(12) PATENT (11) Application No. AU 199852757 B2
(19) AUSTRALIAN PATENT OFFICE (10) Patent No. 739236

(54) Title
File system interface to a database

(51)7 International Patent Classification(s)
GO6F 017/30

(21) Application No: 199852757 (22) Application Date: 1998.01.28

(30) Priority Data

(31) Number (32) Date (33) Country
08/792139 1997.01.31 uUs
(43) Publication Date : 1998.08.06

(43) Publication Journal Date : 1998.08.06
(44) Accepted Journal Date : 2001.10.04

(71) Applicant(s)
Informix Software, Inc.

(72) Inventor(s)
Igor V. Balabine; Ramiah Kandasamy; John A. Skier

(74) Agent/Attorney
DAVIES COLLISON CAVE,1 Little Collins Street, MELBOURNE VIC 3000

(56) Related Art
EP 526034

o oo
L]

Abstract
Information in a database is accessed with a
computer system by transforming a file system request
from an application into a database query and retrieving
information corresponding to the database query from the

database. The retrieved information is made available to

the application as a file system object, for example, as

a directory, a file, a link or a collection thereof.

ece [eees s o0
® 0
(]
.
L4
.

»

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S):

Informix Software, Inc.

ADDRESS FOR SERVICE:
DAVIES COLLISON CAVE

Patent Attorneys
1 Little Collins Street, Melbourne, 3000.

INVENTION TITLE:

File system interface to a database

The following statement is a full description of this invention, including the best method

of performing it known to me/us:-

At

LX]
(XX X]
L]
ooe .

* oo
.

* oo
eeee

e o

.
XXXXYS
. [
seee
J

3
LYY

® oo

. .
e oo

.

10

15

20

25

30

35

- la -

Background

This invention relates to accessing information in
a database.

A database is a body of information that is
logically organized so that it can be retrieved, stored
and searched in a coherent manner by a "database engine"
-- a collection of software methods for retrieving or
manipulating data in the database. Databases generally
fall into three categories: relational databases,
object-oriented databases and object-relational
databases.

A relational database (RDB) is a collection of
fixed-field two-dimensional tables that can be related
(or "joined") to each other in virtually any manner a
database developer chooses. The structure of a b
relational database can be modified by selectively
redefining the relationships between the tables. A
database engine may perform complex searches on a
relational database quickly and easily by using any of
various database query protocols such as the method
expressed by the Structured Query Language (SQL) or by
other mechanisms. The relationships between the tables
enable results of a search to be automatically cross-
referenced to corresponding information in other tables
in the database. As shown in Fig. 1, for example, a
relational database 100 includes a customer table 102
which is joined by a logical link 103 to an order table
104 which in turn is joined by a logical link 105 to an
inventory table 106. A user may query the database 100,
for example, for all order numbers highe; than a
threshold value. Because the order table 104 is joined

with the customer table 102 and the inventory table 106,

eoe

o oo
L L]
e oo
LA XX]

® 9
e L]

L]
®0coce
L] L]
soee

L]

o oo
. .
o oo
LX)

10

15

20

25

30

35

- 2 -

the list of order numbers resulting from the query can be
retrieved and displayed along with the respective
customer names and inventory items that correspond to the
identified order numbers.

An object-oriented database (OODB) is a collection
of "objects" -- software elements that contain both data
and rules for manipulating that data. 1In contrast to a
relational database which can store only character-type
data, an OODB can store data of virtually any type (text,
3D graphic images, video clips, etc.). An OODB stores
its constituent objects in a hierarchy of classes with
associated rules so that the OODB contains much of the
logic it needs to do useful work. A relational database
in contrast contains only data and must rely on external
application software to perform useful functions with the
data.

A object-relational database (ORDB) is a hybrid of
the other two types. Non-character data (e.g., an image
file) may be stored and retrieved in an ORDB as a binary
large object (BLOB) -- an undifferentiated mass of data.
Rules for manipulating the data contained within a BLOB
(e.g., a utility for viewing image files) may be stored
either within the database or external to it depending on
the particular ORDB implementation. The Informix®
Universal Server (IUS®) is an example of an object-
relational database management system (ORDBMS) that
internally stores the rules for manipulating BLOBs so
that they may be treated as "native" data types -- that
is, data types that the ORDBMS itself has the capability
to manipulate.

Information within a relational or an object-
relational database typically is accessed by SQL-
compliant computer programs that are written to
accomplish a specific function. For example, a user may
write a SQL program that retrieves a list of customer

o

10

15

20

25

30

35

-3 -

names from a database which stores customer information.
Alternatively, many different application programs are
available that support database queries and which allow a
user to interactively formulate a database query by
specifying an arbitrary set of criteria (e.g., the names
of all out-of-state customers with overdue accounts).
This type of application program presents the user’s
database query to the database engine which retrieves the
requested information from the database. Such
application programs are referred to as "database aware"
because they are have the ability to interact with and
manipulate databases.

