

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199923505 B2
(10) Patent No. 743647

(54) Title
Methods and reagents for decreasing allergic reactions

(51)⁶ International Patent Classification(s)
C12N 015/29 A61K 039/35
A01H 005/00 C07K 014/415
A01K 067/027

(21) Application No: 199923505 (22) Application Date: 1999 .01 .29

(87) WIPO No: WO99/38978

(30) Priority Data

(31) Number	(32) Date	(33) Country
60/073283	1998 .01 .31	US
60/074590	1998 .02 .13	US
60/074624	1998 .02 .13	US
60/074633	1998 .02 .13	US
09/141220	1998 .08 .27	US

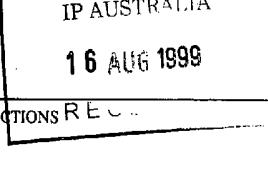
(43) Publication Date: 1999 .08 .16
(43) Publication Journal Date: 1999 .10 .21
(44) Accepted Journal Date: 2002 .01 .31

(71) Applicant(s)
University of Arkansas; Mt. Sinai School of Medicine of New York
University ; Howard Sosin

(72) Inventor(s)
Howard Sosin; Gary A. Bannon; A. Wesley Burks Jr.; Hugh A Sampson

(74) Agent/Attorney
PIZZEYS,GPO Box 1374, BRISBANE QLD 4001

(56) Related Art
ARCHIVES OF BIOCHEMISTRY BIOPHYSICS 342,PP244-253 (1997)


23505/99

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 15/29, A61K 39/35, C07K 14/415, A01H 5/00, A01K 67/027		A1	(11) International Publication Number: WO 99/38978
(21) International Application Number: PCT/US99/02031		(43) International Publication Date: 5 August 1999 (05.08.99)	
(22) International Filing Date: 29 January 1999 (29.01.99)		(74) Agent: PABST, Patria, L.; Arnall Golden & Gregory, LLP, 2800 One Atlantic Center, 1201 West Peachtree Street, Atlanta, GA 30309-3450 (US).	
(30) Priority Data:		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(71) Applicants: UNIVERSITY OF ARKANSAS [US/US]; 2404 North University Avenue, Little Rock, AR 72207-3608 (US). MT. SINAI SCHOOL OF MEDICINE OF THE CITY UNIVERSITY OF NEW YORK [US/US]; One Gustave Levy Place, New York, NY 10029-6574 (US). Mt. Sinai School of Medicine of New York University, One Gustave Levy Place, New York, New York 10029-6574 (US).		Published 2000-08-05 <small>With international search report.</small>	
(71)(72) Applicant and Inventor: SOSIN, Howard [US/US]; 640 Sasco Hill Road, Fairfield, CT 06430 (US).		(35) <small>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</small>	
(72) Inventors: BANNON, Gary, A.; 714 St. Michael Place, Little Rock, AR 72211 (US). BURKS, A., Wesley, Jr.; 2400 North Pierre, Little Rock, AR 72207 (US). SAMPSION, Hugh, A.; 19 Carleton Avenue, Larchmont, NY 10538 (US).		 16 AUG 1999	
(54) Title: METHODS AND REAGENTS FOR DECREASING ALLERGIC REACTIONS			
(55) Abstract			
<p>It has been determined that allergens, which are characterized by both humoral (IgE) and cellular (T cell) binding sites, can be modified to be less allergenic by modifying the IgE binding sites. The IgE binding sites can be converted to non-IgE binding sites by masking the site with a compound that prevents IgE binding or by altering as little as a single amino acid within the protein, most typically a hydrophobic residue towards the center of the IgE-binding epitope, to eliminate IgE binding. The method allows the protein to be altered as minimally as possible, other than within the IgE-binding sites, while retaining the ability of the protein to activate T cells, and, in some embodiments by not significantly altering or decreasing IgG binding capacity. The examples use peanut allergens to demonstrate alteration of IgE binding sites. The critical amino acids within each of the IgE binding epitopes of the peanut protein that are important to immunoglobulin binding have been determined. Substitution of even a single amino acid within each of the epitopes led to loss of IgE binding. Although the epitopes shared no common amino acid sequence motif, the hydrophobic residues located in the center of the epitope appeared to be most critical to IgE binding.</p>			

METHODS AND REAGENTS FOR DECREASING ALLERGIC REACTIONS**Background of the Invention**

5 The United States government has rights in this invention by virtue of grants from the National Institute of Health RO1-AI33596.

Allergic disease is a common health problem affecting humans and companion animals (mainly dogs and cats) alike. Allergies exist to foods, molds, grasses, trees, insects, pets, fleas, ticks and other substances present 10 in the environment. It is estimated that up to 8% of young children and 2% of adults have allergic reactions just to foods alone. Some allergic reactions (especially those to foods and insects) can be so severe as to be life threatening. Problems in animals tend to be less severe, but very common. For example, many dogs and cats have allergies to flea saliva proteins, 15 grasses, and other common substances present in the environment.

Allergy is manifested by the release of histamines and other mediators of inflammation by mast cells which are triggered into action when IgE antibodies bound to their receptors on the mast cell surface are cross linked by antigen. Other than avoidance, and drugs (e.g. 20 antihistamines, decongestants, and steroids) that only treat symptoms and can have unfortunate side effects and often only provide temporary relief, the only currently medically accepted treatment for allergies is immunotherapy. Immunotherapy involves the repeated injection of allergen extracts, over a period of years, to desensitize a patient to the allergen. Unfortunately, 25 traditional immunotherapy is time consuming, usually involving years of treatment, and often fails to achieve its goal of desensitizing the patient to the allergen. Furthermore, it is not the recommended treatment for food allergies, such as peanut allergies, due to the risk of anaphylaxis.

Noon (Noon, *Lancet* 1911; 1:1572-73) first introduced allergen 30 injection immunotherapy in 1911, a practice based primarily on empiricism with non-standardized extracts of variable quality. More recently the introduction of standardized extracts has made it possible to increase the efficacy of immunotherapy, and double-blind placebo-controlled trials have

demonstrated the efficacy of this form of therapy in allergic rhinitis, asthma and bee-sting hypersensitivity (BSAC Working Party, *Clin. Exp. Allergy* 1993; 23:1-44). However, increased risk of anaphylactic reactions has accompanied this increased efficacy. For example, initial trials of 5 immunotherapy to food allergens has demonstrated an unacceptable safety:efficacy ratio (Oppenheimer et al. *J Allergy Clin. Immun.* 1992; 90:256-62; Sampson, *J. Allergy Clin. Immun.* 1992; 90:151-52; Nelson et al. *J. Allergy Clin. Immun.* 1996; 99:744-751). Results like these have prompted investigators to seek alternative forms of immunotherapy as well 10 as to seek other forms of treatment.

Initial trials with allergen-non-specific anti-IgE antibodies to deplete the patient of allergen-specific IgE antibodies have shown early promise (Boulet, et al. 1997; 155:1835-1840; Fahy, et al. *American J Respir. Crit. Care Med.* 1997; 155:1828-1834; Demoly P. and Bousquet J. *American J Resp. Crit. Care Med.* 1997; 155:1825-1827). On the other hand, trials 15 utilizing immunogenic peptides (representing T cell epitopes) have been disappointing (Norman, et al. *J. Aller. Clin. Immunol.* 1997; 99:S127). Another form of allergen-specific immunotherapy which utilizes injection of plasmid DNA (Raz et al. *Proc. Nat. Acad. Sci. USA* 1994; 91:9519-9523; Hz 20 et al. *Int. Immunol.* 1996; 8:1405-1411) remains unproven.

There remains a need for a safe and efficacious therapy for allergies, especially those where traditional immunotherapy is ill advised due to risk to the patient or lack of efficacy. There is also a need for alternatives to therapies, for example, by creating foods, materials or substances that do not 25 include the allergens that are most problematic, or which contain modified allergens which do not elicit the same reaction. While the technology to make genetically engineered plants and animals is at this point well established, useful modifications would require understanding how allergens can be modified so that they retain the essential functions for the plants' and 30 animals' nutritional value, taste characteristics, etc., but no longer elicit as severe an allergic response.

It is therefore an object of the present invention to provide a method for decreasing the allergenicity of allergens either by modifying the allergen

itself or by producing a compound that would mask the epitope and thus prevent binding of IgE.

It is a further object of the present invention to provide allergens that elicit fewer IgE mediated responses.

5 It is still another object of the present invention to provide a method to make genetically engineered plants and animals that elicit less of an allergic response than the naturally occurring organisms.

Summary of the Invention

It has been determined that allergens, which are characterized by both 10 humoral (IgG and IgE) and cellular (T cell) binding sites, can be made less allergenic by modifying the IgE binding sites. The IgE binding sites can be eliminated by masking the site with a compound that would prevent IgE binding or by altering as little as a single amino acid within the protein to 15 eliminate IgE binding. The method allows the protein to be altered as minimally as possible, (i.e. only within the IgE-binding sites) while retaining the ability of the protein to activate T cells and, optionally, to bind IgG. Binding sites are identified using known techniques, such as by binding with 20 antibodies in pooled sera obtained from individuals known to be immunoreactive with the allergen to be modified. Proteins that are modified to alter IgE binding are screened for binding with IgG and/or activation of T cells.

Peanut allergens (Ara h 1, Ara h 2, and Ara h 3) have been used in 25 the examples to demonstrate alteration of IgE binding sites while retaining binding to IgG and activation of T cells. The critical amino acids within each of the IgE binding epitopes of the peanut protein that are important to immunoglobulin binding were determined. Substitution of even a single amino acid within each of the epitopes led to loss of IgE binding. Although 30 the epitopes shared no common amino acid sequence motif, the hydrophobic residues located in the center of the epitope appeared to be most critical to IgE binding.

Standard techniques such as a skin test for wheal and flare formation can be used to assess decreased allergenicity of modified proteins, created as described in the examples. The modified allergens can also be tested for

binding to IgG and proliferation of T cells, and modified allergens selected for optimal stimulation of T cells and binding IgG.

The immunotherapeutics can be delivered by standard techniques, using injection, by aerosol, sublingually, topically (including to a mucosal surface), and by gene therapy (for example, by injection of the gene 5 encoding the immunotherapeutic into muscle or skin where it is transiently expressed for a time sufficient to induce tolerance).

