04/025471 A2 I 0K OO0 RO A

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
25 March 2004 (25.03.2004)

AT O Y0 RO R

(10) International Publication Number

WO 2004/025471 A2

(51) International Patent Classification’: GO6F 11/08
(21) International Application Number:
PCT/EP2003/010080

(22) International Filing Date: 13 August 2003 (13.08.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
10/241,213 11 September 2002 (11.09.2002) US
(71) Applicant: INTERNATIONAL BUSINESS MA-
CHINES CORPORATION [US/US]; New Orchard

Road, Armonk, NY 10504 (US).

(71) Applicant (for MC only): COMPAGNIE IBM FRANCE
[FR/FR]; Tour Descartes-La Défense 5, 2, Avenue Gam-
betta, F-92400 Courbevoie (FR).

(72) Inventors: KELLER, Alexander; 301 W. 22nd Street,
Apt. 48, New York, NY 10011 (US). KAR, Gautam; 211
Sara Court, Yorktown Heights, NY 10598 (US).

(74) Agent: DE PENA, Alain; Compagnie IBM France, Direc-
tion de la Propriété Intellectuelle, F-06610 La Gaude (FR).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND APPARATUS FOR ROOT CAUSE IDENTIFICATION AND PROBLEM DETERMINATION IN

DISTRIBUTED SYSTEMS

WEB APPLICATION SERVER

DATABASE SERVER

CLIENT SYSTEM NETWORK ACCESS 120 125 DATAB
105 ASE
123 L7 130

[n) o e

.

] l=—
\\ / / 35

100
ADMINISTRATOR

(57) Abstract: A technique for determining a root cause of a condition (e.g., service outage) of at least one subject component in
a computing environment comprises the following steps/operations. First, one or more components in the computing environment
upon which the at least one subject component depends (e.g., antecedents) are identified. Identification comprises traversing at least
a portion of a model representative of an existence of one or more relationships associated with at least a portion of components
of the computing environment and which is capable of accounting for a full lifecycle (e.g., including deployment, installation and
runtime) associated with at least one component of the computing environment. Then, one or more procedures are performed in
accordance with the one or more identified components to determine a condition status associated with each of the one or more
identified components. By way of example, the inventive techniques may be applied to a distributed computing environment. The
computing environment may also be an autonomic computing environment.

10

15

20

25

WO 2004/025471 PCT/EP2003/010080

METHODS AND APPARATUS FOR ROOT CAUSE IDENTIFICATION AND
PROBLEM DETERMINATION IN DISTRIBUTED SYSTEMS

Cross Reference to Related Applications

The present application is related to the
concurrently-filed U.S. patent applications respectively
identified as: attorney docket no. YOR920020097US1 entitled:
“Methods And Apparatus For Managing Dependencies in
Distributed Systems;” attorney docket mno. SOM920020003USl
entitled: “Methods And Apparatus For Topology Discovery and
Representation of Distributed Applications and Services;”
attorney docket mno. SOM920020004US1l entitled: “Methods And
Apparatus For Impact Analysis and Problem Determination;” and
attorney docket mno. SOM920020005US1 entitled: “Methods And
Apparatus For Dependency-based Impact Simulation and
Vulnerability Analysis;” the disclosures of which are

incorporated by reference herein.

Field of the Invention

The present invention relates to distributed computing
systems and, more particularly, to methods and apparatus for
analyzing and determining the root cause of a service outage
based on dependencies between the various components of such

distributed computing systems.

Background of the Invention

The identification and tracking of dependencies between
the components of distributed systems is becoming increasingly
important for integrated fault management. Applications,
services and their components rely on a variety of supporting
services that might be outsourced to a service provider.

Moreover, emerging web-based (world wide web-based) business

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

-2 -
architectures allow the composition of web-based e-business
(electronic business) applications at runtime.

It is to be understood that the term “runtime” generally
refers to the time period when a piece of software is being
executed and active in a computer system’s memory, as opposed
to being dormant and merely sitting in storage on a computer’s
hard drive. Thus, being able to compose e-business
applications at runtime means having the capability to do so
without the need to bring down and restart the
system/application and without the need to recompile the
application. Traditionally, the 1lifecycle of a computer
program is: write program code -> compile (translate into
machine code) -> run. Thus, with the above capability, one
can assemble several pieces o0f software to form a new
application “on-the-fly,” i.e., without the need to bring
down/compile/restart the application.

Consequently, however, failures occurring in one service
affect other services being offered to a customer, i.e.,
services have dependencies on other services. Dependencies
exist between the components of different services on a single
system and also between the client and server components of a
service across multiple systems and domains. Herein, services
that depend on other services are referred to as dependents,
while services on which other services depend are referred to
as antecedents.

It is important to note that a service often plays both
roles (e.g., a name service is required by many applications
and services but depends, itself, on the proper functioning of
other services, such as the operating system and the network
protocols and infrastructure) . Furthermore, dependency
relationships are transitive, i.e., the dependent of a given
component requires, in addition to the component itself, the
components’ antecedent(s).

Dependencies exist between various components of a
distributed system, such as end-user services, system

services, applications and their 1logical and physical

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
-3 -

components. However, service dependencies are not made
explicit in today’s systems, thus making the task of problem
determination, isolation and resolution particularly
difficult.

Existing art in the area of software development (such as
U.S. Patent No. 4,751,635 and U.S. Patent No. 5,960,196),
maintenance (such as U.S. Patent No. 5,493,682) and software
packaging (such as U.S. Patent No. 5,835,777) deal with
individual software elements and modules that form the atomic
parts of a program package and require the availability of
program source code in oxder to build software and bundle it
into software products. Source code is available to the
software developer and not to the service user. The invention
primarily focuses on software products that are already
packaged.

The Institute of Electrical and Electronics Engineers

Standard 1387.2 (entitled “Portable Operating System Interface

(POSIX) system administration, part 2: Software
Administration,” IEEE, 1995) addresses software
‘distribution/deployment/installation. The IEEE standard

defines a mechanism for ensuring that new software components
(which are going to be installed) do not conflict with an
already existing software installation. The IEEE standard
identifies three kinds of relationships: prerequisite,
exrequisite, corequisite, that facilitate such compatibility
checks. This is done individually for every system on which
new software needs to be installed. With the IEEE standard,
the software inventories present on other systems are not
taken into account. Furthermore, the IEEE standard does not
deal with instantiated applications and services and therefore
does not represent any means of determining the dependencies
between components at runtime.

Open Group (Systems Management: Distributed Software
Administration, CAE Specification C701, The Open Group,
January 1998) extends IEEE 1387.2 by defining several commands

(swinstall, swlist, swmodify, etc.) that are invoked by

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
-4 -

software installation tools on a specific system. Open Group
also defines a software definition file format to make sure
that the information required by the aforementioned commands
is available from the system on which the commands are
invoked. The shortcomings of IEEE 1387.2 (i.e., confined to a
single isolated system, no means for determining software
dependencies at runtime) also apply to the Open Group
specification.

Current Operating System Inventory implementations (such
as the IBM AIX Object Data Manager (ODM), the Linux Red Hat
Package Manager (RPM) or the Microsoft Windows Registry)
follow either the OpenGroup specification and the IEEE 1387.2
standard or describe the software inventory in a proprietary
format. Thus, the aforementioned limitations also apply to
such Current Operating System Inventory implementations.

Techniques for electronic software distribution of whole
program packages (such as U.S. Patent No. 6,009,525 and U.S.
Patent No. 5,721,824) or updates/corrections/ fixes/patches
(such as U.S. Patent No. 5,999,740, U.S. Patent No.
5,805,891, and U.S. Patent No. 5,953,533) are, by definition,
restricted to the distribution/deployment/ installation of
(one or many at a time) physical software packages and do not
take the runtime stages of applications into account. In
addition, they deal with one system at a time and do not take
the cross-system aspects of applications and services into
account.

Techniques for determining conflicts in existing
software/hardware configurations (such as U.S. Patent No.
5,867,714) are also confined to a single system and do not
take runtime aspects into account.

While existing work (such as U.S. Patent No. 5,917,831),
often within the scope of event correlation (see, e.g.,
Gruschke et al., “Integrated Event Management : Event
Correlation Using Dependency Graphs, DSOM ‘98, 1998 and Kédtker
et al., “Fault Isolation and Event Correlation for Integrated

Fault Management, IM ‘97, 1997), has focused on identifying

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 5 -

and describing service dependencies in a proprietary format,
it has remained unclear how dependency information can
actually be exchanged between different entities of the fault
management process. Since it is unlikely that the different
parties involved in the fault management process of outsourced
applications use the same toolset for tracking dependencies,
it is of fundamental importance to define an open format for
specifying and exchanging dependency information.

Also, due to the heterogeneity associated with components
of the distributed system with which the fault management
pbrocess is involved, determining the root cause of a system
failure (e.g., service outage) is extremely difficult, given
the limitations of existing techniques.

To sum up, a few techniques relating to the determination
of relationships between software products have been described
and implemented in the existing art. These existing
techniques suffer from one or more of the following
shortcomings:

(a) they address only the installation and deployment
phases of a software product; i.e., they do not attempt to
capture the design and runtime aspects;

(b) they do not deal with end-to-end applications and
services that span multiple systems; i.e., they address the
characteristics of software residing on a single, isolated
system;

(c) software inventory information is described in a
proprietary format that makes it extremely difficult to share
this information among various heterogeneous systems; and

(d) they do not effectively identify the root cause of a

service outage.

Summary of the Invention

The present invention provides techniques for identifying
the root cause of a component failure and performing
appropriate problem determination procedures in accordance

with a computing environment. By way of example, the

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 6 -
inventive techniques may be applied to a distributed computing
environment. The computing environment may also be an
autonomic computing environment.

For example, in one aspect of the invention, a
computer-based technique for determining a root cause of a
condition (e.g., service outage) of at least one subject
component in a computing environment comprises the following
steps/operations. First, one or more components in the
computing environment upon which the at least one subject
component depends (e.g., antecedents) are identified.
Identification comprises traversing at least a portion of a
model representative of an existence of one or more
relationships associated with at least a portion of components
of the computing environment and which 1is capable of
accounting for a full lifecycle (e.g., including deployment,
installation and runtime) associated with at 1least one
component of the computing environment.

Then, one or more procedures are performed in accordance
with the one or more identified components to determine a
condition status associated with each of the one or more
identified components. The procedures may be carried out
either stepwise or in combination, and may include, by way of
example, process inspection, exercising, heartbeats, and
status indicators.

By way of example, a component may be a service, an
application, middleware, hardware, a device driver, an
operating system or a system associated with the computing
environment. However, the term “component” is not limited to
these examples.

These and other objects, features and advantages of the
present invention will Dbecome apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying

drawings.