Most application programs, in contrast, are
"database-unaware" meaning that they cannot access
information stored in a database. Rather, database-
unaware applications rely on file systems, such as the
Network File System (NFS) developed by Sun Microsystems,
Inc., for storing and retrieving information in discrete
files. A database-unaware program stores each separate
document in a separate disk file identified by the user
of the application. 1In Fig. 2, for example, a file
system 200 has two disk drives mounted: drive 202 which
is mapped to the label a: and drive 204 which is mapped
to the label b:. Each of the a: and b: drives includes
one or more directories (docs on the a: drive 202; dirl
and dir2 on the b: drive 204) which in turn may have
subdirectories (subdirl in dirl; subdir2 and subdir3 in
dir2) and so on with virtually any level of hierarchical
nesting being possible. Files 206-212 may exist at any
of the various directory or subdirectory levels within
the file system. The labels a: and b: represent the
"namespace" of the file system. That is, all filename
paths that begin with a: or b: are within’the file
system’s namespace. As shown in Fig. 2, for example, a

document that lists names of out-of-state customers is

L

L]
L I 1
e o
LX) L]

oo

10

15

20

25

30

P:\oper\ssb\$2757-98res.doc-12/06/01

-4-

stored in the file system's namespace at a location defined
by the filename path
a:\docs\cust outstate. txt
which means that a file 211 named "cust _outstate" of the
type "txt" is stored in a directory named docs on a disk
drive 202 mapped to the 1label a-:. Another document that
lists names of customers with overdue accounts is stored in
a separate disk file located at the filename path
a:\docs\cust_overdue. txt.
These two files are separate and distinct entities that are
not related or joined in the sense that tables in a database
are related.
The reference to any prior art in this specification is
not, and should not be taken as, an acknowledgment or any
form of suggestion that that prior art forms part of the

common general knowledge in Australia.

Summary of the Invention

The present invention provides a method, performed on a
computer system, of accessing information in a database, the
method comprising:

making a database object available to an application as
a file system object;

receiving from the application a file system request
corresponding to the available file system object; and

transforming the file system request from the
application into a database operation.

The present invention also provides a computer-based
method of accessing information in a database, the method
comprising:

retrieving information from the database; and

presenting the retrieved information to an application
as a file system object.

e
]

.

[

L]

L X]
® e
. L d
L[] [] L[]
L] e

96ee 06 s000 0000000
e oeoe

10

15

20

25

30

P:\operissb\S2757-98res.doc-12/06/01

- 4A -

The present invention also provides a computer-based
data repository management system comprising:

a database of information;

a file system-based application program for
manipulating data; and

a file system interface to the database which provides
the file system-based application with access to information
in the database.

The present invention also provides computer software,
residing on a computer readable medium, for a data
repository management system comprising a file system-based
application and a database, the computer program comprising
instructions to cause a computer system to perform the
following operations:

receive a file system request issued by the file
system-based application;

convert the file system request into a database
operation;

retrieve information from the database by performing
the database operation on the database;

transform the retrieved information into one or more
file system objects according to predetermined criteria; and

present the one or more file system objects to the file
system-based application.

The present invention also provides a method, performed
on a computer system, of accessing information in a
database, the method comprising:

making a database object available as a file system
object to a database-unaware application;

receiving from the database-unaware application a file
system request corresponding to the available file system
object;

transforming the file system request from the database-
unaware application into a database operation;

performing the database operation on the database using

a database engine;

P:\oper\ssb\S2757-98res.doc-12/06/01

-4B -

retrieving information from the database in response to
the database operation; and

returning the information associated with the database
object to the database-unaware application as a file system

5 object.

The present invention also provides a computer-based
method of accessing information in a database, the method
comprising:

encoding a file handle with information that specifies

10 a database object in a database;
transmitting the encoded file handle in response to a

file system request issued by an application; and

decoding the received file handle to 1identify the

database object associated with the file system request.

L 4
3

§:E' 15 In one embodiment of the invention, information in a
ﬂ,": database is accessed with a computer system by making one or
?-:5 more database objects (e.g., a table or a row) available as
R one or more file system objects (e.g., directories, files or
-3 links) to an application, for example, a database-unaware
sgeess 20 application. The database may be relational, object-
et relational or object-oriented. If multiple file system
;;3: objects are made available, collectively they may represent
;:3: a hierarchical file system. A file system request issued by
t;; the application that corresponds to the file system object
el 25 1is transformed into a database operation, for example, an

SQL query, which 1is performed on the database with a
database engine.
Information associated with database object which is
retrieved as a result of the database operation may be
30 formatted into one or more file system objects and returned
to the application. The particular formatting of the
retrieved information may be defined in an extension module,
which also may include information that defines the specific

manner in which the file system

L mm A e, e aSenen LS T T Teiw TR v ~ - - - = ——— St—— o ——

eooe

10

15

20

25

30

35

- 5 -

request should be transformed into a database query. The
database operations, including formatting of a database
query, retrieving information and formatting it into file
system objects, are performed transparently to the
application.

Upon receiving the file system objects, the
application may display them on a display screen of a
computer, for example, as graphical representations of
file system objects. The database object that is made
available may be presented as multiple file system
objects in formats understandable by different
applications. Conversely, a single file system object
may correspond to multiple database objects.

In'another embodiment, a computer-based data
repository management system includes a database of
information, a file system-based applicaﬁion program for
manipulating data, and a file system interface to the
database which provides the file system-based
application, which otherwise may be database-unaware,
with access to information in the database. The data
repository management system may further include a
database management system which manages information in
the database either in addition to, or instead of, the
file system-based application. _

The data repository management system may include
a module for differehtiating file system requests
directed to the file system from file system requests
directed to the file system interface. The file system
interface may include one or more extension modules
containing one or more file objects, each file object
including information for converting database objects
into file system objects.

In another'embodiment, information in a database is
accessed with a computer system by encoding a file handle

with information that specifies a database object in a

LA XX]
.

o oo
.

10

15

20

25

30

35

- 6 -

database. 1In response to a file system request issued by
an application, the encoded file handle is transmitted
and then decoded to identify the database object
associated with the file system request. The encoding
may be based on the NFS protocol. The encoded
information may include information that corresponds to
the issued file system request and which identifies an
extension module, a database table and row, metadata, a
pointer to a database object, or a combination thereof.

