
(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199852757 B2
(10) Patent No. 739236

(54)

(51)7

(21)

(30)

(31)

(43)
(43)
(44)

(71)

(72)

(74)

(56)

Title
File system interface to a database

International Patent Classification(s)
G06F 017/30

Application No: 199852757 (22) Application Date: 1998.01.28

Priority Data

Number (32)
08/792139

Publication Date :
Publication Journal Date :
Accepted Journal Date :

Date (33) Country
1997.01.31 US

1998.08.06

1998.08.06

2001.10.04

Applicant(s)
Informix Software, Inc.

Inventor(s)
Igor V. Balabine; Ramiah Kandasamy; John A. Skier

Agent/Attorney
DAVIES COLLISON CAVE,1 Little Collins street,MELBOURNE VIC 3000

Related Art
EP 526034

Abstract
Information in a database is accessed with a

computer system by transforming a file system request
from an application into a database query and retrieving
information corresponding to the database query from the

5 database. The retrieved information is made available to
the application as a file system object, for example, as
a directory, a file, a link or a collection thereof.

AUSTRALIA
PATENTS ACT 1990

COMPLETE SPECIFICATION

NAME OF APPLICANT(S):

Informix Software, Inc.

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
1 Little Collins Street, Melbourne, 3000.

INVENTION TITLE:

File system interface to a database

The following statement is a full description of this invention, including the best method
of performing it known to me/us:-

• · ··
• · · «

/
I

- la -

Background
5 This invention relates to accessing information in

a database.
A database is a body of information that is

logically organized so that it can be retrieved, stored
and searched in a coherent manner by a "database engine"

10 -- a collection of software methods for retrieving or
manipulating data in the database. Databases generally
fall into three categories: relational databases,
object-oriented databases and object-relational
databases .

15 A relational database (RDB) is a collection of
fixed-field two-dimensional tables that can be related
(or "joined") to each other in virtually any manner a
database developer chooses. The structure of a ''
relational database can be modified by selectively

20 redefining the relationships between the tables. A
database engine may perform complex searches on a
relational database quickly and easily by using any of
various database query protocols such as the method
expressed by the Structured Query Language (SQL) or by

25 other mechanisms. The relationships between the tables
enable results of a search to be automatically cross­
referenced to corresponding information in other tables
in the database. As shown in Fig. 1, for example, a
relational database 100 includes a customer table 102

30 which is joined by a logical link 103 to an order table
104 which in turn is joined by a logical link 105 to an
inventory table 106. A user may query the database 100,
for example, for all order numbers higher than a
threshold value. Because the order table 104 is joined

35 with the customer table 102 and the inventory table 106,

2
the list of order numbers resulting from the query can be
retrieved and displayed along with the respective
customer names and inventory items that correspond to the
identified order numbers.

5 An object-oriented database (OODB) is a collection
of "objects" -- software elements that contain both data
and rules for manipulating that data. In contrast to a
relational database which can store only character-type
data, an OODB can store data of virtually any type (text,

10 3D graphic images, video clips, etc.) . An OODB stores
its constituent objects in a hierarchy of classes with
associated rules so that the OODB contains much of the
logic it needs to do useful work. A relational database
in contrast contains only data and must rely on external

15 application software to perform useful functions with the
data .

A object-relational database (ORDB) is a hybrid of
the other two types. Non-character data (e.g., an image
file) may be stored and retrieved in an ORDB as a binary

20 large object (BLOB) -- an undifferentiated mass of data.
Rules for manipulating the data contained within a BLOB
(e.g., a utility for viewing image files) may be stored
either within the database or external to it depending on
the particular ORDB implementation. The Informix®

25 Universal Server (IUS®) is an example of an object-
relational database management system (ORDBMS) that
internally stores the rules for manipulating BLOBs so
that they may be treated as "native" data types -- that
is, data types that the ORDBMS itself has the capability

30 to manipulate.
Information within a relational or an object-

relational database typically is accessed by SQL-
compliant computer programs that are written to
accomplish a specific function. For example, a user may

35 write a SQL program that retrieves a list of customer

3
names from a database which stores customer information.
Alternatively, many different application programs are
available that support database queries and which allow a
user to interactively formulate a database query by

5 specifying an arbitrary set of criteria (e.g., the names
of all out-of-state customers with overdue accounts).
This type of application program presents the user's
database query to the database engine which retrieves the
requested information from the database. Such

10 application programs are referred to as "database aware"
because they are have the ability to interact with and
manipulate databases.

Most application programs, in contrast, are
"database-unaware" meaning that they cannot access

15 information stored in a database. Rather, database-
unaware applications rely on file systems, such as the
Network File System (NFS) developed by Sun Microsystems,
Inc., for storing and retrieving information in discrete
files. A database-unaware program stores each separate

20 document in a separate disk file identified by the user
of the application. In Fig. 2, for example, a file
system 200 has two disk drives mounted: drive 202 which
is mapped to the label a: and drive 204 which is mapped
to the label b:. Each of the a: and b: drives includes

25 one or more directories (docs on the a: drive 202; dirl
and dir2 on the b: drive 204) which in turn may have
subdirectories (subdirl in dirl; subdir2 and subdir3 in
dir2) and so on with virtually any level of hierarchical
nesting being possible. Files 206-212 may exist at any