This method and the criteria for identifying and altering allergens can be used to design useful proteins (including nucleotide molecules encoding 10 the proteins) for use in immunotherapy, to make a vaccine and to genetically engineer organisms such as plants and animals which then produce proteins with less likelihood of eliciting an IgE response. Techniques for engineering plants and animals are well known. Based on the information obtained using the method described in the examples, one can engineer plants or animals to 15 cause either site specific mutations in the gene encoding the protein(s) of interest, or to knock out the gene and then insert the gene encoding the modified protein.

Brief Description of the Drawings

Figure 1 shows an example of how IgE binding epitopes were 20 mapped to a specific amino acid sequence on the Ara h 1 allergen.

Figure 2 shows how IgE binding epitopes were mapped to a specific amino acid sequence on the Ara h 2 allergen.

Figure 3 shows how IgE binding epitopes were mapped to a specific amino acid sequence on the Ara h 3 allergen.

Figure 4 is a graph of the %IgE binding relative to wild type Ara h2 25 of modified Ara h 2 allergens.

Figure 5 shows the results of T-cell proliferation assays using the native and recombinant wild-type and modified Ara h 2 protein, compared to crude peanut as a control.

30 Detailed Description of the Invention

Definitions

The following definitions are used herein.

An antigen is a molecule that elicits production of antibody (a

humoral response) or an antigen-specific reaction with T cells (a cellular response).

An allergen is a subset of antigens which elicits IgE production in addition to other isotypes of antibodies.

5 An allergic reaction is one that is IgE mediated with clinical symptoms primarily involving the cutaneous (urticaria, angioedema, pruritus), respiratory (wheezing, coughing, laryngeal edema, rhinorrhea, watery/itching eyes), gastrointestinal (vomiting, abdominal pain, diarrhea), and cardiovascular (if a systemic reaction occurs) systems.

10 An epitope is a binding site including an amino acid motif of between approximately six and fifteen amino acids which can be bound by either an immunoglobulin or recognized by a T cell receptor when presented by an antigen presenting cell in conjunction with the major histocompatibility complex (MHC). A linear epitope is one where the amino acids are 15 recognized in the context of a simple linear sequence. A conformational epitope is one where the amino acids are recognized in the context of a particular three dimensional structure.

20 An immunodominant epitope is one which is bound by antibody in a large percentage of the sensitized population or where the titer of the antibody is high, relative to the percentage or titer of antibody reaction to other epitopes present in the same protein.

25 A decreased allergic reaction is characterized by a decrease in clinical symptoms following treatment of symptoms associated with exposure to an allergen, which can involve respiratory, gastrointestinal, skin, eyes, ears and mucosal surfaces in general.

An antigen presenting cell (an APC) is a cell which processes and presents peptides to T cells to elicit an antigen-specific response.

30 Immunostimulatory sequences are oligodeoxynucleotides of bacterial, viral or invertebrate origin that are taken-up by APCs and activate them to express certain membrane receptors (e.g., B7-1 and B7-2) and secrete various cytokines (e.g., IL-1, IL-6, IL-12, TNF). These oligodeoxynucleotides containing unmethylated CpG motifs cause brisk activation and when injected into animals in conjunction with antigen, appear

to skew the immune response to a Th1-type response. See, for example, Yamamoto, et al., *Microbiol. Immunol.* 36, 983 (1992); Krieg, et al., *Nature* 374, 546-548 (1995); Pisetsky, *Immunity* 5, 303 (1996); and Zimmerman, et al., *J. Immunol.* 160, 3627-3630 (1998).

5 **I. Diagnostic and Therapeutic Reagents.**

The first step in making the modified allergen is to identify IgE binding sites and/or immunodominant IgE binding sites. The second step is to mutate one or more of the IgE binding sites, preferably including at a minimum one of the immunodominant sites, or to react the allergen with a compound that selectively blocks binding to one or more of the IgE binding sites. The third step is to make sufficient amounts of the modified allergen for administration to persons or animals in need of tolerance to the allergen, where the modified allergen is administered in a dosage and for a time to induce tolerance, or for diagnostic purposes. The modified allergen can be administered by injection, or in some cases, by ingestion or inhalation.

10 **A. Allergens.**

Many allergens are known that elicit allergic responses, which may range in severity from mildly irritating to life-threatening. Food allergies are mediated through the interaction of IgE to specific proteins contained within the food. Examples of common food allergens include proteins from peanuts, milk, grains such as wheat and barley, soybeans, eggs, fish, crustaceans, and mollusks. These account for greater than 90% of the food allergies (Taylor, *Food Techn.* 39, 146-152 (1992). The IgE binding epitopes from the major allergens of cow milk (Ball, et al. (1994) *Clin. Exp. Allergy*, 24, 758-764), egg (Cooke, S.K. and Sampson, H.R. (1997) *J. Immunol.*, 159, 2026-2032), codfish (Aas, K., and Elsayed, S. (1975) *Dev. Biol. Stand.* 29, 90-98), hazel nut (Elsayed, et al. (1989) *Int. Arch. Allergy Appl. Immunol.* 89, 410-415), peanut (Burks et al., (1997) *Eur. J. Biochemistry*, 245:334-339; Stanley et al., (1997) *Archives of Biochemistry and Biophysics*, 342:244-253), soybean (Herein, et al. (1990) *Int. Arch. Allergy Appl. Immunol.* 92, 193-198) and shrimp (Shanty, et al. (1993) *J. Immunol.* 151, 5354-5363) have all been elucidated, as have others. Other allergens include proteins from insects such as flea, tick, mite, fire ant,

cockroach, and bee as well as molds, dust, grasses, trees, weeds, and proteins from mammals including horses, dogs, cats, etc.

The majority of allergens discussed above elicit a reaction when ingested, inhaled, or injected. Allergens can also elicit a reaction based 5 solely on contact with the skin. Latex is a well known example. Latex products are manufactured from a milky fluid derived from the rubber tree, *Hevea brasiliensis* and other processing chemicals. A number of the proteins in latex can cause a range of allergic reactions. Many products contain latex, in 10 such as medical supplies and personal protective equipment. Three types of reactions can occur in persons sensitive to latex: irritant contact dermatitis, and immediate systemic hypersensitivity. Additionally, the proteins responsible for the allergic reactions can fasten to the powder of latex gloves. This powder can be inhaled, causing exposure through the lungs. Proteins found in latex that interact with IgE antibodies were characterized by two-dimensional electrophoresis. Protein fractions of 56, 45, 30, 20, 14, and less 15 than 6.5 kd were detected (Posch A. et al., (1997) *J. Allergy Clin. Immunol.* 99(3), 385-395). Acidic proteins in the 8-14 kd and 22 - 24 kd range that reacted with IgE antibodies were also identified (Posch A. et al., (1997) *J. Allergy Clin. Immunol.* 99(3), 385-395). The proteins prohevein and hevein, 20 from *hevea brasiliensis*, are known to be major latex allergens and to interact with IgE (Alenius, H., et al., *Clin. Exp. Allergy* 25(7), 659-665; Chen Z., et al., (1997) *J. Allergy Clin. Immunol.* 99(3), 402-409). Most of the IgE binding domains have been shown to be in the hevein domain rather than the domain specific for prohevein (Chen Z., et al., (1997) *J. Allergy Clin. Immunol.* 99(3), 402-409). The main IgE-binding epitope of prohevein is 25 thought to be in the N-terminal, 43 amino acid fragment (Alenius H., et al., (1996) *J. Immunol.* 156(4), 1618-1625). The hevein lectin family of proteins has been shown to have homology with potato lectin and snake venom 30 disintegrins (platelet aggregation inhibitors) (Kielisqewski, M.L., et al., (1994) *Plant J.* 5(6), 849-861).

B. Identification of IgE Binding Sites.

Allergens typically have both IgE and IgG binding sites and are recognized by T cells. The binding sites can be determined either by using

phage display libraries to identify conformational epitopes (Eichler and Houghten, (1995) *Molecular Medicine Today* 1, 174-180; Jensen-Jarolim et al., (1997) *J. Appl. Clin. Immunol.* 101, 5153a) or by using defined peptides derived from the known amino acid sequence of an allergen (see examples 5 below), or by binding of whole protein or protein fragments to antibodies, typically antibodies obtained from a pooled patient population known to be allergic to the allergen. It is desirable to modify allergens to diminish binding to IgE while retaining their ability to activate T cells and in some 10 embodiments by not significantly altering or decreasing IgG binding capacity. This requires modification of one or more IgE binding sites in the allergen.

A preferred modified allergen is one that can be used with a majority of patients having a particular allergy. Use of pooled sera from allergic patients allows determination of one or more immunodominant epitopes in 15 the allergen. Once some or all of the IgE binding sites are known, it is possible to modify the gene encoding the allergen, using site directed mutagenesis by any of a number of techniques, to produce a modified allergen as described below, and thereby express modified allergens. It is also possible to react the allergen with a compound that achieves the same 20 result as the selective mutation, by making the IgE binding sites inaccessible, but not preventing the modified allergen from activating T cells, and, in some embodiments, by not significantly altering or decreasing IgG binding.

Assays to assess an immunologic change after the administration of the modified allergen are known to those skilled in the art. Conventional 25 assays include RAST (Sampson and Albergo, 1984), ELISAs (Burks, et al. 1986) immunoblotting (Burks, et al. 1988), and *in vivo* skin tests (Sampson and Albergo 1984). Objective clinical symptoms can be monitored before

and after the administration of the modified allergen to determine any change in the clinical symptoms.

It may be of value to identify IgEs which interact with conformational rather than linear epitopes. Due to the complexity and heterogeneity of patient serum, it may be difficult to employ a standard immobilized allergen affinity-based approach to directly isolate these IgEs in quantities sufficient to permit their characterization. These problems can be avoided by isolating some or all of the IgEs which interact with conformational epitopes from a combinatorial IgE phage display library.