Brief Description of the Drawings

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
— '7 —_

FIG. 1 is a Dblock diagram illustrating an example of a
client-server application architecture with which features of
the present invention can interact to produce information;

FIG. 2A 1is a block diagram illustrating a system for
providing dependency management according to an embodiment of
the present invention;

FIG. 2B 1is a block diagram illustrating a generalized
hardware architecture of a computer system suitable for
implementing a system for providing dependency management
according to an embodiment of the present invention;

FIG. 3 is a block diagram illustrating a functional
dependency model of services according to an embodiment of the
present invention;

FIG. 4 is a block diagram illustrating a structural
dependency model of services according to an embodiment of the
present invention;

FIG. 5 1is a block diagram illustrating a service
lifecycle addressed by functional, structural and operational
dependency models according to an embodiment of the present
invention;

FIG. 6 1is a block diagram illustrating relationships
between functional, structural and operational dependency
models according to an embodiment of the present invention;

FIG. 7 is a block diagram illustrating components
involved in analyzing and computing a root cause of a service
outage according to an embodiment of the present invention;

FIG. 8 is a block diagram illustrating components of a
root cause analyzer according to an embodiment of the present
invention;

FIG. 9 is a flow diagram illustrating steps for invoking
a dependency service and performing root cause analysis on an
operational model according to an embodiment of the present
invention;

FIG. 10 is a flow diagram illustrating tasks of an

administrator for <creating and updating a functional

10

15

20

25

30

WO 2004/025471 PCT/EP2003/010080

-8 -
dependency model according to an embodiment of the present
invention;

FIG. 11 is a flow diagram illustrating steps for updating
a structural dependency model by installing or removing
hardware/software components on a computer system according to
an embodiment of the present invention;

FIG. 12 is a flow diagram illustrating performance of
root cause analysis on an operational model according to an
embodiment of the present invention;

FIG. 13 is a flow diagram illustrating performance of
root cause analysis on antecedents of a service according to
an embodiment of the present invention;

FIG. 14 is a flow diagram illustrating steps for
determining a status of a service according to an embodiment
of the present invention; and

FIG. 15 depicts examples of root <cause analyzer
application programming interfaces according to an embodiment

of the present invention.

Detailed Description of Preferred Embodiments

The present invention will be explained below in the
context of an illustrative distributed computing environment.
However, it is to be understood that the present invention is
not limited to such a particular computing environment.
Rather, the invention is more generally applicable to any
computing environment in which it is desirable to manage
(e.g., compute, query, etc.) dependencies in order to make the
task of problem determination, isolation and resolution
significantly easier.

As used herein, depending on the context of the
discussion, the term ‘“system” may be used to refer to a
computer system, a software system and/or some combination
thereof. The term “system” may also be used to refer to an
application and/or a service. Thus, the phrase “multiple

systems” refers to a collection of several systems. Also, the

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
-9 -

term “component” may refer to a system, itself, or one or more

portions of a system.

As mentioned above, service dependencies are not made
explicit in today’s systems, thus making the task of problem
determination, isolation and resolution particularly
difficult. Solving this problem requires the determination
and computation of dependencies between services and
applications across different systems and domains, 1i.e.,
establishing a “global” service dependency model and enabling
system administrators to navigate through the resulting
directed graph from the top to the Dbottom and 1in reverse
order. The need for such a mechanism is best illustrated by
the following two scenarios.

The first scenario deals with managing outsourced

services, typically offered by Internet or Application Service

Providers (ISP/ASP). Outsourcing services leads to layered
service hierarchies where, e.g., the services of an ASP depend
on the IP-connectivity (Internet Protocol-connectivity)

offered by an ISP, which, in turn, relies on the wide area
network of a telecom carrier. At every layer, a service is
accessed through a Service Access Point (SAP). A SAP delimits
the boundary between the different organizational domains and
is the place where Service Level Agreements (sLAs) are defined
and observed. Usually, this is done at every Ilayer by
monitoring a set of specific parameters that are exposed by
the provider. In case of an outage oOr performance degradation
in an upper-layer service, it is necessary to traverse the
service hierarchy from the top to the bottom to identify the
root cause of the problem.

The second scenario deals with the regular maintenance
tasks that can not be done “on-the-fly” and therefore affect
services and theilr customers: e.g., e-mail servers get updated
with a new release of their operating system, network devices
are exchanged or upgraded with a new firmware version, etc.
Tn all cases, it is important for the network and server

administrators to determine in advance how many and, more

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 10 -
specifically, which services and users are affected by the
maintenance. We refer to this task as impact analysis.

The aforementioned tasks are further exacerbated by the
following factors.

Dependency models provide a straightforward means to
identify possible root causes of an observed problem. If the
dependency graph for a system is known, navigating the graph
from an impaired service towards its antecedents (being either
co-located on the same host or on different systems) will

reveal which entities might have failed. Traversing the graph

towards its zroot (i.e., in upwards direction) yields the
dependents of a service, i.e., the components that might fail
if this service experiences an outage. The following issues

need to be addressed.

(a) Scale: The number of dependencies between many
involved systems can be computed, but may become very large.
From an engineering viewpoint, it is often undesirable (and
sometimes impossible) to store a complete, instantiated
dependency model at a single place. Traditional mechanisms
used in network management platforms such as keeping an
instantiated network map in the platform database therefore
can not be applied to dependencies due to the sheer number and
the dynamics of the involved dependencies.

These two facts make it prohibitive to follow a
“network-management—style” approach for the deployment of
application, service and middleware dependency models. As an
example, typical data centers of service outsourcers host vast

amounts (several thousands) of web application and database

servers. This implies a huge number of simultaneously running
program instances of, e.g., web application and database
servers. A system capable of constructing a dependency model

should provide features that allow appropriate scalability by
distributing the storage and computation of dependencies
across the systems involved in the management process.

(b) Dynamics: Hosted applications (running within web

application servers) have a very short lifetime, often only a

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 11 -
few seconds. Upon reception of a request, the business logic
of a web application (usually implemented as one or more Java
Servlets) gets instantiated by the servliet engine of the
application server, performs its tasks and is then removed by
the servlet engine. Consequently, a system for computing
dependencies among these dynamic entities should address the
trade-off between the accuracy of the data and the workload
generated for retrieving this data.

(c) Heterogeneity: Heterogeneity comes in three different
flavors. First, the services offered to customers differ to a
large degree. Second, there may be various providers involved
in offering a service to a customer. Finally, the products
implementing a service may stem from a variety of vendors. A
system for computing dependencies should provide a language
that is independent of specific operating systems, network
protocols, software products and the services offered to a
customer.

(a) Manual maintenance of Dependency Data: The
acquisition of a service dependency model, even confined to a
single host system, is a challenge on its own as today’s
systems usually do not ©provide appropriate management
instrumentation. It is to be understood that the term
“instrumentation” refers to program code that exposes the
management characteristics and capabilities of a (managed)
resource through a well-defined (sometimes even standardized)

interface so that it can be accessed by management

applications. Further, even if available from managed
resources, dependency data is not exploited by today’s
management systems. Instead, the dependency information not

only has to be entered manually into a specific management
component, but also in a proprietary format. The dependency
information is therefore incomplete, outdated (due to the
error-prone manual processing), and sometimes even
inconsistent because aifferent operators enter the rules
independently and there is no way to check the rule base for

consistency in an automated way.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 12 -

(e) Taxonomy for Dependencies: The notion of dependencies
is very coarse and needs to be refined in order to be useful.
Examples for this are the strength of a dependency (indicating
the likelihood and the degree to which a component is affected
if its antecedent fails), the criticality (how important this
dependency is with respect to the goals and policies of an
enterprise), the degree of formalization (i.e., how difficult
it is to obtain the dependency) and many more. There is a
need to add attributes to dependencies that allow them to be
qualified more appropriately; and accordingly, a need to
reflect these attributes in the dependency representation.

(f) Problem Determination Features: Further facilities
for combining local dependency graphs, stored on every system,
into a uniform dependency model are desired. In addition,
these facilities should provide an APT (application
programming interface) allowing management applications to
issue queries against the dependency model. These gqueries
will be allowed to retrieve the entities that a specific
service directly depends on, or to recursively determine a
whole set of nodes, including sub-antecedents. The list of
nodes received by the management application enables it to
perform specific problem determination routines to check
whether these services are operational.

The previous discussion shows that it is important to
establish a mapping between three different stages of a
service lifecycle:

(a) an (abstract) service being offered to customers,
e.g., “Web Hosting,” “Managed Storage,” "“IP Connectivity, ”
“Managed Database,” etc.;

(b) the implementation of a service, i.e., the product(s)

being used for providing the service, e.g., “IBM Universal
Database version 7.1,” “WebSphere Application Server version
3.2;” and

(c¢) the running instance(s) of an implementation, i.e.,

the process or task, e.g., “db2 daemon,” “nfs daemon.”

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 13 -

While the task of individually obtaining information
available at every single stage is feasible, the combination
of the three stages into a uniform dependency model is
challenging and has not been done in previous work. In
addition, there is a need for establishing an efficiently
computable dependency model that addresses the requirements of
scale, dynamics and heterogeneity of the underlying
environment while eliminating the need for human interaction
and mainteriance of dependency data.

As will be illustrated below in the context of the

figures, the present invention addresses these and other
needs. That 4is, the present invention has features which
compute runtime dependencies (a “dependency model”) between

components of a distributed system on behalf of a management
application. The invention offers a generic and uniform
approach for retrieving dependency information from computer
systems that provide a mechanism for retrieving configuration
information of individual computer systems or that provide
such data in a machine-readable format.

One benefit of the aforementioned system is that a large
amount of application/service management information can be
obtained from these computer systems without having the need
to instrument individual applications/services. However, i1f
such application/service instrumentation is available, it can
be used by the present invention.

The execution of the system described by the present
invention may be triggered either by a specific (management)
application (such as: impact analyzer, root cause analyzer), a
network management platform (such as IBM/Tivoli NetvView, HP
OpenView or Aprisma Spectrum) or a management application
based on traditional network management systems and platforms.

The present invention provides, inter alia, features for:

(a) observing performance degradations and outages of
subgcribed services;

(b) tracking down the root cause of the problem by

traversing the different layers of the dependency model from

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 14 -
the top to the bottom (since various services may be
outsourced to othef service providers, this (recursive)

traversal of a dependency model crosses domain boundaries);
and

(¢} analyzing the impact of a service outage by
navigating the dependency model from the bottom to the top.

The invention combines dependency information that is
available during the lifecycle of an application or service
(i.e., from the design to deployment, installation and runtime
stages of an application/service). This information is kept
within the following models:

(a) Functional Model: In a preferred implementation, the
functional model defines dependencies between different
generic services (database service, name service, web
application service, connectivity service, etc.). The
functional model does not describe client/server relationships
within a specific service. In addition, the functional model
neither takes into account which concrete products have been
chosen to implement the services nor their actual
configuration. The functional model establishes the principal
constraints to which the other models (described below) are
bound, i.e., further models may refine the dependencies
defined in the functional model with respect to a concrete
system infrastructure but should not introduce new
dependencies between service categories. The model is very
compact and generic and is preferably stored on the managing
system.

(b) Structural Model: In a preferred implementation, the
structural model contains the dJdetailed dJdescriptions of
software components that realize the services defined in the
functional model. The structural model provides details
captured during the installation/deployment phase and
complements the functional model by taking the software
inventory of concrete gystems into account. The structural
model provides information about which services are installed

and configured on a specific system and, for every service,

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 15 -
whether the system operates in a client or a server role. The
potentially high numbers of systems and services make it
difficult to track these dependencies from a remote location.
Tt is thus desirable to store this model close to or at the
managed resources.

(c) Operational Model: In a preferred implementation,
when software packages get instantiated and bindings between
services and applications are established, the operational
model of dependencies is created. The high degree of dynamics
of this model and large number of involved systems places a
limitation on the extent to which the complete model can be
instantiated and stored. It is not practical to define and
store such a model, rather, the model has to be computed
dynamically and stepwise. The operational model is therefore
computed ‘on demand” and relies on the functional and
structural models.

As is to be expected, the amount of dependencies and
their dynamics are extremely high in 1argé—scale distributed
systems. The features of the present invention keep their
impact on the distributed system (in terms of resource and
bandwidth usage) as small as possible and leave as many
configuration options that might affect the performance up to
the user. Examples for this are: the time intervals for
retrieving an updated dependency model, the range of the
systems whose dependencies should be tracked, the depth of the
dependency model (only services immediately affected wversus
transitive closure for a given service versus whole service
hierarchy) .