30 of the various directory or subdirectory levels within
the file system. The labels a: and b: represent the
"namespace" of the file system. That is, all filename
paths that begin with a: or b: are within*the file
system's namespace. As shown in Fig. 2, for example, a

35 document that lists names of out-of-state customers is

II

P:\ope r\$sb\52757-98res.doc-!2/06/01

-4-

stored in the file system's namespace at a location defined
by the filename path

a:\docs\cust_outstate. txt
which means that a file 211 named "cust_outstate" of the

5 type "txt" is stored in a directory named docs on a disk
drive 2 02 mapped to the label a:. Another document that
lists names of customers with overdue accounts is stored in
a separate disk file located at the filename path

a; \docs\cust_overdue. txt.
10 These two files are separate and distinct entities that are

not related or joined in the sense that tables in a database
are related.

The reference to any prior art in this specification is
not, and should not be taken as, an acknowledgment or any

15 form of suggestion that that prior art forms part of the
common general knowledge in Australia.

Summary of the Invention
The present invention provides a method, performed on a

20 computer system, of accessing information in a database, the
method comprising:

making a database object available to an application as
a file system object;

receiving from the application a file system request
25 corresponding to the available file system object; and

transforming the file system request from the
application into a database operation.

The present
30

invention also provides a computer-based
method of accessing information in a database, the method
comprising :

retrieving information from the database; and
presenting the retrieved information to an application
file system object.

P:\operissb\52757-98res.doc-l2/06/0i

-4A-

The present invention also provides a computer-based
data repository management system comprising:

a database of information;
a file system-based application program for

5 manipulating data; and
a file system interface to the database which provides

the file system-based application with access to information
in the database.

The present invention also provides computer software,
10 residing on a computer readable medium, for a data

repository management system comprising a file system-based
application and a database, the computer program comprising
instructions to cause a computer system to perform the
following operations:

15 receive a file system request issued by the file
system-based application;

convert the file system request into a database
operation;

retrieve information from the database by performing
20 the database operation on the database;

transform the retrieved information into one or more
file system objects according to predetermined criteria; and

present the one or more file system objects to the file
system-based application.

25 The present invention also provides a method, performed
on a computer system, of accessing information in a
database, the method comprising:

making a database object available as a file system
object to a database-unaware application;

30 receiving from the database-unaware application a file
system request corresponding to the available file system
object;

transforming the file system request from the database-
unaware application into a database operation;

performing the database operation on the database using
a database engine;

P.Aoper\ssb\52757-98res.doc-12/06/01

-4B-

retrieving information from the database in response to
the database operation; and

returning the information associated with the database
object to the database-unaware application as a file system

5 object.
The present invention also provides a computer-based

method of accessing information in a database, the method
comprising :

encoding a file handle with information that specifies
10 a database object in a database;

transmitting the encoded file handle in response to a
file system request issued by an application; and

decoding the received file handle to identify the
database object associated with the file system request.

15 In one embodiment of the invention, information in a
database is accessed with a computer system by making one or
more database objects (e.g., a table or a row) available as
one or more file system objects (e.g., directories, files or
links) to an application, for example, a database-unaware

20 application. The database may be relational, object-
relational or object-oriented. If multiple file system
objects are made available, collectively they may represent
a hierarchical file system. A file system request issued by
the application that corresponds to the file system object

25 is transformed into a database operation, for example, an
SQL query, which is performed on the database with a
database engine .

Information associated with database object which is
retrieved as a result of the database operation may be

30 formatted into one or more file system objects and returned
to the application. The particular formatting of the
retrieved information may be defined in an extension module,
which also may include information that defines the specific

5
request should be transformed into a database query. The
database operations, including formatting of a database
query, retrieving information and formatting it into file
system objects, are performed transparently to the

5 application.
Upon receiving the file system objects, the

application may display them on a display screen of a
computer, for example, as graphical representations of
file system objects. The database object that is made

10 available may be presented as multiple file system
objects in formats understandable by different
applications. Conversely, a single file system object
may correspond to multiply database objects.

In another embodiment, a computer-based data
15 repository management system includes a database of

information, a file system-based application program for
manipulating data, and a file system interface to the
database which provides the file system-based
application, which otherwise may be database-unaware,

20 with access to information in the database. The data
repository management system may further include a
database management system which manages information in
the database either in addition to, or instead of, the
file system-based application.

25 The data repository management system may include
a module for differentiating file system requests
directed to the file system from file system requests
directed to the file system interface. The file system
interface may include one or more extension modules

30 containing one or more file objects, each file object
including information for converting database objects
into file system objects.

In another embodiment, information in a database is
accessed with a computer system by encoding a file handle

35 with information that specifies a database object in a

6

database. In response to a file system request issued by
an application, the encoded file handle is transmitted
and then decoded to identify the database object
associated with the file system request. The encoding

5 may be based on the NFS protocol. The encoded
information may include information that corresponds to
the issued file system request and which identifies an
extension module, a database table and row, metadata, a
pointer to a database object, or a combination thereof.