Advantages of the file system interface described
here may include one or more of the following.
Applications that rely on a file system as a data
repository, or which are otherwise database-unaware
(i.e., unable to access data in a database), are enabled
to access information in a database in a transparent
manner. These database-unaware applications can share
data seamlessly both with database-aware applications and
with other database-unaware applications. Under IXFS, a
database may appear to an application as just another
local or remote file system that is no different in form
or character from the other file systems available to the
application. No change to the application’s program
code, the database or the database engine is required.

As a result, users of database-unaware applications are
provided with database functionality without having to
invest the time and cost typically associated with
database-aware tools.

A system administrator may use the IXFS system to
combine disparate data storage technologies (e.g., file-
based systems with database systems) in creating a
unified data repository strategy that spans an
enterprise. The enterprise’s investment in legacy data
repositories is maintained because data Present in the
repositories may easily be transferred to a database as
the enterprise moves to the relational or object-

10

15

20

25

30

-7 -

relational model of data storage. Moreover, the
enterprise’s investment in database-unaware applications
is enhanced because IXFS enables them to be used to
manage data stored in a database. _

The ability for a database-unaware application to
access information in a database combines the simplicity
of the file system paradigm with the sophistication and
effectiveness of database manipulation techniques. This
capability is particularly useful for Internet World Wide
Web applications in which a user seeks to access a large
store of data using, for example, the hypertext transfer
protocol (HTTP). 1In contrast to a common gateway
interface (CGI) script, which spawns an external
application to retrieve data from a database in response
to a URL (Uniform Resource Locator) encoded request, the
IXFS system converts such a request into a form that may
be executed by a database engine directly, quickly and
transparently.

The ability to represent an arbitrary collection
of tables in a database as various file system objects
provides a software developer with a rich and flexible
set of tools. The extensible nature of IXFS allows it to
be tailored to virtually any type of application so that
the database will appear as a collection of file system
objects that are consistent with the application’s other
file system objects.

Other advantages and features will become apparent from
the following description, by way of example only, with

reference to the drawings.

Brief Description of the Drawings
Fig. 1 is a diagram of a relational database.

Fig. 2 is a diagram of a file system.
Fig. 3 is a diagram of a system for accessing data

in file system and in a database.

10

15

20

25

30

- 8 -

Fig. 4 is a flowchart of accessing data in a
database using the system of Fig. 3.

Figs. S5A, 5B and 5C are example screen displays
from an application accessing information in a file
system and in a database.

Fig. 6 is a data structure diagram for a file

object.

Fig. 7 is a diagram of a kernel level file system
architecture.

Fig. 8 is a diagram of a network file system
architecture.

Fig. 9 is a data diagram of a NFS file handle as

used in the network file system architecture of Fig. 8.

Detailed Description
The use of a database to store persistent data

provides several advantages that are not available when a
file system is used as a data repository. The structure
of a database, and the internal relationships between
tables within the database, enable fast and arbitrarily
complex queries for information to be performed on the
database. A file system in contrast has no standard data
query mechanism for searching for specific data items
within the files managed by the file system. Other
features provided by database systems for which
conventional file systems have no analog include well-
defined management policies, auditing capabilities,
transparent data replication, logging facilities, and
consistent backup and restore procedures.

Using a database system as a data repository
requires relatively complex and expensive tools, such as
special purpose database-aware applications, and often an
increased level of sophistication and trafining by the
end-user. File systems in contrast generally are simple

to use, cheap and pervasive. Virtually every computer

10

15

20

25

30

- 9 -

operating system provides a native file system that may
be used by applications for storing persistent data.
This among other reasons is why approximately 85-90% of
all persistent data is stored in file systems by
database-unaware applications.

The file system interface described here, dubbed
the Informix® File System (IXFS) interface, provides
computer system users with the best of both worlds by
enabling database-unaware applications to access (i.e.,
read and write) information in a database in a manner
that is entirely transparent to the application. No
changes need to be made to the application or to the
database. IXFS presents the contents of a database to
the application as "file system objects" such as
directories, sub-directories, files or links. These file
system objects appear to the application to be no
different in form or character from the file system
objects that the application handles in the ordinary
course of storing and retrieving data. IXFS enables a
user of a database-unaware application to access the
contents of a database by performing the desired
operations on the file system objects that represent the
database’s contents.

As shown in Fig. 3, IXFS 300 sits between a
database-unaware application 302 and a database 304 and
monitors all requests issued to the file system 306 by
the application 302. When the application seeks to
access information in the database, a component of the
IXFS system translates the file system request into a
database query format that is understandable by the
database. Similarly, information received from the
database (in response to a file system read request by
the application, for example) is represented to the

application as one or more file system objects.

® oo
.

(XXX

L]
®occoe
L -
(XX X

L]

3
(ALK]

e oo
L]

10

15

20

25

30

35

- 10 -

A high-level description of the operation of IXFS
and its interaction with the computer’s operating system
is provided with reference to the flowchart of Fig. 4.
When a file system request (e.g. a data read or write) is
issued by an application program, the operating system
determines whether it corresponds to information
contained in a file namespace managed by IXFS (step 400).
The operating system is able to differentiate requests
for data stored in other file systems from requests for
data in IXFS’s file namespace because the database has
been mapped to a namespace (e.g., x:) that is mutually
exclusive with the file system’s namespace (e.g., a: and
b:). 1In effect, the database appears to the operating
system and to the application as a disk drive mapped to
the label x:.

