To all whom it may concern:

Be it known that I, Louis A. Siebert, a citizen of the United States, residing at Columbus, in the county of Franklin and State of Ohio, have invented certain new and useful Improvements in Electric Air Heating and Discharging Devices, of which the following is a specification.

My invention relates to the improvement of air heating and discharging devices and the objects of my invention are to provide a simple and inexpensive means for heating and discharging air under pressure; to so construct my device as to render it of great utility in barber shops, hair dressing establishments and similar places, for use in drying faces and hair of the customers and for use in applying heated air to the skin of the customer in connection with massage treatment. These objects I accomplish in the manner illustrated in the accompanying drawing, in which:

Figure 1 is a side elevation of my device, Fig. 2 is an end view of the same, Fig. 3 is a vertical section on line a—a of Fig. 2, and, Fig. 4 is a sectional view on line y—y of Fig. 3.

Similar numerals refer to similar parts throughout the several views.

1 represents the body or external casing of my device which is preferably of the cylindrical form shown, said casing being provided with outer and inner end plates 2 and 3 which are detachably connected with the ends of the cylindrical body 1. The rear or inner end plate 3 is formed as shown at 4, with a projecting hollow boss, the central opening of which leads through said end plate 3, said boss being adapted to receive or have suitably connected therewith, one end of an air conductor such as is indicated at 5. The front or outer plate 2 is also formed with a projecting hollow boss or nozzle 6, which is so located as to be out of alignment with the inlet nozzle or boss 4.

Within the casing formed by the cylindrical body 1 and the ends 2 and 3 and bearing against the inner wall of said cylindrical body, is a lining of suitable non-heat conducting material 7 such as asbestos and against the inner faces of the end plates 2 and 3 are provided disks of similar non-heat conducting material 8 and 9. The disk 8 has formed therein an opening 9 which is opposite the hollow of the boss 4. Within the casing of non-heat conducting material formed as above described, I provide two disks 10 and 11 of fiber or other non-conductor of electricity, these disks abutting against the disks 8 and 9 respectively and being connected by a central tubular member 12 of similar material. This tubular member has running therethrough a metallic rod 13. Opposite the boss 4 the outer face of the non-heat conducting disk 9 is cut away to provide space for the reception and movement of a spring strip 14, the upper end of which is secured by means of a screw 15. A similar spring strip 16 is supported in the same manner as the second strip 14.

Between the insulating disks 10 and 11 are provided at suitable intervals, wires resistance coils 17, these coils having their ends 18 passing through the insulator disks 11 and being properly connected together and with positive and negative supply wires 17 and 19 between said disks and the disks 8 and 9, as shown more clearly at 16 in Fig. 4 of the drawing. The wires 17 and 18 run from a suitable source of electric current supply and lead through openings in the cylindrical casing 1.

In utilizing my invention, it will be understood that air under pressure from any suitable compressed air supply is passed into 80 and through the body of my device through a suitable conductor such as 5, through the hollow of the boss 4. The pressure of the incoming air through the hollow of the boss 4 against the spring 14 forces the latter inward a sufficient distance to open the air inlet, thus permitting the air passing about the spring, through the opening 9 and thence through an opening 11 of the disk 11 to the interior of the casing body. From this casing body, the air passes outward through an opening 12 of the disk 10 which registers with the opening 8 of the disk 8 and is discharged through the nozzle 6. The air which thus passes through the casing is heated to a desirable extent through the presence of the resistance coils 15 through which a current of electricity is passing through the wires 17 and 18.

As will be readily seen the construction of my device is such as to permit of its being readily handled by the operator for the
purpose of discharging air under pressure against the face or hair of a customer in a barber shop or other similar place and it will also be understood that while such means are not herein shown, any well known cut-off devices may be employed in connection with the conductor 5 and the electric supply wires, to readily cut off when desired both the currents of air and electricity.

What I claim, is:

1. In a device of the character described, the combination with a casing adapted to be held within the hand and having non-alined openings in the opposite ends thereof, of flexible conducting means for conducting air to one of said openings, the other of said openings serving as a discharge opening for said air, a lining of non-heat conducting material located within said casing, a spool of material non-conductive to electricity located within said lining, heating coils located between the end members of said spool, said end members being perforated for the passage of air, and a spring valve secured to the under face of one end of the casing and adapted to close the inlet opening, said spring valve being opened by the pressure of the air.

2. In a device of the character described, the combination with a casing adapted to be

held within the hand, and having non-alined openings in the opposite ends thereof, of flexible conducting means for conducting air to one of said openings, the other of said openings serving as a discharge opening for said air, an electric heating coil located within said casing and within the path of said air, and a spring valve adapted to close the inlet opening, said spring valve being opened by the pressure of the air.

3. In a device of the character described, the combination with a casing adapted to be held within the hand, and having non-alined openings in the opposite ends thereof, of flexible conducting means for conducting air to one of said openings, the other of said openings serving as a discharge opening for said air, an electric heating coil located within said casing and within the path of said air, a spring valve adapted to close the inlet opening, said spring valve being opened by the pressure of air, and a lining of non-heat conducting material for both the end and side walls of said casing.

In testimony whereof I affix my signature in presence of two witnesses.

Louis A. Siebert.

Witnesses:

C. C. Shepherd,

L. Carl Stoughton.