10 Advantages of the file system interface described
here may include one or more of the following.
Applications that rely on a file system as a data
repository, or which are otherwise database-unaware
(i.e., unable to access data in a database), are enabled

15 to access information in a database in a transparent
manner. These database-unaware applications can share
data seamlessly both with database-aware applications and
with other database-unaware applications. Under IXFS, a
database may appear to an application as just another

20 local or remote file system that is no different in form
or character from the other file systems available to the
application. No change to the application's program
code, the database or the database engine is required.
As a result, users of database-unaware applications are

25 provided with database functionality without having to
invest the time and cost typically associated with
database-aware tools.

A system administrator may use the IXFS system to
combine disparate data storage technologies (e.g., file-

30 based systems with database systems) in creating a
unified data repository strategy that spans an
enterprise. The enterprise's investment in legacy data
repositories is maintained because data present in the
repositories may easily be transferred to a database as

35 the enterprise moves to the relational or object-

7

relational model of data storage. Moreover, the
enterprise's investment in database-unaware applications
is enhanced because IXFS enables them to be used to
manage data stored in a database.

5 The ability for a database-unaware application to
access information in a database combines the simplicity
of the file system paradigm with the sophistication and
effectiveness of database manipulation techniques. This
capability is particularly useful for Internet World Wide

10 Web applications in which a user seeks to access a large
store of data using, for example, the hypertext transfer
protocol (HTTP). In contrast to a common gateway
interface (CGI) script, which spawns an external
application to retrieve data from a database in response

15 to a URL (Uniform Resource Locator) encoded request, the
IXFS system converts such a request into a form that may
be executed by a database engine directly, quickly and
transparently.

The ability to represent an arbitrary collection
20 of tables in a database as various file system objects

provides a software developer with a rich and flexible
set of tools. The extensible nature of IXFS allows it to
be tailored to virtually any type of application so that
the database will appear as a collection of file system

25 objects that are consistent with the application's other
file system objects.

Other advantages and features will become apparent from
the following description, by way of example only, with
reference to the drawings.

30 Brief Description of the Drawings
Fig. 1 is a diagram of a relational database.
Fig. 2 is a diagram of a file system.
Fig. 3 is a diagram of a system for accessing data

in file system and in a database.

8

Fig. 4 is a flowchart of accessing data in a
database using the system of Fig. 3.

Figs. 5A, 5B and 5C are example screen displays
from an application accessing information in a file

5 system and in a database.
Fig. 6 is a data structure diagram for a file

obj ect.
Fig. 7 is a diagram of a kernel level file system

architecture .
io Fig. 8 is a diagram of a network file system

architecture .
Fig. 9 is a data diagram of a NFS file handle as

used in the network file system architecture of Fig. 8.

Detailed Description
15 The use of a database to store persistent data

provides several advantages that are not available when a
file system is used as a data repository. The structure
of a database, and the internal relationships between
tables within the database, enable fast and arbitrarily

20 complex queries for information to be performed on the
database. A file system in contrast has no standard data
query mechanism for searching for specific data items
within the files managed by the file system. Other
features provided by database systems for which

25 conventional file systems have no analog include well-
defined management policies, auditing capabilities,
transparent data replication, logging facilities, and
consistent backup and restore procedures.

Using a database system as a data repository
30 requires relatively complex and expensive tools, such as

special purpose database-aware applications, and often an
increased level of sophistication and training by the
end-user. File systems in contrast generally are simple
to use, cheap and pervasive. Virtually every computer

9

operating system provides a native file system that may
be used by applications for storing persistent data.
This among other reasons is why approximately 85-90% of
all persistent data is stored in file systems by

5 database-unaware applications.
The file system interface described here, dubbed

the Informix® File System (IXFS) interface, provides
computer system users with the best of both worlds by
enabling database-unaware applications to access (i.e.,

io read and write) information in a database in a manner
that is entirely transparent to the application. No
changes need to be made to the application or to the
database. IXFS presents the contents of a database to
the application as "file system objects" such as

15 directories, sub-directories, files or links. These file
system objects appear to the application to be no
different in form or character from the file system
objects that the application handles in the ordinary
course of storing and retrieving data. IXFS enables a

20 user of a database-unaware application to access the
contents of a database by performing the desired
operations on the file system objects that represent the
database's contents.

As shown in Fig. 3, IXFS 300 sits between a
25 database-unaware application. 302 and a database 304 and

monitors all requests issued to the file system 306 by
the application 302. When the application seeks to
access information in the database, a component of the
IXFS system translates the file system request into a

30 database query format that is understandable by the
database. Similarly, information received from the
database (in response to a file system read request by
the application, for example) is represented to the
application as one or more file system objects.

10

A high-level description of the operation of IXFS
and its interaction with the computer's operating system
is provided with reference to the flowchart of Fig. 4.
When a file system request (e.g. a data read or write) is

5 issued by an application program, the operating system
determines whether it corresponds to information
contained in a file namespace managed by IXFS (step 400).
The operating system is able to differentiate requests
for data stored in other file systems from requests for

io data in IXFS's file namespace because the database has
been mapped to a namespace (e.g., x:) that is mutually
exclusive with the file system's namespace (e.g., a: and
b:). In effect, the database appears to the operating
system and to the application as a disk drive mapped to

15 the label x:.
If the file system request is not directed towards

information managed by IXFS, the request is handled by
other file systems (step 401). If, on the other hand,
the file system request corresponds to information in

20 IXFS's file namespace, the operating system passes the
request onto IXFS which in turn furnishes the request to
an extensible component of IXFS, i.e., an "extension
module," for translation into a form understandable by
the database -- an SQL query, for example -- (step 402).