If the file system request is not directed towards
information managed by IXFS, the request is handled by
other file systems (step 401). If, on the other hand,
the file system request corresponds to information in
IXFS's file namespace, the operating system passes the
request onto IXFS which in turn furnishes the request to
an extensible component of IXFS, i.e., an "extension
module, " for translation into a form understandable by
the database -- an SQL query, for example -- (step 402).
After the request has translated into a database query,
the IXFS extension module presents the query to the
database engine which uses it to access the database
either by modifying the desired information (for a write
request) or by retrieving the desired information (for a
read request) and returning it to IXFS (step 404). If
information has been retrieved from the database (step
406), the IXFS extension module formats it according to
predefined criteria into file system objects (step 408)
which are presented to the application (step 410). Upon
receiving the file system objects from IXFS, the

10

15

20

25

30

35

- 11 -

application treats them as if they came from a file
system. In fact, the application is unaware that the
file system objects came from a source other than a file
system. In this manner, all requests for data in the
file system’s namespace are handled by the file system
while all requests for data in the file namespace
assigned to the database are handled by IXFS.

An example of how IXFS may be used to represent a
database as a file system to an application is provided
with reference to Figs. 5A-5C. Assume that a user of a
window-based computer system uses a file system
navigation tool to examine the information that is stored
both in the file system represented by Fig. 2 and in the
database represented by Fig. 1. Assume further that the
file system’s namespace is represented by the labels a:
and b: and that IXFS is mapped to drive x: on the client
machine. As shown in Fig. S5A, the navigation tool window
500 initially displays the file system’s two drives, a:
and b:, and the drive x: corresponding to the database,
in a collapsed state. At this point the user instructs
the navigation tool to expand drive b:, thereby making
its hierarchy of directories and subdirectories visible
to the user, and opens subdirl which contains two files,
doc206. txt and doc207.txt, as shown in Fig. 5B. The
file information displayed in Fig. 5B is retrieved from
the a: and b: drives using standard file system
operations.

Next, the user instructs the navigation tool to
expand drive x:, which is mapped to the database via
IXFS, so that the contents of drive x: may be examined.
Because the corresponding file system request issued by
the navigation tool points to drive x: -- the file
namespace assigned to the database -- IXF& handles the
file system request by passing it to an extension module
which formulates a database query to retrieve the

eo0cee

LA XX
. [
LA XX]

e ee
e o

10

15

20

25

30

35

- 12 -

requested information from the database. After the
information has been retrieved, it is formatted into file
system objects with a method invoked by IXFS and returned
to the navigation tool. The information retrieved from
the database appears to the navigation tool, and to the
user of the navigation tool, to be no different in
character from other file system objects that were
retrieved with the file system. As shown in Fig. 5C,
tables 102, 104 and 106 in the database 100 of Fig. 1 are
represented as three corresponding directories --
customer, order and inventory. Similarly, three rows
within the customer table 102 -- customer_name,
customer_addr and customer_id -- are represented as three
corresponding subdirectories within the customer
directory -- name, address and id. Entries in the name
subdirectory are represented as text files that are named
for their respective contents -- Adams, Andrews,
Brewster, etc.

A user may open any of the text files in the
x:\customer\name directory (for example, with a standard
text editor application) modify its contents, and perform
a standard "file save" operation. In response, IXFS
handles the file save request because it is directed to
the file namespace assigned to the database and
formulates a corresponding database operation to modify
the contents of the database as appropriate.

IXFS allows all file system operations to be
performed on the database. For example, a user could
employ appropriate features of the navigation tool to
change the name of the x:\customer directory to something
else such as x:\cust. Similarly, a user could create a
new file system object such as a subdirectory or a new
file underneath the x:\customer directory. Moreover,
access to specified portions of the database could be

limited for certain users in the same manner that file

10

15

20

25

30

35

- 13 -

system objects in a file system may be limited (read
only, hidden, etc.).

The specific types, formats and arrangement of
file system objects that IXFS will return in response to
a file system request are defined in a corresponding
extension module -- a software component of IXFS that may
be tailored as desired to encapsulate an arbitrary
collection of database objects (e.g., tables) and
represent them as a collection of file system objects.

In one implementation, IXFS includes a Basic Extension
Module (BEM) that provides a one-to-one mapping of a file
in a file system into a collection of database objects.
Among other uses, the BEM allows users to quickly and
transparently move their data from a file system into the
IUS® database management system and run database queries
against it.

The BEM emulates a file system by encapsulating a
collection of database tables as specified by a software
developer implementing the IXFS system, and presenting
them to an application as file system objects. Each
table specified by the BEM corresponds to a directory and
each row in the table corresponds to a file system object
(e.g., subdirectory, file or link) present within the
directory.

For each database table that it encapsulates, the
BEM includes a corresponding "file object" 600 having a
data structure as shown in Fig. 6. The file system
object 600 corresponds to, and provides an intuitive
representation of, a directory, a file or a link in a
file system. Each file object 600 includes the file
object’s name 601 (an identifier of a file system entity
that is unique within a given directory), type 602
(directory, file or link), ownership 603 ¥an identifier
of the file object’s owner), access rights 604 (access

rights to the object for its owner, community and

10

15

20

25

30

35

- 14 -

others), temporal characteristics 605 (timestamp of last
read, write and look-up operations), popularity 606
(number of links pointing to the object) and size 607
(object’s size in bytes). The file object 600 also
contains its corresponding data object 608 or a pointer
to the data object.

Portions of a database are mapped to a file system
representation by selecting database tables and rows as
desired, and by designating the type of file system
object to which each selected table and row corresponds.
For example, the database of Fig. 1 was mapped into the
file system hierarchy shown in Fig. 5C by specifying that
each of the customer, order and inventory tables occupy a
separate file object in the BEM of the type "directory."
Within the file object for the customer table, each of
the name, address and id rows have been designated as the
type "directory," thereby making them appear as
subdirectories to the hierarchically dominant customer
directory. Within the "name" row in the "customer"
table, the individual customer name entries have been
designated in the file object as the type "file" making
them appear as individual text files as shown in Fig. 5C.

