a minimum any delay between the introduction of fluid pressure into the chambers 26 and 28 and initial forward displacement of the pistons.

In operation, the delivery of pressurized fluid such as compressed air to the chambers 26 and 28 produces a pressure difference across the pistons 18 and 20, which move in opposition to the return spring 52 and displace the push rod 42 outwardly through the end closure 14, during which stage air in the chambers 22 and 24 is exhausted to atmosphere through the opening 40 and ports 60 and 61 respectively. The push rod (which may, for example be connected to a brake-applying mechanism) transmits a force which is equal to the sum of the force outputs of the two pistons.

When the pressure in chambers 26 and 28 is relieved, the pistons are returned to their rest position under the action of the return spring 52, atmospheric air being drawn back into the chambers 22 and 24.

The motor unit may advantageously be used in conjunction with a dual brake system in which the inlets 56 and 58 are each connected to separate pressure sources such that failure of one source of supply will not cause a complete failure.

If the supply to the rear cylinder fails, the forward piston 18 can move forwardly on its own, leaving the rear piston behind (since the pistons make abutting engagement only and are not secured to each other); if the supply to the forward cylinder fails, the rear piston can move forwardly, pushing the forward piston ahead of it.

The motor has been described as being operated by superatmospheric air pressure, but could obviously be modified so as to be vacuum operated (either air or vacuum suspended) or hydraulically operated. A motor in accordance with the invention could also be used in conjunction with arrangements other than braking systems.

I claim:

1. A fluid pressure motor comprising a body defining first and second coaxial cylinder spaces separated from one another by a dividing wall so shaped that the first cylinder space located on one side of said wall includes an annular end portion which encircles the adjacent end portion of the second cylinder space located on the other side of said wall and spaced radially inward from said first cylinder space, first and second pistons respectively working in said cylinder spaces, each piston dividing its cylinder space into two fluid chambers, said first piston including a peripheral annular skirt engageable in said annular end portion, said second piston engaging the dividing wall in a second end portion formed by said wall so that said second end portion is radially inwardly arranged with respect to said first annular portion and means

extending slidably and sealedly through said dividing wall to couple said pistons together in tandem.

2. A fluid pressure motor as defined in claim 1 and further comprising a stationary annular seal carried by said body in said first cylinder space and making sealing engagement with 5 the periphery of said first piston, the axial length of said first piston exceeding its working stroke.

3. A fluid pressure motor as defined in claim 1 in which at least one piston is formed as a metal pressing which is dished, a compression spring which urges the piston towards one end 10

of its stroke being accommodated within the dishing when the piston is at the other end of its stroke.

4. A fluid pressure motor as defined in claim 1 in which at least one piston is formed as a metal pressing which is dished, one end wall of the cylinder space in which that piston works being complementarily shaped so as to reduce as far as possible the minimum volume of the chamber formed between the piston and that end wall.