25 After the request has translated into a database query,
the IXFS extension module presents the query to the
database engine which uses it to access the database
either by modifying the desired information (for a write
request) or by retrieving the desired information (for a

30 read request) and returning it to IXFS (step 404) . If
information has been retrieved from the database (step
406), the IXFS extension module formats it according to
predefined criteria into file system obje’cts (step 408)
which are presented to the application (step 410). Upon

35 receiving the file system objects from IXFS, the

11

application treats them as if they came from a file
system. In fact, the application is unaware that the
file system objects came from a source other than a file
system. In this manner, all requests for data in the

5 file system's namespace are handled by the file system
while all requests for data in the file namespace
assigned to the database are handled by IXFS.

An example of how IXFS may be used to represent a
database as a file system to an application is provided

10 with reference to Figs. 5A-5C. Assume that a user of a
window-based computer system uses a file system
navigation tool to examine the information that is stored
both in the file system represented by Fig. 2 and in the
database represented by Fig. 1. Assume further that the

15 file system's namespace is represented by the labels a:
and b: and that IXFS is mapped to drive x: on the client
machine. As shown in Fig. 5A, the navigation tool window
500 initially displays the file system's two drives, a:
and b: , and the drive x: corresponding to the database,

20 in a collapsed state. At this point the user instructs
the navigation tool to expand drive b:, thereby making
its hierarchy of directories and subdirectories visible
to the user, and opens subdirl which contains two files,
doc206.txt and doc207.txt, as shown in Fig. 5B. The

25 file information displayed in Fig. 5B is retrieved from
the a: and b: drives using standard file system
operations .

Next, the user instructs the navigation tool to
expand drive x:, which is mapped to the database via

30 IXFS, so that the contents of drive x: may be examined.
Because the corresponding file system request issued by
the navigation tool points to drive x: -- the file
namespace assigned to the database -- IXFG handles the
file system request by passing it to an extension module

35 which formulates a database query to retrieve the

12

requested information from the database. After the
information has been retrieved, it is formatted into file

• ·

system objects with a method invoked by IXFS and returned
to the navigation tool. The information retrieved from

5 the database appears to the navigation tool, and to the
user of the navigation tool, to be no different in
character from other file system objects that were
retrieved with the file system. As shown in Fig. 5C,
tables 102, 104 and 106 in the database 100 of Fig. 1 are

io represented as three corresponding directories -­
customer, order and inventory. Similarly, three rows
within the customer table 102 -- customer_name,
customer_addr and customer_id -- are represented as three
corresponding subdirectories within the customer

is directory -- name, address and id. Entries in the name
subdirectory are represented as text files that are named
for their respective contents -- Adams, Andrews,
Brewster, etc.

A user may open any of the text files in the
20 x:\customer\name directory (for example, with a standard

text editor application) modify its contents, and perform
a standard "file save" operation. In response, IXFS
handles the file save request because it is directed to
the file namespace assigned to the database and

25 formulates a corresponding database operation to modify
the contents of the database as appropriate.

IXFS allows all file system operations to be
performed on the database. For example, a user could
employ appropriate features of the navigation tool to

30 change the name of the x:[customer directory to something
else such as x:\cust. Similarly, a user could create a
new file system object such as a subdirectory or a new
file underneath the x:[customer director^. Moreover,
access to specified portions of the database could be

35 limited for certain users in the same manner that file

13

system objects in a file system may be limited (read
only, hidden, etc.).

The specific types, formats and arrangement of
file system objects that IXFS will return in response to

5 a file system request are defined in a corresponding
extension module -- a software component of IXFS that may
be tailored as desired to encapsulate an arbitrary
collection of database objects (e.g., tables) and
represent them as a collection of file system objects.

10 In one implementation, IXFS includes a Basic Extension
Module (BEM) that provides a one-to-one mapping of a file
in a file system into a collection of database objects.
Among other uses, the BEM allows users to quickly and
transparently move their data from a file system into the

15 IUS® database management system and run database queries
against it.

The BEM emulates a file system by encapsulating a
collection of database tables as specified by a software
developer implementing the IXFS system, and presenting

20 them to an application as file system objects. Each
table specified by the BEM corresponds to a directory and
each row in the table corresponds to a file system object
(e.g., subdirectory, file or link) present within the
directory.

25 For each database table that it encapsulates, the
BEM includes a corresponding "file object" 600 having a
data structure as shown in Fig. 6. The file system
object 600 corresponds to, and provides an intuitive
representation of, a directory, a file or a link in a

30 file system. Each file object 600 includes the file
object's name 601 (an identifier of a file system entity
that is unique within a given directory), type 602
(directory, file or link) , ownership 603 *(an identifier
of the file object's owner), access rights 604 (access

35 rights to the object for its owner, community and

14

• · · «
• · · ·

others), temporal characteristics 605 (timestamp of last
read, write and look-up operations), popularity 606
(number of links pointing to the object) and size 607
(object's size in bytes). The file object 600 also

5 contains its corresponding data object 608 or a pointer
to the data object.