Several different IXFS extension modules may be
resident and operative at the same time to provide access
to two or more different databases simultaneously or to
access different information within the same database or
to provide a different interpretation of the same
database object. A single extension module is capable of
presenting the same information in multiple different
formats, for example, as different types of file system
objects. In Fig. 5C, for example, the table of
customers, including their names, addresses and IDs,
could be presented as a single file system object --
e.g., a Microsoft Excel file named "customer.xls"
containing all of the customers’ identifying information

- 15 -

-- which could be opened by an appropriate spreadsheet
program that understands the "xls" format. The extension
module could be configured so that the customer.xls file
object is presented to the application either instead of,

5 or in addition to, the x:\customer directory, its
component subdirectories (name, address, id) and the
files contained therein (Adams.txt, Andrews.txt,
Brewster.txt, etc.).

As another example, an extension module could be

10 configured to present the text files in x:\customer\name
in several different formats for use by alternative
application programs. In the database of Fig. 1, for
example, multiple different file formats could be
provided for each customer name by presenting multiple

1s file system objects for a single database object. The
database table entry for the customer Adams, could be

mapped, for example, to three separate file system

f : objects having different formats: "Adams.doc" for use
J.t with Microsoft Word, "Adams.wpd" for use with Corel

:':f 20 Wordperfect, and "Adams.fm" for use with Adobe

e 3 Framemaker. A user who edited the information in the
o "Adams.doc" object would observe that the changes

E:x. automatically were reflected in the "Adams.wpd" and

Teetd "Adams.fm" objects. Because all three of the file system

. 25 objects are mapped to the same database object (namely,

L the database entry for customer Adams), the three

alternative file system objects may be used
e interchangeably to view or edit the information for

customer Adams without concern that divergent versions of
30 Adams’ information will result.

By employing the appropriate extension modules,
whether obtained from a software library or generated
according to custom specifications, software developers
may enable database-unaware applications (e.g., Microsoft

35 Word, Microsoft Excel, Lotus 1-2-3) to retrieve

XX X
.

° ve
[}

10

15

20

25

30

- 16 -

information stored in a database or to store new or
modified information into the database. At the same
time, database-aware applications may continue to access
all of the information stored within the database,
including information that was stored by database-unaware
applications in the first instance. Together these
capabilities enable a single enterprise-wide data
repository to be maintained with various different
applications, both database-aware and database-unaware,
being able to access the information in the data
repository. Moreover, IXFS facilitates the migration of
data between different applications -- for example,
between a database-aware application and a database-
unaware application or between two disparate database-
unaware applications.

The IXFS system may be implemented by three
different architectures: an object library architecture;
a kernel level mountable file system architecture; or a
network file system architecture.

In the first approach, the object library
architecture, the ability to access information in a
database is achieved through a set of software objects
made available to database-unaware applications through a
library -- for example, a dynamic linked library (DLL) on
a Microsoft Windows®-based platform. Using a consistent
set of file system access methods that operate oh the
database, these software objects provide a functionality
analogous to that provided by the common file access
Application Program Interfaces (APIs) defined by the ANSI
C or POSIX standards. Use of the object library
architecture would require, however, any application to
be used with the IXFS system first to be relinked with a
new library of IXFS-related objects. The® other two

architectures, in contrast, allow existing applications

10

15

20

25

30

35

- 17 -

to access database information without any changes to or
relinking of the applications.

The kernel level mountable file system
architecture, illustrated in Fig. 7, intercepts file
system requests at the operating system level and passes
them on to the IXFS system for processing. In the kernel
architecture, the kernel address space 700 is modified to
include an IXFS kernel module 701 which is specific to
the operating system being used (e.g., UNIX, Windows®
NT). File system requests from application programs are
received by the 0S kernel 702 either from a local client
705 (an application residing in the address space of the
local host 704) or from a remote client 706 (an
application residing in the address space of a remote
system) via NFS 703.

File system requests directed towards the
namespace of the mounted file system devices (e.g., disk
drives) are handled by NFS 703 in the conventional
manner. File system requests that are directed to the
namespace occupied by the database (as determined by the
IXFS kernel module 701) are passed onto the IXFS daemon
708 (or the IXFS "service" in the case of Windows NT) for
processing. The IXFS daemon 708 performs several
functions including managing connections to the database
709 (or databases) to be accessed and maintaining a list
of the filenames being used to access database objects.
Upon receiving a request from the IXFS kernel module 701
to access the database 709, the IXFS daemon initializes a
filename look-up procedure to identify the appropriate
IXFS extension module 707 to handle the request. The
filename specified by the request is used as an index
into a look-up table of corresponding IXFS extension
modules by comparing the specified filenatne to a list of
names of file objects contained in each extension module.

After determining which IXFS extension module includes a

10

15

20

25

30

35

- 18 -

file object whose name matches the specified filename,
the IXFS daemon 708 transfers the request to that
extension module 707. The extension module translates
the request into a database operation which is performed
on the database 709. Any information generated in
response to the database query operation is formatted by
a method invoked by the IXFS extension module 707 into
file system objects according to the file object types
defined in the extension module. The formatted file
system objects are then presented to the requesting
application.

The network architecture, illustrated in Fig. 8,
intercepts file system requests at the network level and
passes them on to the IXFS system for processing. 1In the
network architecture, the OS kernel address space need
not be modified. Rather, all file system commands
generated by a local client 805 or a remote client 806
are passed, via a loop NFS connection 810 or a network
NFS connection 803, to a NFS front-end daemon (or
service) 804, which resides outside of the OS kernel.
The NFS front-end daemon 804 is implemented as a
component of the IXFS daemon.

Upon receiving a file system request, the NFS
front-end daemon 804 passes it on to the IXFS daemon 806
and subsequently to the appropriate IXFS extension module
807, which provide the same functionality as the IXFS
daemon and IXFS extension modules in the kernel level
architecture described above.