The present invention preferably exploits the following
characteristics of dependency information:

(a) Dependencies between different services are layered.
Furthermore, their dependency graph is directed and acyclic.
The latter statement also reflects experiences with IP-based
networked services, such as DNS (Domain Name System), NFS
(Network File System), DFS (Distributed File System), NIS

(Network Information System), etc., but there may be cases

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 16 -

where mutual dependencies may occur in some systems. A
pathological example for such a mutual dependency is a DNS
server that mounts the file system in which its DNS
configuration is stored via NFS from a remote system. While
such a configuration is technically feasible, it reflects
flaws in the system design because this leads to an unstable
system whose bootstrapping might be non-deterministic and thus
should be avoided. A dependency-checking application that
discovers cyclic dependencies should issue a warning to an
administrator.

(b) Every dependency is visible at a customer/provider
domain boundary and made explicit by means of SLAs. It
follows that the number of observable dependencies is finite.

(c) Dependency models allow a top-down traversal of

dependency chains.

(d) Dependencies between different systems
(“inter-system”) are perceived as dependencies Dbetween the
client and server parts of the same service. It is not

possible that a client for service A issues requests to a
server which provides a different service B.

One goal of the present invention is to retrieve
information mainly from a few well-known/well-defined places
(e.g., system repositories) in order to achieve a maximum
degree of independence from concrete service/application
instrumentation. In order to achieve this, the invention
defines a minimal and sufficient amount of commonly available
dependency information.

The invention comprises facilities for storing dependency
models persistently or leaves this to the discretion of a
management application or another service that wuses the
invention.

The invention is enabled to have a notion of history in
order to detect and determine changes in the dependency model.
Tn this case, the invention provides a publish/subscribe
interface for notifying software components that have

previously registered for changes within the dependency model.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 17 -

Another possible use of the invention is to leave the
detection of changes in the dependency model up to the
discretion of a management application (or a change management
service) to issue periodic calls to the invention in order to
determine whether changes in the dependency model have
occurred.

Furthermore, as will be illustrated herein below, the
present invention provides techniques for identifying the root
cause of a service outage and performing appropriate problem
determination procedures. Finding the root cause of a service
outage involveg the traversal of the service dependency graph
from the top to the bottom to identify the candidate services
that may have experienced a problem, which is then propagated
to the service in question. This traversal from the service
where the outage or degradation has been observed towards its
antecedents retrieves the entities that a specific service
directly depends on, or recursively selects the complete set
of nodes, including sub-antecedents, that this service
requires to function properly. The list of nodes received by
a root cause analyzer enables it to perform, in a second step,
specific problem determination routines to check whether these
services are operational. These problem determination
procedures involve determining whether a service is
functioning properly or not. The problem determination
procedures may be carried out either:

(1) stepwise, i.e., the function test is carried out for
every single service retufned, or

(11) combined, i.e., the whole 1list of antecedent
services (or a subset of the operational model) is obtained
first, and problem determination procedures are carried out
for all of them simultaneously. The order in which these
tests are carried out may be determined by precedence values
computed from the strength of dependencies between services,
which, in turn, are expressed as welghts associated with such

dependencies.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
— 18 —

As mentioned, in order to determine whether a service is
functioning properly, problem determination procedures may be
used. Examples of problem determination procedures for
distributed services and applications may include, but are not
limited to:

(1) Process Inspection: For software applications that
implement a service, one way to determine whether they are
functioning properly is to verify if their processes (daemons)
are running. This can be done in a non-intrusive way by
inspecting the process table (or task list) of an operating
system and does not require any instrumentation of the
application. If the process(es) of an application are
running, the application is considered to be in a healthy
state.

(ii) Exercising an application is an intrusive (and more
precise) way of determining whether the application is fully
operational, 1i.e., running, and performing its business
function. An “exerciser” is a transaction or command invoked
from outside of the application that exercises the application
in some fairly complete way to determine if it is really alive
and able to deliver its functionality in a timely way. What
is exercised is a function of the application itself. An

analogy in networking is to test the connectivity via the ICMP

(Internet Control Message Protocol) ‘“ping” command, which
sends time-stamped IP (Internet Protocol) packets to a
resource. These packets are returned by the resource and thus

allow a system to determine whether the resource is alive and
to measure the round-trip delay.

(iii) Heartbeats allow the application to demonstrate
that it is alive and well. The application regularly
announces that it 1s in a healthy operational state by
generating events automatically and repeatedly. The system
listening for heartbeats must understand that if the timeout
period expires Dbetween the heartbeat events then the

application may not be functioning correctly.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 19 -

(iv) Status indicators are specific management variables
of an application that reflect the current status of an
application implementing a service. Querying one Or more
status variables indicates the overall health of a service.
However, this approach requires the application to be
instrumented appropriately by exposing this information to the
outside.

Further, the root cause determination methodology of the
invention may be performed for one or more subject components
substantially concurrently (e.g., for one component at a time,
or for multiple components in parallel). At least a portion
of results of the root cause determination methodology of the
invention may be persistently stored, however, such results
may not be persistently stored. Still further, a history of
results associated with the root cause determination
methodology of the invention may be maintained. such history
may be used to derive heuristics for subsequently determining
the sequence of steps for determining the root cause. For
example, a ranking may be established, from the history, of
the most common outages and the next time a root cause
analysis is invoked, the component that has been failing the
most in the past is checked first.

Given the above realizations made in accordance with the
present invention and general features associated with the
present invention, the remainder of the detailed description
will provide an illustrative explanation of techniques for
implementing such realizations and features in the context of
FIGs. 1 through 15.

Referring initially to FIG. 1, a block diagram
illustrates an example of an electronic commerce system in the
form of a client-server application architecture with which
the features of the present invention can interact to produce
information. The architecture of FIG. 1 will be described
below to illustrate how such an architecture may handle a

transaction in the absence of the techniques of the invention.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 20 -

As depicted, a client system 105 1s used to initiate a
request, for example via keyboard. Requests, however, could
be initiated by any conventional means such as by mouse click,
voice command, bar code swipe, etc. Examplés of the client
system 105 are personal computers, kiosks, data entry
terminals, scanners, telephones, pagers, handheld or wearable
devices, wireless devices, personal digital assistants,
network-enabled watches, etc.

The request is acted upon locally where the request is
formulated and forwarded to a web application server 120 over
a network 110 and by passing through one or many network
access 115 devices. An example of the network 110 and
communication protocol are socket-based communications riding
on a TCP/IP (Transmission Control Protocol/Internet Protocol)
transport across a local area network (LAN) that is connected
by network access 115 devices such as routers and switches to
a wide area network (WAN) containing many switching locations
that create a virtual circuit to a service provider and
eventually to a web application server 120. Examples of a web
application server 120 are high-end personal computers,
RISC-based PowerPC’s, UNIX-based workstations, minicomputers
or mainframe computers running software fielding requests from
clients and distributing the requests to appropriate back-end
database servers when appropriate.

For illustrative purposes, an electronic commerce
transaction initiated within a web browser (running on the
client system 105) to purchase an item using the Internet will
now be described. It is to be understood that the techniques
of the invention may work with any form of transaction.
Examples of web application servers include, but are not
limited to, those available from IBM Corporation under the
trademark WEBSPHERE, from BEA Systems, Inc. under the
trademark WEBLOGIC, or from Lotus under the trademark LOTUS
DOMINO SERVER.

In the example transaction, the business logic of the web

application server 120 processes the incoming request and

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 21 -

provides authentication and/or identification of the client
system 105. Once the business logic implemented by the web
application server 120 determines that the client may proceed
with the purchase, it communicates another request via a
network 123 to a database server 125 to decrement the
inventory. The database server 125 processes the request,
accesses its database 130 and prepares a response to the web
application server 120. Examples of database servers include,
but are not limited to those sold by Microsoft under the
trademark SOL/SERVER or TRANSACTION SERVER and by IBM
Corporation under the trademark DB2 UNIVERSAL DATABASE SERVER.

The web application server 120 receives the response from
the database server 125 and returns it via the network 110 to
the client system 105. The client system 105 then processes
the response to format it for display and presents the
response for the transaction initiator to review.

An administrator 100 observes the various software and
hardware components, through which the business transaction is
processed, located at the site of the service provider to
determine if they function properly. In case of an outage 135
occurring at the database 130, such as a corrupted tablespace
or a failure of the database runtime system, the task of the
administrator 100 is to locate the cause of the outage,
correct the problem and verify if the overall system 1is
functioning properly again. It is to be understood that the
invention is intended to operate with any form of outage or
performance degradation.

The administrator 100 interacts with the software and
hardware components either directly or through a management
system that processes the administrative information (such as
status and health data) exposed by software and hardware
components at a well-defined management interface. 1In either
case, it is important to note that the hardware and software
components are perceived by the administrator as isolated
resources and not as being part of an overall system serving a

specific business purpose.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 22 -

In particular, errors occurring in one component may not
be noticed because the administrator does not become aware of
them due to 1lack of continuous monitoring. In addition,
absent the techniques of the invention, no explicit
information regarding the interdependencies between the
various components is available to an administrator in a
straightforward way. Thus, it 1is possible that an error
within a component, which is not continuously monitored may go
unnoticed until the failure propagates to a monitored
component.

In case of the aforementioned database outage 135, an

administrator may eventually only become aware of the outage

if the web application server 120 is not functioning properly

anymore (for example, the load on the web application server
increases drastically because it continuously retries to
connect to the database server 125, and is unable to complete
the requests sent by the c¢lient system 105). Thus, the
administrator 100 would £first examine the web application
server 120, then determine if there 1s a network 123
connectivity problem and finally verify if the database server
125 1s experiencing difficulties that might stem from an
internal error in the database 130.

The client-server application architecture described
above can be regarded as a precursor to an emerging computing

environment referred to by IBM Corporation as an “autonomic”

computing environment. P. Horn, “Autonomic Computing: IBM’'s
Perspective on the State of Information Technology,” IBM
Research, October 2001, the disclosure of which is

incorporated by reference herein, defines autonomic computing
as a comprehensive and holistic approach to self-managed
computing systems with a minimum of human interference. The
term derives from the body’s autonomic nervous system, which
controls key functions without <conscious awareness or
involvement. More specifically, one of the goals of autonomic

computing is to automate some or all of the tasks an

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 23 -
administrator 100 would typically carry out. Motivation for
doing so ig as follows.

As computing evolves, the overlapping connections,
dependencies, and interacting applications call for

administrative decision-making and responses faster than any
human can deliver. Pinpointing root causes of failures
becomes more difficult, while £finding ways of increasing
system efficiency generates problems with more variables than
any human can hope to solve. The problem of identifying and
tracking dependencies between dJdifferent systems of an
autonomic computing environment may be characterized in the
following way. Since a system can exist at many levels, an
autonomic system needs detailed knowledge of its components,
current status, ultimate capacity, and all connections with
other systems to govern itself. Those skilled in the art will
appreciate that the present invention may be performed in an
autonomic computing environment.

Referring now to FIG. 2A, a block diagram illustrates a
system for providing dependency management according to an
embodiment of the present invention. More specifically, FIG.
2A depicts a dependency management system that addresses the
aforementioned issues. The system comprises four layers
(application layer 200, service layer 205, middleware layer
210 and resource layer 215) and an administrator graphical
user interface 285 by which an administrator 100 interacts
with the system.

The lowest layer is the resource layer 215. The resource
layer 215 comprises managed resources 220, a resource
dependency repository 225 and a repository agent 230.
Examples of managed resources 220 include, but are not limited
to, physical and logical hardware components (examples of the
former are hard digsks, random access memory, central
processing units, network adapters, channel controllers, etc.;
examples of the latter are disk partitions, file systems,

etc.) and software components (such as operating system,

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 24 -
system services like print spoolers or name services, and
end-user applications).