10 Steinberger et al. (Steinberger, P., Kraft D. and Valenta R. (1996) "Construction of a combinatorial IgE library from an allergic patient: Isolation and characterization of human IgE Fabs with specificity for the major Timothy Grass pollen antigen," *Phl p. 5 J. Biol. Chem.* 271, 10967-10972) prepared a combinatorial IgE phage display library from mRNA isolated from the peripheral blood mononuclear cells of a grass allergic patient. Allergen-specific IgEs were selected by panning filamentous phage expressing IgE Fabs on their surfaces against allergen immobilized on the wells of 96 well microtiter plates. The cDNAs were then isolated from allergen-binding phage and transformed into *E. coli* for the production of 15 large quantities of monoclonal, recombinant, allergen-specific IgE Fabs.

20 If native allergen or full length recombinant allergen is used in the panning step to isolate phage, then Fabs corresponding to IgEs specific for conformational epitopes should be included among the allergen-specific clones identified. By screening the individual recombinant IgE Fabs against 25 denatured antigen or against the relevant linear epitopes identified for a given antigen, the subset of conformation-specific clones which do not bind to linear epitopes can be defined.

20 To determine whether the library screening has yielded a complete 30 inventory of the allergen-specific IgEs present in patient serum, an immunocompetition assay can be performed. Pooled recombinant Fabs would be preincubated with immobilized allergen. After washing to remove unbound Fab, the immobilized allergen would then be incubated with patient serum. After washing to remove unbound serum proteins, an incubation

with a reporter-coupled secondary antibody specific for IgE Fc domain would be performed. Detection of bound reporter would allow quantitation of the extent to which serum IgE was prevented from binding to allergen by recombinant Fab. Maximal, uncompetited serum IgE binding would be 5 determined using allergen which had not been preincubated with Fab or had been incubated with nonsense Fab. If IgE binding persists in the face of competition from the complete set of allergen-specific IgE Fab clones, this experiment can be repeated using denatured antigen to determine whether the epitopes not represented among the cloned Fabs are linear or conformational.

10 Production of Recombinant or Modified Allergens

A modified allergen will typically be made using recombinant techniques. Expression in a procaryotic or eucaryotic host including bacteria, yeast, and baculovirus-insect cell systems are typically used to produce large (mg) quantities of the modified allergen. It is also possible to 15 make the allergen synthetically, if the allergen is not too large, for example, less than about 25-40 amino acids in length.

Production of Transgenic Plants and Animals

Transgenic plants or animals expressing the modified allergens have 20 two purposes. First, they can be used as a source of modified allergen for use in immunotherapy and second, appropriately modified plants or animals can be substituted for the original plant or animal, making immunotherapy unnecessary. Furthermore, it is possible that eating modified peanuts or cod fish, for example, could have either or both of two effects: (1) not imparting an allergic response on their own and (2) conferring protection from the 25 unmodified source by acting as an immunotherapeutic agent for the unmodified source. Methods for engineering of plants and animals are well known and have been for a decade. For example, for plants see Day, (1996) *Crit. Rev. Food Sci. & Nut.* 36(S), 549-567, the teachings of which are incorporated herein. See also Fuchs and Astwood (1996) *Food Tech.* 83-30 88. Methods for making recombinant animals are also well established. See, for example, Colman, A" Production of therapeutic proteins in the milk of transgenic livestock" (1998) *Biochem. Soc. Symp.* 63, 141-147; Espanion and Niemann, (1996) *DTW Dtsch Tierarztl Wochenschr* 103(8-9), 320-328; and

Colman, *Am. J. Clin. Nutr.* 63(4), 639S-645S, the teachings of which are incorporated herein. One can also induce site specific changes using homologous recombination and/or triplex forming oligomers. See, for example, Rooney and Moore, (1995) *Proc. Natl. Acad. Sci. USA* 92, 2141-2149; Agrawal, et al., *BioWorld Today*, vol. 9, no. 41, p. 1 "Chimeriplasty - Gene Surgery, Not Gene Therapy - Fixes Flawed Genomic Sequences" David N. Leff.

Production and Screening of Compounds blocking IgE Binding Sites

Once the IgE binding sites have been identified, it is also possible to 10 block or limit binding to one or more of these sites by reacting the allergen with a compound that does not prevent the allergen from activating T cells, and in some embodiments does not significantly alter or decrease IgG binding capacity, resulting in a modified allergen similar in functionality to that produced by mutation. There are two principal ways to obtain 15 compounds which block IgE binding sites: combinatorial libraries and combinatorial chemistry.

Identification of Compounds That Mask IgE Binding Sites through Application of Combinatorial Chemistry

In some cases it may be preferable to utilize non-peptide compounds 20 to block binding of IgE to the allergen by masking the IgE binding epitope. This can be accomplished by using molecules that are selected from a complex mixture of random molecules in what has been referred to as "in vitro genetics" or combinatorial chemistry (Szostak, *TIBS* 19:89, 1992). In this approach a large pool of random and defined sequences is synthesized 25 and then subjected to a selection and enrichment process. The selection and enrichment process involves the binding of the IgE binding epitopes to a solid support, followed by interaction with the products of various combinatorial libraries. Those molecules which do not bind these molecules at all are removed immediately by elution with a suitable solvent. Those 30 molecules which bind to the epitopes will remain bound to the solid support, whereas, unbound compounds will be removed from the column. Those compounds bound to the column can be removed, for example, by competitive binding. Following removal of these compounds, the

compounds which have bound can be identified, using methodology well known to those of skill in the art, to isolate and characterize those compounds which bind to or interact with IgE binding epitopes. The relative binding affinities of these compounds can be compared and optimum 5 compounds identified using competitive binding studies which are well known to those of skill in the art.

Identification of Compounds That Interact with IgE Binding Sites through Application of Combinatorial Phage Display Libraries

Recombinant, monoclonal Fabs directed against conformational 10 epitopes, identified as described above, can be used as reagents to assist in the definition of the biochemical nature of these epitopes. Cross-linking studies employing derivatized Fabs can be employed to label amino acid residues in the vicinity of the epitopes. Similarly, the Fabs can be used in protease protection studies to identify those domains of the allergen protein 15 which are shielded from protease degradation by pre-binding of a specific Fab. Experiments employing recombinant monoclonal Fabs as reagents to label or protect from labeling should permit at least partial elucidation of the structures of conformational epitopes.

"Humanized" recombinant Fabs should bind to allergens if injected 20 into a patient and thus prevent the binding of these allergens to native IgE. Since the Fabs cannot interact with the Fc ϵ receptor, the binding of the IgE Fabs to allergen would not be expected to elicit mast cell degranulation. Allergen should be neutralized as it is by protective IgGs.

Anti-idiotype antibodies directed against the conformational epitope-specific Fabs should resemble the conformation epitopes themselves. 25 Injection of these anti-idiotype antibodies should induce the production of anti-anti-idiotype IgGs which would recognize, bind to and inactivate the conformational epitopes. The method through which the anti-idiotype antibodies would be produced (i.e. animal immunization, "in vitro" immunization or recombinant phage display library) would have to be determined. Similarly, the possibility that the anti-idiotype antibodies 30 (which resemble the conformational epitopes) would be recognized by patient IgEs and induce mast cell degranulation needs to be considered.

II. Diagnostic and Therapeutic Procedures Using Modified Allergens.

It is important to administer the modified allergen to an individual (human or animal) to decrease the clinical symptoms of allergic disease by 5 using a method, dosage, and carrier which are effective. Allergen will typically be administered in an appropriate carrier, such as saline or a phosphate saline buffer. Allergen can be administered by injection subcutaneously, intramuscularly, or intraperitoneally (most humans would be treated by subcutaneous injection), by aerosol, inhaled powder, or by 10 ingestion.

Therapy or desensitization with the modified allergens can be used in combination with other therapies, such as allergen-non-specific anti-IgE antibodies to deplete the patient of allergen-specific IgE antibodies (Boulet, et al. (1997) 155:1835-1840; Fahy, et al. (1997) *American J Respir. Crit. Care Med.* 155:1828-1834; Demoly, P. and Bousquet (1997) *J Am J Resp. Crit. Care Med.* 155:1825-1827), or by the pan specific anti-allergy therapy described in U. S. Serial No. 08/090,375 filed June 4, 1998, by M. Caplan and H. Sosin. Therapy with the modified allergen can also be administered in combination with an adjuvant such as IL 12, IL 16, IL 18, Ifn- ζ . 15

20 The nucleotide molecule encoding the modified allergen can also be administered directly to the patient, for example, in a suitable expression vector such as a plasmid, which is injected directly into the muscle or dermis, or through administration of genetically engineered cells.

25 In general, effective dosages will be in the picogram to milligram range, more typically microgram to milligram. Treatment will typically be between twice/weekly and once a month, continuing for up to three to five years, although this is highly dependent on the individual patient response.

30 The modified allergen can also be used as a diagnostic to characterize the patient's allergies, using techniques such as those described in the examples.

EXAMPLES

Peanut allergy is one of the most common and serious of the immediate hypersensitivity reactions to foods in terms of persistence and

severity of reaction. Unlike the clinical symptoms of many other food allergies, the reactions to peanuts are rarely outgrown, therefore, most diagnosed children will have the disease for a lifetime (Sampson, H.A., and Burks, A.W. (1996) *Annu. Rev. Nutr.* 16, 161-77; Bock, S.A. (1985) *J. Pediatr.* 107, 676-680). The majority of cases of fatal food-induced anaphylaxis involve ingestion of peanuts (Sampson et al., (1992) *NEJM* 327, 380-384; Kaminogawa, S. (1996) *Biosci. Biotech. Biochem.* 60, 1749-1756). The only effective therapeutic option currently available for the prevention of a peanut hypersensitivity reaction is food avoidance. Unfortunately, for a ubiquitous food such as a peanut, the possibility of an inadvertent ingestion is great.

10 The examples described below demonstrate identification, modification, and assessment of allergenicity of the major peanut allergens, Ara h 1, Ara h 2, and Ara h 3. Detailed experimental procedures are included for Example 1. These same procedures were used for Examples 2-5. The nucleotide sequences of Ara h 1, Ara h 2, and Ara h 3, are shown in SEQ ID NOs. 1, 3, and 5, respectively. The amino acid sequences of Ara h 1, Ara h 2, and Ara h 3 are shown in SEQ ID NOs. 2, 4, and 6 respectively.

Example 1: Identification of linear IgE binding epitopes.