The IXFS system can be adapted to provide an
interface to any type of database, including relational,
object-relational and object-oriented databases, and to
understand any other type of database query protocol in
addition to SQL. NFS was chosen as the retwork protocol
to be used in the IXFS implementation of Fig. 8 because

NFS is a widely used standard for sharing files across

10

15

20

25

30

- 19 -

different platforms. However, any other network protocol
that provides access to file systems over a network --
for example, Microsoft’s Common Internet File System
(CIFS) -- could be used in implementing the IXFS network
architecture.

The NFS protocol (version 2) allows clients and
servers to exchange file information by using a "file
handle" -- a 32-byte value -- to identify a desired file.
When NFS is used as the network file system protocol in
the network architecture, IXFS can make additional use of
the NFS file handle to achieve greater speed and
efficiency in performing file system requests on the
database. To do so, IXFS encodes the NFS file handle
with information that is specific to its operations as
shown in Fig. 9.

Bytes 1-8 of the file handle hold the IXFS "magic
string" -- an entity that allows IXFS to distinguish IXFS
file handles (i.e., file system requests directed to the
file namespace assigned to the database) from NFS file
handles (i.e., file system requests directed to the file
namespace assigned to the file system). The magic string
is an eight byte string in which each byte is assigned
the value FF hexadecimal to identify a file handle as an
IXFS file handle. Bytes 9 and 10 identify the particular
IXFS extension module whose job it is to manage the file
handle under consideration. Encoding an IXFS file handle
in this manner obviates the need to maintain an empty
("shadow") directory tree in the file system, which
otherwise would be needed to generate standard NFS file
handles that correspond to information managed by the
IXFS system. Similarly, this encoding scheme makes it
unnecessary to maintain a distinct mapping entity (e.g.,
look-up table) between NFS file handles and IXFS file
handles.

(Xl
® ecoe
.

e eeve
[

10

15

20

25

30

- 20 -

The remaining bytes of the NFS file handle in Fig.
9 include information that is specific to the extension
module identified by the extension module identified by
bytes 9 and 10 of the file handle. Bytes 11-14 and 15-18
respectively identify the database table and row that
correspond to the file handle. Bytes 19-22 identify the
i-node (information node) table and row which correspond
to metadata descriptive of file attributes, and a pointer
to the data in the database, for the file handle under
consideration. Bytes 19-32 presently are unused but they
are available for use by any newly developed extension
modules. As a result of the encoding represented in Fig.
9, the efficiency with which elements may be located in
the database is enhanced and the complexity of designing
new IXFS extension modules is reduced.

The kernel level and network architectures provide
different advantages relative to one another. The kernel
level approach is the more efficient of the two in that
it provides a shorter data path between the issuance of
the file system request to the return of file system
objects from IXFS. On the other hand, the network-based
architecture significantly minimizes the effort required
to port the IXFS between different platforms because
implementing the network architecture does not require a
modification to the operating system kernel. In both
cases, however, the IXFS system provides a database-
unaware application with transparent access to data in a
database, while maintaining the inherent advantages of
using a database for persistent data storage.

The methods and mechanisms described here are not
limited to any particular hardware or software
configuration, but rather they may find applicability in
any computing or processing environment #n which database

manipulation may be performed.

oo
o oo
[

oo

10

15

20

25

30

- 21 -

The techniques described here may be implemented
in hardware or software, or a combination of the two.
Preferably, the techniques are implemented in computer
programs executing on programmable computers that each
include a processor, a storage medium readable by the
processor (including volatile and non-volatile memory
and/or storage elements), and suitable input and output
devices. Program code is applied to data entered using
the input device to perform the functions described and
to generate output information. The output information
is applied to one or more output devices.

Each program is preferably implemented in a high
level procedural or object oriented programming language
to communicate with a computer system. However, the
programs can be implemented in assembly or machine
language, if desired. 1In any case, the languagé may be a
compiled or interpreted language.

Each such computer program is preferably stored on
a storage medium or device (e.g., CD-ROM, hard disk or
magnetic diskette) that is readable by a general or
special purpose programmable computer for configuring and
operating the computer when the storage medium or device
is read by the computer to perform the procedures
described in this document. The system may also be
considered to be implemented as a computer-readable
storage medium, configured with a computer program, where
the storage medium so configured causes a computer to
operate in a specific and predefined manner. _

Other embodiments are within theAscope of the

following claims.

Throughout this specification and the claims which
follow, unless the context requires otherwise, the word
"comprise", and variations such as "comprises" and
"comprising", will be understood to imply the inclusion of a
stated integer or step or group of integers or steps but not
the exclusion of any other integer or step or group of

integers or steps.

oo
® ecee
L]

(X XY .
o eove
L]

e o
. LX)
o oo

(XY]

e oo
LI L]
® oo
(XL R

.
LA EX XX
L] .

L XX X}
°

- 22 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method, performed on a computer system, of
accessing information in a database, the method
comprising:

making a database object available to an
application as a file system object;

receiving from the application a file system
request corresponding to the available file system
object; and

transforming the file system request from the

O W W 3 O U » W N

-

application into a database operation.

2. The method of claim 1 further comprising
2 performing the database operation on the database using a

database engine.

3. The method of claim 1 further comprising
retrieving information from the database in response to

the database operation.

4. The method of claim 1 further comprising
2 returning the information associated with the database
object to the application as a file system object.

5. The method of claim 4 in which the returning
2 comprises arranging the retrieved information in a format

defined in an extension module.

6. The method of claim 5 further comprising
2 displaying the formatted information on a display screen

of a computer.

SowNn

- 23 -

7. The method of claim 1 further comprising
displaying information associated with the database

object on a display screen of a computer.