Portions of a database are mapped to a file system
representation by selecting database tables and rows as
desired, and by designating the type of file system

io object to which each selected table and row corresponds.
For example, the database of Fig. 1 was mapped into the
file system hierarchy shown in Fig. 5C by specifying that
each of the customer, order and inventory tables occupy a
separate file object in the BEM of the type "directory."

15 Within the file object for the customer table, each of
the name, address and id rows have been designated as the
type "directory," thereby making them appear as
subdirectories to the hierarchically dominant customer
directory. Within the "name" row in the "customer"

20 table, the individual customer name entries have been
designated in the file object as the type "file" making
them appear as individual text files as shown in Fig. 5C.

Several different IXFS extension modules may be
resident and operative at the same time to provide access

25 to two or more different databases simultaneously or to
access different information within the same database or
to provide a different interpretation of the same
database object. A single extension module is capable of
presenting the same information in multiple different

30 formats, for example, as different types of file system
objects. In Fig. 5C, for example, the table of
customers, including their names, addresses and IDs,
could be presented as a single file systefn object --
e.g., a Microsoft Excel file named "customer.xls"

35 containing all of the customers' identifying information

15

-- which could be opened by an appropriate spreadsheet
program that understands the "xls" format. The extension
module could be configured so that the customer.xls file
object is presented to the application either instead of,

5 or in addition to, the x:\customer directory, its
component subdirectories (name, address, id) and the
files contained therein (Adams.txt, Andrews.txt,
Brewster.txt, etc.).

As another example, an extension module could be
10 configured to present the text files in x: \customer\nane

in several different formats for use by alternative
application programs. In the database of Fig. 1, for
example, multiple different file formats could be
provided for each customer name by presenting multiple

15 file system objects for a single database object. The
database table entry for the customer Adams, could be
mapped, for example, to three separate file system
objects having different formats: "Adams.doc" for use
with Microsoft Word, "Adams.wpd" for use with Corel

20 Wordperfect, and "Adams.fm" for use with Adobe
Framemaker. A user who edited the information in the
"Adams.doc" object would observe that the changes
automatically were reflected in the "Adams.wpd" and
"Adams.fm" objects. Because all three of the file system

25 objects are mapped to the same database object (namely,
the database entry for customer Adams), the three
alternative file system objects may be used
interchangeably to view or edit the information for
customer Adams without concern that divergent versions of

30 Adams' information will result.
By employing the appropriate extension modules,

whether obtained from a software library or generated
according to custom specifications, software developers
may enable database-unaware applications (e.g., Microsoft

35 Word, Microsoft Excel, Lotus 1-2-3) to retrieve

16

information stored in a database or to store new or
modified information into the database. At the same
time, database-aware applications may continue to access
all of the information stored within the database,

5 including information that was stored by database-unaware
applications in the first instance. Together these
capabilities enable a single enterprise-wide data
repository to be maintained with various different
applications, both database-aware and database-unaware,

10 being able to access the information in the data
repository. Moreover, IXFS facilitates the migration of
data between different applications -- for example,
between a database-aware application and a database-
unaware application or between two disparate database-

15 unaware applications.
The IXFS system may be implemented by three

different architectures: an object library architecture;
a kernel level mountable file system architecture; or a
network file system architecture.

20 In the first approach, the object library
architecture, the ability to access information in a
database is achieved through a set of software objects
made available to database-unaware applications through a
library -- for example, a dynamic linked library (DLL) on

25 a Microsoft Windows®-based platform. Using a consistent
set of file system access methods that operate oh the
database, these software objects provide a functionality
analogous to that provided by the common file access
Application Program Interfaces (APIs) defined by the ANSI

30 C or POSIX standards. Use of the object library
architecture would require, however, any application to
be used with the IXFS system first to be relinked with a
new library of IXFS-related objects. The*other two
architectures, in contrast, allow existing applications

17

to access database information without any changes to or
relinking of the applications.

The kernel level mountable file system
architecture, illustrated in Fig. 7, intercepts file

5 system requests at the operating system level and passes
them on to the IXFS system for processing. In the kernel
architecture, the kernel address space 700 is modified to
include an IXFS kernel module 701 which is specific to
the operating system being used (e.g., UNIX, Windows®

io NT). File system requests from application programs are
received by the OS kernel 702 either from a local client
705 (an application residing in the address space of the
local host 704) or from a remote client 706 (an
application residing in the address space of a remote

15 system) via NFS 703.
File system requests directed towards the

namespace of the mounted file system devices (e.g., disk
drives) are handled by NFS 703 in the conventional
manner. File system requests that are directed to the

20 namespace occupied by the database (as determined by the
IXFS kernel module 701) are passed onto the IXFS daemon
708 (or the IXFS "service" in the case of Windows NT) for
processing. The IXFS daemon 708 performs several
functions including managing connections to the database

25 709 (or databases) to be accessed and maintaining a list
of the filenames being used to access database objects.
Upon receiving a request from the IXFS kernel module 701
to access the database 709, the IXFS daemon initializes a
filename look-up procedure to identify the appropriate

30 IXFS extension module 707 to handle the request. The
filename specified by the request is used as an index
into a look-up table of corresponding IXFS extension
modules by comparing the specified filename to a list of
names of file objects contained in each extension module.