The resource dependency repository 225 contains the
inventory of the hardware and software components of every
managed resource 220 and the dependency information on a
per-resource basgis (i.e., the dependencies between the
components within a managed resource 220). The resource
dependency repository 225 can be either co-located with every
individual managed resource 220 or reside at a centralized
location. The resource dependency repository 225 can be
queried, updated and modified through a repository agent 230,
which makes the information of the resource dependency
repository 225 available to other components of the system.

The middleware laver 210 comprises a management
communication infrastructure 235 such as the protocols and
object request brokers by which the different components of
the system exchange (management) information.

The service layer 205 comprises various generic
management services 250 such as policy, event and directory,
which can be used by a variety of management applications. A
specifically important service is the dependency service 245,
which retrieves information, both from the managed resources
220 and from the repository agent 230, and processes this
information to establish an end-to-end dependency model of the
overall resource environment. This model (or parts of it) is
stored in the end-to-end dependency repository 240, according
to the needs (e.g., caching for faster retrieval) of the
dependency service 245. Note that the dependency service 245
is the only component in the described system that directly
interacts with the end-to-end dependency repository 240.

It 1is to ©be appreciated that the above-mentioned
dependency model and its parts may be generated in accordance
with the techniques disclosed in the above-referenced and
concurrently~filed U.S. patent. application identified by
attorney docket no. YOR920020097US1 entitled: “Methods And

Apparatus For Managing Dependencies in Distributed Systems,”

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 25 -
some illustrative details of which are provided herein below.
However, other model generation techniques may be employed.

The application layer 200 comprises various management
applications that wuse the generic management services 250
and/or the dependency service 245. Examples of such
management applications include, but are not limited to, fault
manager 260, topology generator 265, impact analyzer 270,
impact simulator 275 and root cause analyzer 280.

The root cause analyzer 280, as will be described further
herein, determines the root cause of an outage (i.e., the
component that initially caused the outage) based on
traversing the dependency model (provided by the dependency
service 245) from a component affected by an outage towards
its antecedents.

The impact analyzer 270 determines the impact of an
outage (i.e., the components that are likely to be affected by
the outage) based on traversing the dependency model (provided
by the dependency service 245) from a component experiencing
an outage towards its dependents. The impact analyzer may
employ the techniques disclosed in the above-referenced and
concurrently-filed U.S. patent application identified by
attorney docket no. SOM920020004US1l entitled: “Methods And
Apparatus For Impact Analysis and Problem Determination.”
However, other impact analysis techniques may be employed.

The impact simulator 275, based on the impact analyzer
270, allows an administrator 100 to carry out a “what-if”
analysis by simulating the effects of an outage of a specific
component on the overall system. This enables the
provisioning of appropriate failover solutions. The impact
simulator may employ the techniques disclosed in the
above-referenced and concurrently-filed U.S. patent
application identified by attorney docket no. SOM920020005US1
entitled: “Methods And Apparatus For Dependency-based Impact
Simulation and Vulnerability Analysis.” However, other impact

simulation techniques may be employed.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 26 -

The fault manager 260 performs appropriate “sanity
checks” or tests on components that have been identified
either by the root cause analyzer 280 or the impact analyzer
270 as candidates for a failure. That is, the fault manager
can perform such tests upon the direction of the root cause
analyzer 280 or the impact analyzer 270 (i.e., serve as an
interface for these modules), and report back results thereto.
However, the root cause analyzer 280 or the impact analyzer
270 can perform their own tests independent of the fault
manager.

It is to be understood that the fault manager is
preferably comprised of a collection of application-specific
or resource-specific tools that allow a determination to be
made whether the component that is being tested is working
properly or not. Thus, after testing the component with a
related tool, the fault manager may return a message
indicating whether the component “works” or “does not work.”
These tools may be automated and/or manual. By way of one
automated example, a so-called ‘“ping” program checks network
connectivity. If the subject remote system answers to a ping,
it is online and its network protocol stack (and all the
underlying hardware, e.g., network adapter, cables,
intermediate network components, etc.) works. If the remote
system does not answer, it is known that at least something is
wrong and another (set of) tool(s) may be employed to
determine the problem. Thus, the fault manager may employ the
ping program, as well as any number and type of other tools
needed to test components of the distributed computing
environment (e.g., heartbeat detection, status indication,
etc.).

The topology generator 265 establishes (a subset of) the
overall topology of a distributed system, comprising a vast
amount of highly dynamic components, such as web applications,
database instances and transactions. An example for using the
topology generator 265 is to display the components of a

distributed system that are involved in fulfilling the

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 27 -

requests of a specific client system 105. The dependency
model (or parts of it) is stored in the topology database 255,
according to the needs (e.g., caching for faster retrieval) of
the topology generator 265. Note that the topology generator
265 1s the only component in the described system that
directly interacts with the topology database 255. The
topology generator may employ the techniques disclosed in the
above-referenced and concurrently-filed U.Ss. patent
application identified by attorney docket no. SOM920020003USl
entitled: “Methods And Apparatus For Topology Discovery and
Representation of Distributed Applications and Services.”

However, other topology generation technigques may be employed.

Referring now to FIG. 2B, a block diagram is shown
illustrating a generalized hardware architecture of a computer
system suitable for implementing the various functional
components/modules of a system for providing dependency

management as depicted in the figures and explained in detail

herein. It is to be understood that the individual components
of the dependency management system, namely, components
associated with the graphical wuser interface 285, the

application layer 200, the service layer 205 and the
middleware layer 210 (FIG. 224), may be implemented on one or
more computer systems having an architecture as shown in FIG.
2B. The other components shown in FIG. 2A, e.g., the
components associated with the resource layer 215, may also be
implemented on similar computer systems.

As shown, the computer system may be implemented in
accordance with a processor 290, a memory 292 and I/O devices
294. It is to be appreciated that the term “processor” as
used herein is intended to include any processing device, such
as, for example, one that includes a CPU (central processing
unit) and/or other processing circuitry. The term “memory” as
used herein is intended to include memory associated with a
processor or CPU, such as, for example, RAM, ROM, a fixed

memory device (e.g., hard drive), a removable memory device

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 28 - ,
(e.g., diskette), flash memory, etc. In addition, the term
vinput/output devices” or “I/O devices” as used herein is
intended to include, for example, one or more input devices
(e.g., keyboard) for entering data to the processing unit,
and/or one or more output devices (e.g., CRT display and/or
printer) for presenting results associated with the processing
unit.

It is also to be understood that the term “processor” may
refer to more than one processing device and that various
elements associated with a processing device may be shared by
other processing devices.

Accordingly, software components including instructions
or code for performing the methodologies of the invention, as
described herein, may be stored in one or more of the
associated memory devices (e.g., ROM, fixed or removable
memory) and, when ready to be utilized, loaded in part or in
whole (e.g., into RAM) and executed by a CPU.

Referring now to FIG. 3, a block diagram illustrates a
functional dependency model of services according to an
embodiment of the present invention. More specifically, FIG.
3 depicts a functional application dJdependency graph between
various components in an electronic commerce system such as
the one depicted in FIG. 1. This functional dependency model
represents both the functional components of a distributed
system and their dependencies. Thus, the model defines
dependencies between generic services, which are considered
atomic from a business perspective. This implies that the
functional model is not concerned with dependencies occurring
within a business service. Such a decomposition makes sense
in the scope of a specific product being used to implement the
service and will be discussed in more detail with reference to
FIG. 4.

Dependencies between components are depicted as arrows.
An arrow always points from the dependent to the antecedent.
Functional components are the (sub-) services that a service

provider needs to deploy for providing an end-to-end service

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 29 -

to a customer, the latter being defined in a service level
agreement. The functional model focuses on the design of an
end-to-end service and abstracts from the details of an
end-to-end service’s technical realization, such as the
products being used for the service offering, their location
(local or remote system), the provider domain (i.e., whether
the provider itself outsources some of its services to another
service provider, transparent to the customer), etc.

As shown, an e-business application 300 service depends
on a web application service 305 for hosting the business
logic. In order to function properly, the web application
service 305 requires two further services. The static content
of the electronic commerce website is provided by a web
service 310, while a back-end database service 330 stores the
dynamic content (such asgs product descriptions, user and
manufacturer data, shopping carts, user profiles and
preferences, payment information, etc.) of the e-business
application 300 being offered to a customer. The web service
310 depends, itself, on two services, namely, the name service
315 for mapping host names to IP addresses, and the IP service
320 for network connectivity.

Recall that dependency relationships are transitive,
i.e., the dependent of a given component requires, in addition
to the component itself, also the components’ antecedent(s).
Consequently, in addition to the IP service 320 and the
database service 330, all the depicted services require the
presence of an operating system (0S) 325 service. For the
sake of brevity, the dependency relationships of an 0S 325 on
hardware components is not depicted, although they are present
in a functional model.

Referring now to FIG. 4, a block diagram illustrates a
structural dependency model of services according to an
embodiment of the present invention. More specifically, FIG.
4 depicts a structural application dependency graph between
various components in an electronic commerce system such as

the one depicted in FIG. 1.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 30 -

This structural dependency model extends the functional
model (FIG. 3) 1in the following ways. The structural
dependency model deals with the implementation of a business
service and is focused on concrete products and their logical
(modules, components) and physical (files, shared libraries)
architecture. The structural dependency model captures the
detailed descriptions of software components, i.e., the system
inventory, which is usually recorded in the various system
repositories or in well-defined places, e.dg., the
configuration files of a managed resource 220.

Note that although the structural model deals with the
components of a single system, it may maintain references to
services and applications hosted by other systems, because the
configuration files located on the system may contain this
information. Examples of system repositories include, but are
not limited to, the IBM AIX Object Data Manager (ODM), the
Linux Red Hat Package Manager (RPM) or the Microsoft Windows
Registry. Information relating to software components is
typically captured during the installation and deployment of a
software package. In addition, the structural model contains
the dependencies between the various system components,
depicted as arrows. For the sake of clarity, the names of the
business services are written without quotes, while the names
of the elements of the structural model are written with
quotes in FIG. 4.

The system with the fully qualified domain name
wslab8.watson.ibm.com 400 hosts the following components: the
e-business application (a business service defined in the
functional model), which is implemented as storefront servlets
410, the latter encapsulate the business logic of the
application. The web application service is implemented by
IBM WebSphere version 3.5 415, while the web service is
realized by the IBM HTTP Server version 1.3.6 420. The IP
service 1s implemented by the default IP protocol stack 430,
the operating system (0S) is Win(dows) NT version 4 425.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 31 -

The system with the fully qualified domain name
rslab2.watson.ibm.com 405 hosts the following components: a
database service implemented by (IBM) DB2 Universal Database
(UDB) version 5.2 435, and an operating system, here (IBM)
Advanced Interactive Executive (AIX) version 4.3.3 440.

Referring now to FIG. 5, a block diagram illustrates a
service lifecycle addressed by functional, structural and
operational dependency models according to an embodiment of
the present invention. More specifically, FIG. 5 depicts the
relationships between a functional model 500 and a structural
model 510, described above, and introduces a third dependency
model, an operational model 520. These three models enable
the invention to track the services during their whole
lifecycle, i.e., from the design stage to the installation and
deployment stage, to the operational or runtime stage.

As explained above, the functional model 500 relates to
the design of the business services and is thus captured at
the design time of a business system. Once the system
described by the functional model 500 becomes instantiated or
deployed (step 505), the structural model 510 is established.
The operational model 520 1s created when the various
components of the structural model 510 become instantiated
(step 515) and when runtime bindings between them are
established. The operational model represents the
characteristics of the previously described models at runtime.
Several scenarios that illustrate the aforementioned concepts
will now be described.