20 Due to the significance of the allergic reaction and the widening use of peanuts as protein extenders in processed foods, there is increasing interest in defining the allergenic proteins and exploring ways to decrease the risk to the peanut-sensitive individual. Various studies over the last several years have identified the major allergens in peanuts as belonging to different families of seed storage proteins (Burks, et al. (1997) *Eur. J. Biochem.* 245, 334-339; Stanley, et al. (1997) *Arch. Biochem. Biophys.* 342, 244-253). The major peanut allergens Ara h 1, Ara h 2, and Ara h 3 belong to the vicilin, conglutin and glycinin families of seed storage proteins, respectively. These allergens are abundant proteins found in peanuts and are recognized by serum IgE from greater than 95% of peanut sensitive individuals, indicating that they are the major allergens involved in the clinical etiology of this disease (Burks, et al. (1995) *J. Clinical Invest.*, 96, 1715-1721). The genes encoding Ara h 1 (SEQ ID NO. 1), Ara h 2 (SEQ ID NO. 3), and Ara h 3

(SEQ ID NO. 5) and the proteins encoded by these genes (SEQ ID NO. 2, 4, 6) have been isolated and characterized. The following studies were conducted to identify the IgE epitopes of these allergens recognized by a population of peanut hypersensitive patients and a means for modifying their affinity for IgE.

5 **Experimental Procedures**

10 *Serum IgE.* Serum from 15 patients with documented peanut hypersensitivity reactions (mean age, 25 yrs) was used to determine relative binding affinities between wild type and mutant Ara h 1 synthesized epitopes. The patients had either a positive double-blind, placebo-controlled, food challenge or a convincing history of peanut anaphylaxis (laryngeal edema, severe wheezing, and/or hypotension; Burks, et al. (1988) *J. Pediatr.* 113, 447-451). At least 5 ml of venous blood was drawn from each patient, allowed to clot, and serum was collected. A serum pool from 12 to 15 patients was made by mixing equal aliquots of serum IgE from each patient. The pools were then used in immunoblot analysis.

15 *Peptide synthesis.* Individual peptides were synthesized on a derivatized cellulose membrane using 9-fluorenylmethoxycarbonyl (Fmoc) amino acid active esters according to the manufacturer's instructions (Genosys Biotechnologies, Woodlands, Texas; Fields, G.B. and Noble, R.L. (1990) *Int. J. Peptide Protein Res.* 35, 161-214). Fmoc-amino acids (N-terminal blocked) with protected side chains were coupled in the presence of 1-methyl-2-pyrrolidone to a derivatized cellulose membrane. Following 20 washing with dimethylformamide (DMF), unreacted terminal amino groups were blocked from further reactions by acetylation with acetic anhydride. The N-terminal Fmoc blocking group was then removed by reaction with 25 20% piperidine and 80% DMF, v/v. The membrane was washed in DMF followed by methanol, the next reactive Fmoc-amino acid was then coupled as before, and the sequence of reactions was repeated with the next amino acid. When peptide synthesis was complete, the side chains were 30 deprotected with a mixture of dichloromethane (DCM), trifluoroacetic acid, and triisobutylsilane (1.0:1.0:0.5), followed by successive washes in DCM, DMF, and methanol. Peptides synthesis reactions were monitored by

bromophenol blue color reactions during certain steps of synthesis. Cellulose derivitised membranes and Fmoc-amino acids were supplied by Genosys Biotechnologies. All other chemical were purchased from Aldrich Chemical Company, Inc. (Milwaukee, WI) or Fluka (Buchs, Switzerland).

5 Membranes were either probed immediately or stored at -20°C until needed.

IgE binding assays. Cellulose membranes containing synthesized peptides were washed 3 times in Tris-buffered saline (TBS; 136 mM NaCl, 2.7 mM KCl, and 50 mM trizma base pH 8.0) for 10 min at room temperature (RT) and then incubated overnight in blocking buffer: [TBS, 10 0.05% TweenTM 20; concentrated membrane blocking buffer supplied by Genosys; and sucrose (0.0:1.0:0.5)]. The membrane was then incubated in pooled sera diluted in 1:5 in 20 mM Tris-Cl pH7.5, 150 mM NaCl, and 1% bovine serum albumin overnight at 4°C. Primary antibody was detected with ¹²⁵I-labeled equine anti-human IgE (Kallestad, Chaska, MN).

15 *Quantitation of IgE binding.* Relative amounts of IgE binding to individual peptides were determined by a Bio-Rad (Hercules, CA) model GS-700 imaging laser densitometer and quantitated with Bio-Rad molecular analyst software. A background area was scanned and subtracted from the obtained values. Following quantitation, wild type intensities were 20 normalized to a value of one and the mutants were calculated as percentages relative to the wild type.

25 *Synthesis and purification of recombinant Ara h 2 protein.* cDNA encoding Ara h 2 was placed in the pET-24b expression vector. The pET-24 expression vector places a 6 x histidine tag at the carboxyl end of the inserted protein. The histidine tag allows the recombinant protein to be purified by affinity purification on a nickel column (HisBind resin). Recombinant Ara h 2 was expressed and purified according to the instructions of the pET system manual. Briefly, expression of the recombinant Ara h 2 was induced in 200 ml cultures of strain BL21(DE3) E. coli with 1 mM IPTG at mid log phase. 30 Cultures were allowed to continue for an additional 3 hours at 36°C. Cells were harvested by centrifugation at 2000 x g for 15 minutes and then lysed in denaturing binding buffer (6 M urea, 5 mM imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9). Lysates were cleared by centrifugation at 39,000 x g for

20 minutes followed by filtration through 0.45 micron filters. The cleared lysate was applied to a 10 ml column of HisBind resin, washed with imidazole wash buffer (20 mM imidazole, 6 M urea, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9). The recombinant Ara h 2 was then released from the 5 column using elution buffer (1 M imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9). The elution buffer was replaced with phosphate buffered saline by dialysis. The purification of recombinant Ara h 2 was followed by SDS PAGE and immunoblots. Peanut specific serum IgE was used as a primary antibody.

10 **Skin prick tests.** The ability of purified native and recombinant Ara h 2 to elicit the IgE mediated degranulation of mast cells was evaluated using prick skin tests in a peanut allergic individual. An individual meeting the criteria for peanut allergy (convincing history or positive double blind placebo controlled food challenge) and a non-allergic control were selected 15 for the testing. Purified native and recombinant Ara h 2 and whole peanut extract (Greer Laboratories, Lenoir, N.C.) were tested. Twenty microliters of the test solution were applied to the forearm of the volunteer and the skin beneath pricked with a sterile needle. Testing was started at the lowest concentration (less than or equal to 1 mg/ml) and increased ten fold each 20 round to the highest concentration or until a positive reaction was observed. Mean diameters of the wheal and erythema were measured and compared to the negative saline control. A positive reaction was defined as a wheal 3mm larger than the negative control. Histamine was used as the positive control.

Results

25 *Identification of the linear IgE-binding epitopes of Ara h 1, Ara h 2 and Ara h 3 allergens.* Epitope mapping was performed on the Ara h 1, Ara h 2 and Ara h 3 allergens by synthesizing each of these proteins in 15 amino acid long overlapping peptides that were offset from each other by 8 amino acids. The peptides were then probed with a pool of serum IgE from 15 30 patients with documented peanut hypersensitivity. This analysis resulted in multiple IgE binding regions being identified for each allergen. The exact position of each IgE binding epitope was then determined by re-synthesizing these IgE reactive regions as 10 or 15 amino acid long peptides that were

offset from each other by two amino acids. These peptides were probed with the same pool of serum IgE from peanut sensitive patients as used before. An example of this procedure for each of the peanut allergens is shown in Figures 1-3. Figure 1 shows amino acid residues 82-133 of Ara h 1, 5 containing peptides 4, 5, 6, and 7, as identified in Table 1. Figure 2 shows amino acid residues 55-76 of Ara h 2, containing peptides 6 and 7, as shown in Table 2. Figure 3 shows amino acid residues 299-321 of Ara h 3, containing peptide 4 as identified in Table 3. This analysis revealed that there were 23 linear IgE binding epitopes on Ara h 1, 10 epitopes on Ara h 2, 10 and 4 epitopes on Ara h 3.

In an effort to determine which, if any, of the epitopes were 15 recognized by the majority of patients with peanut hypersensitivity, each set of epitopes identified for the peanut allergens were synthesized and then probed individually with serum IgE from 10 different patients. All of the patient sera tested recognized multiple epitopes.

Table 1 shows the amino acid sequence and position of each epitope 20 within the Ara h 1 protein of all 23 IgE binding epitopes mapped to this molecule. Table 2 shows the amino acid sequence and position of each epitope within the Ara h 2 protein of all 10 IgE binding epitopes mapped to this molecule. Table 3 shows the amino acid sequence and position of each 25 epitope within the Ara h 3 protein of all 4 IgE binding epitopes mapped to this molecule.

Four epitopes of the Ara h 1 allergen (peptides 1, 3, 4, 17 of Table 1), three epitopes of the Ara h 2 allergen (peptides 3, 6, 7 of Table 2), and 1 25 epitope of the Ara h 3 allergen (peptide 2 of Table 3) were immunodominant.

Table 1. Ara h 1 IgE Binding Epitopes

EPITOPE	AA SEQUENCE	POSITION
1	<u>AKSSPYQKKT</u>	25-34
2	<u>QEPDDLKQKA</u>	48-57
3	<u>LEYDPRLVYD</u>	65-74
4	<u>GERTRGRQPG</u>	89-98
5	<u>PGDYDDDRRQ</u>	97-106
6	<u>PRREEGGRWG</u>	107-116
7	<u>REREEDWRQP</u>	123-132
8	<u>EDWRRPSHQQ</u>	134-143
9	<u>QPRKIRPEGR</u>	143-152
10	<u>TPGQFEDFFP</u>	294-303
11	<u>SYLQEFSRNT</u>	311-320
12	<u>FNAEFNEIRR</u>	325-334
13	<u>EQEERGQRRW</u>	344-353
14	<u>DITNPINLRE</u>	393-402
15	<u>NNFGKLFEVK</u>	409-418
16	<u>GTGNLELVAV</u>	461-470
17	<u>RRYTARLKEG</u>	498-507
18	<u>ELHLLGFGIN</u>	525-534
19	<u>HRIFLAGDKD</u>	539-548
20	<u>IDQIEKOAKD</u>	551-560
21	<u>KDLAFTPQSGE</u>	559-568
22	<u>KESHFVSARP</u>	578-587
23	<u>PEKESPEKED</u>	597-606

The underlined portions of each peptide are the smallest IgE binding sequences as determined by this analysis. All of these sequences can be found in SEQ ID NO 2.