35 After determining which IXFS extension module includes a

18

file object whose name matches the specified filename,
the IXFS daemon 708 transfers the request to that
extension module 707. The extension module translates
the request into a' database operation which is performed

5 on the database 709. Any information generated in
response to the database query operation is formatted by
a method invoked by the IXFS extension module 707 into
file system objects according to the file object types
defined in the extension module. The formatted file

io system objects are then presented to the requesting
application.

The network architecture, illustrated in Fig. 8,
intercepts file system requests at the network level and
passes them on to the IXFS system for processing. In the

15 network architecture, the OS kernel address space need
not be modified. Rather, all file system commands
generated by a local client 805 or a remote client 806
are passed, via a loop NFS connection 810 or a network
NFS connection 803, to a NFS front-end daemon (or

20 service) 804, which resides outside of the OS kernel.
The NFS front-end daemon 804 is implemented as a
component of the IXFS daemon.

Upon receiving a file system request, the NFS
front-end daemon 804 passes it on to the IXFS daemon 806

25 and subsequently to the appropriate IXFS extension module
807, which provide the same functionality as the IXFS
daemon and IXFS extension modules in the kernel level
architecture described above.

The IXFS system can be adapted to provide an
30 interface to any type of database, including relational,

object-relational and object-oriented databases, and to
understand any other type of database query protocol in
addition to SQL. NFS was chosen as the rfetwork protocol
to be used in the IXFS implementation of Fig. 8 because

35 NFS is a widely used standard for sharing files across

19

different platforms. However, any other network protocol
that provides access to file systems over a network -­
for example, Microsoft's Common Internet File System
(CIFS) -- could be used in implementing the IXFS network

5 architecture.
The NFS protocol (version 2) allows clients and

servers to exchange file information by using a "file
handle" -- a 32-byte value -- to identify a desired file.
When NFS is used as the network file system protocol in

io the network architecture, IXFS can make additional use of
the NFS file handle to achieve greater speed and
efficiency in performing file system requests on the
database. To do so, IXFS encodes the NFS file handle
with information that is specific to its operations as

15 shown in Fig. 9.
Bytes 1-8 of the file handle hold the IXFS "magic

string" -- an entity that allows IXFS to distinguish IXFS
file handles (i.e., file system requests directed to the
file namespace assigned to the database) from NFS file

20 handles (i.e., file system requests directed to the file
namespace assigned to the file system). The magic string
is an eight byte string in which each byte is assigned
the value FF hexadecimal to identify a file handle as an
IXFS file handle. Bytes 9 and 10 identify the particular

25 IXFS extension module whose job it is to manage the file
handle under consideration. Encoding an IXFS file handle
in this manner obviates the need to maintain an empty
("shadow") directory tree in the file system, which
otherwise would be needed to generate standard NFS file

30 handles that correspond to information managed by the
IXFS system. Similarly, this encoding scheme makes it
unnecessary to maintain a distinct mapping entity (e.g.,
look-up table) between NFS file handles and IXFS file
handles .

20

The remaining bytes of the NFS file handle in Fig.
9 include information that is specific to the extension
module identified by the extension module identified by
bytes 9 and 10 of the file handle. Bytes 11-14 and 15-18

5 respectively identify the database table and row that
correspond to the file handle. Bytes 19-22 identify the
i-node (information node) table and row which correspond
to metadata descriptive of file attributes, and a pointer
to the data in the database, for the file handle under

io consideration. Bytes 19-32 presently are unused but they
are available for use by any newly developed extension
modules. As a result of the encoding represented in Fig.
9, the efficiency with which elements may be located in
the database is enhanced and the complexity of designing

15 new IXFS extension modules is reduced.
The kernel level and network architectures provide

different advantages relative to one another. The kernel
level approach is the more efficient of the two in that
it provides a shorter data path between the issuance of

20 the file system request to the return of file system
objects from IXFS. On the other hand, the network-based
architecture significantly minimizes the effort required
to port the IXFS between different platforms because
implementing the network architecture does not require a

25 modification to the operating system kernel. In both
cases, however, the IXFS system provides a database-
unaware application with transparent access to data in a
database, while maintaining the inherent advantages of
using a database for persistent data storage.

30 The methods and mechanisms described here are not
limited to any particular hardware or software
configuration, but rather they may find applicability in
any computing or processing environment i*n which database
manipulation may be performed.

21
The techniques described here may be implemented

in hardware or software, or a combination of the two.
Preferably, the techniques are implemented in computer
programs executing on programmable computers that each

5 include a processor, a storage medium readable by the
processor (including volatile and non-volatile memory
and/or storage elements), and suitable input and output
devices. Program code is applied to data entered using
the input device to perform the functions described and

10 to generate output information. The output information
is applied to one or more output devices.

Each program is preferably implemented in a high
level procedural or object oriented programming language
to communicate with a computer system. However, the

15 programs can be implemented in assembly or machine
language, if desired. In any case, the language may be a
compiled or interpreted language.

Each such computer program is preferably stored on
a storage medium or device (e.g., CD-ROM, hard disk or

20 magnetic diskette) that is readable by a general or
special purpose programmable computer for configuring and
operating the computer when the storage medium or device
is read by the computer to perform the procedures
described in this document. The system may also be

25 considered to be implemented as a computer-readable
storage medium, configured with a computer program, where
the storage medium so configured causes a computer to
operate in a specific and predefined manner.

Other embodiments are within the scope of the
30 following claims.