The web application service 305 is implemented by IBM
WebSphere 415; one or more instances of the latter are
referred to as webgphere-daemon 545. Here, the web (or WWW)
service 310 1s implemented by two products, namely, Apache
1.3.4 525 and Lotus Domino 530. The running instances of
these products can be identified as http daemons “httpd” 550.
The database service 330 is implemented by two products,
namely, Oracle v7 535 and DB2 UDB 435; however, no instances

of Oracle Vv7 535 are active because no server processes are

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 32 -

visible in the operational model 520. In contrast, four
instances of DB2 UDB 435 are running, as can be seen from the
presence of four DB2 daemons “db2d” 555 in the operational
model 520. The name service 315 is implemented by BIND
version 5.6 540; the running instance of BIND can be observed
as “named” 560 in the operational model 520.

Note that the dependencies are propagated from the
functional to the structural and the operational model. This
is necessary because it is not possible to determine from a
running application instance which other application
instance(s) it requires to function properly.

Due to the short-livedness of some application instances,
the operational model 520 is highly dynamic and potentially
very large. In contrast to the functional and structural
dependency models, the operational model 520 is not stored in
a repository or a database, but computed on demand and to the
extent needed.

Referring now to FIG. 6, a block diagram illustrates
relationships between functional, structural and operational
dependency models according to an embodiment of the present
invention. More specifically, FIG. 6 depicts the details of
the data template used for the three dependency models and the
means for tying these models together by an example. The
example details the template and its associated wvalues for
describing the name service during its lifecycle.

The functional template 605, used for the functional

model 500 contains the “hostName” (the unique name of the
computer system that hosts the service), the “serviceName”
(name of the service) and the “componentType” (the role in
which this service acts, i.e., client or server). With this

information, a service can be uniquely identified within a
distributed environment. However, further fields containing
descriptive data (such as a description of the purpose of the
service, the customer that subscribes to this service, etc.)

may be added without departing from the spirit of the present

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 33 -
invention. Finally, the “Antecedent” field contains the
service(s) this service requires for proper functioning.

The structural template 610, used £for the structural
model 510, contains all the fields of the functional template
605, which allows to link the functional template 605 with the
structural template 610 in order to navigate from the
functional model 500 to the structural model 510, and

vice-versa. In addition, the structural template 610 contains

the *“componentName” (the name of the product component), an
“identifier” (a globally unique name for identifying the
component), the “version,” “release” and “modification” (e.g.,

maintenance or patch/fix level) numbers, the “installState”
(indicating whether the component has been successfully and
completely installed) and “processName” (the name of the
process (es) that identify this product component at runtime).
Furthermore, the “Antecedent” field 1lists the component(s)
this component requires to be operable.

The operational template 615, used for the operational
model 520, contains the fields “hostName” (the unique name of
the computer system that hosts the service) and “processName”
(the name of the process(es) that identify the product
component at runtime). These two fields link the structural
template 610 with the operational template 615 in order to
navigate from the structural model 510 to the operational
model 520, and vice-versa. In addition, the operational
template 615 contains the fields “operState” (the operational
state of the process, i.e., running, interrupted, zombie,
etc.), “portNumber” (the number of the TCP/UDP port by which
an application can connect to the process), and, “instanceID”
(to distinguish the various application instances within the
scope of a computer system).

The three dependency models are stored and computed at
different places to achieve a maximum degree of efficiency.
The functional model 500 is gathered and stored at the
management system 620, i.e., the central point of control by

which the administrator 100 interacts with the distributed

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 34 -

environment. Some of the reasons for this choice are as
follows. As seen in the descriptions of FIG. 3 and FIG. 5,
the functional model 500 is fairly compact because the amount
of possible business services is limited. In addition, the
functional model is not subject to overly frequent changes.
The functional model is defined at the time when a business
service is provided to a customer and remains unchanged until
the service offering period ends. Since the administrator 100
is responsible for setting up and updating the functional
model 500, it is a natural choice to keep it close to the
management system 620.

As mentioned in the description of FIG. 4 and FIG. 5, the
structural model 510, in contrast, captures the detailed
descriptions of software components, i.e., the system
inventory, which is usually recorded in the various system
repositories or in well-defined places, e.g., the
configuration files of managed resource 220. Consequently, it
is both large sized (the content of a system repository tends
to be between several hundred kilobytes and up to a few
Megabytes) and also subject to frequent changes. Therefore,
keeping the structural model 510 of a system at the managed
resource 220, itself, eliminates ©both the communication
overhead for updating the model and the need for vast amounts
of storage that would occur if the structural models 510 of
all managed resources (220) is stored at a centralized place.

The operational model 520 has been described in FIG. 5 as
very dynamic and also extremely large because it covers
potentially multiple instances of every application present on
the computer systems of the distributed environment and the
dependency relationships between them. Given the fact that
current data centers of Internet/Application/Storage Service
Providers and outsourcers consist of several thousands of
computer systems with each hosting close to 100 applications
and system services, an operational model comprising all the
currently instantiated applications and their dependencies may

be impractical. Thus, a practical approach is to compute the

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 35 -
relevant parts of the operational model on demand (step 625).
This is the purpose of the dependency service 245.

Referring now to FIG. 7, a block diagram illustrates
components involved in analyzing and computing the root cause
of a service outage based on dynamic information technology
(IT) service dependencies according to an embodiment of the
present invention. More specifically, FIG. 7 depicts the data
flows between the various components used for analyzing and
computing such a root cause. It is assumed that the managed
resources 220 are able to provide XML (Extensible Markup
Language) descriptions of their system inventory,
configuration files and their various dependencies. However,
it should be noted that any data description format may be
used in accordance with the invention. The details on how
this information can be acquired are as follows.

One straightforward way is to ©provide appropriate
instrumentation within the system and its applications and
services. This information is described in flat XML files 740
and made available to the other components of the system
through a web server 725.

Alternatively, the dependency service 245 makes use of
information stored in system repositories 745 for generating
appropriate service dependency information. This information
is made available to the other components of the system
through a web server 730.

Third, the managed resources 220 expose their information
by means of an instrumentation agent, called CIM (Common
Information Model, which 1is a standardized management
framework) provider 750, which interacts with a CIM Object
Manager (CIMOM) 735, as proposed by the Distributed Management
Task Force (DMTF). The CIMOM then exposes the necessary
information to the interested components.

In the center of FIG. 7, various management services,
being part of the service layer 205, are depicted. These are:
a name service 700, a trader service 710, an event service 715

and the dependency service 245. The dependency service 245,

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 36 -

triggered by queries of the administrator 100 through either
the root cause analyzer 280, its management system or any
management application located in the application layer 200
using a communication protocol (e.g., Java Remote Method
Invocation (RMI)), processes them and sends the results back
to the root cause analyzer 280 which, in turn, forwards the
results for further processing to the administrator 100. The
main tasks of the dependency service 245 are as follows:

(a) TInteracting with the management system or any
management application located in the application layer 200.
The management system issues dqueries to the application
programming interface (API) of the dependency service (245).

(b) Expose a ‘drill-down’ method that, upon receilving the
identifier of a service, returns:

(1) either descriptions of its direct antecedents,
i.e., the first level below the node representing the
service, or

(ii) the whole subgraph below the node representing the
service,

(iii) an arbitrary subset of the dependency graph
(levels m to n below a given node).

(c) Provide a ‘drill-up’ method with the same facilities,
targeting the dependents of the service.

(d) Additional methods for gathering and filtering
information for classes and properties of managed objects are
present.

(e) Obtaining the dependency information from the managed
resources 220 Dby issuing dqueries over http (HyperText
Transport Protocol) and applying filtering rules (as specified
by the administrator 100) to it.

(f£) Combining the information into a data structure that
is sent back to the management system as XML document.

As mentioned above, due to its fully distributed nature,
the invention aims at keeping the load on every involved
system as low as possible. The invention decouples the

management system from the managed resources 220 and

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 37 -

encapsulates the time consuming filter and join operations in
the dependency service 245, which can be replicated on various
systems. It is therefore possible to achieve a maximum level
of parallelism for query operations, since the selection of an
instance of the dependency service 245 can be done flexibly by
the management system.

Another important advantage is that the (very large and
highly dynamic) operational model 520 is not stored at a
specific place but computed on demand in a stepwise manner.
The different parts of the structural model 510 are stored at
the managed resources 220. The management system therefore
always receives the most recent information but is still free
to store it according to elaborate caching policies.

Referring now to FIG. 8, a block diagram illustrates
components of a root cause analyzer according to an embodiment
of the present invention. As shown, a root cause correlator
870, which functions as a flow coordinator for the entire root
cause analysis process, receives service problem reports 880
from the administrator 100, providing the name of the service
and the host name where the problem has been observed or
reported. The root cause correlator 870 interacts with the
dependency service 245 in order to obtain a list of the basic
services on which the problematic service depends. Examples
of Dbasic services would be: domain name service, Ip
connectivity service, etc.

The task of the dependency service 245 is to find the
antecedents of the service in question, even if the e-commerce
environment spans different managed domains 800. In order to
deal with multiple domains, wvarious (cascaded) instances of
the dependency service 245 may work jointly together. In FIG.
8, the e-commerce environment is shown by the dotted
rectangle. Typically, such environments contain one or more
managed domains, eventually each with its own dependency
database 810 and dependency service 245. The dependency
service 245 returns the names and identifiers of the

antecedents back to the root cause correlator 870, which then

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 38 -
initiates further problem determination procedures to verify
whether one or more antecedents experience difficulties. This
can be accomplished via a number of approaches, some of which
are illustrated below.

A first approach assumes the presence of an event
monitoring and distribution function, provided by an event
monitor 820. Examples of such event monitors include, but are
not limited to HP OpenView Event Services and Tivoli
Enterprise Console. The event monitor 820 receives
events/alerts related to resources within the e-commerce
environment and forwards the ones, which are relevant to an
event database 830. Some events are informational in nature
or are related to errors that are fixed automatically by the
domain management services. These are typically filtered out
and not forwarded to the event database 830. In practice, the
event monitor 820 may comprise of a hierarchical arrangement
of multiple event monitors, one for each managed domain.

The main function of an event-service correlator 840 is
to provide, for a given service or resource, a list of
outstanding alerts associated with that resource or service.
It does so by interacting with event monitors 820 and stores
the events in the event database 830 for further retrieval.
When a service returned by the dependency service 245 is one
of the suspected root causes, the root cause correlator 870
uses the event-service correlator 840 to estimate the
likelihood of this being the case by getting a list of events
that may have been reported about the suspected service or
resource. If there is an undesirable event, for example
buffer overflow, the likelihood of this resource being a root
cause is high. |

The root cause correlator 870 also interacts with the
dependency services 245 for each of the managed domains in
order get a set of possible root causes that lie within that
domain. The dependency service 245 interacts with domain

dependency data 810, which is constructed during deployment

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 39 -
and periodically updated during the operation phase of the
e-commerce setup.

A second approach is to obtain the current status of a
service or resource from a status monitor 860, which directly
interacts with the services and verifies whether they are
functioning properly or mnot (e.g., failed, not failed,
degraded, etc.). As mentioned above, if the system
incorporates a fault manager (as does the system of FIG. 23),
the status monitor may serve as the interface between the root
cause analyzer and the fault manager so as to, among other
advantages, make the root cause analyzer independent of any
particular test procedure. The status monitor 860 may
therefore serve as a single point of contact for the root
cause correlator 870 to determine the health of the service in
guestion.