Table 2. Ara h 2 IgE Binding Epitopes

EPITOPE	AA SEQUENCE	POSITION
1	<u>HASARQQWEL</u>	15-24
2	<u>QWELOGDRRC</u>	21-30
3	<u>DRRCQSOLER</u>	27-36
4	<u>LRPCEQHLMQ</u>	39-48
5	<u>KJQRDDEDSYE</u>	49-58
6	<u>YERDPYSPSQ</u>	57-66
7	<u>SQDPYSPSPY</u>	65-74
8	<u>DRLQGRQQEQ</u>	115-124
9	<u>KRELRLNLPQQ</u>	127-136
10	<u>QRCDLDVESG</u>	143-152

The underlined portions of each peptide are the smallest IgE binding sequences as determined by this analysis. All of these sequences can be

found in SEQ ID NO 4.

Table 3. Ara h 3 IgE Binding Epitopes

EPITOPE	AA SEQUENCE	POSITION
1	<u>IETWNPNNNQEFECAG</u>	33-47
2	<u>GNIFSGFTPEFLEQA</u>	240-254
3	<u>VTVRGGLRLSPDRK</u>	279-293
4	<u>DEDEYEYDEEDRRRG</u>	303-317

The underlined portions of each peptide are the smallest IgE binding sequences as determined by this analysis. All of these sequences can be found in SEQ ID NO 6.

Example 2 : Modification of peanut allergens to decrease allergenicity.

The major linear IgE binding epitopes of the peanut allergens were mapped using overlapping peptides synthesized on an activated cellulose membrane and pooled serum IgE from 15 peanut sensitive patients, as described in Example 1. The size of the epitopes ranged from six to fifteen amino acids in length. The amino acids essential to IgE binding in each of the epitopes were determined by synthesizing duplicate peptides with single amino acid changes at each position. These peptides were then probed with pooled serum IgE from 15 patients with peanut hypersensitivity to determine if the changes affected peanut-specific IgE binding. For example, epitope 9 in Table 1 was synthesized with an alanine or methionine residue substituted for one of the amino acids and probed. The following amino acids were substituted (first letter is the one-letter amino acid code for the residue normally at the position, the residue number, followed by the amino acid that was substituted for this residue; the numbers indicate the position of each residue in the Ara h 1 protein, SEQ ID NO. 2): Q143A, P144A; R145A; K146A; I147A; R148A; P149A; E150A; G151A; R152A; Q143M; P144M; R145M; K146M; I147M; R148M; P149M; E150M; G151M; R152M. The immunoblot strip containing the wild-type and mutated peptides of epitope 9 showed that binding of pooled serum IgE to individual peptides was dramatically reduced when either alanine or methionine was substituted for each of the amino acids at positions 144, 145, and 147-150 of Ara h 1 shown in SEQ ID NO. 2. Changes at positions 144, 145, 147, and 148 of Ara h 1 shown in SEQ ID NO. 2 had the most dramatic effect when methionine was substituted for the wild-type amino acid, resulting in less than 1% of peanut specific IgE binding to these peptides. In contrast, the substitution of an alanine for arginine at position 152 of Ara h 1 shown in SEQ ID NO. 2 resulted in increased IgE binding. The remaining Ara h 1 epitopes, and the Ara h 2 and Ara h 3 epitopes, were tested in the same manner and the intensity of IgE binding to each spot was determined as a percentage of IgE binding to the wild-type peptide. Any amino acid substitution that resulted in less than 1% of IgE binding when compared to the wild type peptide was noted and is indicated in Tables 4-6. Table 4 shows the amino acids that

were determined to be critical to IgE binding in each of the Ara h 1 epitopes. Table 5 shows the amino acids that were determined to be critical to IgE binding in each of the Ara h 2 epitopes. Table 6 shows the amino acids that were determined to be critical to IgE binding in each of the Ara h 3 epitopes.

5 This analysis indicated that each epitope could be mutated to a non-IgE binding-peptide by the substitution of a single amino acid residue.

The results discussed above for Ara h 1, Ara h 2, and Ara h 3 demonstrate that once an IgE binding site has been identified, it is possible to reduce IgE binding to this site by altering a single amino acid of the epitope.

10 The observation that alteration of a single amino acid leads to the loss of IgE binding in a population of peanut-sensitive individuals is significant because it suggests that while each patient may display a polyclonal IgE reaction to a particular allergen, IgE from different patients that recognize the same epitope must interact with that epitope in a similar fashion. Besides finding
15 that many epitopes contained more than one residue critical for IgE binding, it was also determined that more than one residue type (ala or met) could be substituted at certain positions in an epitope with similar results. This allows for the design of a hypoallergenic protein that would be effective at blunting allergic reactions for a population of peanut sensitive individuals.

20 Furthermore, the creation of a plant producing a peanut where the IgE binding epitopes of the major allergens have been removed should prevent the development of peanut hypersensitivity in individuals genetically predisposed to this food allergy.

Table 4: Amino Acids Critical to IgE Binding of Ara h 1

EPITOPE	AA SEQUENCE	POSITION
1	A KSS <u>SPYQ</u> K KT	25-34
2	Q EP <u>DDL</u> KQKA	48-57
3	L EV <u>DPRL</u> VYD	65-74
4	G ER <u>TR</u> G RQPG	89-98
5	P GDY <u>DDD</u> D RRQ	97-106
6	P RREE <u>GGR</u> WG	107-116
7	REREED <u>WR</u> QP	123-132
8	E DW <u>RR</u> PSHQQ	134-143
9	Q PR <u>KI</u> RPEGR	143-152
10	T PG <u>QQED</u> FF P	294-303
11	S YL <u>QEFSR</u> NT	311-320
12	F NAE <u>ENEIRR</u>	325-334
13	E QEER <u>GQRRW</u>	344-353
14	D IT <u>NPIN</u> L RE	393-402
15	N N <u>FGK<u>LFEVK</u></u>	409-418
17	R RY <u>TARL</u> KEG	498-507
18	E L <u>HLL<u>GFG</u>IN</u>	525-534
19	H RIFLAG <u>DK</u>	539-548
20	I D <u>QI<u>EK</u>QAKD</u>	551-560
21	K DLA <u>FPGS</u> GE	559-568
22	K ESH <u>FV</u> SARP	578-587

Note. The Ara h 1 IgE binding epitopes are indicated as the single letter amino acid code. The position of each peptide with respect to the Ara h 1 protein is indicated in the right hand column. The amino acids that, when altered, lead to loss of IgE binding are shown as the bold, underlined residues. Epitopes 16 and 23 were not included in this study because they were recognized by a single patient who was no longer available to the study. All of these sequences can be found in SEQ ID NO 2.

Table 5. Amino Acids Critical to IgE Binding of Ara h 2

EPITOPE	AA SEQUENCE	POSITION
1	HASAR<u>QQWEL</u>	15-24
2	<u>QWELQGDRRC</u>	21-30
3	DRRC<u>QSQLER</u>	27-36
4	LRPCE<u>QHLMQ</u>	39-48
5	KIQR<u>DEDSYE</u>	49-58
6	YER<u>DPYSPSQ</u>	57-66
7	SQ<u>DPYSPSPY</u>	65-74
8	DRL<u>QGRQQEQ</u>	115-124
9	KREL<u>RNL</u>PQQ	127-136
10	QRC<u>DLDYESG</u>	143-152

Note. The Ara h 2 IgE binding epitopes are indicated as the single letter amino acid code. The position of each peptide with respect to the Ara h 2 protein is indicated in the right hand column. The amino acids that, when altered, lead to loss of IgE binding are shown as the bold, underlined residues. All of these sequences can be found in SEQ ID NO 4.

Table 6. Amino Acids Critical to IgE-Binding of Ara h 3.

EPITOPE	AA SEQUENCE	POSITION
1	IETWN<u>PNNQEFECAG</u>	33-47
2	<u>GNIESGFTPEE</u>LEQA	240-254
3	VTVRGG<u>LRLSP</u>DRK	279-293
4	DEDE<u>EYEDRRRG</u>	303-317

Note. The Ara h 3 IgE binding epitopes are indicated as the single letter amino acid code. The position of each peptide with respect to the Ara h 3 protein is indicated in the right hand column. The amino acids that, when altered, lead to loss of IgE binding are shown as the bold, underlined. All of these sequences can be found in SEQ ID NO 6.

Example 3: A Modified Ara h 2 Protein Binds less IgE But Similar Amounts of IgG.

In order to determine the effect of changes to multiple epitopes within the context of the intact allergen, four epitopes (including the three immunodominant epitopes) of the Ara h 2 allergen were mutagenized and the protein produced recombinantly. The amino acids at position 20, 31, 60, and 67 of the Ara h 2 protein (shown in SEQ ID NO. 4) were changed to alanine by mutagenizing the gene encoding this protein by standard techniques. These residues are located in epitopes 1, 3, 6, and 7 and represent amino acids critical to IgE binding that were determined in Example 2. The modified and wild-type versions of this protein were produced and immunoblot analysis performed using serum from peanut sensitive patients. These results showed that the modified version of this allergen bound significantly less IgE than the wild type version of these recombinant proteins (Figure 4) but bound similar amounts of IgG.

Example 4: A modified Ara h 2 protein retains the ability to stimulate T-cells to proliferate.

The modified recombinant Ara h 2 protein described in Example 3 was used in T-cell proliferation assays to determine if it retained the ability to activate T cells from peanut sensitive individuals. Proliferation assays were performed on T-cell lines grown in short-term culture developed from six peanut sensitive patients. T-cells lines were stimulated with either 50 µg of crude peanut extract, 10 µg of native Ara h 2, 10 µg of recombinant wild-type Ara h2, or 10 µg of modified recombinant Ara h 2 protein and the amount of 3H-thymidine determined for each cell line. Results were expressed as the average stimulation index (SI) which reflected the fold increase in 3H-thymidine incorporation exhibited by cells challenged with allergen when compared with media treated controls (Figure 5).