Throughout this specification and the claims which,
follow, unless the context requires otherwise, the word,
"comprise", and variations such as "comprises" and.
"comprising", will be understood to imply the inclusion of a
stated integer or step or group of integers or steps but not

integer or step or group of

22

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1
2
3
4
5
6
7
8
9

10

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

1. A method, performed on a computer system, of
accessing information in a database, the method
comprising :

making a database object available to an
application as a file system object;

receiving from the application a file system
request corresponding to the available file system
object; and

transforming the file system request from the
application into a database operation.

2. The method of claim 1 further comprising
performing the database operation on the database using a
database engine.

3. The method of claim 1 further comprising
retrieving information from the database in response to
the database operation.

4. The method of claim 1 further comprising
returning the information associated with the database
object to the application as a file system object.

5. The method of claim 4 in which the returning
comprises arranging the retrieved information in a format
defined in an extension module.

6. The method of claim 5 further comprising
displaying the formatted information on a display screen
of a computer.

»

23

1 7. The method of claim 1 further comprising
2 displaying information associated with the database
3 object on a display screen of a computer.

1 8. The method of claim 7 in which the information
2 associated with the database object is displayed as a
3 graphical representation of a file system object.

1 9. The method of claim 1 in which the application
2 that issued the file system request comprises a database-
3 unaware application.

3 into a database query.

1 10 . The method of claim 1 in which the database
2 comprises a :relational database.

1 11 . The method of claim 1 in which the database
2 comprises an object-relational database.

1 12 . The method of claim 1 in which the database
2 comprises an object-oriented database.

1 13 . The method of claim 1 in which the
2 transforming comprises converting the file system request

14. The method of claim 13 in which the database
query comprises an SQL-compliant query.

1 15. The method of claim 1 in which the
2 transforming comprises converting the file system request
3 into a database query based on information contained
4 within an extension module.

24

1
2
3

16. The method of claim 1 further comprising
determining whether the received file system request
corresponds to information managed by a file system.

1 17. The method of claim 16 further comprising
2 conveying the file system request to the file system if
3 the file system request is determined to correspond to
4 information managed by the file system.

1 18. The method of claim 16 in which the
2 determining comprises identifying a namespace to which
3 the file system request is directed.

1 19. The method of claim 16 in which the
2 determining is performed by a method executing in a
3 kernel address space of an operating system associated
4 with the computer system.

1 20. The method of claim 16 in which the
2 determining is performed by a method executing external
3 to an operating system associated with the computer
4 system.

1 21. The method of claim 1 in which making the
2 database object available as a file system object is
3 performed transparently to the application.

1 22. The method of claim 1 in which the database
2 object comprises a table.

1 23. The method of claim 1 in which the file
2 system object comprises a directory, a file or a link.

25

1 24. The method of claim 1 in which making the
2 database object available as a file system object
3 comprises presenting the database object as plural file
4 system objects in formats understandable by different
5 applications.

1 25. A computer-based method of accessing
2 information in a database, the method comprising:
3 retrieving information from the database; and
4 presenting the retrieved information to an
5 application as a file system object.

1 26. The method of claim 25 further comprising
2 identifying the information to be retrieved from the
3 database by specifying a database object from among
4 database objects in the database.

1 27. The method of claim 26 in which the
2 identifying comprises recording in an extension module
3 information descriptive of a predetermined set of
4 database objects.

1 28. The method of claim 27 in which the
2 retrieving comprises selectively extracting information
3 from the database based on information contained in the
4 extension module.

1 29. The method of claim 27 in which the
2 presenting comprises formatting the selectively extracted
3 information into file system objects based on information
4 contained in the extension module.

*

26

1 The method of claim 25 in which a collection
a hierarchical file
links or a combination

2
3
4

30 .
of file system objects represents
system having directories, files,
thereof .

1

··

··
• · · · ·

·· ·
• · ·
• · ·

···

repository management31. A computer-based data
system comprising:

a database of information;
a file system-based application program

manipulating data; and
a file system interface to the database

provides the file system-based application with
information in the database.

system-based

for

which

32. The system of claim 31 in which the
application is database-unaware .

33 .
comprises an

The system of claim 32 in which
object-relational database.

the

access to

file

database

34 .
comprises a

The system of claim 32 in which
relational database .

the database

35 .
comprises an

The system of claim 32 in which
object-oriented database.

the database

2
3
4
5
6
7
8

1
2

1
2

1
2

1
2

···♦
• · · · 36 . The system of

database management system
the database .

claim 33 further comprising a
for managing information in

1
2
3

1 37. The system of claim 31 further comprising a
database engine for performing database operations on the
database, the file system interface receiving file system
requests and transforming the received requests into a
form understandable by the database engine.

2
3
4
5

.«■ Aj

- 27 -

1 38. The system of claim 31 further comprising a
2 module for differentiating file system requests directed
3 to the file system from file system requests directed to
4 the file system interface.

1 39. The system of claim 31 in which the file
2 system interface further comprises an extension module
3 that includes a file object.

1 40. The system of claim 39 in which the file
2 object comprises information for converting database
3 objects into file system objects.

1 41. The system of claim 31 in which the file
2 system interface comprises a plurality of extension
3 modules each of which includes information for converting
4 a different set of database objects into file system
5 objects.