In general, it can not be assumed that an external fault
manager is always available. Since, however, the
functionality of determining the status of a service is
crucial for the root cause analyzer, this functionality must
be present and is provided by the status monitor 860, which
may extend the functionality offered by a fault manager. Thus,
external fault managers may provide either:

(a) all the needed functionality (thus, the status
manager will “wrap” the functions performed by the fault
manager and adapt the interface to what the root cause
correlator 870 expects;

(b) only a part of the functionality (e.g., testing of
network connectivity only - but no application and middleware
status verification), thus the needed functionality must be
provided by the status monitor; or

(c) no functionality at all; it is either not present or
does not offer its functionality to other components through a
programmatic interface. So while a human user may interact
with the fault manager through a GUI (graphical wuser
interface), no program (such as the correlator 870) can use

it.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
~ 40 -

Also note that a fault manager is meant to refer to a
loose collection of system administration tools having
completely different interfaces. The status monitor thus
serves to integrate these various tools wunder a uniform
interface. That is, the status monitor preferably operates to
account for any mismatch between a root cause correlator which
expects everything to be testable for status and the fault
manager which may provide between 0 percent and 100 percent of
this required functionality.

The root cause correlator 870 thus has two ways to
determine whether a service 1is functioning properly or
experiences a problem, i.e., the correlator can query the
event-service correlator 840 for problem event reports
relating to a service or directly look up the status of a
service from the status monitor 860. The root cause
correlator 870 is free to choose by which of these at least
two means it determines the health of a service. Further, the
root cause correlator 870 may choose to obtain information
both from the event-service correlator 840 and from the status
monitor 860.

After the root causes have been narrowed down to the
smallest possible set of services and resources, the root
cause correlator 870 returns this information 890 to the
administrator 100.

Referring now to FIG. 9, a flow diagram illustrates steps
for invoking a dependency service and performing root cause
analysis on an operational model according to an embodiment of
the present invention. More specifically, FIG. 9 depicts a
methodology of invoking a dependency service (e.g., dependency
service 245), collecting its results, and applying root cause
analysis to them. This methodology is initiated either by an
administrator 100 or a management application being part of
the application layer 200, as described in FIG. 2A.

The methodology begins at block 900 and proceeds as
follows. First, a business service is sgelected (step 905),

typically from the functional model, since an administrator is

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 41 -

interested in the business services provided by the
distributed system. Upon selection of a business service, the
structural model is gqueried to provide a selection of hosts
that are involved in the provisioning of the business service.
This can be either done by locating the structural models
present on every host of the distributed system, or (for
efficiency purposes) by querying a (periodically updated)
service/host lookup table stored at the management system,
which contains a mapping between the services and hosts
present in the distributed system. The administrator then
selects a host at hig discretion (step 910).

In addition, the administrator composes a query (step
915). Examples of query parameters include, but are not

limited to, the direction of the traversal (towards the

service dependents, or towards 1its antecedents), the depth of
the traversal (e.g., only the immediate
antecedents/dependents; the overall possible
antecedents/dependents, i.e., the complete transitive closure

of the operational model; only between the m-th and n-th
layers of the operational model), filtering criteria related
either to the presence of attributes or to their values.

The fact that the order of the steps for selecting
service (step 905), host (step 910) and the options for
composing the query 1is prescribed here, emphasizes the
“‘service-centric” approach (versus the “host-centric” approach
of existing art) of the present invention. However, one
having skill in the relevant art will recognize that
modifications in the order of steps (steps 905, 910 and 915)
may be made without departing from the spirit and scope of the
present invention.

Examples of such modifications are: to offer the user
(e.g., by means of a graphical user interface) the choice of
performing the three steps of the selection process in an
arbitrary order; allowing at first the selection of a host and

then looking up the services present on that host by means of

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- 42 -
querying the structural model, thereby restricting the
posgible service candidates for selection.
After the service and host selection and the composition

of the query, the dependency service is invoked (step 920)

with these parameters. Note that the mode of invocation can
be either synchronous (i.e., blocking the invoker until the
results are returned by the dependency service) or

asynchronous (thus allowing the invoker to perform additional
tasks during the computation).

The dependency service computes the appropriate part of
the operational model and, depending on the mode of
invocation, either sends the results back to the invoker or
notifies the invoker that the results are available. The
invoker then collects the results and applies root cause
analysis and appropriate problem determination procedures to
them (step 925). The methodology ends at block 930.

Referring now to FIG. 10, a flow diagram illustrates
tasks of an administrator for creating and updating a
functional dependency model according to an embodiment of the
present invention. This is necessary either if new (business)
services are deployved and offered, or changes are applied to
an existing model, or existing (business) services are
withdrawn from an offering.

The methodology begins at block 1000 and proceeds as
follows. An administrator or a management application
evaluates whether a new business service should be added or an
existing service 1s to be deleted (step 1005). If this is not
necessary, the methodology proceeds directly to block 1025.
Otherwise, in step 1010, the service and its description are
entered in (or removed from) the template 605 of the
functional model, which has been described in FIG. 6.

Then, in step 1015, the service dependencies, i.e., its
relationships regarding its antecedents, need to be added to
(or removed from) the template 605 of the functional model.
In case of a deletion, note that the dependencies from the

service dependents need to be adjusted to point to the

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 43 -
antecedents of the service that is to be removed. This may
involve checking for eventual duplicate descriptions within
the dependencies of the antecedents. Finally, the updated
functional model is stored in the repository of the management
system (step 1020). The methodology ends at block 1025.

Referring now to FIG. 11, a flow diagram illustrates
steps of updating a structural dependency model by installing
or removing hardware/software components on a computer system
according to an embodiment of the present invention. This is
necessary either if new components are deployed and installed
on a host, or existing components are removed from the host.

The methodology begins at block 1100 and proceeds as
follows. If new hardware components are installed/removed,
the verification and adjustment of their dependencies 1is
usually performed by the operation system and is thus not
described further here. Instead, the following description
focuses on the task of adding/removing software components.
An administrator or a management application performing
software distribution and installation evaluates whether a new
software component should be added or an existing software
component is to be deleted (step 1105). If this is not
necessary, the methodology proceeds directly to block 1125.
Otherwise, in step 1110, the software components’ descriptions
are entered in (or removed from) the template 610 of the
structural model, which has been described in FIG. 6. Then,
in step 1115, the software components’ dependencies, i.e., its
relationships regarding its antecedents, needs to be added to
(or removed from) the template 610 of the structural model.

In case of a deletion, note that the dependencies from
the software components’ dependents need to be adjusted to
point to the antecedents of the software component that is to
be removed. This may involve checking for eventual duplicate
descriptions within the dependencies of the antecedents.
Finally, the wupdated structural model 1is stored in the
resource dependency repository of the host (step 1120). The
methodology ends at block 1125.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
- A4 -

Referring now to FIG. 12, a flow diagram illustrates
performance of root cause analysis on an operational model
according to an embodiment of the present invention. The
methodology begins at block 1200 and proceeds as follows. The
system performing the root cause analysis on the operational
dependency model is continuously listening for requests at a
specific port of the host on which the system is executed,
which is illustrated by the loop that connects step 1205 with
itself. This is the standard behavior for server processes
(“daemons”) that implement services, which can be invoked by
applications at any time.

On reception of a request, the system extracts the input
parameters from the request (step 1210). As mentioned in the
description of FIG. 9, examples of input parameters include,
but are not limited to, the names of the service and the host
in question, the direction of the traversal, the depth of the
traversal, filtering criteria related either to the presence
of attributes or to their values. These input parameters are
then used to invoke the computation of the operational model,

which is invoked in step 1215.

In addition, the results of the computation, i.e., the
operational model, are gathered. The root cause analysis 1is
then performed on the operational model (step 1220). The

results of the root cause analysis are returned to the
invoking application, in accordance with the mode of
invocation specified at the time of the invocation (step
1225). After this step, any allocated resources of the host
on which the system is running are released (step 1230).
Examples of host resources include, but are not limited to,
memory, disk space or CPU registers. Finally, the system
returns back to its initial stage and listens for subsequent
incoming requests (return to step 1205).

Referring now to FIG. 13, a flow diagram illustrates
performance of root cause analysis on antecedents of a service
according to an embodiment of the present invention. The

methodology begins at block 1300 and proceeds as follows.

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 45 -

First, the names of the targeted service and the host are
obtained (step 1305). These parameters are provided by the
invoking management application, which obtains these

parameters either directly from the administrator or from an
event message that arrives at the management console. In
addition, the search criteria according to the status of the
antecedents are specified. They indicate whether the system

should return the services that have encountered a problem

(“defective”) or the services that perform well. Usually, a
management application is interested in the former, i.e., the
defective services. Furthermore, the search path is
specified. A management application can be either interested

in the direct antecedents of a service (search path length =

1), the whole set of services the service directly (or
indirectly) depends on (search path = recursive), or the
lowest level of the antecedents, i.e., the base services that

a service depends on (search path = max).

Then, the computation of the operational model is
performed by the dependency service, according to the
parameters “Service Name,” “Host Name,” “Antecedent status,”
“search path” (step 1310). Next, in step 1315, the results,
i.e., the 1list of antecedent service elements (“Candidate
List”), are obtained from the dependency service.

The following steps are performed until the list of
candidate service elements is empty (1320):

The first service element of the candidate 1list 1is
selected (step 1325) and checked to determine whether it is
functioning properly (step 1330). The steps of this status
check procedure are described in detail in FIG. 14. If the
service element in question is functioning properly (status =
“OK”), it 1is added to the list of working service elements,
i.e., an “OK” list (step 1335). If, however, it turns out
that the service element 1s experiencing a problem, it is
added to the “defective” 1list (step 1340). Finally, the

sexrvice element in dJuestion is removed from the candidate

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 46 -
service elements list (step 1345) and the methodology proceeds
back to block step 1320.

If the list of candidate service elements is empty, the
methodology then proceeds directly to step 1350, where either
the list of working service elements or the list of defective
service elements is returned to the invoker. The results
content depends on whether the invoker has been asking in step
1305 for working or defective services. The methodology ends
at block 1355.

Referring now to FIG. 14, a flow diagram illustrates
steps for determining a status of a service according to an
embodiment of the present invention. More specifically, FIG.
14 illustrates interactions of the root cause correlator 870
with the event-service correlator 840 and the status monitor
860, depicted in FIG. 8. The methodology begins at block 1400
and proceeds as follows.

First, the name of the targeted service element is
obtained (step 1405). This problem determination problem is
described from the perspective of checking the status of a
single service element, as may be done by the root cause
correlator 870. It is to be understood that this procedure is
repeated for every service in question. It is to be further
understood that this procedure is carried out in step 1330 of
FIG. 13.

Also, with respect to step 1405, the names of the
targeted service elements are provided by the invoking
management application, which obtains these parameters either
directly from the administrator or from an event message that
arrives at the management console.

Then, the root <cause correlator 870 gueries the
event-service correlator 840 for the presence of events
relating to the service in question (step 1410). These events
indicate whether any problems with this service have been
observed. If this is the case, the service element is flagged
as “defective” (step 1415), and the result is returned to the

invoker (step 1430).

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080

- 47 -
If step 1410 vyields that no fault events have occurred

for this service, it 1is necessary to perform further work to

determine the status of a service. This is done by querying
the status monitor 860 for the status of the service (step
1420). The task of the status monitor 860 comprises providing

a uniform interface to status information for every service in
the distributed system, regardless of how the status of the
service is determined.