8. The method of claim 7 in which the information
associated with the database object is displayed as a

graphical representation of a file system object.

9. The method of claim 1 in which the application
that issued the file system request comprises a database-

unaware application.

10. The method of claim 1 in which the database

comprises a relational database.

11. The method of claim 1 in which the database

comprises an object-relational database.

12. The method of claim 1 in which the database

comprises an object-oriented database.

13. The method of claim 1 in which the
transforming comprises converting the file system request

into a database query.

14. The method of claim 13 in which the database

query comprises an SQL-compliant query.

15. The method of claim 1 in which the
transforming comprises converting the file system request
into a database query based on information contained

within an extension module.

® oo
L L]
® oo
XXX

oo L]

(3
LA XXX X
L] L]

oW N P w

[

WD W NN w

[

- 24 -

16. The method of claim 1 further comprising
determining whether the received file system request

corresponds to information managed by a file system.

17. The method of claim 16 further comprising
conveying the file system request to the file system if
the file system request is determined to correspond to
information managed by the file system.

18. The method of claim 16 in which the
determining comprises identifying a namespace to which

the file system request is directed.

19. The method of claim 16 in which the
determining is performed by a method executing in a
kernel address space of an operating system associated

with the computer system.

20. The method of claim 16 in which the
determining is performed by a method executing external
to an operating system associated with the computer

system.

21. The method of claim 1 in which making the
database object available as a file system object 1is
performed transparently to the application.

22. The method of claim 1 in which the database

object comprises a table.

23. The method of claim 1 in which the file

system object comprises a directory, a file or a link.
[

W NN P >ow NP nm W W N m s w N

S w N P

W NP

- 25 -

24. The method of claim 1 in which making the
database object available as a file system object
comprises presenting the database object as plural file
system objects in formats understandable by different

applications.

25. A computer-based method of accessing
information in a database, the method comprising:

retrieving information from the database; and

presenting the retrieved information to an

application as a file system object.

26. The method of claim 25 further comprising
identifying the information to be retrieved from the
database by specifying a database object from among
database objects in the database.

. 27. The method of claim 26 in which the
identifying comprises recording in an extension module
information descriptive of a predetermined set of
database objects.

28. The method of claim 27 in which the
retrieving comprises selectively extracting information
from the database based on information contained in the

extension module.

29. The method of claim 27 in which the
presenting comprises formatting the selectively extracted
information into file system objects based on information

contained in the extension module.

(XX XY
L]
o0

.
€evooce
[L]
(XX X)

.

L]
XX X}

e oo
L]

. L] L]
® oo

=W N e

@ 0O W N

(2 I~ VS I (O T

- 26 -

30. The method of claim 25 in which a collection
of file system objects represents a hierarchical file
system having directories, files, links or a combination

thereof.

31. A computer-based data repository management
system comprising:

a database of information;

a file system-based application program for
manipulating data; and

a file system interface to the database which
provides the file system-based application with access to

information in the database.

32. The system of claim 31 in which the file

system-based application is database-unaware.

33. The system of claim 32 in which the database
comprises an object-relational database.

34. The system of claim 32 in which the database

comprises a relational database.

35. The system of claim 32 in which the database

comprises an object-oriented database.

36. The system of claim 33 further comprising a
database management system for managing information in

the database.

37. The system of claim 31 further comprising a
database engine for performing database operations on the
database, the file system interface receit%ing file system
requests and transforming the received requests into a
form understandable by the database engine.

o A,

_wNn

(V2 I~ VI O I

u s w NN

- 27 -

38. The system of claim 31 further comprising a
module for differentiating file system requests directed
to the file system from file system requests directed to

the file system interface.

39. The system of claim 31 in which the file
system interface further comprises an extension module

that includes a file object.

40. The system of claim 39 in which the file
object comprises information for converting database

objects into file system objects.

41. The system of claim 31 in which the file
system interface comprises a plurality of extension
modules each of which includes information for converting

a different set of database objects into file system

objects.

42. The system of claim 31 in which the file
system interface comprises a plurality of extension
modules each of which includes information for converting
a single database object into multiple file system

objects.

B!
iy,

W 0 9 6O B P W N

L e e e i i
9 0 s W N B o

0 9 0 W N

11
12
13
14
15
16
17

- 28 -

43. Computer software, residing on a computer
readable medium, for a data repository management system
comprising a file system-based application and a
database, the computer program comprising instructions to
cause a computer system to perform the following
operations:

receive a file system request issued by the file
system-based application;

convert the file system request into a database
operation;

retrieve information from the database by
performing the database operation on the database;

transform the retrieved information into one or
more file system objects according to predetermined
criteria; and

present the one or more file system objects to the

file system-based application.

44. A method, performed on a computer system, of
accessing information in a database, the method
comprising:

making a database object available as a file
system object to a database-unaware application;

receiving from the database-unaware application a
file system request corresponding to the available file
system object;

transforming the file system request from the
database-unaware application into a database operation;

performing the database operation on the database
using a database engine;

retrieving information from the database in
response to the database operation; and

returning the information associatfed with the
database object to the database-unaware application as a

file system object.

ee L]

.
evsece
. [

LA XX)
L] e
L XXX]

Q o~ g

WD _w N - WD N @ 9 0 W N

W NN

- 29 -

45. A computer-based method of accessing
information in a database, the method comprising:

encoding a file handle with information that
specifies a database object in a database;

transmitting the encoded file handle in response
to a file system request issued by an application; and

decoding the received file handle to identify the
database object associated with the file system request.

46. The method of claim 45 in which the encoding
is based on the NFS protocol.

47. The method of claim 45 in which the encoding
comprises including information in the file handle that
identifies an extension module that corresponds to the

issued file system request.