1 42. The system of claim 31 in which the file
2 system interface comprises a plurality of extension
3 modules each of which includes information for converting
4 a single database object into multiple file system
5 objects.

1

28

1 43. Computer software, residing on a computer
2 readable medium, for a data repository management system
3 comprising a file system-based application and a
4 database, the computer program comprising instructions to
5 cause a computer system to perform the following
6 operations:
7 receive a file system request issued by the file
8 system-based application;
9 convert the file system request into a database

10 operation;
11 retrieve information from the database by
12 performing the database operation on the database;
13 transform the retrieved information into one or
14 more file system objects according to predetermined
15 criteria; and
16 present the one or more file system objects to the
17 file system-based application.

···· • · ·

• · ··
• · · ·

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

44. A method, performed on a computer system, of
accessing information in a database, the method
comprising :

making a database object available as a file
system object to a database-unaware application;

receiving from the database-unaware application a
file system request corresponding to the available file
system object;

transforming the file system request from the
database-unaware application into a database operation;

performing the database operation on the database
using a database engine;

retrieving information from the database in
response to the database operation; and

returning the information associated with the
database object to the database-unaware application as a
file system object.

• · ·• ·

4

29

1 45. A computer-based method of accessing
2 information in a database, the method comprising:
3 encoding a file handle with information that
4 specifies a database object in a database;
5 transmitting the encoded file handle in response
6 to a file system request issued by an application; and
7 decoding the received file handle to identify the
8 database object associated with the file system request.

1
2

46
is based c

. The
>n the

method of claim
NFS protocol.

45 in which the encoding

1 47 . The method of claim 45 in which the encoding
2 comprises including information in the file handle that
3 identifies an extension module that corresponds to the
4 issued file system request.

1 48. The method of claim 45 in which the encoding
2 comprises including information in the file handle that
3 identifies a database table and row that correspond to
4 the issued file system request.

1 49. The method of claim 45 in which the encoding
2 comprises including information in the file handle that
3 identifies metadata that corresponds to the issued file
4 system request.

1 50. The method of claim 45 in which the encoding
2 comprises including information in the file handle that
3 points to the database object that corresponds to the
4 issued file system request.

P:\opertssb\52757-98res.doc· 13/06/0 I

-30-

51. A method of accessing information in a database
substantially as hereinbefore described with reference to
the drawings .

5 52. A repository management system substantially as
hereinbefore described with reference to the drawings.

53. Computer software for a data repository management
system substantially as hereinbefore described with

10 reference to the drawings.

54 . A method of accessing information in a database
substantially as hereinbefore described with reference to
the drawings .

15

DATED this 13th day of June, 2001

Informix Software, Inc.

20 by DAVIES COLLISON CAVE
Patent Attorneys for the Applicant

V '

1/11

RELATIONAL DATABASE
100

Fig. 1

FILE SYSTEM

a: drive b: drive
dir1

dir2
subdir 2

✓ 208 209

200
2/11

Fig. 2

Fig. 3

4/11

400

402

404

410 Present File System
Objects to Application

Fig. 4

VS -6η
5/

11

• · • ·
• ·

··· · · · ··· • · ·
• · • · · ·

• · ·
• · «
·· • · ·

Exploring -

WBWBM ».j.m :· w

disk drives
aa a:
S-q b:

έΐ Qdirl
L···{□! subdirl

B C_ldir2
j-ίΊ subdir2
■ Q] subdir3

s ax:

5 doc206.txt
1) (doc207.txt

11 Ij/jj-i. !-l^T"?7|li'.!,T·

1KB Text Document
1KB Text Document

6/11

Fig. 5B

21

• ·
• · · ·

• ·
• · ·

• · ·
• · · ·

• · ·
• · · · · · ·
• · · · ·
• · · ·· ·
• · · t ·

• · · · · ·

•· · · ··· · · « ··
• · · · ·
• · · · · · ·

• · · · · • · · · · ·· ··· · ·· ·

«

All

J

■i
f

Fig. 5C

jjjdisk drives
SO a:
So b:

| SOdirl
Hdsubdirl

ί SOdir2
\ Osubdir2
; Osubdir3

Sox:
. S O customer

[■ €s name
hO address
• Qid

φ Qorder
0-Q inventory

<1_____________J ±

Adams . txt 1KB Text Document
Andrews . txt 1KB Text Document
Brewster. txt 1KB Text Document
Collins . txt 1KB Text Document
Culp. txt 1KB Text Document
Dean. txt 1KB Text Document
Dunkin.txt 1KB Text Document
Earp. txt 1KB Text Document
Farrell. txt 1KB Text Document
Foster. txt 1KB Text Document
Gardner. txt 1KB Text Document

7/11

8/11

File Object 600

602

601

603

604

605

606

607

608

Fig.6

9/11

Fig. 7

• ·
• · ·

• ·

• ·

• ·

* · ·

• · ·• ·

• · · ·

• · ·
• · ·

• ·

10/11

Fig. 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 11 I

15 16 17 18
ill l

19 20 21 22
1 11 I

23 24 25 26 27 28 29 30 31 32
I 1 1 11 1 1 1 1 I

IXFS Magic String
IXFS

Extension
Module

ID

database
table ID

database
row ID

database
row ID

(i-node)
Unused

ττ
/τ

τ

NFS FILE HANDLE

Fig. 9

i