As mentioned above, four illustrative ways of determining
the status of a service may comprise: (i) process inspection;
(ii) exerciser; (iil) heartbeat; and (iv) status indicators.
If the query (step 1420) to the status monitor 860 yields that
the service in dquestion is functioning properly (status =
“OK”), the service element representing the service is flagged
as “OK” (step 1425). 1In any case, the result is returned to
the invoker (step 1430). The methodology ends at block 1435.

Referring now to FIG. 15, examples are depicted of root
cause analyzer application programming interfaces (APIs)
according to an embodiment of the present invention. The
table includes base APIs that can generate, send and request
receipt of appropriate operational models for a given service
and host name. Those skilled in the art will appreciate that
the APIs can use one or more parameters (not shown) to
identify characteristics (specified in the functional
description) used by the APIs.

Specifically, a “getDirectAntecedents (parameters)” API
retrieves direct antecedents, regardless of their current
status, of a service located on a specific host. The
“getAntecedentsRecurgive (parameters)” API performs a recursive
“drill-down,” i.e., it retrieves all the antecedents of a
given service (regardless of their current status), which is
located on a specific host. It therefore returns all the
services residing ‘below” a given service in the dependency
hierarchy. The ‘getLowestAntecedents (parameters) ” APT
retrieves the lowest antecedents of a service located on a

specific host. This method yields the services that do not

10

15

20

25

30

35

WO 2004/025471 PCT/EP2003/010080
-~ 48 -
have any antecedents themselves (i.e., they reside in the

lowest layer of the dependency hierarchy of a given service).

The “getWorkingDirectAntecedents (parameters)” APT
retrieves direct antecedents with status “up” of a service
located on a specific host. The
“getWorkingAntecedentsRecursive (parameters)” API performs a

recursive “drill-down,” i.e., it retrieves all the antecedents
with status “up” of a given service, which is located on a
specific host. It therefore returns all the working services
residing “below” a given service in the dependency hierarchy.
The “getWorkinglLowestAntecedents (parameters)” API retrieves
the lowest antecedents with status “up” of a service located
on a specific host. This method yields the services that do
not have any antecedents themselves (i.e., they reside in the
lowest layer of the dependency hierarchy of a given service).
The “getDefectiveDirectAntecedents (parameters)” APT

retrieves direct antecedents with status “down” of a service

located on a specific host. The
“getDefectiveAntecedentsRecursive (parameters)” API performs a
recursive “drill-down,” i.e., it retrieves all the antecedents

with status “down” of a given service, which is located on a
specific host. It therefore returns all the failed services
residing “below” a given service in the dependency hierarchy.
The “getDefectivelowestAntecedents (parameters)” API retrieves
the lowest antecedents with status “down” of a service located
on a specific host. This method yields the services that do
not have any antecedents themselves (i.e., they reside in the
lowest layer of the dependency hierarchy of a given service).
This API is particularly useful 1if a user or management
application wants to determine quickly whether any
vfundamental” service (e.g., network connectivity service) has
failed without having to verify the status of “intermediate”
services (such as name services).

Although illustrative embodiments of the present
invention have been described herein with reference to the

accompanying drawings, it 1s to be understood that the

WO 2004/025471 PCT/EP2003/010080

—_ 4 9 -
invention is mnot limited to those precise embodiments, and
that wvarious other changes and modifications may be made by
one skilled in the art without departing from the scope or

spirit of the invention.

10

15

20

25

30

WO 2004/025471 PCT/EP2003/010080

- 50 -
Claims
What is claimed is:
1. A computer-based method for determining a root cause

of a condition of at least one subject component in a
computing environment, the method comprising the steps of:

identifying one or more components in the computing
environment upon which the at least one subject component
depends, wherein identification comprises traversing at least
a portion of a model representative of an existence of one or
more relationships associated with at least a portion of
components of the computing environment and which is capable
of accounting for a full lifecycle associated with at least
one component of the computing environment; and

performing one or more procedures in accordance with the
one or more identified components to determine a condition
status associated with each of the one or more identified

components.

2. The method of c¢laim 1, wherein the computing

environment comprises a distributed computing environment.

3. The method of c¢laim 1, wherein the computing

environment comprises an autonomic computing environment.

4, The method of claim 1, wherein the identifying step
further comprises identifying the one or more components upon

which the at least one subject component directly depends.

5. The method of claim 1, wherein the identifying step
further comprises identifying a complete set of components

upon which the at least one subject component depends.

6. The method of claim 1, wherein the performing step
further comprises performing the one or more procedures in a

stepwlise manner.

10

15

20

25

WO 2004/025471 PCT/EP2003/010080

- 51 -

7. The method of claim 1, wherein the performing step
further comprises performing the one or more procedures in a

combined manner.

8. The method of claim 1, wherein the model is in a form
comprising a functional categorization, a structural

categorization and an operational categorization.

9. The method of claim 8, wherein the identifying step
further comprises computing the operational categorization of
the model based on at least one input criterion and traversing
the operational categorization to identify the one or more
components in the computing environment upon which the at

least one subject component depends.

10. The method of claim 9, wherein the at least one
input criterion comprises at least one of a name of the at
least one subject component, a host associated with the at
least one subject component, a direction of the traversal, a
depth of the traversal, a path of the traversal and at least

one filtering criterion.

11. The method of claim 1, wherein the one or more
procedures of the performing step comprise at least one of a
component inspection procedure, a component exercising
procedure, a component heartbeat detection procedure and a

component status indication procedure.

12. The method of claim 1, wherein the condition of the
at least one subject component is one of failed, not failed

and degraded.

13. The method of claim 1, wherein a component is one of

a service, an application, middleware, hardware, a device

10

15

20

25

30

WO 2004/025471 PCT/EP2003/010080
- 52 -
driver, an operating system and a system associated with the

computing environment.

14. The method of c¢laim 1, wherein the root cause
determination method i1s performed for one or more subject

components substantially concurrently.

15. The method of claim 1, wherein at least a portion of
results of the root cause determination method 1is one of

persistently stored and not persistently stored.

16. The method of claim 1, further comprising the step
of maintaining a history of results associated with the root

cause determination method.

17. The method of claim 14, wherein at least a portion

of the history is used to identify a most likely root cause.

18. Apparatus for determining a root cause of a
condition of at least one subject component in a computing
environment, the apparatus comprising:

at least one processor operative to: (i) identify one or
more components in the computing environment upon which the at
least one subject component depends, wherein identification
comprises traversing at least a portion of a model
representative of an existence of one or more relationships
associated with at least a portion of components of the
computing environment and which is capable of accounting for a
full lifecycle associated with at least one component of the
computing environment; and (ii) cause performance of one or
more procedures in accordance with the one or more identified
components to determine a condition status associated with
each of the one or more identified components; and

memory, coupled to the at least one processor, operative
to store at least a portion of results associated with the

identifying and performing operations.

10

15

20

25

WO 2004/025471 PCT/EP2003/010080

- 53 -

19. The apparatus of claim 18, wherein the computing

environment comprises a distributed computing environment.

20. The apparatus of claim 18, wherein the computing

environment comprises an autonomic computing environment.

21. The apparatus of claim 18, wherein the identifying
operation further comprises identifying the one or more
components wupon which the at least one subject component

directly depends.

22. The apparatus of claim 18, wherein the identifying
operation further comprises identifying a complete set of
components upon which the at least one subject component

depends.

23. The apparatus of claim 18, wherein the performing
operation further comprises causing the performance of the one

or more procedures in a stepwise manner.

24. The apparatus of claim 18, wherein the performing
operation further comprises causing the performance of the one

or more procedures in a combined manner.

25. The apparatus of claim 18, wherein the model is in a
form comprising a functional categorization, a structural

categorization and an operational categorization.

26. The apparatus of claim 25, wherein the identifying
operation further comprises computing the operational
categorization of the model based on at least one input
criterion and traversing the operational categorization to
identify the one or more components in the computing
environment upon which the at least one subject component

depends.

10

15

20

25

WO 2004/025471 PCT/EP2003/010080

- 54 -

27. The apparatus of claim 26, wherein the at least omne
input criterion comprises at least one of a name of the at
least one subject component, a host associated with the at
least one subject component, a direction of the traversal, a
depth of the traversal, a path of the traversal and at least

one filtering criterion.

28. The apparatus of claim 18, wherein the one or more
procedures of the performing operation comprise at least one
of a component inspection procedure, a component exercising
procedure, a component heartbeat detection procedure and a

component status indication procedure.

29. The apparatus of claim 18, wherein the condition of
the at least one subject component 1s one of failed, not

failed and degraded.

30. The apparatus of claim 18, wherein a component is
one of a service, an application, middleware, hardware, a
device driver, an operating system and a system associated

with the computing environment.

31. The apparatus of claim 18, wherein root cause
determination is performed by the at least one processor for

one or more subject components substantially concurrently.

32. The apparatus of claim 18, wherein at Ileast a
portion of results of the root cause determination performed
by the at least one processor is one of persistently stored

and not persistently stored.

33. The apparatus of claim 18, wherein the at least one
processor 1s further operative to maintain a history of

results associated with the root cause determination method.

10

15

20

WO 2004/025471 PCT/EP2003/010080
- 55 -
34. The apparatus of claim 33, wherein at least a
portion of the history is used to identify a most likely root

cause.

35. An article of manufacture for determining a zroot
cause of a condition of at least one subject component in a
computing environment, comprising a machine readable medium
containing one or more programs which when executed implement
the steps of:

identifying one or more components in the computing
environment upon which the at least one subject component
depends, wherein identification comprises traversing at least
a portion of a model representative of an existence of one or
more relationships associated with at least a portion of
components of the computing environment and which is capable
of accounting for a full lifecycle associated with at least
one component of the computing environment; and

performing one or more procedures in accordance with the
one or more identified components to determine a condition
status associated with each of the one or more identified

components.

PCT/EP2003/010080

WO 2004/025471

1/15

IO

HJOLVALSININGY

n\
———
ol

0¢l [
dSvav.ivda Gl

AHAFIS HSVEV.LVA

N

o] €Tl

001

O °
i J

0C1 SSADOV IOMILAN
YIAYAS NOLLVOI'TddY 9aM

Ol

o1

WHLSAS LNAITO

PCT/EP2003/010080

WO 2004/025471

2/15

AJOLISOdTY

HOENOSHYA

ADNHANHJHA

SHOINOSHY
N TIOVNVIN D
(1444 0¢

VEAVT)

== 914
=5 ozz| EOMNOSTA

LNHOV
AJOLISOddd

0¢€? %

VIO

AdOLISOdTd
ADNAANAIIA
ANF-OL-aN™

HSvdvivd
ADOTOdOL

L MADVNYIN
: LI'INVA

e | H H

HINLONILSVIANT
NOILVDINNNINOD INFWADYNVIA

H P 7l

HOIAYAS AA0LOTIIA “INAAT ‘ADI'TOd
AJDNAANAIIA 'SHOIAYAS INHNADVNVYIN DTIHNHD

YHAVI)

JHZATVNV
LOVII

YHdZATVNY
HSN1VD 100Y

09¢

YOLVIANAD 0LT
ADOTOJOL / coz

JOLVINNIS
LOVdNI

N AOIAMAS S0T

L)

WAVI

NOILVOI'IddV 00T

HJOLVALSININAY

HOVATLALNI JdSO TVIIHIVED YOLVILSININGY

00T
é

WO 2004/025471 PCT/EP2003/010080
3/15

f 292

290
f MEMORY

PROCESSOR

f 294
\ 1/O DEVICES

FIG. 2B

f 300
E-BUSINESS APPLICATION

l f 305
WEB APPLICATION SERVICE

330

DB SERVICE

/* 315 f 320 325

WEB SERVICE

NAME SERVICE |——>» IP SERVICE o

FIG. 3

WO 2004/025471
4/15

E-BUSINESS APPLICATION

PCT/EP2003/010080

DATABASE

"STOREFRONT SERVLETS"

|

415
| WEB APPLICATION SERVICE J
"ITBM WEBSPHERE 3.5" ||

l [420

WEB SERVICE
"IBM HTTP SERVER 1.3.6"

v 430
IP SERVICE
425 "Ip"
Y
OS
"WINNT 4"
WSLAB8. WATSON.IBM.COM
400

FI1G. 4

"DB2 UDB 5.2"