Example 5: A Modified Ara h 2 Protein Elicits a Smaller Wheal and Flare in Skin Prick Tests of a Peanut Sensitive Individual.

The modified recombinant Ara h 2 protein described in Example 3 and the wild type version of this recombinant protein were used in a skin prick test of a peanut sensitive individual. Ten micrograms of these proteins were applied separately to the forearm of a peanut sensitive individual, the skin pricked with a sterile needle, and 10 minutes later any wheal and flare that developed was measured. The wheal and flare produced by the wild-type Ara h 2 protein (8 mm X 7 mm) was approximately twice as large as that produced by the modified Ara h 2 protein (4 mm X 3mm). A control subject (no peanut hypersensitivity) tested with the same proteins had no visible wheal and flare but, as expected, gave positive results when challenged with histamine. In addition, the test subject gave no positive results when tested with PBS alone. These results indicate that an allergen with only 40% of its IgE binding epitopes modified (4/10) can give measurable reduction in reactivity in an *in vivo* test of a peanut sensitive patient.

These same techniques can be used with the other known peanut allergens, Ara h 1 (SEQ ID NO 1 and 2), Ara h 3 (SEQ ID NO. 5 and 6), or any other allergen.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A modified protein allergen whose amino acid sequence is substantially identical to that of a natural protein allergen except that about 10 to 17% of the amino acids have been modified in at least one IgE epitope so that IgE binding to the modified protein allergen is reduced as compared with IgE binding to the natural protein, wherein the modified protein allergen activates T cells and the at least one IgE epitope is one that is recognised when the natural protein allergen is contacted with serum IgE from an individual that is allergic to the natural protein allergen.
2. The modified protein allergen of claim 1 wherein about 10 to 17% of the amino acids have been modified in all the IgE epitopes of the natural protein allergen.
3. The modified protein allergen of claim 1 wherein the at least one IgE epitope is one that is recognised when the natural protein allergen is contacted with a pool of sera IgE taken from a group of at least two individuals that are allergic to the natural protein allergen.
4. The modified protein allergen of claim 1 wherein the at least one IgE epitope is one that is recognised when the natural protein allergen is contacted with a pool of sera IgE taken from a group of at least fifteen individuals that are allergic to the natural protein allergen.
5. The modified protein allergen of claim 1 wherein at least one modified amino acid is located within a central portion of the at least one IgE epitope, the central portion including about 40% of the amino acids of the at least one IgE epitope.
6. The modified protein allergen of claim 1 wherein at least one amino acid in the at least one IgE epitope of the natural protein allergen has been modified by substitution.

7. The modified protein allergen of claim 6 wherein at least one hydrophobic amino acid in the at least one IgE epitope of the natural protein allergen has been substituted by a neutral or hydrophilic amino acid.
8. The modified protein allergen of claim 1 wherein the modified protein allergen binds IgG.
9. The modified protein allergen of claim 1 wherein the modified protein allergen activates a Th1-type response.
10. The modified protein allergen of claim 1 wherein the modified protein allergen is a portion of the natural protein allergen.
11. In combination, the modified protein allergen of claim 1 and an adjuvant selected from the group consisting of IL-12, IL-16, IL-18, IFN γ , and the immune stimulatory oligodeoxynucleotide sequences containing unmethylated CpG motifs which cause brisk activation and skew the immune response to the Th1-type response.
12. The modified protein allergen of claim 1 wherein the modified protein allergen is made in a transgenic plant or animal.
13. The modified protein allergen of claim 1 expressed in a recombinant host selected from the group consisting of plants and animals.
14. The modified protein allergen of claim 1 expressed in a recombinant host selected from the group consisting of bacteria, yeast, fungi, and insect cells.
15. The modified protein allergen of claim 1 wherein the natural protein allergen is obtained from a source selected from the group consisting of legumes, milks, grains, eggs, fish, crustaceans, mollusks, insects, molds, dust, grasses, trees, weeds, mammals, and natural latexes.

16. The modified protein allergen of claim 1 wherein the natural protein allergen is a peanut protein selected from the group consisting of Ara h 1, Ara h 2, and Ara h 3.

17. The method of making a modified protein allergen comprising:
identifying at least one IgE epitope in a natural protein allergen;
preparing at least one modified protein allergen whose amino acid sequence is substantially identical to that of a natural protein allergen except, that about 10 to 17% of the amino acids have been modified in the at least one IgE epitope;
screening for activation of T cells by the at least one modified protein allergen; and
selecting a modified protein allergen which has decreased binding to IgE as compared to the natural protein allergen and which activates T cells.

18. The method of claim 17 further comprising screening for IgG binding to the at least one modified protein allergen by contacting the at least one modified protein allergen with serum IgG taken from at least one individual that is allergic to the natural protein allergen and selecting a modified protein allergen which has decreased binding to IgE as compared to the natural protein allergen, substantially the same binding to IgG as compared to the natural protein allergen, and which activates T cells.

19. A nucleotide molecule encoding a modified protein allergen as defined by any of claims 1 to 10, 15 and 16.

20. A nucleotide molecule for causing a site specific mutation in a gene encoding a protein which yields a modified protein allergen as defined by any of claims 1 to 10, 15 and 16.

21. The nucleotide molecule of claim 19 or 20 in a vector for expression in a recombinant host.

22. A transgenic plant expressing a modified protein allergen as defined by any of claims 1 to 10, 12, 13, 15 and 16.

23. A transgenic animal expressing a modified protein allergen as defined by any of claims 1 to 10, 12, 13, 15 and 16.

24. In combination, a natural protein allergen and a masking compound, the masking compound being covalently or non-covalently bound to at least one IgE epitope of the natural protein allergen in such a way that IgE binding is reduced as compared with IgE binding to the natural protein allergen in the absence of the masking compound, wherein the at least one IgE epitope is one that is recognised when the natural protein allergen is contacted with serum IgE in the absence of the masking compound, the serum IgE taken from an individual that is allergic to the natural protein allergen.

25. The combination of claim 24 wherein the at least one IgE epitope is one that is recognised when the natural protein allergen is contacted with a pool of sera IgE taken from a group of at least two individuals that are allergic to the natural protein allergen.

26. The combination of claim 24 or 25 wherein the masking compound is an antibody that binds non-covalently to the at least one IgE epitope.

27. The combination as defined by any of claims 24 to 26 wherein the combination activates T cells.

28. The combination as defined by any of claims 24 to 27 wherein the combination binds IgG.

29. The combination as defined by any of claims 24 to 28 wherein the combination initiates a Th1-type response.

30. A method of making a combination comprising:

- selecting a natural protein allergen;
- selecting at least one compound from a combinatorial library or preparing at least one compound by combinatorial chemistry;
- preparing at least one combination that includes the natural protein allergen and the at least one compound;
- screening for IgE binding to the at least one combination by contacting the at least one combination with serum IgE taken from at least one individual that is allergic to the natural protein allergen; and
- selecting a combination which has decreased binding to IgE as compared to the natural protein allergen.

31. The method of claim 30 further comprising screening for T cell activation by the at least one combination and selecting a combination which has decreased binding to IgE as compared to the natural protein allergen and which activates T cells.

32. The method of claim 30 or 31 further comprising screening for IgG binding to the at least one combination and selecting a combination which has decreased binding to IgE as compared to the natural protein allergen, substantially the same binding to IgG as compared to the natural protein allergen, and which activates T cells.

33. A method of treating an individual by reducing the clinical response to a natural protein allergen comprising administering to the individual a modified protein allergen as defined by any of claims 1 to 10 and 12 to 16 in an amount and for a time sufficient to reduce the allergic reaction to the natural protein allergen.

34. A method of treating an individual by reducing the clinical response to a natural protein allergen comprising administering to the individual a combination

as defined by any of claims 24 to 29 in an amount and for a time sufficient to reduce the allergic reaction to the natural protein allergen.

DATED THIS TWENTY-NINTH DAY OF NOVEMBER 2001

UNIVERSITY OF ARKANSAS,

MT. SINAI SCHOOL OF MEDICINE OF NEW YORK,

& PANACEA PHARMACEUTICALS, LLC

BY

PIZZEYS PATENT AND TRADE MARK ATTORNEYS

EDITORIAL NOTE NO 23505/99

Sequence listing pages numbered 1-10 are part of the description.

SEQUENCE LISTING

<110> University of Arkansas
Mt. Sinai School of Medicine of the City University of New York
Sosin, Howard

<120> Methods and Reagents for Decreasing Clinical Reaction
to Allergy

<130> HS102

<140>

<141>

<150> 09/141220
<151> 1998-08-27

<150> 60/074590
<151> 1998-02-13

<150> 60/074624
<151> 1998-02-13

<150> 60/074633
<151> 1998-02-13

<150> 60/073283
<151> 1998-01-29

<160> 6

<170> PatentIn Ver. 2.0

<210> 1
<211> 1930
<212> DNA
<213> Peanut

<400> 1
aataatcata tatattcatc aatcatctat ataagtagta gcaggagcaa tgagagggag 60
ggtttccca ctgatgtgt tgcttagggat cttgtcctg gettcagtt ctgcaacgca 120
tgcccaagtca tcacccattacc agaagaaaac agagaacccc tgcccccaga ggtgcctcca 180
gagttgtcaa caggaacccgg atgacttggaa gcaaaaggca tgccgatgttc gctgcaccaa 240
gctcgagttat gatcctcggtt tgctctatgaa tcctcgagga cacatggca ccaccaacca 300
acgttccctt ccaggggagc ggacacgtgg ccggccaaaccc ggagactacg atgtgaccc 360
ccgtcaaccc cgaagagagg aaggaggcccg atggggacca gttggacccg gggagcgtga 420
aagagaagaa gactggagac aaccaagaga agattggagg cgaccaagtc atcagcagcc 480
acgaaaata aggcccgaag gaagagaagg agaacaagag tggggaaacac caggttagcca 540
tgtgaggggaa gaaacatctc ggaacaaccc tttctacttc cctgtcaagc ggtttagcac 600
ccgtctacggg aacccaaacg gttaggtccg ggtcctgtca aggtttgacc aaagggtcaag 660
gcagtttcag aatctccaga atcaccgtat tgctcagatc gaggccaaac ctaacactct 720
tgttcttccc aagcacgtc atgctgataa catccttggt atccagcaag ggcaaggccac 780
cgtgaccgta gcaaataatggca ataacagaaa gagctttat ctgacggagg gccatgcact 840
cagaatccca tccgggttca tttcctacat ctgacccgc catgacaaccc agaacctca 900
agtagctaaa atctccatgc ccgttaacac accccggccag ttggaggatt tcttcccgcc 960
gaggcagccga gaccaatcat cctacttgca gggcttcagc aggaataatgt tggaggccgc 1020
cttcaatgcg gaattcaatg agataccggag ggtgctgtta gaagagaatg caggagggtga 1080
gcaagaggag agagggcaga ggcgtatggag tactcggagt agtggagaaca atgaaggagt 1140
gatagtcaaa gtgtcaaagg agcacgttga agaaacttaact aagcacgtca aatccgtctc 1200
aaagaaaggc tccgaagaag agggagatc caccacccca atcaacttga gagaaggcga 1260
gcccgttctt tctaacaact ttggggaaatg atttggagggtt aagccagaca agaagaaccc 1320