48. The method of claim 45 in which the encoding
comprises including information in the file handle that
identifies a database table and row that correspond to

the issued file system request.

49. The method of claim 45 in which the encoding
comprises including information in the file handle that
identifies metadata that corresponds to the issued file

system request.

50. The method of claim 45 in which the encoding
comprises including information in the file handle that
points to the database object that corresponds to the

issued file system request.

»

L]
L[]
Ll
L3
k]

.
L[]
.

10

15

20

P:\openissb\52757-98res.doc- 13/0601

=30 -

51. A method of accessing information 1in a database
substantially as hereinbefore described with reference to

the drawings.

52. A repository management system substantially as

hereinbefore described with reference to the drawings.

53. Computer software for a data repository management
system substantially as hereinbefore described with

reference to the drawings.

54. A method of accessing information in a database
substantially as hereinbefore described with reference to

the drawings.

DATED this 13th day of June, 2001
Informix Software, Inc.

by DAVIES COLLISON CAVE
Patent Attorneys for the Applicant

1/11

RELATIONAL DATABASE

103

Customer

customer_name
customer_addr
customer_id

-—
=
N

Order 104
customer_id
item_id
quantity
date

105

100

Inventory

106

Fig. 1

" FILE SYSTEM

a: drive
docs 202
211 212

Vave e e e\ NN
Vate e va e\ Vo a e a\
NN NN
Vasa~aaa\ Vasata e a\
/\/\N\/\ /W\./'\/\
NNANAN Vo e asaaN

cust outstate cust_overdue

b: drive
dir1 204
subdir 1
£ 206 <207
/\/\N\/\ fWV\/\
/\N\/\./\ /\/W\./\
Vasa e e\ Vacasasata\
dir2
subdir 2
208 . 209
NNAAAAN Vataa e a\
Vaaavaa\N Vata e e v a\
Vatata e Sa\ SN\

Vave e e a\N Vata e aa\
Vatata e e\ Vate e e e\
subdir 3

. 210
/VW\/\
/\/V\/\/\
/\/\N\/\
Vate e SaSa\
Voo a e oy
Vate e e a\

N
o
o

11/2

DB

306
FILE
SYSTEM
304 300
——» IXFS

302

DB-UNAWARE
APPLICATION

11/¢€

Xé/ ISING]

400

4/11

Request

for IXFS Information
?

Yes
v
402 (| Translate Request into
SQL Query
4 .
04\ Access DB Information
406 DB Information

Retrieved
?

Yes

v

408 |

Format into File
System Objects

I

410

Present File System
Objects to Application

b

No—»

Request Handled by
File System

|, 401

@

5/11

| e
saaup sip &

[. (XX] oe L] oo (XX L) . (XX]
(] [[] LI] e o 0 L] ° e [} [
o o . o o o o oo e o o o o
° ®e o o 3 e o o o o o e o
. o ° o e e o o o oe o o e o o o
\ 000 000 000 ¢ oo L] (] . . (] [

18} disk diives
M- a:

- B dr
i -4y subdirl
2-di2
--((] subdir2

.{3] subdir3

HilE)
&)

[Ganigniz of b 17
P s B

1%

doc206.txt

doc207.txt

1KB Text Document

s 1o %
37 U Bt s L
£ Y, e rld i

1KB Text Document

11/9

. e .

L S N e o oo
o o e o o

e o o e o o
o LN o o L]
eee o o oo

Q] E xploring -

o«

Bdisk drives [|[E) adams.txt 1KB Text Document '
&3 a: 1[Z] Andrews.txt 1KB Text Document
E-=b: —41(Z] Brewster.txt 1KB Text Document
B Cldlrl ‘| collins.txt 1KB Text Document
Lo QOsubdirl Culp.txt 1KB Text Document
El'-{jder Dean.txt 1KB Text Document
T ~Qsubdir? "|(Z) punkin.txt 1KB Text Document
i Dx-.-~-~C]suhd1r3 Earp.txt 1KB Text Document
El Clcustomer 3 Farrell.txt 1KB Text Document
..... Y name Foster.txt 1KB Text Document
..... G address : Gardner. txt 1KB Text Document
Poh D id '
@ Oorder

@ (inventory ¥|
3

2

Fig. 5C

11/L

8/11

File Object

NAME |, 601
TYPE |, 602
OWNERSHIP , 603
ACCESS RIGHTS |, 604
TEMPORAL CHARACTERISTICS 605
POPULARITY , 606
SIZE , 607
DATA OBJECT (OR POINTER) 608

600

Fig. 6

9/11

~ 705
Client address space Local
I Client
I
I r -
: | Kernel address spa§|
: ~1703 : 702 701 :
I ' IXFS ||
NFS + KOS | r—p Kernel
: I eme Module :
----- I l I
| I |
..... [S A
: Local host Daemon
l______584__ address
Network connection OS specific modules space

— 708

oooooo

l \.l7 ;
! IXFS
IXFS Daemon
Extension Module
Modules

706 =\
— 709

Remote
- Client

Database

10/11

Local host 805

Local
Client

/- 800
-9 Loop NFS connection

oS

Network NFS connection — 804
803 | 807
[| |
IXFS IXFS 3~ 808
Extension Daemon
Modules Module
806 — l
Remote ,’.- 309
. Client
L Database

o o v o - ..: .0. ..‘ :.o .o. o': :oo o.:
NI Tedete tte Wt roce, e
(XX] L[] L[] oee 'Y) P oo oo : ..0 :
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
] Il 1 I 1 1 1 1 1 1 1 1 1 1 1 1 /| 1 1] A | 1 Il 1

IXFS Magic String

IXFS

Extension

Module
ID

database
table ID

database
row ID

database
row ID
(i-node)

Unused

NFS FILE HANDLE

T1/11