/‘ 440
oS

"AIX 4.3.3"

RSLAB2.WATSON.IBM.COM
405

PCT/EP2003/010080

WO 2004/025471

5/15

] i |

9’ aNId
0rs 4 /
a0 cad ONINOQ SALO'T AOIANES ANVN
oss J 7
VIANAS | SI¢
p'¢ 1 AHOVAVY asvav.ivd
\ ADIAYHAS MMM
43
{ 0g€ 1€ \
AM OV G- TIHASaAm > mmm
¥ NoWdva-ggdHdsgdm > Mf TYAHISIAM WTT > M HOIAYHS NOLLVOI'TddV gdMm >
SHS (\ 87 S0t
TIAOW TAAON TAAON
HLVILNV.LSNI <
TYNOLLYYAdO \\A | TVINLONILS AOTHIWTIVISNI | TYNOLLDNNA
oz A sis ors - co 00s -

PCT/EP2003/010080

WO 2004/025471

6/15

§79 \J

9 ‘OL1
0T¢ \/<

029 \/<

LANVINEd NO QaLAdINOD. SAOMNOSTY AIDVNYIN WHLSAS LNHWHOVNVIN
— T ~. T T
m =
/ 01 coo STIAOIN FHI 40 DVHOLS
;// ~ (IEONVISNE)f
I = AHEDONVISND =YdIINNNITOd = {(IHONV.LSNI
da0Y/cS =dd9NNNLIOd =HILVISIEdO =JHdEANNNLIOd
DONINNNE =H1V1ISdddO » HNVYN = AINVNSSEDOUd =HLV1S9dd0O
INVN = HINVNSSHZO0dd ‘I.._ TEVIHATES DL LAN'SOg XTIV = HNVNSSHD0O¥d
= INHAOHINY 'SO'MS'AOAd INGINOD = INHAIDAILNY HOIAYEES dI = INJAdDI LNV
=dLVILSTIVLISNI JININOD =dLVISTIVLSNI =dLVISTIVLSNI
= NOLLVIOIAIAON ¢ = NOILVOIAZIAON = NOLLVIIAIdON
=HdSVH T O =HSVdIdd =HdSVHTIdI
= NOISTHA S =NOISYIA = NQOISddA
="YJaIILINZA HIATHAS HNVN DL LHN'SOd =Y ILNIdI
= HdALLNANOJNOD XIV' SO MS AOYd NI INOD = YaTAAINATdT = YTATAS = TdALINIANOJNOD
= JNVNINANOJNOD HAAETES = HdALINANOJINOD Auln_.l = JAVN.INANOJNOD
= JINVNHDIIAYHS NI = HWVNININOINOD A|_Inv HOIAYAS HINVN = HNVNHDIIAIHS
OO AT NOSLY M dANS IDIANAS SINVN = BINVNEIIANAS Lv OO NET'NOSLY M"dAINS
— TAVNLSOH [€——I WOO'WEINOSLY M dANS=TNYNISOH — SINVNLSOH
TATOW TIAOIN TAGOW
TVNOILVYAJO BLVIINVISNE | oo ot AOTAAWIIVISNL | qovoring
oze 2 sis ots - coc o0s -

PCT/EP2003/010080

WO 2004/025471

7/15

L"OIA

SADUNOSHY AAOVNVIN | SEDIAMAS INTWIADVNVIN INALSAS INTNAOVNVIA
0SL INEAT / m
\ S1L |
JHAIAO¥d 0ZL ;
NID INOINID . m
. AAAVIL ANVN | |
MATIAOYA ﬂ ;
NID dLLH 0L / 00L
H 0SL St m 082 /
N 0ZL
AJOLISOdTY enn -
Em,wm XS HOIAYGAS
,mm\émm "l | xoNaaNadaa A | | dHZATVNY
O o
JIIH VAV SOV L00Yd
m 072 MINX |
e Lae Py
e adLL MOLVILSININAY
/ YAAYHS arrm” %L
ogg qHM JTNX ("
SHTIA TNX LV1d 001
SNOLLARIDSAA ADNAANAIAA NOLLVINIOANI SATIAND ANSSI

AONHANALIA HLVIINID

PCT/EP2003/010080

WO 2004/025471

8/15

AONHANHIHA

NIVINOd JI4DVNVIN

ll

N

ADNIANHdHA

SHOINOSTI AIOVNVIA

2o

NIVINOd AIDVNYIN
LNHANNOYIANA HOIHININOD-H

0¥8
H

ADIAYHS HOIAYAS
% ADNAANIJIaa ADNAANAJId
SHe R
ST
MOLINOW HOIAYAS
SNIVIS AONAANAIAA

098 \

MOLVIEII0D
ADIAIAS-INIAHL

SvT (\

0.8 \\

N

-

JOLVTIINIOD
HSNVD 100Y

SSNvDO

NG
L0O0OY 40 1L4S

Ld0ddd
—
WHTdOdd DIAYHS

...... 08 N

JOLINOW
INHAH

068

088

WO 2004/025471 PCT/EP2003/010080

9/15

900
(" stART }f

\

Y

SELECT HOST

|

f 905
SELECT SERVICE

910
/

COMPOSE QUERY (DIRECT/RECURSIVE
ANTECEDENTS/DEPENDENTS)

915
f

Y

INVOKE DEPENDENCY SERVICE AND
COLLECT OPERATIONAL MODEL

[920

Y

OPERATIONAL MODEL

APPLY ROOT CAUSE ANALYSIS TO | [~ 925

WO 2004/025471 PCT/EP2003/010080
10/15

1000
(START)f

1005
NO

NEW BUSINESS
SERVICE ADDED/
DELETED?

1010
INSERT/DELETE SERVICEIN |/
FUNCTIONAL MODEL

Y

1015
ADD/DELETE SERVICE DEPENDENCIES F/'
TO/FROM FUNCTIONAL MODEL

Y

[1020
STORE FUNCTIONAL MODEL

| 1025
C END J-

FIG. 10

WO 2004/025471 PCT/EP2003/010080
11/15

' 1100
C START 3/

NEW HARDWARE/
SOFTWARE COMPONENT

NO

ADDED/DELETED?

[1110
INSERT/DELETE COMPONENT
DESCRIPTION IN STRUCTURAL MODEL

|]"1115

ADD/DELETE COMPONENT DEPENDENCIES
TO/FROM STRUCTURAL MODEL

1120
f

Y

STORE STRUCTURAL MODEL IN RESOURCE
DEPENDENCY REPOSITORY

1125
D

WO 2004/025471 PCT/EP2003/010080

12/15

1200
C START)f

|

1205

ROOT CAUSE ANALYSIS

REQUESTED?

EXTRACT INPUT PARAMETERS FROM REQUEST

|

INVOKE COMPUTATION OF OPERATIONAL
MODEL AND OBTAIN RESULTS

Y

APPLY ROOT CAUSE ANALYSIS TO
OPERATIONAL MODEL

1220
/

\

DELIVER RESULTS TO INVOKER

1225
J,

Y

RELEASE ALLOCATED SYSTEM RESOURCES

1230
/

FIG. 12

WO 2004/025471 PCT/EP2003/010080
13/15

1300
C START >/
!

j 1305
‘OBTAIN SERVICE AND HOST NAMES
OBTAIN SEARCH CRITERIA W.R.T. ANTECEDENT STATUS
(WORKING, DEFECTIVE)
OBTAIN SEARCH PATH (DIRECT, RECURSIVE, LOWEST)

Y

INVOKE COMPUTATION OF OPERATIONAL MODEL WITH
PARAMETERS:
SERVICE NAME, HOST NAME, ANTECEDENT STATUS,
SEARCH PATH

‘ 11310

OBTAIN LIST OF CANDIDATE SERVICE ELEMENTS

1315 I

CANDIDATE

Yes SERVICE 1325
ELEMENTS i g
Y SELECT SERVICE
RETURN "WORKING/ ELEMENT FROM
DEFECTIVE" SERVICE CANDIDATE LIST

ELEMENT LISTS TO 1
1350

INVOKER 1330
1355
L J YES “sratus = ok
(END)
1335 NO -1340

Y S, (

ADD SERVICE ADD SERVICE

ELEMENT TO ELEMENT TO
"OK" LIST "DEFECTIVE" LIST

v
FIG. 13 1345 || REMOVE SERVICE
’ l————— ELEMENT FROM

CANDIDATE LIST

WO 2004/025471 PCT/EP2003/010080
L4/15

1400
C START)f

ﬂfﬁ1405
OBTAIN SERVICE
ELEMENT

ANY FAULT
EVENTS FOR
THIS SERVICE
ELEMENT?

1420 1415
i

4

CURRENT STATUS FLAG SERVICE
OF SERVICE ELEMENT AS
ELEMENT = "OK"? "DEFECTIVE"
1425 1430
[v |
FLAG SERVICE | RETURNRESULT TO
ELEMENT AS "OK" g INVOKER

1435 l
)

FIG. 14

PCT/EP2003/010080

15/15

WO 2004/025471

ST "OId

LSOH JIIDAdS
¥V NO A4LVOOTHDIAYAS V 40 wJNMOd. SALLVLS H1IM
SINHAIDALNY TTV HAFRILAY -NAOQ-TIIA FAISYINDTI

() AAISINDTISINAAHOTINVIALLDTAAALAD

LSOH DIHI0HAdS V NO 4LVIOTHIIAYHS V 4O
«NMOAu SNILVLS HLIM SINAAIDIINY LSHMOT HAHILTT

() SINHAFOAILNVISIMOTIALLOIIAALID

LSOH DIAIDHEdS V NO dd41VOOTHIIAYHS V 40
wNMOd, SNLVLIS HLIM SINHAIDHEINY LOFTIId HAHI LT

() SINFAQIOFINY LOTIIATAILDAIAALTD

LSOH
OI4IDAdS V NO ddLVDOTHDIAEHS V 40 wd1w SNILV.LS HLIM
SINAQIDALNY TTV SAFRILTYE ‘NMOA-TINA FAISYNDTA

() HAISENDTISINTATDLILNVONCTIOM.LID

LSOH DIAIDHIS V NO AALVIOOTHOIAYHS
V 40 wd}w SNLVIS HLIM SINHAIDHINY LSHMOTHAHTILTE

() SINHAAOHINV.LSHMOTONITIOMLAD

LSOH DIHIDHdS V NO dALVDOOT dDIAYHES
V A0 wdlw SOLV.LS HLIM SINHAHOAINV LOHAIA HAHRILEYT

() SINFAIDHINVIOTIIADNCTIOM LD

LSOH DIAIDAdS V NO dd.LVOOT dDIATYHS V 40
SINAAIDAINY TIV HAHNLTI ‘NAOQ-T A HAISINDTI

() FAISINOTISINATIDTINV.ILID

LSOH DI4IDddS V NO
ILVOOTHDIAYES V 40 SINHAHOHINY LSHMOTHAHTILTYT

() SINAQEDAINV.ISIMOTLID

LSOH DI4IDddS V NO
ALVYOOTHIIAYAS V 40 SINHAHOHLNY LOFIId HAHTILEY

() SINAAEDILNY LOTIIALAD

NOILdTIODSHA 'TYNOLLONOA

SIdV

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