ccagcttcag gacctggaca tgatgctcac ctgtgttagag atcaaagaag gagctttgat 1380
gctccccacac ttcaactcaa aggccatggg ttcgtcggtt gtcacaaag gaactggaaa 1440
ccttgaactc gtggctgtaa gaaaagagca acaacagagg ggacggcgaaa aagaagagga 1500
ggacgaagac gaagaagagg agggaaatgg cagagagggt cgtaggtaca cagcgagggt 1560
gaaggaagggatgtgttca tcatgccagc agctcatcca gtagccatca acgcttcctc 1620
cgaactccat ctgcttggct tcggtatcaa cgctgaaaac aaccacagaa tcttccttgc 1680
aggtgataag gacaatgtga tagaccagat agagaagcaa gcgaaggatt tagcattccc 1740
tgggtcgggt gacaagttg agaagctcat caaaaaccag aaggaaatctc actttgttag 1800
tgctcgccat caatctcaat ctcaatctcc gtcgtctccat gagaagagt ctccgtgaaa 1860
agaggatcaa gaggaggaaa accaaggagg gaagggtcca ctcccttcaa ttttgaagggc 1920
tttaactga 1930

<210> 2
<211> 626
<212> PRT
<213> Peanut

<220>
<221> PEPTIDE
<222> (25)..(34)
<223> peptide 1

<220>
<221> PEPTIDE
<222> (48)..(57)
<223> peptide 2

<220>
<221> PEPTIDE
<222> (65)..(74)
<223> peptide 3

<220>
<221> PEPTIDE
<222> (89)..(98)
<223> peptide 4

<220>
<221> PEPTIDE
<222> (97)..(106)
<223> peptide 5

<220>
<221> PEPTIDE
<222> (107)..(116)
<223> peptide 6

<220>
<221> PEPTIDE
<222> (123)..(132)
<223> peptide 7

<220>
<221> PEPTIDE
<222> (134)..(143)
<223> peptide 8

<220>
<221> PEPTIDE
<222> (143)..(152)
<223> peptide 9

```
<220>
<221> PEPTIDE
<222> (294)..(303)
<223> peptide 10

<220>
<221> PEPTIDE
<222> (311)..(320)
<223> peptide 11

<220>
<221> PEPTIDE
<222> (325)..(334)
<223> peptide 12

<220>
<221> PEPTIDE
<222> (344)..(353)
<223> peptide 13

<220>
<221> PEPTIDE
<222> (393)..(402)
<223> peptide 14

<220>
<221> PEPTIDE
<222> (409)..(418)
<223> peptide 15

<220>
<221> PEPTIDE
<222> (461)..(470)
<223> peptide 16

<220>
<221> PEPTIDE
<222> (498)..(507)
<223> peptide 17

<220>
<221> PEPTIDE
<222> (525)..(534)
<223> peptide 18

<220>
<221> PEPTIDE
<222> (539)..(548)
<223> peptide 19

<220>
<221> PEPTIDE
<222> (551)..(560)
<223> peptide 20

<220>
<221> PEPTIDE
<222> (559)..(568)
<223> peptide 21
```

<220>
<221> PEPTIDE
<222> (578)..(587)
<223> peptide 22

<220>
<221> PEPTIDE
<222> (597)..(606)
<223> peptide 23

<400> 2
Met Arg Gly Arg Val Ser Pro Leu Met Leu Leu Leu Gly Ile Leu Val
1 5 10 15

Leu Ala Ser Val Ser Ala Thr His Ala Lys Ser Ser Pro Tyr Gln Lys
20 25 30

Lys Thr Glu Asn Pro Cys Ala Gln Arg Cys Leu Gln Ser Cys Gln Gln
35 40 45

Glu Pro Asp Asp Leu Lys Gln Lys Ala Cys Glu Ser Arg Cys Thr Lys
50 55 60

Leu Glu Tyr Asp Pro Arg Cys Val Tyr Asp Pro Arg Gly His Thr Gly
65 70 75 80

Thr Thr Asn Gln Arg Ser Pro Pro Gly Glu Arg Thr Arg Gly Arg Gln
85 90 95

Pro Gly Asp Tyr Asp Asp Arg Arg Gln Pro Arg Arg Glu Glu Gly
100 105 110

Gly Arg Trp Gly Pro Ala Gly Pro Arg Glu Arg Glu Glu Glu Asp
115 120 125

Trp Arg Gln Pro Arg Glu Asp Trp Arg Arg Pro Ser His Gln Gln Pro
130 135 140

Arg Lys Ile Arg Pro Glu Gly Arg Glu Gly Glu Gln Glu Trp Gly Thr
145 150 155 160

Pro Gly Ser His Val Arg Glu Glu Thr Ser Arg Asn Asn Pro Phe Tyr
165 170 175

Phe Pro Ser Arg Arg Phe Ser Thr Arg Tyr Gly Asn Gln Asn Gly Arg
180 185 190

Ile Arg Val Leu Gln Arg Phe Asp Gln Arg Ser Arg Gln Phe Gln Asn
195 200 205

Leu Gln Asn His Arg Ile Val Gln Ile Glu Ala Lys Pro Asn Thr Leu
210 215 220

Val Leu Pro Lys His Ala Asp Ala Asp Asn Ile Leu Val Ile Gln Gln
225 230 235 240

Gly Gln Ala Thr Val Thr Val Ala Asn Gly Asn Asn Arg Lys Ser Phe
245 250 255

Asn Leu Asp Glu Gly His Ala Leu Arg Ile Pro Ser Gly Phe Ile Ser
260 265 270

Tyr Ile Leu Asn Arg His Asp Asn Gln Asn Leu Arg Val Ala Lys Ile
 275 280 285
 Ser Met Pro Val Asn Thr Pro Gly Gln Phe Glu Asp Phe Phe Pro Ala
 290 295 300
 Ser Ser Arg Asp Gln Ser Ser Tyr Leu Gln Gly Phe Ser Arg Asn Thr
 305 310 315 320
 Leu Glu Ala Ala Phe Asn Ala Glu Phe Asn Glu Ile Arg Arg Val Leu
 325 330 335
 Leu Glu Glu Asn Ala Gly Gly Glu Gln Glu Glu Arg Gly Gln Arg Arg
 340 345 350
 Trp Ser Thr Arg Ser Ser Glu Asn Asn Glu Gly Val Ile Val Lys Val
 355 360 365
 Ser Lys Glu His Val Glu Glu Leu Thr Lys His Ala Lys Ser Val Ser
 370 375 380
 Lys Lys Gly Ser Glu Glu Gly Asp Ile Thr Asn Pro Ile Asn Leu
 385 390 395 400
 Arg Glu Gly Glu Pro Asp Leu Ser Asn Asn Phe Gly Lys Leu Phe Glu
 405 410 415
 Val Lys Pro Asp Lys Lys Asn Pro Gln Leu Gln Asp Leu Asp Met Met
 420 425 430
 Leu Thr Cys Val Glu Ile Lys Glu Gly Ala Leu Met Leu Pro His Phe
 435 440 445
 Asn Ser Lys Ala Met Val Ile Val Val Val Asn Lys Gly Thr Gly Asn
 450 455 460
 Leu Glu Leu Val Ala Val Arg Lys Glu Gln Gln Arg Gly Arg Arg
 465 470 475 480
 Glu Glu Glu Glu Asp Glu Asp Glu Glu Glu Glu Gly Ser Asn Arg Glu
 485 490 495
 Val Arg Arg Tyr Thr Ala Arg Leu Lys Glu Gly Asp Val Phe Ile Met
 500 505 510
 Pro Ala Ala His Pro Val Ala Ile Asn Ala Ser Ser Glu Leu His Leu
 515 520 525
 Leu Gly Phe Gly Ile Asn Ala Glu Asn Asn His Arg Ile Phe Leu Ala
 530 535 540
 Gly Asp Lys Asp Asn Val Ile Asp Gln Ile Glu Lys Gln Ala Lys Asp
 545 550 555 560
 Leu Ala Phe Pro Gly Ser Gly Glu Gln Val Glu Lys Leu Ile Lys Asn
 565 570 575
 Gln Lys Glu Ser His Phe Val Ser Ala Arg Pro Gln Ser Gln Ser Gln
 580 585 590

Ser Pro Ser Ser Pro Glu Lys Glu Ser Pro Glu Lys Glu Asp Gln Glu
595 600 605

Glu Glu Asn Gln Gly Gly Lys Gly Pro Leu Leu Ser Ile Leu Lys Ala
610 615 620

Phe Asn
625

<210> 3
<211> 474
<212> DNA
<213> Peanut

<400> 3
ctcaccatac tagtagccct cgcctttc ctccctcgctg cccacgcata tgcgaggcag 60
cagtggaaac tccaaggaga cagaagatgc cagagccagc tcgagaggc gaacctgagg 120
ccctgcgac aacatctcat gcagaagatc caacgtgacg aggattcata tgaacggac 180
cgtacagcc ctatgcgaga tccgtacagc cctagtcatt atgatcggag aggcgcgtgg 240
tcctctcgc accaagagag gtgttcaat gagctgaacg agtttggaaa caaccaaagg 300
tgcatgtgcg aggattgca acagatcatg gagaaccaga gcgatagggtt gcaggggagg 360
caacaggagc aacagttcaa gagggagctc aggaacttgc ctcacacgtg cggcctttagg 420
gcaccacagc gttgcgactt ggacgtcgaa agtggcggca gagacagata ctaa 474

<210> 4
<211> 157
<212> PRT
<213> Peanut

<220>
<221> PEPTIDE
<222> (15)..(24)
<223> peptide 1

<220>
<221> PEPTIDE
<222> (21)..(30)
<223> peptide 2

<220>
<221> PEPTIDE
<222> (27)..(36)
<223> peptide 3

<220>
<221> PEPTIDE
<222> (39)..(48)
<223> peptide 4

<220>
<221> PEPTIDE
<222> (49)..(58)
<223> peptide 5

<220>
<221> PEPTIDE
<222> (57)..(66)
<223> peptide 6

<220>

<221> PEPTIDE
<222> (65)..(74)
<223> peptide 7

<220>
<221> PEPTIDE
<222> (115)..(124)
<223> peptide 8

<220>
<221> PEPTIDE
<222> (127)..(136)
<223> peptide 9

<220>
<221> PEPTIDE
<222> (143)..(152)
<223> peptide 10

<400> 4
Leu Thr Ile Leu Val Ala Leu Ala Leu Phe Leu Leu Ala Ala His Ala
1 5 10 15

Ser Ala Arg Gln Gln Trp Glu Leu Gln Gly Asp Arg Arg Cys Gln Ser
20 25 30

Gln Leu Glu Arg Ala Asn Leu Arg Pro Cys Glu Gln His Leu Met Gln
35 40 45

Lys Ile Gln Arg Asp Glu Asp Ser Tyr Glu Arg Asp Pro Tyr Ser Pro
50 55 60

Ser Gln Asp Pro Tyr Ser Pro Ser Pro Tyr Asp Arg Arg Gly Ala Gly
65 70 75 80

Ser Ser Gln His Gln Glu Arg Cys Cys Asn Glu Leu Asn Glu Phe Glu
85 90 95

Asn Asn Gln Arg Cys Met Cys Glu Ala Leu Gln Gln Ile Met Glu Asn
100 105 110

Gln Ser Asp Arg Leu Gln Gly Arg Gln Glu Gln Gln Phe Lys Arg
115 120 125

Glu Leu Arg Asn Leu Pro Gln Gln Cys Gly Leu Arg Ala Pro Gln Arg
130 135 140

Cys Asp Leu Asp Val Glu Ser Gly Gly Arg Asp Arg Tyr
145 150 155

<210> 5
<211> 1524
<212> DNA
<213> Peanut

<400> 5
cggcagcaac cggaggagaa cgcgtgccag ttccagcgcc tcaatgcgca gagacctgac 60
aatccgattg aatcagaggg cggttacatt gagacttggaa accccaacaa ccaggagttc 120
gaatgcggcg gcgtcgccct ctctcgctta gtcctccgcc gcaacgcctt tcgttaggcct 180
ttctactcca atgctccca ggagatcttc atccagcaag gaaggggata ctttgggtt 240

atattccctg gttgtcctag acactatgaa gaggctcaca cacaaggctcg tcgatctcg 300
 tcccaaagac cacaagacg tctccaagga gaagaccaa gccaacagca acgagatagt 360
 caccagaagg tgaccgcgtt cgatgagggt gatctcattg cagttccac cgggtttgct 420
 ttctggctct acaacgacca cgacactgtat gttgttgcgtt ttcttcttac tgacaccaac 480
 aacaacgaca accagcttgc tcaatccccc aggagattca atttggctgg gaacacggag 540
 caagagtctt taaggatcca gcaacaaagc agacaaagca gacgaaagaat cttaccat 600
 agccatatac gcccggaaag tcagcctaga caagaagacg gtgaatttag ccctcgagga 660
 cagcacagcc gcagagaacg acgaggacaa gaagaagaaa acgaagggtgg aaacatcttc 720
 agcggcttca cgcgggggtt cctggaaacaa gccttccagg ttgacgacag acagatagt 780
 caaaacctaa gaggcgacac cgagactgaa gaagaggggag ccattgtgac atgtgggggaa 840
 ggcctcagaa tcttgagccc agatagaaag agacgtgcgg acgaagaaga ggaatacgt 900
 gaagatgaat atgatatacgt tgaagaggat agaaggcgtg gcaggggaaag cagaggcagg 960
 gggatggta ttgaagagac gatctgcacc gcaagtgcata aaaagaacat tggtagaaac 1020
 agatccccctg acatctacaa ccctcaaggtt gtttcaactca aaactgcca ccatctcaac 1080
 cttcttaatac tttagtggctt tggacactgt gctgaatatg gaaatctcta caggaatgca 1140
 ttgttggctc ctactacaa cacaacgcac cacagcatca tatactgatt gaggggacgg 1200
 gctcacgtgc aagtgcgtggc cagcaacggc aacagagtgt acgacgagga gcttcaagag 1260
 ggtcacgtgc ttgtgggtcc acagaacttc gcccgtcgtg gaaagtccca gagcggaaac 1320
 ttcaatacgt tggcattcaa gacagactca aggcccagca tagccaaacct cgcgggtgaa 1380
 aactccgtca tagataacct gcccggggag gtgttgcac attcatatgg cctccaaagg 1440
 gagcaggca ggcagcttaa gaacaacaac cccttcaagt tcttcgttcc accgtctcg 1500
 cagtcctccga gggctgtggc tttaa 1524

<210> 6
 <211> 510
 <212> PRT
 <213> Peanut

<220>
 <221> PEPTIDE
 <222> (33)..(47)
 <223> peptide 1

<220>
 <221> PEPTIDE
 <222> (240)..(254)
 <223> peptide 2

<220>
 <221> PEPTIDE
 <222> (279)..(293)
 <223> peptide 3

<220>
 <221> PEPTIDE
 <222> (303)..(317)
 <223> peptide 4

<400> 6
 Ile Ser Phe Arg Gln Gln Pro Glu Glu Asn Ala Cys Gln Phe Gln Arg
 1 5 10 15

Leu Asn Ala Gln Arg Pro Asp Asn Arg Ile Glu Ser Glu Gly Gly Tyr
 20 25 30

Ile Glu Thr Trp Asn Pro Asn Asn Gln Glu Phe Glu Cys Ala Gly Val
 35 40 45

Ala Leu Ser Arg Leu Val Leu Arg Arg Asn Ala Leu Arg Arg Pro Phe
 50 55 60

Tyr Ser Asn Ala Pro Gln Glu Ile Phe Ile Gln Gln Gly Arg Gly Tyr
 65 70 75 80

Phe Gly Leu Ile Phe Pro Gly Cys Pro Arg His Tyr Glu Glu Pro His
 85 90 95

Thr Gln Gly Arg Arg Ser Gln Ser Gln Arg Pro Pro Arg Arg Leu Gln
 100 105 110

Gly Glu Asp Gln Ser Gln Gln Arg Asp Ser His Gln Lys Val His
 115 120 125

Arg Phe Asp Glu Gly Asp Leu Ile Ala Val Pro Thr Gly Val Ala Phe
 130 135 140

Trp Leu Tyr Asn Asp His Asp Thr Asp Val Val Ala Val Ser Leu Thr
 145 150 155 160

Asp Thr Asn Asn Asn Asp Asn Gln Leu Asp Gln Phe Pro Arg Arg Phe
 165 170 175

Asn Leu Ala Gly Asn Thr Glu Gln Glu Phe Leu Arg Tyr Gln Gln Gln
 180 185 190

Ser Arg Gln Ser Arg Arg Arg Ser Leu Pro Tyr Ser Pro Tyr Ser Pro
 195 200 205

Gln Ser Gln Pro Arg Gln Glu Glu Arg Glu Phe Ser Pro Arg Gly Gln
 210 215 220

His Ser Arg Arg Glu Arg Ala Gly Gln Glu Glu Glu Asn Glu Gly Gly
 225 230 235 240

Asn Ile Phe Ser Gly Phe Thr Pro Glu Phe Leu Glu Gln Ala Phe Gln
 245 250 255

Val Asp Asp Arg Gln Ile Val Gln Asn Leu Arg Gly Glu Thr Glu Ser
 260 265 270

Glu Glu Glu Gly Ala Ile Val Thr Val Arg Gly Gly Leu Arg Ile Leu
 275 280 285

Ser Pro Asp Arg Lys Arg Arg Ala Asp Glu Glu Glu Tyr Asp Glu
 290 295 300

Asp Glu Tyr Glu Tyr Asp Glu Glu Asp Arg Arg Arg Gly Arg Gly Ser
 305 310 315 320

Arg Gly Arg Gly Asn Gly Ile Glu Glu Thr Ile Cys Thr Ala Ser Ala
 325 330 335

Lys Lys Asn Ile Gly Arg Asn Arg Ser Pro Asp Ile Tyr Asn Pro Gln
 340 345 350

Ala Gly Ser Leu Lys Thr Ala Asn Asp Leu Asn Leu Leu Ile Leu Arg
 355 360 365

Trp Leu Gly Leu Ser Ala Glu Tyr Gly Asn Leu Tyr Arg Asn Ala Leu
 370 375 380

Phe Val Ala His Tyr Asn Thr Asn Ala His Ser Ile Ile Tyr Arg Leu
385 390 395 400

Arg Gly Arg Ala His Val Gln Val Val Asp Ser Asn Gly Asn Arg Val
405 410 415

Tyr Asp Glu Glu Leu Gln Glu Gly His Val Leu Val Val Pro Gln Asn
420 425 430

Phe Ala Val Ala Gly Lys Ser Gln Ser Glu Asn Phe Glu Tyr Val Ala
435 440 445

Phe Lys Thr Asp Ser Arg Pro Ser Ile Ala Asn Leu Ala Gly Glu Asn
450 455 460

Ser Val Ile Asp Asn Leu Pro Glu Glu Val Val Ala Asn Ser Tyr Gly
465 470 475 480

Leu Gln Arg Glu Gln Ala Arg Gln Leu Lys Asn Asn Asn Pro Phe Lys
485 490 495

Phe Phe Val Pro Pro Ser Gln Gln Ser Pro Arg Ala Val Ala
500 505 510